

1 **The complete chloroplast genome sequence of *Akebia***
2 ***trifoliata* and a comparative analysis within the Ranales**
3 **clade**

4

5 Ruixian Wang^{1,3}, Qu Chu², Gang Meng², Chuan Li^{1,3*}

6

7 ¹School of Modern Agriculture and Biotechnology, Ankang University, No. 92 Yucai
8 Road, Hanbin District, Ankang, 725000, Shaanxi Province, China.

9 ²Shaanxi Key Laboratory of Sericulture; Ankang University, No. 92 Yucai Road,
10 Hanbin District, Ankang, 725000, Shaanxi Province, China.

11 ³Institute of Shaanxi Selenium-enriched Recycling Agricultural Development, No. 92
12 Yucai Road, Hanbin District, Ankang, 725000, Shaanxi Province, China.

13

14 *Corresponding Author: Chuan Li, Email address: cyberlc@163.com

15

16 **Abstract**

17 The complete nucleotide sequence of the *Akebia trifoliata* chloroplast (cp) genome was
18 reported and characterized in this study. The cp genome is a closed circular molecule
19 of 157 949 bp, composed of a pair of IR regions of 26 149 bp, one LSC region of 86
20 595 bp, and one SSC region of 19 056 bp. The GC contents of the LSC, SSC, and IR
21 regions, and the whole cp genome are 37.11%, 33.62%, 43.08% and 38.66%,
22 respectively. The cp genome contains 130 predicted functional genes, including 85

23 PCGs of 79 107 bp, 37 tRNA and 8 rRNA genes of 11 851 bp. 168 SSRs and 23 long
24 repeats were identified in the cp genome. The results revealed that 21 891 codons
25 characterize the coding capacity of 85 protein-coding genes in *Akebia trifoliata*, 10.84%
26 and 1.20% of the codons coded for leucine and cysteine respectively. The usage of the
27 start codon exhibited no bias in the *A. trifoliata* cp genome. Phylogenetic analysis
28 suggest that *A. trifoliata* is most closely related to *S. japonica*, which then formed a
29 cluster with *N. dormestica* and *M. saniculifolia* to form subgroup of Ranunculales. Our
30 study provides information on mangrove plant species in coastal intertidal zones.

31 **Introduction**

32 *Akebia trifoliata* is a wild perennial woody liana, and monoecious with flowers
33 functionally unisexual and self-incompatible [1, 2]. It belongs to the Lardizabalaceae
34 family, that is mainly distributed in the eastern part of Asia, and is also commonly
35 known in China as August melon, Bayuezha, and wild banana [3]. Its fresh fruit,
36 commonly called ‘Ba-Yue-Gua’ in China, has long been consumed by the local people
37 as a delicious food [4]. *A. trifoliata* has been used in traditional Chinese medicine
38 (TCM) for more than 2000 years [5]. The air-dried stems and fruits of *A. trifoliata* have
39 traditionally been used in China for centuries as an antiphlogistic, antineoplastic and
40 diuretic agent [6]. To date, phytochemical studies have revealed structurally diverse of
41 triterpenes, triterpene saponins, phenolics and lignans from this plant, and some of them
42 displayed significant biological activities [7-11]. Owing to its economic and medicinal
43 values, *A. trifoliata* is currently being widely cultivated and rapidly developed as a
44 commercial species in many regions of China.

45 Chloroplast serves as the metabolic center of plant life by converting solar energy to
46 carbohydrates through photosynthesis and oxygen release [12]. The chloroplast genome
47 consists of 120-130 genes that divided into three functional categories, protein-coding
48 genes, introns and intergenic spacers. They comprise a single circular chromosome,
49 typically ranging in size from 107 kb to 218 kb [13, 14]. Chloroplast genomes have a
50 quadripartite structure, with a pair of inverted repeats (IRs) separated by one large and
51 one small single copy region [15]. Several plant chloroplast genomes also show
52 significant structural rearrangements, with evidence of the loss of IR regions or entire
53 gene families [16, 17]. Additionally, the presence of IRs might stabilize the chloroplast
54 genomes organization [18, 19]. Approximately 800 complete chloroplast genomes from
55 a variety of land plants have been retained in the National Center for Biotechnology
56 Information (NCBI) organelle genome database since the first chloroplast genome of
57 tobacco [20] and liverwort [21], which were sequenced simultaneously in 1986. The
58 sequenced chloroplast genomes have improved our understanding of plant biology and
59 evolutionary relationships.

60 In this study, the complete chloroplast genome of *A. trifoliata* was sequenced and
61 analyzed based on illumina high-throughput sequencing technology. In addition to
62 describing the plastic features of the chloroplast genome, the gene content, repeat
63 structures and sequence divergence with other reported species in the Ranunculales
64 order were compared. We also presented results of a phylogenetic analysis of protein
65 sequences from *A. trifoliata* and 40 other plant species. The complete chloroplast

66 genome of *A. trifoliata* will improve our understanding of the evolution relationships
67 of genera in the Ranunculales order.

68 **Materials and Methods**

69 **Sampling and DNA sequencing**

70 Based on its morphological characteristics, the *A. trifoliata* species, in its natural habitat
71 of the **Tsinling Mountains (106°55'19"E, 34°14'29"N)**, was confirmed by Professor
72 Chuan Li and Yunwu Peng (Ankang University). The plant was then transplanted and
73 preserved in the School of Modern Agriculture and Biological Science and Technology,
74 Ankang University. Approximately, 20g fresh leaves were sampled from a single *A.*
75 *trifoliata* plant, and the cpDNA was extracted using a modified high salt method.
76 Approximately 5-10 µg of cpDNA was sheared, followed by adapter ligation and
77 library amplification. Then, the fragmented cpDNAs were sequenced using the Illumina
78 Hiseq 2000 platform. The obtained sequences were assembled using SOAP de novo
79 software and reference-based approaches in parallel. The obtained cp genome regions
80 with ambiguous alignments were manually trimmed and considered as gaps. Gaps were
81 filled using the read over-hangs at margins and the PCR method. The process was
82 repeated fold, and the minimum fold of the final assembled *A. trifoliata* cpDNA reached
83 approximately 1126-fold.

