

1
2
3
4
5
6 Single-cell RNA sequencing reveals aortic cellular heterogeneity in
7 MSC_ITGB3-treated ApoE^{-/-} mice on a high-fat diet
8

9 **Short title:** Aortic cellular heterogeneity under a high-fat diet
10

11
12
13 Haijuan Hu¹, Demin Liu¹, Xue Geng¹, Mei Han², Wei Cui^{1*}
14
15 ¹ First division, Department of Cardiology, the Second Hospital of Hebei Medical University
16 and Institute of Cardiocerebrovascular Disease of Hebei Province, Shijiazhuang 050000,
17 China
18 ² Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry
19 and Molecular Biology, College of Basic Medicine, Cardiovascular Medical Science Center,
20 Hebei Medical University, Shijiazhuang 050011, China

21
22
23
24 *Corresponding author:
25 Email: cuiwei21c@163.com (WC)

26 Abstract

27 The aorta contains various cell types that are involved in the development of vascular
28 inflammation and atherosclerosis. However, the cellular atlas of heterogeneous aorta cells,
29 cellular responses, and intercellular communication has not been investigated in the
30 background of a high-fat diet (HFD) and treatment with integrin beta 3-modified
31 mesenchymal stem cells (MSC_ITGB3). In this study, 33,782 individual cells from mouse
32 aortas under HFD with or without MSC_ITGB3 treatment were subjected to single-cell RNA
33 sequencing as an unbiased analysis strategy. We generated a compendium of 30 different
34 clusters, mainly smooth muscle cells (SMCs), endothelial cells, and immune cells. The
35 proportion of the different cell types was considerably influenced by HFD and MSC_ITGB3.
36 In the HFD group, genes associated with proliferation, migration, and collagen were highly
37 expressed in the major SMC subpopulations. However, the expression of contraction-related
38 genes in SMC subpopulations was significantly higher in the MSC_ITGB3 group than in the
39 HFD group. After HFD consumption, subpopulations of ECs with active PI3K-Akt signaling
40 pathway, ECM-receptor interaction, and contraction-related genes were significantly
41 enriched. In the MSC_ITGB3 group, the number of dendritic cells (DCs), which are
42 positively correlated with atherosclerotic lesion progression and contribute to lipid
43 accumulation, and levels of inflammatory factors notably decreased. Our findings provide
44 data on the composition, signaling pathways, and cellular communication of the aorta cells
45 following stem cell treatment as well as on the evolution and progression of atherosclerotic
46 disease. The findings may help in improving the treatment of atherosclerosis.

47

48 **Keywords:** Single-cell RNA sequencing; Atherosclerosis; MSC_ITGB3; HFD;
49 Heterogeneity

50

51 **Introduction**

52 Atherosclerosis is a characteristic of vascular inflammation, and its complications are
53 one of the leading causes of mortality worldwide [1]. Atherogenesis involves the interaction
54 between local and global pro- and anti-inflammatory factors. In recent years, great progress
55 has been made in the treatment of atherosclerosis, including systemic pharmacological
56 treatment and percutaneous coronary intervention [2, 3]. However, the incidence of
57 atherosclerotic complications, such as stroke and myocardial infarction, remains relatively
58 high [4].

59 Mesenchymal stem cell (MSC) transplantation brings new light to atherosclerosis
60 treatment [5-7]. Targeted modification drives MSCs to their destination and improves repair
61 at the site of injury. Overexpression of fibroblast growth factor 21 significantly increases the
62 migration and homing of MSCs to injured brain tissues [8]. C-X-C chemokine receptor type 5
63 (CXCR5) modification enhanced the migration ability of MSCs towards CXCL13 in a mouse
64 model of contact hypersensitivity, leading to decreased levels of inflammatory cell infiltration
65 and proinflammatory cytokine production [9]. The integrin family of receptors enables cells
66 to interact with their microenvironment [10, 11]. The main recognition system for cell
67 adhesion is constituted by integrin receptors, along with proteins containing Arg-Gly-Asp
68 (RGD) attachment sites [12, 13]. The primary sequence of integrin beta 3 (ITGB3), a highly
69 conserved region in all beta subunits of integrin, is referred to as the RGD-cross-linking
70 region [14]. Consequently, we genetically engineered stem cells to overexpress ITGB3 via *in*
71 *vitro* lentiviral transduction. However, whether stem cell migration to the plaque site affects
72 the vascular cellular composition and heterogeneity *in vivo* remains unclear. To date, few
73 studies have investigated the changes in the composition and heterogeneity of vascular cells
74 in atherosclerotic plaques following MSC therapy.

75 In this study, we aimed to elucidate the effects of stem cell therapy on atherosclerotic
76 vascular cell composition. Accordingly, we used single-cell RNA sequencing (scRNA-seq) to
77 investigate cell heterogeneity and differential functional states within the aortic wall of mice
78 fed a high-fat diet (HFD) and treated with or without ITGB3-modified MSCs (MSC_ITGB3)
79 (MSC_ITGB3 and HFD groups, respectively). Collectively, we demonstrated that a high
80 number of MSC_ITGB3 can migrate to the injury site and promote plaque repair following
81 injection into the mouse tail vein. Furthermore, we performed differential analyses of lineage
82 heterogeneity and functional changes and elucidated the underlying vascular cell
83 communication mechanisms from the aortic wall in the HFD and MSC_ITGB3 groups.
84 Cluster analysis results revealed 30 clusters and 5 distinct cell types. Importantly, compared
85 with HFD aortas, aortas treated with MSC_ITGB3 exhibited changes in the cell subsets,
86 transcriptome characteristics, and biological functions.

87

88 Materials and methods

89 Data collection and processing

90 Single-cell data and samples with data type *Mus musculus* were divided into HFD and
91 MSC_ITGB3 groups (n=3 per group). All experiments were performed on ApoE-/- mice fed
92 an HFD. In the MSC_ITGB3 group, MSC_ITGB3 cells were injected four times via the tail
93 vein (1×10^6 cells/injection every week), starting at week 9, and aortic sampling was
94 performed at the end of week 12 for scRNA-seq. A single-cell suspension of aortic cells was
95 prepared using a previously described enzymatic digestion protocol [15].

96 The atherosclerosis Bulk-seq dataset GSE43292 [1] was downloaded from the Gene
97 Expression Omnibus database (<https://www.ncbi.nlm.nih.gov/geo/>). It comprised *Homo*
98 *sapiens* samples, and its assay platform was GPL6244. The dataset was derived from 32

99 patients with hypertension. Each patient provided one sample of an atherosclerotic plaque
100 containing the core of the shoulder of the plaque (Stary classification type IV and above) and
101 one sample of a distant macroscopically intact tissue (type I or II), resulting in a total of 64
102 samples.

103

104 **Quality control of atherosclerosis data using Seurat**

105 R (version 4.1) and the ‘Seurat’ R package (version 4.0.5) [16] were used. Seurat
106 objects for each sample were created from single-cell data and then merged using the
107 “merge” function. The proportion of mitochondrial genes to all inherited genes is a major
108 factor that determines whether a cell is in a steady state. A cell with a higher proportion of
109 mitochondrial genes than all other genes is generally considered to be in a stress state.
110 Therefore, we removed cells with > 20% mitochondrial genes. As low-quality cells or empty
111 droplets usually have few genes and double cells may exhibit an abnormally high number of
112 genes, we also removed cells with features < 200 or > 7,000. Ultimately, 33,782 cells were
113 obtained (Fig 1).

114

115 **Fig 1. Project flowchart.** We developed a flowchart of bioinformatic analysis to regularize
116 and characterize different data.

117

118 The sequencing depth of the dataset was normalized using the “NormalizeData”
119 function with the default “LogNormalize” normalization method. Subsequently, 2,000
120 variable features of the dataset were detected by calling the “FindVariableFeatures” function
121 using the “vst” method. The data were then scaled using “ScaleData” to exclude the effects of
122 sequencing depth. The “Elbowplot” function was used for the Principal component analysis
123 (PCA) [17], to identify the significant principal components (PCs) and visualize the *p*-value

124 distribution. Subsequently, the data were de-batched using the “RunHarmony” function.
125 Finally, 24 PCs were selected for uniform manifold approximation and projection (UMAP)
126 analysis. The default parameters of “FindNeighbors” and 22 PC dimension parameters were
127 used to construct the Euclidean distance-based K-nearest neighbors in the PCA space. The
128 Louvain algorithm was used to optimize the class groups by calling the “FindClusters”
129 function, which divides the cells into 30 different clusters with a resolution of 0.8. Finally,
130 the “RunUMAP” function was used for dimensionality reduction to visualize and investigate
131 the dataset.

132

133 **Gene enrichment analysis**

134 Gene Ontology (GO) [18] enrichment analysis is a common approach for large-scale
135 functional enrichment studies of genes in different dimensions and at different levels. It is
136 generally performed at three levels: molecular function, biological process, and cellular
137 component. Kyoto Encyclopedia of Genes and Genomes (KEGG) [19] is a widely used
138 database for storing data on genomes, biological pathways, diseases, and drugs. The
139 “clusterProfiler” (version 4.2.0) [20] R package was used to perform GO and KEGG
140 functional annotation of differentially expressed genes between the macroscopically intact
141 tissue and atheroma plaque, in the bulk RNA data, and between cells in single-cell data, to
142 assess significantly enriched biological processes. The significance threshold was set at $p <$
143 0.05, and the results were visualized using bar graphs.

144

145 **Cell annotation**

146 Cell types were identified based on their marker genes [21]: *Pecam1* and *Cdh5* for
147 endothelial cells (ECs), *C1qb* and *Lyz2* for immune cells, *Colla1* and *Colla2* for fibroblasts,
148 *Tagln* and *Myh11* for smooth muscle cells (SMCs), and *Kcan1* and *Plp1* for neural cells.

149

150 **SMC subpopulation annotation**

151 The method described above was used for the dimensionality reduction and clustering
152 of SMCs. Twelve principal components were determined as statistically significant inputs to
153 UMAP and were divided into 12 clusters. Based on marker gene expression [21], SMCs were
154 classified into three cell subpopulations: SMC_1 (*Fnl*, *Ctgf*, and *Eln*); SMC_2 (*Myl6*, *Acta2*,
155 and *Tagln*); and SMC_3 (*Gpx3*, *Colec11*, and *Col6a1*). The default Wilcox test of the
156 *FindAllMarkers* function was then used to determine differentially expressed genes between
157 different cell types (logfc.threshold = 0.25).

158

159 **EC subpopulation annotation**

160 The same method described above was used for dimensionality reduction and EC
161 clustering. Twelve principal components were determined as statistically significant inputs to
162 UMAP and were divided into 11 clusters. Based on marker gene expression [21], ECs were
163 classified into three cell subpopulations: EC_1 (*Cytll*, *Cpe*, *Clu*, and *Pam*); EC_2 (*Fabp4*,
164 *Ly6c1*, *Sparcl1*, and *Igfbp7*); and EC_3 (*Mmrn1*, *Fgl2*, *Igfbp5*, and *Lbp*). The default Wilcox
165 test of the *FindAllMarkers* function was then used to determine differentially expressed genes
166 between different cell types (logfc.threshold = 0.25).

