

Loss or Gain of Function? Effects of Ion Channel Mutations on Neuronal Firing Depend on the Cell Type

Abstract

1 Clinically relevant mutations to voltage-gated ion channels, called channelopathies, alter ion chan-
2 nel function, properties of ionic current and neuronal firing. The effects of ion channel mutations
3 are routinely assessed and characterized as loss of function (LOF) or gain of function (GOF) at
4 the level of ionic currents. Emerging personalized medicine approaches based on LOF/GOF char-
5 acterization have limited therapeutic success. Potential reasons are that the translation from this
6 binary characterization to neuronal firing especially when considering different neuronal cell types
7 is currently not well understood. Here we investigate the impact of neuronal cell type on the firing
8 outcome of ion channel mutations with simulations of a diverse collection of neuron models. We
9 systematically analyzed the effects of changes in ion current properties on firing in different neu-
10 ronal types. Additionally, we simulated the effects of mutations in the *KCNA1* gene encoding the
11 Kv1.1 potassium channel subtype associated with episodic ataxia type 1 (EA1). These simulations
12 revealed that the outcome of a given change in ion channel properties on neuronal excitability is
13 cell-type dependent. As a result, cell-type specific effects are vital to a full understanding of the ef-
14 fects of channelopathies on neuronal excitability and present an opportunity to further the efficacy
15 and precision of personalized medicine approaches.

Significance Statement

18 Although the genetic nature of ion channel mutations as well as their effects on the biophysical
19 properties of an ion channel are routinely assessed experimentally, determination of their role in

20 altering neuronal firing is more difficult. In particular, cell-type dependency of ion channel mu-
21 tations on firing has been observed experimentally, and should be accounted for. In this context,
22 computational modelling bridges this gap and demonstrates that the cell type in which a mutation
23 occurs is an important determinant in the effects of neuronal firing. As a result, classification of
24 ion channel mutations as loss or gain of function is useful to describe the ionic current but should
25 not be blindly extend to classification at the level of neuronal firing.

26 **Introduction**

27 The properties and combinations of voltage-gated ion channels are vital in determining neuronal
28 excitability (Bernard and Shevell, 2008; Carbone and Mori, 2020; Pospischil et al., 2008; Rutecki,
29 1992). However, ion channel function can be disturbed, for instance through genetic alterations,
30 resulting in altered neuronal firing behavior (Carbone and Mori, 2020). In recent years, next gen-
31 eration sequencing has led to an increase in the discovery of clinically relevant ion channel muta-
32 tions and has provided the basis for pathophysiological studies of genetic epilepsies, pain disorders,
33 dyskinesias, intellectual disabilities, myotonias, and periodic paralyses (Bernard and Shevell, 2008;
34 Carbone and Mori, 2020). Ongoing efforts of many research groups have contributed to the current
35 understanding of underlying disease mechanism in channelopathies, however a complex patho-
36 physiological landscape has emerged for many channelopathies and is likely a reason for limited
37 therapeutic success with standard care.

38 Ion channel variants are frequently classified in heterologous expression systems as either a loss
39 of function (LOF) or a gain of function (GOF) in the respective ionic current (Kim and Kang,
40 2021; Kullmann, 2002; Musto et al., 2020; Waxman, 2011). This LOF/GOF classification is often
41 directly used to predict the effects on neuronal firing (Masnada et al., 2017; Niday and Tzingou-
42 nis, 2018; Wei et al., 2017; Wolff et al., 2017), which in turn is important for understanding the
43 pathophysiology of these disorders and for identification of potential therapeutic targets (Colasante

44 et al., 2020; Orsini et al., 2018; Yang et al., 2018; Yu et al., 2006). Experimentally, the effects of
45 channelopathies on neuronal firing are assessed using primary neuronal cultures (Liu et al., 2019;
46 Scalmani et al., 2006; Smith et al., 2018) or *in vitro* recordings from slices of transgenic mouse
47 lines (Habib et al., 2015; Hedrich et al., 2014; Lory et al., 2020; Mantegazza and Broccoli, 2019;
48 Xie et al., 2010) but are restricted to limited number of neuronal types. Different neuron types dif-
49 fer in their composition of ionic currents (BRAIN Initiative Cell Census Network, 2021; Cadwell
50 et al., 2016; Scala et al., 2021; Yao et al., 2021) and therefore likely respond differently to changes
51 in the properties of a single ionic current. Expression level of an affected gene (Layer et al., 2021)
52 and relative amplitudes of ionic currents (Barreiro et al., 2012; Golowasch et al., 2002; Kispersky
53 et al., 2012; Pospischil et al., 2008; Rutecki, 1992) indeed dramatically influence the firing behavior
54 and dynamics of neurons. Mutations in different sodium channel genes have been experimentally
55 shown to affect firing in a cell-type specific manner based on differences in expression levels of the
56 affected gene (Layer et al., 2021), but also on other cell-type specific mechanisms (Hedrich et al.,
57 2014; Makinson et al., 2016).

58 Cell-type specificity is likely vital for successful precision medicine treatment approaches. For
59 example, Dravet syndrome was identified as the consequence of LOF mutations in *SCN1A* (Claes
60 et al., 2001; Fujiwara et al., 2003; Ohmori et al., 2002), however limited success in the treatment
61 of Dravet syndrome persisted (Claes et al., 2001; Oguni et al., 2001) in part due to lack of under-
62 standing that inhibitory interneurons and not pyramidal neurons had altered excitability as a result
63 of LOF *SCN1A* mutations (Colasante et al., 2020; Yu et al., 2006).

64 Taken together, these examples demonstrate the need to study the effects of ion channel mutations
65 in many different cell types — a daunting if not impossible experimental challenge. In the context
66 of this diversity, simulations of conductance-based neuronal models are a powerful tool bridging
67 the gap between altered ionic currents and firing in a systematic and efficient way. Furthermore,
68 simulations allow to predict the potential effects of drugs needed to alleviate the pathophysiology of

69 the respective mutation (Bayraktar et al., In Press; Johannesen et al., 2021; Lauxmann et al., 2021).

70 In this study, we therefore investigated how the outcome of ionic current kinetic changes on firing
71 depend on neuronal cell type by (1) characterizing firing responses with two measures, (2) simulat-
72 ing the response of a repertoire of different neuronal models to changes in single current parameters
73 as well as (3) to more complex changes in this case as they were observed for specific *KCNA1* mu-
74 tations that are associated with episodic ataxia type 1 (Browne et al., 1995, 1994; Lauxmann et al.,
75 2021).

76 Materials and Methods

77 All modelling and simulation was done in parallel with custom written Python 3.8 software, run on
78 a Cent-OS 7 server with an Intel(R) Xeon (R) E5-2630 v2 CPU.

79 Different Cell Models

80 A group of neuronal models representing the major classes of cortical and thalamic neurons includ-
81 ing regular spiking pyramidal (RS pyramidal; model D), regular spiking inhibitory (RS inhibitory;
82 model B), and fast spiking (FS; model C) cells were used (Pospischil et al., 2008). Additionally,
83 a Kv1.1 current ($I_{Kv1.1}$; Ranjan et al. 2019) was added to each of these models (RS pyramidal
84 +Kv1.1; model H, RS inhibitory +Kv1.1; model E, and FS +Kv1.1; model G respectively). A
85 cerebellar stellate cell model from Alexander et al. (2019) is used (Cb stellate; model A) in this
86 study. This cell model was also extended by a Kv1.1 current (Ranjan et al., 2019), either in addition
87 to the A-type potassium current (Cb stellate +Kv1.1; model F) or by replacing the A-type potas-
88 sium current (Cb stellate $\Delta K_{V1.1}$; model J). A subthalamic nucleus (STN; model L) neuron model
89 as described by Otsuka et al. (2004) was also used. The STN cell model (model L) was additionally
90 extended by a Kv1.1 current (Ranjan et al., 2019), either in addition to the A-type potassium cur-
91 rent (STN +Kv1.1; model I) or by replacing the A-type potassium current (STN $\Delta K_{V1.1}$; model

92 K). Model letter naming corresponds to panel lettering in Figure 1. The properties and maximal
93 conductances of each model are detailed in Table 1 and the gating properties are unaltered from the
94 original Cb stellate (model A) and STN (model L) models (Alexander et al., 2019; Otsuka et al.,
95 2004). For enabling the comparison of models with the typically reported electrophysiological data
96 fitting reported and for ease of further gating curve manipulations, a modified Boltzmann function

$$x_\infty = \left(\frac{1-a}{1 + \exp \left[\frac{V-V_{1/2}}{k} \right]} + a \right)^j \quad (1)$$

97 with slope k , voltage for half-maximal activation or inactivation ($V_{1/2}$), exponent j , and persistent
98 current $0 \leq a \leq 1$ were fitted to the original formulism for RS pyramidal (model D), RS inhibitory
99 (model B) and FS (model C) models from Pospischil et al. (2008). The properties of $I_{Kv1.1}$ were
100 fitted to the mean wild type biophysical parameters of Kv1.1 described in Lauxmann et al. (2021).
101 Each of the original single-compartment models used here can reproduce physiological firing be-
102 havior of the neurons they represent (Figure 1; Alexander et al. 2019; Otsuka et al. 2004; Pospischil
103 et al. 2008) and capture key aspects of the dynamics of these cell types.

104 Firing Frequency Analysis

105 The membrane responses to 200 equidistant two second long current steps were simulated using
106 the forward-Euler method with a $\Delta t = 0.01$ ms from steady state. Current steps ranged from 0 to
107 1 nA (step size 5 pA) for all models except for the RS inhibitory neuron models where a range of 0
108 to 0.35 nA (step size 1.75 pA) was used to ensure repetitive firing across the range of input currents.
109 For each current step, action potentials were detected as peaks with at least 50 mV prominence, or
110 the relative height above the lowest contour line encircling it, and a minimum interspike interval
111 of 1 ms. The interspike interval was computed and used to determine the instantaneous firing
112 frequencies elicited by the current step.

113 To ensure accurate firing frequencies at low firing rates and reduced spike sampling bias, steady-
114 state firing was defined as the mean firing frequency in a 500 ms window in the last second of the
115 current steps starting at the initial action potential in this last second. Firing characterization was
116 performed in the last second of current steps to ensure steady-state firing is captured and adaptation
117 processes are neglected in our analysis. Alteration in current magnitudes can have different effects
118 on rheobase and the initial slope of the fI curve (Kispersky et al., 2012). For this reason, we
119 quantified neuronal firing using the rheobase as well as the area under the curve (AUC) of the
120 initial portion of the fI curve as a measure of the initial slope of the fI curve Figure 2 A.

121 The smallest current at which steady state firing occurred was identified and the current step interval
122 preceding the occurrence of steady state firing was simulated at higher resolution (100 current
123 steps) to determine the current at which steady state firing began. Firing was simulated with 100
124 current steps from this current upwards for 1/5 of the overall current range. Over this range a fI
125 curve was constructed and the integral, or area under the curve (AUC), of the fI curve over this
126 interval was computed with the composite trapezoidal rule and used as a measure of firing rate
127 independent from rheobase.

