

1

2

3 Proline catabolism is key to facilitating *Candida albicans* pathogenicity

4 Short title: Proline-dependent fungal virulence

5

6 Fitz Gerald S. Silao¹, Tong Jiang², Biborka Bereczky-Veress³, Andreas Kühbacher⁴, Kicki
7 Ryman¹, Nathalie Uwamohoro⁵, Sabrina Jenull^{6,7}, Filomena Nogueira^{6,8,9}, Meliza Ward¹,
8 Thomas Lion⁸, Constantin F. Urban⁵, Steffen Rupp⁴, Karl Kuchler⁶, Changbin Chen^{2*},
9 Christiane Peuckert^{3*} and Per O. Ljungdahl^{1†}

10

11

12 ¹ Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life
13 Laboratory, Stockholm University, SE-171 21 Solna, Sweden.

14 ² The Center for Microbe, Development and Health, Key Laboratory of Molecular Virology
15 and Immunology, Unit of Pathogenic Fungal Infection & Host Immunity, Institut Pasteur of
16 Shanghai, Chinese Academy of Sciences, China.

17 ³ Intravital Microscopy Facility, Department of Molecular Biosciences, The Wenner-Gren
18 Institute, Stockholm University, SE-106 91 Stockholm, Sweden.

19 ⁴ Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and
20 Biotechnology IGB, DE-70569 Stuttgart, Germany.

21 ⁵ Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University
22 SE-901 85 Umeå, Sweden.

23 ⁶ Medical University of Vienna, Max F. Perutz Laboratories GmbH, Department of Medical
24 Biochemistry, A-1030 Vienna, Austria.

25 ⁷ Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine
26 Vienna, A-1210 Vienna, Austria.

27 ⁸ St. Anna Kinderkrebsforschung e.V., Children's Cancer Research Institute, A-1090 Vienna,
28 Austria.

29 ⁹ ABF Pharmaceutical Services GmbH, Vienna, Austria.

30

31

32

33 *Corresponding authors; E-mail addresses: per.ljungdahl@su.se; christiane.peuckert@su.se;
34 cbchen@ips.ac.cn

35 †Lead correspondent; E-mail address: per.ljungdahl@su.se

36

37

38 Key words: *Candida albicans*; fungal pathogen; proline catabolism; intravital microscopy;
39 kidney infection model; mitochondria; reactive oxygen species (ROS); Put1; Put2; Put3

40

41

42 Abstract

43 *Candida albicans*, the primary etiology of human mycoses, is well-adapted to catabolize proline
44 to obtain energy to initiate morphological switching (yeast to hyphal) and for growth. We report
45 that *put1*-/ and *put2*-/ strains, carrying defective Proline UTilization genes, display remarkable
46 proline sensitivity with *put2*-/ mutants being hypersensitive due to the accumulation of the toxic
47 intermediate P5C, which inhibits mitochondrial respiration. The *put1*-/ and *put2*-/ mutations
48 attenuate virulence in *Drosophila* and murine candidemia models. Using intravital 2-photon
49 microscopy and label-free non-linear imaging, we visualized the initial stages of *C. albicans*
50 cells colonizing a kidney in real-time, directly deep in the tissue of a living mouse, and observed
51 morphological switching of wildtype but not of *put2*-/ cells. Multiple members of the *Candida*
52 species complex, including *C. auris*, are capable of using proline as a sole energy source. Our
53 results indicate that a tailored proline metabolic network tuned to the mammalian host
54 environment is a key feature of opportunistic fungal pathogens.

55

56

57 Introduction

58 Proline is the sole proteinogenic secondary amino acid. Its pyrrolidine ring gives it a distinctive
59 role in protein architecture and dynamics. Proline plays an important role in energy generation,
60 stress protection, signaling and redox balance of cells across multiple kingdoms (1-3). Proline is
61 the most abundant amino acid in the extracellular matrix (ECM); collagen, contains ~23%
62 proline and hydroxyproline combined (4), and mucin, is about ~13% proline (5). In some
63 pathological states, such as cancer and sarcopenia, proline is released in significant quantities as
64 a result of ECM degradation by extracellular proteases (6, 7), generating a proline pool that can
65 be assimilated by human cells and the associated microbiome. In eukaryotes, proline catabolism
66 occurs largely in mitochondria, and its complete oxidation can generate ~30 equivalents of ATP,
67 making proline an excellent energy source (3, 8, 9).

68 *Candida* spp. are the major fungal commensals in humans with *Candida albicans* as the
69 predominant species. *C. albicans* is an opportunistic pathogen capable of causing a spectrum of
70 pathologies ranging from superficial mycoses to life-threatening systemic infections. As a
71 pathogen *C. albicans* must circumvent the host immune response and acquire nutrients to support
72 the bioenergetic demands of infectious growth. Proline is a potent inducer of morphological
73 switching in *C. albicans*, i.e., yeast-to-hyphal growth (10, 11). The inducing properties of proline
74 depends on its catabolism, which stimulates the well-characterized hyphal-inducing
75 Ras1/cAMP/PKA pathway (10). *C. albicans* strains that cannot metabolize proline exhibit
76 defective hyphal growth and reduced survival within macrophages (10). Consistently, strains
77 lacking *GNP2*, encoding the primary proline permease, are unable to filament in the presence of
78 proline and exhibit reduced survival when co-cultured with macrophages (12). Most of the
79 presumed knowledge regarding Proline UTilization (PUT) in fungi has been extrapolated from
80 studies on the budding yeast *Saccharomyces cerevisiae* (reviewed in (13)). The regulatory
81 mechanisms underlying PUT in *C. albicans* have not been well-characterized.

82 In eukaryotes the catabolic conversion of proline to glutamate is restricted in the mitochondria
83 and is carried out by the concerted actions of proline dehydrogenase (PRODH; EC 1.5.5.2) and
84 Δ^1 -pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH; EC 1.2.1.88) (reviewed in (1, 2, 14)).
85 In *C. albicans* PRODH and P5CDH are encoded by *PUT1* (C5_02600W) and *PUT2*
86 (C5_04880C), respectively (10). Put1 uses flavin adenine dinucleotide (FAD) as a co-factor,
87 oxidizing proline to generate P5C and FADH₂. The electrons from FADH₂ reduce membrane
88 bound ubiquinone, co-enzyme Q, effectively linking proline oxidation to the mitochondrial
89 electron transport chain (ETC) (1, 2, 14). In mammals, PRODH is functionally and physically
90 linked to ETC-Complex II (succinate dehydrogenase) (14, 15). P5C forms a non-enzymatic
91 equilibrium with L-glutamate γ -semialdehyde (GSA), an equilibrium that is pH sensitive; P5C
92 formation is favored with increasing pH (16). Put2 catalyzes the oxidation of GSA to glutamate

93 resulting in the reduction of NAD⁺ to NADH, which is oxidized in an energy conserving manner
94 by NADH dehydrogenase; ETC-Complex I. Glutamate is subsequently converted to α -
95 ketoglutarate (α -KG) by the NAD⁺-dependent glutamate dehydrogenase (GDH; EC 1.4.1.2)
96 releasing ammonia and reduced NADH. In mammalian cells, GDH is localized in the
97 mitochondria and performs an important anaplerotic function by directly feeding the TCA cycle
98 with α -KG (17). In *C. albicans*, however, GDH (Gdh2; C2_07900W) is cytosolic (18). Gdh2 is
99 the key ammonia generating enzyme when *C. albicans* cells utilize amino acids as sole energy
100 source, and it is responsible for the observed alkalization of the extracellular milieu (18).

101 Previously, we reported that mitochondria-localized proline catabolism induces and energizes
102 hyphal formation in *C. albicans* and that *C. albicans* cells depend on proline catabolism to evade
103 from macrophages (10). Here, we show that multiple pathogenic *Candida* spp. are able to
104 catabolize proline as sole energy source. Using *C. albicans* as a paradigm species, we have
105 carried out a thorough characterization of PUT, focusing on the induction by proline and the
106 bioenergetics of proline-driven virulence. Mitochondrial proline catabolism is tightly regulated
107 to minimize the toxicity of the intermediate P5C, and that PUT is required for virulence of *C.*
108 *albicans* in *Drosophila* and murine systemic infection models. Finally, using intravital
109 microscopy, we visualized the initial stages of colonization of the kidney *in situ* in a living host
110 and confirm the importance of PUT in the induction of filamentous growth during the early
111 stages of infection.

112

113

114 Results

115 The ability to use proline as sole energy source is common to pathogenic *Candida* species

116 *C. albicans*, as well as other *Candida* spp., have evolved in the low sugar environment of
117 mammalian hosts and are rarely found living free in nature. *C. albicans* possesses mitochondria
118 with a complete repertoire of electron transport complexes (ETC-Complexes I-V) and is well-
119 adapted to utilize proline as an energy source (10). We examined the possibility that other fungi
120 of the *Candida* pathogenic species complex (19, 20) may have evolved the ability to exploit
121 proline as an energy source (Fig. 1). The laboratory *C. albicans* strain SC5314 (dilution 1) and
122 two clinical isolates PLC124 (dilution 2) and MAY7 (dilution 3) (21) grew on SP, a minimal
123 synthetic medium containing 10 mM proline as sole energy source (Fig. 1A). In contrast, the
124 haploid S288c (dilution 4) and Σ 1278b-derived diploid (22) (dilution 5) *S. cerevisiae* strains did
125 not grow on SP, but consistent with their ability to use proline as a nitrogen source they did grow
126 on SPD, which is SP supplemented with 2% glucose (Fig. 1A). *S. cerevisiae* isolated from blood
127 samples obtained from patients with fungal infections were also tested, and similar to the
128 laboratory strains, they were unable to grow on SP.

129 Strikingly, many members of the *Candida* pathogenic species complex were found to utilize
130 proline as sole energy source (Fig. 1A). *C. dubliniensis*, a diploid yeast that is phylogenetically
131 close to *C. albicans* (Fig. 1B), but considerably less virulent (20), exhibited poor growth on SP
132 (dilutions 10-12), whereas *C. tropicalis*, a virulent member of the complex, showed robust
133 growth (dilutions 7-9). Remarkably, *C. glabrata*, a haploid yeast that is phylogenetically close
134 to *S. cerevisiae* and thought to lack an energy-conserving mitochondrial NADH-dehydrogenase
135 (ETC-CI; reviewed in (23)) grew on SP (dilutions 13-14). Other members of the complex, such
136 as *C. parapsilosis* (dilutions 15-17), *C. lusitaniae* (dilution 21), *C. krusei* (dilution 18), *C.*
137 *guilliermondii* (dilution 22), and the more recently characterized multi-drug resistant species *C.*
138 *auris* (19) (dilution 23) exhibited growth on SP. *C. utilis*, a rare cause of human infection (24),
139 also utilized proline efficiently, consistent with it possessing a functional mitochondrial ETC-CI
140 (dilution 6) (25). The data indicate that the ability to use proline as an energy source is a common
141 attribute among pathogenic *Candida* spp., as well as in *Cryptococcus neoformans* (dilution 24),
142 the latter a pathogenic yeast commonly found in HIV patients (26).

To establish the role of PUT in pathogenic growth we considered *C. albicans* as a paradigm representative of the *Candida* spp. complex. Consistent to our previous report (10), independently generated *put1*^{-/-} and *put2*^{-/-} strains failed to utilize proline as sole nitrogen source (Fig. 1C). Strains transformed with empty vectors (i.e., pV1093 (27) and pV1524 (28)) retained the ability to grow on SPD. To verify that the Put⁺ phenotypes were linked to modifications at the expected loci, the *put1*^{-/-} and *put2*^{-/-} strains were transformed with wildtype *PUT1* or *PUT2* fragments and Put⁺ revertants were selected on SPD (Fig. S1A). The heterozygous revertants fully regained the ability to grow using proline as sole carbon and nitrogen source (SP and SPG; Fig. 1D); restoration of the wildtype alleles was confirmed by PCR (Fig. S1B). We also inactivated *PUT1* and *PUT2* in a *cph1*^{Δ/Δ} *efg1*^{Δ/Δ} non-filamenting *C. albicans* strain (29) by CRISPR and in *C. glabrata* using a modified SAT1-flipper technique (30), which completely abrogated their ability to grow on SPD (Fig. S1C).

155

156 Proline catabolism is induced by proline in a Put3-dependent and -independent manner

157 In *C. albicans*, as in *S. cerevisiae*, proline catabolism is induced by the presence of proline and
158 due to being mitochondrial localized is sensitive to glucose repression (reviewed in (8)) (Fig.
159 2A). In contrast to *S. cerevisiae*, *PUT1* and *PUT2* expression in *C. albicans* is not under nitrogen
160 catabolite repression; their expression is induced by proline in a Put3-dependent manner even in
161 cells grown in the presence of 38 mM ammonium (10, 31). Proline is transported into
162 mitochondria by an undefined process and the glutamate formed is directly or indirectly
163 transported to the cytoplasm where it is deaminated to α -ketoglutarate in a reaction catalyzed by
164 cytoplasmic glutamate dehydrogenase (Gdh2) (18). To better assess the mechanisms regulating
165 proline catabolism, we created a reporter strain co-expressing Put1-RFP, Put2-HA, and Gdh2-
166 GFP (Fig. S1D), which enabled the simultaneous analysis of the expression of the PUT enzymes
167 and Gdh2 by immunoblot. Consistent with our previous work (18), subcellular fractionation and
168 microscopy confirmed that the tagged constructs localized correctly; Put1-RFP and Put2-HA are
169 clear mitochondrial components and Gdh2-GFP localizes to the cytoplasm (Fig. 2B).

170 Put3 is a large transcription factor in *S. cerevisiae* that contains an N-terminal Zn(II)₂Cys₆
171 binuclear cluster DNA binding domain and a C-terminal domain that undergoes a proline-
172 dependent conformational change that activates *PUT* gene expression (32, 33). Although in *C.*
173 *albicans*, the highly conserved Put3 (*PUT3*; C1_07020C) homologue facilitates proline-
174 responsive transcriptional activation of *PUT1* and *PUT2* (31), inactivation of *PUT3* did not fully
175 abolish the growth of *C. albicans* on SPD (Fig. 1C), indicating Put3-independent mechanisms
176 operate. Strikingly, Put3-HA expression is not repressed by ammonium but is sensitive to
177 glucose; Put3-HA is readily detected in cells grown in SGL containing 38 mM ammonium and
178 glycerol and lactate as carbon sources, whereas expression is significantly lower in YPD
179 containing 2% glucose (Fig. 2C). This aligns with *PUT2* expression being lower in cells grown
180 in high glucose media (10).