167

168 **Immune cell subpopulation annotation**

169 The same method described above was used for the dimensionality reduction and
170 clustering of immune cells. Sixteen principal components were selected as statistically
171 significant inputs to UMAP and were divided into 15 clusters. Based on marker gene
172 expression [21], immune cells were classified into three cell subpopulations:

173 monocytes/macrophages (*Cd68*, *C1qb*, and *Lyz2*); dendritic cells (DCs; *H2-Ab1* and *H2-*
174 *Eb1*); and T cells (*Cd3d*, *Cd3g*, and *Nkg7*). The default Wilcox test of the FindAllMarkers
175 function was then used to determine differentially expressed genes between different cell
176 types (logfc.threshold = 0.25).

177

178 **Cell communication analysis**

179 The ‘CellChat’ (<http://www.cellchat.org/>) [22] R package was used to analyze cell-
180 cell communication networks from scRNA-seq data. Single-cell expression profiles were
181 combined with known ligands, receptors, and their cofactors to calculate the strength of
182 interactions in cell-cell communication. Network analysis and pattern recognition methods
183 were used to predict the major incoming and outgoing signals in the cells as well as the
184 coordination between these cells and signals.

185

186 **Key gene screening from bulk RNA data**

187 The “homologene” (version 1.4.68.19.3.27) R package was used for the homologous
188 transformation of single-cell data for differential genes between SMCs, ECs, and immune
189 cells. Subsequently, the expression of these homologous genes in the 64 samples was
190 determined from the GSE43292 dataset using the “limma” (version 3.50.0) [23] R package to
191 perform differential analysis on the resulting new macroscopically intact tissue and atheroma
192 plaque groups, from which differential genes were extracted ($p < 0.05$, $|\log FC| > 1$).

193 The STRING online database (<https://string-db.org/>) [24] was used to analyze the
194 interactions between differentially expressed genes. Protein–protein interaction (PPI)
195 networks were constructed using Cytoscape [25] (version 3.9.1) to map the interactions
196 between the functions of the proteins, including direct physical interactions and indirect

197 functional correlations. The cytoHubba [26] plugin was used to assign values to each gene
198 using a topological network algorithm to sort and discover key genes and sub-networks.

199

200 **Results**

201 **Single-cell data-based cell type annotation reveals a high degree** 202 **of cellular heterogeneity in samples**

203 A total of 33,782 cells were obtained after filtering based on quality control criteria
204 and normalization of the scRNA-seq data (Fig 2A). Overall, 2,000 highly variable genes were
205 selected for subsequent analysis, and the top 10 genes were annotated (Fig 2B). PCA was
206 performed to identify usable dimensions and screen for relevant genes, and 22 PCs were
207 selected for subsequent analysis. Using the UMAP dimensionality reduction, the cells were
208 divided into 30 separate clusters (Fig 2C, D). Thirty clusters were identified using marker
209 genes for each cell type. Clusters 2, 3, 5, 7, 8, 9, 10, 11, 15, 21, 22, 24, 25, 26, 27, 28, and 29
210 had a total of 16,717 cells annotated as Fibroblast, accounting for 49.48% of all cells.
211 Clusters 1, 12, 13, 17, 18, and 20 had 6,402 cells annotated as Immune_cell, accounting for
212 18.95% of all cells. Clusters 0, 14, and 23 had 5,090 cells annotated as Endothelial_cell,
213 accounting for 15.07% of all cells. Clusters 4, 6, and 16 had a total of 5,090 cells annotated as
214 SMCs, accounting for 15.07% of all cells. Cluster 19 had 483 cells and was annotated as
215 Neural, accounting for 1.43% of all cells (Fig 2E).

216

217 **Fig 2. Quality control and characterization of the single-cell dataset.** (A) Two samples
218 from the single-cell dataset were selected, and 33,782 cells were included in the analysis
219 following quality control. (B) Standard deviation scatter plot demonstrating high gene
220 variability in cells, with the top 10 genes labeled. Cluster analysis was performed on single-

221 cell data samples and colored based on sample (C), cluster (D), and cell type (E). (F)
222 Prominent marker genes for each cell type (Endothelial_cell, Immune cell, Fibroblast, SMC,
223 and Neural). (G) Cell type proportions in the single-cell datasets of the high-fat diet (HFD)
224 and MSC_ITGB3 groups. (H) Expression profiles of the prominent marker genes for each
225 cell type.

226

227 The specific marker genes of each cell type were used to construct a dot plot (Fig 2F)
228 and feature map (Fig 2G), and the percentage of each cell type in the HFD and MSC_ITGB3
229 groups was calculated (Fig 2H).

230

231 **SMC subpopulation analysis**

232 Further cluster analysis of SMCs revealed three subpopulations (Fig 3A). In the HFD
233 group, SMC_2 accounted for 74.17% of the SMCs, and SMC_1 and SMC_3 together
234 accounted for 25.83%. In the MSC_ITGB3 group, SMC_2 accounted for 79.07%, and
235 SMC_1 and SMC_3 together accounted for 20.93% (Fig 3B). Differential analysis ($p < 0.05$)
236 of these three SMC subpopulations was then performed, and the top 10 differential genes of
237 each cell subpopulation were used to construct a heat map of differential gene expression (Fig
238 3C). Finally, KEGG enrichment analysis was performed for each SMC subpopulation, and
239 enrichment of the following pathways was found: focal adhesion, diabetic cardiomyopathy,
240 prion disease, proteoglycans in cancer, and Alzheimer's disease in SMC_1 (Fig 3D); focal
241 adhesion, diabetic cardiomyopathy, prion disease, proteoglycans in cancer, and chemical
242 carcinogenesis (reactive oxygen species) in SMC_2 (Fig 3E); and extracellular matrix
243 (ECM)-receptor interaction, focal adhesion, human papillomavirus infection,
244 phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, and
245 hypertrophic cardiomyopathy in SMC_3 (Fig 3F).

246

247 **Fig 3. Comparison of SMC subpopulations in the HFD and MSC_ITGB3 groups. (A)**

248 UMAP plots of SMC subpopulations (SMC_1, SMC_2, and SMC_3) from the HFD (2,400
249 cells) and MSC_ITGB3 (2,733 cells) groups. (B) Percentage of SMC subpopulations in the
250 HFD (SMC_1, 25.12%; SMC_2, 74.17%; SMC_3, 0.71%) and MSC_ITGB3 (SMC_1,
251 20.49%; SMC_2, 79.07%; SMC_3, 0.44%) groups. (C) Heat map of the top 10 marker genes
252 for each subpopulation. (D–F) Top 10 KEGG-enriched pathways obtained using
253 differentially expressed genes from the SMC_1 (D), SMC_2 (E), and SMC_3 (F)
254 subpopulations. (G) Violin plots of selected marker gene expression in SMC subpopulations
255 in both HFD and MSC_ITGB3 samples. (H) Feature map of the expression of selected
256 marker genes of the SMC subpopulations in the HFD group. (I) Feature map of the
257 expression of selected marker genes of the SMC subpopulations in the MSC_ITGB3 group.
258 (J) Expression of specific genes in the SMC subpopulations.

259

260 Marker genes specific to each SMC subpopulation were selected (*Fn1*, *Ctgf*, *Eln*,
261 *Myl6*, *Acta2*, *Tagln*, *Gpx3*, *Colec11*, and *Col6a1*) and grouped together to construct violin
262 plots (Fig 3G), feature maps (Fig 3H and 3I), and dot plots (Fig 3J) to represent
263 subpopulation-specific gene expression in the HFD and MSC_ITGB3 groups. High
264 expression of the following genes was observed: genes involved in proliferation and
265 migration (*Fn1*, *Ctgf*, *Eln*) in SMC_1, genes related to contractile markers (*Myl6*, *Acta2*,
266 *Tagln*) in SMC_2, and collagen and redox genes (*Gpx3*, *Colec11*, *Col6a1*) in SMC_3.

267

268 **EC subpopulation analysis**

269 Further cluster analysis of the ECs revealed three subpopulations (Fig 4A). In the
270 HFD group, EC_1 accounted for the largest proportion (92.93 %), followed by EC_2 (5.79%)

271 and EC_3 (1.28%), respectively. In the MSC_ITGB3 group, EC_1 accounted for 96.53%,
272 followed by EC_2 (1.06%) and EC_3 (2.41%), respectively (Fig 4B). Differential analysis (p
273 < 0.05) of these three EC subpopulations was then performed, and the top 10 differential
274 genes of each subpopulation were used to construct a heat map of differential gene expression
275 (Fig 4C). Finally, KEGG enrichment analysis for each EC subpopulation was performed, and
276 enrichment of the following pathways was found: fluid shear stress and atherosclerosis, focal
277 adhesion, proteoglycans in cancer, PI3K-Akt signaling pathway, and ECM-receptor
278 interaction in EC_1 (Fig 4D); ECM-receptor interaction, coronavirus disease 2019 (COVID-
279 19), fluid shear stress and atherosclerosis, focal adhesion, and proteoglycans in cancer in
280 EC_2 (Fig 4E); and focal adhesion, AGE-RAGE pathway in diabetic complications, fluid
281 shear stress and atherosclerosis, proteoglycans in cancer, and mitogen-activated protein
282 kinase signaling pathway in EC_3 (Fig 4F).

283

284 **Fig 4. Comparison of EC subpopulations in the HFD and MSC_ITGB3 groups. (A)**
285 UMAP plots of EC subpopulations (EC_1, EC_2, and EC_3) from the HFD (3679 cells) and
286 MSC_ITGB3 (1411 cells) groups. (B) Percentage of EC subpopulations in the HFD (EC_1,
287 92.93%; EC_2, 5.79%; EC_3, 1.28%) and MSC_ITGB3 (EC_1, 96.53%; EC_2, 1.06%;
288 EC_3, 2.41%) groups. (C) Heat map of the top 10 marker genes for each subpopulation. (D-
289 F) Top 10 KEGG-enriched pathways obtained using differentially expressed genes from the
290 EC_1 (D), EC_2 (E), and EC_3 (F) subpopulations. (G-I) Violin plots (G) and feature maps
291 (H and I) constructed through the selection and grouping of marker genes (*Cyt1l*, *Cpe*, *Clu*,
292 *Pam*, *Fabp4*, *Ly6c1*, *Sparcl1*, *Igfbp7*, *Mmrn1*, *Fgl2*, *Igfbp5*, and *Lbp*) specific to each EC
293 subpopulation. Specific marker genes as well as contractility-driving genes (*Tagln*, *Acta2*,
294 *Mylk*, and *Myh11*) were used to represent the specific gene and contractility-associated gene
295 expression in the three EC subpopulations in the HFD and MSC_ITGB3 groups (J).

