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26 Abstract 

27 The aorta contains various cell types that are involved in the development of vascular 

28 inflammation and atherosclerosis. However, the cellular atlas of heterogeneous aorta cells, 

29 cellular responses, and intercellular communication has not been investigated in the 

30 background of a high-fat diet (HFD) and treatment with integrin beta 3-modified 

31 mesenchymal stem cells (MSC_ITGB3). In this study, 33,782 individual cells from mouse 

32 aortas under HFD with or without MSC_ITGB3 treatment were subjected to single-cell RNA 

33 sequencing as an unbiased analysis strategy. We generated a compendium of 30 different 

34 clusters, mainly smooth muscle cells (SMCs), endothelial cells, and immune cells. The 

35 proportion of the different cell types was considerably influenced by HFD and MSC_ITGB3. 

36 In the HFD group, genes associated with proliferation, migration, and collagen were highly 

37 expressed in the major SMC subpopulations. However, the expression of contraction-related 

38 genes in SMC subpopulations was significantly higher in the MSC_ITGB3 group than in the 

39 HFD group. After HFD consumption, subpopulations of ECs with active PI3K-Akt signaling 

40 pathway, ECM-receptor interaction, and contraction-related genes were significantly 

41 enriched. In the MSC_ITGB3 group, the number of dendritic cells (DCs), which are 

42 positively correlated with atherosclerotic lesion progression and contribute to lipid 

43 accumulation, and levels of inflammatory factors notably decreased. Our findings provide 

44 data on the composition, signaling pathways, and cellular communication of the aorta cells 

45 following stem cell treatment as well as on the evolution and progression of atherosclerotic 

46 disease. The findings may help in improving the treatment of atherosclerosis.

47

48 Keywords: Single-cell RNA sequencing; Atherosclerosis; MSC_ITGB3; HFD; 

49 Heterogeneity

50
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51 Introduction

52 Atherosclerosis is a characteristic of vascular inflammation, and its complications are 

53 one of the leading causes of mortality worldwide [1]. Atherogenesis involves the interaction 

54 between local and global pro- and anti-inflammatory factors. In recent years, great progress 

55 has been made in the treatment of atherosclerosis, including systemic pharmacological 

56 treatment and percutaneous coronary intervention [2, 3]. However, the incidence of 

57 atherosclerotic complications, such as stroke and myocardial infarction, remains relatively 

58 high [4]. 

59 Mesenchymal stem cell (MSC) transplantation brings new light to atherosclerosis 

60 treatment [5-7]. Targeted modification drives MSCs to their destination and improves repair 

61 at the site of injury. Overexpression of fibroblast growth factor 21 significantly increases the 

62 migration and homing of MSCs to injured brain tissues [8]. C-X-C chemokine receptor type 5 

63 (CXCR5) modification enhanced the migration ability of MSCs towards CXCL13 in a mouse 

64 model of contact hypersensitivity, leading to decreased levels of inflammatory cell infiltration 

65 and proinflammatory cytokine production [9]. The integrin family of receptors enables cells 

66 to interact with their microenvironment [10, 11]. The main recognition system for cell 

67 adhesion is constituted by integrin receptors, along with proteins containing Arg-Gly-Asp 

68 (RGD) attachment sites [12, 13]. The primary sequence of integrin beta 3 (ITGB3), a highly 

69 conserved region in all beta subunits of integrin, is referred to as the RGD-cross-linking 

70 region [14]. Consequently, we genetically engineered stem cells to overexpress ITGB3 via in 

71 vitro lentiviral transduction. However, whether stem cell migration to the plaque site affects 

72 the vascular cellular composition and heterogeneity in vivo remains unclear. To date, few 

73 studies have investigated the changes in the composition and heterogeneity of vascular cells 

74 in atherosclerotic plaques following MSC therapy.
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75 In this study, we aimed to elucidate the effects of stem cell therapy on atherosclerotic 

76 vascular cell composition. Accordingly, we used single-cell RNA sequencing (scRNA-seq) to 

77 investigate cell heterogeneity and differential functional states within the aortic wall of mice 

78 fed a high-fat diet (HFD) and treated with or without ITGB3-modified MSCs (MSC_ITGB3) 

79 (MSC_ITGB3 and HFD groups, respectively). Collectively, we demonstrated that a high 

80 number of MSC_ITGB3 can migrate to the injury site and promote plaque repair following 

81 injection into the mouse tail vein. Furthermore, we performed differential analyses of lineage 

82 heterogeneity and functional changes and elucidated the underlying vascular cell 

83 communication mechanisms from the aortic wall in the HFD and MSC_ITGB3 groups. 

