

1 A Back-Door Insights into the modulation of Src kinase 2 activity by the polyamine spermidine

3 **Sofia Rossini ¹, Marco Gargaro ¹, Giulia Scalisi ¹, Elisa Bianconi ², Sara Ambrosino ¹, Eleonora Panfili ¹, Claudia
4 Volpi ¹, Ciriana Orabona ¹, Antonio Macchiarulo ², Francesca Fallarino ¹ and Giada Mondanelli ^{1,*}**

5 ¹Department of Medicine and Surgery, University of Perugia, 06100, Perugia, Italy

6 ²Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy

7 *Correspondence should be addressed to Giada Mondanelli: giada.mondanelli@unipg.it; Tel.: +39 075 585 8241

8

9

10

11 Abstract

12 Src is a protein tyrosine kinase commonly activated downstream of transmembrane receptors and plays
13 key roles in cell growth, migration and survival signaling pathways. In conventional dendritic cells
14 (cDCs), Src is involved in the activation of the non-enzymatic functions of indoleamine 2,3-dioxygenase
15 1 (IDO1), an immunoregulatory molecule endowed with both catalytic activity and signal transducing
16 properties. Prompted by the discovery that the metabolite spermidine confers a tolerogenic phenotype on
17 cDCs that is dependent on both the expression of IDO1 and the activity of Src kinase, we here
18 investigated the spermidine mode of action. We found that spermidine directly binds Src in a previously
19 unknown allosteric site located on the backside of the SH2 domain and thus acts as a positive allosteric
20 modulator of the enzyme. Besides confirming that Src phosphorylates IDO1, here we showed that
21 spermidine promotes the protein-protein interaction of Src with IDO1. Overall, this study may pave the
22 way toward the design of allosteric modulators able to switch on/off the Src-mediated pathways,
23 including those involving the immunoregulatory protein IDO1.

24 Introduction

25 Besides being intermediates in metabolic reactions, metabolites can serve as intracellular and
26 intercellular signals (1). Indeed, by interacting with specific molecular partners, soluble mediators can
27 trigger a series of molecular events critical for cell fitness and adaptation. Metabolites binding to either
28 the active site or the allosteric pocket – i.e., that different from the catalytic site – of enzymes are among
29 the best-characterized interactions that modulate protein activity as well as the assembly and function of
30 multiprotein complexes (2–4).

31 The naturally occurring polyamines (i.e., putrescine, spermidine and spermine) are organic cations
32 derived from the decarboxylation of L-ornithine, which is generated by the arginase 1 from L-arginine
33 (5,6). The conversion of L-ornithine into putrescine is catalyzed by the rate-limiting enzyme ornithine
34 decarboxylase 1, followed by two specific synthases that sequentially give rise to spermidine and
35 spermine (7). These metabolites are protonated at physiological pH levels, allowing them to interact with
36 negatively charged macromolecules, including nucleic acids, proteins, and phospholipids. Given their
37 structure, polyamines indeed modulate several cellular processes, ranging from cell growth and
38 proliferation to immune system function (8,9). As a matter of the fact, alteration of polyamines
39 intracellular content is associated with the occurrence of several tumors, including prostate, breast, and
40 colon cancers, for which polyamines are considered as biomarkers (10–12). Among polyamines,
41 spermidine has recently gained much more attention as player of immune regulation and in age-related
42 disorders, such as cardiac hypertrophy and memory impairment (13–18). Spermidine exerts a protective
43 role in mouse experimental models of autoimmune diseases, such as multiple sclerosis and psoriasis, by
44 activating the Forkhead box protein O3 (FOXO3) pathway and thus suppressing the production of
45 inflammatory cytokines tumor necrosis factor (TNF)- α and interleukin (IL)-6 (14). Moreover, spermidine
46 is able to reprogram mouse conventional dendritic cells (cDCs) toward an immunoregulatory phenotype
47 via Src kinase-dependent phosphorylation of indoleamine 2,3-dioxygenase 1 (IDO1) (19). However, the
48 exact mechanism of Src activation by spermidine remains to be elucidated.

49 The non-receptor tyrosine kinase Src is the representative of a family of structure-related kinases initially
50 discovered as a proto-oncogene regulating critical cellular functions (20). Src activation mainly occurs
51 downstream of multiple transmembrane receptors, including epidermal growth factor receptor (EGF-R),
52 fibroblast growth factor receptor (FGF-R), and insulin-like growth factor-1 receptor (IGF-1R). Indeed, a
53 dysregulated Src activity has been associated with tumor growth and metastasis, inflammation-mediated
54 carcinogenesis, and therapeutic resistance to traditional antineoplastic drugs (21–26). The induction of
55 Src kinase activity can also occur following Aryl hydrocarbon Receptor (AhR) activation, whose
56 conformational changes favor the Src-AhR disjunction, allowing the former to phosphorylate its
57 downstream partner IDO1 and thereby promote the generation of an immunoregulatory milieu (27).

58 In addition to the kinase domain, Src possesses an N-terminal Src homology-4 (SH4) domain, a unique
59 domain, an SH3 domain, an SH2 domain, an SH2-kinase linker domain, and a C-terminal autoregulatory
60 motif (25). The SH2 and SH3 modules serve in protein-protein interactions that are essential for the
61 regulation of kinase activity and signaling function. Specifically, the SH2 domain contains two distinct
62 binding pockets. The first one has a conserved arginine residue that binds a phosphotyrosine (pY) residue
63 presented by the protein substrate, whereas the second pocket binds the residue that is three positions C-
64 terminal of pY (pY+3), contributing to the specificity in ligand protein recognition.

65 The autoregulatory function of the kinase occurs through intramolecular interactions that stabilize the
66 catalytically inactive conformation of Src, in which the SH2 domain binds to a pY located at position
67 +535. Accordingly, binding of ligand proteins to the SH2 domain displaces intramolecular contacts and
68 promotes the catalytic activation of the Src kinase, which is characterized by the phosphorylation of a
69 tyrosine residue in the activation loop (Y424). Given the crucial role of the non-catalytic domains in
70 modulating Src kinases activity, efforts have been made to develop drug-like modulators of the SH2 and
71 SH3 domains. Small peptidomimetics destabilize the closed conformation and thus promote the kinase
72 activation through the binding of SH3 and/or SH2 domains (28,29). Alternatively, modulators of Src
73 kinases able to reinforce the intramolecular interactions have proven to allosterically inhibit the enzyme
74 activity (30).

75 Prompted by the finding that spermidine triggers the immunosuppressive IDO1 signaling in cDCs (19),
76 here we investigated the molecular relationship between that polyamine, Src kinase and IDO1. We found
77 that spermidine (*i*) activates Src kinase with an allosteric mechanism; (*ii*) binds directly Src kinase at a
78 previously unknown allosteric site; (*iii*) favors the association of IDO1 and Src kinase.

79 Results

80 Spermidine causes allosteric activation of the kinase activity of Src

81 The activation of Src kinase mainly occurs downstream of multiple transmembrane and intracellular
82 receptors (such as AhR) as well as protein tyrosine phosphatases (27,31,32). In cDCs, it has been
83 demonstrated that a small molecule, namely spermidine, activates Src with a still undefined mechanism
84 (19). To figure out whether a direct activation would occur, we assayed spermidine against purified
85 recombinant human Src (rhSrc) protein. After 30 minutes of incubation, a luminescent assay was used to
86 measure the ADP released by the kinase. Results showed that spermidine activated rhSrc with a half-
87 maximal effective concentration (EC50) of $106.4 \text{ nM} \pm 13.4$ (Fig 1A). To confirm the modulation of the
88 kinase also in living cells, we resorted to immunoblot analysis of phosphorylated Src at the tyrosine Y424
89 as sign of kinase activation. SYF cells (i.e., fibroblast null for Src family kinases, Src, Yes, and Fyn (33))
90 were stably transfected with vector encoding for Src kinase and then treated with increasing
91 concentration of spermidine. Results showed that the metabolite promoted Src phosphorylation with an
92 EC50 of $6.4 \mu\text{M} \pm 0.6$ (Fig 1B, 1C).

93 To get insights into the mechanism of action of spermidine, we measured the intrinsic activity of the
94 polyamine in the absence of either ATP or the synthetic peptide. Results showed that spermidine did not
95 activate Src in the absence of either ATP or peptide (Fig 1D), while it promoted the production of ADP
96 when the substrate is also present, ruling out any competition for the same site. As this profile was
97 compatible with an allosteric modulation, we incubated rhSrc with different concentration of ATP or
98 peptide. In the presence of fixed amount of spermidine and increasing concentration of the peptide, the
99 maximum rate of Src kinase activity (Vmax) increased, while the affinity (Km) for the substrate was not
100 affected (Fig 1E). On the contrary, in the presence of different concentration of ATP, spermidine did not
101 modify neither the efficacy nor the affinity of Src kinase (Supplementary Fig S1). Such a kinetic profile
102 is consistent with a non-ATP competition, suggesting that spermidine allosterically activates the kinase
103 activity of Src.

104 Spermidine binds to a negatively charged pocket in SH2 domain of Src kinase

105 In the inactive state, Src assumes a closed conformation with the SH3 domain bound to the SH2-kinase
106 linker and the SH2 domain bound to the tyrosine phosphorylated tail (**Figure 2A**). Using the
107 experimental available structure of SH2 domain (PDB ID: 2JYQ) and electrostatic potential calculations,
108 we characterized key structural and electrostatic elements of the SH2 domain involved in ligand protein
109 recognition (**Fig 2B**). A positive electrostatic potential was observed in the region of the pY binding site
110 (R183 and H209 residues, **Fig 2B**), whereas a stretch of surface endowed with a strong negative
111 electrostatic potential was observed on the backside of the pY binding site as delimited by glutamate
112 residues E155 and E174 (**Fig 2B**), suggesting the existence of a putative allosteric site. Of note, by the
113 alignment of amino acid sequences, we identified that such residues were conserved in Src protein of
114 human, murine, chicken and rat (**Supplementary Fig S2**), further supporting potential functional role
115 for this allosteric site.

116 A docking study was carried out to investigate the binding mode of spermidine into the allosteric site of
117 Src SH2 domain. As a result, n.18 solutions were obtained showing a conserved binding mode located
118 in a shallow cavity close to E155 and shaped by A153, F155 and T255 (**Fig 2C**). According to the top
119 scored solution (**Supplementary Table S1**; **Fig 2D**), the first primary amine group interacts by an
120 electrostatic enforced hydrogen bond with E155, the secondary amine group forms electrostatic enforced
121 hydrogen bond with E155 and the carbonyl group of T255, the other primary amine group makes
122 hydrogen bonds with the side chain of E155 and the carbonyl group of A153 while engaging the aromatic
123 ring of F155 through a specific π -cation interaction (34).