296 Marker genes (*Cyt1*, *Cpe*, *Clu*, *Pam*, *Fabp4*, *Ly6c1*, *Sparcl1*, *Igfbp7*, *Mmrn1*, *Fgl2*,
297 *Igfbp5*, and *Lbp*) specific to each EC subpopulation were selected and grouped together to
298 construct violin plots (Fig 4G) and feature maps (Fig 4H and 4I). Specific marker genes as
299 well as contractility genes (*Tagln*, *Acta2*, *Mylk*, *Myh11*) were used to represent the specific
300 gene and contractility-associated expression in the three EC subpopulations in the HFD and
301 MSC_ITGB3 samples (Fig 4J). Genes associated with contractility were expressed at
302 significantly higher levels in the MSC_ITGB3 group than in the HFD group.

303

304 **Immune cell subpopulation analysis**

305 Further cluster analysis of the immune cells revealed three subpopulations
306 (monocytes/macrophages, DCs, and T cells; Fig 5A). In the HFD group,
307 monocytes/macrophages accounted for the largest proportion of immune cells (69.14%),
308 followed by DCs (18.95%) and T cells (11.91%), respectively. In the MSC_ITGB3 group,
309 monocytes/macrophages accounted for the largest proportion of immune cells (69.40%),
310 followed by T cells (17.56%) and DCs (13.05%), respectively (Fig 5B). Differential analysis
311 ($p < 0.05$) of these immune cell subpopulations was then performed, and the top 10
312 differential genes of each subpopulation were used to construct a heat map of differential
313 gene expression (Fig 5C). Finally, KEGG enrichment analysis for each immune cell
314 subpopulation was performed, and enrichment of the following pathways was found:
315 Lysosome, Rheumatoid arthritis, Tuberculosis, Phagosome, and Antigen processing and
316 presentation in DCs (Fig 5D); COVID-19, Ribosome, Lysosome, Rheumatoid arthritis, and
317 phagosome in monocytes/macrophages (Fig 5E); and COVID-19, Ribosome, phagosome,
318 rheumatoid arthritis, and Th17 cell differentiation in T cells (Fig 5F).

319

320 **Fig 5. Comparison of immune cell subpopulations in the HFD and MSC_ITGB3 groups.**

321 (A) UMAP plots of immune cell subpopulations (monocytes or macrophages, DCs, and T
322 cells) from the HFD (3,788 cells) and MSC_ITGB3 (2614 cells) groups. (B) Percentage of
323 immune cell subpopulations in the HFD (monocyte and macrophages, 69.14%; DCs, 18.95%;
324 T cells, 11.91%) and MSC_ITGB3 (monocyte and macrophages, 69.40%; DCs, 13.05%; T
325 cells, 17.56%) groups. (C) Heat map of the top 10 marker genes for each subpopulation. (D-
326 F) Top 10 KEGG-enriched pathways obtained using genes differentially expressed in the
327 monocytes or macrophages (D), DC (E), and T cell (F) subpopulations. (G) Violin plots of
328 selected marker gene expression in immune cell subpopulations in HFD and MSC_ITGB3
329 samples. (H) Feature map of expression of selected immune cell subpopulation marker genes
330 in the HFD group. (I) Feature map of expression of selected immune cell subpopulation
331 marker genes in the MSC_ITGB3 group. (J) Expression of inflammatory factor-encoding
332 genes in the immune cell subpopulations.

333

334 Marker genes specific to each immune cell subpopulation were selected (*C1qb*, *Cd3d*,
335 *Cd3g*, *Cd68*, *H2-Ab1*, *H2-Eb1*, *Lyz2*, and *Nkg7*) and grouped together to construct violin
336 plots (Fig 5G) and feature maps (Fig 5H and 5I) to visualize subpopulation-specific gene
337 expression. The expression of inflammatory factors (*Ccl2*, *Ccl11*, *Ccr1*, *Cx3cr1*, *Cxcl12*, and
338 *Pf4*) in the immune cells of the HFD and MSC_ITGB3 groups are expressed as dot plots (Fig
339 5J). Among them, proinflammatory cytokines were highly expressed in
340 monocytes/macrophages.

341

342 **Cell-cell communication**

343 The total number of interactions between EC, SMC, and immune cell subpopulations
344 (Fig 6A) as well as a complete interaction weight plot (Fig 6B) were obtained using

345 ‘CellChat.’ Sankey diagrams were constructed to illustrate the cells interacting with each cell
346 subtype during incoming (Fig 6C) and outgoing communication (Fig 6D) and the underlying
347 signaling pathways. The diagrams show that compared with the other subpopulations,
348 SMC_2, SMC_3, EC_1, EC_3, and monocytes/macrophages had a higher number of
349 interactions with other cell types. Additionally, monocytes/macrophages had the strongest
350 intensity of interaction with other cell types.

351

352 **Fig 6. Ligand-receptor interaction analysis to assess communication between different**
353 **cell subpopulations within atherosclerotic samples.** (A) Circular plot depicting the
354 communication network between cells in intracellular SMC, EC, and immune cell
355 subpopulations (the number of cells in each cell type is proportional to the size of the circle;
356 line widths indicate the number of signal interactions). (B) Circular plot demonstrating the
357 intensity of interactions between cells contained in intracellular SMC, EC, and immune cell
358 subpopulations (line widths indicate the intensity of cell-cell interactions). Sankey plots
359 showing intercellular interactions during incoming (C) and outgoing (D) communication and
360 the signaling pathways involved.

361

362 **Differential analysis of single-cell transcriptomic data**

363 Differential analysis ($p < 0.05$) of ECs, SMCs, and immune cells was performed, and
364 the top 10 differential genes in each subpopulation were used to generate a heat map (Fig 7A)
365 of differential gene expression. The top five differential genes among the three cell
366 subpopulations were used for feature map construction using UMAP (Fig 7B-7D).

367

368 **Fig 7. Analysis of differentially expressed genes in EC, SMC, and immune cells of HFD**
369 **mice and MSC_ITGB3 mice.** (A) Heat map of top 10 differentially expressed genes in EC,

370 immune cell, and SMC subpopulations. (B–D) Feature maps constructed through selection of
371 top five differentially expressed genes in EC (B), immune cell (C), and SMC (D)
372 subpopulations. (E) Box plot of 26 differentially expressed genes from atheroma plaque and
373 macroscopically intact tissues. (F) PPI network for differentially expressed genes. *p < 0.05;
374 **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.

375

376 Next, the differential genes of ECs, SMCs, and immune cells were transformed to
377 their human homologs and screened in the GSE43292 transcriptome dataset for differential
378 analysis. Twenty-six differential genes (*FABP4, MMP12, HMOX1, PLA2G7, PLIN2,*
379 *ANPEP, PLEK, CYTIP, RGS1, ITGAX, CXCL10, EMCN, MYOM1, NEXN, TTLL7, THR*
380 *NPNT, NPR1, PDZRN3, SEMA3D, CNN1, FIBIN, PLCB4, RYR2, NPYIR, and MYOCD*)
381 were obtained. Box-line plots were plotted to illustrate the differential genes between
382 atheroma plaque and macroscopically intact tissue samples (Fig 7E). The interactions
383 between the differentially expressed genes were analyzed using STRING database and
384 visualized using the Cytoscape software (Fig 7F).

385 Thirteen hub genes with the greatest interaction between the differentially expressed
386 genes (*MMP12, CXCL10, HMOX1, ANPEP, ITGAX, FABP4, RGS1, PLEK, CNN1, RYR2,*
387 *NEXN, MYOM1, and MYOCD*; Fig 8A) were extracted using the MCODE algorithm in the
388 cytoHubba plugin. GO functional enrichment analysis of these 13 hub genes was performed,
389 and negative regulation of vascular-associated SMC proliferation, muscle system processes,
390 negative regulation of SMC proliferation, regulation of vascular-associated SMC
391 proliferation, and vascular-associated SMC proliferation were found to be significantly
392 enriched in these 13 hub genes (Fig 8B).

393

394 **Fig 8. Hub gene screening and enrichment analysis.** (A) Graph of hub gene interaction
395 intensity calculated using the MCODE algorithm in the cytoHubba plugin. (B) Top 10 GO-
396 enriched pathways obtained using 13 hub genes.

397

398 **Discussion**

399 Owing to increasing incidence of risk factors such as hypertension, hyperlipidemia,
400 and diabetes, atherosclerotic disease remains the leading cause of death. Stem cell therapy
401 provides a new direction for atherosclerosis treatment. scRNA-seq technologies have been
402 designed to reveal the heterogeneity of vascular cells, including those comprising normal
403 vessels, those in ApoE^{-/-} mice, and those with aneurysms [21, 27, 28]. Many multifunctional
404 cell populations related to cardiovascular diseases are composed of vascular tissue.

405 Heterogeneity in cell morphology and gene expression distinguishes between the main cell
406 phenotypes and defines multiple subgroups with different functions. However, the
407 heterogeneity and transcriptional features of the vascular cells of atherosclerotic aorta
408 associated with stem cell therapy have not been explored. In this study, we used the latest
409 scRNA-seq technology to comprehensively show the aortic cellular composition of - mice fed
410 an HFD and provide new insights into the altered gene expression profiles in MSC_ITGB3-
411 treated aortic cells.

412 We described the genes and signaling pathways expressed in 33,782 cells from the
413 whole aorta and identified multiple subtypes in SMCs, ECs, and immune cells, suggesting
414 that these cells include multiple functional populations in the aortic wall. Our data identified
415 three subpopulations of SMCs in the aorta: synthetic (SMC_1), contractile (SMC_2), and
416 inflammatory (SMC_3) SMCs. These subtypes are consistent with those identified by
417 previous reports [27, 29]. The proliferating SMC cluster expresses several synthetic marker
418 genes. The SMC_1 cluster expresses several proliferation and migration marker genes (*Fnl*,

419 *Ctgf*, and *Eln*). The decrease in the synthetic gene subpopulation SMC_1 is an important
420 condition that reverses the pathological progression of SMC phenotypic transformation in
421 MSC_ITGB3-treated mice [30]. Cells in this cluster may play an adaptive role in vascular
422 tissues with their migration function and high proliferation rate. SMC_2 highly expressed
423 contractile transcription factors (*Myl6*, *Acta2*, and *Tagln*) under HFD conditions. Moreover,
424 the expression of contraction-related genes in the MSC_ITGB3 group was significantly
425 increased, indicating that the vasoconstrictive function of blood vessels improved after stem
426 cell treatment. In addition, the inflammatory subgroup SMC_3 exhibited the highest
427 expression of collagen and oxidation genes and the lowest expression of contractile genes.
428 Stem cell therapy promoted the downregulation of proteinases and proinflammatory
429 cytokines, including *Fn1*, *Ctgf*, *Eln*, *Gpx3*, *Colec11*, and *Col6a1*. Thus, our sequencing data
430 from HFD and MSC_ITGB3 mice demonstrates phenotypic diversity of vascular SMC and
431 provides considerable insight into the heterogeneity of SMC in HFD- and MSC_ITGB3-
432 treated vessels.

