

1 Autophagy mediates cancer cell resistance to doxorubicin induced 2 by the Programmed Death 1/Programmed Death Ligand 1 immune 3 checkpoint axis

4 Lori Minassian (14lm38@queensu.ca)^{1,2}, Daniel Sanwalka (danielsanwalka@gmail.com)^{1,2},
5 Jean-François Paré (jfp3@queensu.ca.mail.onmicrosoft.com)², Shannyn Macdonald-Goodfellow
6 (sm23@queensu.ca)², R. Liam Sutherland (13rls5@queensu.ca)², Abdi Ghaffari
7 (ghaffari@queensu.ca)², Chelsea L. Margerum (15clm5@queensu.ca)², Madhuri Koti
8 (madhuri.koti@queensu.ca)^{2,4}, Andrew W.B. Craig (ac15@queensu.ca)^{2,4}, Tiziana Cotechini
9 (t.cotechini@queensu.ca)², D. Robert Siemens (Robert.Siemens@kingstonhsc.ca)^{2,3}, Edmond
10 Chan (eywc@queensu.ca)², Charles H. Graham (grahamc@queensu.ca)^{2,3}

11

¹² Both authors contributed equally to this manuscript and will share co-first authorship.

13 ²Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario,
14 Canada; ³Department of Urology, Queen's University, Kingston, Ontario, Canada

15 ⁴Cancer Research Institute, Queen's University, Kingston, Ontario, Canada

16 **Corresponding Author:** Charles H. Graham, grahamc@queensu.ca, 613-533-2852, 18 Stuart

17 St, Queen's University, Botterell Hall Room 859, Kingston, Ontario, K7L3N6

18 **Running Title:** Autophagy as a mechanism of PD-1/PD-L1 induced chemores

19 **Keywords:** autophagy, PD-L1, drug resistance, reverse signaling

20 **Total word Count:** 4,305 (including all sections)

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

21 ABSTRACT

22 **Background:** While the Programmed Death 1/Programmed Death Ligand 1 (PD-1/PD-L1)
23 immune checkpoint is an important mechanism of immune evasion in cancer, recent studies have
24 shown that it can also lead to resistance to chemotherapy in cancer cells via reverse signaling.
25 Here we describe a novel mechanism by which autophagy mediates cancer cell drug resistance
26 induced by PD-1/PD-L1 signaling.

27 **Methods:** Human and mouse breast cancer cells were treated with recombinant PD-1 (rPD-1) to
28 stimulate PD-1/PD-L1 signaling. Activation of autophagy was assessed by immunoblot analysis
29 of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II and Beclin 1 protein levels, two
30 important markers of autophagy. Moreover, autophagosome formation was assessed in human
31 breast cancer cells using green fluorescence protein (GFP)-tagged LC3. Cells were either treated
32 with Beclin 1 or Atg7 shRNA to assess the role of autophagy on resistance to doxorubicin
33 mediated by PD-1/PD-L1 signalling. We then investigated signaling mechanisms upstream of
34 PD-1/PD-L1 induced autophagy by assessing phosphorylation of extracellular signal-related
35 kinase (ERK).

36 **Results:** Treatment of cells with rPD-1 resulted in a time-dependent increase in LC3-II as well
37 as Beclin 1, and an increase in autophagosome formation. Knockdown of Beclin 1 or Atg7
38 prevented drug resistance induced by PD-1/PD-L1 signaling. Exposure of breast cancer cells to
39 rPD-1 resulted in increased ERK phosphorylation and inhibition of ERK activation abolished
40 autophagy induced by PD-1/PD-L1 signaling.

41 **Conclusions:** These studies provide a rationale for the use of PD-1/PD-L1 immune checkpoint
42 blockers and autophagy inhibitors as potential chemosensitizers in cancer therapy.

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

43 INTRODUCTION

44 An important immune checkpoint in cancer involves the upregulation and binding of
45 Programmed Death Ligand 1 (PD-L1) on cancer cells to Programmed Death 1 (PD-1) on
46 cytotoxic T cells. This ligand-receptor interaction leads to T cell anergy, exhaustion, apoptosis,
47 and decreased cytokine production and proliferation, ultimately resulting in decreased cytotoxic
48 activity against tumor cells (1). Thus, much effort has gone into developing PD-1/PD-L1
49 immune checkpoint blockers, some of which have demonstrated unprecedented clinical efficacy
50 as first-line or second-line therapy of various cancers including melanoma, non-small cell lung
51 cancer, renal cell carcinoma, urothelial carcinoma, and colorectal cancer, among others (2-5).

52

53 Because the PD-1/PD-L1 axis is an important mechanism of immune escape, most
54 studies have focused on evaluating how PD-1-mediated signaling affects T cell properties.
55 However, recent reports have demonstrated that PD-1/PD-L1 signaling is bi-directional (6,7)
56 and that engagement of PD-1 with PD-L1 can result in acquisition of drug resistance in tumor
57 cells (8). We recently discovered that, following exposure to recombinant PD-1, breast and
58 prostate cancer cells that express PD-L1 acquired resistance to different classes of conventional
59 anti-cancer drugs, *i.e.* doxorubicin and docetaxel. Moreover, acquisition of this drug resistance
60 phenotype was prevented when the PD-1/PD-L1 interaction was inhibited by incubating cells
61 with anti-PD-1 antibody, anti-PD-L1 antibody or PD-L1 targeting siRNA (8). That study,
62 however, did not fully characterize the mechanism of drug resistance.

63

64 The autophagy intracellular degradation pathway plays a number of well-established
65 roles in sustaining the high metabolic levels required for the abnormal growth of cancer cells (9).

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

66 In addition, autophagy has also been proposed to contribute to drug resistance mechanisms
67 following therapy with various agents such as 5-fluorouracil, cisplatin, gemcitabine,
68 anthracyclines, and tamoxifen (9-15). In several contexts, inhibition of autophagy enhances the
69 efficacy of chemotherapy (12-14). Thus, in the present study, we investigated the contribution of
70 autophagy to breast cancer cell drug resistance induced by PD-1/PD-L1 signaling. We report
71 here that engagement of PD-1 with PD-L1 on tumor cells mediates drug resistance via induction
72 of autophagy.

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

73 MATERIALS AND METHODS

74 Cell Lines

75 Human MDA-MB-231 breast cancer cells and mouse mammary carcinoma 4T1 cells were
76 purchased from the American Type Culture Collection (Manassas, VA, USA) and were cultured
77 in RPMI 1640 medium (Wisent 350-000-CL; Wisent Bioproducts, Montreal, QC, Canada)
78 supplemented with 5% or 10% fetal bovine serum (FBS; Sigma #F6178; Sigma-Aldrich Canada,
79 Oakville, ON, Canada), respectively.

80

81 Flow Cytometry to assess PD-L1 expression

82 Flow cytometry was performed according to a standard protocol from Abcam (Toronto, ON,
83 Canada). Cells were stained for one hour using the following antibodies: Allophycocyanin
84 (APC) anti-human CD274 (5 μ L/test; BioLegend #329707; BioLegend, San Diego, CA, USA),
85 APC anti-mouse CD274 (5 μ L/test; BioLegend #124311), and matched isotype controls APC
86 mouse IgG2b κ isotype control (5 μ L/test; BioLegend #400322), APC Rat IgG2b, κ Isotype
87 Control (5 μ L/test; BioLegend #400611) and then fixed with 2% paraformaldehyde. Staining
88 was assessed on the MACS Quant Analyzer (Miltenyi Biotec, Bergisch Gladbach, Germany) and
89 analysis was done with FlowJoTM Version 10 (BD, Franklin Lakes, NJ, USA).