181 We assessed the expression of Put1-RFP, Put2-HA, and Gdh2-GFP in *PUT3*^{+/+} (CFG441) and
182 *put3*^{-/-} (CFG443) cells 1 h after different nitrogen sources (10 mM) were added to exponentially
183 growing cultures in SGL (Fig. 2D). Put1-RFP was not detected in control cultures in the absence
184 of additional nitrogen (-; lane 11) or with ammonium (Am; lane 1). In contrast and as reported
185 (10), basal Put2-HA levels were expressed in both strains (lanes 1,11). All three reporters in
186 *PUT3*^{+/+} cells were significantly induced upon the addition of 10 mM proline (lane 4). Arginine
187 and ornithine, which can be metabolically converted to proline (10), also induced their
188 expression (lanes 2,3). The lower induction of Put1-RFP in ornithine spiked cultures is likely
189 due to the SPS-sensor dependency of its uptake (lane 3) (10). Previous work, exploiting ChIP-
190 Seq to identify Put3-regulated genes in *C. albicans*, did not identify *GDH2* as a target; (31)
191 however, these studies were conducted using cells grown in the presence of high glucose (YPD),
192 a condition that represses *PUT3* expression (Fig. 2C) and *GDH2* expression (18). The proline-

dependent Put1 expression occurred independent of Put2 (Fig. S2C). Unexpectedly, the addition of glutamate, which in mammals is a precursor of proline biosynthesis (2, 14), did not induce reporter expression (Fig. 2D; Fig. S2A, C) nor did glutamine (Fig. 2SA). Notedly, proline induced the expression of Put1-RFP and Put2-HA in *put3*^{-/-} cells, albeit to a significantly lower level than in the *PUT3*^{+/+} strain (Fig 2D, lanes 4,9; Fig. S2B). The low, but significant Put3-independent expression is consistent with the ability of *put3*^{-/-} strains to grow on SPD, when proline merely serves as a nitrogen source (Fig. 1C). Interestingly, arginine, but not proline, partially induced Gdh2-GFP in *put3*^{-/-}, albeit at levels ~66% lower than that observed in *PUT3*^{+/+} (Fig. 2D, compare lanes 2 with 7). Apparently, additional proline- and arginine-sensitive factors contribute to the expression of the reporter constructs.

We tested the substrate specificity of Put3 by examining the capacity of proline and different proline analogs to induce Put2-GFP in *PUT3*^{+/+} (*PUT3*, CFG259) and *put3*^{-/-} (*put3*, CFG301) strains (Fig. 2E). To avoid potential indirect effects of analog toxicity, we monitored expression levels 1 h after addition of the compounds. The ability of Put3 to induce Put2 exhibited high specificity for L-proline, S-(-)-proline (a racemic pure form of L-proline) and D-proline (lanes 2-4), whereas none of the analogs (lanes 5-9), even the closely-related hydroxyproline compounds (lanes 6-8), induced expression. As previously observed (Fig. 2D) and consistent with being catabolized to proline, the addition of ornithine and arginine resulted in the induction of Put2-GFP (lanes 10-11). Similar results were obtained using the triple reporter *PUT3*^{+/+} (CFG441) and *put3*^{-/-} (CFG443) strains (Fig. S2B).

Proline is toxic in cells unable to catabolize it

We considered the possibility that mutations inactivating proline catabolism could affect mitochondrial function and assessed growth under repressing (glucose) and non-repressing (glycerol, lactate) conditions. The mutants *put1*^{-/-}, *put2*^{-/-} and *gdh2*^{-/-} grew at indistinguishable rates independent of the absence or presence of 10 mM proline under repressing conditions with 2% glucose (SD) (Fig. 3A, upper panel). However, when grown under non-repressing conditions (SGL), the addition of 10 mM proline resulted in striking growth inhibition of *put1*^{-/-} and *put2*^{-/-} cells (Fig. 3A, lower panel). In the absence of proline, *put1*^{-/-} and *put2*^{-/-} mutants grew as well as wildtype, indicating that proline inhibits growth only when cells cannot catabolize it. Cells lacking Put2 exhibited extreme hypersensitivity to proline, only a minimal increase in OD₆₀₀ was observed after 20 h. In contrast, consistent with proline being an excellent energy source, the addition of proline enhanced the growth of the wildtype and *gdh2*^{-/-} strains. Similar results were obtained on solid media (Fig. S3A) and in and on amino acid-rich complex media (Fig. S4A, B). Notedly, on YPD containing 2% glucose, the *put* mutants grew similarly to wildtype. However, when grown in or on YPG and YPL containing non-fermentable carbon-sources, *put2*^{-/-} mutant strains exhibited poor growth. The *put2*^{-/-} cells grown in YPG exhibited defects in cell separation forming trimers (Fig. S4A, see inset), a phenotype associated with stress (34). The growth-inhibitory effects of proline are dependent on non-fermentative conditions when mitochondrial respiration is required. The lack of proline inhibition of cells grown in high glucose media is due to glucose repression of mitochondrial activity (10) (reviewed in (8)). Consistent with this notion, Put1 and Put2 protein levels are elevated in wildtype cells 1 h after the addition of 10 mM proline in SGL and to a lesser extent in SD (Fig. S3B), but in SD, due to repression of mitochondrial function, proline does not inhibit growth. The proline hypersensitivity exhibited by *put2*^{-/-} mutants is partially rescued by the introduction of *put1*^{-/-} but not *gdh2*^{-/-} (Fig. 3A); consequently, the primary growth inhibitory effect of proline is linked to catabolic intermediates formed by Put1 and that are metabolized further by Put2, i.e., either P5C or GSA. We further tested the inhibitory effects of proline in strains grown on synthetic medium containing a non-repressing level of glucose (0.2%) and glutamate as nitrogen source (Fig. S3D), and consistently, we observed the same epistatic relationship between *put1*^{-/-} and *put2*^{-/-}.

244 P5C mediates a respiratory block

245 P5C is an unstable intermediate postulated to inhibit mitochondrial respiration and
246 concomitantly to enhance ROS formation (35). To test this notion, we used an improved protocol
247 relying on complex formation between P5C and o-aminobenzaldehyde (o-AB) (36) to quantify
248 P5C in *C. albicans* strains grown in SGL with and without proline. Initially, we had difficulty
249 reproducibly measuring P5C; success was achieved by direct lysis of whole cells under acidic
250 conditions (TCA) to stabilize P5C. The results confirmed that in the presence of proline, P5C
251 levels are significantly elevated in *put2*^{-/-} cells but not in *put1*^{-/-} *put2*^{-/-} double mutants; the
252 yellow P5C/o-AB complex became readily observable (Fig. 3B). Next, we measured ROS
253 production using the luminol-HRP system. In the absence of proline, ROS levels were similar.
254 However, upon proline addition, the ROS production increased dramatically in *put2*^{-/-} and
255 *put2*^{-/-} *gdh2*^{-/-} strains, but not in the *put1*^{-/-} *put2*^{-/-} double mutant (Fig. 3C). These results are
256 consistent with Put1 acting upstream of Put2. To test if the increased ROS levels account for the
257 proline hypersensitivity of *put2*^{-/-}, we grew the cells in the presence of well-characterized ROS
258 scavengers, e.g., n-acetylcysteine (NAC). Although we could see a slight dose-dependent
259 increase in growth in the presence of NAC relative to the control (no NAC), NAC failed to rescue
260 the growth to a level comparable to cells grown in the absence of proline (Fig. 3D). Likewise,
261 cell permeable ROS scavengers like Mito-TEMPO (37) or TIRON (38) did not restore growth
262 (Fig. S3E). We conclude that the proline hypersensitive phenotype of *put2*^{-/-} is linked to a P5C-
263 mediated respiratory block and not due to secondary effects resulting from ROS accumulation.

264 To test this notion directly, we measured oxygen consumption in *put1*^{-/-} and *put2*^{-/-} cells grown
265 in the presence or absence proline. Relative to wildtype, the respiration rate of *put2*^{-/-} was
266 reduced significantly when proline was present (Fig. 3E). Using purified P5C, Nishimura et al.
267 showed that *S. cerevisiae* is sensitive to P5C with an IC₅₀ value of 23.8 μM (35). We determined
268 the lowest level of proline capable of inhibiting growth of *put2*^{-/-} cells and found that 39 μM
269 proline significantly inhibited growth (Fig. 3F and Fig. S3F), which is 7-fold lower than the
270 mean physiological level of proline in human plasma (276 μM) (39). Interestingly, although Put1
271 expression is low in the absence of proline (Fig. 2D), we observed a significant reduction in
272 oxygen consumption in *put1*^{-/-} cells even in the absence of proline, and the rate of oxygen
273 consumption was reduced even further when proline was added (Fig. 3E). This observation
274 suggests that proline itself is growth inhibitory, and the capacity to metabolize proline is requisite
275 to alleviate this effect.

276

277 Defective proline utilization is linked to cell death

278 Next, we assessed whether the growth inhibitory effects arising from incomplete proline
279 catabolism had additional and perhaps lethal consequences. We assayed viability using Phloxine
280 B (PXB), which has been used to qualitatively assess cell death in yeast colonies; PXB crosses
281 biological membranes and accumulates in cells that lack the metabolic energy to extrude it (40).
282 Consequently, colonies with dead cells accumulate PXB and take on a red appearance, the degree
283 of redness reflects the number of dead cells. As shown in Fig. 3G, colonies derived from the
284 *put2*^{-/-} mutant cells accumulated significant amounts of PXB on complex YP media containing
285 glucose (YPD) and with non-fermentable carbon-sources glycerol (YPG) and lactate (YPL).
286 Macro colonies derived from *put1*^{-/-} and *put1*^{-/-} *put2*^{-/-} strains clearly accumulate PXB when
287 grown at 37 °C, whereas PXB is restricted to the colony periphery when grown at 30 °C. PXB
288 did not accumulate in *gdh2*^{-/-} mutants on any of the media and temperatures tested (Fig. 3G).
289 We observed the same levels of PXB accumulation in Put⁻ deficient stains constructed in the
290 non-filamenting *cph1*^{Δ/Δ} *efg1*^{Δ/Δ} background (29) (Fig. S4C). We attempted to obtain a
291 quantitative assessment of cell death using propidium iodide (PI) staining, however, we found
292 that *put* mutants flocculate in liquid culture, precluding measurements by FACS. The degree of
293 flocculation increases as cultures become saturated (Fig. S4D). By microscopy we observed an

increased number of PI⁺ cells in 48 h-old YPD cultures of *put1*-/- and *put2*-/- but not *gdh2*-/- strains (Fig. S4F), which correlates with the relief of glucose-mediated repression of mitochondrial functions. Consistent with the pronounced growth inhibition by proline under non-repressing respiratory conditions (SGL) (Fig. 3A), we interpret that the increased cell death of *put2*-/- and *put1*-/- mutants on YPG and YPL media as being the consequence of derepressed mitochondrial activity. Interestingly, the colonies derived from cells carrying *put2*-/- become distinctly yellow in appearance upon prolonged incubation on YPD, presumably due to P5C accumulation (Fig. S4G).

302

303 Proline catabolism is required for invasive growth

304 We recently showed that *C. albicans* cells rely on proline catabolism to induce and energize
305 hyphal growth in phagosomes of engulfing macrophages (10). Relative to the wildtype, *put*
306 mutants exhibit defects in producing long invasive hyphal filaments around the periphery of
307 macro colonies growing on Spider medium (Fig. 4A), which contains mannitol as primary
308 carbon source (41). The diminished filamentous growth was more pronounced in *put2*-/- (Fig.
309 4A). We developed a collagen invasion assay to further test the role of proline catabolism in
310 powering invasive growth (Fig. 4B). Cells, applied on top of a collagen plug (Purecol EZ in
311 DMEM/F12 medium) in a transwell, were monitored for their ability to induce filamentous
312 growth, pass through the membrane at the bottom of the transwell and to reach the recovery
313 medium (DMEM). The results were clear, the invasion process was dependent on the ability of
314 cells to catabolize proline. In contrast to wildtype cells, the *put* mutants were not detected in
315 the recovery medium. As control, a non-filamenting *cph1*Δ/Δ *efg1*Δ/Δ strain was used, and as
316 expected, did not invade the collagen matrix. Next, we performed pairwise competition
317 experiments mixing equal numbers of wildtype and mutant cells before applying them on the
318 collagen plug (Fig. 4C). At the end of the 14-day incubation period we quantified the total
319 number cells in the plug and recovery medium, and determined the number of wildtype (WT)
320 cells based on their ability to grow on SPD. For competition with *cph1*Δ/Δ *efg1*Δ/Δ control cells,
321 we quantified wrinkled (WT phenotype) and smooth colonies (mutant phenotype) on Spider agar
322 incubated at 37 °C for 3-4 days. Starting with an input ratio of ~1:1 (WT:*put*); all cells in the
323 recovery medium were wildtype and in the collagen plug the *put* mutants were overgrown by
324 wildtype (Fig. 4C). By contrast, *cph1*Δ/Δ *efg1*Δ/Δ cells, which are unable to form hyphae but
325 capable of using proline, were recovered in the collagen plug almost at the same proportion as
326 wildtype. The results indicate that proline catabolism is required by *C. albicans* to grow and
327 invade collagen matrices.

