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Abstract

Changes in sensory input with aging and disease affect brain tissue properties. To establish the
link between glaucoma, the most prevalent cause of irreversible blindness, and changes in
major brain connections, we characterized white matter tissue properties in diffusion MRI
measurements in a large sample of subjects with glaucoma (N=905; age 49-80) and healthy
controls (N=5,292; age 45-80) from the UK Biobank. Confounds due to group differences were
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mitigated by matching a sub-sample of controls to glaucoma subjects. A convolutional neural
network (CNN) accurately classified whether a subject has glaucoma using information from the
primary visual connection to cortex (the optic radiations, OR), but not from non-visual brain
connections. On the other hand, regularized linear regression could not classify glaucoma, and
the CNN did not generalize to classification of age-group or of age-related macular
degeneration. This suggests a unique non-linear signature of glaucoma in OR tissue properties.

Introduction

Glaucoma is the leading cause of irreversible blindness in the world '. The disease causes
retinal ganglion cell (RGC) death, and consequently disconnection of the transmission of visual
information through the optic nerve to the lateral geniculate nucleus (LGN). The optic radiations
(OR) are the brain white matter connections that further transmit the information from the LGN
to the visual cortex. Though the cells in the LGN whose axons constitute the OR are not directly
affected by glaucoma, they are deprived of their sensory input. A major question in sensory
neuroscience, with significant clinical implications, is whether such a change to the sensory
periphery affects the properties of central processing pathways %2. Examining the properties of
the OR in glaucoma provides an opportunity to study the downstream effects of changes to the
sensory periphery on central brain connections.

Diffusion MRI (dMRI), which measures the random motion of water within brain tissue*, is a
non-invasive method to reconstruct the trajectory of white matter pathways, such as the OR,
and to assess the physical properties of the tissue within them. DMRI has previously been used
to measure the properties of white matter tissue in subjects with glaucoma °¢78°1°_|n several of
these studies, changes were not specific to the visual pathways ' '2 '3 4 suggesting
wide-spread reorganization or systemic changes related to glaucoma that also manifest in white
matter changes. One concern is that in cases where relatively small samples are used these
effects could be due to uncontrolled confounds that are difficult to account for in such samples.
For example, white matter tissue properties change during normal aging ', and this could
create a bias, because glaucoma is also more prevalent with age.

To counter subtle biases in small datasets, we can use larger datasets that have recently
become more widely available. The UK Biobank (UKBB) is the largest dMRI dataset to date with
many thousands of subjects’®. In such a large dataset, confounding effects can be countered
using sheer numbers, but also using statistical matching . That is, a subtle bias in the
characteristics of subjects with glaucoma can be countered by creating a sub-sample of healthy
subjects with closely matched age, sex, ethnicity, and socio-economic background for
bias-mitigated comparison.

A powerful paradigm for detecting differences between groups — e.g., subjects with glaucoma
and a statistically-matched control group — is to create machine learning (ML) systems that
accurately classify these groups in a held-out dataset. ML algorithms, and particularly
convolutional neural networks (CNNs) '8, can capitalize on high-dimensional and/or non-linear
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patterns in data, such as the complex configuration of tissue properties along the length of a
brain tract, to discriminate between different categories of individuals. They can be very
accurate, overcoming significant variation across individuals, but they require large amounts of
data and have also come under some criticism in their use in biomedical application, due to the
“black box” nature of their operations, which can sometimes make them inscrutable . In recent
years, a variety of approaches have been developed to interpret the operations of CNNs and
other ML systems. For example, SHapley Additive exPlanations (SHAP) score the features that
led to a decision (e.g., glaucoma or no glaucoma) in a particular individual ?°, providing
information about the decision-making process used by the ML system in a specific case, or
group of cases. This approach provides both scientific interpretability, as well as potential
targets for intervention.