128 To obtain the rheobase at a higher current resolution than the fI curve, the current step interval pre-
129 ceding the occurrence of action potentials was explored at higher resolution with 100 current steps
130 spanning the interval (step sizes of 0.05 pA and 0.0175 pA, respectively). Membrane responses to
131 these current steps were then analyzed for action potentials and the rheobase was considered the
132 lowest current step for which an action potential was elicited.

133 All models exhibited tonic steady-state firing with default parameters. In limited instances, varia-
134 tions of parameters elicited periodic bursting, however these instances were excluded from further
135 analysis.

136 **Sensitivity Analysis and Comparison of Models**

137 Properties of ionic currents common to all models (I_{Na} , I_K , $I_A/I_{Kv1.1}$, and I_{Leak}) were systematically
138 altered in a one-factor-at-a-time sensitivity analysis for all models. The gating curves for each
139 current were shifted ($\Delta V_{1/2}$) from -10 to 10 mV in increments of 1 mV. The voltage dependence
140 of the time constant associated with the shifted gating curve was correspondingly shifted. The
141 slope (k) of the gating curves were altered from half to twice the initial slope. Similarly, the
142 maximal current conductance (g) was also scaled from half to twice the initial value. For both
143 slope and conductance alterations, alterations consisted of 21 steps spaced equally on a \log_2 scale.
144 We neglected the variation of time constants for the practical reason that estimation and assessment
145 of time constants and changes to them is not straightforward (Clerx et al., 2019; Whittaker et al.,
146 2020).

147 **Model Comparison**

Changes in rheobase (Δ rheobase) were calculated in relation to the original model rheobase. The contrast of each AUC value (AUC_i) was computed in comparison to the AUC of the unaltered wild type model (AUC_{wt})

$$\text{normalized } \Delta\text{AUC} = \frac{AUC_i - AUC_{wt}}{AUC_{wt}} \quad (2)$$

148 To assess whether the effects of a given alteration on normalized Δ AUC or Δ rheobase were robust
149 across models, the correlation between normalized Δ AUC or Δ rheobase and the magnitude of
150 the alteration of a current property was computed for each alteration in each model and compared
151 across alteration types. The Kendall's τ coefficient, a non-parametric rank correlation, is used to
152 describe the relationship between the magnitude of the alteration and AUC or rheobase values. A
153 Kendall τ value of -1 or 1 is indicative of monotonically decreasing and increasing relationships
154 respectively.

155 **KCNA1 Mutations**

156 Known episodic ataxia type 1 associated *KCNA1* mutations and their electrophysiological charac-
157 terization have been reviewed in [Lauxmann et al. \(2021\)](#). The mutation-induced changes in $I_{Kv1.1}$
158 amplitude and activation slope (k) were normalized to wild type measurements and changes in acti-
159 vation $V_{1/2}$ were used relative to wild type measurements. Although initially described to lack fast
160 activation, Kv1.1 displays prominent inactivation at physiologically relevant temperatures ([Ranjan](#)
161 [et al., 2019](#)). The effects of a mutation were also applied to I_A when present as both potassium
162 currents display inactivation. In all cases, the mutation effects were applied to half of the Kv1.1
163 or I_A under the assumption that the heterozygous mutation results in 50% of channels carrying the
164 mutation. Frequency-current curves for each mutation in each model were obtained through simu-
165 lation and used to characterize firing behavior as described above. For each model the differences
166 in mutation AUC to wild type AUC were normalized by wild type AUC (normalized Δ AUC) and
167 mutation rheobases were compared to wild type rheobase values (Δ rheobase). Pairwise Kendall
168 rank correlations (Kendall τ) were used to compare the correlation in the effects of Kv1.1 muta-
169 tions on AUC and rheobase between models.

170 **Code Accessibility**

171 The code/software described in the paper is freely available online at
172 <https://github.com/nkoch1/LOFGOF2023>. The code is available as [Extended Data 1](#).

173 **Results**

174 To examine the role of cell-type specific ionic current environments on the impact of altered ion
175 currents properties on firing behavior: (1) firing responses were characterized with rheobase and
176 Δ AUC, (2) a set of neuronal models was used and properties of channels common across models
177 were altered systematically one at a time, and (3) the effects of a set of episodic ataxia type 1

178 associated *KCNA1* mutations on firing was then examined across different neuronal models with
179 different ionic current environments.

180 **Variety of model neurons**

181 Neuronal firing is heterogenous across the CNS and a set of neuronal models with heterogenous
182 firing due to different ionic currents is desirable to reflect this heterogeneity. The set of single-
183 compartment, conductance-based neuronal models used here has considerable diversity as evident
184 in the variability seen across neuronal models both in spike trains and their fI curves (Figure 1).
185 The models chosen for this study all fire tonically and do not exhibit bursting (see methods for
186 details and naming of the models). Models are qualitatively sorted based on their firing curves and
187 labeled model A through L accordingly. Some models, such as models A and B, display type I
188 firing, whereas others such as models J and L exhibit type II firing. Type I firing is characterized
189 by continuous fI curves (i.e. firing rate increases from 0 in a continuous fashion) whereas type II
190 firing is characterized by a discontinuity in the fI curve (i.e. a jump occurs from no firing to firing
191 at a certain frequency; [Ermentrout 1996](#); [Rinzel and Ermentrout 1989](#)). The other models used
192 here lie on a continuum between these prototypical firing classifications. Most neuronal models
193 exhibit hysteresis with ascending and descending ramps eliciting spikes at different current thresh-
194 olds. However, the models I, J, and K have large hysteresis (Figures 1 and 1-1). Different types
195 of underlying current dynamics are known to generate these different firing types and hysteresis
196 ([Ermentrout, 1996](#); [Ermentrout and Chow, 2002](#); [Izhikevich, 2006](#)).

197 **Characterization of Neuronal Firing Properties**

198 Neuronal firing is a complex phenomenon, and a quantification of firing properties is required for
199 comparisons across cell types and between different conditions. Here we focus on two aspects
200 of firing: rheobase, the smallest injected current at which the cell fires an action potential, and the
201 shape of the frequency-current (fI) curve as quantified by the area under the curve (AUC) for a fixed

202 range of input currents above rheobase (Figure 2 A). The characterization of the firing properties
203 of a neuron by using rheobase and AUC allows to characterize both a neuron's excitability in the
204 sub-threshold regime (rheobase) and periodic firing in the super-threshold regime (AUC) by two
205 independent measures. Note that AUC is essentially quantifying the slope of a neuron's fI curve.
206 Using these two measures we quantified the effects a changed property of an ionic current has on
207 neural firing by the differences in both rheobase, Δ rheobase, and in AUC, Δ AUC, relative to the
208 wild type neuron. Δ AUC is in addition normalized to the AUC of the wild type neuron, see Eq. (2).
209 Each fI curve resulting from an altered ionic current is a point in a two-dimensional coordinate
210 system spanned by Δ rheobase and normalized Δ AUC (Figure 2 B). An fI curve similar to the one
211 of the wild type neuron is marked by a point close to the origin. In the upper left quadrant, fI curves
212 become steeper (positive difference of AUC values: $+\Delta$ AUC) and are shifted to lower rheobases
213 (negative difference of rheobases: $-\Delta$ rheobase), unambiguously indicating an increased firing that
214 clearly might be classified as a gain of function (GOF) of neuronal firing. The opposite happens
215 in the bottom right quadrant where the slope of fI curves decreases ($-\Delta$ AUC) and the rheobase is
216 shifted to higher currents ($+\Delta$ rheobase), indicating a decreased, loss of function (LOF) firing. In
217 the lower left ($-\Delta$ AUC and $-\Delta$ rheobase) and upper right ($+\Delta$ AUC and $+\Delta$ rheobase) quadrants,
218 the effects on firing are less clear-cut, because the changes in rheobase and AUC have opposite
219 effects on neuronal firing. Changes in a neuron's fI curves in these two quadrants cannot uniquely
220 be described as a gain or loss of excitability.

221 **Sensitivity Analysis**

222 Sensitivity analyses are used to understand how input model parameters contribute to determining
223 the output of a model (Saltelli, 2002). In other words, sensitivity analyses are used to understand
224 how sensitive the output of a model is to a change in input or model parameters. One-factor-a-
225 time sensitivity analyses involve altering one parameter at a time and assessing the impact of this

226 parameter on the output. This approach enables the comparison of given alterations in parameters
227 of ionic currents across models.

228 For example, when shifting the half activation voltage $V_{1/2}$ of the delayed rectifier potassium cur-
229 rent in the model G to more depolarized values, then the rheobase of the resulting fI curves shifted
230 to lower currents $-\Delta$ rheobase, making the neuron more sensitive to weak inputs, but at the same
231 time the slope of the fI curves was reduced ($-\Delta$ AUC), which resulted in a reduced fir-
232 ing rate (Figure 3 A). As a result the effect of a depolarizing shift in the delayed rectifier potassium
233 current half activation $V_{1/2}$ in model C is in the bottom left quadrant of Figure 2 B and character-
234 ization as LOF or GOF in excitability is not possible. Plotting the corresponding changes in AUC
235 against the change in half activation potential $V_{1/2}$ results in a monotonically falling curve (thick
236 orange line in Figure 3 B). For each of the many models we got a different relation between the
237 changes in AUC and the shifts in half maximal potential $V_{1/2}$ (thin lines in Figure 3 B). To fur-
238 ther summarize these different dependencies of the various models we characterized each of these
239 curves by a single number, the Kendall τ correlation coefficient. A monotonically increasing curve
240 resulted in a Kendall τ close to +1 a monotonously decreasing curve in Kendall $\tau \approx -1$, and a
241 non-monotonous, non-linear relation in Kendall τ close to zero (compare lines in Figure 3 B with
242 dots in black box in panel C).

243 Changes in gating half activation potential $V_{1/2}$ and slope factor k as well as the maximum conduc-
244 tance g affected the AUC (Figure 3), but how exactly the AUC was affected usually depended on
245 the specific neuronal model. Increasing the slope factor of the Kv1.1 activation curve for example
246 increased the AUC in all models (Kendall $\tau \approx +1$), but with different slopes (Figure 3 D,E,F). Sim-
247 ilar consistent positive correlations could be found for shifts in A-current activation $V_{1/2}$. Changes
248 in Kv1.1 half activation $V_{1/2}$ and in maximal A-current conductance resulted in negative correla-
249 tions with the AUC in all models (Kendall $\tau \approx -1$).

250 Qualitative differences could be found, for example, when increasing the maximal conductance of
251 the delayed rectifier (Figure 3 G,H,I). In some model neurons this increased AUC (Kendall $\tau \approx$
252 $+1$), whereas in others AUC was decreased (Kendall $\tau \approx -1$). In model I, AUC depended in a
253 non-linear way on the maximal conductance of the delayed rectifier, resulting in a Kendall τ close
254 to zero. Even more dramatic qualitative differences between models resulted from shifts of the
255 activation curve of the delayed rectifier, as discussed already above (Figure 3 A,B,C). Some model
256 neurons did almost not depend on changes in K-current half activation $V_{1/2}$ or showed strong
257 non-linear dependencies, both resulting in Kendall τ close to zero. Many model neurons showed
258 strongly negative correlations, and a few displayed positive correlations with shifting the activation
259 curve of the delayed rectifier.