84 Cluster analysis results revealed 30 clusters and 5 distinct cell types. Importantly, compared 

85 with HFD aortas, aortas treated with MSC_ITGB3 exhibited changes in the cell subsets, 

86 transcriptome characteristics, and biological functions. 

87

88 Materials and methods

89 Data collection and processing

90 Single-cell data and samples with data type Mus musculus were divided into HFD and 

91 MSC_ITGB3 groups (n=3 per group). All experiments were performed on ApoE-/- mice fed 

92 an HFD. In the MSC_ITGB3 group, MSC_ITGB3 cells were injected four times via the tail 

93 vein (1 × 106 cells/injection every week), starting at week 9, and aortic sampling was 

94 performed at the end of week 12 for scRNA-seq. A single-cell suspension of aortic cells was 

95 prepared using a previously described enzymatic digestion protocol [15].

96 The atherosclerosis Bulk-seq dataset GSE43292 [1] was downloaded from the Gene 

97 Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/). It comprised Homo 

98 sapiens samples, and its assay platform was GPL6244. The dataset was derived from 32 
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99 patients with hypertension. Each patient provided one sample of an atherosclerotic plaque 

100 containing the core of the shoulder of the plaque (Stary classification type IV and above) and 

101 one sample of a distant macroscopically intact tissue (type I or II), resulting in a total of 64 

102 samples.

103

104 Quality control of atherosclerosis data using Seurat

105 R (version 4.1) and the ‘Seurat’ R package (version 4.0.5) [16] were used. Seurat 

106 objects for each sample were created from single-cell data and then merged using the 

107 “merge” function. The proportion of mitochondrial genes to all inherited genes is a major 

108 factor that determines whether a cell is in a steady state. A cell with a higher proportion of 

109 mitochondrial genes than all other genes is generally considered to be in a stress state. 

110 Therefore, we removed cells with > 20% mitochondrial genes. As low-quality cells or empty 

111 droplets usually have few genes and double cells may exhibit an abnormally high number of 

112 genes, we also removed cells with features < 200 or > 7,000. Ultimately, 33,782 cells were 

113 obtained (Fig 1).

114

115 Fig 1. Project flowchart. We developed a flowchart of bioinformatic analysis to regularize 

116 and characterize different data.

117

118 The sequencing depth of the dataset was normalized using the “NormalizeData” 

119 function with the default “LogNormalize” normalization method. Subsequently, 2,000 

120 variable features of the dataset were detected by calling the “FindVariableFeatures” function 

121 using the “vst” method. The data were then scaled using “ScaleData” to exclude the effects of 

122 sequencing depth. The “Elbowplot” function was used for the Principal component analysis 

123 (PCA) [17], to identify the significant principal components (PCs) and visualize the p-value 
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124 distribution. Subsequently, the data were de-batched using the “RunHarmony” function. 

125 Finally, 24 PCs were selected for uniform manifold approximation and projection (UMAP) 

126 analysis. The default parameters of “FindNeighbors” and 22 PC dimension parameters were 

127 used to construct the Euclidean distance-based K-nearest neighbors in the PCA space. The 

128 Louvain algorithm was used to optimize the class groups by calling the “FindClusters” 

129 function, which divides the cells into 30 different clusters with a resolution of 0.8. Finally, 

130 the “RunUMAP” function was used for dimensionality reduction to visualize and investigate 

131 the dataset.

132

133 Gene enrichment analysis

134 Gene Ontology (GO) [18] enrichment analysis is a common approach for large-scale 

135 functional enrichment studies of genes in different dimensions and at different levels. It is 

136 generally performed at three levels: molecular function, biological process, and cellular 

137 component. Kyoto Encyclopedia of Genes and Genomes (KEGG) [19] is a widely used 

138 database for storing data on genomes, biological pathways, diseases, and drugs. The 

139 “clusterProfiler” (version 4.2.0) [20] R package was used to perform GO and KEGG 

140 functional annotation of differentially expressed genes between the macroscopically intact 

141 tissue and atheroma plaque, in the bulk RNA data, and between cells in single-cell data, to 

142 assess significantly enriched biological processes. The significance threshold was set at p < 

143 0.05, and the results were visualized using bar graphs.