433 Our current study also provides a detailed analysis of EC gene expression signatures
434 following stem cell therapy. ECs are known to have many subtypes. In our analysis, we
435 identified three distinct EC profiles in the atherosclerotic aorta, and their gene expression
436 profiles showed different functional characteristics. EC_1 accounts for the largest proportion
437 of all EC subgroups and may play a key role in disease development. The PI3K-Akt signaling
438 pathway and ECM-receptor interaction were significantly enriched in EC_1. PI3K-PKB/Akt
439 is a highly conserved signaling pathway, and its activation mediates many cellular functions,
440 including angiogenesis, survival, growth, transcription, proliferation, and apoptosis [31, 32].
441 ECMs interact with cell surface receptors to regulate cell behavior, such as cell
442 communication, proliferation, migration, and adhesion [33, 34]. Specifically, cytokine-like
443 protein 1 (CYTL1), a classical secretory protein, was downregulated in the MSC-ITGB3

444 group. CYTL1 is involved in neutrophil activation and the generation and release of reactive
445 oxygen species during pathogenic infection [35]. Downregulation of *Cyt1l* indicates a
446 reduction in the inflammatory response following stem cell therapy. This difference indicates
447 the functional characteristics of EC_1 in inflammation and adhesion. Based on the
448 differential gene expression profiles, the EC_2 and EC_3 subgroups express genes that
449 contribute to EC adhesion and leukocyte migration.

450 Atherosclerosis is a vascular inflammatory disease that involves the influx,
451 proliferation, and activation of immune cells [36]. Several studies have demonstrated the
452 heterogeneity of plaque cells and the proinflammatory effects of non-foam macrophages [37,
453 38]. However, the effect of stem cell therapy on the heterogeneity of immune cells in
454 atherosclerotic plaques has not been reported. Based on our sequencing data, we identified
455 three major subpopulations in the whole aorta: monocytes/macrophages, DCs, and T cells.
456 Among them, monocytes/macrophages, which accounted for the largest proportion of
457 immune cells in the HFD and MSC_ITGB3 groups, play an important role in the phagosome
458 pathway and COVID-19. Lysosome and antigen presentation signaling pathways were
459 mainly enriched in DCs. The number of DCs is positively correlated with atherosclerotic
460 lesion progression and contributes to lipid accumulation and disease initiation and
461 progression [39]. Moreover, DCs can secrete a variety of proinflammatory factors, including
462 tumor necrosis factor, interleukin (IL)-6, and IL-1 β . After MSC_ITGB3 treatment, the
463 number of DCs significantly decreased and expression levels of inflammatory factors
464 considerably reduced. Hence, our data revealed characteristic changes in immune cells in the
465 MSC_ITGB3-treated vascular aorta. scRNA-seq analysis provides a reliable tool for studying
466 cell-to-cell interactions. By analyzing intercellular communication, we showed that the
467 interactions of ECs, SMCs, and monocytes/macrophages trigger complex intercellular
468 communication pathways that are directly or indirectly involved in the regulation of

469 atherosclerosis. However, owing to limited funding, scRNA-seq was not performed on the
470 unmodified MSC treatment group in this study, and the difference in treatment between
471 unmodified MSCs and MSC_ITGB3 could not be compared.

472 In summary, our analysis comprehensively revealed the transcriptomic profile of
473 atherosclerotic mouse aorta after MSC_ITGB3 treatment. After applying dimensionality
474 reduction and clustering analysis, several functionally distinct candidate subpopulations were
475 identified from the atherosclerotic vessels. These findings demonstrate the cellular diversity
476 in plaques and provide insights into the cellular composition of the treated aorta and the
477 function of individual cell subtypes.

478

479 **Acknowledgements**

480 We would like to acknowledge Editage (<https://www.editage.com/>) for English language
481 editing.

482

483

484 **References**

- 485 1. Mäkinen PI, Ylä-Herttuala S. Therapeutic gene targeting approaches for the treatment
486 of dyslipidemias and atherosclerosis. *Curr Opin Lipidol.* 2013;24: 116-122. doi:
487 10.1097/MOL.0b013e32835da13c.
- 488 2. Gragnano F, Calabro P. Role of dual lipid-lowering therapy in coronary
489 atherosclerosis regression: Evidence from recent studies. *Atherosclerosis.* 2018;269:
490 219-228. doi: 10.1016/j.atherosclerosis.2018.01.012.
- 491 3. Prpic R, Teirstein PS, Reilly JP, Moses JW, Tripuraneni P, Lansky AJ, et al. Long-
492 term outcome of patients treated with repeat percutaneous coronary intervention after

493 failure of gamma brachytherapy for the treatment of in-stent restenosis. *Circulation*.
494 2002;106: 2340-2345. doi: 10.1161/01.cir.0000036366.62288.74. C

495 4. Kobiyama K, Ley K. Atherosclerosis. *Circ Res*. 2018;123: 1118-1120. doi:
496 10.1161/CIRCRESAHA.118.313816.

497 5. Takafuji Y, Hori M, Mizuno T, Harada-Shiba M. Humoral factors secreted from
498 adipose tissue-derived mesenchymal stem cells ameliorate atherosclerosis in *Ldlr*^{-/-}
499 mice. *Cardiovasc Res*. 2019;115: 1041-1051. doi: 10.1093/cvr/cvy271.

500 6. Zhang X, Huang F, Li W, Dang J-L, Yuan J, Wang J, et al. Human gingiva-derived
501 mesenchymal stem cells modulate monocytes/macrophages and alleviate
502 atherosclerosis. *Front Immunol*. 2018;9: 878. doi: 10.3389/fimmu.2018.00878.

503 7. Li Q, Sun W, Wang X, Zhang K, Xi W, Gao P. Skin-derived mesenchymal stem cells
504 alleviate atherosclerosis via modulating macrophage function. *Stem Cells Transl Med*.
505 2015;4: 1294-1301. doi: 10.5966/sctm.2015-0020.

506 8. Shahror RA, Ali AAA, Wu C-C, Chiang YH, Chen KY. Enhanced homing of
507 mesenchymal stem cells overexpressing fibroblast growth factor 21 to injury site in a
508 mouse model of traumatic brain injury. *Int J Mol Sci*. 2019;20. doi:
509 10.3390/ijms20112624.

510 9. Tsai C-H, Chen C-J, Gong C-L, Liu S-C, Chen P-C, Huang C-C, et al.
511 CXCL13/CXCR5 axis facilitates endothelial progenitor cell homing and angiogenesis
512 during rheumatoid arthritis progression. *Cell Death Dis*. 2021;12: 846. doi:
513 10.1038/s41419-021-04136-2.

514 10. Hynes RO. Integrins: bidirectional, allosteric signaling machines. *Cell*. 2002;110:
515 673-687. doi: 10.1016/s0092-8674(02)00971-6.

516 11. Ross TD, Coon BG, Yun S, Baeyens N, Tanaka K, Ouyang M, et al. Integrins in
517 mechanotransduction. *Curr Opin Cell Biol.* 2013;25: 613-618. doi:
518 10.1016/j.ceb.2013.05.006.

519 12. D'Souza SE, Ginsberg MH, Burke TA Lam SC, Plow EF. Localization of an Arg-Gly-
520 Asp recognition site within an integrin adhesion receptor. *Science.* 1988;242: 91-93.
521 doi: 10.1126/science.3262922.

522 13. D'Souza SE, Ginsberg MH Matsueda GR, Plow EF. A discrete sequence in a platelet
523 integrin is involved in ligand recognition. *Nature.* 1991;350: 66-68. doi:
524 10.1038/350066a0.

525 14. D'Souza SE, Haas TA, Piotrowicz RS, Byers-Ward V, McGrath DE, Soule HR, et al.
526 Ligand and cation binding are dual functions of a discrete segment of the integrin beta
527 3 subunit: cation displacement is involved in ligand binding. *Cell.* 1994;79: 659-667.
528 doi: 10.1016/0092-8674(94)90551-7.

529 15. Butcher MJ, Herre M, Ley K, Galkina E. Flow cytometry analysis of immune cells
530 within murine aortas. *J Vis Exp.* 2011;53. doi: 10.3791/2848.

531 16. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-
532 cell gene expression data. *Nat Biotechnol.* 2015;33: 495-502. doi: 10.1038/nbt.3192.

533 17. Kim S, Kang D, Huo Z, Park Y, Tseng GC. Meta-analytic principal component
534 analysis in integrative omics applications. *Bioinformatics.* 2018;34: 1321-1328. doi:
535 10.1093/bioinformatics/btx765.

536 18. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still
537 GOing strong and still GOing strong. *Nucleic Acids Res.* 2019;47: D330-D338. doi:
538 10.1093/nar/gky1055

539 19. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new
540 perspectives on genomes, pathways, diseases and drugs. *Nucleic Acids Res.* 2017;45:
541 D353-D361. doi: 10.1093/nar/gkw1092.

542 20. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing
543 biological themes among gene clusters. *OMICS*. 2012;16: 284-287. doi:
544 10.1089/omi.2011.0118.

545 21. Kan H, Zhang K, Mao A, Geng L, Gao M, Feng L, et al. Single-cell transcriptome
546 analysis reveals cellular heterogeneity in the ascending aortas of normal and high-fat
547 diet-fed mice. *Exp Mol Med.* 2021;53: 1379-1389. doi: 10.1038/s12276-021-00671-2.

548 22. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan C-H, et al. Inference
549 and analysis of cell-cell communication using CellChat. *Nat Commun.* 2021;12:
550 1088. doi: 10.1038/s41467-021-21246-9.

551 23. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
552 differential expression analyses for RNA-sequencing and microarray studies. *Nucleic
553 Acids Res.* 2015;43: e47. doi: 10.1093/nar/gkv007.

554 24. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING
555 v11: protein-protein association networks with increased coverage, supporting
556 functional discovery in genome-wide experimental datasets. *Nucleic Acids Res.*
557 2019;47: D607-D613. doi: 10.1093/nar/gky1131.

558 25. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a
559 software environment for integrated models of biomolecular interaction networks.
560 *Genome Res.* 2003;13: 2498-2504. doi: 10.1101/gr.1239303.

561 26. Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. cytoHubba: identifying
562 hub objects and subnetworks from complex interactome. *BMC Syst Biol.* 2014;8
563 Suppl 4: S11. doi: 10.1186/1752-0509-8-S4-S11.

564 27. Li Y, Ren P, Dawson A, Vasquez HG, Ageedi W, Zhang C, et al. Single-cell
565 transcriptome analysis reveals dynamic cell populations and differential gene
566 expression patterns in control and aneurysmal human aortic tissues. *Circulation*.
567 2020;142: 1374-1388. doi: 10.1161/CIRCULATIONAHA.120.046528.

568 28. Tillie RJHA, van Kuijk K, Sluimer JC. Fibroblasts in atherosclerosis: heterogeneous
569 and plastic participants. *Curr Opin Lipidol*. 2020;31: 273-278. doi:
570 10.1097/MOL.0000000000000700.

571 29. He D, Mao A, Zheng C-B, Kan H, Zhang K, Zhang Z, et al. Aortic heterogeneity
572 across segments and under high fat/salt/glucose conditions at the single-cell level.
573 *Natl Sci Rev*. 2020;7: 881-896. doi: 10.1093/nsr/nwaa038.