124 To experimentally confirm the proposed spermidine binding site, we resorted to mutagenesis experiments
125 by substituting the glutamate residues 155 or 174 of murine Src into alanine (E155A; E174A). SYF cells
126 were thus stably transfected with vectors coding for the mutated Src (i.e., Src E155A and Src E174A)
127 and wild-type Src (WT) (**Supplementary Fig S3A**). To validate the functional equivalence of Src
128 mutants, cells were exposed to lysophosphatidic acid (LPA), a stimulus known to activate Src kinase
129 downstream the LPA2 receptor in SYF cells (35). Results indicated that Src activity is induced by LPA
130 as measured by the phosphorylation of the Y424, independently of the mutation at the putative allosteric
131 site (**Supplementary Fig S3B**). On evaluating the activation of Src by spermidine, we found that the
132 mutation of the glutamate residues abrogated the kinase activation (**Fig 2E, 2F**). The split-luciferase
133 fragment complementation assay confirmed that E155 and E174 are key anchoring points for spermidine
134 binding. Specifically, SYF cells expressing Src WT or mutant were stably transfected with a
135 bioluminescent reporter that contains the SH2 domain and the Src consensus substrate peptide between
136 the amino-(Nluc) and carboxyl-(Cluc) terminal domains of the Firefly luciferase molecule (**Fig 2G**) (36).
137 When the endogenous Src is active, the tyrosine residue of the consensus peptide is phosphorylated and
138 interact with the docking pocket of the SH2 domain. This creates a steric hindrance that prevents the
139 reconstitution of a functional luciferase, resulting in a reduction of bioluminescent signal (**Fig 2G**). Cells
140 co-expressing Src and the reporter were thus exposed to spermidine and the luminescent signal was
141 measured. Results demonstrated that the bioluminescence decreased when spermidine is applied only in
142 cells ectopically expressing wild-type Src (**Fig 2H**).

143 Overall, these data suggested the presence of a previously unknown allosteric site on the backside of Src
144 SH2 domain as defined by the glutamate residues at position 155 and 174. Spermidine, by means of ionic
145 and hydrogen bond interactions between its protonated amino groups and residues of the shallow anionic
146 site on the SH2 domain, directly associates with and activates Src kinase. It is worth noting that no direct

147 interaction was observed between spermidine and E174 in the docking study. This may be ascribed to
148 the limit of the scoring function in identifying a binding mode engaging E174 among resulting solutions,
149 or to an indirect role of such residue in promoting long range electrostatic interactions to accomplish the
150 molecular recognition of the cognate ligand into the allosteric site.

151 **Spermidine promotes the Src-dependent tyrosine phosphorylation of IDO1 and their interaction**

152 Among the proteins phosphorylated by Src, the immunometabolic enzyme IDO1 is worthy of note
153 (19,27). Indeed, aside metabolizing the amino acid tryptophan, IDO1 is endowed with non-enzymatic
154 properties (31,37–39). The latter relies on the presence of two ITIMs (immunoreceptor-tyrosine based
155 inhibitory motif) that can be phosphorylated in response to immunomodulatory stimuli, such as TGF- β ,
156 L-kynurenine and spermidine (19,27,38). However, the exact molecular mechanism and the role of
157 spermidine have never been explored. To confirm that Src can phosphorylate IDO1, SYF cells were
158 reconstituted with vectors coding for wild-type Src and IDO1, either alone or in combination, and then
159 were exposed to spermidine. Results from immunoblot demonstrated that the co-precipitated IDO1 is
160 tyrosine phosphorylated by Src and that the polyamine increases the phosphorylation (**Fig 3A**). To further
161 confirm that spermidine could promote the IDO1 phosphorylation by accelerating the reaction velocity,
162 an *in vitro* kinase assay was performed using purified Src and IDO1 protein. By detecting
163 phosphotyrosine residues with a specific antibody, we found that IDO1 was phosphorylated in a time
164 dependent manner (**Fig 3B, 3C**). Moreover, in the presence of spermidine, Src quicker phosphorylated
165 IDO1, as demonstrated by the 2-fold increase of the relative velocity (**Fig 3D**). To figure out whether the
166 IDO1 phosphorylation was a direct effect through physical interaction with Src, SYF cells reconstituted
167 with wild-type Src and IDO1 were exposed to spermidine for different length of time. Co-
168 immunoprecipitation followed by immunoblot studies demonstrated that when cells were treated with
169 spermidine for 60 minutes, IDO1 was found in a complex with Src (**Fig 3E**). The specific IDO1-Src
170 interaction was confirmed *in situ* by the proximity ligation assay (**Fig 3F, 3G**). Accordingly, spermidine
171 treatment induced the Src-IDO1 interaction in SYF cells reconstituted with wild-type Src, but not with
172 the E155A or E174A mutant form of the kinase (**Fig 3F, 3G**).

173 As a whole, these results suggested that spermidine not only accelerates the Src-mediated
174 phosphorylation of IDO1, but also promotes the formation of Src-IDO1 complex.

175 **Discussion**

176 The non-receptor tyrosine kinase Src is the representative of a family of structure-related enzymes
177 involved in several signaling pathways regulating key cellular processes as well as immune responses
178 (21,40). Much relevant literature correlates dysregulated Src kinase activity with cancer and thus
179 extensive efforts have been made to develop small molecules kinase inhibitors. Currently approved
180 kinase inhibitors are compounds that reversibly bind the catalytic site and thus compete with the ligand
181 (i.e., ATP) (25). As the ATP-binding cleft is structurally well-conserved among kinases, these inhibitors
182 are poorly selective. Moreover, their chronic usage is frequently associated with acquired drug resistance
183 that ultimately limits patients' compliance and the therapeutic success. For instance, the FDA-approved
184 Dasatinib and Bosutinib inhibit more than 30 kinases, and thus are not suitable for probing Src-dependent
185 pharmacology (41). Saracatinib is another example of small molecule that interacts with the ATP-binding
186 pocket. Although more selective than Dasatinib, it potently inhibits EGFR as well (42). In addition to
187 competitive Src inhibitors, an emerging pharmacological modality – known as targeted covalent

188 inhibitors (TCIs) – has been pursued at the preclinical level for blocking Src kinase activity (43).
189 However, the promiscuity of molecules interacting with the ATP pocket has moved the interest toward
190 the development of alternative strategies for more effective and less-toxic inhibitors.

191 The peculiarity of the Src protein, as well as of other tyrosine kinases, is its structural plasticity, i.e., the
192 capability to adopt distinct conformations due to intrinsic dynamic properties (44). The activation state
193 of this protein kinase is indeed dictated by dynamic intramolecular interactions between the SH3, SH2
194 and kinase domains. The SH2 domain plays a key role in both autoregulating Src kinase activity and in
195 recruiting the protein ligand. Specifically, the tyrosine residue at position +535, when phosphorylated,
196 interacts with the SH2 domain and stabilizes a restrained catalytically inactive conformation of Src (45).
197 Accordingly, binding of ligand proteins to the SH2 domain displaces intra-molecular contacts and
198 promotes the catalytic activation of the Src kinase. This activating event is mostly driven by a dynamic
199 breakage and formation of electrostatic interactions that involve salt bridges and hydrogen bonds. Guided
200 by the dynamic nature of the kinase, allosteric modulation has been proposed as pharmacological
201 approach to target the activity of Src kinase. Allosteric molecules do not possess intrinsic efficacy, but
202 instead modulate – either positively or negatively – the activity of orthosteric agonists. Moreover, being
203 less conserved among kinases, the allosteric hotspots ensure greater drug selectivity. Targetable allosteric
204 pockets have been identified for few kinases as reported for Hck, Lyn, Aurora A kinase, and Bcr-Abl
205 (30,46–48). In addition, modulators of the SH2 and SH3 domains – either peptidomimetics or small
206 molecules – have been developed as chemical tools modifying the conformation and thus both the
207 enzymatic and non-enzymatic functions of Src, the latter including protein-protein interactions and
208 intracellular localization (28,29,47,49,50).

209 Metabolites are chemicals that do not merely take place in the metabolic reactions, but are also involved
210 in inter- and intra-cellular communications, energy production, macromolecule synthesis, post-
211 translational modifications, and cell survival (51–56). In accordance, the enzymes responsible for their
212 production are considered central regulators of the function of cells, including immune cells (57–61).
213 IDO1 is the prototype of such metabolic enzymes acting at the forefront of immune responses. Thanks
214 to its catalytic activity as well as nonenzymatic function (relying on the phosphorylation of its ITIMs),
215 IDO1 is a tiebreaker of tolerance and immunity (58,62,63). Prompted by the finding that spermidine (i.e.,
216 a natural occurring polyamine) can reprogram murine cDCs toward an immunoregulatory phenotype *via*
217 the Src kinase-dependent induction of the IDO1 signaling (19), we here demonstrated that the polyamine
218 behaves as a positive allosteric modulator of Src by increasing the maximum rate of enzyme activity.
219 Indeed, electrostatic potential calculation studies on the SH2 domain identified a surface endowed with
220 a negative electrostatic potential on the back side of the pY binding site, as delimited by glutamate
221 residues E155 and E174. By its protonated amino groups, spermidine interacts with the anionic head of
222 E155 on the SH2 domain, directly associates with and activates Src kinase. As a matter of the fact, the
223 site-directed mutagenesis of the glutamate residues with uncharged amino acids abrogates the
224 spermidine-mediated activation of Src kinase. It is noteworthy of mention that polyamines are not new
225 in the field of allosteric modulation, as they modify the activity of ionotropic N-methyl-D-aspartate
226 receptor (NMDAR, a receptor for glutamate) by both increasing the affinity of NMDAR for the co-
227 agonist glycine and relieving the tonic proton inhibition of the receptor (64), further supporting the
228 spermidine mode-of-action.

229 Besides confirming that Src phosphorylates IDO1, and that the polyamine accelerates the enzyme kinetic,
230 here we showed that spermidine promotes the interaction of Src with IDO1 protein (**Fig 4**). Our data
231 provided evidence that an endogenous metabolite, when present at specific concentrations, can directly
232 activate Src kinase without requiring a membrane receptor. By acting on the backside of the SH2 domain,
233 that is the domain responsible for the substrate binding, spermidine not only modulates the catalytic
234 activity, but also affects the scaffold function of Src in organizing transducing signaling complexes – as
235 those with IDO1 - which could be relevant in many diseases. Thus, from a therapeutic perspective, our
236 results provide the proof of principle for the development of molecules that can modulate the kinase
237 activity and the nonenzymatic functions of Src and IDO1 at once.

238 Materials and methods

239 Cell lines and reagents

240 SYF cells (i.e., fibroblast null for Src, Fyn and Yes kinases (33); RRID:CVCL_6461) were grown in
241 DMEM supplemented with 10% FCS, at 37 °C, in a humidified 5% CO₂ incubator. Spermidine, LPA
242 and recombinant Src protein were purchased from Sigma-Aldrich, while recombinant human IDO1
243 protein was obtained by Giotto Biotech. Construct expressing murine Src was obtained from Origene.

244 Cell transfection and treatment

245 Src mutants were generated by PCR-based site-directed mutagenesis performed with overlapping and
246 complementary primers containing the specific substitutions (**Table I**). The resulting PCR products were
247 digested with appropriate restriction enzymes and cloned into pEF-BOS plasmid. Cells were transfected
248 with 2 ug of the vectors expressing either wild-type Src or Src mutants according to the Lipofectamine
249 3000 protocol (Thermo Fisher Scientific). Stable transfectants were obtained by antibiotic selection of
250 SYF cells transfected with pEF-BOS-based vectors

251 carrying the puromycin resistant genes. SYF cells were serum-starved overnight before spermidine
252 treatment. Cells were incubated with the polyamine or LPA for 60 minutes for immunoblot analysis, as
253 otherwise indicated. These conditions were selected based upon optimization experiments.