90

91 Exposure to rPD-1

92 Tumor cells were seeded in six-well plates at a density of 2×10^5 cells/well in RPMI 1640
93 medium supplemented with 2% FBS. Twenty-four hours later, cells were treated with 1 μ g/mL
94 of either human rPD-1 (hrPD-1-Fc; R&D Systems #1086-PD-050; Minneapolis, MN, USA) or
95 mouse rPD-1-Fc (R&D Systems #1021-PD-100) for 0, 10, 30, 60 and 180 minutes. In some

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

96 experiments where indicated, 30 minutes prior to addition of rPD-1-Fc (dosage according to Cell
97 Signaling Technologies (CST) protocol; Danvers, MA, USA) cells were incubated with anti-PD-
98 L1 blocking antibody (Ab; 4 μ g/mL; BioLegend #29702; dosage determined from previous work
99 (8)), or the mitogen-activated protein kinase kinase (MEK) inhibitor U0126 (10 μ M; CST
100 #9903).

101

102 **Immunoblotting**

103 Proteins from cell extracts were separated by sodium dodecyl sulphate-polyacrylamide gel
104 electrophoresis (SDS-PAGE) on 4-20% gradient gels (Bio-Rad #4561095; Hercules, CA, USA)
105 and transferred to polyvinylidene difluoride (PVDF) membranes. Membranes were blocked in
106 5% skim milk or BSA in 1x Tris-buffered saline/0.1% Tween-20 (TBST) for one hour at room
107 temperature prior to overnight incubations at 4°C with the following primary antibodies: rabbit
108 anti-LC3B (Novus NB11-2220, 1:1000; Littleton, CO, USA), rabbit anti-Beclin1 (Novus
109 NB500-249, 1:1000), mouse anti-pERK (Santa Cruz sc7383; Dallas, TX, USA; 1:500), rabbit-
110 anti-ERK1 (Santa Cruz sc-94, 1:1000), rabbit anti- α -actinin (Santa Cruz sc-15335, 1:1000), or
111 mouse anti- β -actin (Sigma Aldrich A5441, 1:10000). Secondary antibody incubations were
112 performed for one hour at room temperature with the following antibodies: goat-anti-rabbit IgG
113 HRP (Abcam ab97051) and goat-anti-mouse (Bio-Rad #1706516). Protein bands were visualized
114 using chemiluminescence substrate (PerkinElmer #NEL104001EA; Waltham, MA, USA) and
115 the Azure Biosystems c600 Gel Imaging System (Dublin, CA, USA. Densitometric analysis was
116 performed using ImageJ version 1.51k.

117

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

118 **Autophagosome Formation and Imaging**

119 MDA-MB-231 cells were seeded in eight-well chambered polymer coverslips (ibidi #80826) at a
120 density of 4.5×10^3 cells/well. After 24 hours, cells were transfected with 0.24 μ g EGFP-LC3
121 plasmid DNA (Addgene #11546; Watertown, MA, USA) using the FUGENE6 transfection
122 reagent (Promega, Madison, WI, USA) in Opti-MEM medium (ThermoFisher). Eighteen hours
123 after transfection, cells were treated with rPD-1 in the absence or presence of anti-PD-L1
124 antibody or U0126 as described above. After treatment, cells were fixed with 100% cold
125 methanol and imaged with a spinning disk confocal microscope (Quorum WaveFX; Quorum
126 Technologies, Puslinch, ON) at 40x magnification. Ten cells per condition were selected
127 randomly by an observer blinded to the treatment conditions. Autophagosomes were quantified
128 using Image-Pro Plus and ImageJ version 1.51k. Data were pooled from at least three
129 independent experiments.

130

131 **Knockdown of Beclin 1 and Atg7 expression**

132 Knockdown of Beclin 1 (using pLKO.1 for BECN1 clone TRCN0000087290) or Atg7 (using
133 pLKO.1 for Atg7 clone TRCN0000092163) in mouse 4T1 cells was achieved following seven
134 days of selection in puromycin as previously described (16,17). pLKO scrambled shRNA
135 (Addgene (#1864)) was used as control.

136

137 **Clonogenic assays**

138 Clonogenic assays were performed to determine the effect of autophagy on PD-1-induced drug
139 resistance. 4T1 cells expressing shRNA to knock down Beclin 1 or Atg7 expression or control
140 4T1 cells expressing scrambled shRNA were treated with mouse rPD-1-Fc (1 μ g/mL) for 30

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

141 minutes and subsequently incubated in medium containing doxorubicin (0.5 μ M; Sigma
142 #D1515) for one hour. The concentration of doxorubicin chosen was based on preliminary dose-
143 response survival data. Cells were then trypsinized, plated at 300 cells/well, and colony numbers
144 were counted 10 days later. The plating efficiency (PE) of all treatment groups was calculated by
145 dividing the number of colonies counted by 300 (number of cells plated). Surviving fraction (SF)
146 was calculated by dividing the PE of cells in all treatment groups by the mean PE of untreated
147 (shRNA alone) control cells. Results from two independent experiments conducted in replicates
148 of three wells per condition in each experiment were pooled for a total of six replicates.

149

150 **Statistical Analysis**

151 Statistical analysis was performed using GraphPad Prism software (versions 7.02 and 9.4.0;
152 GraphPad Software, San Diego, CA, USA). Error bars represent standard error of the mean.
153 Two-tailed unpaired Student's t-test was used to compare means of two groups. One-way
154 analysis of variance (ANOVA) followed by Tukey's post-hoc test was used when comparing
155 means of three or more groups. Two-way ANOVA was used for experiments involving two
156 independent variables. Data were considered statistically significant when $p < 0.05$.

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

157 RESULTS

158 Human and mouse cancer cells exposed to rPD-1 express increased levels of the autophagy 159 markers, LC3-II and Beclin 1 in vitro

160 MDA-MB-231 and 4T1 cells were confirmed to express PD-L1 (Figure 1A). Conversion of
161 LC3-I to LC3-II and global levels of Beclin 1 are established measures of autophagy. MDA-MB-
162 231 cells treated with 1 μ g/mL rPD-1 exhibited a time-dependent increase in lipidated LC3-II
163 (Figure 1B), which led to a statistically significant ($p<0.05$) LC3 activation ratio (LC3-II/actin)
164 at the 30-minute timepoint. Thus, subsequent incubations involving the use of rPD-1 to stimulate
165 autophagy involved a 30-minute incubation time. MDA-MB-231 cells treated with rPD-1 also
166 showed a time-dependent increase in Beclin 1 levels ($p<0.001$), peaking at 60 minutes following
167 rPD-1 exposure (Figure 1C). When cells were pre-treated for 30 minutes with an anti-PD-L1
168 blocking antibody LC3-II levels returned to baseline (Figure 1D; $p<0.01$). Results of experiments
169 using mouse mammary 4T1 cells revealed similar LC3-II activation patterns, with LC3-II levels
170 peaking at 30 minutes of incubation with rPD-1; this effect was also attenuated when cells were
171 pre-treated with anti-PD-L1 Ab (Figure 1E).

