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Abstract

The complete nucleotide sequence of the Akebia trifoliata chloroplast (cp) genome was
reported and characterized in this study. The cp genome is a closed circular molecule
of 157 949 bp, composed of a pair of IR regions of 26 149 bp, one LSC region of 86
595 bp, and one SSC region of 19 056 bp. The GC contents of the LSC, SSC, and IR
regions, and the whole cp genome are 37.11%, 33.62%, 43.08% and 38.66%,

respectively. The cp genome contains 130 predicted functional genes, including 85
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PCGs of 79 107 bp, 37 tRNA and 8 rRNA genes of 11 851 bp. 168 SSRs and 23 long
repeats were identified in the cp genome. The results revealed that 21 891 codons
characterize the coding capacity of 85 protein-coding genes in Akebia trifoliata, 10.84%
and 1.20% of the codons coded for leucine and cysteine respectively. The usage of the
start codon exhibited no bias in the 4. trifoliata cp genome. Phylogenetic analysis
suggest that 4. trifoliata is most closely related to S. japonica, which then formed a
cluster with N. dormestica and M. saniculifolia to form subgroup of Ranunculales. Our
study provides information on mangrove plant species in coastal intertidal zones.
Introduction

Akebia trifoliata is a wild perennial woody liana, and monoecious with flowers
functionally unisexual and self-incompatible [1, 2]. It belongs to the Lardizabalaceae
family, that is mainly distributed in the eastern part of Asia, and is also commonly
known in China as August melon, Bayuezha, and wild banana [3]. Its fresh fruit,
commonly called ‘Ba-Yue-Gua’ in China, has long been consumed by the local people
as a delicious food [4]. 4. trifoliata has been used in traditional Chinese medicine
(TCM) for more than 2000 years [5]. The air-dried stems and fruits of 4. trifoliata have
traditionally been used in China for centuries as an antiphlogistic, antineoplastic and
diuretic agent [6]. To date, phytochemical studies have revealed structurally diverse of
triterpenes, triterpene saponins, phenolics and lignans from this plant, and some of them
displayed significant biological activities [7-11]. Owing to its economic and medicinal
values, 4. trifoliata is currently being widely cultivated and rapidly developed as a

commercial species in many regions of China.
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Chloroplast serves as the metabolic center of plant life by converting solar energy to
carbohydrates through photosynthesis and oxygen release [12]. The chloroplast genome
consists of 120-130 genes that divided into three functional categories, protein-coding
genes, introns and intergenic spacers. They comprise a single circular chromosome,
typically ranging in size from 107 kb to 218 kb [13, 14]. Chloroplast genomes have a
quadripartite structure, with a pair of inverted repeats (IRs) separated by one large and
one small single copy region [15]. Several plant chloroplast genomes also show
significant structural rearrangements, with evidence of the loss of IR regions or entire
gene families [16, 17]. Additionally, the presence of IRs might stabilize the chloroplast
genomes organization [ 18, 19]. Approximately 800 complete chloroplast genomes from
a variety of land plants have been retained in the National Center for Biotechnology
Information (NCBI) organelle genome database since the first chloroplast genome of
tobacco [20] and liverwort [21], which were sequenced simultaneously in 1986. The
sequenced chloroplast genomes have improved our understanding of plant biology and
evolutionary relationships.

In this study, the complete chloroplast genome of 4. trifoliata was sequenced and
analyzed based on illumina high-throughput sequencing technology. In addition to
describing the plastic features of the chloroplast genome, the gene content, repeat
structures and sequence divergence with other reported species in the Ranunculales
order were compared. We also presented results of a phylogenetic analysis of protein

sequences from A. trifoliata and 40 other plant species. The complete chloroplast
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genome of A. trifoliata will improve our understanding of the evolution relationships
of genera in the Ranunculales order.