	Primer	Sequence
255	Src E155A, Forward	atccaggctgaggcgtggtacttt
256	Src E155A, Reverse	aaagtaccacgcctcagcctggat
257	Src E174A, Forward	ctcaacgcccgcgaacccgaga
	Src E174A, Reverse	tctcggttcgcggcggttag

258 Table I. Primers for site-directed mutagenesis of Src.

259 Split-luciferase fragment complementation assay

260 The N and C fragments of luciferase were amplified by PCR from pGL3-Basic. The fragment including
261 nucleotide sequences of SH2 domain of Src (aa 374-465), linker (SRGGSTSGSGKPGSGEGSG), and
262 Src consensus substrate peptide (WMEDYDYVHLQG), was synthesized by sequential reactions of PCR
263 amplification. This cassette and the luciferase fragments were cloned into pCDNA 3.1 vector.

264 SYF cells stably expressing the reporter were transfected with wild-type Src and Src E155A or Src
265 E174A and then cultured into 96-w plate, in serum-free medium. After treatment with spermidine for 2h,

266 cells were washed with PBS1X and lysed with PLB-lysis buffer. Luciferase activity was measured with
267 the Luciferase Reporter Assay Kit (Promega).

268 **Immunoblot and co-immunoprecipitation studies**

269 For immunoblotting, proteins were extracted in M-PER buffer (Thermo Fisher Scientific) supplemented
270 with phosphatases and proteases inhibitors cocktails (Thermo Fisher Scientific) and run on SDS/PAGE.
271 The pSrc/Src ratio was assessed with a rabbit Phospho-Src Family (Tyr416) Antibody (#2101, Cell
272 Signaling Technology, Danvers, MA, USA; RRID:AB_331697), recognizing the phosphorylation at
273 tyrosine 424 in murine Src, followed by the detection of total Src by rabbit monoclonal antibody (36D10,
274 Cell Signaling Technology, Danvers, MA, United States; RRID:AB_2106059), as previously shown
275 (27).

276 Co-immunoprecipitation appraises were performed following the manufacturer's protocol
277 (ThermoFisher) and as previously shown (51). Briefly, lysates were incubated over-night at 4°C with
278 Dynabeads Protein G, prepared by blocking 12.5 μ l of magnetic beads with PBS1X containing 0.5%
279 BSA (w/v) and bound to 2.5 μ g of rabbit anti-Src (36D10) or MultiMabTM Rabbit Phospho-Tyrosine (P-
280 Tyr-1000; RRID:AB_2687925) antibody. After washing with buffer (25 mM citric acid, 50 mM Dibasic
281 Sodium Phosphate dodecahydrate pH 5), the immuno-complex was eluted with Elution buffer (0.1 M
282 Sodium Citrate dihydrate pH 2-3) and Laemmli buffer. Proteins were run on SDS-PAGE and the
283 expression of IDO1 was analyzed with a mouse anti-IDO1 antibody (clone 8G-11, Merck). Mouse
284 monoclonal Ab against β -tubulin (Sigma-Aldrich; RRID:AB_2827403) was used as normalizer. Protein
285 expression was measured by using Image Lab software (Bio-Rad) and the densitometric analysis of the
286 specific signals was performed as previously described (31).

287 **Biochemical assay**

288 For the in vitro cell-free assay, 5 ng of recombinant hSrc were combined with 10 μ M of ATP and 100
289 μ M of synthetic peptide (KVEKIGEGTYGVVYK) corresponding to amino acids 6-20 of p34cdc2. The
290 reaction was carried out in a buffer containing 100 mM of Tris-HCl (pH 7.2), 125 mM of MgCl₂, 25
291 mM of MnCl₂, 250 μ M of Na₃VO₂ and 2 mM of DTT. The mixture was incubated at 25°C for 30
292 minutes and the production of ADP was measured using the ADP-Glo kinase assay kit (Promega). Vmax
293 was calculated after fitting the kinase activity data to the Michaelis–Menten equation. For the continuous
294 in vitro assay, 50 ng of recombinant hSrc were incubated in the assay buffer with 300 ng of recombinant
295 hIDO1, 100 μ M of ATP, with or without spermidine (50 nM). The reaction was carried out at 25°C for
296 the indicated time and then stopped by the addition of Laemmli buffer. Samples were run on SDS/PAGE
297 and analyzed for the expression of Phospho-Tyrosine and IDO1 using an anti-pTyr -1000 and anti-IDO1
298 (clone 10.1, Merck) antibodies, respectively.

299 **Proximity ligation assay (PLA)**

300 SYF cells expressing WT Src or Src E155A or Src E174A were serum-starved, stimulated with
301 spermidine, fixed for 20 minutes with 4% PFA, permeabilized for 10 minutes with Triton-X 0.1% in
302 PBS1X and then blocked. Duolink Proximity Ligation Assay (#DUO92008, Sigma-Aldrich) was
303 performed according to the manufacturer's protocol. Briefly, primary antibodies rabbit a-mouse Src
304 (Thermo Fisher, 7G6M9) and mouse a-mouse IDO1 (clone 8G11, Merk) were conjugated with either
305 PLUS (#DUO92009, Sigma-Aldrich) or MINUS (#DUO92010, Sigma-Aldrich) oligonucleotides to

306 create PLA probes. Samples were incubated overnight at 4° C and, subsequently, ligase solution was
307 added for 30 minutes. The signal was amplified with amplification polymerase solution at 37° C for 100
308 minutes. Nuclei were counterstained with 4', 6'-diamidino-2-phenylindole (DAPI) (#DUO82040,
309 Sigma-Aldrich). A total of 7 images (on average of 60 cells) per samples were taken with a Nikon
310 inverted microscope (60X magnification) and analyzed with the software ImageJ.

311 **Electrostatic potential calculation study and docking study**

312 The NMR structure of the SH2 domain of Src kinase (PDB ID: 2JYQ)(65) was taken from the protein
313 data bank (www.rcsb.org) (66). Atomic coordinates were processed using the program PDB2PQR
314 (67,68). The Adaptive Poisson-Boltzmann Solver (APBS) was applied to calculate the electrostatic
315 potential of SH2 domain and map it on the excluded solvent surface (69). Specifically, the PARSE force
316 field was employed with default parameters including a solute dielectric value = 2, solvent dielectric
317 value = 78.54, solvent probe radius = 1.4 Å, and temperature = 298.150 °K. Two calculations were
318 performed using cubic spline charge discretization and a grid dimension of 129 × 129 × 129 Å. The first
319 run adopted a grid spacing of 0.574 × 0.557 × 0.509 Å, for a grid length of 73.433 × 71.279 × 65.163 Å
320 centered at point 2.638 (x), 0.458 (y), 0.467 (z). The second run used a grid spacing of 0.494 × 0.484 ×
321 0.456 Å for a grid length of 63.196 × 61.929 × 58.331 Å centered at the same point of the first run.

322 The chemical structure of spermidine was taken from PubChem compound (70). The structure was
323 processed using LigPrep (Schrödinger Release 2021-3: LigPrep, LLC, New York, NY, 2021) and
324 applying the default settings.

325 The structure of the SH2 domain of Src kinase (PDB ID: 2JYQ) was processed employing the Protein
326 Preparation Wizard (PPW) tool, as implemented in Maestro (Schrödinger Release 2021-3: Maestro,
327 Schrödinger, LLC, New York, NY, 2021). In particular, hydrogen atoms were added and the internal
328 geometries of the protein were optimized with a coordinate displacement restrain on heavy atoms set to
329 0.3 Å. The docking study was carried out defining a grid box for calculations centered on the center of
330 mass of residues E155 and E174 (E4 and E23 according to 2JYQ sequence numbering). The inner box
331 was sized 10x10x10 Å. Since the allosteric site features a shallow surface, a ligand induced-fit approach
332 was used to investigate the binding mode of spermidine. Accordingly, docking solutions were obtained
333 using the induced-fit docking algorithm (Schrödinger Release 2021-3: Induced Fit Docking,
334 Schrödinger, LLC, New York, NY, 2021) and the standard protocol to generate up to n.20 binding poses
335 of spermidine into the allosteric site. During calculations, ligand and receptor van der Waals scaling
336 factors were set to 0.5 kcal/mol, respectively. The side chain conformations of residues within 5 Å of the
337 ligand binding pose were sampled and refined using the OPLS 2005 force field. The structure of
338 spermidine was then redocked with glide and standard precision (SP) scoring function into different
339 obtained conformations of the allosteric site, using up to n.20 top energy conformations of the binding
340 site within 30 kcal/mol of the minimum energy conformation.

341 **Acknowledgments**

342 This research was funded by University of Perugia, Ricerca di base 2019, (RBGMON19; to G.M.),
343 Associazione Italiana per la Ricerca sul Cancro (AIRC 2019-23084; to CV) and University of Perugia,
344 Ricerca di base 2020 (INTEGRATE; to AM).

345 **Author contributions**

346 Investigation, S.R., E.B., S.A, G.S., E.P., C.V.; Methodology, M.G., A.M., G.M.; Conceptualization,
347 G.M. and M.G.; Supervision, F.F., A.M and C.O.; Writing-original draft preparation, G.M. All authors
348 have read and agreed to the published version of the manuscript.

349 **Declaration of interests**

350 The authors declare no competing interests.

351 **Supporting information**

352 Supplementary Figure S1. Spermidine does not modify neither the efficacy nor the affinity of Src kinase
353 in the presence of increasing concentration of ATP.

354 Supplementary Figure S2. The glutamate residues E155 and E174 are conserved across different species.

355 Supplementary Table S1. Solutions of the docking study of spermidine into the allosteric site of Src SH2
356 domain.

357 Supplementary Figure S3. Efficient reconstitution of SYF cells with vectors coding for Src kinase.

358 **Data availability statement**

359 All data generated or analyzed during this study are included in the manuscript and supporting file.

360 Figure 1 - Source Data 1; Figure 2 - Source Data 2; Figure 3 - Source Data 3; Figure 3 - Source Data 4;
361 Figure 3 - Source Data 5; Figure S3 - Source Data 6; Figure S3 - Source Data 7: contain the original blots
362 used to generate the figures.

363 **Figure legends**

364 **Figure 1. Spermidine enhances the activity of Src kinase in ATP-independent manner.**

365 (A) Enzymatic activity of rhSrc in the presence of ATP (10 μ M), synthetic peptide (100 μ M) and
366 increasing concentration of spermidine (45 nM to 100 μ M). ADP-Glo™ Kinase Assay (Promega) was
367 used to detect the activity. Results are shown as fold change vs untreated samples (fold change = 1, dotted
368 line). Spermidine EC50=106,4 nM \pm 13,4. (B) Immunoblot analysis of phosphorylated (pSrc) and total
369 Src protein level evaluated in cell lysates from SYF cells reconstituted with vector coding for wild-type
370 Src and then treated with increasing concentration of spermidine (130 nM to 100 μ M). Actin expression
371 was used as normalizer. One representative immunoblot of three is shown. (C) pSrc/Src ratio of scanning
372 densitometry analysis of three independent immunoblots. Data (mean \pm SD) are reported as fold change
373 of samples treated with spermidine relative to untreated cells (fold change = 1, dotted line). Spermidine
374 EC50=6,4 μ M \pm 0,6. (D) Enzymatic activity of rhSrc in the presence of spermidine, with or without ATP
375 and peptide substrate. (E) Enzymatic activity of rhSrc in the presence of fixed concentrations of
376 spermidine and increasing concentration of peptide substrate. Data were analyzed with one-way ANOVA
377 followed by post-hoc Bonferroni test. *p < 0.05, ***p < 0.001.