84 **Genome annotation**

85 The tRNA, rRNA, and protein-coding genes (PCGs) in the assembled genome were
86 predicted and annotated using Dual Organellar GenoMe Annotator with default
87 parameters. The locations of tRNAs were then confirmed using tRNAscan-SE software,

88 version 1.21, specifying mito/cpDNA as the source. The rRNA genes were verified
89 using BLASTN searches against the database of published cp genomes. The positions
90 of the start and stop codons, or intron junctions of PCGs, were verified using the
91 BLASTN searches and sequin program with Plastid genetic code. The genome map was
92 drawn by OGDraw v1.2.

93 **Simple sequence repeat (SSR) and long repeats analysis**

94 Distributed throughout the genome, SSRs are repeat sequences with a typical length of
95 1-6 bp that are generally considered to have a higher mutation rate than neutral DNA
96 regions. The distributions of SSRs in the chloroplast genome were predicted by using
97 the microsatellite search tool MISA [22] with the following parameters: ≥ 10 for
98 mononucleotide repeats, ≥ 5 for dinucleotide repeats, ≥ 4 for trinucleotide repeats, and
99 ≥ 3 for tetranucleotide repeats, pentanucleotide repeats, and hexanucleotide repeats. For
100 analysis of repeat structures, REPuter [23] was used to visualize forward, reverse,
101 palindrome and complement sequences of size ≥ 30 bp and identity $\geq 90\%$ in the cp
102 genome. All repeats recognized were manually verified, and redundant results
103 removed.

104 **Comparative Genome analysis**

105 To investigate the sequence divergence of the chloroplast genome among the analyzed
106 Ranunculales species, the whole chloroplast genome sequences of *Nandina domestica*
107 of Berberidaceae, *Euptelaea pleiosperma* of Eupteleaceae, *Stephania japonica* of
108 Menispermaceae, *Megaleranthis saniculifolia* of Ranunculaceae and *Papaver*
109 *somniferum* of Papaveraceae were analyzed using the mVISTA program in the Shuffle-

110 LAGAN mode [24], and the *Euptelea pleiosperma* annotations were used as references.
111 The differences in the chloroplast genome length, LSC length, SSC length, GC content,
112 encoding gene types and gene numbers among these 6 species were analyzed. The
113 LSC/IR/SSC boundaries among the species were determined by comparative analysis
114 to explore the variation in these angiosperm chloroplast genomes.

115 **Phylogenetic analysis**

116 To illustrate the phylogenetic relationship of the *A. trifoliata* with other major Ranales
117 clades, 40 complete cp genomes were downloaded from GenBank (Table S1). *Sapindus*
118 *mukorossi* and *Acer buergerianum* from Sapindales were used as outgroups. Then, 72
119 PCGs found in all of the species were extracted from the selected cp genomes. The
120 amino acid sequences of each of the PCGs were aligned using MSWAT
121 (<http://mswat.cccb.utexas.edu/>) with default settings, and back translated to nucleotide
122 sequences. Phylogenetic analyses were performed using the concatenated nucleotide
123 sequences and RAxML 7.2.6 software by the maximum likelihood (ML) method.
124 RAxML searches relied on the General Time Reversible model of nucleotide
125 substitution with the gamma rate model (GTRGAMMA). A bootstrap analysis was
126 performed with 1000 replications using non-parametric bootstrapping as implemented
127 in the “fast bootstrap” algorithm. The absent genes were finally mapped on to the ML
128 phylogenetic tree.

129 **Results**

130 **The overall structure and general features of the *A. trifoliata* cp genome**

131 The cp genome of *A. trifoliata* is a closed circular molecule of 157 949 bp (GenBank
132 accession number: ON021949), composed of a pair of IR regions (IRa and IRb) of 26
133 149 bp, one LSC region of 86 595 bp, and one SSC region of 19 056 bp. It has an overall
134 typical quadripartite structure that resembles the majority of land plant cp genomes.
135 The GC contents of the LSC, SSC, and IR regions, and the whole cp genome are 37.11,
136 33.62, 43.08 and 38.66 %, respectively (Table 1). The cp genome encodes 130 predicted
137 functional genes, including 85 PCGs of 79 107 bp, 37 tRNA and 8 rRNA genes of 11
138 851 bp. Among the 130 genes, 114 are unique genes and 19 are duplicated genes in the
139 IR regions. 16 genes have one intron (10 PCGs and 6 tRNA genes) and 2 PCGs have
140 two introns (*clpP* and *ycf3*). Like most other land plants, a maturase K gene (*matK*) is
141 located within the intron of *trnK*, *rps12* is trans-spliced, with its two 3' end residues
142 separated by an intron in the IR region, and the 5' end exon is in the LSC region (Figure
143 1). The 8 rRNA genes were composed of two identical copies of 16S-23S-4.5S-5S
144 rRNA gene clusters in the IR region. Each cluster was interrupted by two tRNA genes,
145 *trnI* and *trnA*, in the 16S-23S spacer region.

146 **Table 1 Base composition in the *A. trifoliata* chloroplast genome**

Terms	A (%)	T (%)	C (%)	G (%)	length (bp)
LSC	30.82	32.07	19.00	18.11	86595
SSC	33.18	33.20	17.61	16.01	19056
IRa	28.22	28.70	22.23	20.85	26149
IRb	28.70	28.22	20.85	22.23	26149
Total	30.32	31.01	19.67	18.99	157949
CDS	30.30	30.86	18.22	20.61	79107

147 **Figure 1. Gene map of the *A. trifoliata*.** Genes lying outside of the outer layer circle
148 are transcribed in the counterclockwise direction, whereas genes inside are transcribed

149 in the clockwise direction. The colored bars indicate known different functional groups.
150 Area dashed darker gray in the inner circle denotes GC content while the lighter gray
151 shows to AT content of the genome. LSC large single-copy, SSC small-single-copy, IR
152 inverted repeat.

153 **Codon Usage**

154 Codon usage plays an important role in shaping chloroplast genome evolution. Based
155 on the sequences of protein-coding genes (CDS), the codon usage frequency was
156 estimated (Table 2). The result revealed that 21 891 codons characterize the coding
157 capacity of 85 protein-coding genes in *A. trifoliata*. Of these codons, 2 373 (10.84%)
158 were code for leucine and 263 (1.20%) for cysteine, which represented the maximum
159 and minimum prevalent number of amino acids in the *A. trifoliata* chloroplast genome,
160 respectively. A- and U-ending codons were ordinary. The other amino acid codons in
161 the cp genome preferentially end with A or U (RSCU > 1). This codon usage pattern is
162 similar to those reported cp genomes. In addition, codons ending in A and/or U
163 accounted for 71.96% of all CDS codons. The majority of protein-coding genes in land-
164 plant cp genomes employ standard ATG initiator codons. The use of the start codon
165 exhibited no bias (RSCU = 1) in the *A. trifoliata* cp genome.