260 Changes in gating half activation potential $V_{1/2}$ and slope factor k as well as the maximum con-
261 ductance g affected rheobase (Figure 4). However, in contrast to AUC, qualitatively consistent
262 effects on rheobase across models could be observed. An increasing of the maximal conductance
263 of the leak current in the model A increased the rheobase (Figure 4 G). When these changes were
264 plotted against the change in maximal conductance a monotonically increasing relationship was
265 evident (thick teal line in Figure 4 H). This monotonically increasing relationship was evident
266 in all models (Kendall $\tau \approx +1$), but with different slopes (thin lines in Figure 4 H). Similarly,
267 positive correlations were consistently found across models for maximal conductances of delayed
268 rectifier K, Kv1.1, and A type currents, whereas the maximal conductance of the sodium current
269 was consistently associated with negative correlations (Kendall $\tau \approx -1$; Figure 4 I), i.e. rheobase
270 decreased with increasing maximum conductance in all models.

271 Although changes in half maximal potential $V_{1/2}$ and slope factor k generally correlated with
272 rheobase similarly across models there were some exceptions. Rheobase was affected with both
273 with positive and negative correlations in different models as a result of changing slope factor of
274 Na^+ -current inactivation (positive: models A–H and J; negative: models I, K and L), Kv1.1-current

275 inactivation (positive: models I and K; negative: models E–G, J, H), and A-current activation (pos-
276 itive: models A, F and L; negative: model I; Figure 4 F). Departures from monotonic relationships
277 also occurred in some models as a result of K^+ -current activation $V_{1/2}$ (e.g. model J) and slope
278 factor k (models F and G), $Kv1.1$ -current inactivation slope factor k (model K), and A-current
279 activation slope factor k (model L). Thus, identical changes in current gating properties such as the
280 half maximal potential $V_{1/2}$ or slope factor k can have differing effects on firing depending on the
281 model in which they occur.

282 ***KCNA1* Mutations**

283 Mutations in *KCNA1* are associated with episodic ataxia type 1 (EA1) and have been character-
284 ized biophysically (as reviewed by [Lauxmann et al. \(2021\)](#)). Here they were used as a test case in
285 the effects of various ionic current environments on neuronal firing and on the outcomes of chan-
286 nelopathies. The changes in AUC and rheobase from wild type values for reported EA1 associated
287 *KCNA1* mutations were heterogeneous across models containing $Kv1.1$, but generally showed de-
288 creases in rheobase (Figure 5A–I). Pairwise non-parametric Kendall τ rank correlations between
289 the simulated effects of these $Kv1.1$ mutations on rheobase were highly correlated across models
290 (Figure 5J) indicating that EA1 associated *KCNA1* mutations generally decrease rheobase across
291 diverse cell-types. However, the effects of the $Kv1.1$ mutations on AUC were more heterogeneous
292 as reflected by both weak and strong positive and negative pairwise correlations between models
293 (Figure 5K), suggesting that the effects of ion-channel variant on super-threshold neuronal firing
294 depend both quantitatively and qualitatively on the specific composition of ionic currents in a given
295 neuron.

296 **Discussion**

297 To compare the effects of ion channel mutations on neuronal firing of different neuron types, a
298 diverse set of conductance-based models was used and the effect of changes in individual channel

299 properties across conductance-based neuronal models. Additionally, the effects of episodic ataxia
300 type 1 associated (EA1) *KCNA1* mutations were simulated. Changes to single ionic current proper-
301 ties, as well as known EA1 associated *KCNA1* mutations showed consistent effects on the rheobase
302 across cell types, whereas the effects on AUC of the steady-state fI-curve depended on the cell type.
303 Our results demonstrate that loss of function (LOF) and gain of function (GOF) on the biophysical
304 level cannot be uniquely transferred to the level of neuronal firing. Thus, the effects caused by
305 different mutations depend on the properties of the other ion channels expressed in a cell and are
306 therefore depend on the channel ensemble of a specific cell type.

307 **Firing Frequency Analysis**

308 Although, firing differences can be characterized by an area under the curve of the fI curve for
309 fixed current steps this approach characterizes firing as a mixture of key features: rheobase and the
310 initial slope of the fI curve. By probing rheobase directly and using an AUC relative to rheobase,
311 we disambiguate these features and enable insights into the effects on rheobase and initial fI curve
312 steepness. This increases the specificity of our understanding of how ion channel mutations alter
313 firing across cells types and enable classification as described in Figure 2. Importantly, in cases
314 when ion channel mutations alter rheobase and initial fI curve steepness in ways that opposing
315 effects on firing (upper left and bottom right quadrants of Figure 2 B) this disambiguation is im-
316 portant for understanding the outcome of the mutation. In these cases, the regime the neuron is
317 operating in is vital in determining the cells firing outcome. If it is in its excitable regime and only
318 occasionally generates an action potential, then the effect on the rheobase is more important. If it
319 is firing periodically with high rates, then the change in AUC might be more relevant.

320 **Modelling Limitations**

321 The models used here are simple and while they all capture key aspects of the firing dynamics for
322 their respective cell, they fall short of capturing the complex physiology and biophysics of real

323 cells. However, for the purpose of understanding how different cell-types, or current environments,
324 contribute to diversity in firing outcomes of ion channel mutations, the fidelity of the models to the
325 physiological cells they represent is of a minor concern. For exploring possible cell-type specific
326 effects, variety in currents and dynamics across models is of utmost importance. With this context
327 in mind, the collection of models used here are labelled as models A-L to highlight that the phys-
328 iological cells they represent is not of chief concern, but rather that the collection of models with
329 different attributes respond heterogeneously to the same perturbation. Additionally, the develop-
330 ment of more realistic models is a high priority and will enable cell-type specific predictions that
331 may aid in precision medicine approaches. Thus, weight should not be put on any single predicted
332 firing outcome here in a specific model, but rather on the differences in outcomes that occur across
333 the cell-type spectrum the models used here represent.

334 **Neuronal Diversity**

335 The nervous system consists of a vastly diverse and heterogenous collection of neurons with vari-
336 able properties and characteristics including diverse combinations and expression levels of ion
337 channels which are vital for neuronal firing dynamics.

338 Advances in high-throughput techniques have enabled large-scale investigation into single-cell
339 properties across the CNS (Poulin et al., 2016) that have revealed large diversity in neuronal gene
340 expression, morphology and neuronal types in the motor cortex (Scala et al., 2021), neocortex
341 (Cadwell et al., 2016, 2020), GABAergic neurons in the cortex and retina (Huang and Paul, 2019;
342 Latusznus et al., 2020), cerebellum (Kozareva et al., 2021), spinal cord (Alkaslasli et al., 2021), vi-
343 sual cortex (Gouwens et al., 2019) as well as the retina (Baden et al., 2016; Berens and Euler, 2017;
344 Voigt et al., 2019; Yan et al., 2020a,b).

345 Diversity across neurons is not limited to gene expression and can also be seen electrophysiologi-
346 cally (Baden et al., 2016; Berens and Euler, 2017; Cadwell et al., 2020; Gouwens et al., 2018, 2019;

347 Scala et al., 2021; Tripathy et al., 2015, 2017) with correlations existing between gene expression
348 and electrophysiological properties (Tripathy et al., 2017). At the ion channel level, diversity exists
349 not only between the specific ion channels the different cell types express but heterogeneity also ex-
350 ists in ion channel expression levels within cell types (Barreiro et al., 2012; Goaillard and Marder,
351 2021; Marder and Taylor, 2011). As ion channel properties and expression levels are key deter-
352 minents of neuronal dynamics and firing (Århem and Blomberg, 2007; Balachandar and Prescott,
353 2018; Gu and Chen, 2014; Gu et al., 2014; Kispersky et al., 2012; Qi et al., 2013; Zeberg et al.,
354 2010, 2015; Zhou et al., 2020) neurons with different ion channel properties and expression levels
355 display different firing properties.

356 To capture the diversity in neuronal ion channel expression and its relevance in the outcome of ion
357 channel mutations, we used multiple neuronal models with different ionic currents and underlying
358 firing dynamics here.

359 **Ionic Current Environments Determine the Effect of Ion Channel Mutations**

360 To our knowledge, no comprehensive evaluation of how ionic current environment and cell type
361 affect the outcome of ion channel mutations have been reported. However, comparisons between
362 the effects of such mutations between certain cell types were described. For instance, the R1648H
363 mutation in *SCN1A* does not alter the excitability of cortical pyramidal neurons, but causes hy-
364 poexcitability of adjacent inhibitory GABAergic neurons (Hedrich et al., 2014). In the CA3 re-
365 gion of the hippocampus, the equivalent mutation in *SCN8A*, R1627H, increases the excitability
366 of pyramidal neurons and decreases the excitability of parvalbumin positive interneurons (Makin-
367 son et al., 2016). Additionally, the L858H mutation in Nav1.7, associated with erythromyalgia,
368 has been shown to cause hypoexcitability in sympathetic ganglion neurons and hyperexcitability in
369 dorsal root ganglion neurons (Rush et al., 2006; Waxman, 2007). The differential effects of L858H
370 Nav1.7 on firing is dependent on the presence or absence of another sodium channel, namely the

371 Nav1.8 subunit (Rush et al., 2006; Waxman, 2007). These findings, in concert with our findings
372 emphasize that the ionic current environment in which a channelopathy occurs is vital in determin-
373 ing the outcomes of the channelopathy on firing.

374 Cell type specific differences in ionic current properties are important in the effects of ion channel
375 mutations. However, within a cell type heterogeneity in channel expression levels exists and it
376 is often desirable to generate a population of neuronal models and to screen them for plausibil-
377 ity to biological data in order to capture neuronal population diversity (Marder and Taylor, 2011;
378 O’Leary and Marder, 2016). The models we used here are originally generated by characterization
379 of current gating properties and by fitting of maximal conductances to experimental data (Alexan-
380 der et al., 2019; Otsuka et al., 2004; Pospischil et al., 2008; Ranjan et al., 2019). This practice of
381 fixing maximal conductances based on experimental data is limiting as it does not reproduce the
382 variability in channel expression and neuronal firing behavior of a heterogeneous neuron popula-
383 tion (Verma et al., 2020). For example, a model derived from the mean conductances in a neuronal
384 sub-population within the stomatogastric ganglion, the so-called ”one-spike bursting” neurons fire
385 three spikes instead of one per burst due to an L-shaped distribution of sodium and potassium
386 conductances (Golowasch et al., 2002). Multiple sets of conductances can give rise to the same
387 patterns of activity also termed degeneracy and differences in neuronal dynamics may only be ev-
388 ident with perturbations (Goaillard and Marder, 2021; Marder and Taylor, 2011). The variability
389 in ion channel expression often correlates with the expression of other ion channels (Goaillard and
390 Marder, 2021) and neurons whose behavior is similar may possess correlated variability across
391 different ion channels resulting in stability in the neuronal phenotype (Lamb and Calabrese, 2013;
392 Soofi et al., 2012; Taylor et al., 2009). The variability of ionic currents and degeneracy of neurons
393 may account, at least in part, for the observation that the effect of toxins within a neuronal type is
394 frequently not constant (Khaliq and Raman, 2006; Puopolo et al., 2007; Ransdell et al., 2013).

