

1 **Genome diversity of *Leishmania aethiopica***

2 Amber Hadermann^{1,2}#, Senne Heeren^{1,2,3}, Ilse Maes¹, Jean-Claude Dujardin¹, Małgorzata
3 Anna Domagalska¹, Frederik Van den Broeck^{1,2}

4
5 ¹ Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium

6 ² Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical
7 Research, Katholieke Universiteit Leuven, 3000 Leuven Belgium

8 ³ Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium

9 # Current affiliation: Global Health Institute, University of Antwerp, 2000 Antwerp, Belgium.

10
11 Corresponding authors:

12 Frederik Van den Broeck (fvandenbroeck@gmail.com) ORCID ID: 0000-0003-2542-5585

13 Małgorzata Anna Domagalska (mdomagalska@itg.be)

14
15 **KEYWORDS**

16 population genomics, hybridization, loss-of-heterozygosity, asexual evolution

17
18 **ABSTRACT**

19
20
21 *Leishmania aethiopica* is a zoonotic Old World parasite transmitted by Phlebotomine sand
22 flies and causing cutaneous leishmaniasis in Ethiopia and Kenya. Despite a range of clinical
23 manifestations and a high prevalence of treatment failure, *L. aethiopica* is the most neglected
24 species of the *Leishmania* genus in terms of scientific attention. Here, we explored the genome
25 diversity of *L. aethiopica* by analyzing the genomes of twenty isolates from Ethiopia.
26 Phylogenomic analyses identified two strains as interspecific hybrids involving *L. aethiopica*
27 as one parent and *L. donovani* and *L. tropica* respectively as the other parent. High levels of
28 genome-wide heterozygosity suggest that these two hybrids are equivalent to F1 progeny that
29 propagated mitotically since the initial hybridization event. Analyses of allelic read depths
30 further revealed that the *L. aethiopica* - *L. tropica* hybrid was diploid and the *L. aethiopica* - *L.*
31 *donovani* hybrid was triploid, as has been described for other interspecific *Leishmania* hybrids.
32 When focusing on *L. aethiopica*, we show that this species is genetically highly diverse and
33 consists of both asexually evolving strains and groups of recombining parasites. A remarkable
34 observation is that some *L. aethiopica* strains showed an extensive loss of heterozygosity
35 across large regions of the chromosomal genome, which likely arose from gene
36 conversion/mitotic recombination. Hence, our prospection of *L. aethiopica* genomics revealed
37 new insights into the genomic consequences of both meiotic and mitotic recombination in
38 *Leishmania*.

40 INTRODUCTION

41 *Leishmania* is a vector-borne parasite causing leishmaniasis in humans and animals.
42 Depending on the *Leishmania* species, the disease can present itself in various clinical
43 representations, ranging from cutaneous to visceral leishmaniasis. *Leishmania aethiopica* is
44 a zoonotic Old World species transmitted by sand flies of the *Phlebotomus* genus, and is
45 known to cause local (LCL), diffuse (DCL) and the occasional mucocutaneous leishmaniasis
46 (MCL). Where LCL will present as self-healing lesions at the place of inoculation, DCL appears
47 as non-self-healing lesions widespread over the whole body and MCL at the mucosal
48 membranes (i.e. nose, mouth and throat) [1–4]. This species is endemic in Ethiopia and the
49 highlands of Kenya, with respectively 1,402 and 398 reported cases of cutaneous
50 leishmaniasis in 2020 [3]. However, the total burden of *L. aethiopica*-associated disease is
51 difficult to estimate since most of the infections will not result in disease, and if they do, they
52 often remain unreported due to the risk of stigmatization [2]. In addition to being a species that
53 clinically presents three forms of CL, *L. aethiopica* has a high prevalence of treatment failure
54 that remains poorly understood [3]. Finally, *L. aethiopica* field isolates bear the endosymbiotic
55 and immunogenic double-stranded *Leishmania* RNA virus, which may have potential
56 implications on disease severity [5]. Despite these observations of biomedical and
57 epidemiological relevance, research on *L. aethiopica* is almost non-existent, leaving large
58 gaps in the knowledge on the biology of this most neglected *Leishmania* species.

59 Genome diversity studies allow understanding the population dynamics and biology of
60 *Leishmania* parasites, revealing insights into e.g. the epidemic history of the deadly *L.*
61 *donovani* in the Indian subcontinent [6], the colonization history of *L. infantum* in the Americas
62 [7], the Pleistocene origin of the Andean *Leishmania* parasites [8] and the genetic
63 consequences of hybridization [9]. Unfortunately, studies on the genetic diversity of *L.*
64 *aethiopica* are scanty and limited to analyses of microsatellite genotyping, isoenzyme analysis,
65 fragment length polymorphism analyses and/or single gene sequencing [10–13]. These
66 molecular studies demonstrated that the species *L. aethiopica* is genetically very
67 heterogeneous despite its restricted geographic distribution [10–12] and suggested the
68 existence of a *L. aethiopica*/*L. donovani* hybrid (MHOM/ET/94/ABAUY) [13]. Such findings
69 indicate that *L. aethiopica*-related disease may be caused by a genetically diverse and
70 recombining species, which may have consequences towards the clinical management and
71 epidemiology of CL in East Africa.

72 Here, we present the first genome diversity study of *L. aethiopica* to gain a better
73 understanding of the evolutionary history and population biology of this species. We generated
74 genomes for a total of 28 *Leishmania* isolates, including 20 *L. aethiopica* isolates from
75 Ethiopia, and complemented our dataset with publicly available genomes from *L. donovani*, *L.*
76 *infantum*, *L. tropica* and *L. major* for comparative purposes. Population genomic and
77 phylogenomic analyses provide genomic confirmation of interspecific hybridization including
78 *L. aethiopica* as one of the two parental species, and confirm that *L. aethiopica* is genetically
79 highly diverse. Our prospect of *L. aethiopica* genomics will promote future studies on the
80 genomic basis of treatment failure and clinical outcome.

81

82 **METHODS**

83 **Dataset of genomic sequences**

84 A total of 28 *Leishmania* isolates were sequenced within the context of this study (Supp. Table
85 1), including 18 *L. aethiopica* isolates collected in Ethiopia from 1959 to 1994 and previously
86 typed by the Centre National de Référence des *Leishmania* (Montpellier, France) and the
87 WHO International *Leishmania* Reference Center (London School of Hygiene and Tropical
88 Medicine, London, United Kingdom). For two isolates (GERE and KASSAYE), a derived clone
89 was sequenced (Supp. Table 1). Our dataset also included isolate MHOM/ET/72/L100 and its
90 derived clone L100cl1; the L100 strain is the WHO reference strain that represents the same
91 strain as the one used to create the reference genome
92 (https://tritrypdb.org/tritrypdb/app/record/dataset/NCBITAXON_1206056#description). In
93 addition, we included isolate MHOM/ET/94/ABAUY (here-after referred to as LEM3469) and
94 its five derived clones (Supp. Table 1), in order to confirm hybridization between *L. aethiopica*
95 and *L. donovani* and investigate its genomic consequences. All isolates were sequenced
96 (150bp paired-end) on the Illumina sequencing platform of GenomeScan, Leiden, The
97 Netherlands. For comparative purposes, we included publicly available sequences from four
98 Old World *Leishmania* species (Supp. Table 1): *L. donovani* (n=5), *L. infantum* (n=1), *L. major*
99 (n=1) and *L. tropica* (n=1) [14–16]. Altogether, this provided us with a total of 36 genomes for
100 downstream analyses.

101 **Bioinformatic analyses**

102 All sequences were mapped against the *L. aethiopica*'s reference genome L147 (available on
103 tritrypdb.org as TriTrypDB-54_LaethiopicaL14710) using BWA [17]. Resulting SAM-files were
104 converted to BAM-files using SAMtools [18]. All duplicates were marked using the GATK
105 (Genome Analysis ToolKit) software [19]. BAM-files were checked for mapping quality by
106 examining flagstat files and coverage was calculated with SAMtools depth to determine the
107 average mapped read depth across the whole genome. SNPs and INDELs were called twice
108 with GATK HaplotypeCaller: once including all 36 *Leishmania* genomes and once including
109 the 20 *L. aethiopica* isolates.

110 Single Nucleotide Polymorphisms (SNPs) and small insertions/deletions (INDELs) were
111 separated with the GATK SelectVariants command. SNPs were hard filtered based on the
112 GATK filter recommendations by G. Van der Auwera, including a mapping quality (MQ) larger
113 than 40 and a quality by depth (QD) larger than 2, in combination with a filter that excludes
114 SNPs within SNP clusters (defined by 3 SNPs in windows of 10bp) [20]. In addition, SNPs
115 were retained only when the allelic depth per genotype (i.e. Format Depth, FMTDP) was larger
116 than 5 and the genotype quality (GQ) was larger than 20 (when genotyping was done across
117 all 36 *Leishmania* genomes) or larger than 40 (when genotyping was done on the 20 *L.*
118 *aethiopica* genomes). SNPs were counted per isolate for the whole genome and per
119 chromosome in Rstudio [21]. Alternate allele read depth frequencies were counted using the
120 vcf2freq.py script (available at github.com/FreBio/mytools/blob/master/vcf2freq.py).