166 **Table 2 Codon usage of *A. trifoliata* chloroplast genome**

Amino acids	Codon	No.	RSCU	Amino acids	Codon	No.	RSCU
Phe	UUU	751	1.22	Ala	GCC	191	0.64
Phe	UUC	486	0.75	Ala	GCA	362	1.05
Leu	UUA	689	1.76	Ala	GCG	149	0.41
Leu	UUG	500	1.22	Tyr	TAT	664	1.46
Leu	CUU	499	1.26	Tyr	TAC	167	0.39
Leu	CUC	172	0.45	His	CAT	434	1.19
Leu	CUA	325	0.77	His	CAC	145	0.40

Leu	CUG	188	0.55	Gln	CAA	607	1.45
Ile	AUU	939	1.53	Gln	CAG	205	0.37
Ile	AUC	418	0.60	Asn	AAT	817	1.32
Ile	AUA	596	0.87	Asn	AAC	244	0.46
Val	GUU	475	1.44	Lys	AAA	821	1.36
Val	GUC	154	0.48	Lys	AAG	304	0.41
Val	GUA	474	1.44	Asp	GAT	732	1.41
Val	GUG	197	0.58	Asp	GAC	207	0.41
Ser	UCU	457	1.54	Glu	GAA	878	1.35
Ser	UCC	295	0.99	Glu	GAG	313	0.50
Ser	UCA	366	1.32	Cys	TGT	188	1.13
Ser	UCG	175	0.47	Cys	TGC	75	0.27
Ser	AGU	344	1.28	Arg	CGT	324	1.46
Ser	AGC	108	0.32	Arg	CGC	88	0.33
Pro	CCU	371	1.44	Arg	CGA	320	1.46
Pro	CCC	190	0.70	Arg	CGG	99	0.37
Pro	CCA	285	1.22	Arg	AGA	418	1.60
Pro	CCG	112	0.52	Arg	AGG	161	0.55
Thr	ACU	460	1.60	Gly	GGT	555	1.32
Thr	ACC	237	0.72	Gly	GGC	169	0.39
Thr	ACA	373	1.22	Gly	GGA	642	1.57
Thr	ACG	134	0.41	Gly	GGG	256	0.62
Ala	GCU	586	1.80				

167

168 **Analyses of simple sequence repeats (SSRs) and long repeats**

169 A total of 168 SSR loci, harboring 220 bp in length, were detected in the *A. trifoliata*
170 cp genome. 33 of them present in compound formation, and the number of mono-, di-,
171 tri- and tetra-nucleotide repeats were 126, 35, 4 and 3 respectively. 120 of the
172 mononucleotides, 16 dinucleotides, all of the trinucleotides and 1 trinucleotide were
173 composed of A and T nucleotides, with a higher AT content (87.73%) in these
174 sequences than in the cp genome. Our findings agreed with the observation that
175 chloroplast SSRs were generally composed of polyadenine (poly A) and polythymine

176 (poly T), and rarely contained tandem guanine (G) and cytosine (C) repeats. Among
177 the SSRs, 43 were located in IGS regions and 10 were found in coding genes, including
178 *atpF*, *cemA*, *ndhF*, *rpoC2*, *atpB*, *rpoB*, and *ycf1*.
179 Repeat analysis revealed 23 long repeats, include 8 forward (direct) and 15 palindrome
180 (inverted) (Table 3). More than half of the repeats were located in the intergenic or
181 intronic regions. The majority of these repeats were between 30 and 73 bp. Short
182 dispersed repeats are considered to be a major factor promoting cp genome
183 rearrangements, which may facilitate intermolecular recombination and create diversity
184 among the cp genomes in a population. Hence, the repeats identified in this study will
185 provide valuable information to support investigation of the phylogeny of *A. trifoliata*
186 population studies.

187 **Table 3 SSRs in *A. trifoliata* cp genome**

SSR	repeats	Number of SSRs	Start position
A	8	21	3158, 4629, 7961, 18836, 22507, 31287, 34325, 38218, 46363, 64596, 84761, 90770, 90935, 110397, 116028, 116577, 117095, 124001, 131657, 139176, 63115
	9	16	4963, 5015, 8369, 8793, 28777, 28958, 33055, 34308, 49486, 56682, 70556, 72502, 73430, 73444, 92053, 157925
	10	11	5376, 9074, 10284, 31780, 39295, 48546, 49030, 65863, 77276, 81994, 115735
	11	5	132, 443, 50552, 83350, 130580
	12	1	4711
	13	1	13796
C	14	3	4559, 38616, 157878
	8	1	115549
	9	1	14633
	10	1	34154
	12	1	65342
G	8	1	36399
	10	1	77861

T	8	28	1896, 2182, 3174, 4763, 7641, 12652, 12789, 26399, 34154, 49691, 54127, 60762, 61960, 72999, 73793, 83403, 105362, 112832, 113745, 116831, 118735, 126825, 128124, 128833, 128892, 134141, 153603, 153768
9	16	14633, 16234, 18587, 30719, 37342, 53167, 62501, 68599, 82310, 82821, 86612, 117053, 117563, 128782, 129962, 152484	
10	9	9597, 46052, 46991, 47049, 52877, 61384, 65688, 72773, 127600	
11	5	9967, 16491, 18693, 112796, 122050	
12	1	45424	
13	1	83309	
14	2	67994, 86654	
AG	3	2	97368, 135858
AT	4	6	49094, 50434, 58454, 120316, 123934, 147915
	5	2	20066, 61077
	7	1	46978
CA	4	1	63115
CT	4	3	85866, 108680, 147170
GA	4	7	7183, 37448, 57380, 88869, 88881, 89868, 92074
TA	4	6	29656, 58814, 65650, 95430, 96622, 149108
	5	1	6509
TC	4	4	152464, 154670, 155657, 155669
	5	1	63315
TG	4	1	9597
AA	4	2	65612, 133724
T			
AT	4	1	48866
A			
AT	4	1	110810
T			
AT	3	1	46106
AA			
CA	3	1	129007
TT			
TT	3	1	52826
TG			

190 Contraction and expansion at the borders of IR regions are common evolutionary events
191 considered the main reason for size differences among cp genomes. For members of
192 ranunculales species, we conducted an exhaustive comparison of four junctions, LSC-
193 IRA (JLA), LSC-IRB (JLB), SSC-IRA (JSA), and SSC-IRB (JSB), between the two
194 IRs (IRA and IRB) and the two single-copy regions (LSC and SSC). The results shown
195 that that the studied locations are generally similar to those of all previously reported
196 chloroplast genomes (Figure 2).