395 **Effects of *KCNA1* Mutations**

396 Changes in delayed rectifier potassium currents, analogous to those seen in LOF *KCNA1* mutations,
397 change the underlying firing dynamics of the Hodgkin Huxley model result in reduced thresholds
398 for repetitive firing and thus contribute to increased excitability (Hafez and Gottschalk, 2020).
399 Although the Hodgkin Huxley delayed rectifier lacks inactivation, the increases in excitability ob-
400 served by Hafez and Gottschalk (2020) are in line with our simulation-based predictions of the
401 outcomes of *KCNA1* mutations. LOF *KCNA1* mutations generally increase neuronal excitability,
402 however the varying susceptibility on rheobase and different effects on AUC of the fI-curve of
403 *KCNA1* mutations across models are indicative that a certain cell type specific complexity exists.
404 Increased excitability is seen experimentally with $K_V1.1$ null mice (Smart et al., 1998; Zhou et al.,
405 1998), with pharmacological $K_V1.1$ block (Chi and Nicol, 2007; Morales-Villagrán et al., 1996)
406 and by Hafez and Gottschalk (2020) with simulation-based predictions of *KCNA1* mutations. Con-
407 trary to these results, Zhao et al. (2020) predicted *in silico* that the depolarizing shifts seen as a
408 result of *KCNA1* mutations broaden action potentials and interfere negatively with high frequency
409 action potential firing. However, they varied stimulus duration between different models and there-
410 fore comparability of firing rates is lacking in this study.

411 In our simulations, different current properties alter the impact of *KCNA1* mutations on firing as
412 evident in the differences seen in the impact of I_A and $I_{K_V1.1}$ in the Cb stellate and STN model
413 families on *KCNA1* mutation firing. This highlights that not only knowledge of the biophysical
414 properties of a channel but also its neuronal expression and other neuronal channels present is vital
415 for the holistic understanding of the effects of a given ion channel mutation both at the single cell
416 and network level.

417 **Loss or Gain of Function Characterizations Do Not Fully Capture Ion Channel Mu-
418 tation Effects on Firing**

419 The effects of changes in channel properties depend in part on the neuronal model in which they
420 occur and can be seen in the variance of correlations (especially in AUC of the fI-curve) across
421 models for a given current property change. Therefore, relative conductances and gating properties
422 of currents in the ionic current environment in which an alteration in current properties occurs plays
423 an important role in determining the outcome on firing. The use of LOF and GOF is useful at the
424 level of ion channels to indicate whether a mutation results in more or less ionic current. However,
425 the extension of this thinking onto whether mutations induce LOF or GOF at the level of neuronal
426 firing based on the ionic current LOF/GOF is problematic due to the dependency of neuronal firing
427 changes on the ionic channel environment. Thus, the direct leap from current level LOF/GOF
428 characterizations to effects on firing without experimental or modelling-based evidence, although
429 tempting, should be refrained from and viewed with caution when reported. This is especially
430 relevant in the recent development of personalized medicine for channelopathies, where a patient's
431 specific channelopathy is identified and used to tailor treatments (Ackerman et al., 2013; Brunklaus
432 et al., 2022; Gnechhi et al., 2021; Hedrich et al., 2021; Helbig and Ellis, 2020; Musto et al., 2020;
433 Weber et al., 2017). However, in these cases the effects of specific ion channel mutations are often
434 characterized based on ionic currents in expression systems and classified as LOF or GOF to aid in
435 treatment decisions (Brunklaus et al., 2022; Johannesen et al., 2021; Musto et al., 2020). Although
436 positive treatment outcomes occur with sodium channel blockers in patients with GOF Nav1.6
437 mutations, patients with both LOF and GOF Nav1.6 mutations can benefit from treatment with
438 sodium channel blockers (Johannesen et al., 2021). This example suggests that the relationship
439 between effects at the level of ion channels and effects at the level of firing and therapeutics is not
440 linear or evident without further contextual information.

441 Therefore, the transferring of LOF or GOF from the current to the firing level should be used with

442 caution; the cell type in which the mutant ion channel is expressed may provide valuable insight
443 into the functional consequences of an ion channel mutation. Experimental assessment of the ef-
444 fects of a patient's specific ion channel mutation *in vivo* is not generally feasible at a large scale.
445 Therefore, modelling approaches investigating the effects of patient specific channelopathies pro-
446 vide an alternative bridge between characterization of changes in biophysical properties of ionic
447 currents and the firing consequences of these effects. In both experimental and modelling investi-
448 gation into the effects of ion channel mutations on neuronal firing the specific cell-type dependency
449 should be considered.

450 The effects of altered ion channel properties on firing is generally influenced by the other ionic
451 currents present in the cell. In channelopathies the effect of a given ion channel mutation on
452 neuronal firing therefore depends on the cell type in which those changes occur (Hedrich et al.,
453 2014; Makinson et al., 2016; Rush et al., 2006; Waxman, 2007). Although certain complexities
454 of neurons such as differences in cell-type sensitivities to current property changes, interactions
455 between ionic currents, cell morphology and subcellular ion channel distribution are neglected
456 here, it is likely that this increased complexity *in vivo* would contribute to the cell-type dependent
457 effects on neuronal firing. The complexity and nuances of the nervous system, including cell-type
458 dependent firing effects of channelopathies explored here, likely underlie shortcomings in treatment
459 approaches in patients with channelopathies. Accounting for cell-type dependent firing effects
460 provides an opportunity to further the efficacy and precision in personalized medicine approaches.
461 With this study we suggest that cell-type specific effects are vital to a full understanding of the
462 effects of channelopathies at the level of neuronal firing. Furthermore, we highlight the use of
463 modelling approaches to enable relatively fast and efficient insight into channelopathies.

464 References

465 Ackerman MJ, Marcou CA and Tester DJ (2013). Personalized Medicine: Genetic Diagnosis for
466 Inherited Cardiomyopathies/Channelopathies, *Revista Española de Cardiología (English Edition)* 66(4): 298–307.

468 Alexander RPD, Mitry J, Sareen V, Khadra A and Bowie D (2019). Cerebellar Stellate Cell Ex-
469 citability Is Coordinated by Shifts in the Gating Behavior of Voltage-Gated Na⁺ and A-Type K⁺
470 Channels, *eNeuro* 6(3).

471 Alkaslasi MR, Piccus ZE, Hareendran S, Silberberg H, Chen L, Zhang Y, Petros TJ and Le Pichon
472 CE (2021). Single nucleus RNA-sequencing defines unexpected diversity of cholinergic neuron
473 types in the adult mouse spinal cord, *Nature Communications* 12(1): 2471.

474 Århem P and Blomberg C (2007). Ion channel density and threshold dynamics of repetitive firing
475 in a cortical neuron model, *Biosystems* 89(1): 117–125.

476 Baden T, Berens P, Franke K, Rosón MR, Bethge M and Euler T (2016). The functional diversity
477 of retinal ganglion cells in the mouse, *Nature* 529(7586): 345–350.

478 Balachandar A and Prescott SA (2018). Origin of heterogeneous spiking patterns from continu-
479 ously distributed ion channel densities: a computational study in spinal dorsal horn neurons, *The
480 Journal of Physiology* 596(9): 1681–1697.

481 Barreiro AK, Thilo EL and Shea-Brown E (2012). A-current and type I/type II transition determine
482 collective spiking from common input, *Journal of Neurophysiology* 108(6): 1631–1645.

483 Bayraktar E, Liu Y, Sonnenberg L, Hedrich UBS, Sara Y, Eltokhi A, Lyu H, Lerche H, Wuttke TV
484 and Lauxmann S (In Press). In vitro effects of S-Licarbazepine as a potential precision therapy on
485 SCN8A variants causing neuropsychiatric disorders, *British Journal of Pharmacology* n/a(n/a).

486 Berens P and Euler T (2017). Neuronal Diversity In The Retina, *e-Neuroforum* 23(2): 93–101.

487 Bernard G and Shevell MI (2008). Channelopathies: A Review, *Pediatric Neurology* 38(2): 73–85.

488 BRAIN Initiative Cell Census Network (2021). A multimodal cell census and atlas of the mam-
489 malian primary motor cortex, *Nature* 598(7879): 86–102.

490 Browne D, Brunt E, Griggs R, Nutt J, Gancher S, Smith E and Litt M (1995). Identification of
491 two new KCNA1 mutations in episodic ataxia/myokymia families, *Human Molecular Genetics*
492 4(9): 1671–1672.

493 Browne DL, Gancher ST, Nutt JG, Brunt ERP, Smith EA, Kramer P and Litt M (1994). Episodic
494 ataxia/myokymia syndrome is associated with point mutations in the human potassium channel
495 gene, KCNA1, *Nature Genetics* 8(2): 136–140.

496 Brunklaus A, Feng T, Brünger T, Perez-Palma E, Heyne H, Matthews E, Semsarian C, Symonds
497 JD, Zuberi SM, Lal D and Schorge S (2022). Gene variant effects across sodium channelopathies
498 predict function and guide precision therapy, *Brain* p. awac006.

499 Cadwell CR, Palasantza A, Jiang X, Berens P, Deng Q, Yilmaz M, Reimer J, Shen S, Bethge M,
500 Tolias KF, Sandberg R and Tolias AS (2016). Electrophysiological, transcriptomic and morpho-
501 logic profiling of single neurons using Patch-seq, *Nature Biotechnology* 34(2): 199–203.

502 Cadwell CR, Scala F, Fahey PG, Kobak D, Mulherkar S, Sinz FH, Papadopoulos S, Tan ZH, Johns-
503 son P, Hartmanis L, Li S, Cotton RJ, Tolias KF, Sandberg R, Berens P, Jiang X and Tolias AS
504 (2020). Cell type composition and circuit organization of clonally related excitatory neurons in
505 the juvenile mouse neocortex, *eLife* 9: e52951.

506 Carbone E and Mori Y (2020). Ion channelopathies to bridge molecular lesions, channel function,
507 and clinical therapies, *Pflügers Archiv - European Journal of Physiology* 472(7): 733–738.

508 Chi XX and Nicol GD (2007). Manipulation of the Potassium Channel Kv1.1 and Its Effect on
509 Neuronal Excitability in Rat Sensory Neurons, *Journal of Neurophysiology* 98(5): 2683–2692.

510 Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C and De Jonghe P (2001). De
511 Novo Mutations in the Sodium-Channel Gene SCN1A Cause Severe Myoclonic Epilepsy of
512 Infancy, *The American Journal of Human Genetics* 68(6): 1327–1332.

513 Clerx M, Beattie KA, Gavaghan DJ and Mirams GR (2019). Four Ways to Fit an Ion Channel
514 Model, *Biophysical Journal* 117(12): 2420–2437.

515 Colasante G, Lignani G, Brusco S, Di Berardino C, Carpenter J, Giannelli S, Valassina N, Bido
516 S, Ricci R, Castoldi V, Marenni S, Church T, Massimino L, Morabito G, Benfenati F, Schorge
517 S, Leocani L, Kullmann DM and Broccoli V (2020). dCas9-Based Scn1a Gene Activation Re-
518 stores Inhibitory Interneuron Excitability and Attenuates Seizures in Dravet Syndrome Mice,
519 *Molecular Therapy* 28(1): 235–253.

520 Ermentrout B (1996). Type I Membranes, Phase Resetting Curves, and Synchrony, *Neural Com-
521 putation* 8(5): 979–1001.