121 **Chromosomal and local copy number variation**

122 Chromosomal and local copy number variation were studied for the 20 *L. aethiopica* isolates
123 and the two interspecific hybrids L86 and LEM3469 based on the per-site read depth as
124 obtained with SAMTools depth. To obtain haploid copy numbers (HCN) for each chromosome,

125 the median chromosomal read depths were divided by the median genome-wide read depth.
126 Somy variation was then obtained by multiplying HCN by two (assuming diploidy for all *L.*
127 *aethiopica* isolates and L86; see results) or three (assuming trisomy for isolate LEM3469 and
128 its derived clones; see results). To obtain local HCN, the median read depth in non-
129 overlapping 2kb windows was divided by the median genome-wide read depth. These
130 calculations were done using the depth2window.py script (available at
131 github.com/FreBio/mytools/blob/master/depth2window.py).

132 Windows of reduced or increased HCN were identified by deducting the median HCN across
133 20 *L. aethiopica* genomes from the HCN as estimated per *Leishmania* genome. This results
134 in a distribution of HCN centered around zero, allowing us to identify 2kb windows with
135 increased (z-score > 5) or decreased (z-score < -5) HCN in each of the 20 *L.aethiopica* isolates
136 and the two interspecific hybrids (LEM3469 and L86). Consecutive 2kb windows showing a
137 significant increase/decrease in HCN were joined by averaging HCN across the consecutive
138 windows, allowing us to detect larger copy number variants. Small deletions/amplifications
139 (i.e. <= 6kb) that do not cover protein coding genes were ignored.

140 **Population genomic and phylogenomic analyses**

141 The quality-filtered SNP VCF files were converted to the fasta format using the vcf2fasta.py
142 script (available at github.com/FreBio/mytools/blob/master/vcf2fasta.py). To get an initial idea
143 on the phylogenetic relationships between the isolates, a phylogenetic network was
144 reconstructed with SplitsTree version 4.17.2 [22]. For the chromosomal networks, the
145 chromosomal SNPs were selected using BCFtools view and converted into the fasta format
146 for network analyses.

147 The population genomic structure of *L. aethiopica* was investigated after excluding putative
148 near-identical isolates (see results) and after removing sites exhibiting high linkage
149 disequilibrium (LD). Non-independent SNPs were removed in a pairwise manner (--indep-
150 pairwise) with plink v1.9 [23] within 50 bp windows with a 10 bp step size for three different
151 squared correlation coefficients ($r^2=0.3$, 47,244 SNPs retained; $r^2=0.5$, 85,725 SNPs retained;
152 $r^2=0.7$, 112,241 SNPs retained). ADMIXTURE v1.3 was run for K equals 1 to 5 along with a
153 five-fold cross validation [23]. Principal component analysis (PCA) was done using the glPCA
154 function within the Adegenet R-package [25]. Nucleotide diversity (π), Tajima's D and Weir
155 and Cockerham's pairwise F_{ST} (mean and weighted), were calculated in non-overlapping
156 windows of 50kb for the populations as inferred by ADMIXTURE using VCFtools v0.1.13 [24].

157 Loss-of-Heterozygosity (LOH) regions were identified by analyzing the distribution of
158 heterozygous sites in non-overlapping 10kb windows as described elsewhere [25], using the
159 following criteria: min number of SNPs = 1, max number of heterozygous sites allowed per
160 10kb window = 0, minimum number of contiguous 10kb windows = 4, maximum $\frac{1}{3}$ of all 10 kb
161 windows within a LOH region can be gap, max number of heterozygous sites allowed within
162 gap = 2.

163 The recombination history of *L. aethiopica* was investigated by calculating the LD decay with
164 PopLDdecay v3.41 [26] and the inbreeding coefficient F_{IS} after taking into account Wahlund
165 effects. To this end, we considered five isolates (117-82, 1561-80, 169-83, 32-83 and 68-83)
166 belonging to the same genetic population as inferred by ADMIXTURE and sampled over a
167 period of four years. F_{IS} was calculated as $1-H_o/H_e$, with H_o the observed heterozygosity and
168 H_e the expected heterozygosity.

169

170 RESULTS

171 Genomic confirmation of interspecific hybridization including *L. aethiopica* as parent

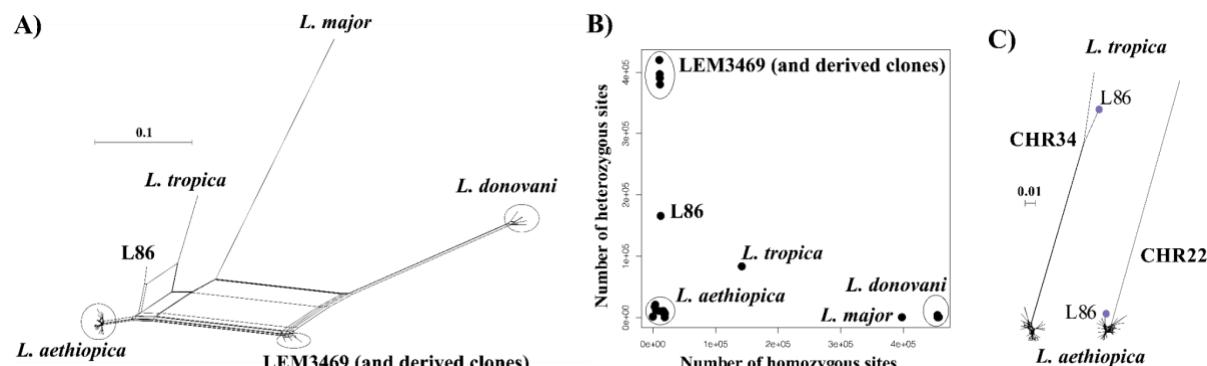
172 Sequences were mapped against the *L. aethiopica* L147 reference genome, resulting in a
173 median coverage of 27x to 70x for the publicly available sequence data, and 44x to 119x for
174 the *L. aethiopica* isolates (Supp. Table 2). At least 80% of the positions in the reference
175 genome were covered with at least 20 reads, and 72% of the paired reads aligned in proper
176 pairs (Supp. Table 2). These results show that the coverage of the *L. aethiopica* reference
177 genome was sufficiently large for variant calling, despite the diversity of species included in
178 this study. Genotyping was performed with GATK HaplotypeCaller across all 36 *Leishmania*
179 isolates, revealing a total of 988,363 high-quality bi-allelic SNPs.

180 A phylogenetic network revealed a total of four groups of isolates that corresponded to the
181 four species included in this study (Figure 1A): *L. aethiopica* (20 isolates), *L. donovani* species
182 complex including *L. donovani* (11 isolates) and *L. infantum* (1 isolate), *L. major* (1 isolate)
183 and *L. tropica* (1 isolate). Two isolates did not cluster with any of these species: LEM3469 and
184 its derived clones are positioned in between *L. aethiopica* and the *L. donovani* complex, and
185 L86 is positioned in between *L. aethiopica* and *L. tropica* (Figure 1A). The network shows
186 strong reticulation and a net-like pattern along the branches of these two isolates, suggesting
187 that LEM3469 and L86 are interspecific hybrid parasites or the result of a mixed infection.

188 For each genome, we counted the number of homozygous SNPs (where both haplotypes are
189 different from the L147 reference) and heterozygous SNPs (where one haplotype is similar to
190 the L147 reference and the other different). This showed that *L. donovani* (\pm 414,160 SNPs),
191 *L. major* (394,607 SNPs) and *L. tropica* (140,774 SNPs) genomes contain a relatively large
192 amount of homozygous SNPs, and are thus genetically distant from *L. aethiopica* L147 (Figure
193 1B). In contrast, all *L. aethiopica* genomes and isolates L86 and LEM3469 (and derived
194 clones) contained respectively 3,973 and \pm 12,230 homozygous SNPs (Figure 1B). The
195 genomes of uncertain ancestry (L86 and LEM3469) displayed a much larger amount of
196 heterozygous SNPs (164,566 in L87 and 377,135-416,672 in LEM3469) compared to the *L.*
197 *aethiopica* genomes (422-20,783 SNPs) (Figure 1B). Such high levels of heterozygosity in
198 L87 and LEM3469 further indicate the presence of divergent homologous chromosomes,
199 either as the result of hybridization or because of a mixed infection.

200 When investigating the distribution of SNPs across the 36 chromosomes in LEM3469 and L86,
201 we found that the majority of chromosomes consists almost entirely of heterozygous SNPs
202 (Supp. Table 3). Exception was one genomic region in L86 (the last 700kb of chromosome
203 34) that was entirely homozygous for the alternate allele (both haplotypes are thus different
204 from L147). In addition, the first 300kb of chromosome 22 in L86 and chromosomes 9, 10 and
205 15 in LEM3469 (Supp. Table 3) were virtually devoid of SNPs (both haplotypes are thus similar
206 to L147). This observation of a largely heterozygous genome that is interrupted by
207 homozygous stretches suggests that isolates L86 and LEM3469 are hybrid parasites, rather
208 than the result of a mixed infection.