In the present work, we used dMRI data from the UKBB to compare participants with glaucoma
to a statistically matched sample of participants that do not have glaucoma. To quantify tissue
properties, we used Automated Fiber Quantification?', an automated method, implemented in
open-source software that we have developed %, that delineates the OR in each individual.
Tissue properties of the OR were quantified using the diffusional kurtosis imaging model (DKI)*
24 Statistics derived from this model are sensitive to biological changes, such as aging and
disease, and, when they are used in concert, can help constrain the interpretations of the
underlying biological processes % 26 2, \We assessed whether glaucoma effects are specific to
the OR, rather than a generalized effect, by fitting ML models (CNNSs) to different sub-portions of
the OR that transmit information about different parts of the visual field 222°, as well as to
non-visual control bundles. We found that glaucoma effects are specific to portions of the OR.

One of the hypotheses about the effects of glaucoma on the white matter is that it represents
accelerated aging, at least within the retina®. Therefore, One of the hypotheses about the
effects of glaucoma on the white matter is that it represents accelerated aging, at least within
the retina®. Therefore, we compared glaucoma effects to the effects of aging, and the effects of
other retinal diseases, by comparing the generalization performance of a CNN trained to classify
glaucoma in classifying: (1) subjects from different age groups; and (2) subjects with age-related
macular degeneration (AMD). We also tested the converse: whether an age-discriminating CNN
would accurately classify subjects with glaucoma. We found that neither CNN generalized
across datasets. We used the average SHAP values to describe the differences in the features
between the glaucoma-classifying CNN and the age-group classifying CNN, to further
demonstrate that the pattern of changes in the OR due to glaucoma is not simply a pattern of
accelerated aging.
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Results

Statistical Matching
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Figure 1: Age distribution of subjects, colored by glaucoma status. The left panel shows the
entire dataset before matching. There are significantly more controls (in orange) than subjects
with glaucoma (scale bars are left: 100 subjects, right: 50 subjects). Additionally, the glaucoma
subjects tend to be older. The right panel shows the dataset after matching each subject with
glaucoma to a control subject with the same or similar age, sex, ethnicity, and TDI.

Statistical matching was used to create a dataset where bias due to age and other factors is
negligible (Figure 1). This dataset was derived from an initial dataset with 905 subjects with
glaucoma and 5,292 control subjects. In the full sample, glaucoma subjects tend to be older (uy
o for glaucoma: 68 + 7; control: 62 + 7). After Mahalanobis distance matching *' , we created the
matched dataset A with 856 glaucoma subjects and 856 control subjects of similar ages (Figure
1b; glaucoma: 68 * 6, control: 68 *+ 6). While Figure 1 only shows age matching, we
simultaneously matched on sex, ethnicity, and TDI, with similar results (Supplementary Figure

1),

Matching was also performed for other datasets. For datasets A.1 (age-related macular
degeneration (AMD) participants, and their matched controls, see Methods) and A.2 (70-year
olds, and matched 60-year olds, see Methods), 78 and 166 pairs were found, respectively. For
dataset B (70-79 year olds, with matched controls 10 years younger, see Methods), 819 pairs
were found. For datasets B.1 (glaucoma participants 60-64 years old, see Methods) and B.2
(AMD, see Methods), 142 and 80 pairs were found, respectively.
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Figure 2: Mean tract profiles in the left hemisphere of all bundle and tissue property
combinations, with thin lines showing interquartile ranges. Positions in OR bundles are from
anterior to posterior (A—P), in CST are from inferior to superior (I—S), and in UNC from

posterior to anterior (P—A).

In dataset A, the glaucoma subjects have lower FA and MK and higher MD than the control
subjects (Figure 2). However, while the mean tract profiles differ, the distributions are highly
overlapping. Additionally, there are different mean tissue properties in the UNC and CST.
Differences in mean tract profiles are small and not localized to the visual system.
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Figure 3: Receiver operating characteristic (ROC) curves for prediction of glaucoma using the
five neural networks, each trained using tissue property from a different bundle. ROC curves
compare true positive rate (TPR) to false positive rate (FPR) at various thresholds. Area under
curve (AUC) is the summary of performance across all classification thresholds. The OR
bundles in red tend to have better performance than the control bundles.