378 **Figure 2. Spermidine binds to an allosteric site located in the SH2 domain of Src kinase.**

379 (A) Schematic representation of the Src domains and kinase activation. The catalytic activation of the
380 enzyme is characterized by the phosphorylation of the Y424 (pY424) in the activation loop. Created with
381 BioRender.com. (B) Electrostatic potential surface of the Src SH2 domain showing the pY binding site
382 (R182, H209) and the putative allosteric site for the endogenous polyamine as delimited by the glutamate
383 residues (E155 and E174). (C) Overlay of docking solutions of spermidine into the shallow cavity of Src
384 kinase (poses #1-18, Appendix Table S1). E155 and E174 residues are shown with magenta carbon-
385 atoms. Induced-fit conformations of side chains of residues shaping the cavity are shown with grey
386 carbon-atoms according to each docking solution. Conformations of spermidine according to each
387 docking solution are shown with green carbon-atoms. The Src SH2 domain is shown with magenta
388 cartoon depicting the secondary structure. (D) Best energy-scored solution of the binding mode of
389 spermidine into the allosteric pocket of Src (pose #1, Appendix Table S1). E155 and E174 are shown
390 with magenta carbon-atoms. Interacting residues and spermidine are shown with grey and green carbon-
391 atoms, respectively. Hydrogen bond interactions are shown with yellow dashed lines, while the π -cation
392 interaction is reported with green dashed line. (E) Immunoblot analysis of phosphorylated (pSrc) and
393 total Src protein level in cell lysates from SYF cells either reconstituted with vector coding for wild-type
394 Src (WT) or Src mutated at glutamate 155 or 174 with alanine (E155A; E174A). Cells were then exposed
395 to increasing concentration of spermidine (130 nM to 100 μ M). Actin expression was used as normalizer.
396 One representative immunoblot of three is shown. (F) Activation of Src kinase in SYF cells treated as in
397 (E) and measured as pSrc/Src ratio of scanning densitometry analysis of three independent immunoblots.
398 Results (mean \pm SD) are reported as fold change of samples treated with spermidine relative to untreated
399 cells (fold change = 1, dotted line). (G) Schematic representation of the reporter functions. In the presence
400 of active Src kinase, the phosphorylation of Src peptide results in its intra-molecular interaction with the
401 SH2 domain that prevents the complementation of split luciferase fragments and generates a reduced
402 bioluminescence activity. In the absence of Src activation, the N- and C-terminal luciferase domains are
403 reconstituted and thus the bioluminescent activity is restored. (H) Measurement of luminescent signal in
404 SYF cells co-expressing the reporter and the wild-type Src or its mutants (E155A and E174A), and then

405 exposed to spermidine (at 10 μ M and 100 μ M). Results are reported as fold change of bioluminescent
406 signal in stimulated cells as compared to untreated samples. Data (F, H) were analyzed with 2-way
407 ANOVA followed by post-hoc Bonferroni test. *p < 0.05, **p < 0.01, ***p < 0.001.

408 **Figure 3. Spermidine triggers the phosphorylation of IDO1 by Src kinase and the complex**
409 **formation.** (A) Immunoprecipitation with anti-phosphotyrosine antibody from SYF cells reconstituted
410 with vectors coding for Src and IDO1 and then treated with spermidine (100 μ M) for 60 minutes. Cells
411 transfected with vectors coding for either Src or IDO1 were used as control. The detection of IDO1, Src
412 and β -tubulin was performed by sequential immunoblotting with specific antibodies. Whole-cell lysates
413 (WCL) was used as control of protein expression. One representative immunoblot of three is shown.
414 IDO1/pTYR ratio is measured by densitometric quantification of the specific bands and is expressed
415 relative to untreated cells. (B) Continuous in vitro kinase assay with rhIDO1 (300 ng) and rhSrc (50 ng)
416 followed by immunoblot analysis with anti-phosphotyrosine and anti-IDO1 specific antibodies. The
417 reaction was carried out for the indicated time, in either the presence or absence of spermidine. One
418 representative immunoblot of three is shown. (C) pTYR/IDO1 signals were calculated by densitometric
419 quantification of the specific bands. Data were plotted over incubation time of the kinase reaction and
420 the slopes (relative velocity) of linear fits were calculated. (D) The relative velocity of the kinase reaction
421 in either the presence or absence of spermidine from three independent experiments is shown. (E)
422 Immunoprecipitation of Src from SYF cells reconstituted with Src and IDO1, and then treated with
423 spermidine for the indicated time. The detection of IDO1, Src and β -tubulin was performed by sequential
424 immunoblotting with specific antibodies. Whole-cell lysates (WCL) was used as control of protein
425 expression. One representative immunoblot of three is shown. IDO1/Src ratio is calculated by
426 densitometric quantification of the specific bands and is reported as fold change against untreated cells.
427 (F) The *in situ* proximity ligation assay between IDO1 and Src in SYF cells reconstituted with wild-type
428 Src or the mutant forms and treated as in (A). Red spots indicate a single IDO1/Src interaction; scale
429 bars, 10 μ m. One representative experiment of three is shown. (G) Quantification of the interactions
430 detected by proximity ligation assay using ImageJ. Results are reported as function of the number of
431 cells. Data (mean \pm SD) in (A, E, G) were analyzed with one-way ANOVA followed by post-hoc
432 Bonferroni test. *p < 0.05, **p < 0.01. Data (mean \pm SD) in (D) were analyzed with unpaired student t-
433 test. ***p < 0.001.

434 **Figure 4. Scheme of the Src kinase modulation by the polyamine spermidine.** Created with
435 BioRender.com
436

437 **Figure legends of Source data files**

438 **Figure 1 - Source Data 1.** Original immunoblots of phosphorylated (pSrc), total Src and actin protein
439 levels evaluated in cell lysates from SYF cells reconstituted with vector coding for wild-type Src and
440 then treated with increasing concentration of spermidine.

441 **Figure 2 - Source Data 2.** Original immunoblots of phosphorylated (pSrc), total Src and actin protein
442 level evaluated in cell lysates from SYF cells either reconstituted with vector coding for wild-type Src
443 (WT) or Src mutated at glutamate 155 or 174 with alanine (mutants). Cells were then exposed to
444 increasing concentration of spermidine.

445 **Figure 3 - Source Data 3.** Original immunoblots of immunoprecipitation with anti-phosphotyrosine
446 antibody (IP) followed by the detection of IDO1 and Src with specific antibodies. Whole-cell lysates
447 (PRE-IP) was used as control of protein expression of IDO1 and Src. SYF cells reconstituted with
448 vectors coding for Src and IDO1 and then treated with spermidine (100 μ M) for 60 minutes as well as
449 cells transfected with vectors coding for either Src or IDO1 were used for the experiments.

450 **Figure 3 - Source Data 4.** Original immunoblots of in vitro kinase assay with rhIDO1 (300 ng) and
451 rhSrc (50 ng) followed by immunoblot analysis with anti-phosphotyrosine and anti-IDO1 specific
452 antibodies. The reaction was in either the presence or absence of spermidine.

453 **Figure 3 - Source Data 5.** Original immunoblots of immunoprecipitation of Src from SYF cells
454 reconstituted with Src and IDO1, and then treated with spermidine for the indicated time. The detection
455 of IDO1 and Src was performed by sequential immunoblotting with specific antibodies (IP). Whole-
456 cell lysates (PRE-IP) was used as control of protein expression.

457 **Figure S3 - Source Data 6.** Original immunoblots of total Src and actin protein levels in cell lysates
458 from SYF cells either reconstituted with vector coding for wild-type Src (WT) or Src mutated at
459 glutamate 155 or 174 with alanine. SYF cells transfected with empty vector (SYF) were used as
460 control.

461 **Figure S3 - Source Data 7.** Original immunoblots of phosphorylated (pSrc), total Src and β -tubulin
462 protein level in cell lysates from SYF cells either reconstituted with vector coding for wild-type Src (WT)
463 or Src mutated at glutamate 155 or 174 with alanine and then exposed to LPA (20 μ M).

464

465 **References**

466 1. Piazza I, Kochanowski K, Cappelletti V, Fuhrer T, Noor E, Sauer U, et al. A Map of Protein-Metabolite
467 Interactions Reveals Principles of Chemical Communication. *Cell*. 11 gennaio 2018;172(1–2):358–372.e23.

468 2. Changeux JP, Christopoulos A. Allosteric Modulation as a Unifying Mechanism for Receptor Function and
469 Regulation. *Cell*. 25 agosto 2016;166(5):1084–102.

470 3. Mondanelli G, Coletti A, Greco FA, Pallotta MT, Orabona C, Iacono A, et al. Positive allosteric modulation of
471 indoleamine 2,3-dioxygenase 1 restrains neuroinflammation. *Proc Natl Acad Sci U S A*. 18 febbraio
472 2020;117(7):3848–57.

473 4. Feng Y, De Franceschi G, Kahraman A, Soste M, Melnik A, Boersema PJ, et al. Global analysis of protein
474 structural changes in complex proteomes. *Nat Biotechnol*. ottobre 2014;32(10):1036–44.

475 5. Pegg AE. Functions of Polyamines in Mammals. *J Biol Chem*. 15 2016;291(29):14904–12.

476 6. Igarashi K, Kashiwagi K. Polyamines: mysterious modulators of cellular functions. *Biochem Biophys Res
477 Commun*. 19 maggio 2000;271(3):559–64.

478 7. Pendeville H, Carpino N, Marine JC, Takahashi Y, Muller M, Martial JA, et al. The ornithine decarboxylase
479 gene is essential for cell survival during early murine development. *Mol Cell Biol*. ottobre
480 2001;21(19):6549–58.

481 8. Proietti E, Rossini S, Grohmann U, Mondanelli G. Polyamines and Kynurenines at the Intersection of
482 Immune Modulation. *Trends Immunol*. novembre 2020;41(11):1037–50.

483 9. Holbert CE, Cullen MT, Casero RA, Stewart TM. Polyamines in cancer: integrating organismal metabolism
484 and antitumour immunity. *Nat Rev Cancer*. 27 aprile 2022;

485 10. Gerner EW, Bruckheimer E, Cohen A. Cancer pharmacoprevention: Targeting polyamine metabolism to
486 manage risk factors for colon cancer. *J Biol Chem*. 30 novembre 2018;293(48):18770–8.

487 11. Geck RC, Foley JR, Murray Stewart T, Asara JM, Casero RA, Toker A. Inhibition of the polyamine synthesis
488 enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy. *J
489 Biol Chem*. 5 marzo 2020;

490 12. Nakkina SP, Gitto SB, Pandey V, Parikh JG, Geerts D, Maurer HC, et al. Differential Expression of Polyamine
491 Pathways in Human Pancreatic Tumor Progression and Effects of Polyamine Blockade on Tumor
492 Microenvironment. *Cancers (Basel)*. 20 dicembre 2021;13(24):6391.

493 13. Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. *Science*. 26 gennaio
494 2018;359(6374):eaan2788.

495 14. Li G, Ding H, Yu X, Meng Y, Li J, Guo Q, et al. Spermidine Suppresses Inflammatory DC Function by
496 Activating the FOXO3 Pathway and Counteracts Autoimmunity. *iScience*. 24 gennaio 2020;23(1):100807.

497 15. Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, et al. Cardioprotection and
498 lifespan extension by the natural polyamine spermidine. *Nat Med*. 2016;22(12):1428–38.

499 16. Yang Q, Zheng C, Cao J, Cao G, Shou P, Lin L, et al. Spermidine alleviates experimental autoimmune
500 encephalomyelitis through inducing inhibitory macrophages. *Cell Death Differ.* 01 2016;23(11):1850–61.