209 Similarly to LEM3469, all five derived clones of LEM3469 were SNP-poor in chromosomes 9,
210 10 and 15 (Supp. Figure 1, Supp. Table 3). All five clones were also SNP-poor in
211 chromosomes 11 and 24, LEM3469 clones 1 and 9 were SNP-poor in chromosome 20,


212 LEM3469 clone 7 was SNP poor in chromosome 1 and LEM3469 clone 8 was SNP poor in
213 chromosome 33 (Supp. Figure 1, Supp. Table 3). These results imply a loss of heterozygosity
214 through the process of cloning and culturing of LEM3469.

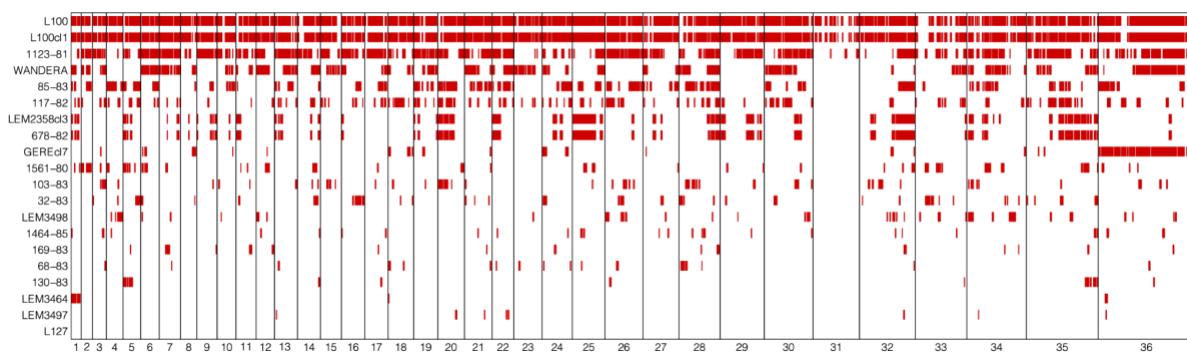
215 Phylogenies based on SNPs in genomic regions that were either largely homozygous or SNP-
216 poor in L86 revealed that this isolate clustered with either *L. tropica* or *L. aethiopica*,
217 respectively (Figure 1C). This clearly points to *L. aethiopica* and *L. tropica* as the two parental
218 species for L86. A phylogeny based on SNPs in chromosome 15 showed that LEM3469 and
219 derived clones clustered within the *L. aethiopica* group (result not shown), confirming that
220 *L. aethiopica* is one of the parental species of this hybrid isolate. No genomic regions were
221 identified within the LEM3469 isolate or its clones that could reveal the other parental species.

222 In order to identify and confirm the other parental species of the hybrid parasites, we identified
223 fixed SNPs specific to *L. tropica* (52,958 SNPs), *L. donovani* / *L. infantum* (294,890 SNPs)
224 and *L. major* (253,458 SNPs). This revealed that 88% of the fixed SNPs specific to *L. tropica*
225 were heterozygous in L86, compared to 0.3% of the *L. donovani* or *L. major*-specific SNPs.
226 Similarly, we found that 91% of the fixed SNPs specific to *L. donovani* were heterozygous in
227 LEM3469, compared to 0.01% of the *L. major* and *L. tropica*-specific SNPs.

228 Altogether, our results demonstrate that L86 and LEM3469 are the result of hybridization,
229 rather than the result of a mixed infection, between *L. aethiopica* and *L. tropica* (in case of
230 L86) or between *L. aethiopica* and *L. donovani* (in case of LEM3469).

231

232
233 **Figure 1. A)** Phylogenetic network based on SNPs called across 36 genomes of *L. aethiopica*, the *L.*
234 *donovani* species complex, *L. major* and *L. tropica*. **B)** Number of heterozygous sites versus number of
235 homozygous sites for each of the 36 *Leishmania* genomes. **C)** Phylogenetic network based on SNPs
236 called in the last 700kb of chromosome 34 and the first 300kb in chromosome 22. Blue dot indicates
237 the position of the interspecific *L. aethiopica* - *L. tropica* hybrid L86.

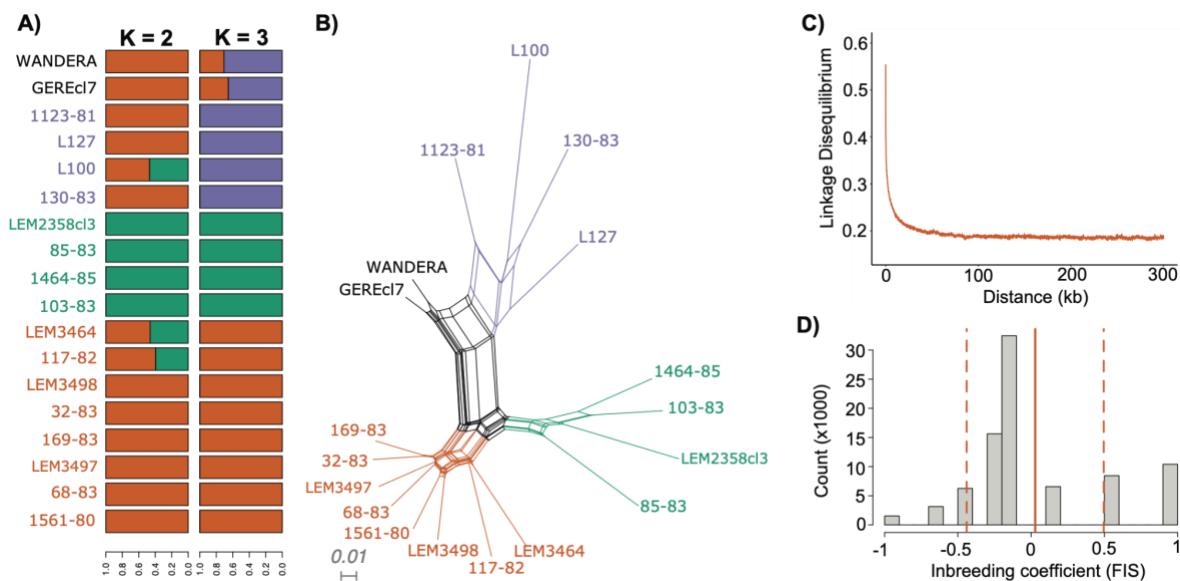

238

239 **Population genomic structure and diversity of *L. aethiopica***

240 Variant calling was repeated on a dataset including solely the 20 *L. aethiopica* isolates, i.e.
241 excluding the other Old World *Leishmania* species and the interspecific hybrids LEM3469 and
242 L86. This resulted in a total of 94,581 high-quality INDELs and 284,776 high-quality SNPs
243 called across 20 *L. aethiopica* genomes. Despite the relatively high genome-wide density of
244 SNPs (median 89 SNPs and average 91 SNPs per 10 kb window), we found a relatively low
245 number of heterozygous sites (median 6 SNPs and average 7 SNPs per 10 kb window). The
246 allele frequency spectrum was dominated by low-frequency variants, with 58% of SNPs
247 (170,163 SNPs) occurring at <0.1% of the population.

248 Our panel of *L. aethiopica* isolates displayed substantial differences in terms of the number of
249 SNPs (5,607 - 93,762) and the number of homozygous (243 - 66,068) and heterozygous
250 (2,067 - 69,857) SNP counts (Table 1). Most remarkable were i) isolate 1123-81 showing a
251 low number of SNPs (5,607) compared to the other genomes (mean = 82,251; median =
252 87,132) and ii) isolates L100 and L100cl1 that were almost devoid of heterozygous SNPs
253 (2,071) compared to the other genomes (mean = 32,251; median = 29,985). In addition, the
254 number of fixed SNP differences between isolates ranged between 1 and 76,477 (average =
255 32,998 SNPs, median = 28,688 SNPs, sd = 20,955 SNPs) (Supp. Table 4). Exceptions were
256 two groups of isolates that each contained two near-identical isolates (Supp. Table 4): i) strain
257 678-82 and LEM2358cl3 (a derived clone of the LEM2358 strain) were sampled eleven years
258 from each other and were probably the result of clonal propagation in nature and ii) L100 and
259 L100cl1, where L100 is a strain derived from a clinical sample and L100cl1 is a derived clone
260 of the strain L100. Altogether, these results suggest that the *L. aethiopica* species is highly
261 diverse and consists of both genetically similar and divergent parasites.

262 The large number of fixed SNP differences prompted us to investigate the genome-wide
263 distribution of Loss Of Heterozygosity (LOH) regions. This effort revealed major differences in
264 the number and length of LOH regions between *L. aethiopica* isolates (Table 1) (Figure 2).
265 The median length of LOH regions ranged between 30 kb in LEM3497 and 1464-85 to 120 kb
266 in L100 and L100cl1 (Table 1). In particular isolates 1123-81, L100 and L100cl1 showed a
267 high number of LOH regions (147 for 1123-81, 151 for L100 and 154 for L100cl1) covering a
268 substantial proportion of their chromosomal genome (55.3% for 1123-81, 81.9% for L100 and
269 82.1% for L100cl1) (Table 1) (Figure 2). The largest LOH regions were at least 1.5 Mb long
270 (Table 1) and were found in chromosome 36 of isolates L100 and L100cl1.