172

173 rPD-1 exposure increases the number of autophagosomes in human breast cancer cells

174 Upon activation of autophagy, lipidated LC3-II localizes to the autophagosome. To determine
175 whether PD-1-induced PD-L1 signaling affects autophagosome formation, MDA-MB-231 cells
176 were transfected with LC3 conjugated to GFP (GFP-LC3) and treated with rPD-1. Following 30
177 minutes of exposure to rPD-1, MDA-MB-231 cells displayed increased numbers of
178 autophagosomes identified as GFP-positive punctate (Figure 2A). This increase in
179 autophagosome numbers was comparable to the increase observed in cells cultured under serum

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

180 starvation conditions, a stressor which induces autophagy. Furthermore, the increase in
181 autophagosome numbers in rPD-1-treated cells was prevented by incubation with an anti-PD-L1
182 blocking antibody (Figure 2B).

183

184 **Inhibition of autophagy prevents PD-1/PD-L1-induced drug resistance**

185 To assess the role of autophagy on PD-1/PD-L1 induced tumor cell drug resistance, we
186 performed colony formation assays. Compared with control 4T1 cells incubated without rPD-1,
187 incubation with rPD-1 did not affect the plating efficiency of these cells treated in the absence of
188 doxorubicin, as shown by the lack of differences in their surviving fractions (Figure 3A-C).
189 Incubation with doxorubicin decreased cell survival under all conditions (Figure 3A-C).
190 However, pre-incubation with rPD-1 significantly increased the survival of control (scrambled
191 shRNA) 4T1 cells following doxorubicin exposure (Figure 3A; $p<0.01$), but not the survival of
192 Beclin 1- or Atg7-knockdown cells (Figure 3B and C).

193

194 **Autophagy mediated by PD-1/PD-L1 is dependent on ERK signaling**

195 To elucidate potential upstream regulators of autophagy, we next examined whether activation of
196 the PD-1/PD-L1 axis altered oncogenic signaling pathways. MDA-MB-231 cells treated with
197 rPD-1 showed a time-dependent increase in phosphorylated ERK (pERK) (Figure 4A). To
198 establish the role of ERK signaling in PD-1/PD-L1 induced autophagy, cells were treated with
199 the MEK inhibitor U0126 (MEK is upstream of ERK and regulates its phosphorylation and
200 activation) prior to rPD-1 treatment, as described. Immunoblot analysis of cells treated with
201 U0126 confirmed inhibition of pERK phosphorylation (data not shown). Treatment with U0126
202 abolished the rPD-1 induced LC3-II accumulation in MDA-MB-231 cells (Figure 4B; $p<0.01$) as

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

203 well as in 4T1 cells (Supplementary Figure 1; $p<0.01$). In addition, treatment of MDA-MB-231
204 cells with U0126 inhibited rPD-1 induced increase in autophagosome numbers (Figure 4C).

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

205 DISCUSSION

206 This study demonstrates a novel mechanism of drug resistance in tumor cells induced by
207 reverse PD-1/PD-L1 signaling. Specifically, our results reveal that activation of PD-L1 signaling
208 increases resistance to doxorubicin in mammary cancer cells via induction of autophagy.
209 Furthermore, we provide evidence that oncogenic ERK signaling is a key mediator of autophagy
210 induced by PD-1/PD-L1 signaling.

211

212 A study by Ishibashi *et al.* revealed that treating PD-L1-expressing myeloma cells with
213 PD-1 stimulated drug resistance by inhibiting apoptotic pathways (7). Interestingly, Azuma *et al.*
214 also demonstrated that tumor cells acquire resistance to pro-apoptotic mechanisms upon binding
215 of PD-1 to PD-L1; however, these investigators provided evidence that classical apoptotic or
216 anti-apoptotic pathways may not be involved in this process (6). Thus, when examining potential
217 mechanisms of PD-1/PD-L1-mediated chemoresistance, we focused on the role of autophagy, as
218 this biological process has been a proposed mediator of drug resistance (18-20). Our results
219 indeed support a role for autophagy in PD-1/PD-L1-based chemoresistance. In contrast, a study
220 by Clark *et al.* showed that low-PD-L1 expressing melanoma and ovarian cancer cells had
221 decreased mammalian target of rapamycin (mTOR) activity, increased levels of autophagy,
222 resistance to chloroquine (autophagy inhibitor) and slower tumor formation in
223 immunocompromised mice compared to cells expressing normal levels of PD-L1 (21).

224

225 To further explore a causal role for autophagy in PD-1/PD-L1 induced drug resistance,
226 we determined the effect of Beclin 1 and Atg7 knockdown on rPD-1 mediated resistance to
227 doxorubicin. Beclin 1 is a component of class III PI3K complexes that produce

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

228 phosphatidylinositol 3-phosphate [PI(3)P], which is essential for phagophore formation and the
229 initiation of the autophagosome (20,22). Both Atg5 and Atg7 play important roles in the
230 elongation and maturation of the autophagic membrane during canonical autophagy (23).
231 However, cells can generate autophagic vacuoles via an alternative Atg5/Atg7-independent
232 autophagy pathway (23). In our study, the fact that knockdown of either Beclin 1 or Atg7
233 resulted in the complete inhibition of rPD-1-mediated resistance to doxorubicin in 4T1 cells
234 indicates that activation of the canonical autophagy pathway is required.

235

236 The Ras/Raf/MEK/ERK signal transduction pathway is an important mediator of
237 malignant phenotypes and ERK activation has been shown to lead to both apoptotic and
238 autophagic cell death in various models (24-26). In contrast, inhibition of ERK phosphorylation
239 has been associated with decreased autophagy and increased susceptibility to tumor necrosis
240 factor (TNF)-induced cell death (27). Furthermore, ERK activation induces conversion of LC3-I
241 to LC3-II, a key step in autophagosome formation (28). Our study established that PD-1/PD-L1
242 reverse signaling leads to increased phosphorylation of ERK, implicating this pathway as a
243 potential driver of PD-1/PD-L1 induced autophagy and drug resistance. Furthermore, blocking
244 this signaling pathway with a MEK inhibitor, U0126, led to a decrease in rPD-1-induced LC3-II
245 expression and autophagosome numbers. Interestingly, it has been shown that activation of Raf,
246 an upstream mediator of ERK signaling, leads to resistance to doxorubicin and paclitaxel in
247 breast cancer cells (29). The relative contribution of autophagy to Raf-mediated drug resistance
248 warrants further investigation. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)
249 signaling pathway has also been implicated in PD-1/PD-L1 induced drug resistance; however,
250 this pathway may only be involved in an antiapoptotic response (7). The PI3K/AKT signaling

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

251 pathway is also known to inhibit autophagy (30,31), thus it is possible that it plays a role in
252 regulating PD-1/PD-L1 induced drug resistance.

253

254 In addition to mediating chemoresistance, autophagy has implications for tumor
255 progression as it is a mechanism of stress response. It has been shown in multiple cancers that
256 high levels of autophagy are required for the maintenance of metabolic function, and that
257 inhibition of autophagy increases the intracellular concentrations of reactive oxygen species and
258 leads to DNA damage (32,33). Therefore, PD-1/PD-L1-mediated induction of autophagy in
259 tumor cells may promote tumor progression and malignancy in addition to inducing drug
260 resistance. Furthermore, ERK signaling is important for the acquisition of malignant phenotypes,
261 including cell proliferation, migration, and differentiation. This suggests that PD-1/PD-L1
262 reverse signaling may not only promote drug resistance, but also the acquisition of other
263 malignant phenotypes.