Despite the high overlap between the distributions, CNNs trained on the tissue properties of
white matter bundles in dataset A can accurately classify participants, but only using the tissue
properties from some of the bundles (Figure 3). The ROC curves clearly separate into two
groups: (1) fOR and mOR bundles, which more accurately predict glaucoma than (2) pOR and
the two control bundles. We find that fOR has a significantly higher AUC than CST (DelLong’s
test: p=0.0317) and UNC (p=0.0339), and mOR has significantly higher AUC than pOR
(p=0.0317), CST (p=0.0119), and UNC (p=0.0119). This indicates that the tissue properties of
the fOR and mOR bundles (but not the other bundles examined here) differ in participants with
glaucoma compared to controls.

All bundles were not found in all subjects. We calculated, including subjects from all datasets,
the extant bundle percentage for each bundle: left UNC 100.0%, right UNC 100.0%, left CST
99.8%, right CST 99.8%, left fOR 81.7%, right fOR 83.7%, left mOR 85.8%, right mOR 81.1%,
left pPOR 77.7%, and right pOR 67.1% (Supplementary Figure 2). We created an equivalent
ROC using only test subjects where all bundles are found, which shows similar effects
(Supplementary Figure 3).
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Figure 4: ROC curves for the prediction of glaucoma using logistic regression. Note that control
bundles and OR bundles have similar AUC when using only logistic regression.

As a control, we used a model of substantially less complexity than a CNN. We trained five
logistic ridge regression models (Figure 4). If regression models can predict glaucoma with an
accuracy comparable to CNNs, this would indicate that the relationship between glaucoma and
the tissue properties is not complex enough to merit the use of a CNN. None of the AUC from
logistic regression are significantly different from chance performance and none are significantly
different from each other (Figure 4). This demonstrates that the higher AUC found from the CNN
cannot be discovered with a typical linear model, further demonstrating the complexity of the
relationship between glaucoma and OR tissue properties.
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Figure 5: ROC curves for prediction of AMD (top) and age (bottom) using the CNN trained on
the glaucoma dataset. No classifications are significantly different from chance.
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Figure 6: Mean SHapley Additive exPlanations (SHAP) value for each input feature value from
the mOR CNN in two separate tasks. Colors indicate the dataset used, where blue is the
age-group classification network on age-classification subjects (dataset B), and orange is the
glaucoma-group classification network on glaucoma subjects (dataset A). Higher SHAP values
indicate that a feature contributes towards predicting that the subject either has glaucoma or is
older (depending on the task, blue for age group classification, orange for glaucoma
classification). Columns indicate different tissue properties (FA, MD, MK), and the shading
represents the 95% CI across subjects and nodes within the mOR. The x-axis shows the
z-scores of each tissue property, because that is how they are provided to the neural network.

To test the generalization of our main results, we applied the glaucoma-trained network to
datasets labeled according to AMD and age (datasets A.1, A.2). We found no significant AUCs
(no generalization; Figure 5). Additionally, we trained five CNNs (one per bundle; the same
bundles as used previously) on dataset B to classify age-group (70 vs. 60 year old). The AUCs
for this network in the age-classification task are all between 0.58 and 0.63 (fOR: 0.58, mOR:
0.6, pOR: 0.6, CST: 0.63, UNC: 0.6). However, none of the bundles have AUC significantly
different from each other (p>0.05 for all comparisons using the DelLong’s test), demonstrating
that, unlike glaucoma, age correlates with tissue properties of the UNC and CST. Finally, we
used the age-classification network to predict glaucoma and AMD (datasets B.1, B.2). Here we
found no significant AUCs in the glaucoma set (AUC, fOR: 0.52; mOR: 0.58; pOR: 0.52; CST:
0.52; UNC: 0.53), but in the AMD set, there were significant AUCs for CST (0.37) and mOR
(0.38).