271

272 **Figure 2.** Loss-Of-Heterozygosity regions (red bars) in each of the 20 *L. aethiopica* isolates across the
273 36 chromosomes.

274

275 The population genomic diversity and structure of *L. aethiopica* was investigated after
 276 removing one individual from the near-identical isolate-pairs (678-82 and L100cl1) and
 277 excluding sites with high LD. ADMIXTURE analyses suggested the possible presence of two
 278 (K=2) to three (K=3) ancestral populations within our panel of *L. aethiopica* isolates, although
 279 the 5-fold cross validation was approximately similar for K=1 (Supp. Figure 2). The ancestry
 280 estimation for the different values of K were consistent over the different SNP-pruning
 281 thresholds (Supp. Figure 2). Assuming K=3 populations, all but two isolates (GEREc17 and
 282 WANDERA) were assigned to one of the three ancestry components with >99% probability
 283 (Figure 3A). Principal Component Analysis (PCA) (Supp. Figure 3), a phylogenetic network
 284 based on genome-wide SNPs (Figure 3B) and phylogenetic networks based on SNPs in LOH-
 285 poor chromosomes (Supp. Figure 4) showed a clear separation among groups of individuals
 286 corresponding to the clusters inferred by ADMIXTURE. These results show congruence in *L.*
 287 *aethiopica* population structure among various inference approaches and suggest that the
 288 presence of LOH regions has little impact on the inference process (as shown in Supp. Figure
 289 4). Mean pairwise F_{ST} values among these three populations revealed strong population
 290 differentiation, ranging between 0.175 and 0.235 (Supp. Table 5).

291 The phylogenetic network also revealed a reticulated pattern and long terminal branches,
 292 indicative of recombination (Figure 3B). Estimates of relative recombination rates in *L.*
 293 *aethiopica* were calculated by F_{IS} per site and LD decay controlling for spatio-temporal
 294 Wahlund effects (see methods) (Figure 3C, D). The per-site F_{IS} was unimodally distributed and
 295 close to zero (mean $F_{IS} = 0.027 \pm 0.47$). In addition, LD levels were relatively low with r^2
 296 descending to 0.2 at 21.9kb. These results suggest relatively frequent genetic exchange in *L.*
 297 *aethiopica*.

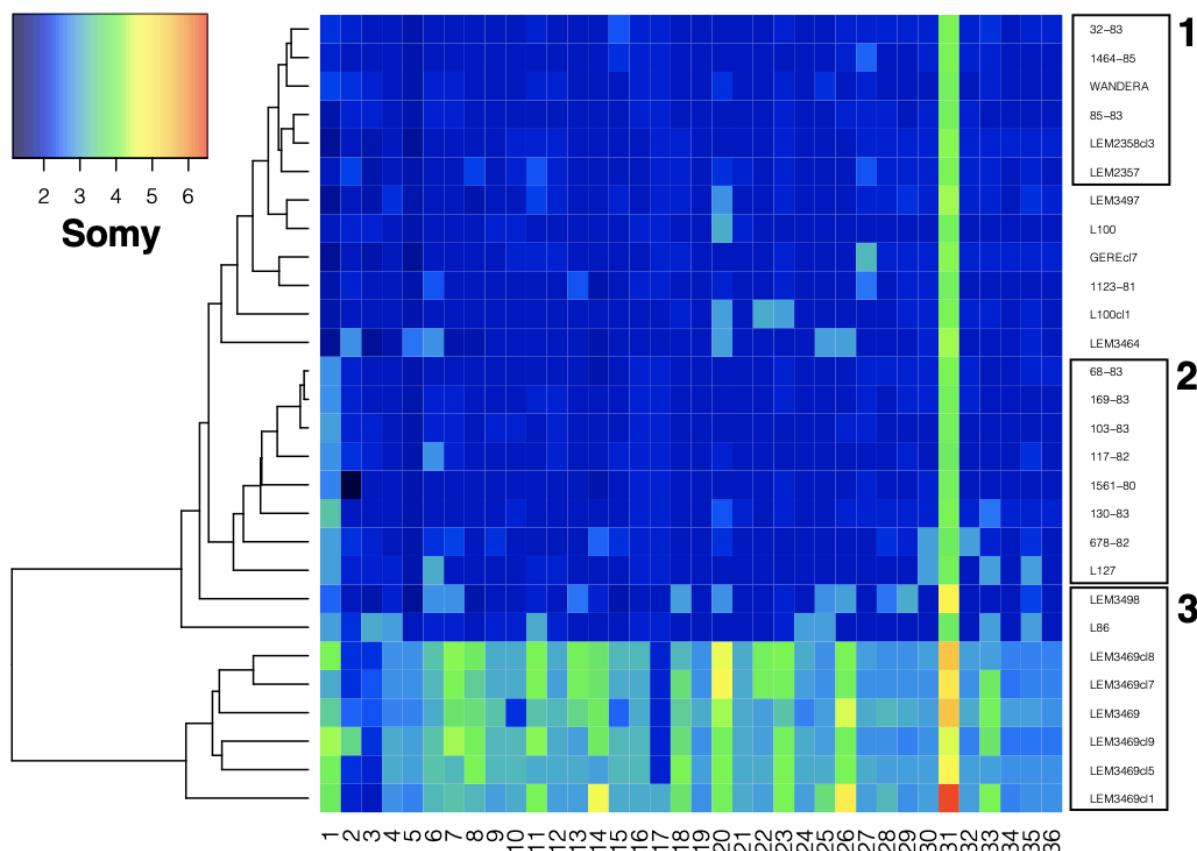
298
 299 **Figure 3.** Population genomic diversity and structure of *L. aethiopica*. **A)** Barplots depicting ancestral
 300 components as inferred by ADMIXTURE for K = 2 and K = 3 populations, based on 85,725 SNPs. **B)**
 301 Phylogenetic network based on uncorrected p-distances among 18 *L. aethiopica* genomes genotyped
 302 at 277,156 bi-allelic SNPs. Coloured branches and tip labels correspond to the inferred populations by
 303 ADMIXTURE at K=3. **C)** Linkage decay plot for 1561-80, 68-83, 169-83, 32-83 and 117-82 controlling
 304 for spatio-temporal Wahlund effects (see methods). **D)** F_{IS} distribution after correction for spatio-
 305 temporal Wahlund effects for 1561-80, 68-83, 169-83, 32-83 and 117-82. The solid line represents the
 306 mean F_{IS} values (0.027) while the dashed lines represent the standard deviation (± 0.47).

308 **Table 1.** Population genomic statistics for each of the 20 *L. aethiopica* isolates: number of SNPs (SNPs),
 309 number of homozygous (HOM) and heterozygous (HET) SNPs, number of Loss-Of-Heterozygosity
 310 regions (LOH), maximum (MAX), mean (MEAN) and median (MEDIAN) length of LOH regions, total
 311 (SUM) and proportional (PROP) length of chromosomal genome covered by LOH regions.

ISOLATE	SNPs	HET	HOM	LOH	MAX (KB)	MEAN (KB)	MEDIAN (KB)	SUM (MB)	PROP
L127	84013	69857	14156	0	NA	NA	NA	NA	NA
LEM3497	88888	34077	54811	8	50	32.5	30	0,26	0,8%
LEM3464	89507	23439	66068	4	140	85.0	85	0,34	1,1%
130-83	68071	35786	32285	12	120	60.8	50	0,73	2,3%
68-83	87450	30164	57286	17	110	45.3	40	0,77	2,5%
169-83	86524	31838	54686	15	130	53.3	40	0,80	2,6%
1464-85	88575	26275	62300	26	70	38.9	30	1,01	3,2%
LEM3498	87132	22275	64857	34	190	57.1	40	1,94	6,2%
32-83	85899	29807	56092	37	180	60.5	40	2,24	7,2%
103-83	93762	35534	58228	43	130	55.6	40	2,39	7,7%
1561-80	88206	25437	62769	40	170	66.8	50	2,67	8,6%
GEREcI7	71473	60956	10517	30	710	115.0	65	3,45	11,1%
678-82	90127	30182	59945	61	640	102.1	70	6,23	20,0%
LEM2358cI3	89660	29485	60175	65	640	96.6	70	6,28	20,2%
117-82	84885	18856	66029	102	270	65.7	50	6,70	21,5%
85-83	92020	27520	64500	79	470	108.9	80	8,60	27,6%
WANDERA	60463	43672	16791	91	710	115.9	80	10,55	33,9%
1123-81	5607	5364	243	147	610	117.1	80	17,22	55,3%
L100cI1	63070	2075	60995	151	1540	168.8	120	25,49	81,9%
L100	63058	2067	60991	154	1530	166.0	120	25,57	82,1%

312

313


314 **Chromosomal and local copy number variations in *L. aethiopica***

315 The ploidy of all isolates was investigated using the genome-wide distribution of alternate
316 allele read depth frequencies at heterozygous sites (ARDF), which should be centered around
317 0.5 in diploid organisms. The genome-wide distribution of ARDF was unimodal and centered
318 around 0.5 for all *L. aethiopica* isolates and the *L. aethiopica* - *L. tropica* hybrid L86, suggesting
319 that the baseline ploidy of these parasites is diploid. However, the distribution of ARDF was
320 bimodal with modes 0.33 and 0.67 for the *L. aethiopica* - *L. donovani* hybrid LEM3469 and its
321 derived clones, suggesting that the baseline ploidy of this hybrid is triploid.