Materials and Methods

Sampling and DNA sequencing

Based on its morphological characteristics, the 4. trifoliata species, in its natural habitat
of the Tsinling Mountains (106°55'19”E, 34°14'29""N), was confirmed by Professor
Chuan Li and Yunwu Peng (Ankang University). The plant was then transplanted and
preserved in the School of Modern Agriculture and Biological Science and Technology,
Ankang University. Approximately, 20g fresh leaves were sampled from a single 4.
trifoliata plant, and the cpDNA was extracted using a modified high salt method.
Approximately 5-10 pug of cpDNA was sheared, followed by adapter ligation and
library amplification. Then, the fragmented cpDNAs were sequenced using the [llumina
Hiseq 2000 platform. The obtained sequences were assembled using SOAP de novo
software and reference-based approaches in parallel. The obtained cp genome regions
with ambiguous alignments were manually trimmed and considered as gaps. Gaps were
filled using the read over-hangs at margins and the PCR method. The process was
repeated fold, and the minimum fold of the final assembled A. trifoliata cpDNA reached
approximately 1126-fold.

Genome annotation

The tRNA, rRNA, and protein-coding genes (PCGs) in the assembled genome were
predicted and annotated using Dual Organellar GenoMe Annotator with default

parameters. The locations of tRNAs were then confirmed using tRNAscan-SE software,
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88  version 1.21, specifying mito/cpDNA as the source. The rRNA genes were verified
89  using BLASTN searches against the database of published cp genomes. The positions
90  of the start and stop codons, or intron junctions of PCGs, were verified using the
91 BLASTN searches and sequin program with Plastid genetic code. The genome map was
92  drawn by OGDraw v1.2.
93  Simple sequence repeat (SSR) and long repeats analysis
94  Distributed throughout the genome, SSRs are repeat sequences with a typical length of
95  1-6 bp that are generally considered to have a higher mutation rate than neutral DNA
96 regions. The distributions of SSRs in the chloroplast genome were predicted by using
97  the microsatellite search tool MISA [22] with the following parameters: >10 for
98  mononucleotide repeats, >5 for dinucleotide repeats, >4 for trinucleotide repeats, and
99 >3 for tetranucleotide repeats, pentanucleotide repeats, and hexanucleotide repeats. For
100  analysis of repeat structures, REPuter [23] was used to visualize forward, reverse,
101  palindrome and complement sequences of size >30 bp and identity >90% in the cp
102  genome. All repeats recognized were manually verified, and redundant results
103  removed.
104  Comparative Genome analysis
105  To investigate the sequence divergence of the chloroplast genome among the analyzed
106  Ranunculales species, the whole chloroplast genome sequences of Nandina domestica
107  of Berberidacae, Euptelaeca pleiosperma of Eupteleaceae, Stephania japonica of
108  Menispermaceae, Megaleranthis saniculifolia of Ranunculaceae and Papaver

109  somniferum of Papaveraceae were analyzed using the mVISTA program in the Shuffle-
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110 LAGAN mode [24], and the Euptelea pleiosperma annotations were used as references.
111 The differences in the chloroplast genome length, LSC length, SSC length, GC content,
112  encoding gene types and gene numbers among these 6 species were analyzed. The
113  LSC/IR/SSC boundaries among the species were determined by comparative analysis
114 to explore the variation in these angiosperm chloroplast genomes.

115  Phylogenetic analysis

116  To illustrate the phylogenetic relationship of the A. trifoliata with other major Ranales
117 clades, 40 complete cp genomes were downloaded from GenBank (Table S1). Sapindus
118  mukorossi and Acer buergerianum from Sapindales were used as outgroups. Then, 72
119  PCGs found in all of the species were extracted from the selected cp genomes. The
120 amino acid sequences of each of the PCGs were aligned using MSWAT
121 (http://mswat.ccbb.utexas.edu/) with default settings, and back translated to nucleotide
122 sequences. Phylogenetic analyses were performed using the concatenated nucleotide
123  sequences and RAXML 7.2.6 software by the maximum likelihood (ML) method.
124 RAXML searches relied on the General Time Reversible model of nucleotide
125  substitution with the gamma rate model (GTRGAMMA). A bootstrap analysis was
126  performed with 1000 replications using non-parametric bootstrapping as implemented
127  in the “fast bootstrap” algorithm. The absent genes were finally mapped on to the ML
128  phylogenetic tree.