501 17. Ni YQ, Liu YS. New Insights into the Roles and Mechanisms of Spermidine in Aging and Age-Related
502 Diseases. *Aging Dis.* dicembre 2021;12(8):1948–63.

503 18. Liu R, Li X, Ma H, Yang Q, Shang Q, Song L, et al. Spermidine endows macrophages anti-inflammatory
504 properties by inducing mitochondrial superoxide-dependent AMPK activation, Hif-1 α upregulation and
505 autophagy. *Free Radic Biol Med.* dicembre 2020;161:339–50.

506 19. Mondanelli G, Bianchi R, Pallotta MT, Orabona C, Albini E, Iacono A, et al. A Relay Pathway between
507 Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells. *Immunity.*
508 21 2017;46(2):233–44.

509 20. Oppermann H, Levinson AD, Varmus HE, Levintow L, Bishop JM. Uninfected vertebrate cells contain a
510 protein that is closely related to the product of the avian sarcoma virus transforming gene (src). *Proc Natl
511 Acad Sci U S A.* aprile 1979;76(4):1804–8.

512 21. Caner A, Asik E, Ozpolat B. SRC Signaling in Cancer and Tumor Microenvironment. *Adv Exp Med Biol.*
513 2021;1270:57–71.

514 22. Ahn K, O YM, Ji YG, Cho HJ, Lee DH. Synergistic Anti-Cancer Effects of AKT and SRC Inhibition in Human
515 Pancreatic Cancer Cells. *Yonsei Med J.* agosto 2018;59(6):727–35.

516 23. Cardin DB, Goff LW, Chan E, Whisenant JG, Dan Ayers G, Takebe N, et al. Dual Src and EGFR inhibition in
517 combination with gemcitabine in advanced pancreatic cancer: phase I results : A phase I clinical trial. *Invest
518 New Drugs.* giugno 2018;36(3):442–50.

519 24. Dosch AR, Dai X, Reyzer ML, Mehra S, Srinivasan S, Willobee BA, et al. Combined Src/EGFR Inhibition
520 Targets STAT3 Signaling and Induces Stromal Remodeling to Improve Survival in Pancreatic Cancer. *Mol
521 Cancer Res.* aprile 2020;18(4):623–31.

522 25. Roskoski R. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. *Pharmacol
523 Res.* aprile 2015;94:9–25.

524 26. Shao S, Piao L, Guo L, Wang J, Wang L, Wang J, et al. Tetraspanin 7 promotes osteosarcoma cell invasion
525 and metastasis by inducing EMT and activating the FAK-Src-Ras-ERK1/2 signaling pathway. *Cancer Cell Int.*
526 6 maggio 2022;22(1):183.

527 27. Manni G, Mondanelli G, Scalisi G, Pallotta MT, Nardi D, Padiglioni E, et al. Pharmacologic Induction of
528 Endotoxin Tolerance in Dendritic Cells by L-Kynurenone. *Front Immunol.* 2020;11:292.

529 28. Moroco JA, Baumgartner MP, Rust HL, Choi HG, Hur W, Gray NS, et al. A Discovery Strategy for Selective
530 Inhibitors of c-Src in Complex with the Focal Adhesion Kinase SH3/SW2-binding Region. *Chem Biol Drug
531 Des.* agosto 2015;86(2):144–55.

532 29. Moroco JA, Craig JK, Jacob RE, Wales TE, Engen JR, Smithgall TE. Differential sensitivity of Src-family
533 kinases to activation by SH3 domain displacement. *PLoS One.* 2014;9(8):e105629.

534 30. Dorman HR, Close D, Wingert BM, Camacho CJ, Johnston PA, Smithgall TE. Discovery of Non-peptide Small
535 Molecule Allosteric Modulators of the Src-family Kinase, Hck. *Front Chem.* 2019;7:822.

536 31. Mondanelli G, Di Battista V, Pellanera F, Mammoli A, Macchiarulo A, Gargaro M, et al. A novel mutation of
537 indoleamine 2,3-dioxygenase 1 causes a rapid proteasomal degradation and compromises protein
538 function. *J Autoimmun.* dicembre 2020;115:102509.

539 32. Arias-Romero LE, Saha S, Villamar-Cruz O, Yip SC, Ethier SP, Zhang ZY, et al. Activation of Src by protein
540 tyrosine phosphatase 1B is required for ErbB2 transformation of human breast epithelial cells. *Cancer Res.*
541 1 giugno 2009;69(11):4582–8.

542 33. Klinghoffer RA, Sachsenmaier C, Cooper JA, Soriano P. Src family kinases are required for integrin but not
543 PDGFR signal transduction. *EMBO J.* 4 maggio 1999;18(9):2459–71.

544 34. Macchiarulo A, Nuti R, Eren G, Pellicciari R. Charting the chemical space of target sites: insights into the
545 binding modes of amine and amidine groups. *J Chem Inf Model.* aprile 2009;49(4):900–12.

546 35. Lai YJ, Chen CS, Lin WC, Lin FT. c-Src-mediated phosphorylation of TRIP6 regulates its function in
547 lysophosphatidic acid-induced cell migration. *Mol Cell Biol.* luglio 2005;25(14):5859–68.

548 36. Niu G, Chen X. Molecular imaging with activatable reporter systems. *Theranostics.* 2012;2(4):413–23.

549 37. Albini E, Rosini V, Gargaro M, Mondanelli G, Belladonna ML, Pallotta MT, et al. Distinct roles of
550 immunoreceptor tyrosine-based motifs in immunosuppressive indoleamine 2,3-dioxygenase 1. *J Cell Mol*
551 *Med.* gennaio 2017;21(1):165–76.

552 38. Pallotta MT, Orabona C, Volpi C, Vacca C, Belladonna ML, Bianchi R, et al. Indoleamine 2,3-dioxygenase is a
553 signaling protein in long-term tolerance by dendritic cells. *Nat Immunol.* 31 luglio 2011;12(9):870–8.

554 39. Orabona C, Pallotta MT, Grohmann U. Different partners, opposite outcomes: a new perspective of the
555 immunobiology of indoleamine 2,3-dioxygenase. *Mol Med.* 18 luglio 2012;18:834–42.

556 40. Liu ST, Pham H, Pandol SJ, Ptaszniak A. Src as the link between inflammation and cancer. *Front Physiol.*
557 2013;4:416.

558 41. Ozanne J, Prescott AR, Clark K. The clinically approved drugs dasatinib and bosutinib induce anti-
559 inflammatory macrophages by inhibiting the salt-inducible kinases. *Biochem J.* 15 gennaio
560 2015;465(2):271–9.

561 42. Formisano L, D'Amato V, Servetto A, Brillante S, Raimondo L, Di Mauro C, et al. Src inhibitors act through
562 different mechanisms in Non-Small Cell Lung Cancer models depending on EGFR and RAS mutational
563 status. *Oncotarget.* 22 settembre 2015;6(28):26090–103.

564 43. Gurbani D, Du G, Henning NJ, Rao S, Bera AK, Zhang T, et al. Structure and Characterization of a Covalent
565 Inhibitor of Src Kinase. *Front Mol Biosci.* 2020;7:81.

566 44. Engen JR, Wales TE, Hochrein JM, Meyn MA, Banu Ozkan S, Bahar I, et al. Structure and dynamic regulation
567 of Src-family kinases. *Cell Mol Life Sci.* ottobre 2008;65(19):3058–73.

568 45. Shah NH, Amacher JF, Nocka LM, Kuriyan J. The Src module: an ancient scaffold in the evolution of
569 cytoplasmic tyrosine kinases. *Crit Rev Biochem Mol Biol.* ottobre 2018;53(5):535–63.

570 46. Zhang J, Adrián FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE, et al. Targeting Bcr-Abl by combining
571 allosteric with ATP-binding-site inhibitors. *Nature.* 28 gennaio 2010;463(7280):501–6.

572 47. Saporito MS, Ochman AR, Lipinski CA, Handler JA, Reaume AG. MLR-1023 is a potent and selective
573 allosteric activator of Lyn kinase in vitro that improves glucose tolerance in vivo. *J Pharmacol Exp Ther.*
574 luglio 2012;342(1):15–22.

575 48. Rc P, Ag C, R S. Allosteric Targeting of Aurora A Kinase Using Small Molecules: A Step Forward Towards
576 Next Generation Medicines? *Current medicinal chemistry [Internet].* 2019 [citato 27 ottobre 2022];26(13).
577 Disponibile su: <https://pubmed.ncbi.nlm.nih.gov/28748768/>

578 49. Leonard SE, Register AC, Krishnamurty R, Brighty GJ, Maly DJ. Divergent modulation of Src-family kinase
579 regulatory interactions with ATP-competitive inhibitors. *ACS Chem Biol.* 15 agosto 2014;9(8):1894–905.

580 50. Fischer G, Rossmann M, Hyvönen M. Alternative modulation of protein-protein interactions by small
581 molecules. *Curr Opin Biotechnol.* dicembre 2015;35:78–85.

582 51. Gargaro M, Scalisi G, Manni G, Briseño CG, Bagadia P, Durai V, et al. Indoleamine 2,3-dioxygenase 1
583 activation in mature cDC1 promotes tolerogenic education of inflammatory cDC2 via metabolic
584 communication. *Immunity.* 14 giugno 2022;55(6):1032-1050.e14.

585 52. Makowski L, Chaib M, Rathmell JC. Immunometabolism: From basic mechanisms to translation. *Immunol
586 Rev.* maggio 2020;295(1):5–14.

587 53. Icard P, Fournel L, Wu Z, Alifano M, Lincet H. Interconnection between Metabolism and Cell Cycle in
588 Cancer. *Trends in Biochemical Sciences.* 1 giugno 2019;44(6):490–501.

589 54. Diskin C, Ryan T a. J, O'Neill L a. J. Modification of Proteins by Metabolites in Immunity. *Immunity.* 12
590 gennaio 2021;54(1):19–31.

591 55. Mondanelli G, Volpi C. Serotonin Pathway in Neuroimmune Network [Internet]. IntechOpen; 2021 [citato
592 22 maggio 2021]. Disponibile su: <https://www.intechopen.com/online-first/serotonin-pathway-in-neuroimmune-network>

594 56. Mondanelli G, Volpi C. The double life of serotonin metabolites: in the mood for joining neuronal and
595 immune systems. *Curr Opin Immunol.* 23 dicembre 2020;70:1–6.

596 57. Giovanelli P, Sandoval TA, Cubillos-Ruiz JR. Dendritic Cell Metabolism and Function in Tumors. *Trends
597 Immunol.* agosto 2019;40(8):699–718.

598 58. Grohmann U, Mondanelli G, Belladonna ML, Orabona C, Pallotta MT, Iacono A, et al. Amino-acid sensing
599 and degrading pathways in immune regulation. *Cytokine Growth Factor Rev.* giugno 2017;35:37–45.

600 59. Sun H, Han W, Wen J, Ma X. IL4I1 and tryptophan metabolites enhance AHR signals to facilitate colorectal
601 cancer progression and immunosuppression. *Am J Transl Res.* 2022;14(11):7758–70.

602 60. Mandarano M, Bellezza G, Belladonna ML, Vannucci J, Gili A, Ferri I, et al. Indoleamine 2,3-Dioxygenase 2
603 Immunohistochemical Expression in Resected Human Non-small Cell Lung Cancer: A Potential New
604 Prognostic Tool. *Front Immunol.* 2020;11:839.