574 30. Alencar GF, Owsiany KM, Karnewar S, Sukhavasi K, Mocci G, Nguyen AT, et al.
575 Stem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic
576 changes critical in late-stage atherosclerotic lesion pathogenesis. *Circulation*.
577 2020;142: 2045-2059. doi: 10.1161/CIRCULATIONAHA.120.046672.

578 31. Han Z, Zhao D, Han M, Zhang R, Hao Y. Knockdown of miR-372-3p inhibits the
579 development of diabetic cardiomyopathy by accelerating angiogenesis via activating
580 the PI3K/AKT/mTOR/HIF-1 α signaling pathway and suppressing oxidative stress.
581 *Oxid Med Cell Longev*. 2022;2022: 4342755. doi: 10.1155/2022/4342755.

582 32. Lu S-Y, Hong W-Z, Tsai BC-K, Chang Y-C, Kuo C-H, Mhone TG, et al. Angiotensin
583 II prompts heart cell apoptosis via AT1 receptor-augmented phosphatase and tensin
584 homolog and miR-320-3p functions to enhance suppression of the IGF1R-PI3K-AKT
585 survival pathway. *J Hypertens*. 2022;40: 2502-2512. doi:
586 10.1097/HJH.0000000000003285.

587 33. Schlie-Wolter S, Ngezahayo A, Chichkov BN. The selective role of ECM components
588 on cell adhesion, morphology, proliferation and communication in vitro. *Exp Cell
589 Res.* 2013;319: 1553-1561. doi: 10.1016/j.yexcr.2013.03.016.

590 34. Nguyen-Ngoc K-V, Cheung KJ, Brenot A, Shamir ER, Gray RS, Hines WC, et al.
591 ECM microenvironment regulates collective migration and local dissemination in
592 normal and malignant mammary epithelium. *Proc Natl Acad Sci U S A.* 2012;109:
593 E2595-E2604. doi: 10.1073/pnas.1212834109.

594 35. Xue H, Li S, Zhao X, Guo F, Jiang L, Wang Y, et al. CYTL1 promotes the activation
595 of neutrophils in a sepsis model. *Inflammation.* 2020;43: 274-285. doi:
596 10.1007/s10753-019-01116-9.

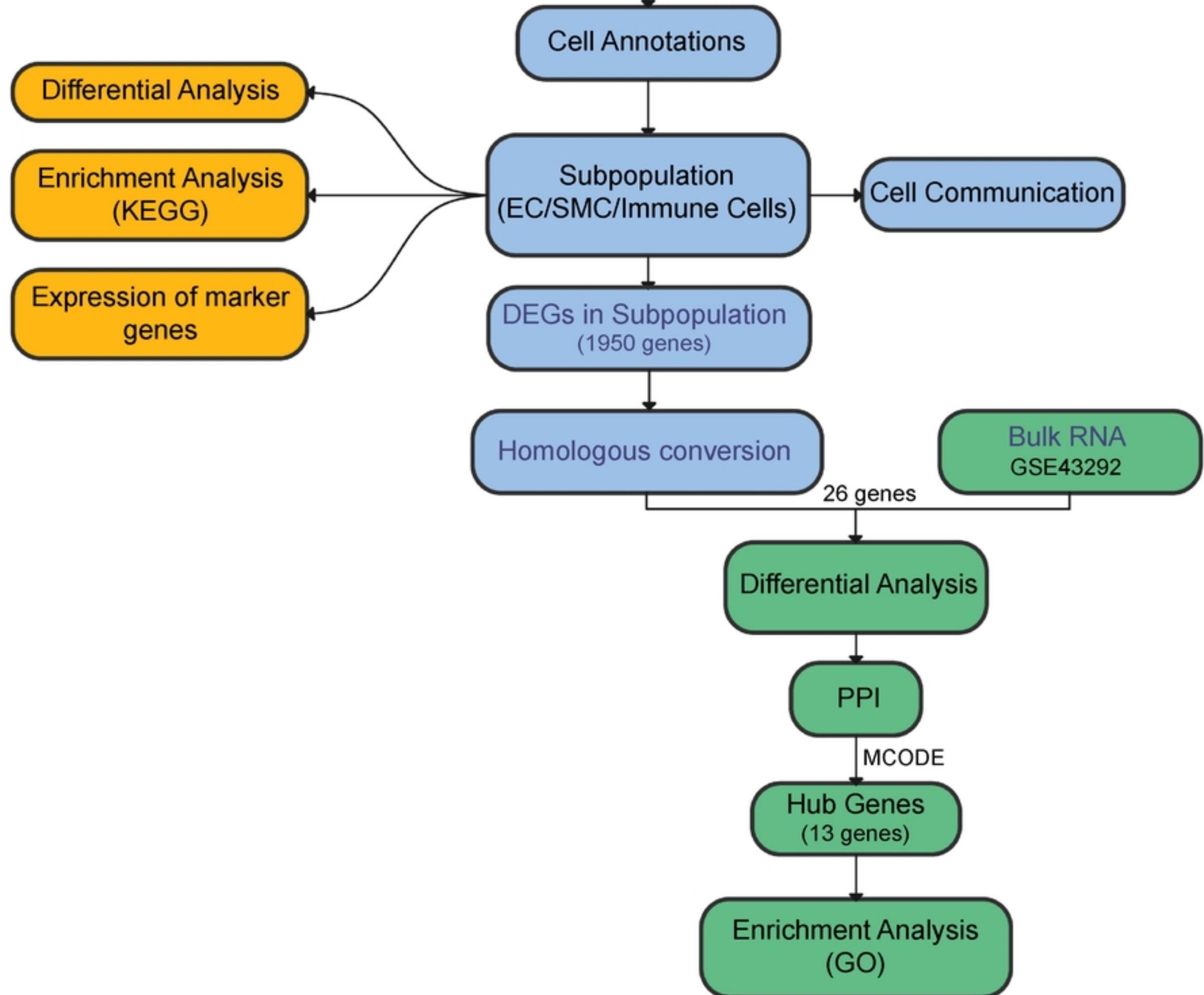
597 36. Wolf D, Zirlik A, Ley K. Beyond vascular inflammation--recent advances in
598 understanding atherosclerosis. *Cell Mol Life Sci.* 2015;72: 3853-3869. doi:
599 10.1007/s00018-015-1971-6.

600 37. Vallejo J, Cochain C, Zernecke A, Ley K. Heterogeneity of immune cells in human
601 atherosclerosis revealed by scRNA-Seq. *Cardiovasc Res.* 2021;117: 2537-2543. doi:
602 10.1093/cvr/cvab260.

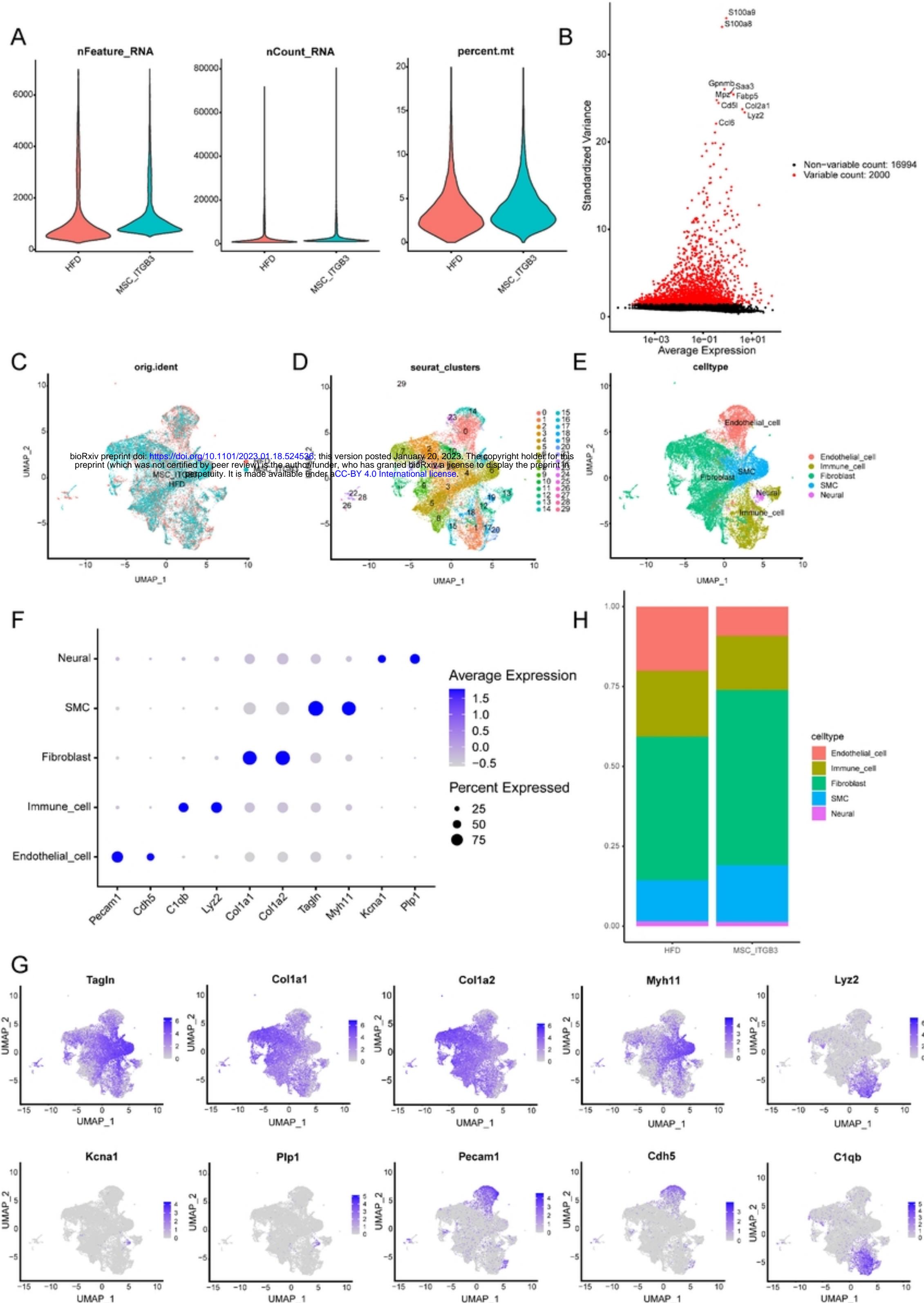
603 38. Depuydt MAC, Prange KHM, Slenders L, Örd T, Elbersen D, Boltjes A, et al.
604 Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics.
605 *Circ Res.* 2020;127: 1437-1455. doi: 10.1161/CIRCRESAHA.120.316770.

606 39. Gao W, Liu H, Yuan J, Wu C, Huang D, Ma Y, et al. Exosomes derived from mature
607 dendritic cells increase endothelial inflammation and atherosclerosis via membrane
608 TNF- α mediated NF- κ B pathway. *J Cell Mol Med.* 2016;20: 2318-2327. doi:
609 10.1111/jcmm.12923.