129 Results

130  The overall structure and general features of the A. trifoliata cp genome
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131  The cp genome of A. trifoliata is a closed circular molecule of 157 949 bp (GenBank
132 accession number: ON021949), composed of a pair of IR regions (IRa and IRb) of 26
133 149 bp, one LSC region of 86 595 bp, and one SSC region of 19 056 bp. It has an overall
134  typical quadripartite structure that resembles the majority of land plant cp genomes.
135  The GC contents of the LSC, SSC, and IR regions, and the whole cp genome are 37.11,
136 33.62,43.08 and 38.66 %, respectively (Table 1). The cp genome encodes 130 predicted
137  functional genes, including 85 PCGs of 79 107 bp, 37 tRNA and 8 rRNA genes of 11
138 851 bp. Among the 130 genes, 114 are unique genes and 19 are duplicated genes in the
139 IR regions. 16 genes have one intron (10 PCGs and 6 tRNA genes) and 2 PCGs have
140  two introns (clpP and ycf3). Like most other land plants, a maturase K gene (matK) is
141 located within the intron of #7nK, rpsi2 is trans-spliced, with its two 3’ end residues
142  separated by an intron in the IR region, and the 5’ end exon is in the LSC region (Figure
143  1). The 8 rRNA genes were composed of two identical copies of 16S-23S-4.5S-5S
144  rRNA gene clusters in the IR region. Each cluster was interrupted by two tRNA genes,

145  trnl and trnA, in the 16S-23S spacer region.

146 Table 1 Base composition in the A. trifoliate chloroplast genome

Terms A (%) T (%) C (%) G (%) length (bp)
LSC 30.82 32.07 19.00 18.11 86595
SSC 33.18 33.20 17.61 16.01 19056
IRa 28.22 28.70 22.23 20.85 26149
IRb 28.70 28.22 20.85 22.23 26149
Total 30.32 31.01 19.67 18.99 157949
CDS 30.30 30.86 18.22 20.61 79107

147  Figure 1. Gene map of the A. trifoliata. Genes lying outside of the outer layer circle

148  are transcribed in the counterclockwise direction, whereas genes inside are transcribed
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149  in the clockwise direction. The colored bars indicate known different functional groups.
150  Area dashed darker gray in the inner circle denotes GC content while the lighter gray
151  shows to AT content of the genome. LSC large single-copy, SSC small-single-copy, IR
152  inverted repeat.

153  Codon Usage

154  Codon usage plays an important role in shaping chloroplast genome evolution. Based
155  on the sequences of protein-coding genes (CDS), the codon usage frequency was
156  estimated (Table 2). The result revealed that 21 891 codons characterize the coding
157  capacity of 85 protein-coding genes in A. trifoliata. Of these codons, 2 373 (10.84%)
158  were code for leucine and 263 (1.20%) for cysteine, which represented the maximum
159  and minimum prevalent number of amino acids in the 4. trifoliata chloroplast genome,
160  respectively. A- and U-ending codons were ordinary. The other amino acid codons in
161  the cp genome preferentially end with A or U (RSCU > 1). This codon usage pattern is
162  similar to those reported cp genomes. In addition, codons ending in A and/or U
163  accounted for 71.96% of all CDS codons. The majority of protein-coding genes in land-
164  plant cp genomes employ standard ATG initiator codons. The use of the start codon

165  exhibited no bias (RSCU = 1) in the 4. trifoliata cp genome.

166 Table 2 Codon usage of A. trifoliate chloroplast genome
Amino acids Codon No. RSCU Amino acids Codon No. RSCU
Phe uuu 751 1.22 Ala GCC 191 0.64
Phe uucC 486 0.75 Ala GCA 362 1.05
Leu UUA 689 1.76 Ala GCG 149 0.41
Leu UuG 500 1.22 Tyr TAT 664 1.46
Leu Cuu 499 1.26 Tyr TAC 167 0.39
Leu cuc 172 0.45 His CAT 434 1.19
Leu CUA 325 0.77 His CAC 145 0.40
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Leu CUG 188 0.55 Gin CAA 607 1.45
lle AUU 939 1.53 GIn CAG 205 0.37
lle AUC 418 0.60 Asn AAT 817 1.32
lle AUA 596 0.87 Asn AAC 244 0.46
Val GUU 475 1.44 Lys AAA 821 1.36
Val GuC 154 0.48 Lys AAG 304 0.41
Val GUA 474 1.44 Asp GAT 732 1.41
Val GUG 197 0.58 Asp GAC 207 0.41