322 Variation in chromosomal copy numbers was further investigated using normalized
323 chromosomal read depths (RD). The RD estimates revealed that chromosome 31 was at least
324 tetrasomic in all isolates (Figure 4). Little variation was detected for six *L. aethiopica* isolates
325 that were largely diploid (box 1 in Figure 4). The rest of the *L. aethiopica* isolates were trisomic
326 at 1 to 6 chromosomes, including a group of 8 isolates that was trisomic for chromosome 1
327 (box 2 in Figure 4). The largest variability was found in *L. aethiopica* isolate LEM3498, the *L.*
328 *aethiopica* - *L. donovani* hybrid LEM3469 and its derived clones and the *L. aethiopica* - *L.*
329 *tropica* hybrid L87 (box 3 in Figure 4). Altogether, our results demonstrate that *L. aethiopica*
330 genomes are aneuploid, as shown for other *Leishmania* species. Moreover, note that we also
331 observed non-integer values of somy for some chromosomes (Figure 4), suggesting the
332 presence of mosaic aneuploidy [26].

333 Local copy number variations were investigated using normalized haploid copy numbers
334 (HCN) as estimated in non-overlapping 2kb windows. We identified a total of 379 genomic
335 regions with decreased or amplified HCN across our panel of *L. aethiopica* isolates. The
336 majority of these windows were only 2kb long (N = 266; 70%) and the mean (1.1 HCN) and
337 median (0.79 HCN) differences in HCN across our panel were minor, suggesting that our
338 sample of *L. aethiopica* displays relatively little local copy number variation. Apart from this
339 observation, most notable was a 46 kb telomeric genomic region on chromosome 29 in isolate
340 1561-80 showing a 10-fold increase in HCN compared to the other *L. aethiopica* isolates. This
341 region covers a total of 18 protein coding genes, including a ribonuclease inhibitor-like protein
342 (Lael147_000545200), an actin-like protein (Lael147_000544400) and a putative inosine-
343 adenosine-guanosine-nucleoside hydrolase (Lael147_000545100) (Supp. Table 6). Several
344 other isolates (L127, GEREcl7, 169.83 and 32.83) displayed intrachromosomal amplifications
345 across genomic regions of 10 kb to 20 kb long, but these involved only 0.3 to 1.2 increase in
346 HCN (Supp. Table 6). Finally, several small (<= 4kb) intrachromosomal amplifications were
347 identified across the genomes of isolates L100 and L100cl1 (Supp. Table 6).

348 Within the *L. aethiopica* - *L. donovani* hybrid LEM3469 and its derived clones, we detected a
349 6kb genomic region in chromosome 29 showing a 2-fold increase in HCN and covering a
350 Leucine Rich Repeat gene (Lael147_000538100) (Supp. Table 7). Within the *L. aethiopica* -
351 *L. tropica* hybrid L87, we found a 130 kb genomic region in chromosome 35 with a 1.6 fold
352 increase in HCN and covering a total of 46 protein coding genes (Supp. Table 8). Within both
353 hybrids, we detected a 14 kb - 16 kb genomic region in chromosome 30 showing a ~1-fold
354 increase in HCN and covering several protein coding genes such as a the putative ferric
355 reductase gene (Lael147_000563600) (Supp. Tables 7-8).

356
357 **Figure 4.** Somy variation across 36 chromosomes for the 28 *Leishmania* genomes sequenced in this
358 study. Box 1 highlights isolates that are nearly diploid, box 2 highlights isolates with a trisomic
359 chromosome 1 and box 3 highlights isolates showing high somy variability (see text).

360

361 DISCUSSION

362 We present the first comprehensive genome diversity study of *L. aethiopica* by analyzing high-
363 resolution WGS data. This revealed insights into the genetic consequences of recombination
364 in *Leishmania* at both the species- and population-level.

365 At the species level, we provide genomic evidence of hybridization involving *L. aethiopica* as
366 one of the parental species and *L. tropica* (in case of the L86 hybrid strain) or *L. donovani* (in
367 case of the LEM3469 hybrid strain) as the other parental species. Strain LEM3469 has already
368 been described as a potential *L. aethiopica* / *L. donovani* hybrid based on microsatellite data
369 and single-gene sequences [13]. Strain L86 has been flagged as a potential hybrid, although
370 the isolate remained classified as *L. aethiopica* due to lack of molecular evidence [27]. Here,
371 our genome analyses provide unequivocal evidence that these two *Leishmania* strains are
372 interspecific hybrids. Our finding of genome-wide heterozygosity that is only occasionally
373 interrupted by patches of homozygosity suggest that these two hybrids are equivalent to F1
374 progeny that propagated mitotically since the initial hybridization event. Similar genomic
375 descriptions of naturally circulating F1-like hybrids were advanced previously for *L. braziliensis*
376 x *L. peruviana* in Peru [8] and for *L. braziliensis* x *L. guyanensis* in Costa Rica [28]. Our results
377 thus support a growing body of genomic evidence for extensive genetic exchange in protozoan
378 parasites in the wild [7–9,28–33].

379 The *L. tropica* / *L. aethiopica* (L86) hybrid strain was near diploid, being disomic at 27/36
380 chromosomes, suggesting balanced segregation of the chromosomes during hybridization.
381 Trisomic chromosomes in L86 contained either one or two copies of the *L. tropica* parent,
382 suggesting that these trisomies arose after the hybridization event through multiplication of
383 one of the parental chromosomes, possibly due to culturing *in vitro* [34]. These observations
384 seem unlikely to have arisen by a random parasexual process, and strongly suggest that the
385 L86 hybrid is the result of meiotic recombination. The *L. donovani* / *L. aethiopica* (LEM3469)
386 hybrid strain was near triploid, being trisomic at 21/36 chromosomes. Triploid hybrids have
387 been routinely recovered from experimental matings in *Leishmania* [9] and from clinical
388 samples of cutaneous leishmaniasis patients [28], and are observed across a variety of
389 organisms capable of sexual reproduction [35–37]. Results from experimental crosses in
390 *Leishmania* suggested that interspecific hybrids with close to 3n DNA content were likely due
391 to an asymmetric meiosis between a parental 2n cell that failed to undergo meiosis and 1n
392 gamete from the other parent [9], similar to what has been suggested for *T. brucei* [38]. One
393 observation that requires further investigation is that triploid hybrids may occur more frequently
394 when the two parental species are genetically divergent (in the case of *L. donovani* / *L.*
395 *aethiopica*, *L. guyanensis* / *L. braziliensis* [28] and *L. infantum* / *L. major* [9] hybrids), while
396 diploid hybrids seem to occur when the parental species are more closely related (in the case
397 of *L. tropica* / *L. aethiopica* and *L. braziliensis* / *L. peruviana* [8] hybrids).

398 At the population level, our analyses of sequence variation confirmed previous observations
399 that the *L. aethiopica* species is genetically diverse, despite its restricted geographic
400 distribution [10–12]. Indeed, we detected on average 91 SNPs per 10kb in *L. aethiopica*, which
401 is comparable to the genetically diverse *L. braziliensis* (106 SNPs per 10kb) but twice the
402 number observed in the demographically bottlenecked *L. peruviana* (41 SNPs per 10kb) [8].
403 By comparison, the human genome contains ~8 SNPs per 10kb [39]. Also, the total number
404 of SNPs (284,776) across our set of 20 *L. aethiopica* genomes from Ethiopia is of the same
405 magnitude as the number of SNPs (395,624) observed in a set of 151 globally sampled
406 genomes of the *L. donovani* species complex [40]. In contrast, we detected relatively little
407 variation in local copy numbers: the majority of isolates contained only up to 20 genomic
408 regions with increased/decreased read depths, and most of these genomic regions were only
409 2 kb long. Hence, adaptation in our sample of *L. aethiopica* isolates may depend on sequence
410 variation rather than gene dosage. Future studies involving direct sequencing of biopsy
411 samples [41] should allow deciphering the relative contribution of different genomic variants in
412 clinical outcome or treatment failure.

413 Population genomic analyses revealed that the *L. aethiopica* species consists of both
414 asexually evolving strains (as indicated by the existence of near-identical isolates) and groups
415 of parasites that show signatures of recombination (as indicated by linkage decay). In addition,
416 parasite populations were genetically strongly differentiated, suggesting that *L. aethiopica*
417 consists of divergent ancestral populations, although lack of geographic/ecological data
418 precluded us from studying its evolutionary history in greater detail. A remarkable observation
419 was the extensive loss of heterozygosity (LOH) in some *L. aethiopica* strains. Such LOH likely
420 arose from gene conversion/mitotic recombination and indicate that *L. aethiopica* strains may
421 evolve asexually over relatively long time periods. This is exemplified by two near-identical
422 genomes (678-82 and LEM2358cl3) that were sampled nine years from each other.
423 Interestingly, we observed four additional LOH regions in LEM2358cl3 (sampled in 1991)
424 impacting an additional 50 kb of the chromosomal genome compared to 678-82 (sampled in

425 1982), suggesting that nine years of clonal evolution has resulted in LOH across 50kb of the
426 genome. Knowing that 6.28 Mb of the LEM2358cl3 genome is impacted by LOH, we
427 extrapolate that the original strain may have propagated mitotically for roughly 1,200 years.