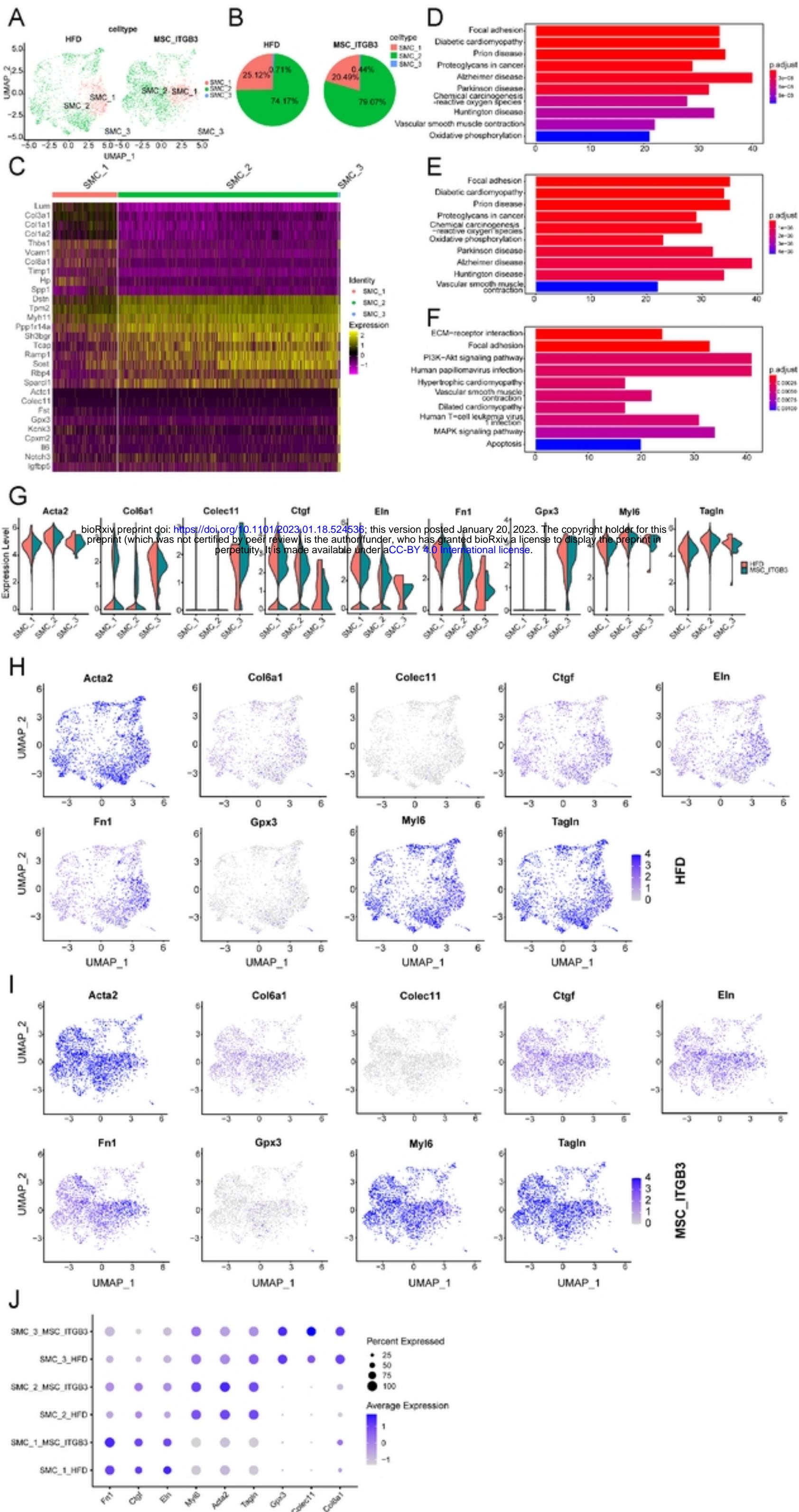
bioRxiv preprint doi: <https://doi.org/10.1101/2023.01.18.524536>; this version posted January 20, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.