264

265 CONCLUSIONS

266 The widespread expression of PD-L1, its role as a prognostic marker for cancer outcomes, and
267 the unprecedented clinical effects of anti-PD-1/PD-L1 treatment, make the characterization of
268 this axis critical to improving on current therapeutics. This study presents autophagy via ERK
269 signaling as a potential mechanism for PD-1/PD-L1 induced drug resistance. Chemoresistance is
270 still an important barrier to cancer treatment and elucidating mechanisms of drug resistance is
271 essential for improving therapeutic efficacy. Our study suggests that there is a potential role for
272 combining autophagy inhibitors, as well as Ras/Raf/MEK/ERK inhibitors with PD-1/PD-L1
273 blocking agents and standard chemotherapy protocols. Chloroquine, an inhibitor of autophagy,

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

274 has been used in combination therapies resulting in enhanced efficacy of tumor cell killing.
275 There are also FDA approved inhibitors of Raf (dabrafenib) and MEK (trametinib), as well as
276 various ERK inhibitors currently in clinical trials. Combining these therapies may sensitize
277 tumor cells to current gold standard treatments and improve patient outcomes.

278

279 DECLARATIONS

280 **Competing Interests:** None of the authors declare any potential conflict of interest.

281 **Funding:** This work was supported by a project grant from the Canadian Institutes of Health
282 Research (PJT-148601) awarded to C.H. Graham, M. Koti, and D.R Siemens. L. Minassian was
283 the recipient of a Canadian Institutes of Health Research Doctoral Award-Frederick Banting and
284 Charles Best Canada Graduate Scholarship. D. Sanwalka received funding from the Terry Fox
285 Research Institute Transdisciplinary Training Program in Cancer Research and T. Cotechini was
286 a recipient of a Canadian Institutes of Health Research Post-Doctoral Fellowship.

287 **Authors' Contributions:** LM and DS were involved in study conceptualization and design,
288 performed all experiments and data analysis, and wrote the original manuscript. SMG, LS, JFP,
289 CLM and AG aided in experimental procedures. DRS, MK, EC, and AWBC provided
290 conceptual advice, as well as technical and material support. TC edited the manuscript. CHG was
291 involved in study conceptualization and analysis of data, supervised the execution of the study,
292 edited the manuscript, and acquired funding to perform this research. All authors read and
293 approved the manuscript

294 **Acknowledgments:** We would like to thank Brooke Ring for her assistance with flow cytometry
295 experiments. We would also like to thank Matt Gordon for aiding with the autophagosome
296 fluorescence imaging.

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

297 LIST OF ABBREVIATIONS

298 Ab: antibody
299 AKT: protein kinase B
300 ANOVA: analysis of variance
301 APC: allophycocyanin
302 ATCC: American Type Culture Collection
303 Atg7: autophagy-related gene 7
304 ERK: extracellular signal-regulated kinase
305 FBS: fetal bovine serum
306 GFP: green fluorescence protein
307 MEK: mitogen-activated protein kinase kinase
308 mTOR: mammalian target of rapamycin
309 PD-1: programmed cell death protein-1
310 PD-L1: programmed death ligand-1
311 PE: plating efficiency
312 PI3K: phosphoinositide 3-kinase
313 PVDF: polyvinylidene difluoride
314 rPD-1: recombinant PD-1
315 RPMI: Roswell Park Memorial Institute
316 SDS-PAGE: sodium dodecyl sulphate-polyacrylamide gel electrophoresis
317 SF: surviving fraction
318 TBST: tris-buffered saline, 0.1% Tween 20
319 TNF: tumor necrosis factor

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

320 REFERENCES

- 321 1. Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. *J Clin Invest* **2015**;125:3384-91
- 323 2. Swaika A, Hammond WA, Joseph RW. Current state of anti-PD-L1 and anti-PD-1 agents in cancer therapy. *Mol Immunol* **2015**;67:4-17
- 325 3. Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. *J Immunother Cancer* **2018**;6:8
- 328 4. Ferrara R, Pilotto S, Caccese M, Grizzi G, Sperduti I, Giannarelli D, *et al.* Do immune 329 checkpoint inhibitors need new studies methodology? *J Thorac Dis* **2018**;10:S1564-S80
- 330 5. Kubli SP, Berger T, Araujo DV, Siu LL, Mak TW. Beyond immune checkpoint 331 blockade: emerging immunological strategies. *Nat Rev Drug Discov* **2021**;20:899-919
- 332 6. Azuma T, Yao S, Zhu G, Flies AS, Flies SJ, Chen L. B7-H1 is a ubiquitous antiapoptotic 333 receptor on cancer cells. *Blood* **2008**;111:3635-43
- 334 7. Ishibashi M, Tamura H, Sunakawa M, Kondo-Onodera A, Okuyama N, Hamada Y, *et al.* 335 Myeloma Drug Resistance Induced by Binding of Myeloma B7-H1 (PD-L1) to PD-1. 336 *Cancer Immunol Res* **2016**;4:779-88
- 337 8. Black M, Barsoum IB, Truesdell P, Cotechini T, Macdonald-Goodfellow SK, Petroff M, 338 *et al.* Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell 339 chemoresistance associated with increased metastasis. *Oncotarget* **2016**;7:10557-67

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

340 9. Li X, Zhou Y, Li Y, Yang L, Ma Y, Peng X, *et al.* Autophagy: A novel mechanism of
341 chemoresistance in cancers. *Biomed Pharmacother* **2019**;119:109415

342 10. Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, *et al.* Autophagy
343 suppresses tumor progression by limiting chromosomal instability. *Genes Dev*
344 **2007**;21:1367-81

345 11. Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development
346 and response to therapy. *Nat Rev Cancer* **2005**;5:726-34

347 12. Liu D, Yang Y, Liu Q, Wang J. Inhibition of autophagy by 3-MA potentiates cisplatin-
348 induced apoptosis in esophageal squamous cell carcinoma cells. *Med Oncol*
349 **2011**;28:105-11

350 13. Zou Z, Yuan Z, Zhang Q, Long Z, Chen J, Tang Z, *et al.* Aurora kinase A inhibition-
351 induced autophagy triggers drug resistance in breast cancer cells. *Autophagy*
352 **2012**;8:1798-810

353 14. Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, *et al.* Autophagy and
354 chemotherapy resistance: a promising therapeutic target for cancer treatment. *Cell Death
355 Dis* **2013**;4:e838

356 15. Sun WL, Chen J, Wang YP, Zheng H. Autophagy protects breast cancer cells from
357 epirubicin-induced apoptosis and facilitates epirubicin-resistance development.
358 *Autophagy* **2011**;7:1035-44

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

359 16. Nwadike C, Williamson LE, Gallagher LE, Guan JL, Chan EYW. AMPK Inhibits ULK1-
360 Dependent Autophagosome Formation and Lysosomal Acidification via Distinct
361 Mechanisms. *Mol Cell Biol* **2018**;38

362 17. Gallagher LE, Radhi OA, Abdullah MO, McCluskey AG, Boyd M, Chan EYW.
363 Lysosomotropism depends on glucose: a chloroquine resistance mechanism. *Cell Death
364 Dis* **2017**;8:e3014

365 18. Honscheid P, Datta K, Muders MH. Autophagy: detection, regulation and its role in
366 cancer and therapy response. *Int J Radiat Biol* **2014**;90:628-35