522 Ermentrout G and Chow CC (2002). Modeling neural oscillations, *Physiology & Behavior*
523 77(4): 629–633.

524 Fujiwara T, Sugawara T, Mazaki-Miyazaki E, Takahashi Y, Fukushima K, Watanabe M, Hara K,
525 Morikawa T, Yagi K, Yamakawa K and Inoue Y (2003). Mutations of sodium channel α sub-
526 unit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic–clonic
527 seizures, *Brain* 126(3): 531–546.

528 Gnechi M, Sala L and Schwartz PJ (2021). Precision Medicine and cardiac channelopathies: when
529 dreams meet reality, *European Heart Journal* 42(17): 1661–1675.

530 Goaillard JM and Marder E (2021). Ion Channel Degeneracy, Variability, and Covariation in
531 Neuron and Circuit Resilience, *Annual Review of Neuroscience* .

532 Golowasch J, Goldman MS, Abbott LF and Marder E (2002). Failure of Averaging in the Construc-
533 tion of a Conductance-Based Neuron Model, *Journal of Neurophysiology* 87(2): 1129–1131.

534 Gouwens NW, Berg J, Feng D, Sorensen SA, Zeng H, Hawrylycz MJ, Koch C and Arkhipov
535 A (2018). Systematic generation of biophysically detailed models for diverse cortical neuron
536 types, *Nature Communications* 9(1): 710.

537 Gouwens NW et al. (2019). Classification of electrophysiological and morphological neuron types
538 in the mouse visual cortex, *Nature Neuroscience* 22(7): 1182–1195.

539 Gu H and Chen S (2014). Potassium-induced bifurcations and chaos of firing patterns ob-
540 served from biological experiment on a neural pacemaker, *Science China Technological Sciences*
541 57(5): 864–871.

542 Gu H, Pan B, Chen G and Duan L (2014). Biological experimental demonstration of bifurcations
543 from bursting to spiking predicted by theoretical models, *Nonlinear Dynamics* 78(1): 391–407.

544 Habib AM, Wood JN and Cox JJ (2015). Sodium Channels and Pain, *Handbook of Experimental
545 Pharmacology*, Springer, Berlin, Heidelberg, pp. 39–56.

546 Hafez OA and Gottschalk A (2020). Altered neuronal excitability in a Hodgkin-Huxley model
547 incorporating channelopathies of the delayed rectifier potassium channel, *Journal of Computa-
548 tional Neuroscience* 48(4): 377–386.

549 Hedrich UB, Lautard C, Kirschenbaum D, Pofahl M, Lavigne J, Liu Y, Theiss S, Slotta J, Escayg
550 A, Dihné M, Beck H, Mantegazza M and Lerche H (2014). Impaired action potential initiation
551 in gabaergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying
552 a human nav1.1 mutation, *Journal of Neuroscience* 34(45): 14874–14889.

553 Hedrich UBS, Lauxmann S, Wolff M, Synofzik M, Bast T, Binelli A, Serratosa JM, Martínez-Ulloa
554 P, Allen NM, King MD, Gorman KM, Zeev BB, Tzadok M, Wong-Kisiel L, Marjanovic D,
555 Rubboli G, Sisodiya SM, Lutz F, Ashraf HP, Torge K, Yan P, Bosselmann C, Schwarz N, Fudali
556 M and Lerche H (2021). 4-Aminopyridine is a promising treatment option for patients with
557 gain-of-function KCNA2-encephalopathy, *Science Translational Medicine* 13(609): eaaz4957.

558 Helbig I and Ellis CA (2020). Personalized medicine in genetic epilepsies – possibilities, chal-
559 lenges, and new frontiers, *Neuropharmacology* 172: 107970.

560 Huang ZJ and Paul A (2019). The diversity of GABAergic neurons and neural communication
561 elements, *Nature Reviews Neuroscience* 20(9): 563–572.

562 Izhikevich EM (2006). *Dynamical Systems in Neuroscience: The Geometry of Excitability and
563 Bursting*, Computational Neuroscience Series, MIT Press, Cambridge, MA, USA.

564 Johannessen KM et al. (2021). Genotype-phenotype correlations in SCN8A-related disorders reveal
565 prognostic and therapeutic implications, *medRxiv* p. 2021.03.22.21253711.

566 Khaliq ZM and Raman IM (2006). Relative Contributions of Axonal and Somatic Na Chann-
567 elns to Action Potential Initiation in Cerebellar Purkinje Neurons, *Journal of Neuroscience*
568 26(7): 1935–1944.

569 Kim HJ and Kang HC (2021). Treatment strategies targeting specific genetic etiologies in epilepsy,
570 18(1): 8–15.

571 Kispersky TJ, Caplan JS and Marder E (2012). Increase in Sodium Conductance Decreases Firing
572 Rate and Gain in Model Neurons, *Journal of Neuroscience* 32(32): 10995–11004.

573 Kozareva V, Martin C, Osorno T, Rudolph S, Guo C, Vanderburg C, Nadaf N, Regev A, Regehr
574 WG and Macosko E (2021). A transcriptomic atlas of mouse cerebellar cortex comprehensively
575 defines cell types, *Nature* 598(7879): 214–219.

576 Kullmann DM (2002). The neuronal channelopathies, *Brain* 125(6): 1177–1195.

577 Lamb DG and Calabrese RL (2013). Correlated Conductance Parameters in Leech Heart Motor
578 Neurons Contribute to Motor Pattern Formation, *PLOS ONE* 8(11): e79267.

579 Laturnus S, Kobak D and Berens P (2020). A Systematic Evaluation of Interneuron Morphology
580 Representations for Cell Type Discrimination, *Neuroinformatics* 18(4): 591–609.

581 Lauxmann S, Sonnenberg L, Koch NA, Boßelmann CM, Winter N, Schwarz N, Wuttke TV, Hedrich
582 UBS, Liu Y, Lerche H, Benda J and Kegele J (2021). Therapeutic potential of sodium channel
583 blockers as targeted therapy approach in KCNA1-associated episodic ataxia (EA1) and a com-
584 prehensive review of the literature, *Frontiers in Neurology* In Press.

585 Layer N, Sonnenberg L, Pardo González E, Benda J, Hedrich UBS, Lerche H, Koch H and Wut-
586 tke TV (2021). Dravet Variant SCN1AA1783V Impairs Interneuron Firing Predominantly by
587 Altered Channel Activation, *Frontiers in Cellular Neuroscience* 15.

588 Liu Y, Schubert J, Sonnenberg L, Helbig KL, Hoei-Hansen CE, Koko M, Rannap M, Lauxmann
589 S, Huq M, Schneider MC, Johannessen KM, Kurlemann G, Gardella E, Becker F, Weber YG,
590 Benda J, Møller RS and Lerche H (2019). Neuronal mechanisms of mutations in SCN8A causing
591 epilepsy or intellectual disability, *Brain* 142(2): 376–390.

592 Lory P, Nicole S and Monteil A (2020). Neuronal Cav3 channelopathies: recent progress and
593 perspectives, *Pflügers Archiv - European Journal of Physiology* 472(7): 831–844.

594 Makinson CD, Dutt K, Lin F, Papale LA, Shankar A, Barela AJ, Liu R, Goldin AL and Escayg A
595 (2016). An Scn1a epilepsy mutation in Scn8a alters seizure susceptibility and behavior, *Experi-
596 mental Neurology* 275: 46–58.

597 Mantegazza M and Broccoli V (2019). SCN1A/NaV1.1 channelopathies: Mechanisms in expres-
598 sion systems, animal models, and human iPSC models, *Epilepsia* 60(S3): S25–S38.

599 Marder E and Taylor AL (2011). Multiple models to capture the variability in biological neurons
600 and networks, *Nature Neuroscience* 14(2): 133–138.

601 Masnada S, Hedrich UBS, Gardella E, Schubert J, Kaiwar C, Klee EW, Lanpher BC, Gavrilova
602 RH, Synofzik M, Bast T, Gorman K, King MD, Allen NM, Conroy J, Ben Zeev B, Tzadok M,
603 Korff C, Dubois F, Ramsey K, Narayanan V, Serratosa JM, Giraldez BG, Helbig I, Marsh E,
604 O'Brien M, Bergqvist CA, Binelli A, Porter B, Zaeyen E, Horovitz DD, Wolff M, Marjanovic
605 D, Caglayan HS, Arslan M, Pena SDJ, Sisodiya SM, Balestrini S, Syrbe S, Veggio P, Lemke
606 JR, Møller RS, Lerche H and Rubboli G (2017). Clinical spectrum and genotype–phenotype
607 associations of KCNA2-related encephalopathies, *Brain* 140(9): 2337–2354.

608 Morales-Villagrán A, Ureña-Guerrero ME and Tapia R (1996). Protection by NMDA receptor an-
609 tagonists against seizures induced by intracerebral administration of 4-aminopyridine, *European
610 Journal of Pharmacology* 305(1): 87–93.

611 Musto E, Gardella E and Møller RS (2020). Recent advances in treatment of epilepsy-related
612 sodium channelopathies, *European Journal of Paediatric Neurology* 24: 123–128.

613 Niday Z and Tzingounis AV (2018). Potassium channel gain of function in epilepsy: an unresolved
614 paradox, *The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry*
615 24(4): 368–380.

616 Oguni H, Hayashi K, Awaya Y, Fukuyama Y and Osawa M (2001). Severe myoclonic epilepsy
617 in infants – a review based on the Tokyo Women's Medical University series of 84 cases, *Brain
618 and Development* 23(7): 736–748.

619 Ohmori I, Ouchida M, Ohtsuka Y, Oka E and Shimizu K (2002). Significant correlation of the
620 SCN1A mutations and severe myoclonic epilepsy in infancy, *Biochemical and Biophysical Re-
621 search Communications* 295(1): 17–23.

622 Orsini A, Esposito M, Perna D, Bonuccelli A, Peroni D and Striano P (2018). Personalized
623 medicine in epilepsy patients, *Journal of Translational Genetics and Genomics* 2: 16.

624 Otsuka T, Abe T, Tsukagawa T and Song WJ (2004). Conductance-Based Model of the Voltage-
625 Dependent Generation of a Plateau Potential in Subthalamic Neurons, *Journal of Neurophysiol-
626 ogy* 92(1): 255–264.

627 O'Leary T and Marder E (2016). Temperature-Robust Neural Function from Activity-Dependent
628 Ion Channel Regulation, *Current Biology* 26(21): 2935–2941.

629 Pospischil M, Toledo-Rodriguez M, Monier C, Piwkowska Z, Bal T, Frégnac Y, Markram H and
630 Destexhe A (2008). Minimal Hodgkin–Huxley type models for different classes of cortical and
631 thalamic neurons, *Biological Cybernetics* 99(4): 427–441.

632 Poulin JF, Tasic B, Hjerling-Leffler J, Trimarchi JM and Awanramani R (2016). Disentangling
633 neural cell diversity using single-cell transcriptomics, *Nature Neuroscience* 19(9): 1131–1141.

634 Puopolo M, Raviola E and Bean BP (2007). Roles of Subthreshold Calcium Current and Sodium
635 Current in Spontaneous Firing of Mouse Midbrain Dopamine Neurons, *Journal of Neuroscience*
636 27(3): 645–656.