428 Extensive LOH regions have been described previously for obligate asexual eukaryotes, such
429 as the water flea *Daphnia pulex* [42] and the protozoan parasite *Trypanosoma brucei*
430 *gambiense* [25,43]. In *T. b. gambiense*, most LOH regions are ancestral and thus present in
431 all strains, or at least within sets of strains that share a common ancestry [25]. In contrast, we
432 observed large differences in the number and length of LOH regions between *L. aethiopica*
433 strains, irrespective of their ancestral relationships. For instance, LOH regions were absent in
434 the L127 strain while a total of 154 LOH regions were found in the L100 strain, impacting at
435 least 82% of its chromosomal genome. The L100 strain (also known as LEM144) was isolated
436 in 1972 and has - to the best of our knowledge - only been cultured *in vitro* for about 30
437 passages before sequencing. Hence, the extensive loss of heterozygosity can not be
438 explained by maintenance *in vitro*, and is probably due to long-term mitotic recombination in
439 the wild, as described for the asexually evolving *T. b. gambiense* [25]. Alternatively, the
440 genome-wide loss-of-heterozygosity in L100 may be explained by genome-wide DNA
441 haploidization, possibly due to the production of haploid gametes as seen in trypanosomes
442 [44], followed by whole-genome diploidization (as our analyses demonstrated that L100 is
443 diploid). However, there is currently no evidence in literature for the occurrence of whole-
444 genome haploidization/diploidization in *Leishmania* parasites.

445 In conclusion, our study has shown that *L. aethiopica* is genetically diverse and divided into
446 divergent populations, suggesting that strains may be ecologically/geographically confined.
447 While linkage decay suggests the occurrence of genetic exchange, the discovery of extensive
448 loss of heterozygosity also suggests that some *L. aethiopica* strains may evolve asexually for
449 relatively long periods of time. Hence, *L. aethiopica* presents an ideal model to understand the
450 impact of parasite population structure and hybridization on genome evolution in protozoan
451 parasites. Our preliminary observations should thus be investigated in further detail using
452 larger sets of isolates/samples for which detailed eco-epidemiological data are available,
453 preferably using direct-sequencing approaches that would also allow understanding the
454 genomic basis of clinical and treatment outcome.

455 **ACKNOWLEDGEMENTS**

456 This work was supported by the Dioraphte foundation (Spatial-CL, project number: CFP-
457 RD2020 20020401) and the Belgian Directorate General for Development Cooperation (fourth
458 framework agreement, project 907004). FVDB and SH acknowledge support from the
459 Research Foundation Flanders (Grants 1226120N and G092921N).

460 **DATA AND SCRIPT AVAILABILITY**

461 Genomic sequence reads of all sequenced isolates will be made available on the European
462 Nucleotide Archive (www.ebi.ac.uk/ena) upon publication of this manuscript. Unless specified
463 in the text, scripts are available at <https://github.com/amberhadermann/L.aethiopica>.

464

465

466 **REFERENCES**

467 1. Steverding D. The history of leishmaniasis. *Parasit Vectors*. 2017;10: 82.

468 2. Reithinger R, Dujardin J-C, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous
469 leishmaniasis. *Lancet Infect Dis*. 2007;7: 581–596.

470 3. van Henten S, Adriaensen W, Fikre H, Akuffo H, Diro E, Hailu A, et al. Cutaneous
471 Leishmaniasis Due to *Leishmania aethiopica*. *EClinicalMedicine*. 2018;6: 69–81.

472 4. Assefa A. Leishmaniasis in Ethiopia: A systematic review and meta-analysis of
473 prevalence in animals and humans. *Helijon*. 2018;4: e00723.

474 5. Zanger H, Hailu A, Despoids C, Lye LF, Akopyants NS, Dobson DE, et al. *Leishmania*
475 *aethiopica* Field Isolates Bearing an Endosymbiotic dsRNA Virus Induce Pro-
476 inflammatory Cytokine Response. *PLoS Negl Trop Dis*. 2014.
477 doi:10.1371/journal.pntd.0002836

478 6. Imamura H, Downing T, Van den Broeck F, Sanders MJ, Rijal S, Sundar S, et al.
479 Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent.
480 *Elife*. 2016;5. doi:10.7554/elife.12613

481 7. Schwabl P, Imamura H, Van den Broeck F, Costales JA, Maiguashca-Sánchez J, Miles
482 MA, et al. Meiotic sex in Chagas disease parasite *Trypanosoma cruzi*. *Nat Commun*.
483 2019;10. doi:10.1038/s41467-019-11771-z

484 8. Van den Broeck F, Savill NJ, Imamura H, Sanders M, Maes I, Cooper S, et al.
485 Ecological divergence and hybridization of Neotropical *Leishmania* parasites. *Proc Natl
486 Acad Sci U S A*. 2020;117. doi:10.1073/pnas.1920136117

487 9. Inbar E, Shaik J, Iantorno SA, Romano A, Nzelu CO, Owens K, et al. Whole genome
488 sequencing of experimental hybrids supports meiosis-like sexual recombination in
489 *leishmania*. *PLoS Genet*. 2019;15: 1–28.

490 10. Krayter L, Schnur LF, Schönian G. The Genetic Relationship between *Leishmania*
491 *aethiopica* and *Leishmania tropica* Revealed by Comparing Microsatellite Profiles. *PLoS
492 One*. 2015;10: e0131227.

493 11. Schönian G, Akuffo H, Lewin S, Maasho K, Nylén S, Pratlong F, et al. Genetic variability
494 within the species *Leishmania aethiopica* does not correlate with clinical variations of
495 cutaneous leishmaniasis. *Mol Biochem Parasitol*. 2000;106: 239–248.

496 12. Pratlong F, Dereure J, Ravel C, Lami P, Balard Y, Serres G, et al. Geographical
497 distribution and epidemiological features of Old World cutaneous leishmaniasis foci,
498 based on the isoenzyme analysis of 1048 strains. *Trop Med Int Health*. 2009;14: 1071–
499 1085.

500 13. Odiwuor S, De Doncker S, Maes I, Dujardin J-C, Van der Auwera G. Natural
501 Leishmania donovani/*Leishmania aethiopica* hybrids identified from Ethiopia. *Infect
502 Genet Evol*. 2011;11: 2113–2118.

503 14. Zackay A, Cotton JA, Sanders M, Hailu A, Nasereddin A, Warburg A, et al. Genome
504 wide comparison of Ethiopian *Leishmania donovani* strains reveals differences
505 potentially related to parasite survival. *PLoS Genet*. 2018;14: e1007133.

506 15. González-de la Fuente S, Peiró-Pastor R, Rastrojo A, Moreno J, Carrasco-Ramiro F,

507 Requena JM, et al. Resequencing of the *Leishmania infantum* (strain JPCM5) genome
508 and de novo assembly into 36 contigs. *Sci Rep.* 2017;7: 18050.

509 16. Warren WC, Akopyants NS, Dobson DE, Hertz-Fowler C, Lye L-F, Myler PJ, et al.
510 Genome Assemblies across the Diverse Evolutionary Spectrum of *Leishmania*
511 Protozoan Parasites. *Microbiol Resour Announc.* 2021;10: e0054521.

512 17. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform.
513 *Bioinformatics.* 2010;26: 589–595.

514 18. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
515 Alignment/Map format and SAMtools. *Bioinformatics.* 2009;25: 2078–2079.

516 19. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The
517 genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA
518 sequencing data. *Genome Res.* 2010;20: 1297–1303.

519 20. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A,
520 et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit
521 best practices pipeline. *Curr Protoc Bioinformatics.* 2013;43: 11.10.1–11.10.33.

522 21. RCoreTeam R. A Language and Environment for Statistical Computing. [(accessed on
523 11 February 2021)].

524 22. Huson DH. SplitsTree: analyzing and visualizing evolutionary data. *Bioinformatics.*
525 1998;14: 68–73.

526 23. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A
527 tool set for whole-genome association and population-based linkage analyses. *Am J
528 Hum Genet.* 2007;81: 559–575.

529 24. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant
530 call format and VCFtools. *Bioinformatics.* 2011;27: 2156–2158.

531 25. Weir W, Capewell P, Foth B, Clucas C, Pountain A, Steketee P, et al. Population
532 genomics reveals the origin and asexual evolution of human infective trypanosomes.
533 Soldati-Favre D, editor. *Elife.* 2016;5: e11473.

534 26. Negreira GH, Monsieurs P, Imamura H, Maes I, Kuk N, Yagoubat A, et al. High
535 throughput single-cell genome sequencing gives insights into the generation and
536 evolution of mosaic aneuploidy in *Leishmania donovani*. *Nucleic Acids Res.* 2022;50:
537 293–305.