144

145 Cell annotation

146 Cell types were identified based on their marker genes [21]: Pecam1 and Cdh5 for 

147 endothelial cells (ECs), C1qb and Lyz2 for immune cells, Col1a1 and Col1a2 for fibroblasts, 

148 Tagln and Myh11 for smooth muscle cells (SMCs), and Kcan1 and Plp1 for neural cells.
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149

150 SMC subpopulation annotation

151 The method described above was used for the dimensionality reduction and clustering 

152 of SMCs. Twelve principal components were determined as statistically significant inputs to 

153 UMAP and were divided into 12 clusters. Based on marker gene expression [21], SMCs were 

154 classified into three cell subpopulations: SMC_1 (Fn1, Ctgf, and Eln); SMC_2 (Myl6, Acta2, 

155 and Tagln); and SMC_3 (Gpx3, Colec11, and Col6a1). The default Wilcox test of the 

156 FindAllMarkers function was then used to determine differentially expressed genes between 

157 different cell types (logfc.threshold = 0.25).

158

159 EC subpopulation annotation

160 The same method described above was used for dimensionality reduction and EC 

161 clustering. Twelve principal components were determined as statistically significant inputs to 

162 UMAP and were divided into 11 clusters. Based on marker gene expression [21], ECs were 

163 classified into three cell subpopulations: EC_1 (Cytl1, Cpe, Clu, and Pam); EC_2 (Fabp4, 

164 Ly6c1, Sparcl1, and Igfbp7); and EC_3 (Mmrn1, Fgl2, Igfbp5, and Lbp). The default Wilcox 

165 test of the FindAllMarkers function was then used to determine differentially expressed genes 

166 between different cell types (logfc.threshold = 0.25).

167

168 Immune cell subpopulation annotation

169 The same method described above was used for the dimensionality reduction and 

170 clustering of immune cells. Sixteen principal components were selected as statistically 

171 significant inputs to UMAP and were divided into 15 clusters. Based on marker gene 

172 expression [21], immune cells were classified into three cell subpopulations: 
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173 monocytes/macrophages (Cd68, C1qb, and Lyz2); dendritic cells (DCs; H2-Ab1 and H2-

174 Eb1); and T cells (Cd3d, Cd3g, and Nkg7). The default Wilcox test of the FindAllMarkers 

175 function was then used to determine differentially expressed genes between different cell 

176 types (logfc.threshold = 0.25).

177

178 Cell communication analysis

179 The ‘CellChat’ (http://www.cellchat.org/) [22] R package was used to analyze cell-

180 cell communication networks from scRNA-seq data. Single-cell expression profiles were 

181 combined with known ligands, receptors, and their cofactors to calculate the strength of 

182 interactions in cell-cell communication. Network analysis and pattern recognition methods 

183 were used to predict the major incoming and outgoing signals in the cells as well as the 

184 coordination between these cells and signals.

185

186 Key gene screening from bulk RNA data

187 The “homologene” (version 1.4.68.19.3.27) R package was used for the homologous 

188 transformation of single-cell data for differential genes between SMCs, ECs, and immune 

189 cells. Subsequently, the expression of these homologous genes in the 64 samples was 

190 determined from the GSE43292 dataset using the “limma” (version 3.50.0) [23] R package to 

191 perform differential analysis on the resulting new macroscopically intact tissue and atheroma 

192 plaque groups, from which differential genes were extracted (p < 0.05, |logFC| > 1).

193 The STRING online database (https://string-db.org/) [24] was used to analyze the 

194 interactions between differentially expressed genes. Protein–protein interaction (PPI) 

195 networks were constructed using Cytoscape [25] (version 3.9.1) to map the interactions 

196 between the functions of the proteins, including direct physical interactions and indirect 
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197 functional correlations. The cytoHubba [26] plugin was used to assign values to each gene 

198 using a topological network algorithm to sort and discover key genes and sub-networks.

199

200 Results

201 Single-cell data-based cell type annotation reveals a high degree 

202 of cellular heterogeneity in samples

203 A total of 33,782 cells were obtained after filtering based on quality control criteria 

204 and normalization of the scRNA-seq data (Fig 2A). Overall, 2,000 highly variable genes were 

205 selected for subsequent analysis, and the top 10 genes were annotated (Fig 2B). PCA was 

206 performed to identify usable dimensions and screen for relevant genes, and 22 PCs were 

207 selected for subsequent analysis. Using the UMAP dimensionality reduction, the cells were 

208 divided into 30 separate clusters (Fig 2C, D). Thirty clusters were identified using marker 

209 genes for each cell type. Clusters 2, 3, 5, 7, 8, 9, 10, 11, 15, 21, 22, 24, 25, 26, 27, 28, and 29 

210 had a total of 16,717 cells annotated as Fibroblast, accounting for 49.48% of all cells. 