328 To test these findings in a more complex and physiologically relevant assay system, we used an
329 *in vitro* 3D skin model supplemented with functional immune cells as an infection platform (42).
330 First, we assessed whether proline is actively utilized by wildtype cells during the invasion
331 process. To address this, we used a wildtype strain expressing Put2-GFP as a reporter strain (Fig.
332 4D). Compared to the untagged Put2 strain that served to control for background fluorescence,
333 significant GFP-dependent signal was observed in fungal cells invading the dermis layer.
334 Consistent with the collagen invasion assay, the *put* mutants exhibited lower invasiveness
335 compared to wildtype (Fig. 4E) and filamenting fungal cells were not observed in the center of
336 the skin model. However, *put1*-/- but not *put2*-/- cells filamented at the edge of the skin model,
337 likely due to direct exposure to the filament inducing cell culture medium (see schematic of the
338 model; Fig. 4E). These results highlight the critical role of proline catabolism and the importance
339 of Put2 to induce invasive growth.

340 We directly compared the ability of physiologically relevant sources of proline, other than
341 collagen, e.g., serum albumin, mucin (from porcine stomach), and hemoglobin, to induce the
342 expression of Put1 and Put2 (Fig. S5). Contrary to our expectation, collagen did not result in
343 elevated expression of Put1, suggesting that free proline is not immediately accessible to *C.*

344 *albicans*. Interestingly, mucin, a major glycoprotein that lines mucosal membranes, e.g., the gut
345 where *C. albicans* systemic infections can originate (43), robustly induced Put1 and Put2
346 expression.

347

348 ***C. albicans* virulence is related to the ability to catabolize proline**

349 The virulence of *put* strains was assessed in *Drosophila melanogaster* and mouse infection
350 models. We first used an improved mini-host model exploiting *Bom^{455C}* flies (44), which lack
351 10 Bomanin genes on chromosome 2 encoding secreted peptides with antimicrobial property
352 (45). As shown in the survival curves, the *put* mutants displayed greatly diminished virulence
353 compared to wildtype (Fig. 5A). Six days following infection, flies infected with the *put1*-,
354 *put3*-, or *put1*-/*put2*- showed general survival rates of 70%, 50%, and 65%, respectively. In
355 comparison, only 15% of the flies infected with wildtype survived. Strikingly, the *put2*- mutant
356 was avirulent, survival exhibited precise overlap with the PBS control.

357 Next, C57BL/6 mice were systemically challenged with 10⁵ CFU of wildtype, *put1*-, *put2*- or
358 *put3*- strains. In comparison to wildtype, *put1*- and *put2*- strains exhibited significantly
359 attenuated virulence (Fig. 5B). On day 22 post infection, the mean survival rate of mice infected
360 with *put1*- or *put2*- was 70% and 73.3%, respectively. In striking contrast to the fly model,
361 the *put3*- mutant did not exhibit attenuated virulence, which suggests Put3-independent
362 expression of *PUT1* and *PUT2* in mice (Fig. 2D) Consistent to the longer survival times, the
363 fungal burden 5 days after injection were significantly lower in the kidney, spleen, brain, and
364 liver of *put1*- and *put2*- infected mice (Fig. 5C). Using Periodic Acid-Schiff (PAS)-staining,
365 minimal filamentation was observed in the kidney sections of mice infected with *put1*- relative
366 to wildtype, and filamentation was virtually absent in the *put2*- strain (Fig. 5D). Interestingly,
367 the kidney infected with *put3*- showed smaller areas of infection compared to wildtype, but
368 nonetheless the fungal burden was similar; a result that may be reconciled if the *put3*- mutation
369 results in a higher proportion of yeast-like rather than filamentous cells (Fig. 5D).

370 We recently obtained evidence that proline catabolism is activated in *C. albicans* during co-
371 culture with neutrophils (46). Neutrophils are the most abundant leukocytes in circulation, and
372 play a critical role in controlling and clearing both mucosal and disseminated fungal infections.
373 The regulated generation of ROS within the phagocytic compartment provides the major
374 fungicidal mechanism (47). We examined the survival of *C. albicans* strains when co-cultured
375 with neutrophils. As expected, neutrophils effectively reduced the survival of fungal cells,
376 including wildtype. However, in comparison to wildtype, the *put2*- and *put3*- mutants
377 exhibited significantly reduced survival. Although, *put1*- cells also exhibited reduced survival
378 compared to wildtype, the level of survival was not significantly different (Fig. 5E). Together
379 our results demonstrate that proline is actively assimilated *in situ* and that the capacity to utilize
380 proline is a predictor of virulent growth.

381

382 **Visualizing acute *C. albicans* infections of the kidney in real time in a living host**

383 To visualize *Candida*-host interactions we exploited 2-photon intravital microscopy (IVM) to
384 image the early stages of the colonization of mouse kidneys during a systemic infection
385 challenge. Optical access to the kidney was achieved by the implantation of an imaging window.
386 IVM uses lasers to excite molecules in the far-red range, which is more penetrating and less
387 photo-damaging, making it suitable for live tissue imaging. In IVM, only the molecules in the
388 focal volume are excited, thus background signals are very low (48). Furthermore, 2-photon
389 microscopy enables label-free detection of second and third harmonic generation and the
390 intrinsic fluorescence provides information about the tissue morphology and cell metabolism
391 (49). IVM has been successfully applied to study various disease states in live mice, including
392 bacterial infection and cancer (50). IVM provides resolution at the cellular level, and thus has

393 significant advantages over routine *in vivo* imaging methods that rely on bioluminescence to
394 track infections in mice (51).

395 To observe fungal cells we utilized *C. albicans* strain (PLC096) constitutively expressing a
396 modified version of mCherry (yeast enhanced mRFP, yEmRFP) placed under the control of the
397 strong *ADH1* promoter (52). To monitor the growth characteristics of this strain, we stained
398 yeast-form cells with FITC, which reacts with primary amines on the cell surface, and monitored
399 the induction of filamentous growth (Fig. 6A). Filamentous growth was readily observed,
400 yEmRFP expressing daughter cells emerged from FITC-stained mother cells; FITC remains
401 tightly associated with mother cells. Next, we inactivated *PUT2* in this strain using
402 CRISPR/Cas9 (CFG479). Using these strains, we proceeded to image the colonization of the
403 kidneys in living BALB/cAnNCrl and specific and opportunistic pathogen free (SOPF)
404 BALB/cByJ mice (Fig. 6B). The SOPF health status proved to be important to minimize
405 individual variation in host responses. An abdominal imaging window was implanted (53), and
406 the kidneys were imaged 4 or 24 h post injection with an inoculum of FITC stained yeast (Fig.
407 6C). We were able to visualize the renal cortex through the imaging window and reached the
408 superficial areas consisting of proximal and distal convoluting tubules and peritubular arterioles.
409 Sites of colonization were localized with the help of FITC fluorescence, and fungal cell growth
410 and morphogenesis was followed by yEmRFP fluorescence. The autofluorescence of
411 endogenous fluorophores, such as NAD(P)H, and of collagen, were used for navigation and
412 reconstructing tissue morphology. At 4 h post injection, we detected *C. albicans* cells in the renal
413 cortex and in the intertubular space, most likely with capillary or interstitial localization (Fig.
414 6D). Daughter cells, expressing yEmRFP but lacking FITC-staining, grew forming germ tubes
415 that initiate hyphal growth (Fig. 6D). In addition to IVM, we performed *ex vivo* imaging of acute
416 excised kidneys at 24 h post injection (Fig. 6B, E). The mice injected with wildtype *C. albicans*
417 displayed loci with heavy filamentation with hyphae growing inside and through different tubuli
418 (Fig. 6E). As it is apparent from the autofluorescence, the main source of which is NAD(P)H in
419 the cytoplasm of the tubular epithelial cells, the cellular morphology of the affected tubuli was
420 disintegrated by the growing filaments.

421 To compare the virulence of *C. albicans* wildtype and *put2*-/- strains, we injected two groups of
422 SOPF BALB/cByJ mice. At 24 h post injection, we found foci with filamentous growth in at
423 least 30% of the mice injected with the wildtype strain (Fig. 6F). In contrast, no filamentous
424 growth was observed in mice injected with the *put2*-/- strain. The *put2*-/- cells were found in
425 intertubular locations and were positive for both, yEmRFP and FITC with no sign of
426 filamentation (Fig. 6F; see supplementary videos SMov1-SMov4). The lack of filamentation and
427 proliferation of *put2*-/- in the kidney is consistent with the reduced virulence of this strain
428 compared to wildtype in BALB/c mice (Fig. S6) and is comparable to the results obtained in
429 C57BL/6 mice (Fig. 5B).

430

431

432 Discussion

433 The results documented here advance our understanding regarding the importance of proline
434 catabolism in fungal infections in four ways. First, many *Candida* spp. known to cause mycoses
435 in humans, including the recently described and multidrug resistant *C. auris*, have the capacity
436 to catabolize proline as sole source of energy. Second, the regulatory mechanisms controlling
437 proline utilization are tightly coupled to mitochondrial function. Third, under respiratory
438 conditions, proline is toxic to cells that lack the ability to catabolize it. This unexpected finding
439 indicates that proline, in addition to the already known toxic intermediate P5C, negatively affects
440 mitochondrial activity. The underlying cause remains to be elucidated, however, it seems likely
441 that when proline accumulates above a critical threshold in mitochondria, it inhibits the activity
442 of a critical ETC component. Fourth, our success in visualizing early events of *C. albicans* cells
443 infecting the kidneys of a living host indicate that single cells respond to *in situ* nutrient cues,

444 which induce invasive filamentous growth in a manner that is dependent on proline catabolism.
445 The knowledge gained and technical advances represented by the successful application of
446 intravital microscopy opens up the new possibilities to address fundamental questions regarding
447 virulent fungal growth with broad biological implications.

448 Despite proline being one of the first characterized inducers of morphogenic switching in *C.*
449 *albicans* (11), we only recently discovered that *C. albicans* can catabolize proline as a preferred
450 energy source (10). The lag in appreciating the physiological significance of proline stems from
451 the over reliance on information obtained in studies with the yeast *S. cerevisiae* (reviewed in
452 (13)). Yeast can use proline as a nitrogen source, but is unable to use it as an energy source (Fig.
453 1). Accumulating evidence indicates that key regulatory differences exist between *C. albicans*
454 and *S. cerevisiae*, which likely reflect the microenvironments in which they evolved (reviewed
455 in (8)). *S. cerevisiae* evolved for life in high sugar environments and is widely found in nature.
456 By contrast, *C. albicans* and other members of the *Candida* spp. complex evolved growing in
457 symbiosis with human hosts and are rarely found outside of mammalian hosts. *C. albicans*,
458 unlike *S. cerevisiae*, has a multi-subunit energy conserving NADH dehydrogenase complex
459 (ETC-CI) that couples the oxidation of NADH to ATP production (54). To survive the host
460 environment, fungal cells propagate under similar physiological conditions as human cells.
461 Interestingly, proline catabolism has been implicated as an energy source that facilitates the
462 initiation and progression of multiple invasive diseases, including cancer during nutrient stress
463 (14). Recently, low levels of fungal DNA and cells have been found in association with human
464 cancers (55), suggesting that fungi are able to benefit through spatial association with cancer
465 cells and accompanying macrophages at sites of metastatic growth, perhaps by cross-feeding
466 fungi with host-derived nutrients.

467 Our finding that multiple *Candida* spp. can catabolize proline as sole source of energy is striking
468 (Fig. 1). Although the PUT pathways are predicted to be conserved among these species, there
469 were clear differences in how well proline is used. We were intrigued to find that the ability to
470 use proline correlated with the known virulence characteristics of the *Candida* species,
471 exemplified by comparing the growth of the two closely related species *C. albicans* and *C. dubliniensis*, *C. albicans* being more virulent (56). Interestingly, several human pathogens utilize
472 proline to provide energy to facilitate pathogenic growth, including prokaryotes, e.g.,
473 *Helicobacter pylori*, and eukaryotes, e.g., *Trypanosomes* and *Cryptococcus neoformans*
474 (reviewed in (1)). Future efforts focused on understanding species-specific regulatory
475 differences will be helpful to elucidate the full significance of proline catabolism in pathogenic
476 processes.

477 The regulation of PUT in *C. albicans* is complex. Put3 expression is subject to glucose repression
478 (Fig. 2C). As Tebung et al. reported (31), proline induces the expression of Put1 and Put2 in
479 *PUT3*-dependent and -independent manner (Fig. 2D). In contrast to Tebung et al., we found that
480 our *put3*-/- strains exhibit residual growth on proline medium (Fig. 1C), which is consistent to
481 the observed levels of Put3-independent expression (Fig. 2D). In the absence of glucose, we
482 found that the expression of cytoplasmic Gdh2 (8), one of the key enzymes in central nitrogen
483 metabolism, is partly regulated by Put3 (Fig. 2D). The inactivation of *PUT3* abrogated both
484 proline- and ornithine-induced Gdh2 expression. *C. albicans*, as a proline prototroph, possesses
485 a full complement of proline biosynthetic genes (*PRO1*, *PRO2*, and *PRO3*) and hence should be
486 able to convert glutamate to proline. Glutamate, as arginine and ornithine, is metabolized to
487 generate P5C in the cytosol via GSA, which then is reduced to proline by Pro3. We were
488 surprised that in contrast to arginine and ornithine (Fig. 2D and Fig. S2A, C), the presence of
489 exogenous glutamate did not induce Put3-dependent genes. However, the presence of arginine
490 did induce Gdh2 expression independent of Put3, albeit to lower levels, indicating the
491 involvement of transcription factors directly responsive to arginine.

492 During pathogenic growth of *C. albicans*, the cellular bioenergetic demand requires active
493 mitochondrial function and efficient ATP-generating metabolic processes. The attenuated

495 virulence of *put* mutants, particularly *put2*^{-/-} in both insect and murine infection models (Fig.
496 5A, B), suggests that proline is indeed actively used in hosts as an energy source. However, our
497 finding that proline at low concentrations (>39 μ M) (Fig. 3F) inhibits growth of *C. albicans* cells
498 that lack the ability to catabolize it, complicates this simplistic explanation. In mice, the mean
499 physiological levels of proline, arginine, and ornithine in blood are 269 μ M, 137 μ M, and 198
500 μ M, respectively (57). In *Drosophila* (larvae), although the level of proline is not markedly high
501 in hemolymph, arginine, which is readily converted to proline in *C. albicans*, is present at high
502 levels (58). These findings also forces us to reconsider why *put* mutants exhibit reduced survival
503 upon phagocytosis by macrophages (10). Phagosomes represent a microenvironment that is
504 thought to be nutrient poor, but clearly has significant levels of proline as judged by robust Put3-
505 dependent expression in phagocytized *C. albicans* cells (10, 18). Consequently, phagocytized
506 *put* mutants are likely to experience proline-dependent inhibition in addition to the inability to
507 catabolize proline. It is noteworthy that in contrast to Put1, Put2 is expressed in the absence of
508 proline and in a Put3-independent manner (Fig. 2D). The level of basal Put2 expression ensures
509 that cells are prepared to oxidize the toxic intermediate P5C when proline becomes available.