605 61. Bonometti A, Borsani O, Rumi E, Ferretti VV, Dioli C, Lucato E, et al. Arginase-1+ bone marrow myeloid cells
606 are reduced in myeloproliferative neoplasms and correlate with clinical phenotype, fibrosis, and molecular
607 driver. *Cancer Med.* 15 dicembre 2022;

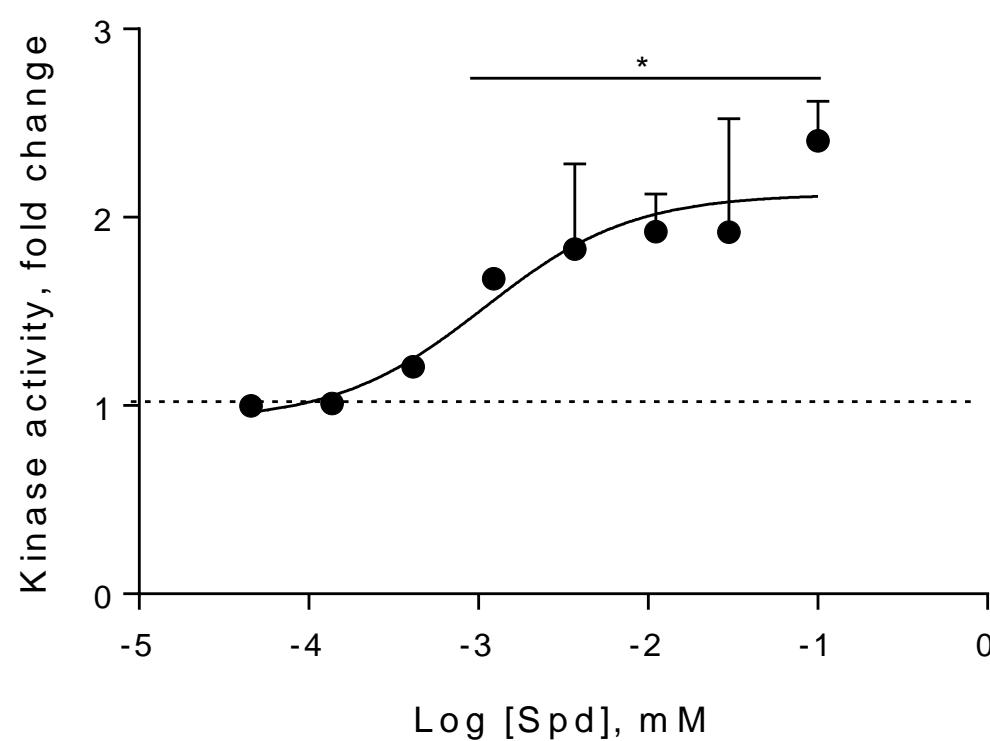
608 62. Mondanelli G, Iacono A, Allegrucci M, Puccetti P, Grohmann U. Immunoregulatory Interplay Between
609 Arginine and Tryptophan Metabolism in Health and Disease. *Front Immunol.* 2019;10:1565.

610 63. Iacono A, Pompa A, De Marchis F, Panfili E, Greco FA, Coletti A, et al. Class IA PI3Ks regulate subcellular and
611 functional dynamics of IDO1. *EMBO Rep.* 3 dicembre 2020;21(12):e49756.

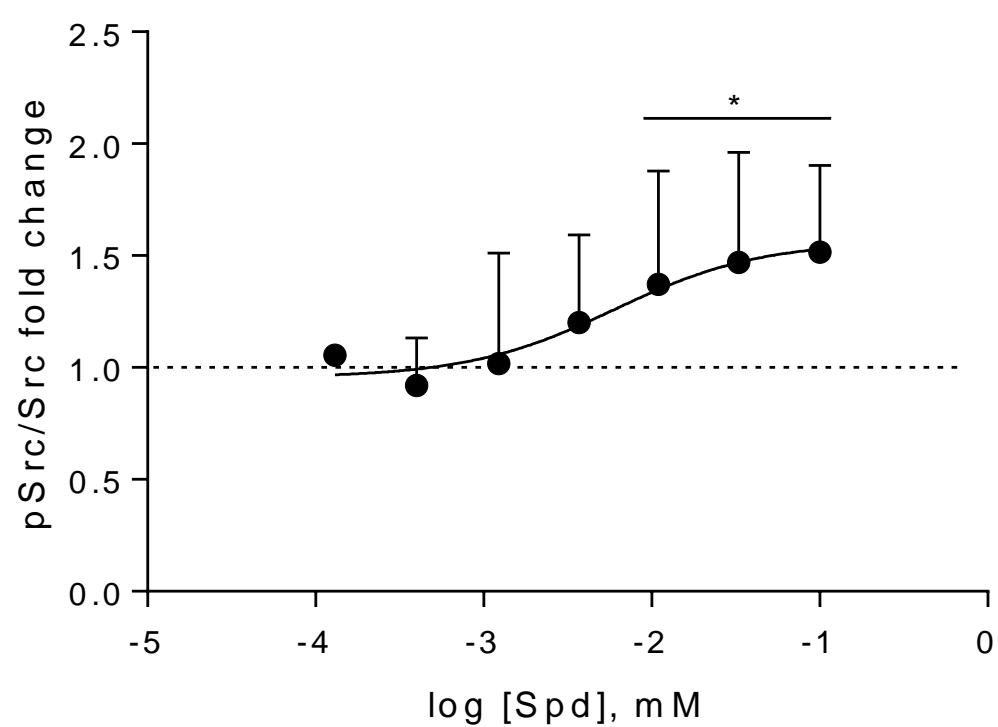
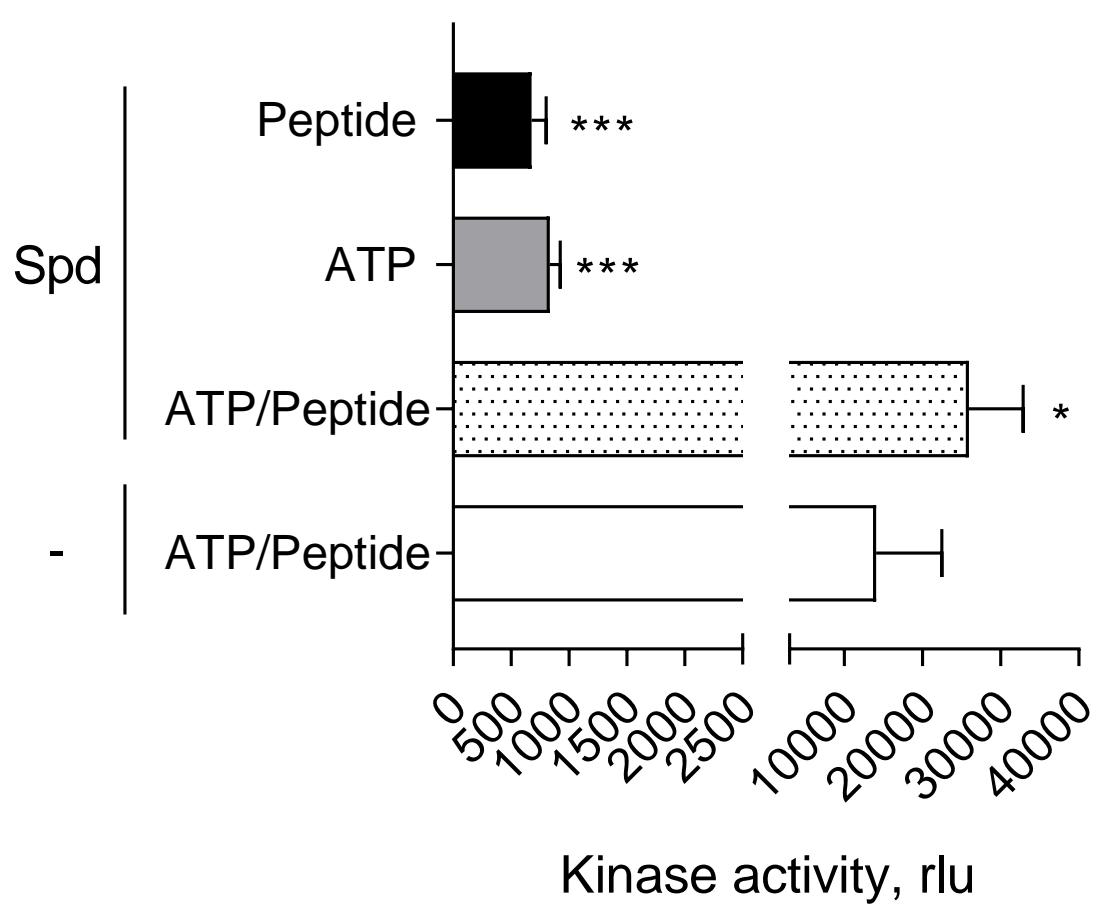
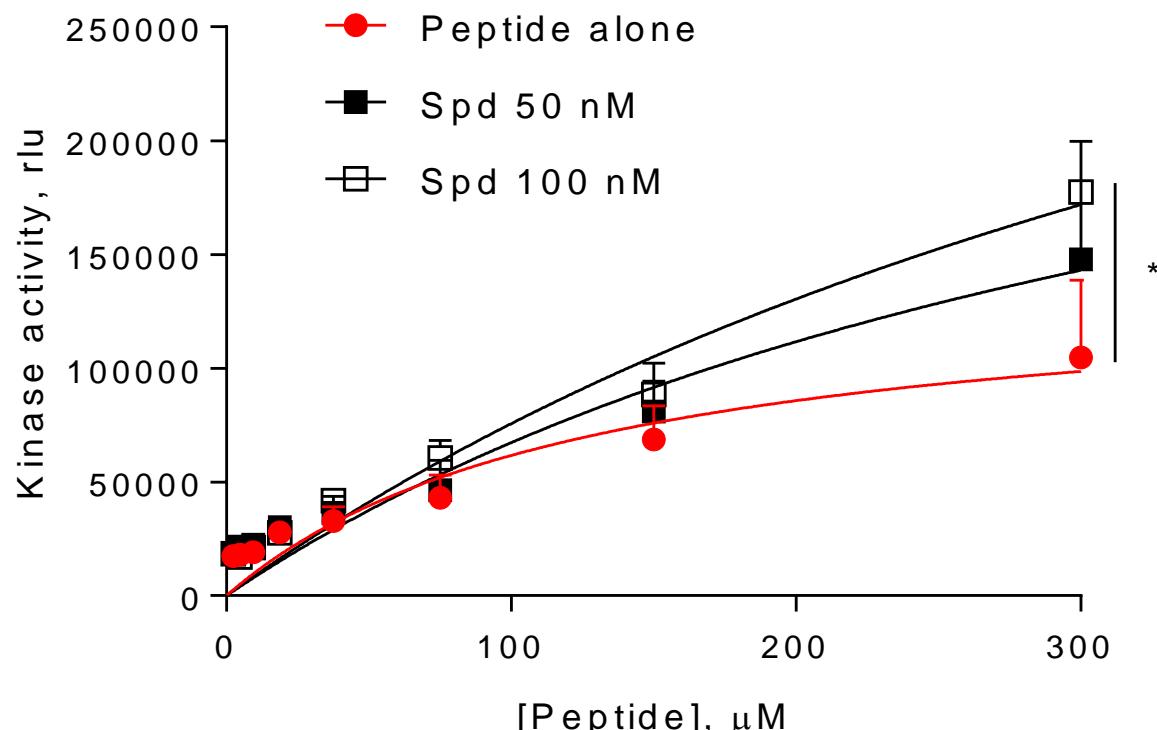
612 64. Hirose T, Saiki R, Yoshizawa Y, Imamura M, Higashi K, Ishii I, et al. Spermidine and Ca(2+), but not Na(+),
613 can permeate NMDA receptors consisting of GluN1 and GluN2A or GluN2B in the presence of Mg(2+).
614 *Biochem Biophys Res Commun.* 7 agosto 2015;463(4):1190–5.