367 19. Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic
368 implications. *Mol Cancer Ther* **2011**;10:1533-41

369 20. Zamame Ramirez JA, Romagnoli GG, Kaneno R. Inhibiting autophagy to prevent drug
370 resistance and improve anti-tumor therapy. *Life Sci* **2021**;265:118745

371 21. Clark CA, Gupta HB, Sareddy G, Pandeswara S, Lao S, Yuan B, *et al.* Tumor-Intrinsic
372 PD-L1 Signals Regulate Cell Growth, Pathogenesis, and Autophagy in Ovarian Cancer
373 and Melanoma. *Cancer Res* **2016**;76:6964-74

374 22. He C, Levine B. The Beclin 1 interactome. *Curr Opin Cell Biol* **2010**;22:140-9

375 23. Urbanska K, Orzechowski A. The Secrets of Alternative Autophagy. *Cells* **2021**;10

376 24. Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death--
377 apoptosis, autophagy and senescence. *FEBS J* **2010**;277:2-21

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

378 25. Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in
379 cell proliferation, differentiation, migration, senescence and apoptosis. *J Recept Signal*
380 *Transduct Res* **2015**;35:600-4

381 26. Woessmann W, Chen X, Borkhardt A. Ras-mediated activation of ERK by cisplatin
382 induces cell death independently of p53 in osteosarcoma and neuroblastoma cell lines.
383 *Cancer Chemother Pharmacol* **2002**;50:397-404

384 27. Sivaprasad U, Basu A. Inhibition of ERK attenuates autophagy and potentiates tumour
385 necrosis factor-alpha-induced cell death in MCF-7 cells. *J Cell Mol Med* **2008**;12:1265-
386 71

387 28. Oh SH, Lim SC. Endoplasmic reticulum stress-mediated autophagy/apoptosis induced by
388 capsaicin (8-methyl-N-vanillyl-6-nonenamide) and dihydrocapsaicin is regulated by the
389 extent of c-Jun NH₂-terminal kinase/extracellular signal-regulated kinase activation in
390 WI38 lung epithelial fibroblast cells. *J Pharmacol Exp Ther* **2009**;329:112-22

391 29. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, *et al.*
392 Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug
393 resistance. *Biochim Biophys Acta* **2007**;1773:1263-84

394 30. Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, *et al.* Akt-mediated regulation of
395 autophagy and tumorigenesis through Beclin 1 phosphorylation. *Science* **2012**;338:956-9

396 31. Degtyarev M, De Maziere A, Orr C, Lin J, Lee BB, Tien JY, *et al.* Akt inhibition
397 promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. *J Cell*
398 *Biol* **2008**;183:101-16

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

399 32. Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, *et al.* Pancreatic cancers require
400 autophagy for tumor growth. *Genes Dev* **2011**;25:717-29

401 33. Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, *et al.* Activated
402 Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. *Genes Dev*
403 **2011**;25:460-70

404

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

405 FIGURE LEGENDS

406 **Figure 1: PD-1/PD-L1 reverse signaling increases expression of autophagy markers LC3-II**
407 **and Beclin1.** (A) PD-L1 expression of MDA-MB-231 and 4T1 cells was determined via flow
408 cytometry. The shaded area represents staining with an anti-PD-L1 antibody, and the unshaded
409 area represents staining with an isotype-matched control. MDA-MB-231 cells were incubated
410 with 1 μ g/mL rPD-1 and levels of (B) LC3-I, LC3-II and (C) Beclin1 protein were determined
411 by western blotting. (D) MDA-MB-231 and (E) 4T1 cells were pre-treated with an anti-PD-L1
412 antibody and LC3-I to LC3-II conversion was assessed via western blot. The ratio of LC3-I and
413 Beclin 1 to β -actin was quantified and compared between groups using a one-way ANOVA
414 followed by Tukey's multiple comparisons test. Results shown were pooled from at least three
415 independent experiments *, $p<0.05$; ***, $p<0.001$.

416

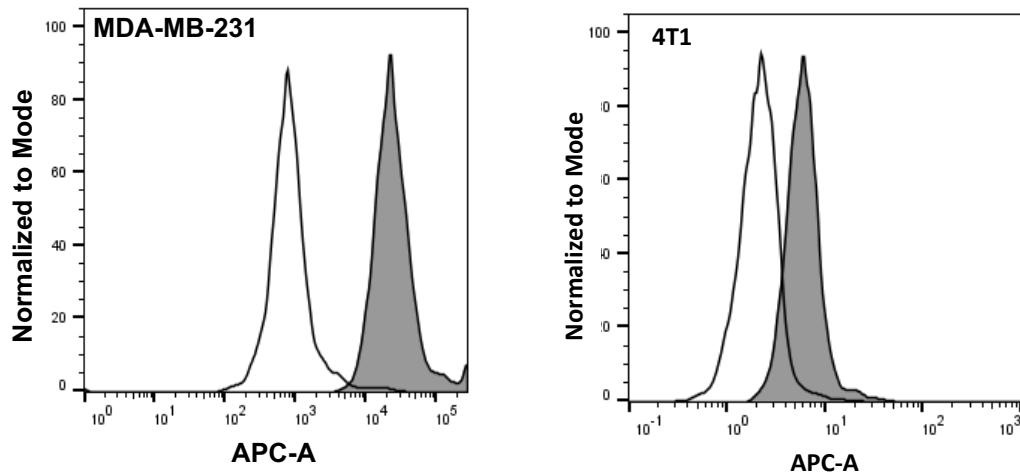
417 **Figure 2: MDA-MB-231 cells display increased numbers of autophagosomes following**
418 **treatment with rPD1.** MDA-MB-231 cells transfected with GFP-LC3 were incubated with 1
419 μ g/mL recombinant PD-1 for (A) 0, 30, 60, and 180 minutes or for (B) 30 min +/- an anti-PD-L1
420 antibody and autophagosomes were observed via immunofluorescence. Results were pooled
421 from at least three independent experiments. *, $p<0.05$, **, $p<0.01$, ***, $p<0.001$.

422

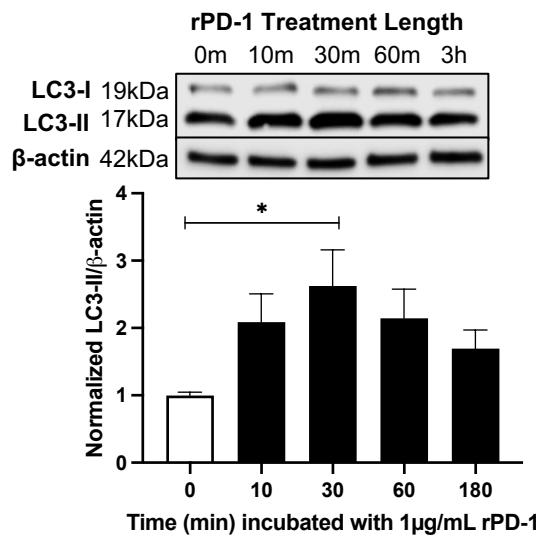
423 **Figure 3: Knockdown of Beclin 1 and Atg7 abolishes PD-1-induced resistance to**
424 **doxorubicin.** Results of colony formation assays using 4T1 cells expressing scrambled shRNA
425 (A), Beclin 1 shRNA (B), and Atg7 shRNA (C). Cells were incubated in the absence or presence
426 of 1 μ g/mL rPD-1 prior to exposure to 0.5 μ M doxorubicin (or control medium) for one hour.
427 Surviving fractions were calculated as described in *Materials and Methods*. Significance was