510 Our observations that proline inhibits the growth of *put1*^{-/-} cells albeit to a lower extent than in
511 *put2*^{-/-} cells (Fig. 3A) are consistent with previous reports in yeast (59) and plants (60).
512 Presumably proline accumulates in the mitochondria of *put1*^{-/-} where it inhibits an unidentified
513 mitochondrial target. Cells lacking P5C dehydrogenase (*put2*^{-/-}) are substantially more sensitive
514 to proline as a consequence of P5C accumulation (Fig. 3B). Proline as a substrate for ROS
515 formation is supported by several studies using isolated mitochondria, cancer cells and
516 *Drosophila* (reviewed in (61)). The high rate of mitochondrial electron transfer associated with
517 proline catabolism may enhance ROS formation. However, such does not appear to be the case
518 in *C. albicans*, as the addition of proline reproducibly decreased ROS in the wildtype cells (Fig.
519 3C). This may reflect a low reactivity of Put1 towards oxygen, which contrasts with PutA from
520 *Helicobacter pylori* and *H. hepaticus* (62). Regardless, our data show that ROS is not the primary
521 contributor to proline hypersensitivity of *put2*^{-/-}, as ROS scavengers failed to rescue growth
522 (Fig. 3D and Fig. S3E). Consistent with this notion, it took 6 hours after proline addition before
523 measurable levels of ROS could be reproducibly assayed. It is possible that as *C. albicans* cells
524 detect stress they employ a number of detoxification mechanisms that include superoxide
525 dismutase (SOD) (63), and possibly, the *MPR1*-encoded protein N-acetyltransferase (Mpr1)
526 homologue that detoxifies P5C or GSA by acetylation in yeast (64). We traced the inhibitory
527 effects of P5C to defective mitochondrial respiration (Fig. 3E). Consistently, *put2*^{-/-} mutants
528 are unaffected by proline when grown under mitochondrial repressing conditions in the presence
529 of high glucose (2%) (10). Our findings are well-aligned with Nishimura et al. (35), who showed
530 that strains lacking mitochondrial DNA (*rho*⁰) exhibit diminished P5C hypersensitivity.

531 The physiological source(s) of proline within the host environment needs to be determined.
532 Although proline assimilation in the host may be a fungal-driven process, where fungal cells
533 actively secrete proteases and cytolytic toxins (candidalysin) (65), it is possible that *C. albicans*
534 cells acquire proline as a result of host-driven processes. There is evidence to suggest that the
535 proteolytic activities in the host, during pathological states such as cancer or sarcopenia
536 contribute to proline availability (6, 7). In addition, other members of the microflora can also
537 facilitate extracellular matrix (ECM) degradation by secreting collagenase during infection, such
538 as been shown in *H. pylori* (66). In our *in vitro* 3D skin model (Fig. 4E), the source of proline is
539 likely collagen as dermal fibroblasts and keratinocytes secrete matrix metalloproteinases (MMP)
540 (67); the resulting peptide fragments can be internalized by fungal cells and degraded to liberate
541 free proline. Due to its distinct structure, proline induces conformational constraints on the
542 peptide bond, protecting it from degradation by most common proteolytic enzymes (68).
543 Therefore, the release of proline from peptides is thought to have special regulatory and
544 physiological functions. Interestingly, the catalytic release of proline is carried out by a small
545 subset of proteases called prolidase (or proline dipeptidase), which are ubiquitous in nature and
546 are capable of hydrolyzing the bond constrained within the pyrrolidine ring (68). The

547 uncharacterized *C. albicans* ORF (C1_14450C; CGD) encodes a putative prolidase. Supporting
548 the notion that host-driven processes are responsible for proline assimilation, we observed that
549 many proline-rich proteins, including collagen, did not induce the expression of Put1 and Put2
550 even after 72 h of incubation. Consistently, it took 14 days for the wildtype strain to fully invade
551 the collagen matrix (Fig. 4B), suggesting that collagen is relatively refractory to degradation. In
552 contrast, mucin, an abundant protein in the stomach and mucosal cavities, significantly induced
553 Put1 and Put2, suggesting that *C. albicans* can readily degrade mucin.

554 IVM enabled unprecedented and unanticipated discoveries of the host-pathogen interactions
555 during early stages of infection of kidneys in a living host. Two-photon microscopy has
556 previously been used to image fungal infections in translucent mouse pinna (ears) (69), however,
557 to our knowledge, our studies represent the first in which *C. albicans* infections have been
558 imaged under physiological *in situ* conditions in a complex intravital organ. The use of *C. albicans*
559 strains constitutively expressing yEmRFP and stained with FITC enabled us to
560 distinguish mother from growing daughter cells. For the first time, we visualized the formation
561 of hyphae in real-time directly deep in the tissue of a living organism (Fig. 6). IVM provided the
562 means to critically examine several assumed, but untested, parameters regarding kidney
563 infections. We found filamentation events in the renal cortex, although these events seem to be
564 rare in the early phase of colonisation. Similar to a bacterial model of infection, where only a
565 few *Escherichia coli* cells were found to be necessary to establish a kidney infection (50), we
566 found that single fungal cells were able to grow and filament (Fig. 6D), suggesting that multiple
567 fungal cells are not required to initiate colonization. We observed that the primary locus for
568 filamentation differed from the sites where non-filamenting *Candida* cells accumulated.
569 Interestingly, filamenting cells localized to the intertubular space, most likely attached to the
570 tubular cells- or capillary wall (Fig. 6D). Another parameter of paramount interest is that we
571 observed *C. albicans* cells transmigrating from the capillary through different endothelial
572 barriers (capillary and tubular) into the lumen of the tubuli (Fig. 6E), thus enabling us to literally
573 observe the establishment of candiduria (urinary tract infections) that typically occurs in patients
574 with systemic candida infections. We also established a connection between *C. albicans*
575 metabolism and virulence using strains defective in proline catabolism that failed to form hyphae
576 under the same *in situ* conditions as the wildtype strain (Fig. 6F).

577 In summary, the data presented in this work strongly support the idea that proline catabolism is
578 important for *C. albicans* virulence and likely for other *Candida* spp. Our findings indicate that
579 proline is an important energy source when glucose becomes limiting. Importantly, *C. albicans*
580 cells must synchronize the activities of the catabolic enzymes, since proline is toxic, as is the
581 intermediate P5C, making this pathway appropriate to target for the design of antifungal drugs.
582 Small molecules that block Put1 and/or Put2 activity would be expected to inhibit fungal growth.
583 A major outstanding question is how proline is imported from the cytosol to the mitochondria;
584 further studies are warranted to identify a mitochondrial proline transporter. Finally, there is
585 growing evidence that proline serves as an energy source during diverse disease states affecting
586 the host, including cancer and stress, which are risk factors for *Candida* infections. Intriguingly,
587 the expression of proline utilization genes (PRODH) in mammalian cells appears independent
588 of proline, but instead is induced by the p53 tumor suppressor protein, proliferator-activated
589 receptor γ (PPAR γ), and/or AMP-activated kinase (AMPK) in response to nutrient and hypoxic
590 stress (reviewed in (14)). Given that *Candida* infections are common among immune
591 compromised individuals, proline derived from host-driven degradative processes may be key to
592 understanding fungal virulence. Further work is needed to dissect the complex host-pathogen
593 interactions that impinge on proline catabolism.

594

595

596 Materials and Methods

597 Fungal strains and plasmids

598 Most of the yeast strains (*Candida* spp. and *S. cerevisiae*) and plasmids (*E. coli*) reported in this
599 work originated or were derived from the Ljungdahl (POL) strain collection (**Table S1**). *C.*
600 *albicans* clinical isolates and non-*albicans* *Candida* species (**Table S1**) were obtained from
601 several laboratories: Ute Römling (UT), Valerie Diane Valeriano (VDV), Oliver Bader (OB),
602 Matthew Anderson (MA), Steffen Rupp (SR), Constantin F. Urban (CU) and Karl Kuchler (KK).
603 CRISPR/Cas9 plasmids pV1093 and pV1524 were donated by Valmik Vyas (VV). All yeast and
604 *E. coli* strains were stored at -80 °C in YPD with 15% glycerol and recovered as needed on
605 permissive media, and streaked for single colonies.

606 Fungal strains and plasmids generated in this study are available from the lead contact without
607 restriction.

608 **Lead contact**

609 Further information and requests for resources should be directed to and will be fulfilled by the
610 lead contact, P.O.L. (per.ljungdahl@su.se)

611 ***Drosophila melanogaster* infection model**

612 The *Bom*^{455C} *Drosophila* stock was maintained on standard cornmeal agar medium at 25 °C.
613 This fly strain was originally obtained from Bloomington stock center and maintained in Prof.
614 Ylva Engström laboratory, Stockholm University. The *Bom*^{455C} mutant flies were collected and
615 transferred to 29 °C for three days prior to injection of fungal cell suspensions.

616 **Animal studies**

617 All procedures using animals performed at the Experimental Core Facility, Stockholm
618 University, Stockholm, Sweden were approved by the Stockholm Ethics committee (License nr.
619 9700-2018). Mice were housed in individually ventilated GM500 cages (Tecniplast) under
620 constant humidity (50-60%) and temperature (21 ± 2 °C) and with a constant (year-around) 12-
621 h light/dark cycle. The mice were provided aspen bedding (Tapvei, article no 2212), diet
622 deficient in phytoestrogens (Altromin 1324 variant P, article no 30047), water *ad libitum* and the
623 following enrichment: paper play tunnel (Scanbur, article no 20-CS3B02), aspen gnawing stick
624 (Tapvei, article no 44219999S-brick) and paper nesting material (Scanbur, article no 20-
625 CS1A09). Mice were maintained under Specific Pathogen Free (SPF) conditions according to
626 the FELASA guidelines (2014). For animal experiments performed in Shanghai, China, all
627 procedures were performed in compliance with the protocol approved by the local IACUC
628 committee at the Institute Pasteur of Shanghai, Chinese Academy of Sciences, China (License
629 nr. A2021003) under similar animal care and husbandry conditions as in Stockholm, Sweden.
630 Mice strains and suppliers are listed in **Table S1**.

631 **Isolation of human neutrophils**

632 Neutrophils were isolated from the blood of healthy volunteers in compliance with the local
633 ethical committee (Regionala etikprövningsnämnden i Umeå) as approved in permit Dnr 09-210
634 M with fully informed written consent of donors and all investigations were conducted according
635 to the principles expressed in the Declaration of Helsinki.

636 **Statistical analysis**

637 Data obtained in this work were analyzed using GraphPad Prism version 9. Specific statistical
638 treatment applied is described in the figure description. In addition, the type of error bars (SEM,
639 SD, or CI (95%)) is dependent on the type of analysis performed. Statistical analysis was
640 performed using the means of at least 3 independent experiments, and statistical significance
641 was determined using unpaired *t*-test, regular one-way analysis of variance (ANOVA) or
642 Kruskal-Wallis (non-parametric) test followed by Dunnett's multiple comparison test, two-way
643 ANOVA with Sidak's post hoc test, or Log-rank (Mantel-Cox) test for survival analysis. The
644 following set of notations were used to describe statistical significance:
645 **p*<0.05, ***p*<0.01, ****p*<0.001, *****p*<0.0001, ns = not significant.

Exended Method Details

Detailed description of all methods are available in Supplementary Materials under the following subheadings:

- Organisms, media, and culture
- Genetic manipulation and gene inactivation
- Reporter strain construction
- Protein expression analysis
- Immunoblot
- Subcellular fractionation
- Liquid growth assay
- Assessment of fungal growth on solid media
- Fungal cell viability assay
- P5C quantification
- ROS assay
- Oxygen consumption measurement
- ATP quantification
- Collagen matrix invasion assay
- Reconstituted human epithelial (skin) (RHE) model
- Confocal (Airyscan) Microscopy
- Drosophila virulence assay
- Neutrophil killing assay
- Mouse infection model
- Intravital and *ex vivo* two (2)-photon microscopy

References

1. S. L. Christgen, D. F. Becker, Role of Proline in Pathogen and Host Interactions. *Antioxid Redox Signal*, (2018).
2. J. J. Tanner, Structural Biology of Proline Catabolic Enzymes. *Antioxid Redox Signal* **30**, 650-673 (2019).
3. L. Zhang, D. F. Becker, Connecting proline metabolism and signaling pathways in plant senescence. *Front Plant Sci* **6**, 552 (2015).
4. V. L. Albaugh, K. Mukherjee, A. Barbul, Proline Precursors and Collagen Synthesis: Biochemical Challenges of Nutrient Supplementation and Wound Healing. *J Nutr* **147**, 2011-2017 (2017).
5. F. J. Fogg *et al.*, Characterization of pig colonic mucins. *Biochem J* **316** (Pt 3), 937-942 (1996).
6. K. Toyoshima *et al.*, Increased plasma proline concentrations are associated with sarcopenia in the elderly. *PloS one* **12**, e0185206 (2017).
7. Y. Miyagi *et al.*, Plasma free amino acid profiling of five types of cancer patients and its application for early detection. *PloS one* **6**, e24143 (2011).
8. F. G. S. Silao, P. O. Ljungdahl, Amino Acid Sensing and Assimilation by the Fungal Pathogen Candida albicans in the Human Host. *Pathogens* **11**, (2021).
9. G. K. Scott *et al.*, Targeting Mitochondrial Proline Dehydrogenase with a Suicide Inhibitor to Exploit Synthetic Lethal Interactions with p53 Upregulation and Glutaminase Inhibition. *Mol Cancer Ther* **18**, 1374-1385 (2019).
10. F. G. S. Silao *et al.*, Mitochondrial proline catabolism activates Ras1/cAMP/PKA-induced filamentation in Candida albicans. *PLoS Genet* **15**, e1007976 (2019).
11. N. Dabrowa, S. S. Taxer, D. H. Howard, Germination of Candida albicans induced by proline. *Infect Immun* **13**, 830-835 (1976).
12. E. Garbe *et al.*, GNP2 Encodes a High-Specificity Proline Permease in Candida albicans. *mBio*, e0314221 (2022).
13. P. O. Ljungdahl, B. Daignan-Fornier, Regulation of amino acid, nucleotide, and phosphate metabolism in *Saccharomyces cerevisiae*. *Genetics* **190**, 885-929 (2012).
14. J. M. Phang, Proline Metabolism in Cell Regulation and Cancer Biology: Recent Advances and Hypotheses. *Antioxid Redox Signal* **30**, 635-649 (2019).
15. C. N. Hancock, W. Liu, W. G. Alvord, J. M. Phang, Co-regulation of mitochondrial respiration by proline dehydrogenase/oxidase and succinate. *Amino Acids* **48**, 859-872 (2016).