We use SHAP values?*?? to interpret the relationship between OR tissue properties and the
CNN classifications in datasets A and B using the mOR CNN (Figure 6). SHAP values use a
game theoretic approach to explaining the outputs of machine learning. The 95% confidence
intervals on the SHAP values from the two different datasets are often non-overlapping. This
shows that the CNNs are different in terms of how they integrate information. For example, we
see that higher MD indicates lower propensity to classify a participant as having glaucoma, but
a higher propensity of classifying this participant as older. We also find that low FA and low MD
indicate higher propensity to classify a participant as having glaucoma.
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Discussion

To study the effects of glaucoma on tissue properties in the white matter of the optic radiations,
we used a large dataset of diffusion MRl measurements of participants with glaucoma from the
UK Biobank 6, together with combinatorial methods to generate tightly-matched samples,
automated methods for delineation of white matter tracts, and machine learning techniques.
Previous research on glaucoma has included samples with a large diversity of characteristics °°
78910 We sub-sampled from the UK Biobank dataset to create a group of controls that closely
matched 856 participants with glaucoma in age, sex, and socioeconomic status, focusing only
on these 856 pairs of participants for our analysis. This approach allowed us to mitigate
potential sampling biases that could confound the conclusions about how common the effects of
glaucoma in the white matter are. We found small differences in tissue properties in the optic
radiations, as well as in non-visual control tracts, with large overlaps in the distributions between
participants with glaucoma and the tightly-matched control group. However, using convolutional
neural networks, we found that accurate classification of glaucoma participants is possible using
parts of the optic radiation that represent the central visual field but not the non-visual control
bundles or the parts of the optic radiations that represent the peripheral visual field.
Furthermore, a linear model—regularized logistic regression—was not able to accurately
classify glaucoma.

To test whether the effects of glaucoma on the white matter of the OR represent accelerated
aging®, we cross-tested the glaucoma classification CNN in classification of subjects that differ
by 10 years of age (but are matched on sex and TDI). We chose the ages 60 and 70, based on
our previous observations that this is an age difference at which OR tissue properties change
substantially®, and also the age at which glaucoma risk increases substantially in the UKBB
sample *. Nevertheless, the CNN trained to accurately classify glaucoma did no better than
chance in classifying subjects from different age groups. In addition, a CNN trained to accurately
perform this age classification task could not accurately distinguish participants with glaucoma
from their matched controls. This, in addition to a separate SHAP analysis of the age-group
classification CNN, suggests that the features of the OR affected in glaucoma are different from
those that are affected in the normal process of aging.

To better understand these findings, we sought to interpret the performance of the CNNs. This is
because, although CNNs provide accurate classification, they are difficult to interpret. We used
SHAP analysis®, in order to describe the features that contribute to the accurate classifications
by the CNNs. We found that the same features can have quite different SHAP values in the
glaucoma and age classification CNNs. This, in addition to the failure of the CNNs to generalize
between glaucoma and age, suggests that the features of the OR that are correlated with
affected in glaucoma are different from those that are correlated with the normal process of

aging.

Differences between the OR of participants with glaucoma and healthy controls could instead
arise for many other reasons. One hypothesis is that the altered visual input due to the disease
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causes reorganization of the tissue responsible for downstream processing steps 3*-*". These
downstream changes could also be related to transsynaptic degeneration through the LGN that
can be measured through changes to the OR tissue properties. Indeed, previous research found
that participants with glaucoma have significantly reduced LGN volumes .

One of the puzzling findings in the present study is that accurate classification of glaucoma
relies on data from the parts of the OR that represent the central visual field, and not the
peripheral visual field. This is in contrast to the effects of glaucoma in the retina, which usually
progress from the periphery to the center, initially causing so-called “tunnel vision.” Although
this difference is less clear in subjects with no missing bundles, shown in Supplementary Figure
3, meriting caution in over-interpreting this finding. Nevertheless, functional MRI (fMRI) studies
of glaucoma also found changes to the amplitude of the fMRI signal in central visual field *, as
well as increased cortical magnification in the central, but not peripheral, visual field in the early
visual cortex of participants with glaucoma *°, suggesting that these changes reflect a process of
remapping of functions from the peripheral visual field to the center. This reorganization at the
level of the visual cortex could be a consequence of reorganization at earlier stages of the
system. Taken together, our results may reflect these processes of compensation, evident in
visual responses, rather than a process of degeneration.