197 **Figure 2 Comparisons of LSC, SSC, and IR region borders among six**
198 **Ranunculales chloroplast genomes.** The arrows indicated the location of the distance.
199 This figure is not to scale.

200 Characteristically, there are four junctions in the chloroplast genomes of angiosperms,
201 due to the presence of two identical copies of the inverted repeats. All chloroplast
202 genomes appeared to be structurally similar with a typical quadripartite structure of two
203 IRs separated by an LSC and an SSC. The whole genome sizes ranged from 152 931
204 (*P. somniferum*) to 161 834 (*E. pleiosperma*).

205 There are two copies *rps19* genes in cp genomes. The JLB junction was placed in the
206 *rps19* region in all the cp genomes of Ranunculales species and outspread to different
207 lengths (*M. sanguifolia*, 175 bp; *N. domestica*, 217 bp; *P. somniferum*, 205 bp; *S.*
208 *japonica*, 247 bp; *E. pleiosperma*, 162 bp; *A. trifoliata*, 240 bp) within the IRB region
209 of all the genomes. The IRB region contained 104, 62, 74, 32, 117 and 39 bp of the
210 *rps19* gene, respectively. Another *rps19* gene near by the end of IRA region, and cut
211 off by the JLA boundary.

212 For almost all the analyzed genomes, the *trnH* gene is the first gene in the LSC region
213 with variable distance from JLA boundary, while *M. saniculifolia* has lost the *trnH*
214 gene. Comparisons revealed that the *ndhF* gene have been lost in the *A. trifoliata*, *N.*
215 *domestica* and *E. pleiosperma* cp genome.

216 **Comparative analysis of the chloroplast genomes among Ranunculales and**
217 **phylogenetic analysis**

218 The cp genome comparative analysis of several ranunculales species were conducted
219 by the mVISTA program, with *Euptelea pleiosperma* as the reference sequence (Figure
220 3). Considerable similarities in genome composition and size were identified among
221 the species. In these species, the *Papaver somniferum* has the smallest size of cp
222 genome, and its size of LSC and IR region also the shortest (Table 4). The results of
223 the comparison shown that the IR (A/B) regions exhibited fewer differences than the
224 LSC and SSC regions. Moreover, the non-coding regions showed more variability than
225 the coding regions (CNS), and the marked differences in regions among the six
226 chloroplast genomes were evident in the intergenic spacers.

227 **Figure 3 Comparison of the six chloroplast genomes using mVISTA.** EP represent
228 *Euptelea pleiosperma*, MS represent *Megaleranthis saniculifolia*, ND represent
229 *Nandina domestica*, PS represent *Papaver somniferum*, SJ represent *Stephania*
230 *japonica*. Gray arrows and thick black lines above the alignment indicate gene
231 orientation. Purple bars represent exons, blue bars represent untranslated regions
232 (UTRs), pink bars represent conserved non-coding sequences (CNS), and gray bars
233 represent mRNA. The y-axis represents the percentage identity (shown: 50-70%).

234 **Table 4 Basic characteristics of the complete chloroplast genome of the six species.** The
235 GenBank No. of *N. domestica*, *E. pleiosperma*, *S. japonica*, *M. saniculifolia* and *P.*
236 *sohniferum* is NC_008336, KU204900, KU204903, NC_012615 and KU204905
237 respectively. All lengths are in bp.

Species	Taxon	Genome size	LSC size	SSC size	IR size	Number of genes	Protein coding genes	tRNA	rRNA	GC (%)
<i>N. domestica</i>	Berberidaceae	156 599	85 473	19 002	26 062	134	79	30	8	38.3
<i>E. pleiosperma</i>	Eupteleaceae	161 834	90 449	19 331	26 037	132	79	30	8	38.6
<i>S. japonica</i>	Menispermaceae	157 717	88 693	20 346	24 340	132	79	30	8	38.2
<i>M. saniculifolia</i>	Ranunculaceae	159 924	88 326	18 382	26 608	131	79	30	8	38.0
<i>P. sohniferum</i>	Papaveraceae	152 931	83 029	17 920	25 991	132	79	30	8	38.9
<i>A. trifoliata</i>	Lardizabalaceae	157 949	86 595	19 056	26 149	130	85	37	8	38.7

238 74 protein-coding genes from 41 angiosperm species that belonging to 15 commelinid-
239 clade orders were used to reconstructed the phylogenetic tree based on the maximum
240 likelihood method. The evolutionary relationship among angiosperms is presented with
241 high bootstrap supports (Figure 4). It shown that *A. trifoliata* is closely related to *S.*
242 *japonica*, which then formed a cluster with *N. dormestica*, *M. saniculifolia* with 100%
243 bootstrap supports, and these taxa belong to Ranunculales.

244 **Figure 4 Maximum likelihood (ML) phylogenetic tree reconstruction including 41**
245 **species based on concatenated sequences from all chloroplast genomes.** The
246 position of *A. trifoliata* is indicated by red bar. *S. mukorossi* and *A. buergerianum* from
247 Sapindales were used as outgroups.

248 **Discussion**

249 With the development of NGS, chloroplast genome sequences can be obtained
250 efficiently and economically. In the present study, we obtained the complete sequence
251 of the *A. trifoliata* chloroplast genome, which was fully characterized and compared to
252 the chloroplast genomes of species from different orders. The *A. trifoliata* chloroplast
253 genome includes 130 unique genes encoding 80 proteins, 8 rRNAs, 37 tRNAs and two
254 2 pseudogenes. The obtained chloroplast genome of *A. trifoliata* has a typical
255 quadripartite structure, and its gene content, gene order and GC content are similar to
256 those of most other species from different orders.