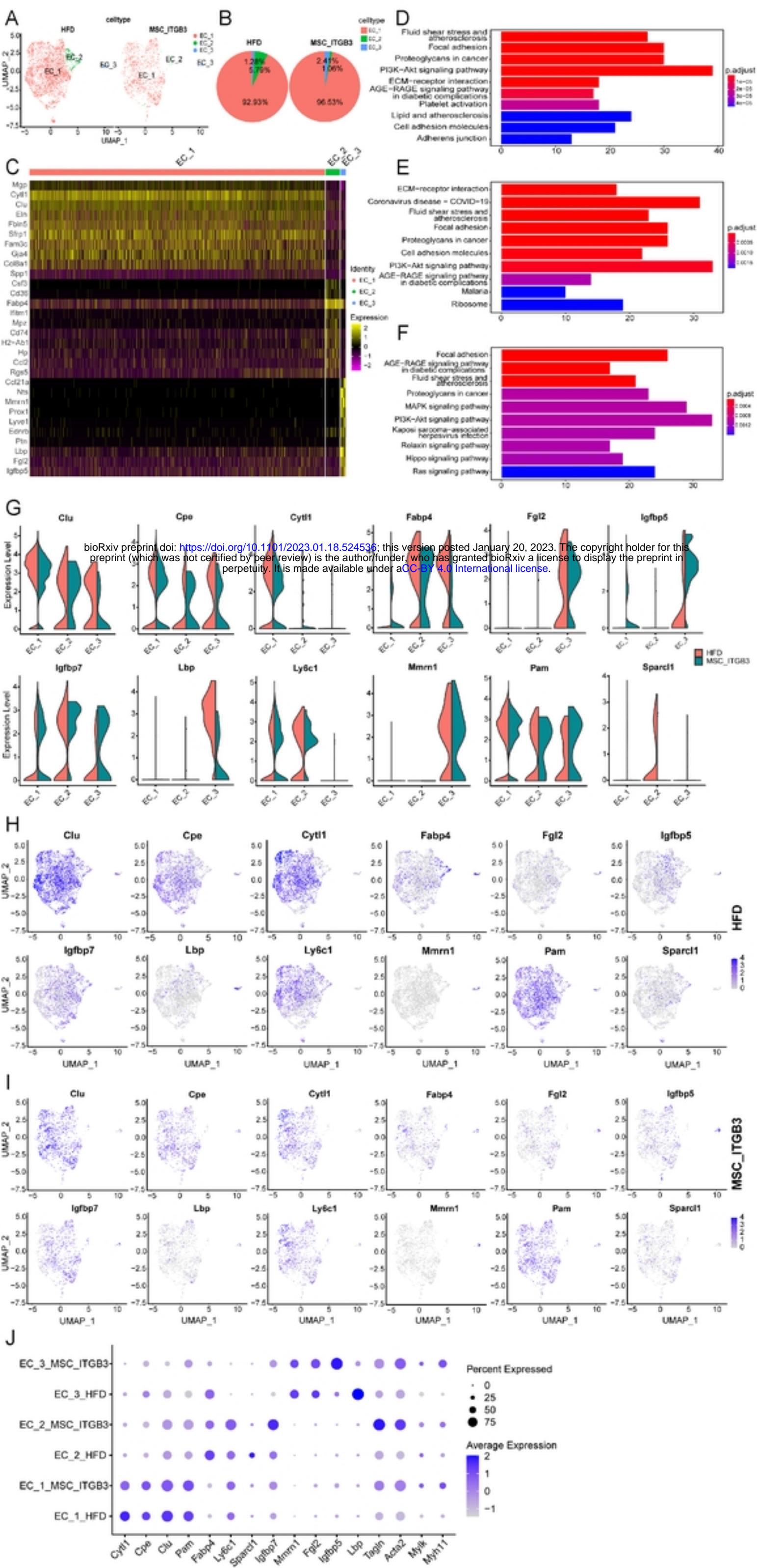
Figure



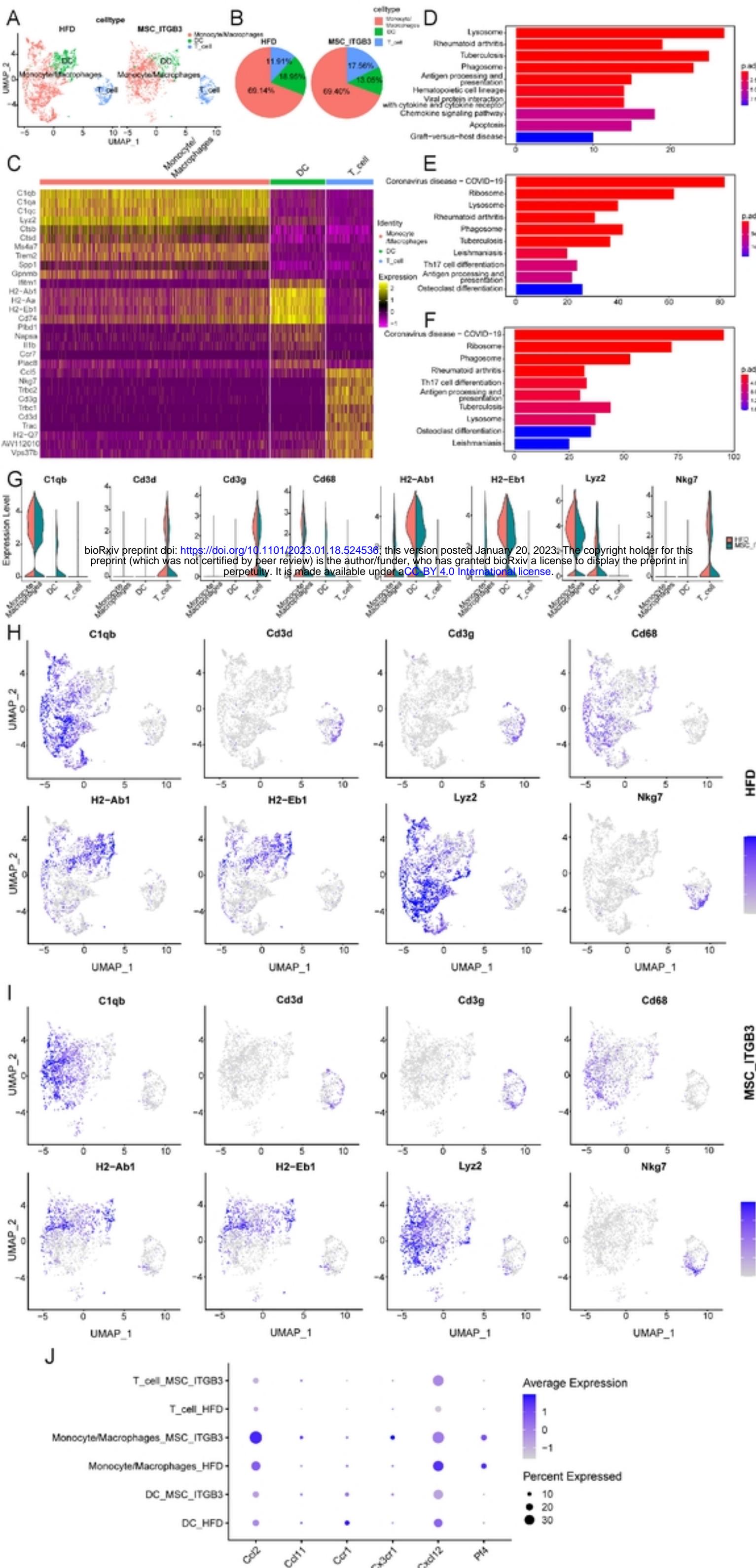
Figure



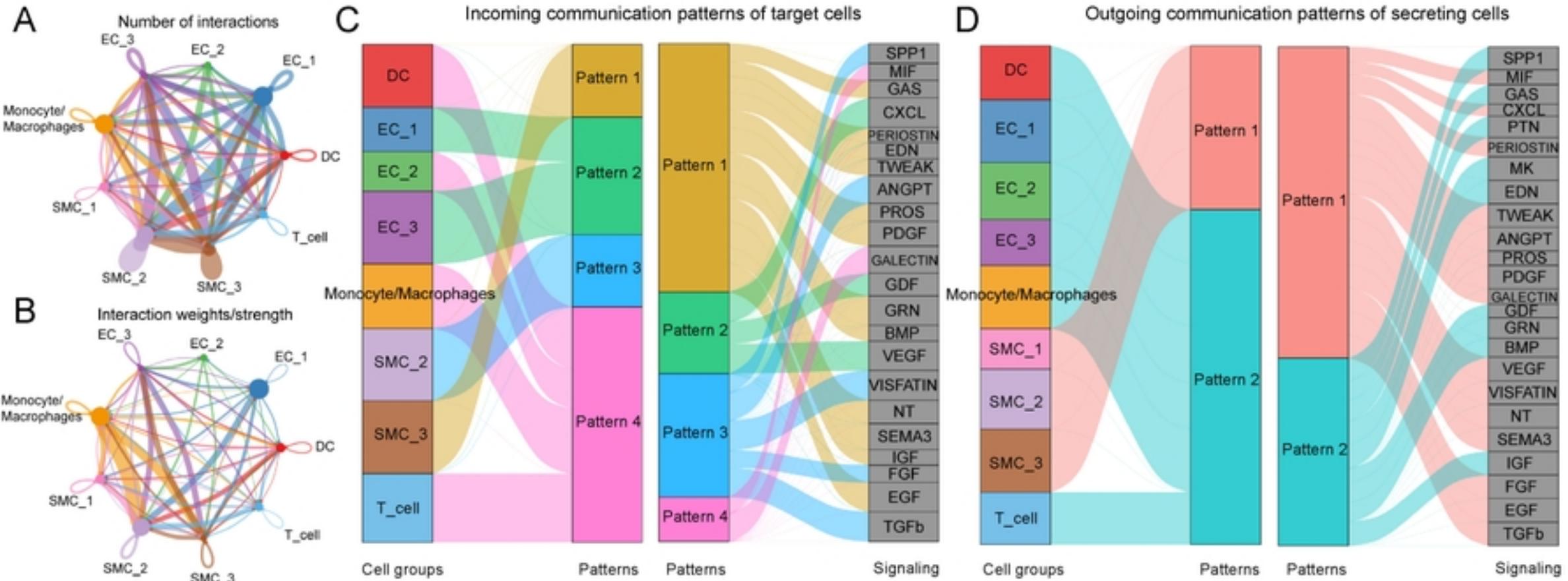
Figure



Figure

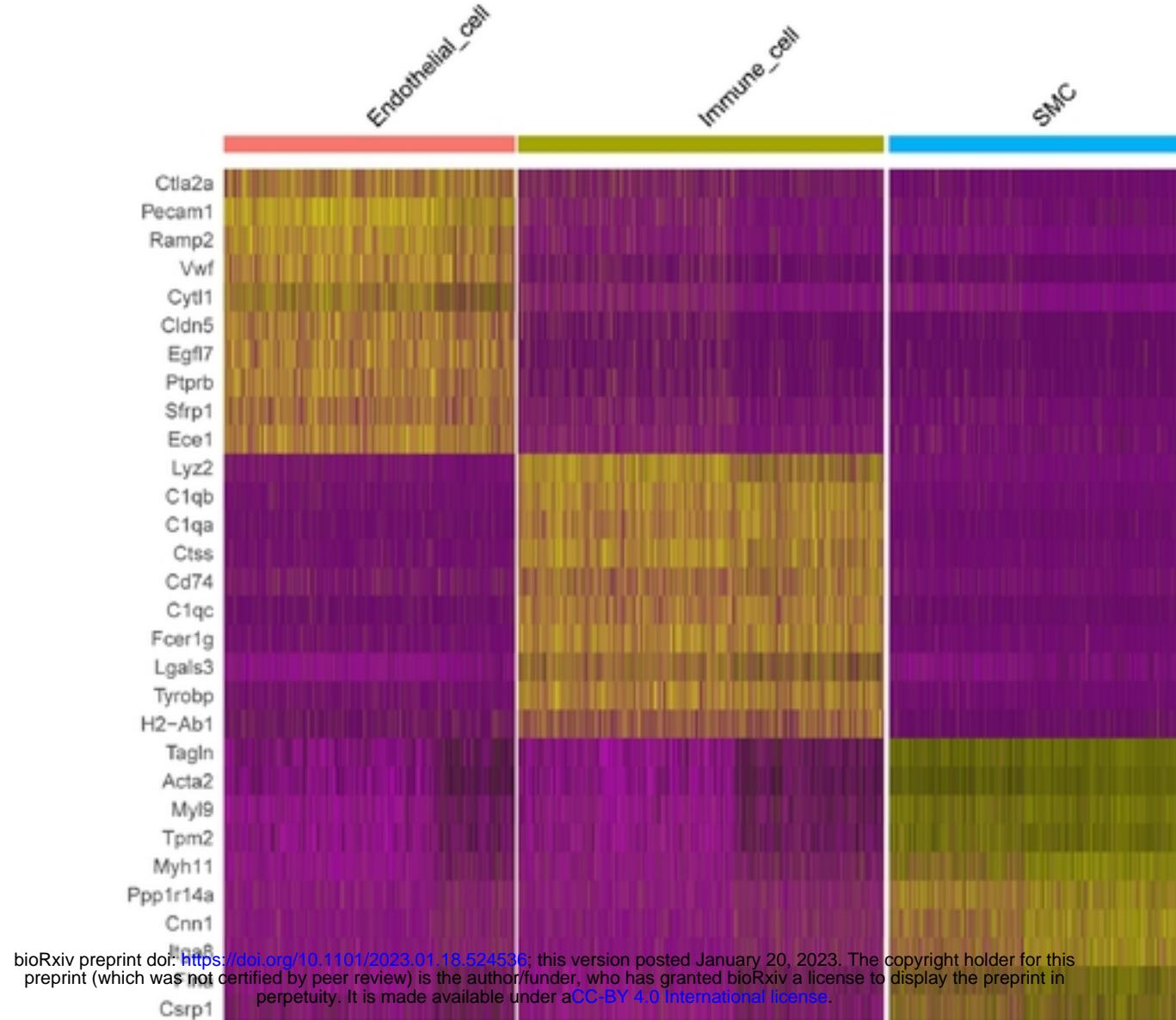


Figure

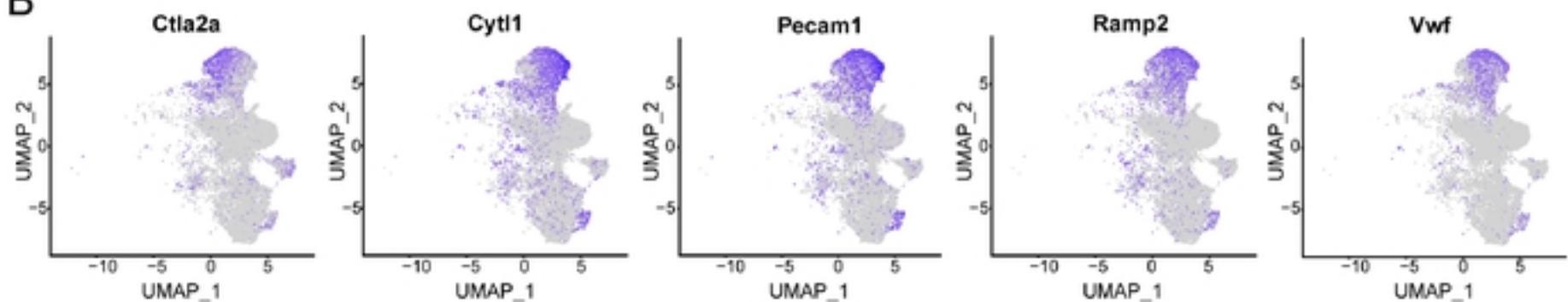


Figure