Proline-dependent fungal virulence

701 16. S. L. Bearne, R. Wolfenden, Glutamate gamma-semialdehyde as a natural transition state analogue
702 inhibitor of Escherichia coli glucosamine-6-phosphate synthase. *Biochemistry* **34**, 11515-11520 (1995).

703 17. M. Li, C. Li, A. Allen, C. A. Stanley, T. J. Smith, The structure and allosteric regulation of mammalian
704 glutamate dehydrogenase. *Arch Biochem Biophys* **519**, 69-80 (2012).

705 18. F. G. S. Silao *et al.*, Glutamate dehydrogenase (Gdh2)-dependent alkalinization is dispensable for escape
706 from macrophages and virulence of *Candida albicans*. *PLoS Pathog* **16**, e1008328 (2020).

707 19. J. F. Munoz *et al.*, Genomic insights into multidrug-resistance, mating and virulence in *Candida auris* and
708 related emerging species. *Nat Commun* **9**, 5346 (2018).

709 20. S. A. Turner, G. Butler, The *Candida* pathogenic species complex. *Cold Spring Harb Perspect Med* **4**,
710 a019778 (2014).

711 21. M. Z. Anderson, A. Saha, A. Haseeb, R. J. Bennett, A chromosome 4 trisomy contributes to increased
712 fluconazole resistance in a clinical isolate of *Candida albicans*. *Microbiology (Reading)* **163**, 856-865
713 (2017).

714 22. M. M. Davis *et al.*, Wild-type *Drosophila melanogaster* as a model host to analyze nitrogen source
715 dependent virulence of *Candida albicans*. *PloS one* **6**, e27434 (2011).

716 23. L. Duvenage, C. A. Munro, C. W. Gourlay, The potential of respiration inhibition as a new approach to
717 combat human fungal pathogens. *Curr Genet* **65**, 1347-1353 (2019).

718 24. M. E. Bougnoux, E. Gueho, A. C. Potocka, Resolute *Candida utilis* fungemia in a nonneutropenic patient.
719 *J Clin Microbiol* **31**, 1644-1645 (1993).

720 25. N. Averet, M. L. Jobin, A. Devin, M. Rigoulet, Proton pumping complex I increases growth yield in
721 *Candida utilis*. *Biochim Biophys Acta* **1847**, 1320-1326 (2015).

722 26. E. K. Maziarz, J. R. Perfect, Cryptococcosis. *Infect Dis Clin North Am* **30**, 179-206 (2016).

723 27. V. K. Vyas, Barrasa, M.I., Fink, G.R. , A *Candida albicans* CRISPR system permits genetic engineering
724 of essential genes and gene families. *Sci. Adv.* **1**, 1-6 (2015).

725 28. V. K. Vyas *et al.*, New CRISPR Mutagenesis Strategies Reveal Variation in Repair Mechanisms among
726 Fungi. *mSphere* **3**, (2018).

727 29. A. Wartenberg *et al.*, Microevolution of *Candida albicans* in macrophages restores filamentation in a
728 nonfilamentous mutant. *PLoS Genet* **10**, e1004824 (2014).

729 30. M. Tscherner, E. Stappler, D. Hnisz, K. Kuchler, The histone acetyltransferase Hat1 facilitates DNA
730 damage repair and morphogenesis in *Candida albicans*. *Mol Microbiol* **86**, 1197-1214 (2012).

731 31. W. A. Tebung, R. P. Omran, D. L. Fulton, J. Morschhauser, M. Whiteway, Put3 Positively Regulates
732 Proline Utilization in *Candida albicans*. *mSphere* **2**, (2017).

733 32. A. H. Siddiqui, M. C. Brandriss, The *Saccharomyces cerevisiae* PUT3 activator protein associates with
734 proline-specific upstream activation sequences. *Mol Cell Biol* **9**, 4706-4712 (1989).

735 33. S. A. des Etages, D. A. Falvey, R. J. Reece, M. C. Brandriss, Functional analysis of the PUT3
736 transcriptional activator of the proline utilization pathway in *Saccharomyces cerevisiae*. *Genetics* **142**,
737 1069-1082 (1996).

738 34. B. D. Harrison *et al.*, A tetraploid intermediate precedes aneuploid formation in yeasts exposed to
739 fluconazole. *PLoS Biol* **12**, e1001815 (2014).

740 35. A. Nishimura, R. Nasuno, H. Takagi, The proline metabolism intermediate Delta1-pyrroline-5-carboxylate
741 directly inhibits the mitochondrial respiration in budding yeast. *FEBS Lett* **586**, 2411-2416 (2012).

742 36. M. C. Brandriss, B. Magasanik, Genetics and physiology of proline utilization in *Saccharomyces*
743 *cerevisiae*: enzyme induction by proline. *J Bacteriol* **140**, 498-503 (1979).

744 37. P. Zhang *et al.*, Respiratory stress in mitochondrial electron transport chain complex mutants of *Candida*
745 *albicans* activates Snf1 kinase response. *Fungal Genet Biol*, (2017).

746 38. Y. H. Han, W. H. Park, Tiron, a ROS scavenger, protects human lung cancer Calu-6 cells against antimycin
747 A-induced cell death. *Oncol Rep* **21**, 253-261 (2009).

748 39. Z. Corte, R. Venta, Biological variation of free plasma amino acids in healthy individuals. *Clin Chem Lab*
749 *Med* **48**, 99-104 (2010).

750 40. M. Kwolek-Mirek, R. Zadrag-Tecza, Comparison of methods used for assessing the viability and vitality
751 of yeast cells. *FEMS Yeast Res* **14**, 1068-1079 (2014).

752 41. H. Liu, J. Kohler, G. R. Fink, Suppression of hyphal formation in *Candida albicans* by mutation of a STE12
753 homolog. *Science* **266**, 1723-1726 (1994).

754 42. A. Kuhbacher, K. Sohn, A. Burger-Kentischer, S. Rupp, Immune Cell-Supplemented Human Skin Model
755 for Studying Fungal Infections. *Methods Mol Biol* **1508**, 439-449 (2017).

756 43. P. G. Pappas, M. S. Lionakis, M. C. Arendrup, L. Ostrosky-Zeichner, B. J. Kullberg, Invasive candidiasis.
757 *Nat Rev Dis Primers* **4**, 18026 (2018).

758 44. V. Llopis-Torregrosa *et al.*, Trk1-mediated potassium uptake contributes to cell-surface properties and
759 virulence of *Candida glabrata*. *Sci Rep* **9**, 7529 (2019).

760 45. A. W. Clemons, S. A. Lindsay, S. A. Wasserman, An effector Peptide family required for *Drosophila*
761 toll-mediated immunity. *PLoS Pathog* **11**, e1004876 (2015).

762 46. M. J. Niemiec *et al.*, Dual transcriptome of the immediate neutrophil and *Candida albicans* interplay. *BMC*
763 *genomics* **18**, 696 (2017).

764 47. R. P. Gazendam *et al.*, Two independent killing mechanisms of *Candida albicans* by human neutrophils: 765 evidence from innate immunity defects. *Blood* **124**, 590-597 (2014).

766 48. F. Helmchen, W. Denk, Deep tissue two-photon microscopy. *Nat Methods* **2**, 932-940 (2005).

767 49. W. R. Zipfel *et al.*, Live tissue intrinsic emission microscopy using multiphoton-excited native 768 fluorescence and second harmonic generation. *Proc Natl Acad Sci U S A* **100**, 7075-7080 (2003).

769 50. L. E. Mansson, K. Melican, B. A. Molitoris, A. Richter-Dahlfors, Progression of bacterial infections 770 studied in real time—novel perspectives provided by multiphoton microscopy. *Cell Microbiol* **9**, 2334-2343 771 (2007).

772 51. T. C. Doyle, K. A. Nawotka, C. B. Kawahara, K. P. Francis, P. R. Contag, Visualizing fungal infections in 773 living mice using bioluminescent pathogenic *Candida albicans* strains transformed with the firefly 774 luciferase gene. *Microb Pathog* **40**, 82-90 (2006).

775 52. S. Keppler-Ross, C. Noffz, N. Dean, A new purple fluorescent color marker for genetic studies in 776 *Saccharomyces cerevisiae* and *Candida albicans*. *Genetics* **179**, 705-710 (2008).

777 53. M. Alieva, L. Ritsma, R. J. Giedt, R. Weissleder, J. van Rheenen, Imaging windows for long-term intravital 778 imaging: General overview and technical insights. *Intravital* **3**, e29917 (2014).

779 54. E. J. Helmerhorst, M. P. Murphy, R. F. Troxler, F. G. Oppenheim, Characterization of the mitochondrial 780 respiratory pathways in *Candida albicans*. *Biochim Biophys Acta* **1556**, 73-80 (2002).

781 55. L. Narunsky-Haziza *et al.*, Pan-cancer analyses reveal cancer-type-specific fungal ecologies and 782 bacteriome interactions. *Cell* **185**, 3789-3806 e3717 (2022).

783 56. G. Moran *et al.*, Comparative genomics using *Candida albicans* DNA microarrays reveals absence and 784 divergence of virulence-associated genes in *Candida dubliniensis*. *Microbiology* **150**, 3363-3382 (2004).

785 57. S. Rivera, F. J. Lopez-Soriano, J. Azcon-Bieto, J. M. Argiles, Blood amino acid compartmentation in mice 786 bearing Lewis lung carcinoma. *Cancer Res* **47**, 5644-5646 (1987).

787 58. S. C. Piyankarage, H. Augustin, Y. Grosjean, D. E. Featherstone, S. A. Shippy, Hemolymph amino acid 788 analysis of individual *Drosophila* larvae. *Anal Chem* **80**, 1201-1207 (2008).

789 59. A. Maggio *et al.*, Does proline accumulation play an active role in stress-induced growth reduction? *Plant* 790 *J* **31**, 699-712 (2002).

791 60. T. Nanjo *et al.*, Toxicity of free proline revealed in an *arabidopsis* T-DNA-tagged mutant deficient in 792 proline dehydrogenase. *Plant Cell Physiol* **44**, 541-548 (2003).

793 61. R. L. Goncalves *et al.*, Sources of superoxide/H₂O₂ during mitochondrial proline oxidation. *Redox Biol* **2**, 794 901-909 (2014).

795 62. N. Krishnan, A. R. Doster, G. E. Duhamel, D. F. Becker, Characterization of a *Helicobacter hepaticus* putA 796 mutant strain in host colonization and oxidative stress. *Infect Immun* **76**, 3037-3044 (2008).

797 63. C. N. Broxton, V. C. Culotta, SOD Enzymes and Microbial Pathogens: Surviving the Oxidative Storm of 798 Infection. *PLoS Pathog* **12**, e1005295 (2016).

799 64. M. Nomura, H. Takagi, Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen 800 reactive species caused by a toxic proline catabolism intermediate. *Proc Natl Acad Sci U S A* **101**, 12616- 801 12621 (2004).

802 65. D. L. Moyes *et al.*, *Candidalysin* is a fungal peptide toxin critical for mucosal infection. *Nature* **532**, 64- 803 68 (2016).

804 66. H. Kavermann *et al.*, Identification and characterization of *Helicobacter pylori* genes essential for gastric 805 colonization. *J Exp Med* **197**, 813-822 (2003).

806 67. A. A. Tandara, T. A. Mustoe, MMP- and TIMP-secretion by human cutaneous keratinocytes and 807 fibroblasts—impact of coculture and hydration. *J Plast Reconstr Aesthet Surg* **64**, 108-116 (2011).

808 68. R. L. Kitchener, A. M. Grunden, Prolidase function in proline metabolism and its medical and 809 biotechnological applications. *J Appl Microbiol* **113**, 233-247 (2012).

810 69. R. S. Wakade, M. Huang, A. P. Mitchell, M. Wellington, D. J. Krysan, Intravital Imaging of *Candida* 811 *albicans* Identifies Differential In Vitro and In Vivo Filamentation Phenotypes for Transcription Factor 812 Deletion Mutants. *mSphere* **6**, e0043621 (2021).

813

814 Acknowledgments

815 The authors would like to thank the members of the Per O. Ljungdahl, Claes Andréasson, and 816 Sabrina Büttner laboratories (SU) for their constructive comments throughout the course of this 817 work. Gratitude is extended to the following for supplying strains: Valmik Vyas and Gerald R. 818 Fink (MIT, Cambridge, MA, USA); Valerie Dianne Damiano, Ute Römling (Karolinska 819 Institute, Solna, SE); Måns Ullberg (Karolinska Hospital, Huddinge, SE); Matthew Anderson 820 (Ohio State University, USA); Oliver Bader (University Medical Center Göttingen, Göttingen, 821 DE). We thank Francisco Javier Alvarez and Leopold Ilag for fruitful discussions. We would 822 also like to acknowledge Chris Molenaar of the Imaging Facility-Stockholm University (IFSU),

823 and staff of the Experimental Core Facility-Stockholm University and the Intravital Microscopy
824 Unit-Stockholm University (IVMSU), which is part of the dispersed Swedish National
825 Microscopy Infrastructure (NMI) funded by the Swedish Research Council (VR-RFI 2019-
826 00217).