211 Clusters 1, 12, 13, 17, 18, and 20 had 6,402 cells annotated as Immune_cell, accounting for 

212 18.95% of all cells. Clusters 0, 14, and 23 had 5,090 cells annotated as Endothelial_cell, 

213 accounting for 15.07% of all cells. Clusters 4, 6, and 16 had a total of 5,090 cells annotated as 

214 SMCs, accounting for 15.07% of all cells. Cluster 19 had 483 cells and was annotated as 

215 Neural, accounting for 1.43% of all cells (Fig 2E).

216

217 Fig 2. Quality control and characterization of the single-cell dataset. (A) Two samples 

218 from the single-cell dataset were selected, and 33,782 cells were included in the analysis 

219 following quality control. (B) Standard deviation scatter plot demonstrating high gene 

220 variability in cells, with the top 10 genes labeled. Cluster analysis was performed on single-
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221 cell data samples and colored based on sample (C), cluster (D), and cell type (E). (F) 

222 Prominent marker genes for each cell type (Endothelial_cell, Immune cell, Fibroblast, SMC, 

223 and Neural). (G) Cell type proportions in the single-cell datasets of the high-fat diet (HFD) 

224 and MSC_ITGB3 groups. (H) Expression profiles of the prominent marker genes for each 

225 cell type.

226

227 The specific marker genes of each cell type were used to construct a dot plot (Fig 2F) 

228 and feature map (Fig 2G), and the percentage of each cell type in the HFD and MSC_ITGB3 

229 groups was calculated (Fig 2H).

230

231 SMC subpopulation analysis

232 Further cluster analysis of SMCs revealed three subpopulations (Fig 3A). In the HFD 

233 group, SMC_2 accounted for 74.17% of the SMCs, and SMC_1 and SMC_3 together 

234 accounted for 25.83%. In the MSC_ITGB3 group, SMC_2 accounted for 79.07%, and 

235 SMC_1 and SMC_3 together accounted for 20.93% (Fig 3B). Differential analysis (p < 0.05) 

236 of these three SMC subpopulations was then performed, and the top 10 differential genes of 

237 each cell subpopulation were used to construct a heat map of differential gene expression (Fig 

238 3C). Finally, KEGG enrichment analysis was performed for each SMC subpopulation, and 

239 enrichment of the following pathways was found: focal adhesion, diabetic cardiomyopathy, 

240 prion disease, proteoglycans in cancer, and Alzheimer’s disease in SMC_1 (Fig 3D); focal 

241 adhesion, diabetic cardiomyopathy, prion disease, proteoglycans in cancer, and chemical 

242 carcinogenesis (reactive oxygen species) in SMC_2 (Fig 3E); and extracellular matrix 

243 (ECM)-receptor interaction, focal adhesion, human papillomavirus infection, 

244 phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, and 

245 hypertrophic cardiomyopathy in SMC_3 (Fig 3F).
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246

247 Fig 3. Comparison of SMC subpopulations in the HFD and MSC_ITGB3 groups. (A) 

248 UMAP plots of SMC subpopulations (SMC_1, SMC_2, and SMC_3) from the HFD (2,400 

249 cells) and MSC_ITGB3 (2,733 cells) groups. (B) Percentage of SMC subpopulations in the 

250 HFD (SMC_1, 25.12%; SMC_2, 74.17%; SMC_3, 0.71%) and MSC_ITGB3 (SMC_1, 

251 20.49%; SMC_2, 79.07%; SMC_3, 0.44%) groups. (C) Heat map of the top 10 marker genes 

252 for each subpopulation. (D–F) Top 10 KEGG-enriched pathways obtained using 

253 differentially expressed genes from the SMC_1 (D), SMC_2 (E), and SMC_3 (F) 

254 subpopulations. (G) Violin plots of selected marker gene expression in SMC subpopulations 

255 in both HFD and MSC_ITGB3 samples. (H) Feature map of the expression of selected 

256 marker genes of the SMC subpopulations in the HFD group. (I) Feature map of the 

257 expression of selected marker genes of the SMC subpopulations in the MSC_ITGB3 group. 

258 (J) Expression of specific genes in the SMC subpopulations. 