Ser ucu 457 1.54 Glu GAA 878 1.35

Ser ucc 295 0.99 Glu GAG 313 0.50

Ser UCA 366 1.32 Cys TGT 188 1.13

Ser UCG 175 0.47 Cys TGC 75 0.27

Ser AGU 344 1.28 Arg CGT 324 1.46

Ser AGC 108 0.32 Arg CGC 88 0.33

Pro CCuU 371 1.44 Arg CGA 320 1.46

Pro CcCC 190 0.70 Arg CGG 99 0.37

Pro CCA 285 1.22 Arg AGA 418 1.60

Pro CCG 112 0.52 Arg AGG 161 0.55

Thr ACU 460 1.60 Gly GGT 555 1.32

Thr ACC 237 0.72 Gly GGC 169 0.39

Thr ACA 373 1.22 Gly GGA 642 1.57

Thr ACG 134 0.41 Gly GGG 256 0.62

Ala GCU 586 1.80

167

168  Analyses of simple sequence repeats (SSRs) and long repeats

169 A total of 168 SSR loci, harboring 220 bp in length, were detected in the A. trifoliata
170  cp genome. 33 of them present in compound formation, and the number of mono-, di-,
171 tri- and tetra-nucleotide repeats were 126, 35, 4 and 3 respectively. 120 of the
172  mononucleotides, 16 dinucleotides, all of the trinucleotides and 1 trinucleotide were
173  composed of A and T nucleotides, with a higher AT content (87.73%) in these
174  sequences than in the cp genome. Our findings agreed with the observation that

175  chloroplast SSRs were generally composed of polyadenine (poly A) and polythymine
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176  (poly T), and rarely contained tandem guanine (G) and cytosine (C) repeats. Among
177  the SSRs, 43 were located in IGS regions and 10 were found in coding genes, including
178  atpF, cemA, ndhF, rpoC2, atpB, rpoB, and ycf1.

179  Repeat analysis revealed 23 long repeats, include 8 forward (direct) and 15 palindrome
180  (inverted) (Table 3). More than half of the repeats were located in the intergenic or
181  intronic regions. The majority of these repeats were between 30 and 73 bp. Short
182  dispersed repeats are considered to be a major factor promoting cp genome
183  rearrangements, which may facilitate intermolecular recombination and create diversity
184  among the cp genomes in a population. Hence, the repeats identified in this study will
185  provide valuable information to support investigation of the phylogeny of 4. trifoliata

186  population studies.

187 Table 3 SSRs in A. trifoliata cp genome
SSR repeats  Number Start position
of SSRs
A 8 21 3158, 4629, 7961, 18836, 22507, 31287, 34325, 38218, 46363, 64596, 84761,
90770, 90935, 110397, 116028, 116577, 117095, 124001, 131657, 139176,
63115
9 16 4963, 5015, 8369, 8793, 28777, 28958, 33055, 34308, 49486, 56682, 70556,
72502, 73430, 73444, 92053, 157925
10 11 5376, 9074, 10284, 31780, 39295, 48546, 49030, 65863, 77276, 81994, 115735
11 5 132, 443, 50552, 83350, 130580
12 1 4711
13 1 13796
14 3 4559, 38616, 157878
C 8 1 115549
9 1 14633
10 1 34154
12 1 65342
G 8 1 36399
10 1 77861

10
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188

189

AG
AT

CA
CT
GA
TA

TC

TG
AA

AT

AT

AT
AA
CA
TT
TT
TG

10
11
12
13
14

28

16

1896, 2182, 3174, 4763, 7641, 12652, 12789, 26399, 34154, 49691, 54127
60762, 61960, 72999, 73793, 83403, 105362, 112832, 113745, 116831, 118735
126825, 128124, 128833, 128892, 134141, 153603, 153768

14633, 16234, 18587, 30719, 37342, 53167, 62501, 68599, 82310, 82821,
86612, 117053, 117563, 128782, 129962, 152484