827
828 **Funding:** The research in the collaborating laboratories was supported by:
829 Swedish Research Council 2019-01547, 2022-01190 (POL); 2019-01790 (CP); 2022-00850
830 (CFU)
831 Marie Curie - Initial Training Networks (ITN), ImResFun 606786 (POL, KK, SR, TL)
832 China MOST Key R&D Program 2022YFC2303200; 2020YFA 0907200 (CC)
833 National Natural Science Foundation of China 32170195 (CC)
834 Shanghai “Belt and Road” Joint Laboratory Project 22490750200 (CC)
835 Austrian Science Fund (FWF) ChromFunVir P-32582 (KK)
836 European Commission, FP7 Framework Programme, Fungitect 602125 (TL)
837

838 **Author contributions:**

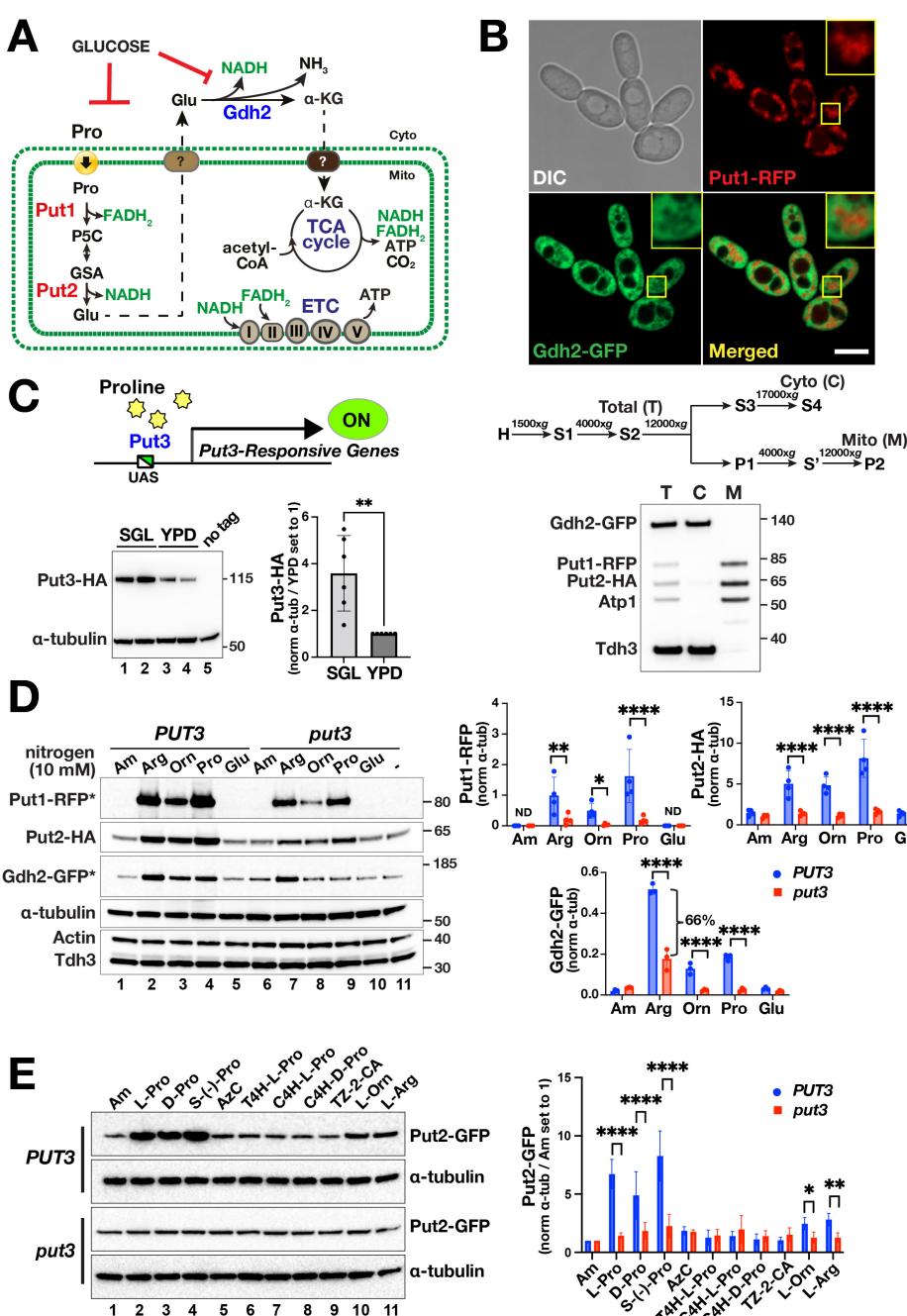
839 Conceptualization: POL, FGSS, MW, CP, BB-V, CC and TJ
840 Methodology: FGSS, CP, BB-V, CC, TJ, CFU, SR, KK
841 Investigation: FGSS, CP, BB-V, TJ, AK, KR, NU, SJ, FN and MW
842 Visualization: FGSS, CP, BB-V, TJ, AK and NU
843 Funding acquisition: POL, CP, CC, KK, SR, CU and TL
844 Supervision: POL, FGSS, CP, CC, KK, SR, CFU and TL
845 Writing – original draft: FGSS, POL
846 Writing – review & editing: FGSS, POL, CP, CC, SJ and FN
847

848 **Competing interests:** Authors declare that they have no competing interests.
849

850 **Data and materials availability:** All data are available in the main text or the Supplementary
851 Materials.
852

853

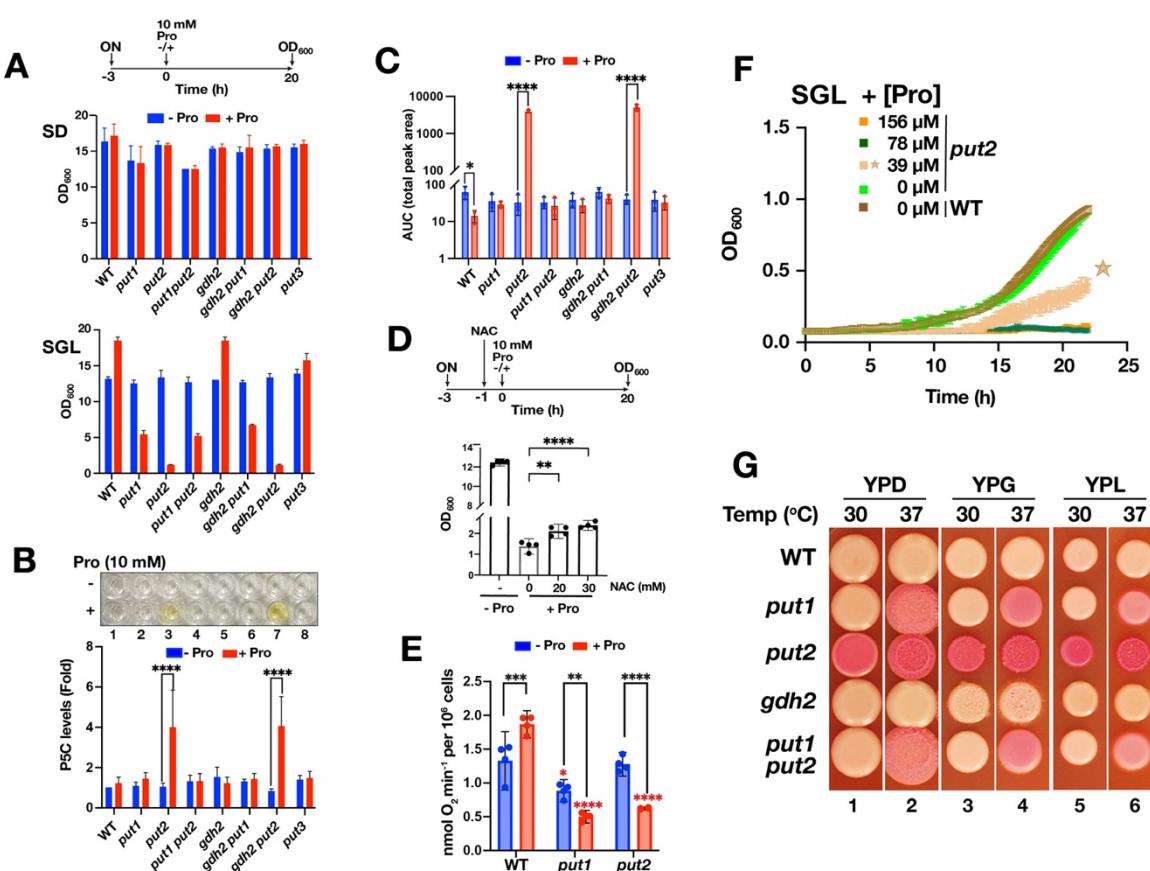
Figures


854

855

Fig. 1. Proline as sole energy source supports growth of diverse pathogenic *Candida* species.

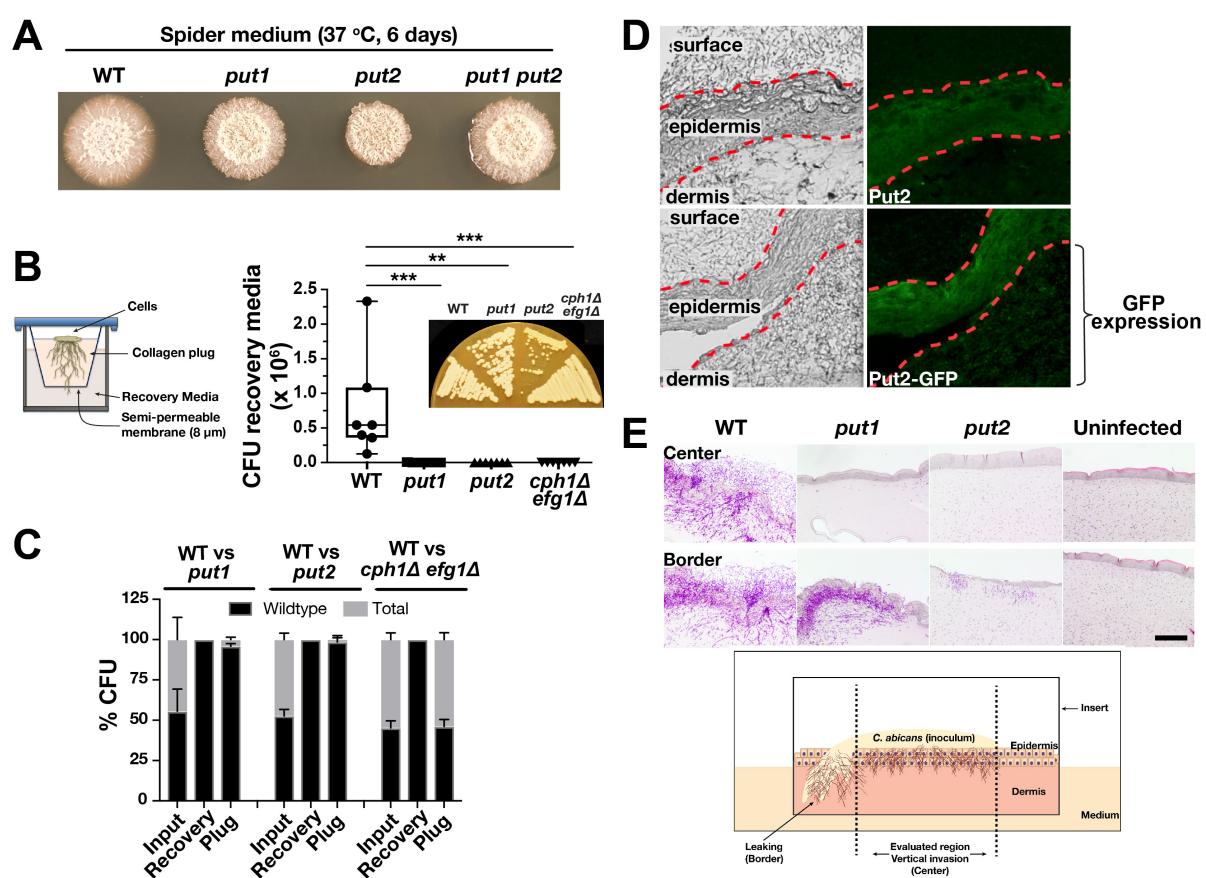
(A) Proline utilization by members of the *Candida* pathogenic species complex. The ability of the following fungal strains to grow using proline as the sole source of energy was assessed: *C. albicans* (SC5314, PLC124 and MAY7) dilutions 1-3; *S. cerevisiae* (haploid S288c and diploid Σ1278b) dilutions 4 and 5; *C. utilis* (F608) dilution 6; *C. tropicalis*, (SM1541 and ATCC750 (from two different laboratories)) dilutions 7-9; *C. dubliniensis* (SM1718 and Wü284 (from two different laboratories)) dilutions 10-12; *C. glabrata* (CBS138 and Peu927) dilutions 13-14; *C. parapsilosis* (ATCC22019 from three different laboratories) dilutions 15-17; *C. krusei* (ATCC6258) dilution 18; *C. albicans* (SC5314) dilution 19; *S. cerevisiae* (S288c) dilution 20; *C. lusitaniae* (DSM 70102) dilution 21; *C. guilliermondii* (ATCC6260) dilution 22; *C. auris* (B11220) dilution 23; and *Cryptococcus neoformans* (NEQS) dilution 24. All strains were pre-grown on SD from single colonies, washed 2X with H₂O and resuspended in H₂O at an OD₆₀₀ ≈ 1. Serial dilutions were prepared and spotted on the indicated medium: YPD, SP (10 mM proline),


866 and SPD (10 mM proline, 2% glucose). The plates were incubated at 30 °C for 48 h and photographed. **(B)**
867 Phylogenetic tree of the *Candida* pathogenic species complex (adapted from (19)). The strains in bold text were
868 analyzed for their ability to use proline as sole energy source (**A**); strains with asterisks are known to cause infections
869 in humans. The ploidy, haploid (1N) and diploid (2N), of the strains are as indicated. **(C)** *PUT1* and *PUT2* are
870 essential for proline utilization. Washed cells from YPD pre-cultures were serially diluted and spotted on buffered
871 (pH = 6; 50 mM MES) SD* and SPD, incubated at 30 °C for 4 days. SD* contains a non-standard concentration of
872 ammonium sulfate, 5 mM compared to 38 mM of standard SD. Strains: WT (SC5314); pV1093-derived strains:
873 *put1*-/- (CFG149), *put2*-/- (CFG143) and *put3*-/- (CFG150); pV1524-derived strains: *put1*-/- (CFG154), *put2*-/-
874 (CFG318) and *put3*-/- (CFG156); *put1*-/- *put2*-/- (*put1 put2*, CFG159) derived using both pV1524 and pV1093; and
875 control strains pV1093 (CFG181) and pV1524 (CFG182) carrying the vector without guide RNA. **(D)** Genetic
876 reconstitution to assess the accuracy of CRISPR/Cas9 induced *put1*-/- and *put2*-/- mutations. DNA fragments,
877 amplified from WT (SC5314), that span the CRISPR/Cas9-induced mutations were introduced into strains CFG154
878 (*put1*-/-) and CFG318 (*put2*-/-). Transformants capable of utilizing proline were selected on SPD media and their
879 growth was assessed on YPD, SP and SPG. Plates were incubated at 30 °C for 4 days. The genotypes of the strains
880 were analyzed by PCR-restriction digest (PCR-RD; **Fig. S1B**). Reconstituted strains: *PUT1*+- (CFG379, CFG380),
881 *PUT2*+- (CFG381, CFG382).