Autophagy as a mechanism of PD-1/PD-L1 induced chemoresistance

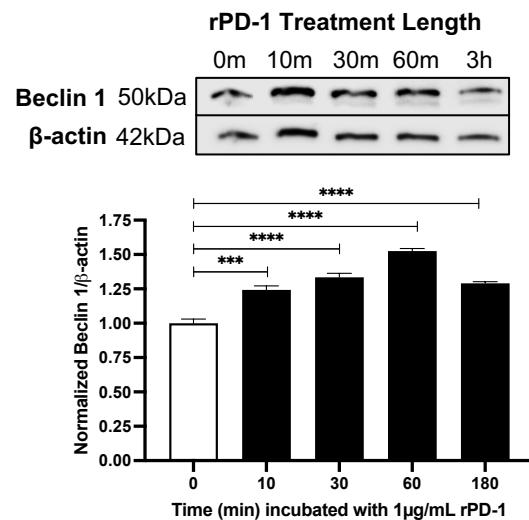
428 determined by one-way ANOVA followed by Tukey's multiple comparisons test. **, $p<0.01$,
429 ****, $p<0.0001$.

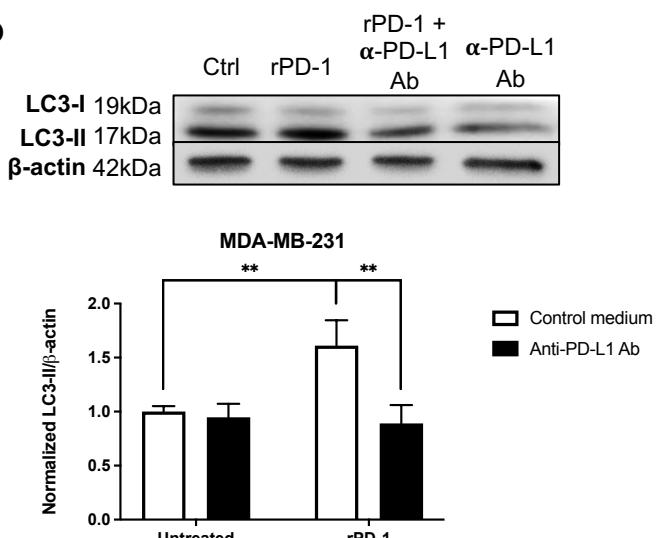

430

431 **Figure 4: ERK inhibition with U0126 abolishes PD-1-induced autophagy in cancer cells.**


432 **ERK inhibition with U0126 abolishes PD-1-induced autophagy in cancer cells.** A. MDA-
433 MB-213 cells were incubated with 1 μ g/mL rPD-1 for 0, 10, 30, and 60 minutes and pERK
434 expression was assessed via western blot. B. MDA-MB-213 were incubated with 1 μ g/mL rPD-1
435 for 30 minutes \pm 10 μ M U0126 and LC3-I and LC3-II expression was assessed via western blot.
436 C. MDA-MB-231 cells transfected with GFP-LC3 were incubated with 1 μ g/mL recombinant
437 PD-1 for 30 minutes \pm 10 μ M U0126 and autophagosome number was assessed via
438 immunofluorescence. Significance was determined by one-way ANOVA followed by Tukey's
439 post hoc test. Results shown were pooled from three independent experiments. *, $P<0.05$; **,
440 $P<0.01$; ***, $P<0.001$. **.

441


A


B

C

D

E

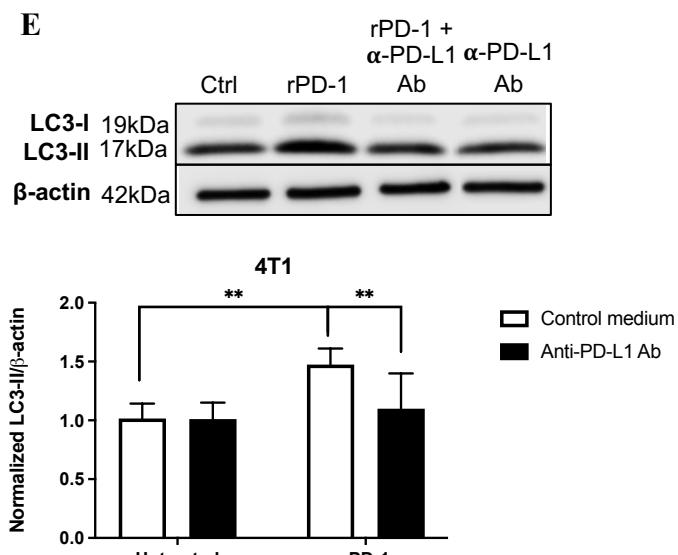
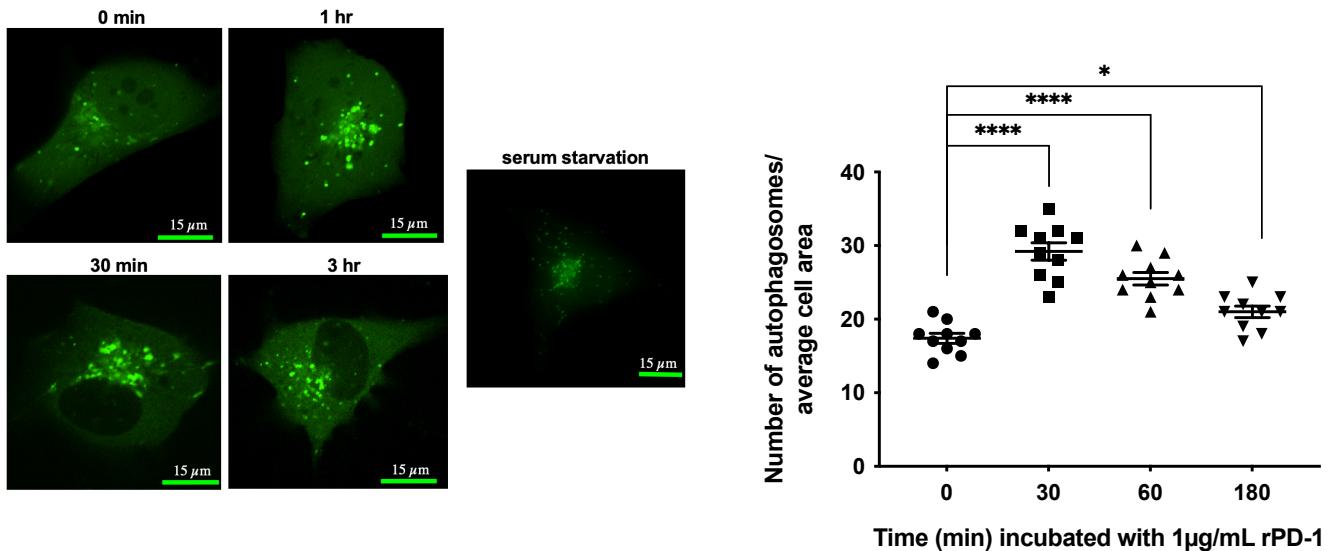



Figure 1: PD-1/PD-L1 reverse signaling increases expression of autophagy markers LC3-II and Beclin 1. (A) PD-L1 expression of MDA-MB-231 and 4T1 cells was determined via flow cytometry. The shaded area represents staining with an anti-PD-L1 antibody, and the unshaded area represents staining with an isotype-matched control. MDA-MB-231 cells were incubated with 1 μ g/mL rPD-1 and levels of (B) LC3-I, LC3-II and (C) Beclin1 protein were determined by western blotting. (D) MDA-MB-231 and (E) 4T1 cells were pre-treated with an anti-PD-L1 antibody and LC3-I to LC3-II conversion was assessed via western blot. The ratio of LC3-I and Beclin 1 to β -actin was quantified and compared between groups using a one-way ANOVA followed by Tukey's multiple comparisons test. Results shown were pooled from at least three independent experiments * p <0.05; ** p <0.01; *** p <0.001.