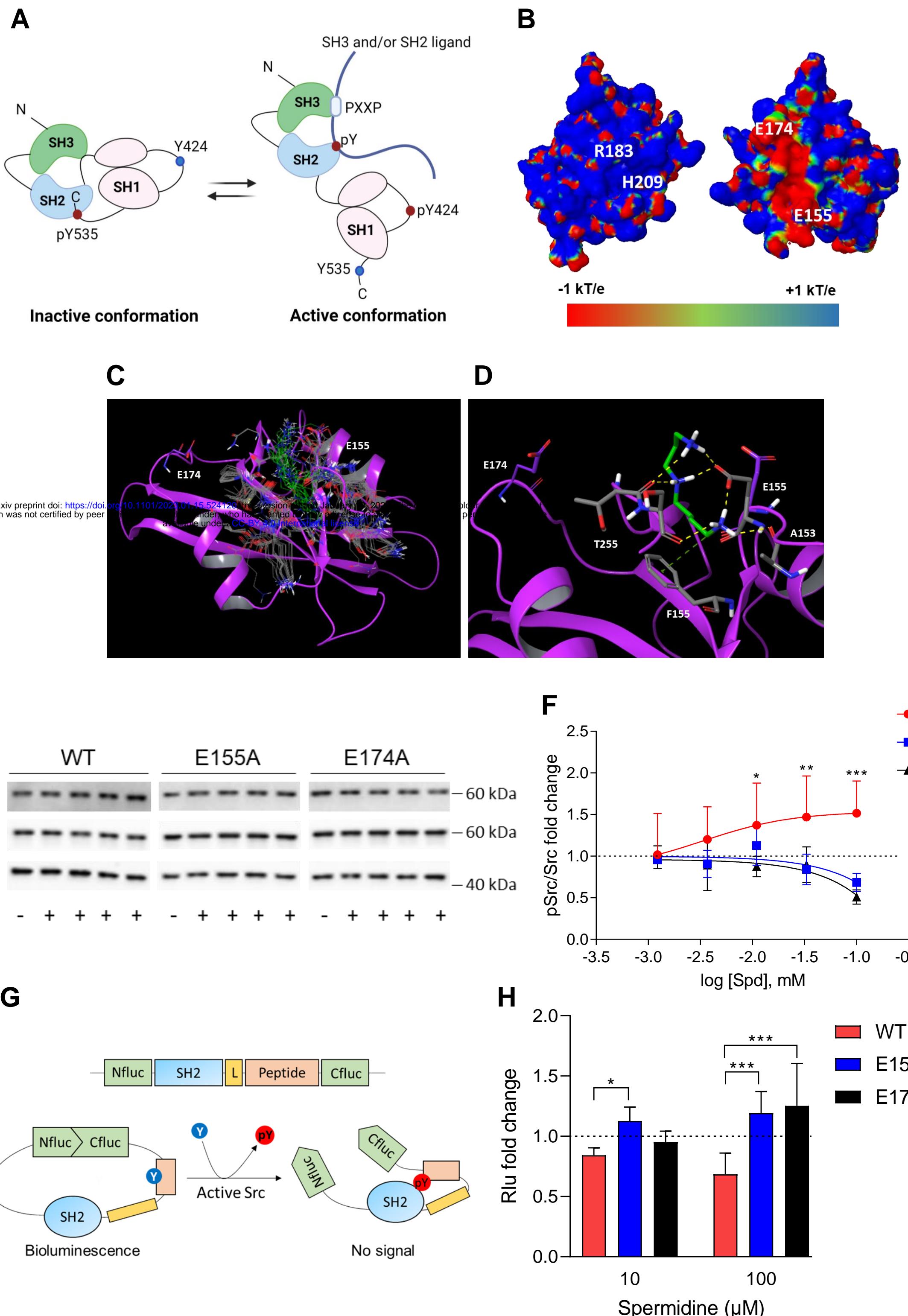
615 65. Taylor JD, Ababou A, Fawaz RR, Hobbs CJ, Williams MA, Ladbury JE. Structure, dynamics, and binding
616 thermodynamics of the v-Src SH2 domain: implications for drug design. *Proteins.* dicembre
617 2008;73(4):929–40.

618 66. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. *Nucleic
619 Acids Res.* 1 gennaio 2000;28(1):235–42.

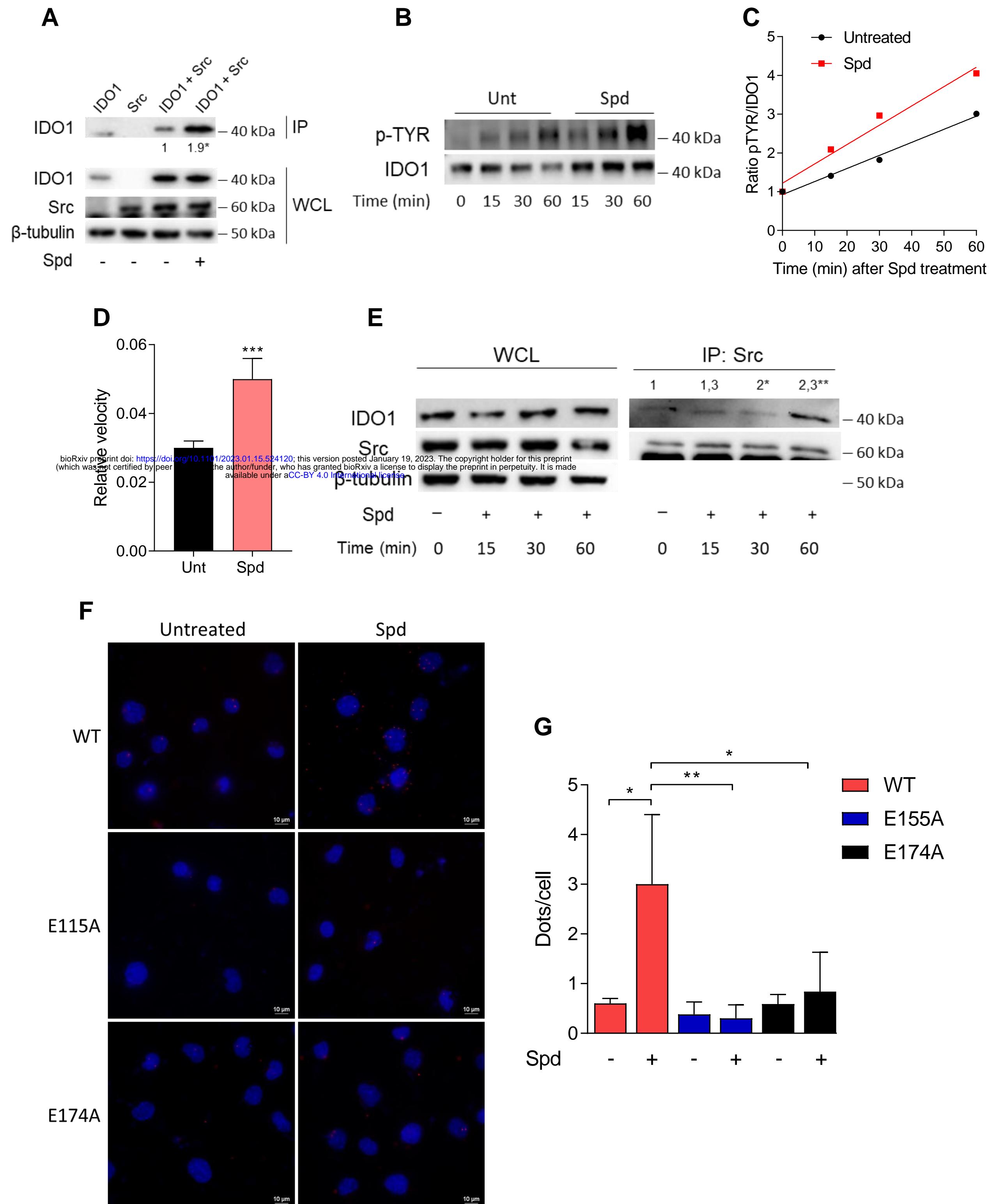

620 67. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, et al. PDB2PQR: expanding and upgrading
621 automated preparation of biomolecular structures for molecular simulations. *Nucleic Acids Res.* luglio
622 2007;35(Web Server issue):W522-525.

623 68. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an automated pipeline for the setup of
624 Poisson-Boltzmann electrostatics calculations. *Nucleic Acids Res.* 1 luglio 2004;32(Web Server issue):W665-
625 667.




626 69. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to
627 microtubules and the ribosome. *Proc Natl Acad Sci USA.* 28 agosto 2001;98(18):10037–41.

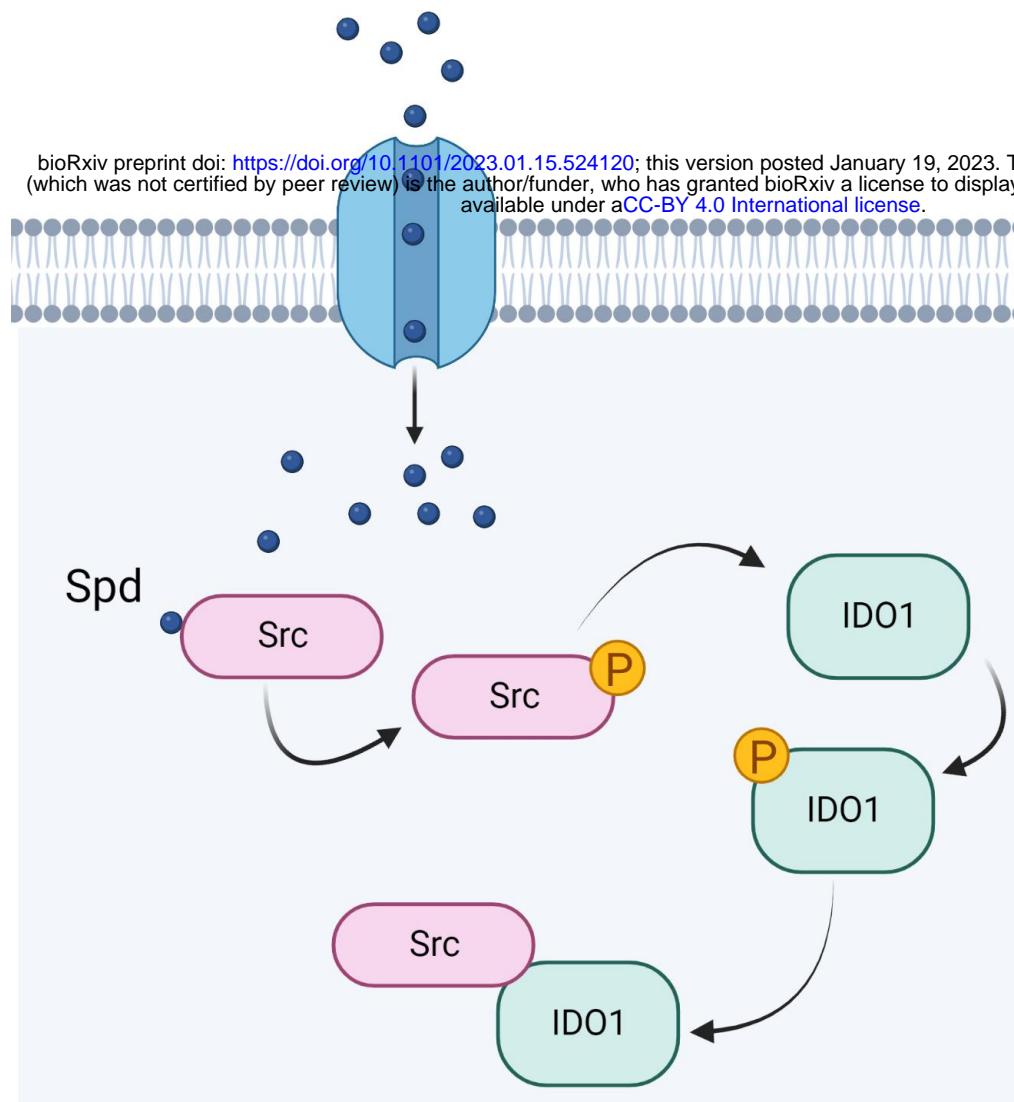

628 70. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem Substance and Compound
629 databases. *Nucleic Acids Res.* 4 gennaio 2016;44(D1):D1202-1213.