9597, 46052, 46991, 47049, 52877, 61384, 65688, 72773, 127600

9967, 16491, 18693, 112796, 122050

45424

83309

67994, 86654

97368, 135858

49094, 50434, 58454, 120316, 123934, 147915

20066, 61077

46978

63115

85866, 108680, 147170

7183, 37448, 57380, 88869, 88881, 89868, 92074

29656, 58814, 65650, 95430, 96622, 149108

6509

152464, 154670, 155657, 155669

63315

9597

65612, 133724

48866

110810

46106

129007

52826

IR contraction and expansion

11
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190  Contraction and expansion at the borders of IR regions are common evolutionary events
191  considered the main reason for size differences among cp genomes. For members of
192  ranunculales species, we conducted an exhaustive comparison of four junctions, LSC-
193  IRA (JLA), LSC-IRB (JLB), SSC-IRA (JSA), and SSC-IRB (JSB), between the two
194  IRs (IRA and IRB) and the two single-copy regions (LSC and SSC). The results shown
195  that that the studied locations are generally similar to those of all previously reported
196  chloroplast genomes (Figure 2).

197  Figure 2 Comparisons of LSC, SSC, and IR region borders among six
198  Ranunculales chloroplast genomes. The arrows indicated the location of the distance.
199  This figure is not to scale.

200  Characteristically, there are four junctions in the chloroplast genomes of angiosperms,
201  due to the presence of two identical copies of the inverted repeats. All chloroplast
202  genomes appeared to be structurally similar with a typical quadripartite structure of two
203  IRs separated by an LSC and an SSC. The whole genome sizes ranged from 152 931
204  (P. somniferum) to 161 834 (E. plelosperma).

205  There are two copies rpsl9 genes in cp genomes. The JLB junction was placed in the
206  rpsl9 region in all the cp genomes of Ranunculales species and outspread to different
207  lengths (M. sanlculifolia, 175 bp; N. domestica, 217 bp; P. somniferum, 205 bp; S.
208  japonica, 247 bp; E. pleiosperma, 162 bp; A. trifoliata, 240 bp) within the IRB region
209  of all the genomes. The IRB region contained 104, 62, 74, 32, 117 and 39 bp of the
210  rpsl9 gene, respectively. Another rps19 gene near by the end of IRA region, and cut
211 off by the JLA boundary.

12
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212 For almost all the analyzed genomes, the #7nH gene is the first gene in the LSC region
213 with variable distance from JLA boundary, while M. saniculifolia has lost the trnH
214 gene. Comparisons revealed that the ndhF gene have been lost in the 4. trifoliata, N.
215  domestica and E. pleiosperma cp genome.

216 Comparative analysis of the chloroplast genomes among Ranunculales and
217  phylogenetic analysis

218  The cp genome comparative analysis of several ranunculales species were conducted
219 by the mVISTA program, with Euptelea pleiosperma as the reference sequence (Figure
220  3). Considerable similarities in genome composition and size were identified among
221 the species. In these species, the Papaver somniferum has the smallest size of cp
222  genome, and its size of LSC and IR region also the shortest (Table 4). The results of
223  the comparison shown that the IR (A/B) regions exhibited fewer differences than the
224  LSC and SSC regions. Moreover, the non-coding regions showed more variability than
225 the coding regions (CNS), and the marked differences in regions among the six
226  chloroplast genomes were evident in the intergenic spacers.

227  Figure 3 Comparison of the six chloroplast genomes using mVISTA. EP represent
228  Euptelea pleiospperma, MS represent Megaleranthis saniculifolia, ND represent
229  Nandina domestica, PS represent Papaver somniferum, SJ represent Stephania
230 japonica. Gray arrows and thick black lines above the alignment indicate gene
231  orientation. Purple bars represent exons, blue bars represent untranslated regions
232  (UTRs), pink bars represent conserved non-coding sequences (CNS), and gray bars

233  represent mRNA. The y-axis represents the percentage identity (shown: 50-70%).