257 Simple sequence repeats (SSRs) are significant repetitive elements of the entire genome
258 and play important roles in genome recombination and rearrangement. The SSRs in
259 chloroplast genomes are usually distributed in intergenic regions. In the SSR analysis,
260 108 SSR loci were found, and most SSRs were located in the intergenic region. The
261 SSRs identified in the chloroplast genome of *Akebia trifoliata* can be used to analyze
262 polymorphisms at the intraspecific level. They can also be used to develop lineage-
263 specific markers for future evolutionary and genetic diversity studies. The mVISTA
264 results showed that the sequence of the chloroplast genome is highly conserved among
265 the Ranunculales clade. In addition, it showed that the sequence and content of IR
266 regions are more conserved than are those of the LSC and SSC regions among the
267 studied species, possibly because of the rRNA in IR regions.

268 In this study, the phylogenetic position of *A. trifoliata* in the Malpighiales was inferred
269 by analyzing the complete chloroplast genome. The results suggest that *A. trifoliata* is
270 most closely related to *Stephania japonica*, which then formed a cluster with *Nandina*

271 *dormestica*, *Megaleranthis saniculifolia* to form subgroup of Ranunculales. Our study
272 on the *Akebia trifoliata* chloroplast genome provides information on mangrove plant
273 species in coastal intertidal zones. Moreover, the chloroplast genomic data provided in
274 this study will be valuable for future phylogenetic studies and other studies of mangrove
275 species.

276 **Conclusions**

277 We successfully assembled, annotated and analyzed the complete chloroplast sequence
278 of *A. trifoliata*, a Ranales clade species. The chloroplast genome was found to be
279 conserved among several species. We identified 168 SSR loci and 23 long repeats in
280 the chloroplast, which can be used for the development of lineage-specific markers.
281 The LSC/IRB/SSC/IRA boundary regions of the chloroplast genome were compared
282 among six species, and the results revealed that all these cp genomes appeared to be
283 structurally similar with a typical quadripartite structure of two IRs separated by an
284 LSC and an SSC. The phylogenetic analyses showed that *A. trifoliata* is most closely
285 related to *Stephania japonica* among the order of Ranunculales. The molecular data in
286 this study represent a valuable resource for the study of evolution in mangrove species.

287 **Acknowledgements**

288 This work was supported by Research and Demonstration on Key Technologies of
289 Ecological Planting Authentic Chinese Medicinal Materials in Ankang (19JC001) and
290 The Base Construction and key Technologies and Industrialization Demonstration on
291 Suitable Chinese Herbal Medicine (2020QFY11-01). We thank Dr. WANG Tingzhang,

292 in Zhejiang Institute of Microbiology, for his kind help in high throughput sequencing
293 and genome sequence assembly.

294 **References**

- 295 1. Li L, Xu Q, Yao X. Microsatellite analysis reveals the resilience of genetic
296 diversity within extant populations of three *Akebia* species to chronic forest
297 fragmentation in China. *Plant Ecology*. 2019;220(1):69-81.
- 298 2. Shuaiyu Z, Xiaohong Y, Caihong Z, Tingting Z, Hongwen H. Genetic analysis of
299 fruit traits and selection of superior clonal lines in *Akebia trifoliate* (Lardizabalaceae).
300 *Euphytica*. 2018;214(7):111.
- 301 3. Li L, Yao X, Zhong C, Chen X, Huang H. Akebia: A Potential New Fruit Crop in
302 China. *Hortence A Publication of the American Society for Horticultural ence.*
303 2010;45(1):4-10.
- 304 4. Zhongyan W, Caihong Z, Fanwen B, Difei P, Juncai P, Feirong Y. Akebia - a
305 valuable wild fruit under domestication. *Agricultural Science & Technology*.
306 2005;6(2):12-7.
- 307 5. Wang J, Xu QL, Zheng MF, Ren H, Lei T, Wu P, et al. Bioactive 30-noroleanane
308 triterpenes from the pericarps of *Akebia trifoliata*. *Molecules* (Basel, Switzerland).
309 2014;19(4):4301-12. Epub 2014/04/10. doi: 10.3390/molecules19044301. PubMed
310 PMID: 24714192; PubMed Central PMCID: PMCPMC6271860.
- 311 6. Li L, Xu-Zhong C, Xiao-Hong Y, Hua T, Hong-Wen H. Geographic Distribution
312 and Resource Status of Three Important Akebia Species. *Plant Science Journal* 2010. p.
313 497-506.

314 7. Gao H, Wang Z. Triterpenoid saponins and phenylethanoid glycosides from stem
315 of *Akebia trifoliata* var. *australis*. *Phytochemistry* (Amsterdam)2006. p. 2697-705.

316 8. Guan S-H, Xia J-M, Lu Z-Q, Chen G-T, Jiang B-H, Liu X, et al. Structure
317 elucidation and NMR spectral assignments of three new lignan glycosides from *Akebia*
318 *trifoliata*. *Magn Reson Chem*. 2008;46(2):186-90. Epub 2007/12/21. doi:
319 10.1002/mrc.2152. PubMed PMID: 18095263.

320 9. Iwanaga, Warashina S, Miyase T, Toshio. Triterpene saponins from the pericarps
321 of *Akebia trifoliata*. *Chemical and Pharmaceutical Bulletin*2012. p. Chemical and
322 Pharmaceutical Bulletin.

323 10. Mimaki Y. Triterpenes and Triterpene Saponins from the Stems of *Akebia*
324 *trifoliata*. *Chemical and Pharmaceutical Bulletin*. 2003;8(51):960-5.

325 11. Shu-guang G, Wen-bo Y, Shu-hong G. The phenolic acid and phenoglycoside of
326 *Akebia trifoliata*. *Lishizhen Med Mat Med Res*2010. p. 905-6.

327 12. Neuhaus HE, Emes MJ. Nonphotosynthetic metabolism in plastids. *Annual review*
328 of plant physiology and plant molecular biology. 2000;51(1):111-40. doi:
329 10.1146/annurev.arplant.51.1.111. PubMed PMID: 15012188.

330 13. Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, et al. The
331 Complete Chloroplast Genome Sequence of *Pelargonium × hortorum*: Organization
332 and Evolution of the Largest and Most Highly Rearranged Chloroplast Genome of Land
333 Plants. *Molecular biology and evolution*. 2006;23(11):2175-90. doi:
334 10.1093/molbev/msl089.

335 14. Lin C-P, Huang J-P, Wu C-S, Hsu C-Y, Chaw S-M. Comparative Chloroplast
336 Genomics Reveals the Evolution of Pinaceae Genera and Subfamilies. *Genome biology*
337 and evolution.