630

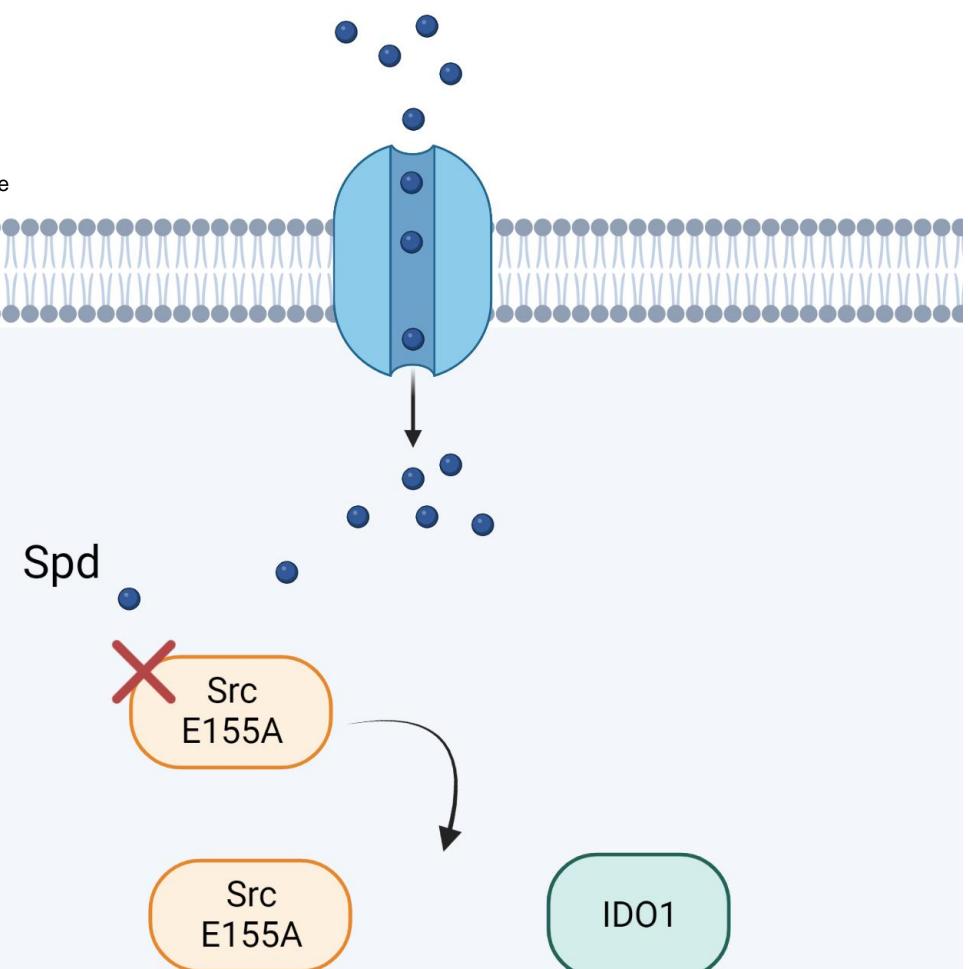

A

bioRxiv preprint doi: <https://doi.org/10.1101/2023.01.15.524120>; this version posted January 19, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

C**D****E**



Rossini *et al.* Figure 2



Rossini *et al.* Figure 3

Src kinase is switched on by spermidine

Src kinase E155A is not activated by spermidine

Supplementary

A Back-Door Insights into the modulation of Src kinase activity by the polyamine spermidine

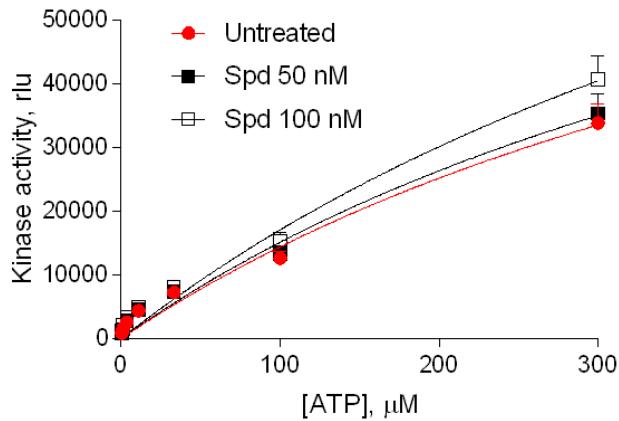
Sofia Rossini ¹, Marco Gargaro ¹, Giulia Scalisi ¹, Elisa Bianconi ², Sara Ambrosino ¹, Eleonora Panfili ¹, Claudia Volpi ¹, Ciriana Orabona ¹, Antonio Macchiarulo ², Francesca Fallarino ¹ and Giada Mondanelli ^{1,*}

¹Department of Medicine and Surgery, University of Perugia, 06100, Perugia, Italy

²Department of Pharmaceutical Sciences, University of Perugia, 06132, Perugia, Italy

*Lead contact

Correspondence should be addressed to Giada Mondanelli: giada.mondanelli@unipg.it; Tel.: +39 075 585 8241

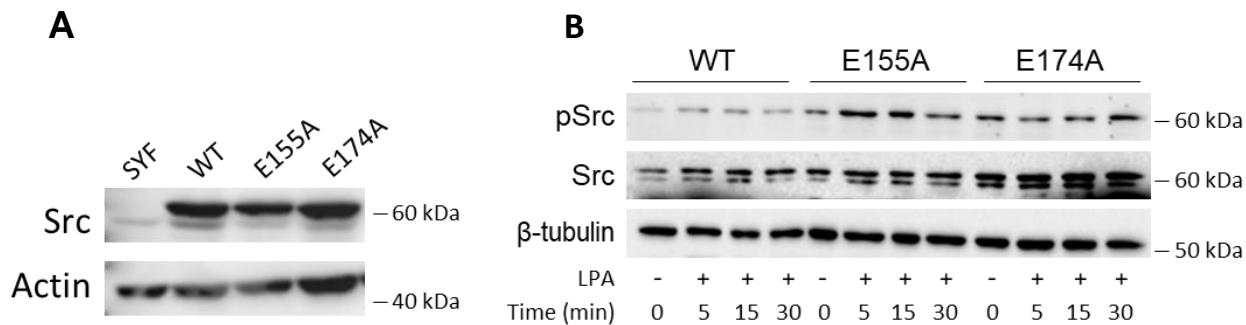

Table of contents:

Supplementary Figure S1 with Legend

Supplementary Figure S2 with Legend

Supplementary Table S1

Supplementary Figure S3 with Legend


Supplementary Figure S1. Spermidine does not modify neither the efficacy nor the affinity of Src kinase in the presence of increasing concentration of ATP. Enzymatic activity of recombinant human Src in the presence of fixed concentration of spermidine and increasing concentration of ATP. Vmax was calculated after fitting the kinase activity data to the Michaelis–Menten equation. Data were analyzed with one-way ANOVA followed by post-hoc Bonferroni test.

H.SAPIENS	119	GDWWLAHSLSTGQTGYIPSINYVAPSDSIQAE <u>E</u> WYFGKITRRESERLLNA	168
M.MUSCUS	124	GDWWLAHSLSTGQTGYIPSINYVAPSDSIQAE <u>E</u> WYFGKITRRESERLLNA	173
R.NORVEGICUS	125	GDWWLAHSLSTGQTGYIPSINYVAPSDSIQAE <u>E</u> WYFGKITRRESERLLNA	174
C.GALLUS	116	GDWWLAHSLTTGQTGYIPSINYVAPSDSIQAE <u>E</u> WYFGKITRRESERLLNP	165
H.SAPIENS	169	<u>E</u> NPRGTFLVRESETTKGAYCLSVDNAKGLNVKHYKIRKLDGGFYIT	218
M.MUSCUS	174	<u>E</u> NPRGTFLVRESETTKGAYCLSVDNAKGLNVKHYKIRKLDGGFYIT	223
R.NORVEGICUS	175	<u>E</u> NPRGTFLVRESETTKGAYCLSVDNAKGLNVKHYKIRKLDGGFYIT	224
C.GALLUS	166	<u>E</u> NPRGTFLVRESETTKGAYCLSVDNAKGLNVKHYKIRKLDGGFYIT	215

Supplementary Figure S2. The glutamate residues E155 and E174 are conserved across different species. Alignment of the amino acid sequences of Src restricted to the stretch of amino acids containing the putative polyamine allosteric site. Conserved glutamate residues are highlighted in bold.

Pose #	IFD Score (kcal/mol)	Δ IFD Score (kcal/mol)
1	-227.50	0.00
2	-227.41	+0.08
3	-227.11	+0.39
4	-227.03	+0.47
5	-227.00	+0.50
6	-226.95	+0.55
7	-226.70	+0.79
8	-226.68	+0.81
9	-226.68	+0.82
10	-226.66	+0.83
11	-226.58	+0.92
12	-226.56	+0.94
13	-226.54	+0.95
14	-226.49	+1.01
15	-226.43	+1.07
16	-226.34	+1.15
17	-226.15	+1.34
18	-225.31	+2.19

Supplementary Table S1. Solutions of the docking study of spermidine into the allosteric site of Src SH2 domain.

Supplementary Figure S3. Efficient reconstitution of SYF cells with vectors coding for Src kinase.
(A) Immunoblot analysis of total Src protein level in cell lysates from SYF cells either reconstituted with vector coding for wild-type Src (WT) or Src mutated at glutamate 155 or 174 with alanine (E155A; E174A). SYF cells transfected with empty vector (SYF) were used as control. Actin expression was used as normalizer. **(B)** Immunoblot analysis of phosphorylated (pSrc) and total Src protein level in cell lysates from SYF cells either reconstituted with vector coding for wild-type Src (WT) or Src mutated at glutamate 155 or 174 with alanine (E155A; E174A). Cells were then exposed to LPA (20 μ M) for the indicated time. β -tubulin expression was used as normalizer.