637 Qi Y, Watts AL, Kim JW and Robinson PA (2013). Firing patterns in a conductance-based neuron
638 model: bifurcation, phase diagram, and chaos, *Biological Cybernetics* 107(1): 15–24.

639 Ranjan R, Logette E, Marani M, Herzog M, Tâche V, Scantamburlo E, Buchillier V and Markram
640 H (2019). A Kinetic Map of the Homomeric Voltage-Gated Potassium Channel (K_v) Family,
641 *Frontiers in Cellular Neuroscience* 13.

642 Ransdell JL, Nair SS and Schulz DJ (2013). Neurons within the Same Network Independently
643 Achieve Conserved Output by Differentially Balancing Variable Conductance Magnitudes, *Jour-
644 nal of Neuroscience* 33(24): 9950–9956.

645 Rinzel J and Ermentrout G (1989). *Analysis of neural excitability and oscillations*, MIT Press,
646 pp. 135–169.

647 Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA and Waxman SG (2006). A single sodium
648 channel mutation produces hyper- or hypoexcitability in different types of neurons, *Proceedings
649 of the National Academy of Sciences* 103(21): 8245–8250.

650 Rutecki PA (1992). Neuronal excitability: voltage-dependent currents and synaptic transmission,
651 *Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalo-
652 graphic Society* 9(2): 195–211.

653 Saltelli A (2002). Sensitivity Analysis for Importance Assessment, *Risk Analysis* 22(3): 579–590.

654 Scala F, Kobak D, Bernabucci M, Bernaerts Y, Cadwell CR, Castro JR, Hartmanis L, Jiang X,
655 Laturnus S, Miranda E, Mulherkar S, Tan ZH, Yao Z, Zeng H, Sandberg R, Berens P and Tolias
656 AS (2021). Phenotypic variation of transcriptomic cell types in mouse motor cortex, *Nature*
657 598(7879): 144–150.

658 Scalmani P, Rusconi R, Armatura E, Zara F, Avanzini G, Franceschetti S and Mantegazza M (2006).
659 Effects in Neocortical Neurons of Mutations of the Nav1.2 Na⁺ Channel causing Benign Familial
660 Neonatal-Infantile Seizures, *The Journal of Neuroscience* 26(40): 10100–10109.

661 Smart SL, Lopantsev V, Zhang CL, Robbins CA, Wang H, Chiu SY, Schwartzkroin PA, Messing
662 A and Tempel BL (1998). Deletion of the KV1.1 Potassium Channel Causes Epilepsy in Mice,
663 *Neuron* 20(4): 809–819.

664 Smith RS et al. (2018). Sodium Channel SCN3A (NaV1.3) Regulation of Human Cerebral Cortical
665 Folding and Oral Motor Development, *Neuron* 99(5): 905–913.e7.

666 Soofi W, Archila S and Prinz AA (2012). Co-variation of ionic conductances supports phase main-
667 tenance in stomatogastric neurons, *Journal of Computational Neuroscience* 33(1): 77–95.

668 Taylor AL, Goaillard JM and Marder E (2009). How Multiple Conductances Determine Electro-
669 physiological Properties in a Multicompartment Model, *Journal of Neuroscience* 29(17): 5573–
670 5586.

671 Tripathy SJ, Burton SD, Geramita M, Gerkin RC and Urban NN (2015). Brain-wide analysis of
672 electrophysiological diversity yields novel categorization of mammalian neuron types, *Journal
673 of Neurophysiology* 113(10): 3474–3489.

674 Tripathy SJ, Toker L, Li B, Crichlow CL, Tebaykin D, Mancarci BO and Pavlidis P (2017). Tran-
675 scriptomic correlates of neuron electrophysiological diversity, *PLOS Computational Biology*
676 13(10): e1005814.

677 Verma P, Kienle A, Flockerzi D and Ramkrishna D (2020). Computational analysis of a 9D model
678 for a small DRG neuron, *Journal of Computational Neuroscience* 48(4): 429–444.

679 Voigt AP, Whitmore SS, Flamme-Wiese MJ, Riker MJ, Wiley LA, Tucker BA, Stone EM, Mullins
680 RF and Scheetz TE (2019). Molecular characterization of foveal versus peripheral human retina
681 by single-cell RNA sequencing, *Experimental Eye Research* 184: 234–242.

682 Waxman SG (2007). Channel, neuronal and clinical function in sodium channelopathies: from
683 genotype to phenotype, *Nature Neuroscience* 10(4): 405–409.

684 Waxman SG (2011). Channelopathies have many faces, *Nature* 472(7342): 173–174.

685 Weber YG, Biskup S, Helbig KL, Von Spiczak S and Lerche H (2017). The role of genetic testing in
686 epilepsy diagnosis and management, *Expert Review of Molecular Diagnostics* 17(8): 739–750.

687 Wei F, Yan LM, Su T, He N, Lin ZJ, Wang J, Shi YW, Yi YH and Liao WP (2017). Ion Channel
688 Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy,
689 *Neuroscience Bulletin* 33(4): 455–477.

690 Whittaker DG, Clerx M, Lei CL, Christini DJ and Mirams GR (2020). Calibration of ionic and
691 cellular cardiac electrophysiology models, *WIREs Systems Biology and Medicine* 12(4): e1482.

692 Wolff M et al. (2017). Genetic and phenotypic heterogeneity suggest therapeutic implications in
693 SCN2A-related disorders, *Brain* 140(5): 1316–1336.

694 Xie G, Harrison J, Clapcote SJ, Huang Y, Zhang JY, Wang LY and Roder JC (2010). A
695 New Kv1.2 Channelopathy Underlying Cerebellar Ataxia *, *Journal of Biological Chemistry*
696 285(42): 32160–32173.

697 Yan W, Laboulaye MA, Tran NM, Whitney IE, Benhar I and Sanes JR (2020a). Mouse Retinal
698 Cell Atlas: Molecular Identification of over Sixty Amacrine Cell Types, *Journal of Neuroscience*
699 40(27): 5177–5195.

700 Yan W, Peng YR, van Zyl T, Regev A, Shekhar K, Juric D and Sanes JR (2020b). Cell Atlas of
701 The Human Fovea and Peripheral Retina, *Scientific Reports* 10(1): 9802.

702 Yang Y, Mis MA, Estacion M, Dib-Hajj SD and Waxman SG (2018). NaV1.7 as a Pharmacogeno-
703 nomic Target for Pain: Moving Toward Precision Medicine, *Trends in Pharmacological Sciences*
704 39(3): 258–275.

705 Yao Z et al. (2021). A taxonomy of transcriptomic cell types across the isocortex and hippocampal
706 formation, *Cell* 184(12): 3222–3241.

707 Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA, Spain WJ, McK-
708 night GS, Scheuer T and Catterall WA (2006). Reduced sodium current in GABAergic in-
709 terneurons in a mouse model of severe myoclonic epilepsy in infancy, *Nature Neuroscience*
710 9(9): 1142–1149.

711 Zeberg H, Blomberg C and Århem P (2010). Ion Channel Density Regulates Switches be-
712 tween Regular and Fast Spiking in Soma but Not in Axons, *PLOS Computational Biology*
713 6(4): e1000753.

714 Zeberg H, Robinson HPC and Århem P (2015). Density of voltage-gated potassium channels is a
715 bifurcation parameter in pyramidal neurons, *Journal of Neurophysiology* 113(2): 537–549.

716 Zhao J, Petitjean D, Haddad GA, Batulan Z and Blunck R (2020). A Common Kinetic Property of
717 Mutations Linked to Episodic Ataxia Type 1 Studied in the Shaker Kv Channel, *International*
718 *Journal of Molecular Sciences* 21(20): 7602.

719 Zhou L, Zhang CL, Messing A and Chiu SY (1998). Temperature-Sensitive Neuromuscular Trans-
720 mission in Kv1.1 Null Mice: Role of Potassium Channels under the Myelin Sheath in Young
721 Nerves, *Journal of Neuroscience* 18(18): 7200–7215.

722 Zhou X, Xu Y, Wang G and Jia Y (2020). Ionic channel blockage in stochastic Hodgkin–Huxley
723 neuronal model driven by multiple oscillatory signals, *Cognitive Neurodynamics* 14(4): 569–
724 578.

725 **Figures**

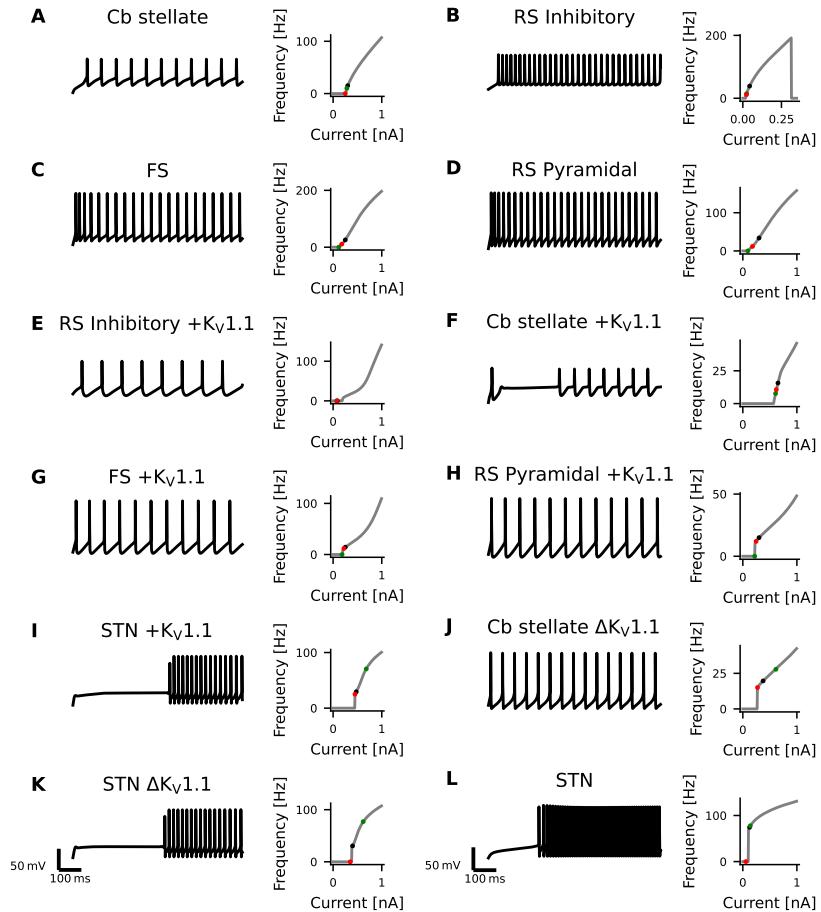


Figure 1: Diversity in Neuronal Model Firing. Spike trains (left), frequency-current (fI) curves (right) for Cb stellate (A), RS inhibitory (B), FS (C), RS pyramidal (D), RS inhibitory + $K_V1.1$ (E), Cb stellate + $K_V1.1$ (F), FS + $K_V1.1$ (G), RS pyramidal + $K_V1.1$ (H), STN + $K_V1.1$ (I), Cb stellate $\Delta K_V1.1$ (J), STN $\Delta K_V1.1$ (K), and STN (L) neuron models. Models are sorted qualitatively based on their fI curves. Black markers on the fI curves indicate the current step at which the spike train occurs. The green marker indicates the current at which firing begins in response to an ascending current ramp, whereas the red marker indicates the current at which firing ceases in response to a descending current ramp (see Figure 1-1).