2010;2:504-17. doi: 10.1093/gbe/evq036.

338 15. Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG. Comparative
339 organization of chloroplast, mitochondrial and nuclear diversity in plant populations.
340 *Molecular ecology*. 2005;14(3):689-701. Epub 2005/02/23. doi: 10.1111/j.1365-
341 294X.2004.02410.x. PubMed PMID: 15723661.

342 16. Hirao T, Watanabe A, Kurita M, Kondo T, Takata K. Complete nucleotide
343 sequence of the *Cryptomeria japonica*D. *Don*. chloroplast genome and comparative
344 chloroplast genomics: diversified genomic structure of coniferous species. *BMC plant*
345 *biology*. 2008;8(1):70. doi: 10.1186/1471-2229-8-70.

346 17. Yi X, Gao L, Wang B, Su YJ, Wang T. The complete chloroplast genome sequence
347 of *Cephalotaxus oliveri* (Cephalotaxaceae): evolutionary comparison of cephalotaxus
348 chloroplast DNAs and insights into the loss of inverted repeat copies in gymnosperms.
349 *Genome biology and evolution*. 2013;5(4):688-98. Epub 2013/03/30. doi:
350 10.1093/gbe/evt042. PubMed PMID: 23538991; PubMed Central PMCID:
351 PMCPMC3641632.

352 18. Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, et al. The chloroplast
353 genome of *Phalaenopsis aphrodite* (Orchidaceae): comparative analysis of
354 evolutionary rate with that of grasses and its phylogenetic implications. *Molecular*
355 *biology and evolution*. 2006;23(2):279-91. Epub 2005/10/07. doi:
356 10.1093/molbev/msj029. PubMed PMID: 16207935.

357 19. Wicke S, Schneeweiss GM, dePamphilis CW, Muller KF, Quandt D. The evolution
358 of the plastid chromosome in land plants: gene content, gene order, gene function. *Plant
359 molecular biology*. 2011;76(3-5):273-97. Epub 2011/03/23. doi: 10.1007/s11103-011-
360 9762-4. PubMed PMID: 21424877; PubMed Central PMCID: PMCPMC3104136.

361 20. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayshida N, Matsubayasha T, et
362 al. The complete nucleotide sequence of the tobacco chloroplast genome. *Plant
363 Molecular Biology Reporter*. 1986;4(3):111-48. doi: 10.1007/BF02669253.

364 21. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, et al. Chloroplast
365 gene organization deduced from complete sequence of liverwort *Marchantia
366 polymorpha* chloroplast DNA. *Nature*. 1986;322(6079):572-4. doi: 10.1038/322572a0.

367 22. Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for the
368 development and characterization of gene-derived SSR-markers in barley (*Hordeum
369 vulgare L.*). *TAG Theoretical and applied genetics Theoretische und angewandte
370 Genetik*. 2003;106(3):411-22. Epub 2003/02/18. doi: 10.1007/s00122-002-1031-0.
371 PubMed PMID: 12589540.

372 23. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R.
373 REPuter: the manifold applications of repeat analysis on a genomic scale. *Nucleic acids
374 research*. 2001;29(22):4633-42. Epub 2001/11/20. doi: 10.1093/nar/29.22.4633.
375 PubMed PMID: 11713313; PubMed Central PMCID: PMCPMC92531.

376 24. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. VISTA: computational
377 tools for comparative genomics. *Nucleic acids research*. 2004;32(Web Server

378 issue):W273-9. Epub 2004/06/25. doi: 10.1093/nar/gkh458. PubMed PMID:
379 15215394; PubMed Central PMCID: PMCPMC441596.