Importantly, the present study is purely correlational, and though we have accounted for some of
the obvious confounding factors (such as age), we may have not accounted for all of the
differences between participants with glaucoma and controls. For example, in previous work, we
found that cardiovascular fithess variables are important features in classifying participants with
glaucoma in the UK Biobank dataset **. In this dataset, we tried matching on cardiovascular
variables but found that they did not change our results (not shown). Still, the effects measured
in the OR and delineated with the CNN analysis could still reflect common underlying causes,
rather than direct effects of glaucoma on the tissue properties of the OR.

Another limitation of the present study is that glaucoma and AMD status were determined based
on self-report. This raises concerns that some of the individuals identified as having glaucoma
have another eye disease, or no eye disease (false positives) and that there may be individuals
with glaucoma among the controls (false negatives). One way in which false positives could
affect our results is by the inclusion of people with other sources of sight impairments in the
glaucoma group, and some of these could be impairments with a source directly in the OR.
However, in our previous work with the UK Biobank dataset, we verified that self-report is highly
congruent with ICD-10 diagnostic codes of glaucoma and that there was high repeatability of
self-report among participants who reported glaucoma **. Furthermore, a previous study that
examined glaucoma in the UK Biobank dataset * verified that the distributional properties of
self-reported glaucoma match the distributional properties of glaucoma patients in several other
population studies %2,

Finally, there are limitations associated with the MRI methodology used. Due to the tract’s high
curvature, narrow sections, and intersections with other tracts, some OR bundles were not
detected in some subjects. Additionally, dMRI is unable to differentiate feedforward and
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feedback projections within the OR, so our conclusions encompass both. Nevertheless, the
advantage of automated tractometry is clear: our large sample size allowed us to train neural
networks and accurately classify glaucoma.

In summary, we used neural networks to determine that there is a complex relationship between
the tissue properties of the parts of the optic radiations representing the central 14 degrees of
eccentricity of the visual field. These differences persist even when participants with glaucoma
are closely matched to controls. We did not find this relationship in non-visual control bundles or
the parts of the optic radiation representing the peripheral visual field. This relationship is not
reflective of an accelerated aging process, but may instead reflect a change in the visual input
and subsequent reorganization of the visual system.

Methods

Datasets and Statistical Matching

We used MRI data that is available from the UK Biobank '®. From the available data, we created
several distinct datasets, as described below. To be included in any of these, study participants
must have had a dMRI data acquisition and a final visual acuity logMAR (log of the Minimum
Angle of Resolution) of less than or equal to 0.3 if measured (from UKBB data field 5201).

Dataset A was composed of the following sub-samples of the UKBB data:

1. Glaucoma sub-sample: we first selected 905 subjects classified as having glaucoma (in
at least one eye) by the UK Biobank’s Assessment Centre Environment (ACE)
touchscreen question: “Which eye(s) are affected by glaucoma” (see UKBB data field
6119).

2. Control sub-sample: We selected 5,292 UKBB subjects for a control pool '®* 44, These
subjects answered “no eye problems/disorders” to the ACE touchscreen question: "Has
a doctor told you that you have any of the following problems with your eyes? (You can
select more than one answer)" (see UKBB data field 6148).

To reduce bias from age and other potential confounders, we use statistical matching ' to
create a “matched dataset”. We calculated the Mahalanobis distance 3! between the
confounders of all pairs of glaucoma and control subjects. The confounders*® we used were
age, sex, ethnicity, and the Townsend deprivation index (TDI) *¢ . We used the
‘linear_sum_assignment’ method from Scipy 1.8.0 #’ to match test and control subjects such
that the total Mahalanobis distance between them is minimized. This is a modified
implementation of the Jonker-Volgenant algorithm ¢ . We then thresholded the matched
dataset, only keeping matched subjects with a Mahalanobis distance of 0.3 or less.

After matching was concluded, we divided the resulting dataset — dataset A — into two groups:
train (80%) and test (20%). From the train set, 20% was set aside as a validation set for
hyperparameter selection. Matched control and glaucoma subjects were assigned into these
groups in tandem. All decisions about model architecture and hyperparameters were made
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using dataset A training and validation sets. The results shown in this paper are from test sets,
which were not viewed until final determinations about model architecture and hyperparameters
were made.