259

260 Marker genes specific to each SMC subpopulation were selected (Fn1, Ctgf, Eln, 

261 Myl6, Acta2, Tagln, Gpx3, Colec11, and Col6a1) and grouped together to construct violin 

262 plots (Fig 3G), feature maps (Fig 3H and 3I), and dot plots (Fig 3J) to represent 

263 subpopulation-specific gene expression in the HFD and MSC_ITGB3 groups. High 

264 expression of the following genes was observed: genes involved in proliferation and 

265 migration (Fn1, Ctgf, Eln) in SMC_1, genes related to contractile markers (Myl6, Acta2, 

266 Tagln) in SMC_2, and collagen and redox genes (Gpx3, Colec11, Col6a1) in SMC_3.

267

268 EC subpopulation analysis

269 Further cluster analysis of the ECs revealed three subpopulations (Fig 4A). In the 

270 HFD group, EC_1 accounted for the largest proportion (92.93 %), followed by EC_2 (5.79%) 
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271 and EC_3 (1.28%), respectively. In the MSC_ITGB3 group, EC_1 accounted for 96.53%, 

272 followed by EC_2 (1.06%) and EC_3 (2.41%), respectively (Fig 4B). Differential analysis (p 

273 < 0.05) of these three EC subpopulations was then performed, and the top 10 differential 

274 genes of each subpopulation were used to construct a heat map of differential gene expression 

275 (Fig 4C). Finally, KEGG enrichment analysis for each EC subpopulation was performed, and 

276 enrichment of the following pathways was found: fluid shear stress and atherosclerosis, focal 

277 adhesion, proteoglycans in cancer, PI3K-Akt signaling pathway, and ECM-receptor 

278 interaction in EC_1 (Fig 4D); ECM-receptor interaction, coronavirus disease 2019 (COVID-

279 19), fluid shear stress and atherosclerosis, focal adhesion, and proteoglycans in cancer in 

280 EC_2 (Fig 4E); and focal adhesion, AGE-RAGE pathway in diabetic complications, fluid 

281 shear stress and atherosclerosis, proteoglycans in cancer, and mitogen-activated protein 

282 kinase signaling pathway in EC_3 (Fig 4F).

283

284 Fig 4. Comparison of EC subpopulations in the HFD and MSC_ITGB3 groups. (A) 

285 UMAP plots of EC subpopulations (EC_1, EC_2, and EC_3) from the HFD (3679 cells) and 

286 MSC_ITGB3 (1411 cells) groups. (B) Percentage of EC subpopulations in the HFD (EC_1, 

287 92.93%; EC_2, 5.79%; EC_3, 1.28%) and MSC_ITGB3 (EC_1, 96.53%; EC_2, 1.06%; 

288 EC_3, 2.41%) groups. (C) Heat map of the top 10 marker genes for each subpopulation. (D-

289 F) Top 10 KEGG-enriched pathways obtained  using differentially expressed genes from the 

290 EC_1 (D), EC_2 (E), and EC_3 (F) subpopulations. (G–I) Violin plots (G) and feature maps 

291 (H and I) constructed through the selection and grouping of marker genes (Cytl1, Cpe, Clu, 

292 Pam, Fabp4, Ly6c1, Sparcl1, Igfbp7, Mmrn1, Fgl2, Igfbp5, and Lbp) specific to each EC 

293 subpopulation. Specific marker genes as well as contractility-driving genes (Tagln, Acta2, 

294 Mylk, and Myh11) were used to represent the specific gene and contractility-associated gene 

295 expression in the three EC subpopulations in the HFD and MSC_ITGB3 groups (J).
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296 Marker genes (Cytl1, Cpe, Clu, Pam, Fabp4, Ly6c1, Sparcl1, Igfbp7, Mmrn1, Fgl2, 

297 Igfbp5, and Lbp) specific to each EC subpopulation were selected and grouped together to 

298 construct violin plots (Fig 4G) and feature maps (Fig 4H and 4I). Specific marker genes as 

299 well as contractility genes (Tagln, Acta2, Mylk, Myh11) were used to represent the specific 

300 gene and contractility-associated expression in the three EC subpopulations in the HFD and 

301 MSC_ITGB3 samples (Fig 4J). Genes associated with contractility were expressed at 

302 significantly higher levels in the MSC_ITGB3 group than in the HFD group.

303

304 Immune cell subpopulation analysis

305 Further cluster analysis of the immune cells revealed three subpopulations 

306 (monocytes/macrophages, DCs, and T cells; Fig 5A). In the HFD group, 

307 monocytes/macrophages accounted for the largest proportion of immune cells (69.14%), 

308 followed by DCs (18.95%) and T cells (11.91%), respectively. In the MSC_ITGB3 group, 

309 monocytes/macrophages accounted for the largest proportion of immune cells (69.40%), 

310 followed by T cells (17.56%) and DCs (13.05%), respectively (Fig 5B). Differential analysis 

311 (p < 0.05) of these immune cell subpopulations was then performed, and the top 10 

312 differential genes of each subpopulation were used to construct a heat map of differential 

313 gene expression (Fig 5C). Finally, KEGG enrichment analysis for each immune cell 

314 subpopulation was performed, and enrichment of the following pathways was found: 

315 Lysosome, Rheumatoid arthritis, Tuberculosis, Phagosome, and Antigen processing and 

316 presentation in DCs (Fig 5D); COVID-19, Ribosome, Lysosome, Rheumatoid arthritis, and 

317 phagosome in monocytes/macrophages (Fig 5E); and COVID-19, Ribosome, phagosome, 

318 rheumatoid arthritis, and Th17 cell differentiation in T cells (Fig 5F).