A

B

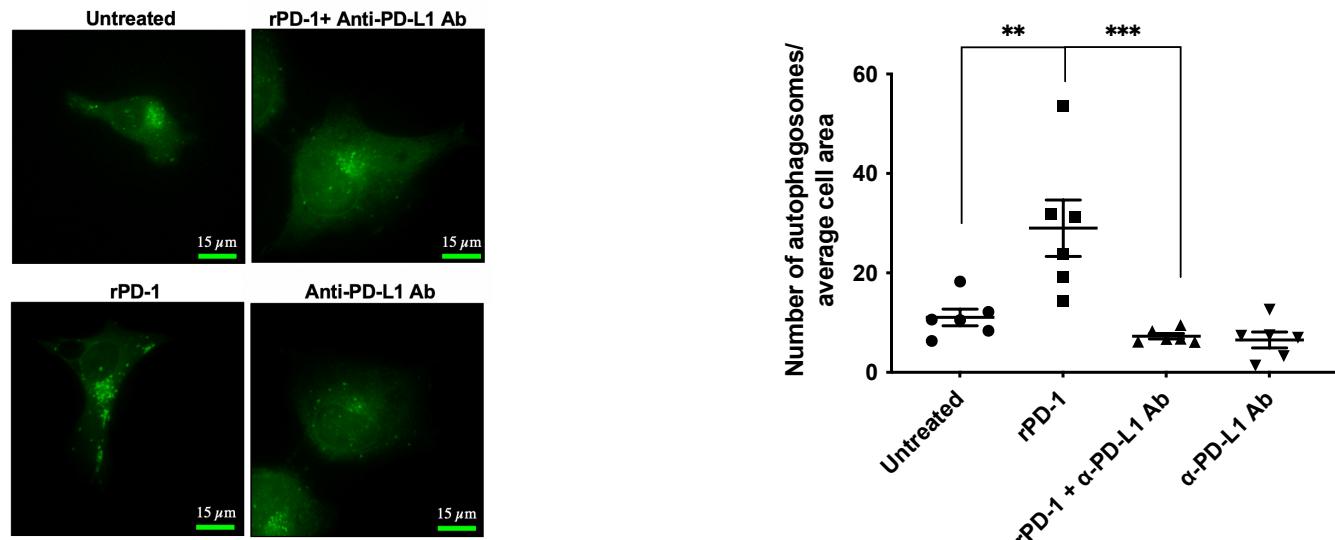


Figure 2: MDA-MB-231 cells display increased numbers of autophagosomes following treatment with rPD1. MDA-MB-231 cells transfected with GFP-LC3 were incubated with 1 μg/mL recombinant PD-1 for (A) 0, 30, 60, and 180 minutes or for (B) 30 min +/- an anti-PD-L1 antibody and autophagosomes were observed via immunofluorescence. Results were pooled from at least three independent experiments. *, p<0.05, **, p<0.01, ***, p<0.001.

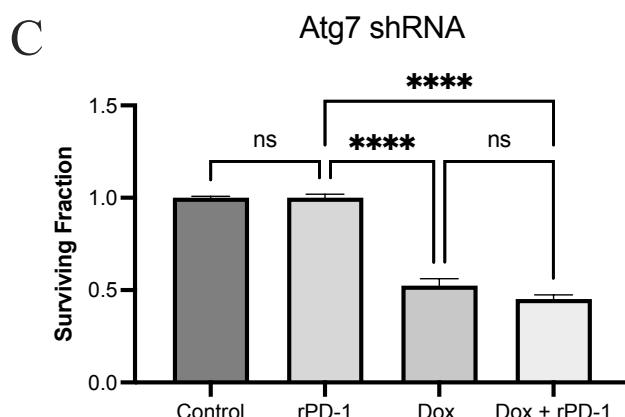
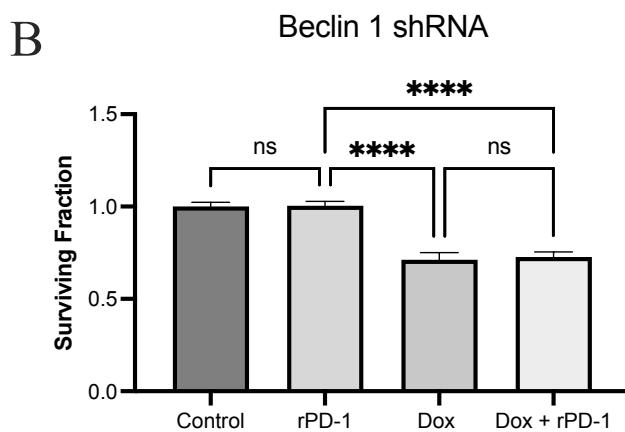
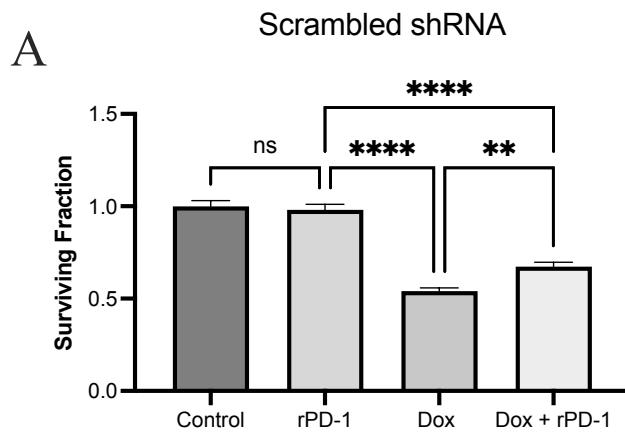




Figure 3: Knockdown of Beclin 1 and Atg7 abolishes PD-1-induced resistance to doxorubicin. Results of colony formation assays using 4T1 cells expressing scrambled shRNA (A), Beclin 1 shRNA (B), and Atg7 shRNA (C). Cells were incubated in the absence or presence of 1 μ g/mL rPD-1 prior to exposure to 0.5 μ M doxorubicin (or control medium) for one hour. Surviving fractions were calculated as described in Materials and Methods. Significance was determined by one-way ANOVA followed by Tukey's multiple comparisons test. **, $p < 0.01$, ****, $p < 0.0001$.