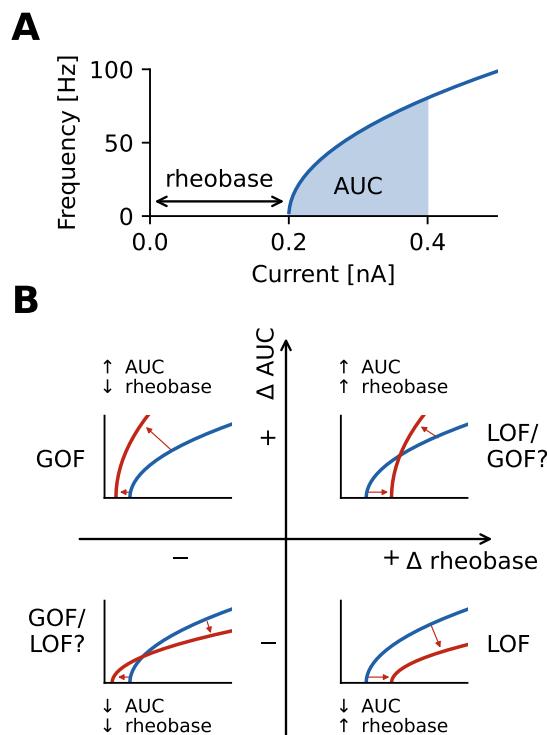


Figure 2: Characterization of firing with AUC and rheobase. (A) The area under the curve (AUC) of the repetitive firing frequency-current (fI) curve. (B) Changes in firing as characterized by ΔAUC and Δ rheobase occupy four quadrants separated by no changes in AUC and rheobase. Representative schematic fI curves in red with respect to a reference (or wild type) fI curve (blue) depict the general changes associated with each quadrant.

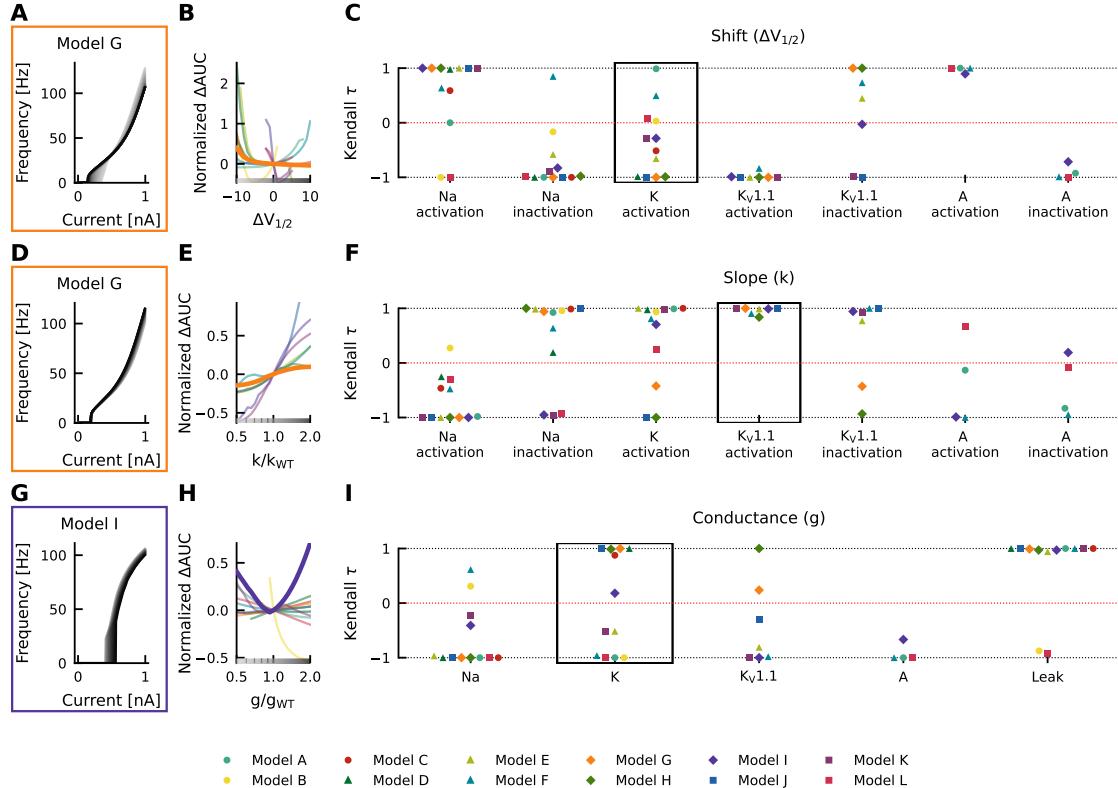


Figure 3: Effects of altered channel kinetics on AUC in various neuron models. The fI curves corresponding to shifts in model G delayed rectifier K half activation $V_{1/2}$ (A), changes $Kv1.1$ activation slope factor k in model G (D), and changes in maximal conductance of delayed rectifier K current in the model I (G) are shown. The fI curves from the smallest (grey) to the largest (black) alterations are seen for (A,D, and G) in accordance to the greyscale of the x-axis in B, E, and H. The normalized ΔAUC of fI curves is plotted against delayed rectifier K half activation potential ($\Delta V_{1/2}$; D), $Kv1.1$ activation slope factor k (k/k_{WT} ; E) and maximal conductance g of the delayed rectifier K current (g/g_{WT} ; H) for all models (thin lines) with relationships from the fI curve examples (A, D, G respectively) highlighted by thick lines with colors corresponding to the box highlighting each set of fI curves. The Kendall rank correlation (Kendall τ) coefficients between shifts in half maximal potential $V_{1/2}$ and normalized ΔAUC (C), slope factor k and normalized ΔAUC (F) as well as maximal current conductances and normalized ΔAUC (I) for each model and current property is computed. The relationships between $\Delta V_{1/2}$, k/k_{WT} , and g/g_{WT} and normalized ΔAUC for the Kendall rank correlations highlighted in the black boxes are depicted in (B), (E) and (H) respectively.

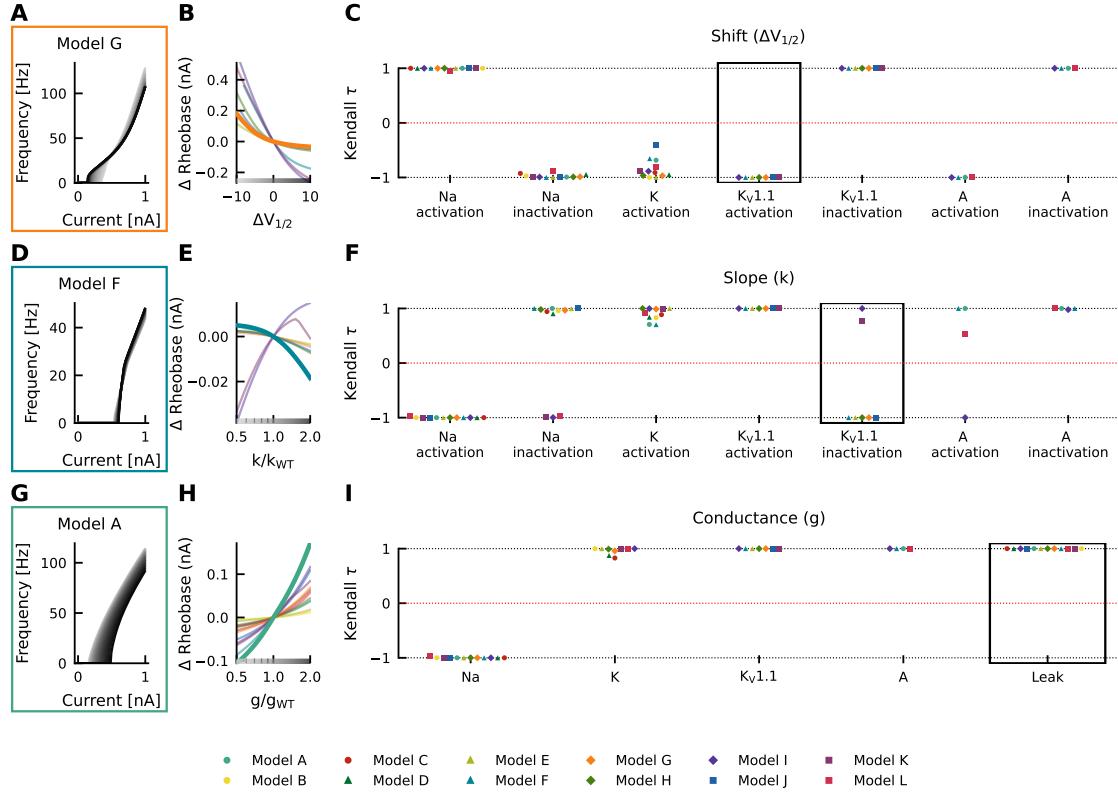


Figure 4: Effects of altered channel kinetics on rheobase. The fI curves corresponding to shifts in model G $Kv1.1$ activation $V_{1/2}$ (A), changes $Kv1.1$ inactivation slope factor k in model F (D), and changes in maximal conductance of the leak current in model A (G) are shown. The fI curves from the smallest (grey) to the largest (black) alterations are seen for (A,D, and G) in accordance to the greyscale of the x-axis in B, E, and H. The Δ rheobase of fI curves is plotted against $Kv1.1$ half activation potential ($\Delta V_{1/2}$; B), $Kv1.1$ inactivation slope factor k (k/k_{WT} ; E) and maximal conductance g of the leak current (g/g_{WT} ; H) for all models (thin lines) with relationships from the fI curve examples (A, D, G respectively) highlighted by thick lines with colors corresponding to the box highlighting each set of fI curves. The Kendall rank correlation (Kendall τ) coefficients between shifts in half maximal potential $V_{1/2}$ and Δ rheobase (C), slope factor k and Δ rheobase (F) as well as maximal current conductances and Δ rheobase (I) for each model and current property is computed. The relationships between $\Delta V_{1/2}$, k/k_{WT} , and g/g_{WT} and Δ rheobase for the Kendall rank correlations highlighted in the black boxes are depicted in (B), (E) and (H) respectively.