319
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320 Fig 5. Comparison of immune cell subpopulations in the HFD and MSC_ITGB3 groups. 

321 (A) UMAP plots of immune cell subpopulations (monocytes or macrophages, DCs, and T 

322 cells) from the HFD (3,788 cells) and MSC_ITGB3 (2614 cells) groups. (B) Percentage of 

323 immune cell subpopulations in the HFD (monocyte and macrophages, 69.14%; DCs, 18.95%; 

324 T cells, 11.91%) and MSC_ITGB3 (monocyte and macrophages, 69.40%; DCs, 13.05%; T 

325 cells, 17.56%) groups. (C) Heat map of the top 10 marker genes for each subpopulation. (D-

326 F) Top 10 KEGG-enriched pathways obtained using genes differentially expressed in the 

327 monocytes or macrophages (D), DC (E), and T cell (F) subpopulations. (G) Violin plots of 

328 selected marker gene expression in immune cell subpopulations in HFD and MSC_ITGB3 

329 samples. (H) Feature map of expression of selected immune cell subpopulation marker genes 

330 in the HFD group. (I) Feature map of expression of selected immune cell subpopulation 

331 marker genes in the MSC_ITGB3 group. (J) Expression of inflammatory factor-encoding 

332 genes in the immune cell subpopulations.

333

334 Marker genes specific to each immune cell subpopulation were selected (C1qb, Cd3d, 

335 Cd3g, Cd68, H2-Ab1, H2-Eb1, Lyz2, and Nkg7) and grouped together to construct violin 

336 plots (Fig 5G) and feature maps (Fig 5H and 5I) to visualize subpopulation-specific gene 

337 expression. The expression of inflammatory factors (Ccl2, Ccl11, Ccr1, Cx3cr1, Cxcl12, and 

338 Pf4) in the immune cells of the HFD and MSC_ITGB3 groups are expressed as dot plots (Fig 

339 5J). Among them, proinflammatory cytokines were highly expressed in 

340 monocytes/macrophages.

341

342 Cell–cell communication

343 The total number of interactions between EC, SMC, and immune cell subpopulations 

344 (Fig 6A) as well as a complete interaction weight plot (Fig 6B) were obtained using 
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345 ‘CellChat.’ Sankey diagrams were constructed to illustrate the cells interacting with each cell 

346 subtype during incoming (Fig 6C) and outgoing communication (Fig 6D) and the underlying 

347 signaling pathways. The diagrams show that compared with the other subpopulations, 

348 SMC_2, SMC_3, EC_1, EC_3, and monocytes/macrophages had a higher number of 

349 interactions with other cell types. Additionally, monocytes/macrophages had the strongest 

350 intensity of interaction with other cell types.

351

352 Fig 6. Ligand-receptor interaction analysis to assess communication between different 

353 cell subpopulations within atherosclerotic samples. (A) Circular plot depicting the 

354 communication network between cells in intracellular SMC, EC, and immune cell 

355 subpopulations (the number of cells in each cell type is proportional to the size of the circle; 

356 line widths indicate the number of signal interactions). (B) Circular plot demonstrating the 

357 intensity of interactions between cells contained in intracellular SMC, EC, and immune cell 

358 subpopulations (line widths indicate the intensity of cell-cell interactions). Sankey plots 

359 showing intercellular interactions during incoming (C) and outgoing (D) communication and 

360 the signaling pathways involved.

361

362 Differential analysis of single-cell transcriptomic data

363 Differential analysis (p < 0.05) of ECs, SMCs, and immune cells was performed, and 

364 the top 10 differential genes in each subpopulation were used to generate a heat map (Fig 7A) 

365 of differential gene expression. The top five differential genes among the three cell 

366 subpopulations were used for feature map construction using UMAP (Fig 7B-7D).