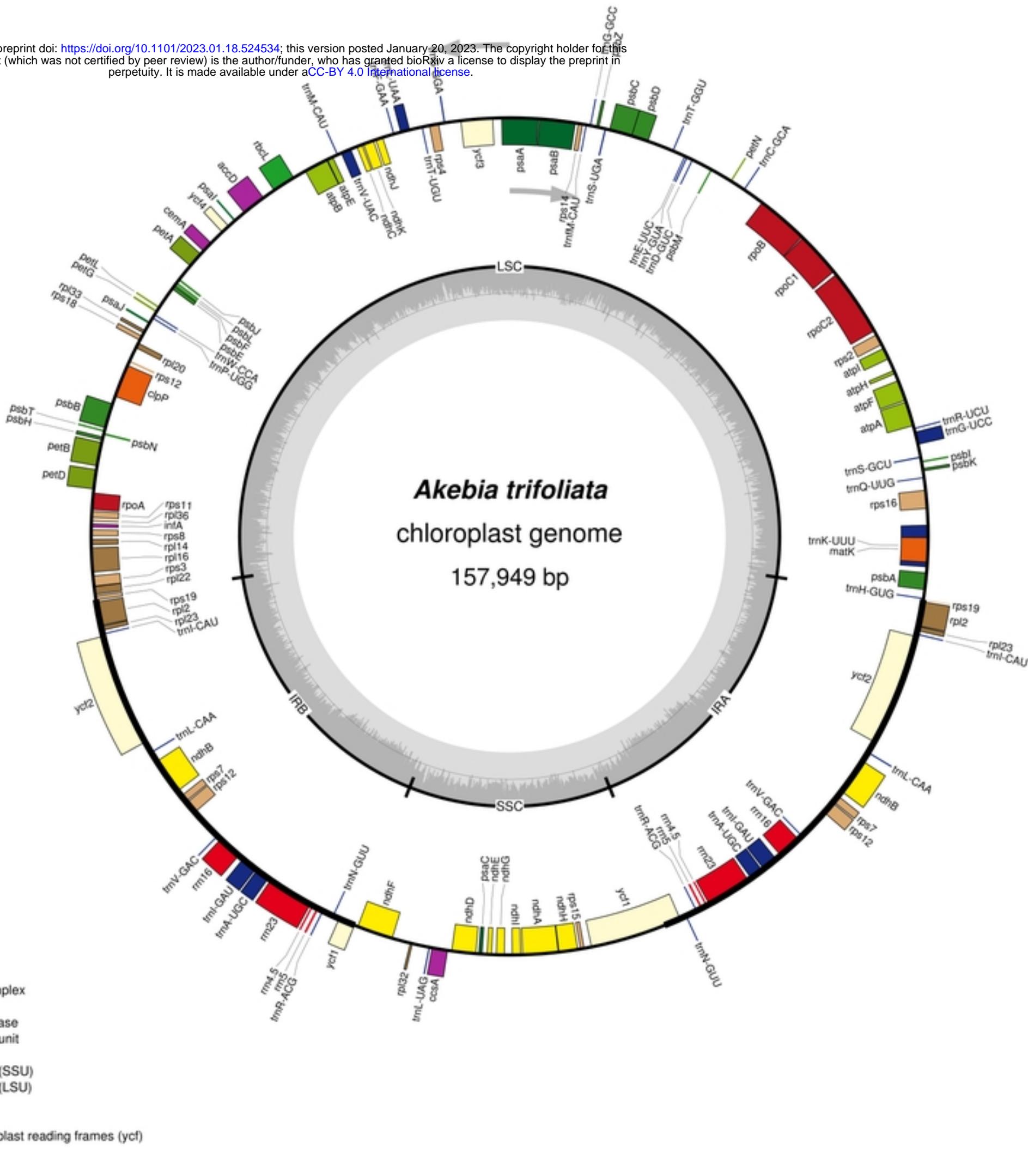


Figure 1

Inverted Repeats

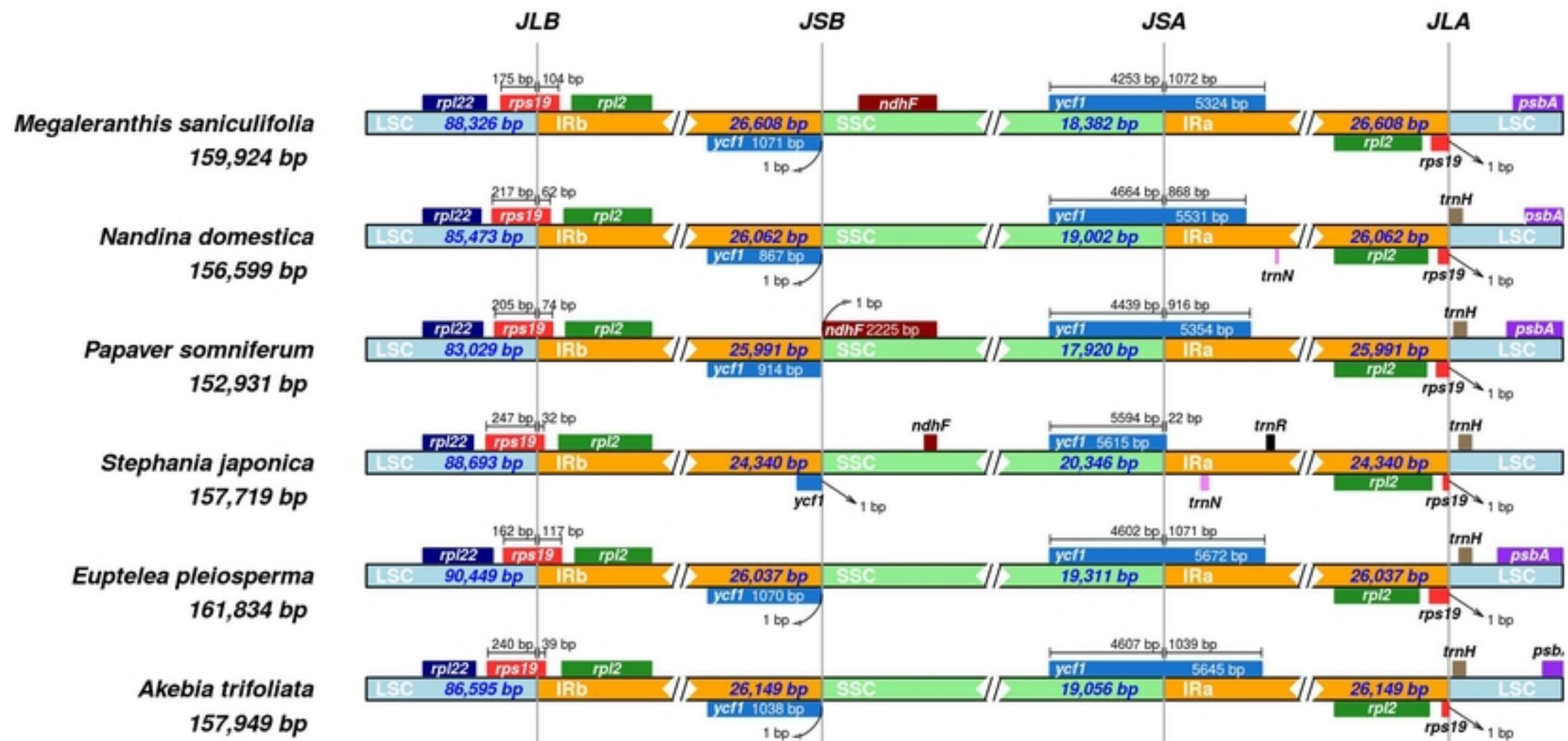