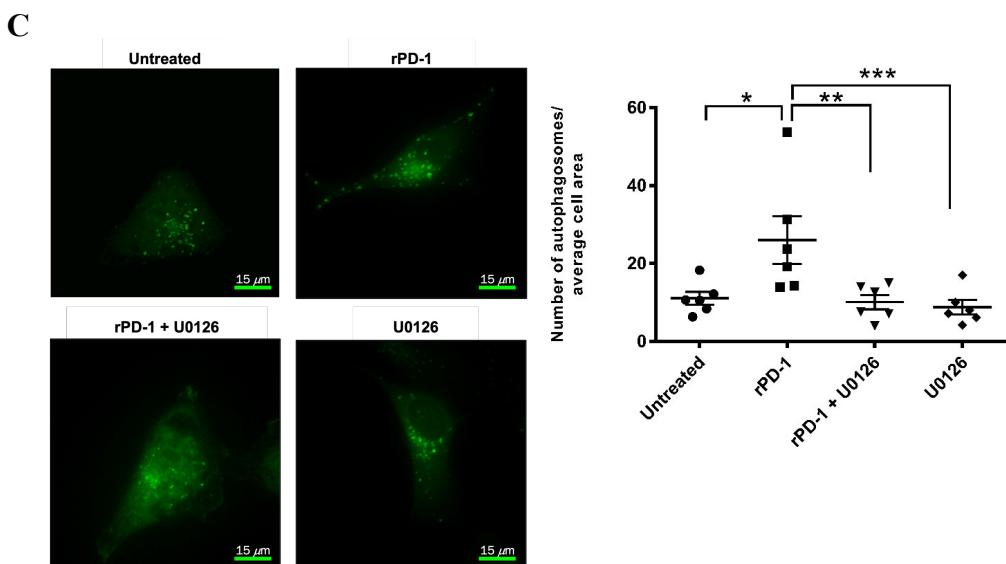
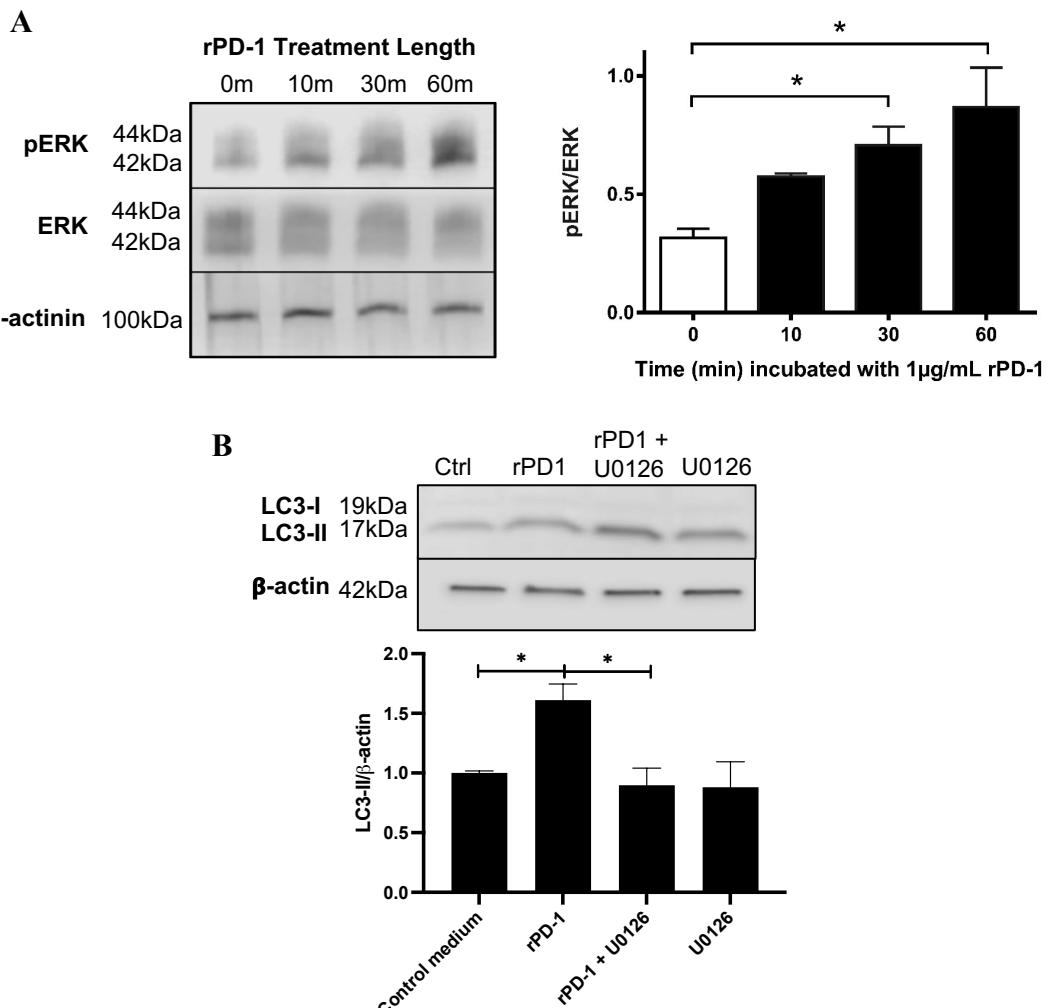
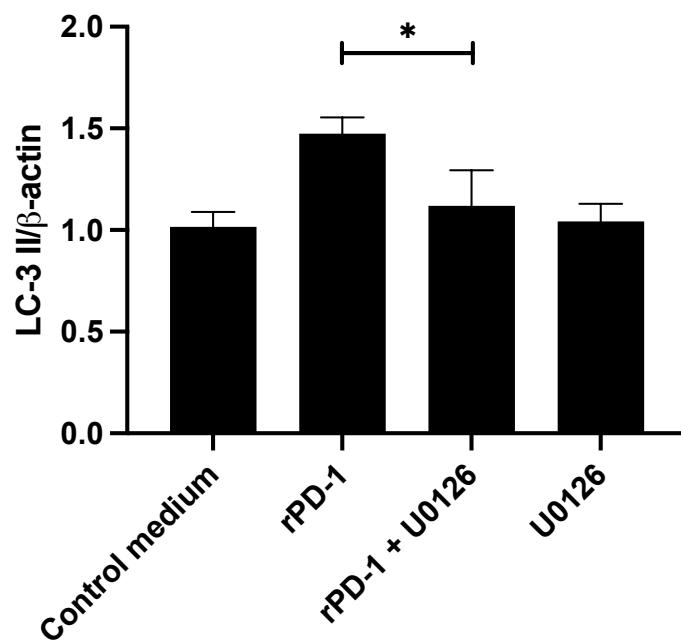




Figure 4: ERK inhibition with U0126 abolishes PD-1-induced autophagy in cancer cells. ERK inhibition with U0126 abolishes PD-1-induced autophagy in cancer cells. A. MDA-MB-231 cells were incubated with 1 μ g/mL rPD-1 for 0, 10, 30, and 60 minutes and pERK expression was assessed via western blot. B. MDA-MB-231 were incubated with 1 μ g/mL rPD-1 for 30 minutes \pm 10 μ M U0126 and LC3-I and LC3-II expression was assessed via western blot. C. MDA-MB-231 cells transfected with GFP-LC3 were incubated with 1 μ g/mL recombinant PD-1 for 30 minutes \pm 10 μ M U0126 and autophagosome number was assessed via immunofluorescence. Significance was determined by one-way ANOVA followed by Tukey's post hoc test. Results shown were pooled from three independent experiments. *, P<0.05; **, P<0.01; ***, P<0.001. **.

Supplementary Figure 1: U0126 inhibits rPD-1 mediated LC-3II accumulation in 4T1 cells. 4T1 were incubated with 1 μ g/mL rPD-1 for 30 minutes \pm 10 μ M U0126 and LC3-I and LC3-II expression was assessed by western blot. *, p<0.05.