367

368 Fig 7. Analysis of differentially expressed genes in EC, SMC, and immune cells of HFD 

369 mice and MSC_ITGB3 mice. (A) Heat map of top 10 differentially expressed genes in EC, 
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370 immune cell, and SMC subpopulations. (B–D) Feature maps constructed through selection of 

371 top five differentially expressed genes in EC (B), immune cell (C), and SMC (D) 

372 subpopulations. (E) Box plot of 26 differentially expressed genes from atheroma plaque and 

373 macroscopically intact tissues. (F) PPI network for differentially expressed genes. *p < 0.05; 

374 **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.

375

376 Next, the differential genes of ECs, SMCs, and immune cells were transformed to 

377 their human homologs and screened in the GSE43292 transcriptome dataset for differential 

378 analysis. Twenty-six differential genes (FABP4, MMP12, HMOX1, PLA2G7, PLIN2, 

379 ANPEP, PLEK, CYTIP, RGS1, ITGAX, CXCL10, EMCN, MYOM1, NEXN, TTLL7 THRB, 

380 NPNT, NPR1, PDZRN3, SEMA3D, CNN1, FIBIN, PLCB4, RYR2, NPY1R, and MYOCD) 

381 were obtained. Box-line plots were plotted to illustrate the differential genes between 

382 atheroma plaque and macroscopically intact tissue samples (Fig 7E). The interactions 

383 between the differentially expressed genes were analyzed using STRING database and 

384 visualized using the Cytoscape software (Fig 7F).

385 Thirteen hub genes with the greatest interaction between the differentially expressed 

386 genes (MMP12, CXCL10, HMOX1, ANPEP, ITGAX, FABP4, RGS1, PLEK, CNN1, RYR2, 

387 NEXN, MYOM1, and MYOCD; Fig 8A) were extracted using the MCODE algorithm in the 

388 cytoHubba plugin. GO functional enrichment analysis of these 13 hub genes was performed, 

389 and negative regulation of vascular-associated SMC proliferation, muscle system processes, 

390 negative regulation of SMC proliferation, regulation of vascular-associated SMC 

391 proliferation, and vascular-associated SMC proliferation were found to be significantly 

392 enriched in these 13 hub genes (Fig 8B).

393
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394 Fig 8. Hub gene screening and enrichment analysis. (A) Graph of hub gene interaction 

395 intensity calculated using the MCODE algorithm in the cytoHubba plugin. (B) Top 10 GO-

396 enriched pathways obtained using 13 hub genes.

397

398 Discussion

399 Owing to increasing incidence of risk factors such as hypertension, hyperlipidemia, 

400 and diabetes, atherosclerotic disease remains the leading cause of death. Stem cell therapy 

401 provides a new direction for atherosclerosis treatment. scRNA-seq technologies have been 

402 designed to reveal the heterogeneity of vascular cells, including those comprising normal 

403 vessels, those in ApoE-/- mice, and those with aneurysms [21, 27, 28]. Many multifunctional 

404 cell populations related to cardiovascular diseases are composed of vascular tissue. 

405 Heterogeneity in cell morphology and gene expression distinguishes between the main cell 

406 phenotypes and defines multiple subgroups with different functions. However, the 

407 heterogeneity and transcriptional features of the vascular cells of atherosclerotic aorta 

408 associated with stem cell therapy have not been explored. In this study, we used the latest 

409 scRNA-seq technology to comprehensively show the aortic cellular composition of - mice fed 

410 an HFD and provide new insights into the altered gene expression profiles in MSC_ITGB3-

411 treated aortic cells.

412 We described the genes and signaling pathways expressed in 33,782 cells from the 

413 whole aorta and identified multiple subtypes in SMCs, ECs, and immune cells, suggesting 

414 that these cells include multiple functional populations in the aortic wall. Our data identified 

415 three subpopulations of SMCs in the aorta: synthetic (SMC_1), contractile (SMC_2), and 

416 inflammatory (SMC_3) SMCs. These subtypes are consistent with those identified by 

417 previous reports [27, 29]. The proliferating SMC cluster expresses several synthetic marker 

418 genes. The SMC_1 cluster expresses several proliferation and migration marker genes (Fn1, 
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419 Ctgf, and Eln). The decrease in the synthetic gene subpopulation SMC_1 is an important 

420 condition that reverses the pathological progression of SMC phenotypic transformation in 

421 MSC_ITGB3-treated mice [30]. Cells in this cluster may play an adaptive role in vascular 

422 tissues with their migration function and high proliferation rate. SMC_2 highly expressed 

423 contractile transcription factors (Myl6, Acta2, and Tagln) under HFD conditions. Moreover, 

424 the expression of contraction-related genes in the MSC_ITGB3 group was significantly 

425 increased, indicating that the vasoconstrictive function of blood vessels improved after stem 

426 cell treatment. In addition, the inflammatory subgroup SMC_3 exhibited the highest 

427 expression of collagen and oxidation genes and the lowest expression of contractile genes. 