Figure 2

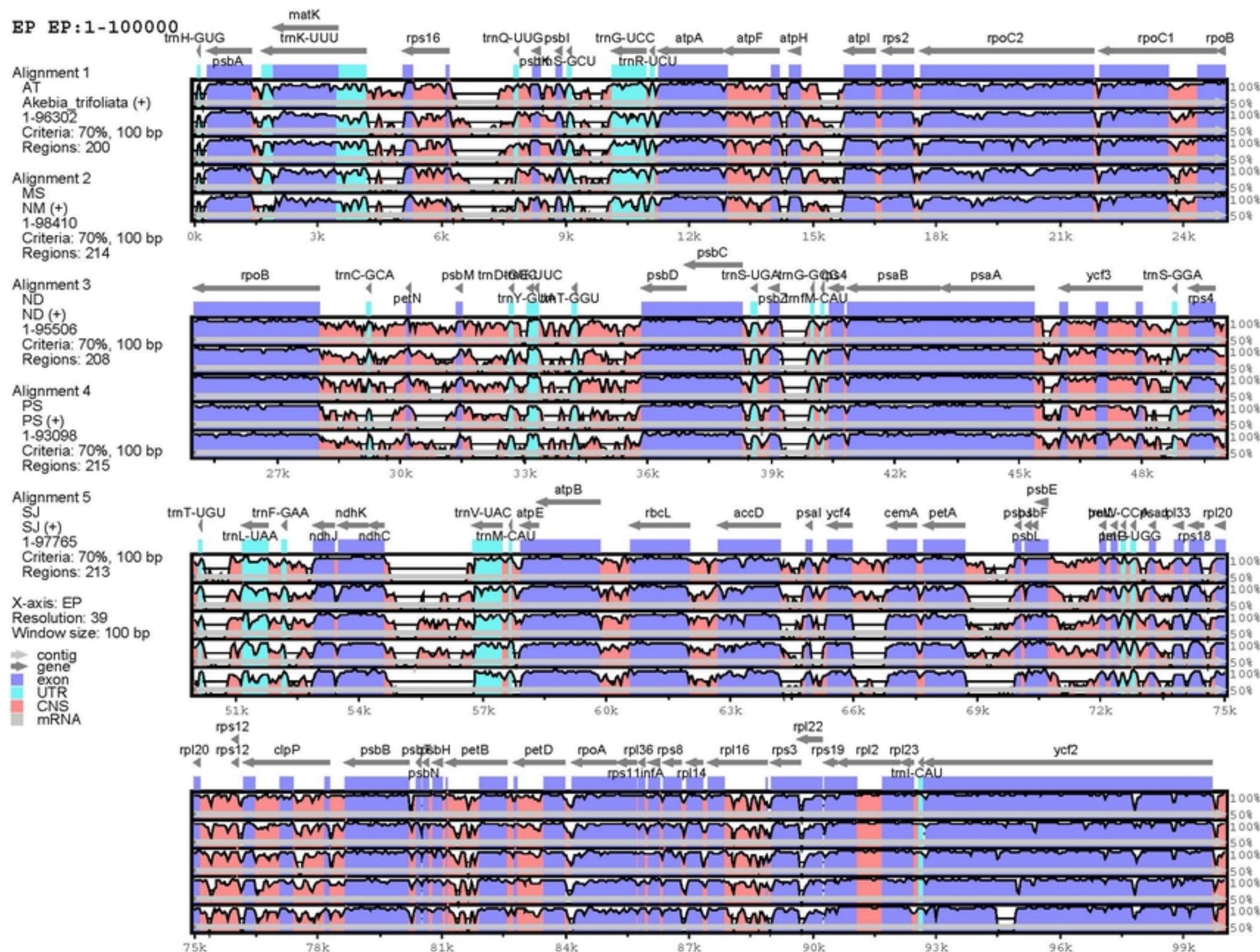


Figure 3

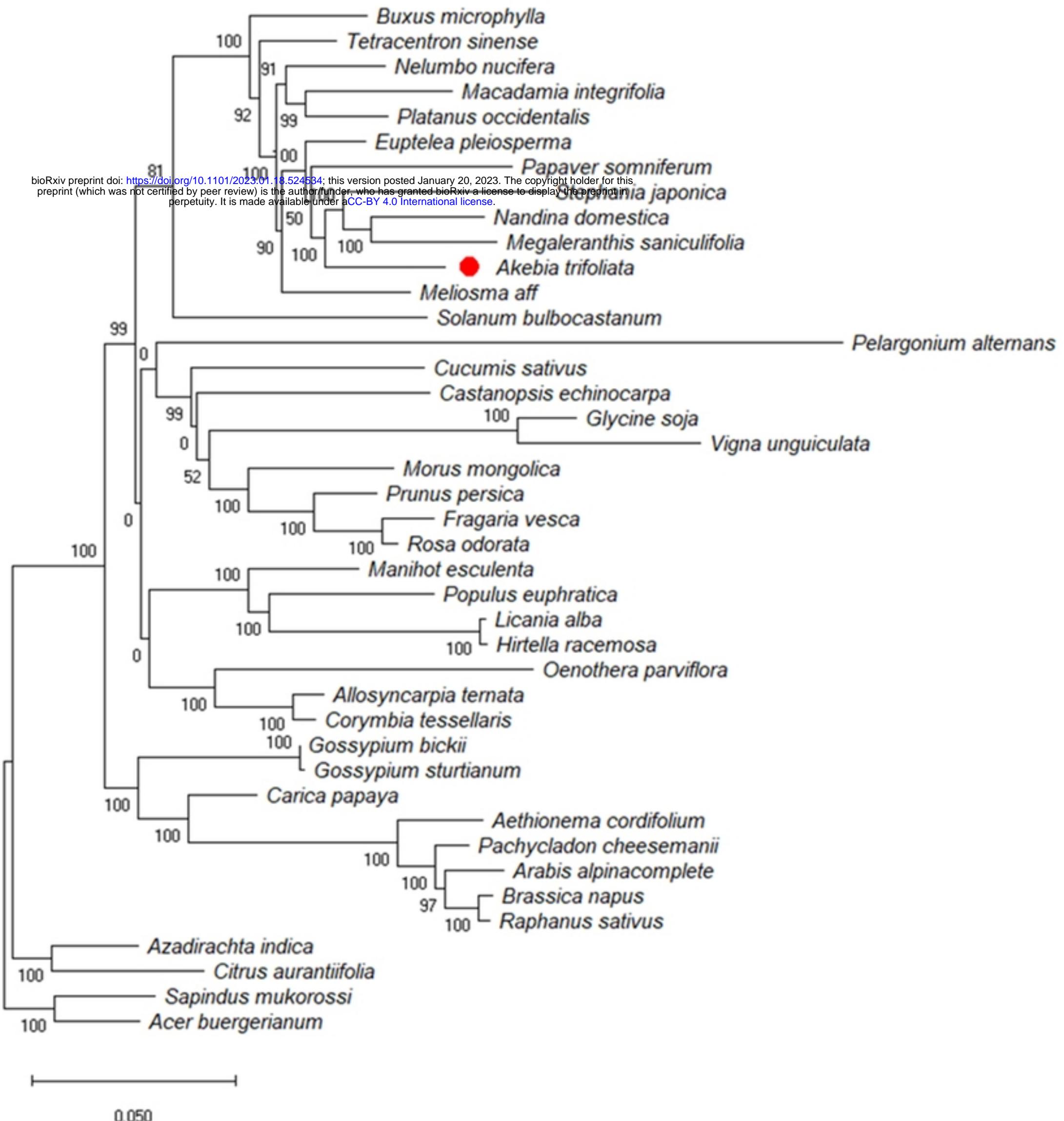


Figure 4