882
883 **Fig. 2. Proline catabolism is induced by proline in a Put3-dependent and -independent manner.**
884 (A) Scheme of proline catabolism in *C. albicans*. Proline is transported into mitochondria by an unknown process
885 and converted to glutamate in two enzymatic steps, catalyzed by Put1 and Put2, generating reduced electron carriers
886 that are oxidized by the electron transport chain (ETC) resulting in the generation of ATP. Glutamate is deaminated
887 in the cytoplasm by Gdh2. The presence of glucose represses mitochondrial functions and leads to reduced Gdh2
888 expression. (B) Microscopy and subcellular fractionation of proline catabolic enzymes. Upper panels; representative
889 confocal (Airyscan) image of strain CFG407 grown in YPG for 4 h. Lower panels; homogenized cell extracts
890 prepared from CFG433, pre-grown in YPD and shifted to YPG 4h, 37°C, were analyzed according to the indicated
891 centrifugation scheme; homogenized cell extracts (H), supernatant (S) and pellet fractions (P). The Total (T) (S2),
892 cytosolic (C) (S4) and mitochondrial (M) (P2) fractions were analyzed by immunoblotting. Put1-RFP (~81.9 kDa)
893 and Put2-HA (~69.8 kDa) co-fractionate with the mitochondrial marker (Atp1, ~59 kDa). Whereas Gdh2-GFP
894 (~141 kDa) co-fractionates with the cytosolic enzyme, Tdh3 (~35.8 kDa). The micrographs and subcellular
895 fractionation are consistent and demonstrate the clear spatial exclusivity of Put1-RFP and Gdh2-GFP signals. (C)
896 Put3 expression is influenced by the growth medium. Upper panel, schematic diagram of proline-dependent
897 activation of Put3-responsive genes. Lower panel (left), strains expressing Put3-HA (CFG187, lanes 1 and 3;
898 CFG188, lanes 2 and 4) were grown to log phase in SGL and YPD as indicated and processed for immunoblotting.
899 Lower panel (right), the relative strength of the immunoreactive Put3-HA signals were determined; the signals were
900 normalized to α -tubulin and to the levels in YPD set to 1 (Ave. \pm SD, n = 6; **p < 0.01 by student t-test). (D) Put3-
901

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
Proline-dependent fungal virulence

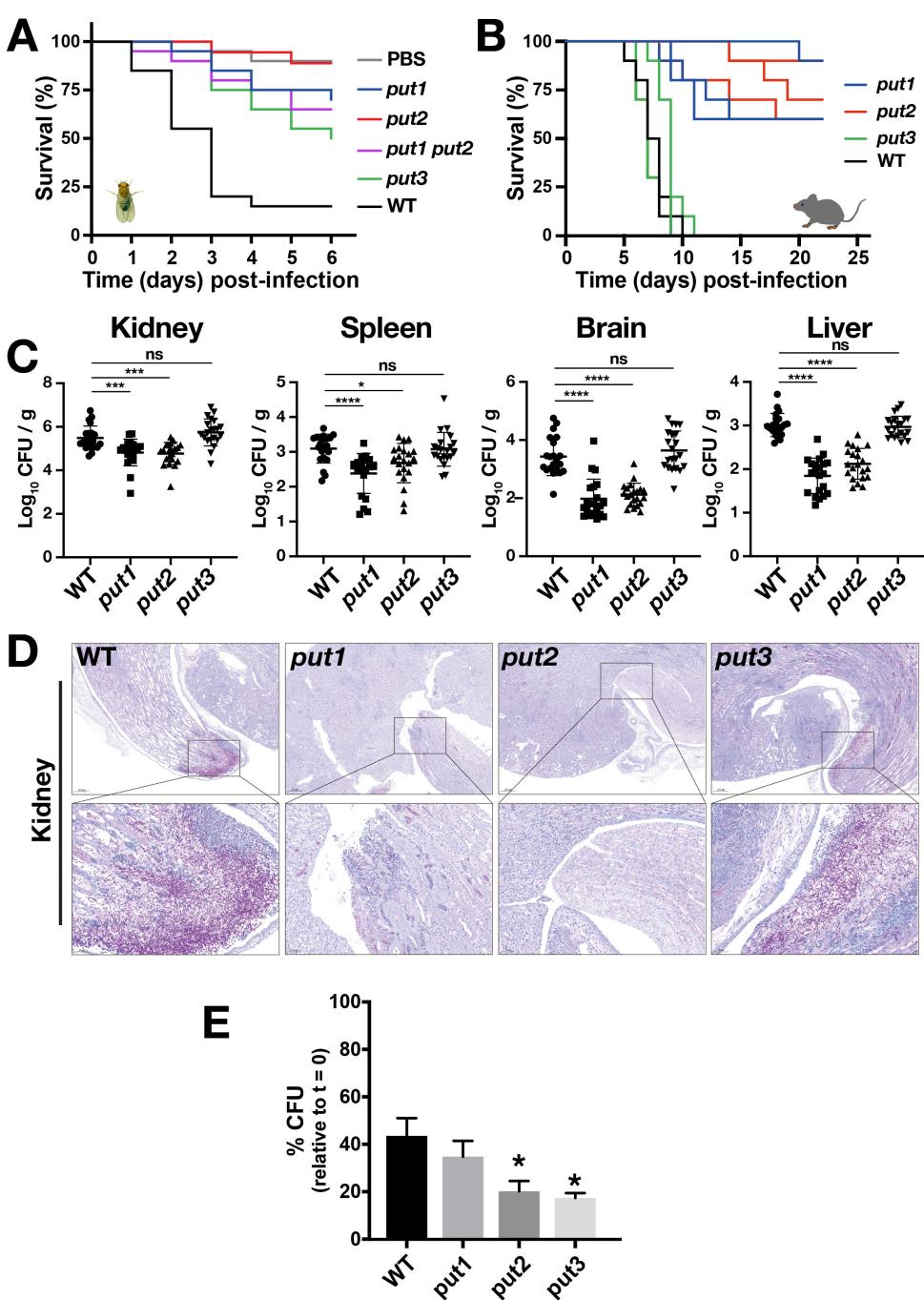
dependent and -independent induction of PUT enzymes. Left panels, immunoblot analysis of extracts prepared from exponentially growing cultures of *PUT3*^{+/+} (*PUT3*, CFG441) and *put3*^{-/-} (*put3*, CFG443) in SGL 1 h after the addition of 10 mM of the indicated nitrogen sources. The Put1-RFP and Gdh2-GFP signals (*) were enhanced for display via the high slider in Image Lab (BioRad). Right panels, the relative strengths of the immunoreactive bands were determined; the signals were normalized to α -tubulin (Ave. \pm SD, n \geq 3; **** p <0.0001, ** p <0.01, * p <0.05 by 2-way ANOVA with Sidak's post hoc test). Note that Put1-RFP is not detected (ND) in the absence of proline. (E) Put3 exhibits specificity for proline. Left panels, immunoblot analysis of extracts prepared from exponentially growing cultures of *PUT3*^{+/+} (*PUT3*, CFG259) and *put3*^{-/-} (*put3*, CFG301) in SGL 1 h after the addition of 10 mM of the indicated compounds: Ammonium sulfate (Am); L-proline; D-proline; S-(-)-proline; Azetidine carboxylate (AzC); T-4-hydroxy-L-proline; C-4-hydroxy-L-proline, C-4-hydroxy-D-proline; Thiazolidine-2-carboxylic acid; L-ornithine; and L-arginine. The extracts were processed as in (D). The relative strength of the immunoreactive Put2-GFP signals were determined; the signals were normalized to α -tubulin and to the levels in Am set to 1 (Ave. \pm SD, n = 4) and were analyzed by 2-way ANOVA with Sidak's post hoc test (**** p <0.0001, ** p <0.01, * p <0.05).


916

917

Fig. 3. Proline is toxic in cells unable to catabolize it.

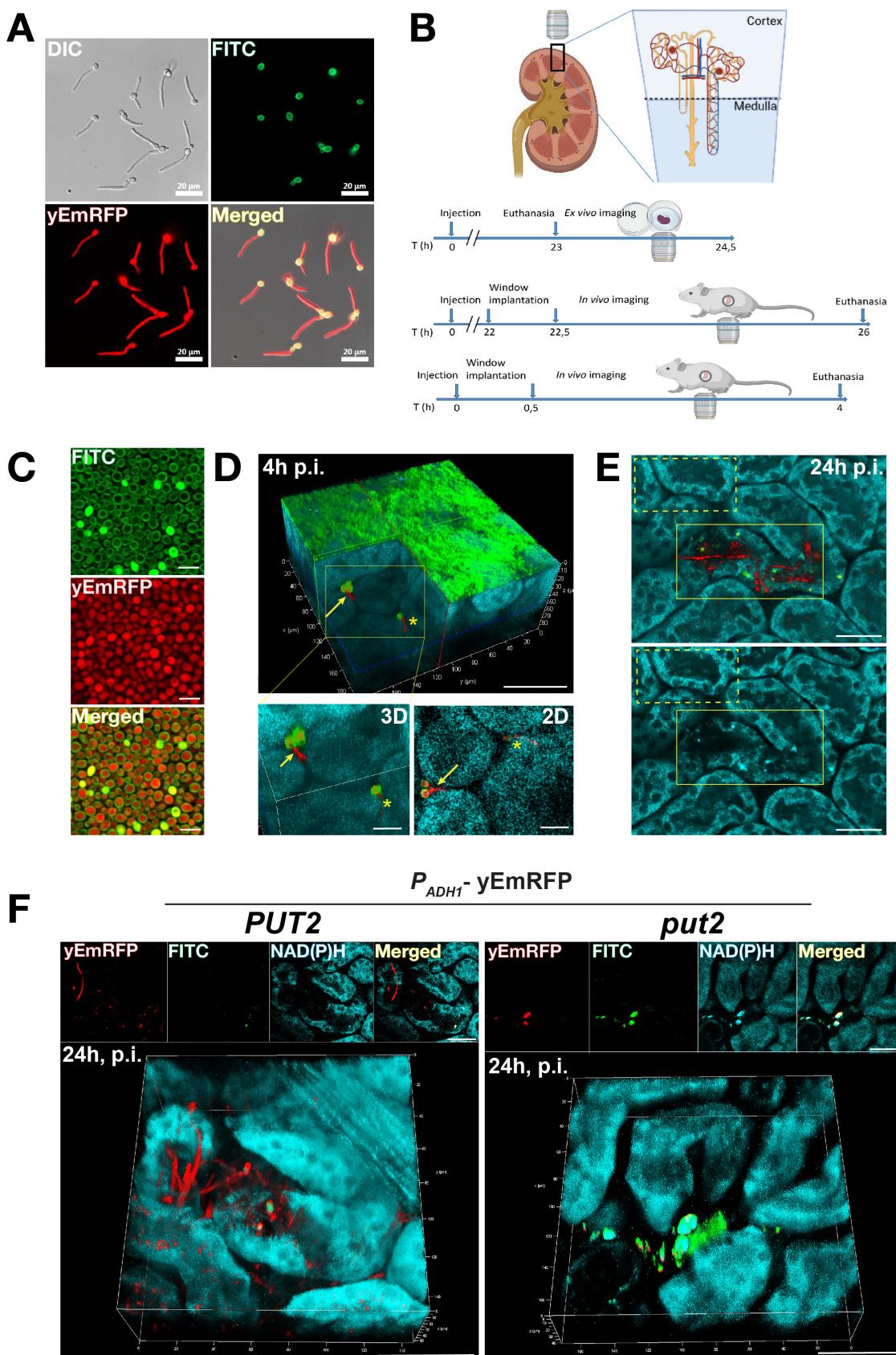
(A) Overnight (ON) cultures of strains with the indicated genotypes in SD and SGL were used to inoculate fresh media and incubated 3 h shaking to obtain exponentially growing cultures. At t=0 ($OD_{600} = 1$) the cultures were split into two tubes and one tube received 10 mM proline (red) and the other an equal volume of H₂O (blue). Growth was measured (OD_{600}) after incubation with shaking for 20 h at 30 °C. Strains used: WT (SC5314); *put1* (CFG154), *put2* (CFG318); *put3* (CFG156); *put1 put2* (CFG159); *gdh2* (CFG279); *gdh2 put1* (CFG364); *gdh2 put2* (CFG366). Null strains are indicated in lower case letters (e.g., *put1* = *put1*−/−). Results presented (Ave. \pm SD; n=3) were analyzed by 2-way ANOVA with Sidak's post hoc test. All pairwise comparisons for SGL have $p < 0.0001$ except *put3* ($p < 0.001$). (B) Inactivation of *PUT2* leads to the accumulation of P5C in the presence of proline. Ten mM proline or an equal volume of H₂O was added to exponentially growing cultures of the strains as in (A) in SGL and the levels of P5C were determined after 2 h. The data are presented as fold change of P5C levels relative to wildtype strain grown without proline (set to 1). Results presented (Ave. \pm SD; n=5) were analyzed by 2-way ANOVA with Sidak's post hoc test (**** $p < 0.0001$). (C) Inactivation of *PUT2* generates elevated ROS in the presence of proline. Strains as in (A) were grown as in (B) and the levels of ROS was determined 6 h after the addition of 10 mM proline or an equal volume of H₂O. The data are presented as area under the curve (AUC) (Ave. \pm SD; n=3) and analyzed by 2-way ANOVA with Sidak's post hoc test (**** $p < 0.0001$, * $p < 0.05$). (D) Proline hypersensitivity of *put2* mutants is largely independent of ROS accumulation. Strain CFG318 grown as in (A) in SGL, and 1 h prior to proline addition cultures were diluted 1:1 with SGL containing freshly dissolved n-acetylcysteine (NAC) to the indicated concentration. Growth was measured (OD_{600}) after incubation with shaking for 20 h at 30 °C. Results presented (Ave. with 95% CI) were analyzed by one-way ANOVA ($p = 0.0002$) with Dunnett's post hoc test relative to no NAC (**** $p < 0.0001$, ** $p < 0.01$). (E) Proline inhibits respiration in *put* mutants. Proline (10 mM; + Pro) or an equal volume of H₂O (-Pro) was added to exponentially growing cultures of *put1* (CFG154) and *put2* (CFG318) in SGL 4 h prior to measuring oxygen consumption. Data are presented as mean with 95% CI (n=4) and were analyzed either by 2-way ANOVA (effect of proline addition; black asterisks) or one-way ANOVA (effect of mutation on respiration; red asterisks) with multiple comparison test (**** $p < 0.0001$, *** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$). (F) Cells carrying *put2* mutations are hypersensitive to submillimolar concentrations of proline. The growth of *put2*−/− (CFG318) was monitored in a TECAN microplate reader in a 100 μ l of SGL culture \pm indicated submillimolar concentrations of proline. The starting $OD_{600} \approx 0.05$. The data as in Fig. S3F, is presented as Ave. \pm SD (n=4). (G) Cells lacking the capacity to catabolize proline exhibit enhanced death. Exponential cultures of WT (SC5314), *put1* (CFG154), *put2* (CFG318), *gdh2* (CFG279), and *put1 put2* (CFG159) in YPD were harvested, washed and resuspended in H₂O at an $OD_{600} \approx 1$, and 5 μ l were spotted on the indicated medium containing the viability indicator Phloxine B (10 μ g/ml). The plates were incubated for 3 days at the indicated temperature and photographed. Phloxine B accumulates in dead cells.