428 Stem cell therapy promoted the downregulation of proteinases and proinflammatory 

429 cytokines, including Fn1, Ctgf, Eln Gpx3, Colec11, and Col6a1. Thus, our sequencing data 

430 from HFD and MSC_ITGB3 mice demonstrates phenotypic diversity of vascular SMC and 

431 provides considerable insight into the heterogeneity of SMC in HFD- and MSC_ITGB3-

432 treated vessels.

433 Our current study also provides a detailed analysis of EC gene expression signatures 

434 following stem cell therapy. ECs are known to have many subtypes. In our analysis, we 

435 identified three distinct EC profiles in the atherosclerotic aorta, and their gene expression 

436 profiles showed different functional characteristics. EC_1 accounts for the largest proportion 

437 of all EC subgroups and may play a key role in disease development. The PI3K-Akt signaling 

438 pathway and ECM-receptor interaction were significantly enriched in EC_1. PI3K-PKB/Akt 

439 is a highly conserved signaling pathway, and its activation mediates many cellular functions, 

440 including angiogenesis, survival, growth, transcription, proliferation, and apoptosis [31, 32]. 

441 ECMs interact with cell surface receptors to regulate cell behavior, such as cell 

442 communication, proliferation, migration, and adhesion [33, 34]. Specifically, cytokine-like 

443 protein 1 (CYTL1), a classical secretory protein, was downregulated in the MSC-ITGB3 
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444 group. CYTL1 is involved in neutrophil activation and the generation and release of reactive 

445 oxygen species during pathogenic infection [35]. Downregulation of Cytl1 indicates a 

446 reduction in the inflammatory response following stem cell therapy. This difference indicates 

447 the functional characteristics of EC_1 in inflammation and adhesion. Based on the 

448 differential gene expression profiles, the EC_2 and EC_3 subgroups express genes that 

449 contribute to EC adhesion and leukocyte migration.

450 Atherosclerosis is a vascular inflammatory disease that involves the influx, 

451 proliferation, and activation of immune cells [36]. Several studies have demonstrated the 

452 heterogeneity of plaque cells and the proinflammatory effects of non-foam macrophages [37, 

453 38]. However, the effect of stem cell therapy on the heterogeneity of immune cells in 

454 atherosclerotic plaques has not been reported. Based on our sequencing data, we identified 

455 three major subpopulations in the whole aorta: monocytes/macrophages, DCs, and T cells. 

456 Among them, monocytes/macrophages, which accounted for the largest proportion of 

457 immune cells in the HFD and MSC_ITGB3 groups, play an important role in the phagosome 

458 pathway and COVID-19. Lysosome and antigen presentation signaling pathways were 

459 mainly enriched in DCs. The number of DCs is positively correlated with atherosclerotic 

460 lesion progression and contributes to lipid accumulation and disease initiation and 

461 progression [39]. Moreover, DCs can secrete a variety of proinflammatory factors, including 

462 tumor necrosis factor, interleukin (IL)-6, and IL-1β. After MSC_ITGB3 treatment, the 

463 number of DCs significantly decreased and expression levels of inflammatory factors 

464 considerably reduced. Hence, our data revealed characteristic changes in immune cells in the 

465 MSC_ITGB3-treated vascular aorta. scRNA-seq analysis provides a reliable tool for studying 

466 cell-to-cell interactions. By analyzing intercellular communication, we showed that the 

467 interactions of ECs, SMCs, and monocytes/macrophages trigger complex intercellular 

468 communication pathways that are directly or indirectly involved in the regulation of 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.18.524536doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524536
http://creativecommons.org/licenses/by/4.0/


20

469 atherosclerosis. However, owing to limited funding, scRNA-seq was not performed on the 

470 unmodified MSC treatment group in this study, and the difference in treatment between 

471 unmodified MSCs and MSC_ITGB3 could not be compared.

472 In summary, our analysis comprehensively revealed the transcriptomic profile of 

473 atherosclerotic mouse aorta after MSC_ITGB3 treatment. After applying dimensionality 

474 reduction and clustering analysis, several functionally distinct candidate subpopulations were 

475 identified from the atherosclerotic vessels. These findings demonstrate the cellular diversity 

476 in plaques and provide insights into the cellular composition of the treated aorta and the 

477 function of individual cell subtypes.
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