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Abstract:

Deep metabolomic, proteomic and immunologic phenotyping of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) patients have matched a wide diversity of clinical
symptoms with potential biomarkers for coronavirus disease 2019 (COVID-19). Within here,
several studies described the role of metabolites, lipoproteins and inflammation markers
during infection and in recovered patients. In fact, after SARS-CoV-2 viral infection almost
20-30% of patients experience persistent symptoms even after 12 weeks of recovery which
has been defined as long-term COVID-19 syndrome (LTCS). Emerging evidence revealed
that a dysregulated immune system and persisting inflammation could be one of the key
drivers of LTCS. However, how these small biomolecules such as metabolites, lipoprotein,
cytokines and chemokines altogether govern pathophysiology is largely underexplored. Thus,
a clear understanding how these parameters into an integrated fashion could predict the
disease course may help to stratify LTCS patients from acute COVID-19 or recovered
specimen and would help to elucidate a potential mechanistic role of these biomolecules
during the disease course. Here, we report an integrated analysis of blood serum and
plasma by in vitro diagnostics research NMR spectroscopy and flow cytometry-based
cytokine quantification in a total of 125 individuals (healthy controls (HC; n=73), recovered
(n=12), acute (n=7) and LTCS (n=33)). We identified that in LTCS patients lactate and
pyruvate were significantly different from either healthy controls or acute COVID-19 patients.
Further correlational analysis of cytokines and metabolites indicated that creatine, glutamine,
and high-density lipoprotein (HDL) phospholipids were distributed differentially amongst
patients or individuals. Of note, triglycerides and several lipoproteins (apolipoproteins Apo-
Al and A2) in LTCS patients demonstrate COVID-19-like alterations compared to HC.
Interestingly, LTCS and acute COVID-19 samples were distinguished mostly by their
creatinine, phenylalanine, succinate, 3-hydroxybutyrate (3-HB) and glucose concentrations,
illustrating an imbalanced energy metabolism. Most of the cytokines and chemokines were
present at low levels in LTCS patients compared with HC except IL-18 chemokine, which
tended to be higher in LTCS patients and correlated positively with several amino acids
(creatine, histidine, leucine, and valine), metabolites (lactate and 3-HB) and lipoproteins. The
identification of these persisting plasma metabolites, lipoprotein and inflammation alterations
will help to better stratify LTCS patients from other diseases and could help to predict
ongoing severity of LTCS patients.
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Layman summary & significance of the research:

Almost 20-30% of individuals infected with the SARS-CoV-2 virus regardless of
hospitalization status experience long-term COVID-19 syndrome (LTCS). It is devasting for
millions of individuals worldwide and hardly anything is known about why some people
experience these symptoms even after 3 to 12 months after the acute phase. In this, we
attempted to understand whether dysregulated metabolism and inflammation could be
contributing factors to the ongoing symptoms in LTCS patients. Total blood triglycerides and
the Cory cycle metabolites (lactate and pyruvate) were significantly higher, lipoproteins (Apo-
Al and A2) were drastically lower in LTCS patients compared to healthy controls.
Correlation analysis revealed that either age or gender are positively correlated with several
metabolites (citrate, glutamate, 3-hydroxybutyrate, glucose) and lipoproteins (Apo-Al, HDL
Apo-Al, LDL triglycerides) in LTCS patients. Several cytokines and chemokines were also
positively correlated with metabolites and lipoproteins thus, dysregulation in metabolism and
inflammation could be a potential contributory factor for LTCS symptoms.
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Introduction:

So far more than 643 million people have been infected with COVID-19 and around more
than 6.6 million lives have been lost around the world during the course of the pandemic [1].
Yet, even two years with worldwide SARS-CoV-2 viral infections, the COVID-19 pandemic is
still ongoing. Emergence of new variants of concern (VOC) is a great concern despite the
development several successful vaccines. Many scientific reports identified the important
role of metabolites in the blood serum and plasma of mild, moderate, severe, and recovered
COVID-19 patients. In fact, in COVID-19 disease or any other viral infection, immune cells
require a lot of energy to fight off the infection, therefore, their metabolic demands drastically
increase to produce cytokines and chemokines [2; 3]. A previous study described that
peripheral blood mononuclear cells (PBMCs) have a dysregulated glycolysis and oxidative
phosphorylation related metabolic profile, with specifically higher lactate and lower glucose
levels in mild and moderate COVID-19 patients compared either with healthy controls (HC),
convalescent (Co) COVID-19 individuals [4]. Further, specific T cells subsets from acutely
infected COVID-19 patients displayed a more extensive mitochondrial metabolic dysfunction,
especially cells in CD8 T cell lineages [5]. Further, in vitro activated T cells from acutely
infected COVID-19 patients showed a reduced glycolytic capacity and decreased glycolytic
reserve, accompanied by relatively low activation of mTOR signalling compared with HC [5].
However, these dysregulated metabolites are released from dysfunctional immune cells as
well as tissue damage due to viral infection in the blood [6; 7]. Thus, the detection of
metabolites from blood serum or plasma (reservoir and exchanger of metabolites) would
give us a hint of the ongoing pathophysiological status of the disease.