538 27. Odiwuor SOC, Saad AA, De Doncker S, Maes I, Laurent T, El Safi S, et al. Universal
539 PCR assays for the differential detection of all Old World *Leishmania* species. *Eur J Clin
540 Microbiol Infect Dis.* 2011;30: 209–218.

541 28. Van den Broeck F, Heeren S, Maes I, Sanders M, Cupolillo E, Cotton J, et al. Emerging
542 hybrid uncovers cryptic *Leishmania* lineage diversity in the Neotropics. under review.
543 2022.

544 29. Rogers MB, Downing T, Smith BA, Imamura H, Sanders M, Svobodova M, et al.
545 Genomic Confirmation of Hybridisation and Recent Inbreeding in a Vector-Isolated
546 *Leishmania* Population. *PLoS Genet.* 2014;10. doi:10.1371/journal.pgen.1004092

547 30. Tihon E, Imamura H, Dujardin J-C, Van Den Abbeele J, Van den Broeck F. Discovery
548 and genomic analyses of hybridization between divergent lineages of *Trypanosoma*

549 congolense, causative agent of Animal African Trypanosomiasis. *Mol Ecol.* 2017;26.
550 doi:10.1111/mec.14271

551 31. Van den Broeck F, Tavernier LJM, Vermeiren L, Dujardin JC, Van Den Abbeele J.
552 Mitonuclear genomics challenges the theory of clonality in *Trypanosoma congolense*:
553 Reply to Tibayrenc and Ayala. *Mol Ecol.* 2018. doi:10.1111/mec.14809

554 32. Ramírez JD, Llewellyn MS. Reproductive clonality in protozoan pathogens-truth or
555 artefact? *Mol Ecol.* 2014;23: 4195–4202.

556 33. Glans H, Lind Karlberg M, Advani R, Bradley M, Alm E, Andersson B, et al. High
557 genome plasticity and frequent genetic exchange in *Leishmania tropica* isolates from
558 Afghanistan, Iran and Syria. *PLoS Negl Trop Dis.* 2021;15: e0010110.

559 34. Dumetz F, Imamura H, Sanders M, Seblova V, Myskova J, Pescher P, et al. Modulation
560 of Aneuploidy in *Leishmania donovani* during Adaptation to Different In Vitro and In Vivo
561 Environments and Its Impact on Gene Expression. *MBio.* 2017;8.
562 doi:10.1128/mBio.00599-17

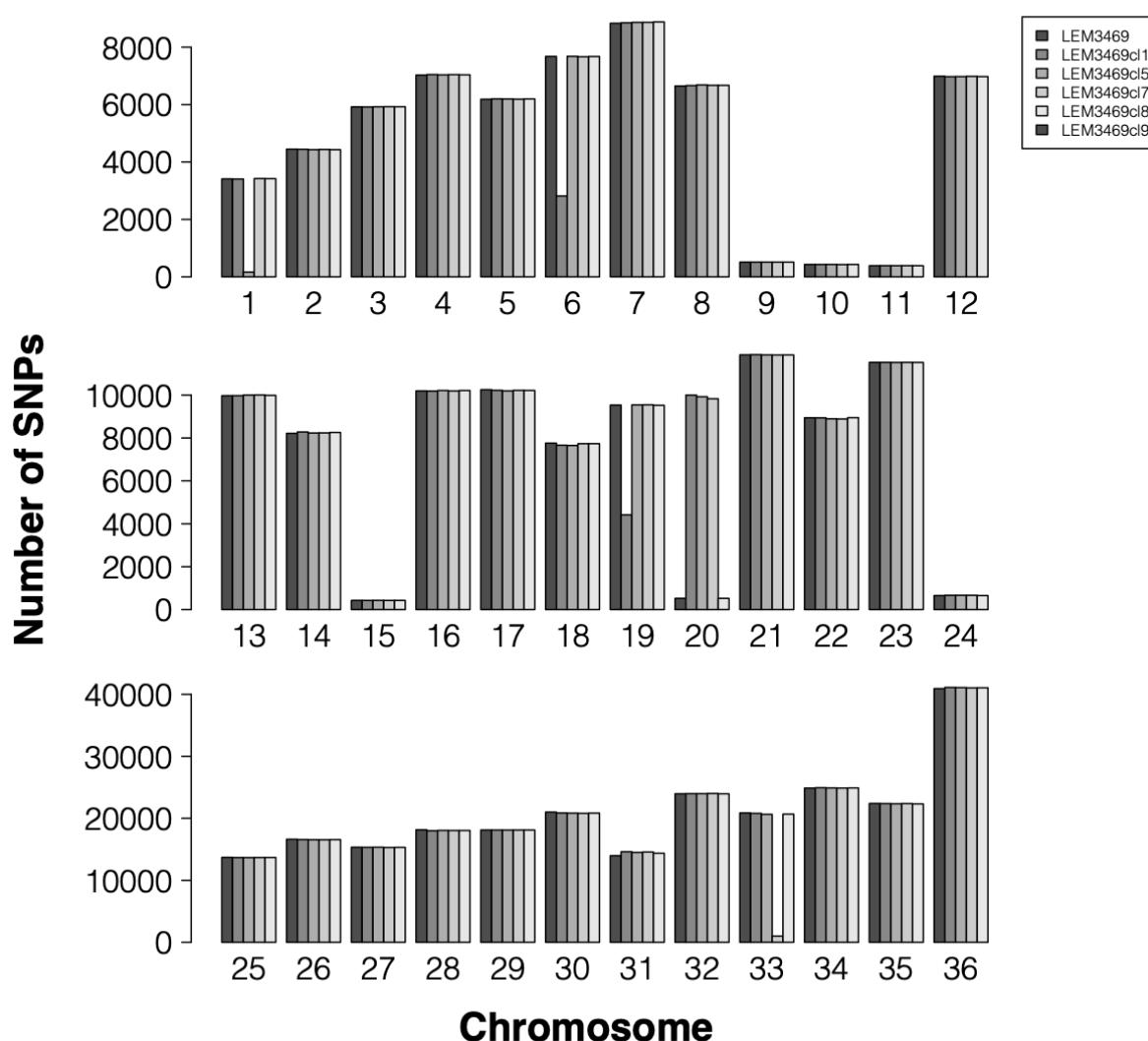
563 35. Stöck M, Ustinova J, Lamatsch DK, Schartl M, Perrin N, Moritz C. A vertebrate
564 reproductive system involving three ploidy levels: hybrid origin of triploids in a contact
565 zone of diploid and tetraploid palearctic green toads (*Bufo viridis* subgroup). *Evolution.*
566 2010;64: 944–959.

567 36. Hegarty MJ, Hiscock SJ. Genomic clues to the evolutionary success of polyploid plants.
568 *Curr Biol.* 2008;18: R435–R444.

569 37. Schultz J, Dobzhansky T. Triploid hybrids between *Drosophila melanogaster* and
570 *Drosophila simulans*. *J Exp Zool.* 1933;65: 73–82.

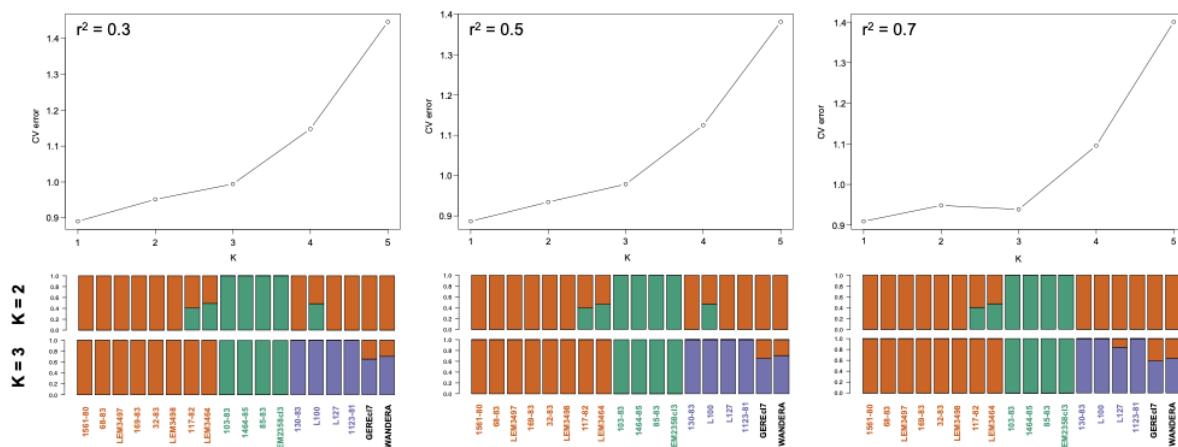
571 38. Gibson W, Stevens J. Genetic exchange in the trypanosomatidae. *Adv Parasitol.*
572 1999;43: 1–46.

573 39. Zhao Z, Fu Y-X, Hewett-Emmett D, Boerwinkle E. Investigating single nucleotide
574 polymorphism (SNP) density in the human genome and its implications for molecular
575 evolution. *Gene.* 2003;312: 207–213.