13
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234 Table 4 Basic characteristics of the complete chloroplast genome of the six species. The
235 GenBank No. of N. domestica, E. pleiosperma, S. japonica, M. saniculifolia and P.
236 somniferum is NC_008336, KU204900, KU204903, NC 012615 and KU204905
237 respectively. All lengths are in bp.
Protein
Genome SSC IR Number
Species Taxon LSC size coding tRNA rRNA  GC (%)
size size size of genes
genes
26
N. domestica Berberidacae 156 599 85473 19 002 134 79 30 8 38.3
062
26
E. pleiosperma  Eupteleaceae 161 834 90 449 19 331 132 79 30 8 38.6
037
24
S. japonica Menispermaceae 157717 88 693 20 346 132 79 30 8 38.2
340
26
M. saniculifolia  Ranunculaceae 159 924 88 326 18 382 131 79 30 8 38.0
608
25
P. somniferum Papaveraceae 152931 83 029 17 920 132 79 30 8 38.9
991
26
A. trifoliata Lardizabalaceae 157 949 86 595 19 056 130 85 37 8 38.7
149
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240

241

242

243

244

245

246

247

248

Discussion

Sapindales were used as outgroups.
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bootstrap supports, and these taxa belong to Ranunculales.

74 protein-coding genes from 41 angiosperm species that belonging to 15 commelinid-
clade orders were used to reconstructed the phylogenetic tree based on the maximum
likelihood method. The evolutionary relationship among angiosperms is presented with
high bootstrap supports (Figure 4). It shown that A. trifoliata is closely related to S.

Jjaponica, which then formed a cluster with N. dormestica, M. saniculifolia with 100%

Figure 4 Maximum likelihood (ML) phylogenetic tree reconstruction including 41
species based on concatenated sequences from all chloroplast genomes. The

position of 4. trifoliata is indicated by red bar. S. mukorossi and A. buergerianum from
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249  With the development of NGS, chloroplast genome sequences can be obtained
250 efficiently and economically. In the present study, we obtained the complete sequence
251  of'the A. trifoliata chloroplast genome, which was fully characterized and compared to
252  the chloroplast genomes of species from different orders. The A. trifoliata chloroplast
253  genome includes 130 unique genes encoding 80 proteins, 8 rRNAs, 37 tRNAs and two
254 2 pseudogenes. The obtained chloroplast genome of A. trifoliata has a typical
255  quadripartite structure, and its gene content, gene order and GC content are similar to
256  those of most other species from different orders.

257  Simple sequence repeats (SSRs) are significant repetitive elements of the entire genome
258 and play important roles in genome recombination and rearrangement. The SSRs in
259  chloroplast genomes are usually distributed in intergenic regions. In the SSR analysis,
260 108 SSR loci were found, and most SSRs were located in the intergenic region. The
261  SSRs identified in the chloroplast genome of Akebia trifoliata can be used to analyze
262  polymorphisms at the intraspecific level. They can also be used to develop lineage-
263  specific markers for future evolutionary and genetic diversity studies. The mVISTA
264  results showed that the sequence of the chloroplast genome is highly conserved among
265 the Ranunculales clade. In addition, it showed that the sequence and content of IR
266  regions are more conserved than are those of the LSC and SSC regions among the
267  studied species, possibly because of the rRNA in IR regions.

268 In this study, the phylogenetic position of A. trifoliata in the Malpighiales was inferred
269 by analyzing the complete chloroplast genome. The results suggest that 4. trifoliata is

270  most closely related to Stephania japonica, which then formed a cluster with Nandina

15
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271 dormestica, Megaleranthis saniculifolia to form subgroup of Ranunculales. Our study
272 on the Akebia trifoliata chloroplast genome provides information on mangrove plant
273  species in coastal intertidal zones. Moreover, the chloroplast genomic data provided in
274  this study will be valuable for future phylogenetic studies and other studies of mangrove
275  species.

276 Conclusions

277  We successfully assembled, annotated and analyzed the complete chloroplast sequence
278  of A. trifoliata, a Ranales clade species. The chloroplast genome was found to be
279  conserved among several species. We identified 168 SSR loci and 23 long repeats in
280 the chloroplast, which can be used for the development of lineage-specific markers.
281  The LSC/IRB/SSC/IRA boundary regions of the chloroplast genome were compared
282  among six species, and the results revealed that all these cp genomes appeared to be
283  structurally similar with a typical quadripartite structure of two IRs separated by an
284  LSC and an SSC. The phylogenetic analyses showed that A. frifoliata is most closely
285  related to Stephania japonica among the order of Ranunculales. The molecular data in
286 this study represent a valuable resource for the study of evolution in mangrove species.
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