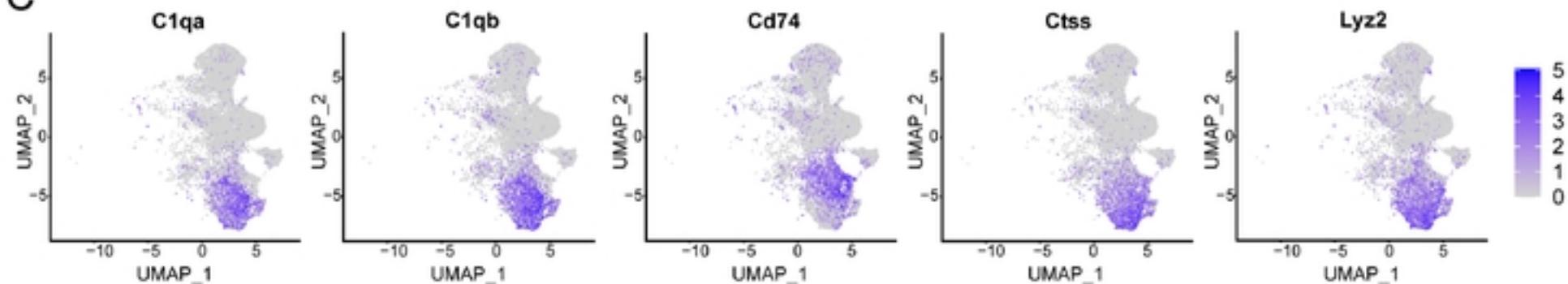
A



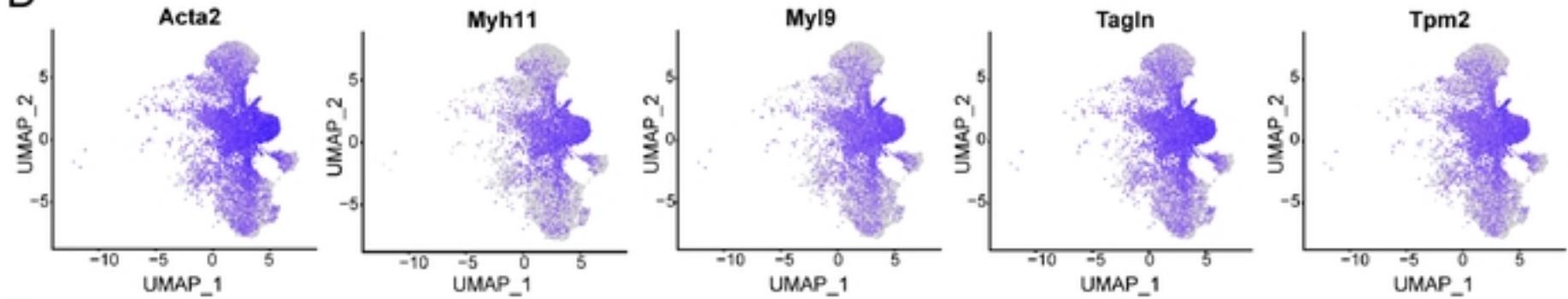
B



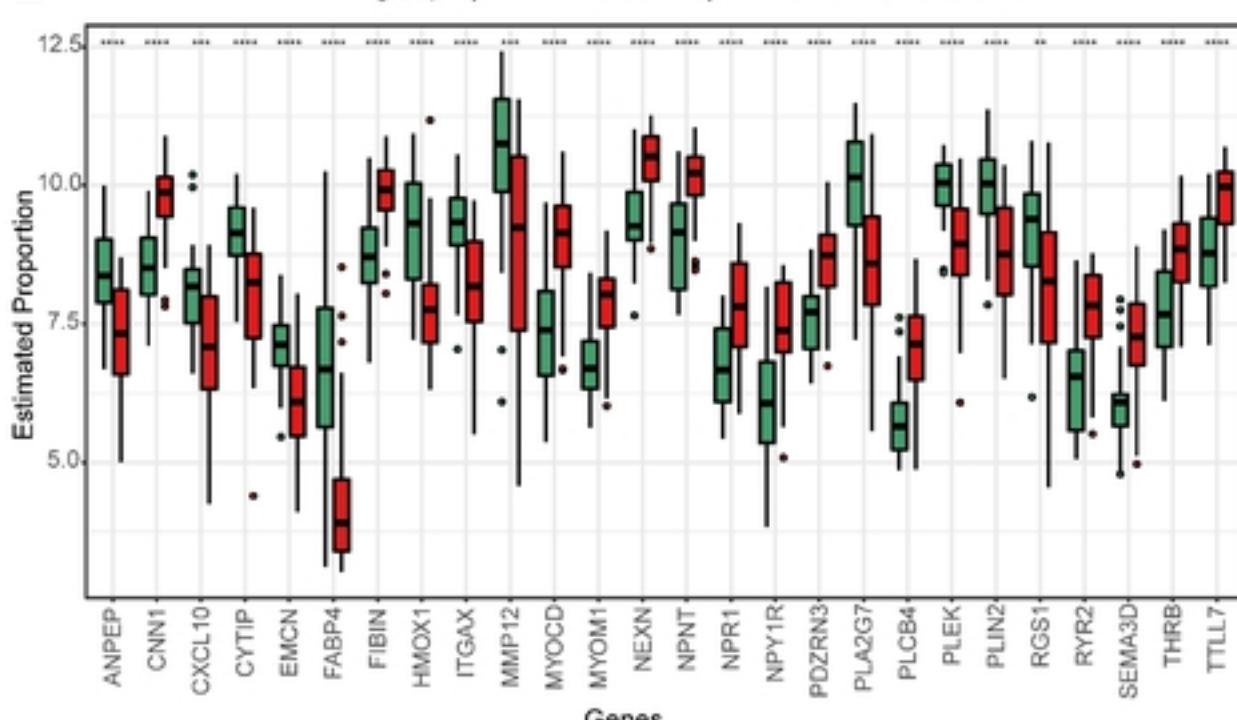
C



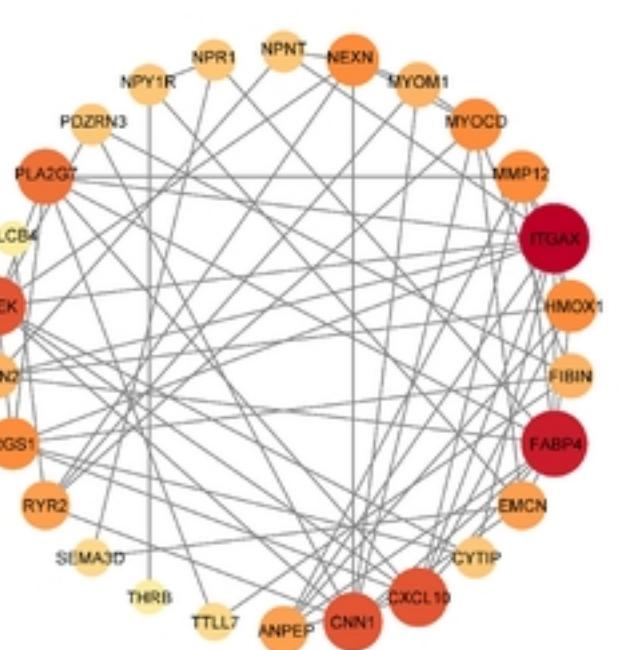
D



E

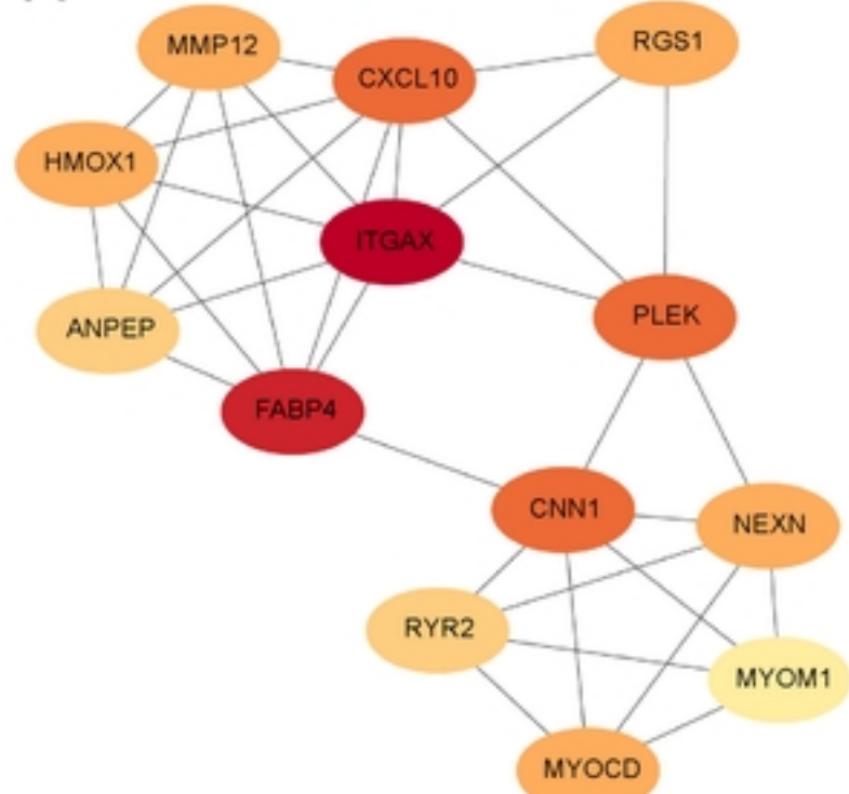


F

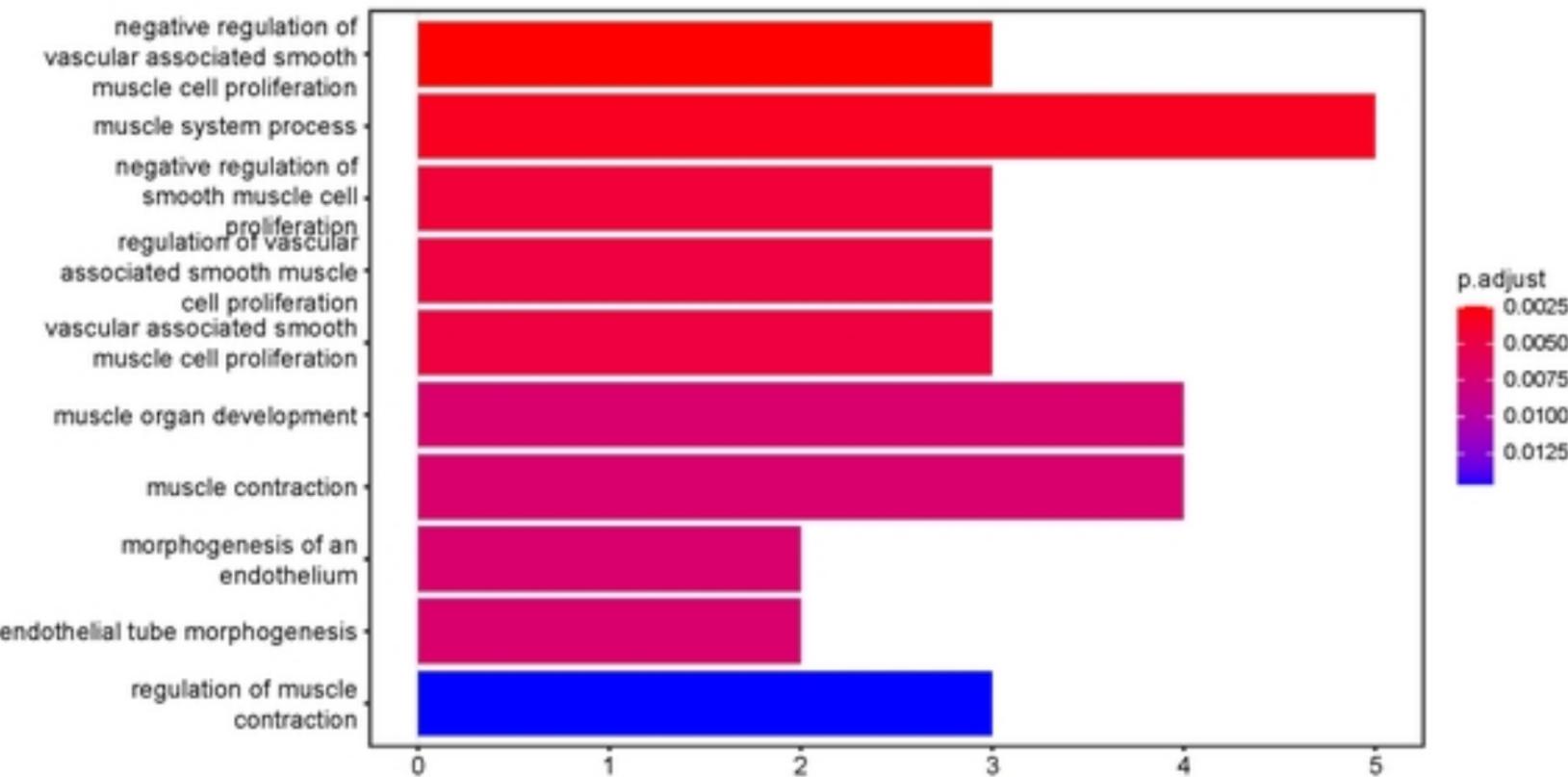


Figure

A



B



Figure