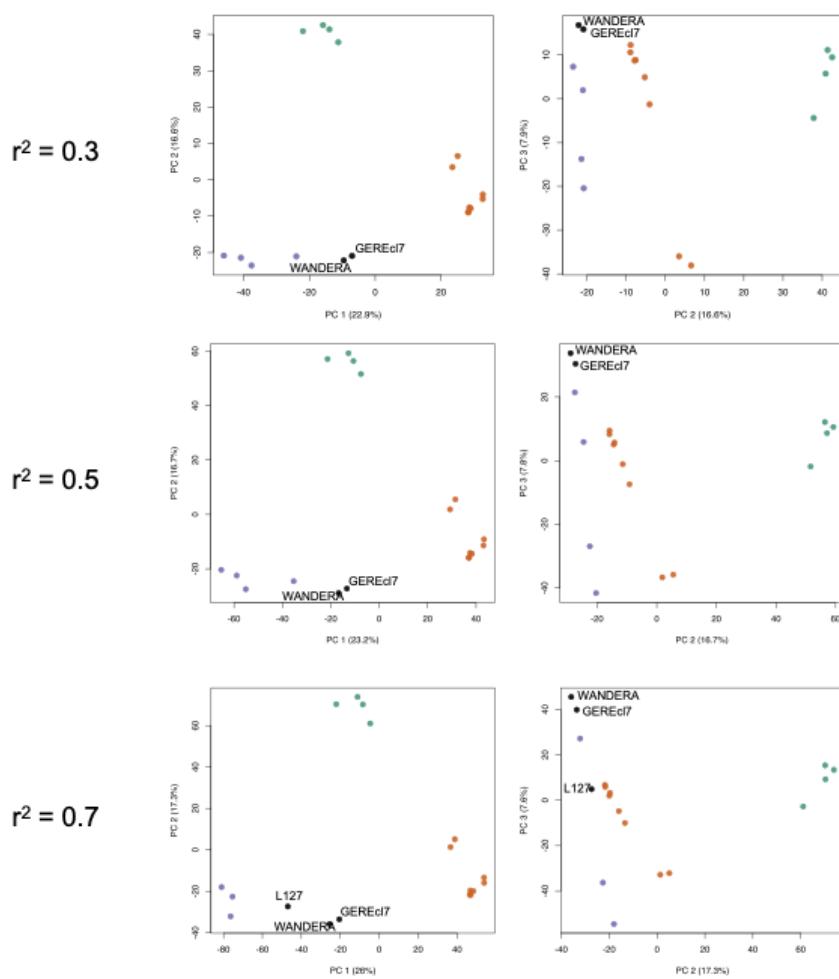

576 40. Franssen SU, Durrant C, Stark O, Moser B, Downing T, Imamura H, et al. Global
577 genome diversity of the *leishmania donovani* complex. *Elife.* 2020;9: e51243.

578 41. Domagalska MA, Imamura H, Sanders M, Van den Broeck F, Bhattarai NR,
579 Vanaerschot M, et al. Genomes of *Leishmania* parasites directly sequenced from
580 patients with visceral leishmaniasis in the Indian subcontinent. *PLoS Negl Trop Dis.*
581 2019;13: e0007900.

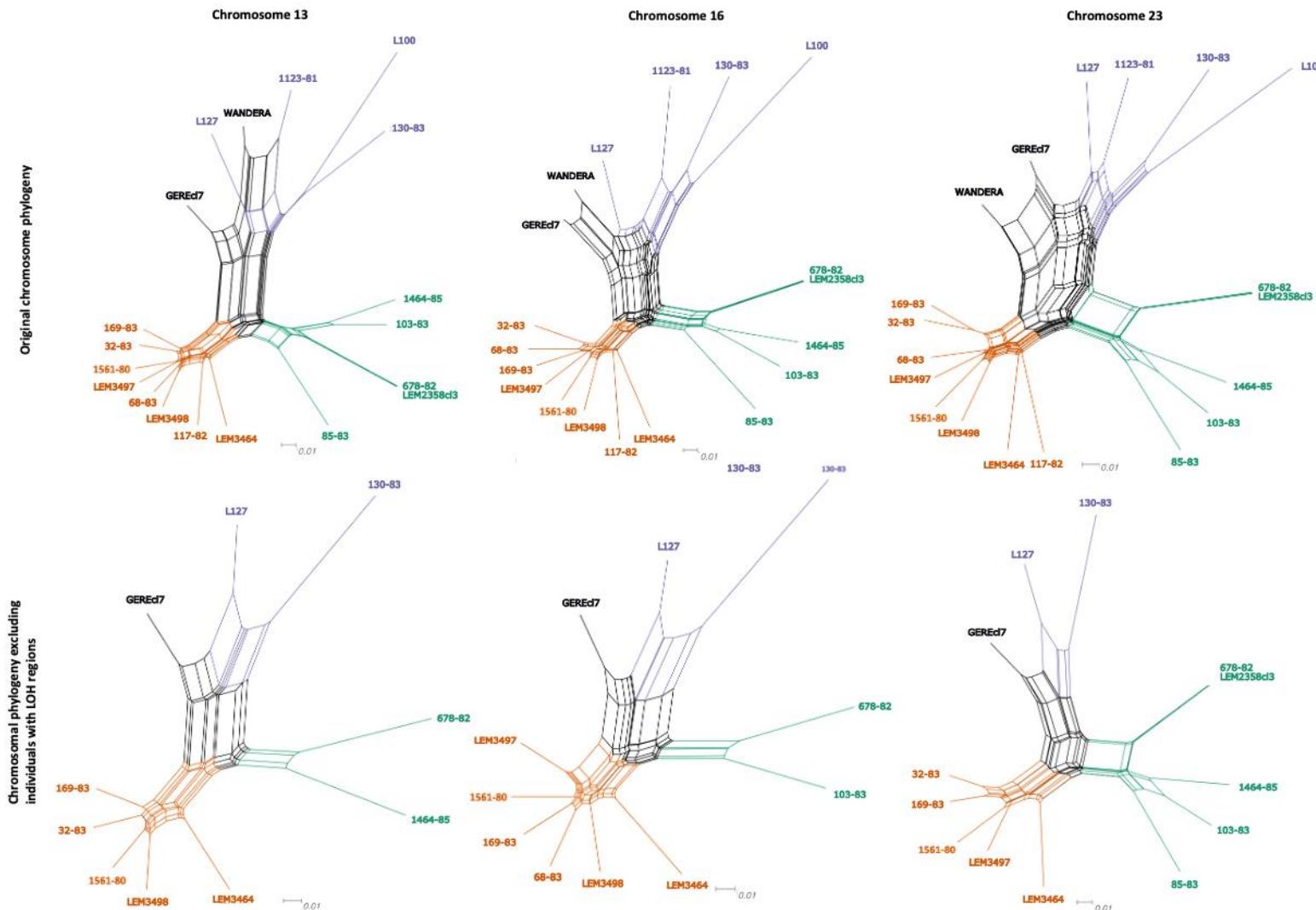
582 42. Tucker AE, Ackerman MS, Eads BD, Xu S, Lynch M. Population-genomic insights into
583 the evolutionary origin and fate of obligately asexual *Daphnia pulex*. *Proc Natl Acad Sci
584 U S A.* 2013;110: 15740–15745.


585 43. Geerts M, Chen Z, Bebronne N, Savill NJ, Schnaufer A, Büscher P, et al. Deep
586 kinetoplast genome analyses result in a novel molecular assay for detecting
587 *Trypanosoma brucei gambiense*-specific minicircles. *NAR Genomics and
588 Bioinformatics.* 2022;4: lqac081.

589 44. Peacock L, Kay C, Farren C, Bailey M, Carrington M, Gibson W. Sequential production
590 of gametes during meiosis in trypanosomes. *Commun Biol.* 2021;4: 555.


591
592
593
594

Supplementary Figure 1. Number of SNPs for each of the 36 chromosomes in LEM3469 and its five derived clones.


595
596
597
598
599
600
601
602
603

Supplementary Figure 2. Model-based ancestry estimation of *L. aethiopica*, as inferred by ADMIXTURE, for different SNP-pruning thresholds (see methods). Upper panels depict the 5-fold cross validation plots for $K = 1-5$. Lower panels represent barplots of the ancestral components inferred by ADMIXTURE for $K = 2$ and $K = 3$. (left) SNP pruning at $r^2=0.3$ retaining 47,244 SNPs. (middle) SNP pruning at $r^2=0.5$ retaining 85,725 SNPs. (right) SNP pruning at $r^2=0.7$ retaining 112,241 SNPs.

604
605
606
607
608
609

Supplementary Figure 3. Principal component analysis for the different SNP-pruning thresholds (see methods). (upper) SNP pruning at $r^2=0.3$ retaining 47,244 SNPs. (middle) SNP pruning at $r^2=0.5$ retaining 85,725 SNPs. (lower) SNP pruning at $r^2=0.7$ retaining 112,241 SNPs. Colors represent the population assignment as inferred by ADMIXTURE (Supplementary Figure 3).

Supplementary Figure 4. Phylogenetic network based on uncorrected p-distances for chromosome 13 (left), 16 (middle) and 23 (right) with (lower) and without (upper) excluding individuals containing LOH regions. Coloured branches and tip labels correspond to the inferred populations by ADMIXTURE at K=3 (Figure 3A).