950

951

Fig. 4. Proline catabolism is required for invasive growth.

(A) Cells from overnight cultures of WT (SC5314), *put1* (CFG154), *put2* (CFG318), and *put1 put2* (CFG159) in YPD were harvested, washed, resuspended in PBS ($OD_{600} \approx 1$) and 5 μ l were spotted on Spider medium, incubated 6 days at 37 °C, and photographed. Null strains are indicated in lower case letters (e.g., *put1* = *put1*-). (B) Schematic diagram of the collagen invasion assay. WT (SC5314), *put1* (CFG154), *put2* (CFG318), and *cph1Δ/Δ efg1Δ/Δ* (CASJ041) strains added on the top of the collagen gel (PureCol EZ) in a transwell insert, incubated 14 days at 37 °C after which the CFU in the recovery media was determined (see Methods). Box and whiskers plot derived from seven biological replicates analyzed by Kruskal-Wallis test ($****p < 0.0001$) followed by Dunnett's post hoc test ($***p < 0.001$, $**p < 0.01$). (Inset) Cells atop the collagen matrix after the 14-day growth were restreaked on YPD and then incubated for 2 days at 30°C. (C) The *put* mutants display reduced fitness compared to wildtype in a competitive collagen invasion assay. Cells as in (B) were mixed at a 50:50 ratio as indicated. The mixture of WT:mutant cells were added on top of the collagen gel and incubated as in (B). Cells were recovered from input, recovery media and plug (see Methods). The genotype of the cells in the input, recovery media and plug were inferred by growth based-assays on SPD or Spider media to determine the WT:mutant ratio. (D) Proline catabolism is activated during invasive growth into reconstituted human skin. *PUT2* (PLC016) and *PUT2-GFP* (CFG219) cells were applied on the top of the stratified epidermal layer as indicated, and 2 days post infection, invasive growth was monitored by fluorescence microscopy. The dashed red lines demarcate the surface and dermal faces of the epidermal layer. Keratinocytes in the epidermal layer exhibit autofluorescence. Note the enhanced *Put2-GFP* signal in the epidermal and underlying dermal layers. (E) Proline catabolism is required for invasive growth through reconstituted human skin. Upper panels, Periodic Acid-Schiff (PAS) staining of skin model 2 days after infecting with WT (SC5314), *put1* (CFG154) and *put2* (CFG318) as indicated. Lower panel, schematic diagram of the infection model depicting the center and border areas. Compared to WT, *put1* and *put2* cells exhibit essentially a non-invasive phenotype in the center, similar to the uninfected control, and the greatly reduced capacity of *put2* cells to grow invasively is clearly evident.



976

977 **5. Proline catabolism is required for virulence in *Drosophila* and murine infection models.**

978 (A) *D. melanogaster* Bom^{455C} flies were infected with *WT* and the indicated *put* mutants and their survival was
 979 followed for 6 days. Each curve in the plot were average of at least 6 independent experiments (20 flies/strain),
 980 initiated on different days. Strains used: *WT* (SC5314), *put1* (CFG154), *put2* (CFG318), *put3* (CFG156), and *put1*
 981 *put2* (CFG159). (****p<0.0001 by Log-rank (Mantel-Cox) test). Null strains are designated as e.g., *put1*=*put1*-.
 982 (B) Female C57BL/6 mice were intravenously infected with *WT* and the indicated *put* mutants and their survival
 983 was followed for 23 days. Each curve in the plot were average of 3 independent experiments (10 mice/strain;
 984 infected with 2 x 10⁵ CFU/mice). Strains used: *WT* (SC5314), *put1* (CFG154), *put2* (CFG318), and *put3* (CFG156).
 985 (C) The fungal load (CFU) in the organs indicated was determined day 5 post-infection. The results from three
 986 independent experiments (21 mice/strain infected as in B) are plotted. Each symbol represents a sample from an
 987 individual mouse (*p<0.05, **p<0.01, ****p<0.0001, one-way ANOVA with Dunnett's post hoc test). (D)
 988 Kidneys of infected mice were removed day 5 post infection, fixed in 4% paraformaldehyde at room temperature,
 989 sectioned and stained with PAS. Bars = 50 µm. (E) Human neutrophils were co-cultured with *WT* and *put* mutants
 990 as indicated. Each bar in the plot is derived from 3 independent experiments with 3 donors with a MOI of 5:1
 991 (*Candida*:neutrophils). The survival of fungal cells was assessed after 2 h of co-culture. (Ave. ±SEM; *p < 0.05 by
 992 one-way ANOVA with Dunnett's post hoc test). Strains used: Wildtype (SC5314), *put1* (CFG154), *put2* (CFG318),
 993 and *put3* (CFG156).

994

995

996 **Fig. 6. Visualizing acute *C. albicans* infections of the kidney in real time in a living host – Intravital**
997 **microscopy.**

998 (A) Exponentially growing *C. albicans* (PLC096) constitutively expressing yEmRFP in YPD were harvested,
999 washed and stained with FITC; under these growth conditions, cells are in budding yeast-forms. The cells were
1000 resuspended in DMEM+10% FBS and the induction of hyphal growth was monitored by fluorescence microscopy.

1001 Note: FITC fluorescence remains exclusively associated with the mother cells. **(B)** Schematic overview of the
1002 imaged kidney, and timelines depicting the experimental design for *ex vivo* imaging 24 h post injection (p.i.), *in*
1003 *vivo* intravital imaging (IVM) between 22.5-26 h p.i., and between 0.5-4 h p.i., respectively. **(C)** Representative
1004 aliquot of *C. albicans* (PLC096) cells as in **(A)** prepared for IVM. The micrographs of FITC stained and yEmRFP
1005 expressing yeast-form cells were captured with the two-photon microscope used for IVM of infected mice kidneys
1006 (panels **D-F**). **(D)** 3D reconstruction of an intravitaly acquired z-stack through 90 μ m of the renal cortex of a
1007 BALB/cAnNCrl mouse injected with *C. albicans* (PLC096). Upper panel, the 3D reconstruction was virtually
1008 clipped to expose the intertubular localized *C. albicans* cells. Overlay of 3 channels is shown: yEmRFP (red), FITC
1009 (green), autofluorescence of NAD(P)H (teal). Arrow points to a mother cell (yEmRFP and FITC-positive) with an
1010 emerging hyphae (yEmRFP positive). The star marks a filament that is penetrating a tubular epithelial cell. The
1011 collagen associated with the renal capsule exhibits strong green autofluorescence. Scale bar; 50 μ m. Lower panels,
1012 higher magnification of the area marked by yellow box in 3D (left) and a representative single 2D plane (right).
1013 Scale bars 20 μ m. **(E)** Single plane images from a z-stack of *ex-vivo* imaged renal cortex 24 h p.i with *PUT2*^{+/+}
1014 (PLC096). Upper panel, overlay of 3 channels is shown: yEmRFP (red), FITC (green) and autofluorescence of
1015 NAD(P)H (teal). yEmRFP and FITC-positive fungal mother cells with long extended hyphal filaments (yEmRFP
1016 only) growing through and inside the tubuli. Lower panel, autofluorescence only, allows comparison of the
1017 morphologies of renal cells in non-infected (yellow box, dotted line) with infected (yellow box, solid line) areas.
1018 Note: the morphology of tubuli in the infected area appear disrupted. Scale bar 40 μ m. **(F)** 3D reconstructions of
1019 intravitaly acquired z-stacks through 40-50 μ m of the renal cortex of BALB/cByJ SOPF mice, 24 h p.i. with
1020 *PUT2*^{+/+} (*PUT2*, PLC096) and *put2*^{-/-} (*put2*, CFG479) *C. albicans* constitutively expressing yEmRFP. Panels on
1021 top of each stack show single 2D plane images for the individual channels and merged. Left panel, *PUT2* mother
1022 cells (yEmRFP and FITC positive) with multiple long filaments (yEmRFP positive) are observed to be growing
1023 through and inside tubuli. Right panel, *put2* mother cells (yEmRFP and FITC positive) are found accumulated, no
1024 filamentation is visible. Scale bar; 50 μ m.

1025
1026

1027 **Supplementary Materials**

1028
1029 **Extended Method Details (Subheadings):**
1030 Organisms, media, and culture
1031 Genetic manipulation and gene inactivation
1032 Reporter strain construction
1033 Protein expression analysis
1034 Immunoblot
1035 Subcellular fractionation
1036 Liquid growth assay
1037 Assessment of fungal growth on solid media
1038 Fungal cell viability assay
1039 P5C quantification
1040 ROS assay
1041 Oxygen consumption measurement
1042 ATP quantification
1043 Collagen matrix invasion assay
1044 Reconstituted human epithelial (skin) (RHE) model
1045 Confocal (Airyscan) Microscopy
1046 *Drosophila* virulence assay
1047 Neutrophil killing assay
1048 Mouse infection model
1049 Intravital and *ex vivo* two (2)-photon microscopy
1050

1051 **Figures:**

1052 **Figure S1. Strain construction and targeted reconstitution**
1053 **Figure S2. Put3-dependent and -independent induction of PUT enzymes**
1054 **Figure S3. Proline catabolic mutants are sensitive to exogenous proline**
1055 **Figure S4. Cells lacking the capacity to catabolize proline exhibit enhanced death.**
1056 **Figure S5. Expression of Proline Utilization enzymes during growth in the presence of different**
1057 **protein sources**
1058 **Figure S6. Mutations inactivating proline catabolism attenuate virulence in BALB/cAnNCrl mice**
1059

1060 **Tables:**

1061 **Table S1. Key reagents and resources**
1062 **Table S2. Primers used in this study**

1063 **Videos:**

1064 **SMov 1** Animation of a 3D reconstruction of an intravitaly acquired z-stack through the renal cortex of a
1065 BALB/cByJ SOPF mouse, 24h p.i. with wildtype *C. albicans*, expressing yEmRFP and stained with
1066 FITC, merged channels: yEmRFP (red), FITC (green), Autofluorescence of NAD(P)H (teal) (as in **Fig. 6F, left**).
1067

1068 **SMov 2** Animation of a 3D reconstruction of an *ex vivo* acquired z-stack through the renal cortex of a
1069 BALB/cByJ SOPF mouse, 24h p.i. with wildtype *C. albicans*, expressing yEmRFP and stained with
1070 FITC, merged channels: yEmRFP (red), FITC (green), Autofluorescence of NAD(P)H (teal).
1071

1072 **SMov 3** Animation of a 3D reconstruction of an intravitaly acquired z-stack through the renal cortex of a
1073 BALB/cByJ SOPF mouse, 24h p.i. with *put2* *C. albicans*, expressing yEmRFP and stained with FITC,
1074 merged channels: yEmRFP (red), FITC (green), Autofluorescence of NAD(P)H (teal) (as in **Fig. 6F, right**).
1075

1076 **SMov 4** Animation of a 3D reconstruction of an *ex vivo* acquired z-stack through the renal cortex of a
1077 BALB/cByJ SOPF mouse, 24h p.i. with *put2* *C. albicans*, expressing yEmRFP and stained with FITC,
1078 merged channels: yEmRFP (red), FITC (green), Autofluorescence of NAD(P)H (teal).