To additionally test generalization of the glaucoma model, we constructed two additional test
datasets. These datasets used control subjects that were not included in the glaucoma-matched
pool (N=4,456):

1. AMD dataset (dataset A.71): Subjects were marked as having AMD based on the ACE
touchscreen question in UKBB data (field 6148) described above. A set of matched
controls was selected using statistical matching on the same criteria as above. This
dataset had 81 participants with AMD and 81 matched controls.

2. Aging dataset (dataset A.2): 70 year-old subjects were selected from the control pool
and were matched to other subjects in the control pool, with the matching modified to
match to subjects 10 years younger, in addition to the other criteria used above. This
dataset had 166 exactly 70-year old subjects and 166 approximately 60-year old
subjects.

Another dataset — dataset B — was sub-sampled from the UKBB to train age-group
classification models. Here, we selected subjects with ages 70-79 (N=962) from the control
sub-sample. These were matched to other controls with the matching modified to match to
subjects 10 years younger, in addition to the other criteria used above. This dataset was also
divided into train, test, and cross-validation the same way as dataset A.

To test the generalization from age-group classification models, we constructed two additional
test datasets. Controls were taken from a control pool where subjects selected for the dataset
used to train the age-group classification models were removed (N=4,473):
1. Glaucoma (dataset B.1; N=147). In this dataset, only participants aged between 60-64
were included.
2. AMD (dataset B.2; N=81). Given lower prevalence of AMD in the overall dataset, we did
not use an age inclusion criterion.

Though there is some overlap between the training data used in dataset A and in dataset B,
there is no overlap between the training data and the test data in either of these datasets.

MRI acquisition

We used preprocessed dMRI provided through the UKBB. The acquisition protocol is already
described elsewhere * . Briefly, dMRI measurements were conducted with a spatial resolution
of 2-by-2-by-2 mm?3, TE/TR = 14.92/3600 msec. With anterior-to-posterior phase encoding, there
are five volumes with no diffusion weighting (b=0), and 50 volumes each with b=1,000 s/mm?
and b=2,000 s/mm?. An additional 6 b=0 volumes were acquired with posterior-to-anterior
phase encoding direction for EPI distortion correction. Preprocessing is also described
elsewhere . Briefly, the FSL “eddy” software was used to correct for head motion and eddy
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currents, including correction of outlier slices. Gradient distortion correction was performed and
non-linear registration using FNIRT was calculated. The FNIRT mapping was also used to map
the individual subjects data to the MNI template.

Automated fiber quantification

AFQ 2" is an analysis pipeline that automatically delineates major white matter pathways and
quantifies the properties of white matter tissue along the length of these major pathways. We
used a Python-based open-source implementation of this pipeline (pyAFQ;
https://github.com/yeatmanlab/pyAFQ) %2 to extract the tissue properties of OR sub-bundles and
two control bundles — the corticospinal tract (CST) and the uncinate fasciculus (UNC) — that are
not a part of the visual system. In AFQ, white matter pathways are identified from a candidate
set of streamlines based on anatomical landmarks: inclusion, exclusion, and endpoint regions of
interest (ROIs) that are based on the known trajectory of the pathway (e.g., OR). These ROls
were transformed into each subject’s diffusion MRI coordinate frame using the FNIRT non-linear
warp provided by UKBB. For UNC and CST, we also used a population-based probabilistic atlas
49 We seeded a GPU-accelerated residual bootstrap tractography algorithm ° with 64 seeds
uniformly distributed in the voxels of the inclusion ROls to generate candidate streamlines which
may follow the trajectory of the OR in each subject’s data. These candidate streamlines were
filtered to recognize the OR with these conditions: streamlines (1) do not pass through the
sagittal midline of the brain; (2) have at least one point that is within 3 mm of both of the
inclusion ROIs; (3) do not have any point that is within 3 mm from the exclusion ROI; (4)
terminate within 3 mm of the two endpoint ROIs (one in the thalamus and the other in V1) *' .
They were further filtered using the standard AFQ cleaning to remove outliers in length and
trajectory #' . We further divided the OR into three sub-bundles based on their termination in
ROls in V1 generated from the retinotopic prior of Benson and Winawer 52 masked with the V1
location in the AICHA atlas 3. The OR sub-bundles are the foveal (fOR; terminating at parts of
V1 responding to <3°degrees visual angle), macular (mOR;>=3°,<7° degrees visual angle), and
peripheral (pOR; >7°degrees visual angle). Control bundles were generated using the same
pipeline as the OR, using inclusion ROIs 2! and excluding streamlines that cross the midline.