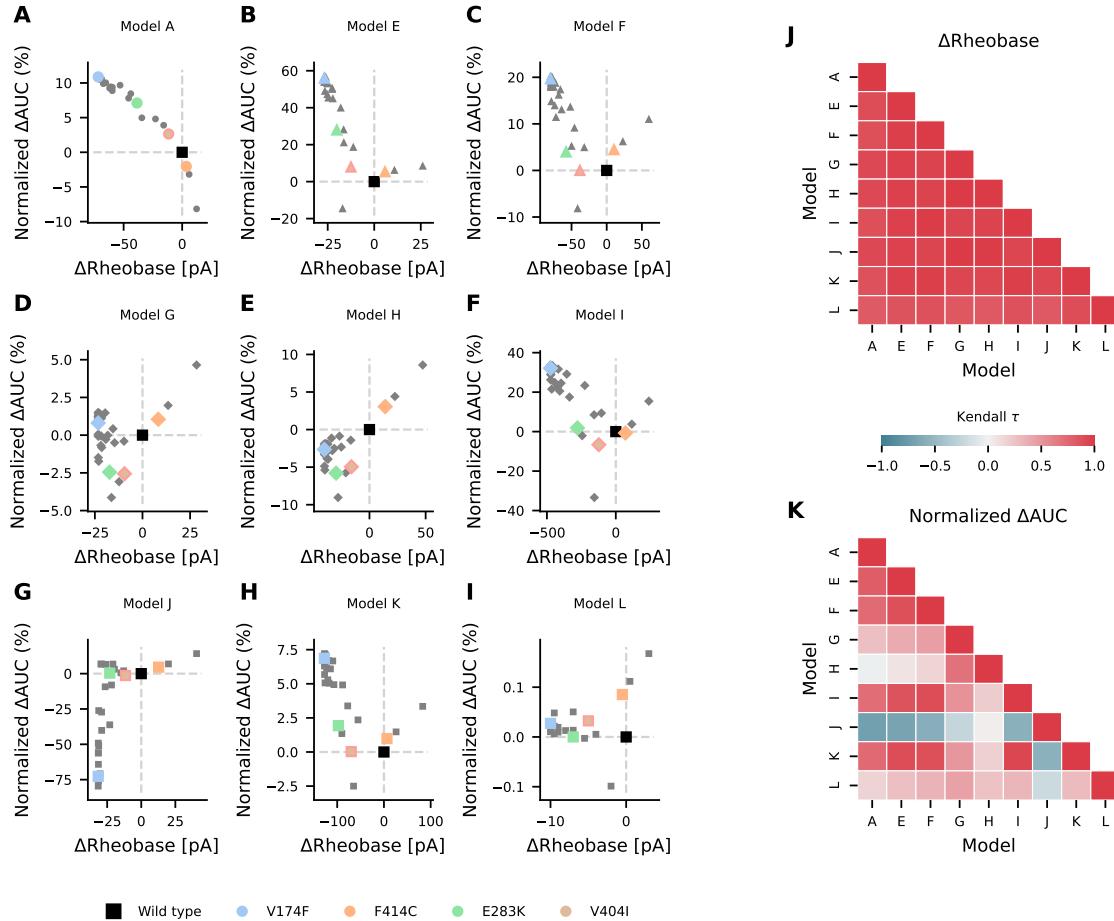


Figure 5: Effects of episodic ataxia type 1 associated *KCNA1* mutations on firing. Effects of *KCNA1* mutations on AUC (percent change in normalized Δ AUC) and rheobase (Δ Rheobase) compared to wild type for model H (A), model E (B), model G (C), model A (D), model F (E), model J (F), model L (G), model I (H) and model K (I). All *KCNA1* Mutations are marked in grey with the V174F, F414C, E283K, and V404I *KCNA1* mutations highlighted in color for each model. Pairwise Kendall rank correlation coefficients (Kendall τ) between the effects of *KCNA1* mutations on rheobase and on AUC are shown in J and K respectively. Marker shape is indicative of model/firing type, and grey dashed lines denote the quadrants of firing characterization (see Figure 2).

726 **Tables**

	RS Pyra- midal (+K _V 1.1)	RS Inhib- itory (+K _V 1.1)	FS (+K _V 1.1)	Cb Stellate	Cb Stellate +K _V 1.1	Cb Stellate ΔK _V 1.1	STN	STN +K _V 1.1	STN ΔK _V 1.1
Model	D (H)	B (E)	C (G)	A	F	J	L	I	K
g_{Na}	56	10	58	3.4	3.4	3.4	49	49	49
g_K	6 (5.4)	2.1 (1.89)	3.9 (3.51)	9.0556	8.15	9.0556	57	56.43	57
$g_{K_V1.1}$	— (0.6)	— (0.21)	— (0.39)	—	0.90556	1.50159	—	0.57	0.5
g_A	—	—	—	15.0159	15.0159	—	5	5	—
g_M	0.075	0.0098	0.075	—	—	—	—	—	—
g_L	—	—	—	—	—	—	5	5	5
g_T	—	—	—	0.45045	0.45045	0.45045	5	5	5
$g_{Ca,K}$	—	—	—	—	—	—	1	1	1
g_{Leak}	0.0205	0.0205	0.038	0.07407	0.07407	0.07407	0.035	0.035	0.035
$\tau_{max,M}$	608	934	502	—	—	—	—	—	—
C_m	118.44	119.99	101.71	177.83	177.83	177.83	118.44	118.44	118.44

Table 1: Cell properties and conductances of regular spiking pyramidal neuron (RS Pyramidal; model D), regular spiking inhibitory neuron (RS Inhibitory; model B), fast spiking neuron (FS; model C) each with additional $I_{K_V1.1}$ (RS Pyramidal +K_V1.1; model H, RS Inhibitory +K_V1.1; model E, FS +K_V1.1; model G respectively), cerebellar stellate cell (Cb Stellate; model A), with additional $I_{K_V1.1}$ (Cb Stellate +K_V1.1; model F) and with $I_{K_V1.1}$ replacement of I_A (Cb Stellate ΔK_V1.1; model J), and subthalamic nucleus neuron (STN; model L), with additional $I_{K_V1.1}$ (STN +K_V1.1; model I) and with $I_{K_V1.1}$ replacement of I_A (STN K_V1.1; model K) models. All conductances are given in mS/cm². Capacitances (C_m) and $\tau_{max,M}$ are given in pF and ms respectively.

	Gating	$V_{1/2}$ [mV]	k	j	a
	I_{Na} activation	-34.33054521	-8.21450277	1.42295686	—
	I_{Na} inactivation	-34.51951036	4.04059373	1	0.05
Models	I_{Kd} activation	-63.76096946	-13.83488194	7.35347425	—
B, C, D, E, G, H	I_L activation	-39.03684525	-5.57756176	2.25190197	—
	I_L inactivation	-57.37	20.98	1	—
	I_M activation	-45	-9.9998807337	1	—
$I_{Kv1.1}$	$I_{Kv1.1}$ activation	-30.01851852	-7.73333333	1	—
	$I_{Kv1.1}$ Inactivation	-46.85851852	7.67266667	1	0.245

Table 2: For comparability to typical electrophysiological data fitting reported and for ease of further gating curve manipulations, a sigmoid function (Eqn.1) with slope k , voltage for half-maximal activation or inactivation ($V_{1/2}$), exponent j , and persistent current $0 \leq a \leq 1$ were fitted for the models originating from [Pospischil et al. \(2008\)](#) (models B, C, D, E, G, H) where α_x and β_x are used. Gating parameters for $I_{Kv1.1}$ are taken from [Ranjan et al. \(2019\)](#) and fit to mean wild type parameters in [Lauxmann et al. \(2021\)](#). Model gating parameters not listed are taken directly from source publication.

	Data Structure	Type of test	Power
a	Non-normal distribution	Kendal τ rank correlation	—

Table 3: Statistical Table. Descriptive statistics including non-parametric Kendall τ rank correlations are used. Statistical hypothesis tests are not used.

727 Extended Data

Extended Data 1: Python code for simulations and analysis in zip file. Simulation code for each model, the sensitivity analysis of each model, the simulation of *KCNA1* mutations in each model, and all analysis are provided herein.

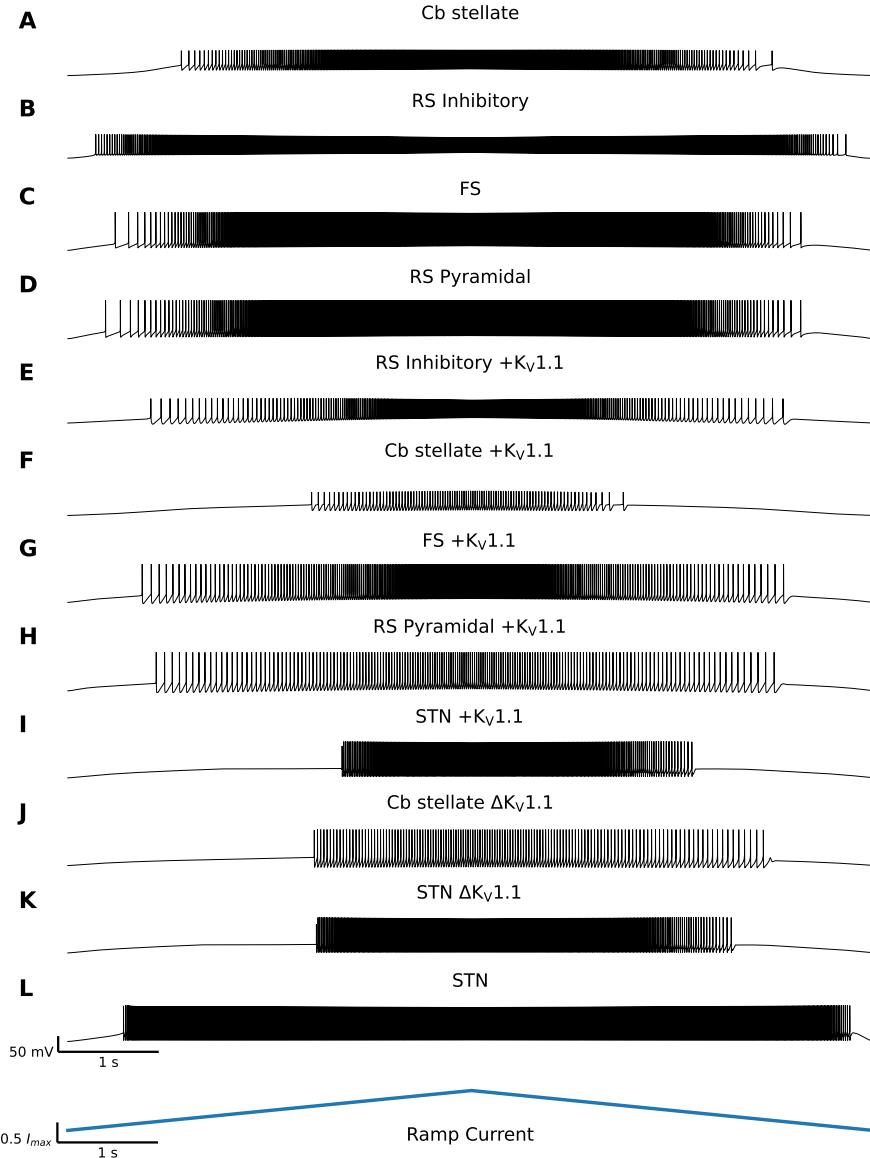


Figure 1-1: Diversity in Neuronal Model Firing Responses to a Current Ramp. Spike trains for Cb stellate (A), RS inhibitory (B), FS (C), RS pyramidal (D), RS inhibitory +K_V1.1 (E), Cb stellate +K_V1.1 (F), FS +K_V1.1 (G), RS pyramidal +K_V1.1 (H), STN +K_V1.1 (I), Cb stellate ΔK_V1.1 (J), STN ΔK_V1.1 (K), and STN (L) neuron models in response to a slow ascending current ramp followed by the descending version of the current ramp (bottom). Models are ordered based on the qualitative fI curve sorting in Figure 1. The current at which firing begins in response to an ascending current ramp and the current at which firing ceases in response to a descending current ramp are depicted on the frequency current (fI) curves in Figure 1 for each model.