One-dimensional tract profiles were computed for each tissue property along each of these
bundles. The mean diffusivity (MD), fractional anisotropy (FA) and mean kurtosis (MK) tissue
properties were calculated using the diffusional kurtosis model implemented in DIPY
(https://github.com/dipy/dipy) ** #* . These tract profiles are computed at 100 points along each
bundle, however we excluded the first and last 10 nodes, because their measured properties
are more strongly influenced by partial volume effects with the gray matter. Further
visualizations and analyses with machine learning use these one dimensional tract profiles.

Machine Learning

We trained 1D convolutional residual neural networks °° *® on the tract profiles from the three
optic radiation bundles (fOR, mOR, pOR) and two control bundles (CST, UNC) to predict
whether a patient has glaucoma. We trained one network per bundle for a total of five networks.
The middle 80 nodes out of the 100 from the tract profiles were used. Thus the input to these
networks consisted of 1D tract profiles of length 80 and with six channels, one for each tissue
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property (FA, MD, and MK) and each hemisphere (left and right). Tissue properties were
normalized by converting to Z-scores before use in the neural network. In subjects where some
bundles were not found, missing bundles were imputed using the mean profile of that bundle for
each tissue property, separately in the train and test data®’. We used the game-theoretical
Shapley additive explanation (SHAP) values * to interpret the results of the neural network.
SHAP values were calculated for each node and normalized tissue property using the SHAP
software (https://shap.readthedocs.io/). To visualize SHAP values, we first divided the OR into
four sections, which were the anterior and posterior segments of each hemisphere. We
averaged the normalized tissue property value for all nodes in each of those four sections.

Independently, we trained 5 L2-regularized logistic regression models on the bundles. We used
the liblinear solver in Scikit Learn 1.0.0 to fit these models **° . To reduce overfitting seen in the
validation set, we only used every other node from the 20th to 78th node out of 100 nodes
before testing. We also used the validation set to determine the level of regularization.

We applied the networks trained on dataset A to datasets A.1 and A.2. Finally, we trained five
more neural networks of the same architecture on the same bundles, using dataset B. We also
tested its generalizability on its corresponding B.1 and B.2 datasets.

The results of the CNNs and logistic regression are compared using areas under curve (AUC)
from a receiver operating characteristic (ROC) curve ®° . Depending on the curve, we ask one of
two questions: (1) For the visual system tests (datasets A and B), are the OR bundle AUCs
significantly different from the control AUCs and from each other, and (2) for the generalization
tests (datasets A.1, A.2, B.1, B.2), are any of the AUCs significantly above chance. For question
1, we compare the AUC of each OR bundle to each control bundle, and the AUCs of the OR
bundles to each other, resulting in nine comparisons. We calculate a p-value from the DeLong
test ° and then correct for the nine comparisons using the False Discovery Rate (FDR) p-value
correction &' . We call the AUCs significantly different if the corrected p-value is below 0.05 . For
question 2, we use the variance calculated by the DeLong formula ®° to make a 95% confidence
interval. We apply the Bonferroni correction to the confidence intervals 2 to correct for our
testing of five different bundles. If the corrected confidence intervals do not include an AUC of
0.5, we call the AUC significant. The more conservative Bonferroni correction is used to correct
for multiple comparisons in this case, because it is applied to confidence intervals, rather than to
p-values.

Software
All code to reproduce the analysis and the figures is available at <link to be added upon article
acceptance>.

Data Availability Statement
This study uses publicly available data from the UK Biobank. More information on the data and

access can be found here: https://www.ukbiobank.ac.uk/enable-your-research
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