Several studies have focussed on how to predict and model the progression of COVID-19
pathological state based on metabolomics and proteomics, including the use of machine
learning and mathematical modelling [7; 8; 9; 10; 11; 12; 13]. These studies correlated the
metabolites with inflammation and identified that the alterations of several metabolites could
be involved in disease progression, with some of them being a direct consequence of the
disease. Furthermore, in parallel massive investigative efforts using genomics,
transcriptomics, and proteomics to unravel disease mechanisms relevant to SARS-CoV-2
infection were performed on plasma and even fecal samples [14; 15; 16; 17; 18; 19; 20]. A
previous study by nuclear magnetic resonance (NMR) spectroscopy identified that
lipoprotein subclasses and free cholesterol were increased in both mild and moderate
COVID-19 patients, and this study concluded that COVID-19 causes a dysregulation in lipid
metabolism, glycolysis, and the tricarboxylic acid cycle [21]. Another NMR study of
recovered COVID-19 patients (Recov) after 3—-10 months of diagnosis indicated higher
plasma cholesterol and phospholipids [22]. Furthermore, lipids changes were determined
alongside the metabolites profiling, e.g., amino acids (arginine and glutamine were lower in
COVID-19 patients [19]). Additionally, several studies highlighted that inflammatory
cytokines such as IL-6 and IL-10 were present in highest levels in severe COVID-19 (acute)
compared to moderate/mild or healthy controls (HC) [21; 23; 24].

It is reported that several patients after infection developed a long term COVID-19 syndrome
(LTCS) with symptoms such as chronic fatigue, dyspnoea, brain fog, etc. [25]. However, how
COVID-19 specific metabolite, lipoprotein and inflammatory mediators relate to the severity
of COVID-19 and LTCS outcomes remains poorly understood. Few studies suggested that
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mitochondrial dysfunction, impaired fatty acid metabolism and cytokine IL-10 production
were greatly affected in LTCS patients [22; 26; 27]. Thus, the role of host metabolism and
inflammation during the disease progression in LTCS individuals requires further
investigation in refined patient cohorts from different geographical regions to validate
common and different features of the disease.

Of note, a previously launched in vitro diagnostics research (IVDr) NMR analytical platform
demonstrated that for given samples this method can discover quantitative data on
metabolite and lipoprotein levels in analysed solutions from either blood serum and plasma
(Letertre et al., 2021). The IVDr nMR platform had been already successfully implemented
for COVID-19 phenotyping [12; 22; 28; 29; 30; 31; 32; 33; 34; 35] . The samples were
collected dated from June 2020 to February 2021 and correspond to the wildtype/alpha
mutant of the virus based on epidemiological knowledge. In the current study, we aimed to
perform similar investigations on LTCS and control cohorts using 'H-NMR based
metabolomics, lipoproteome quantification and a targeted multiplex 13-plex inflammation
panel. We identified that dynamics of metabolites/inflammation are altered in LTCS
individuals.

Materials and Methods
Study design and patient recruitments

We used four groups of individuals in this study. The four groups of participants included in
this study (Suppl. Table 1) were defined as individuals with: Acute COVID-19 (n=7; with
different time points - longitudinal) LTCS (n= 33); Recov (n= 12); and those who lacked any
history of positive testing for COVID-19 (n= 73). Recov and LTCS groups were seen in an
ambulatory clinical setting. Healthy control samples were recruited for normal blood donation
and checked for IgG and IgM antibodies levels to make sure they suffered from no previous
SARS-CoV-2 infection (n= 32). Additional healthy control data (n=41) provided by Bruker
BioSpin GmbH was generated prior the COVID-19 pandemics. All participants enrolled were
of at least 18 years of age. LTCS individuals were patients evaluated at the Tibingen
University Hospital for Post-COVID Care between June 2020 and February 2021 for
multiomics study cohort (COVID-18 NGS; Ethics number: 286/2020B1 and Clinical Trial
number: NCT04364828). They were enrolled only if blood was collected > 28 days after
testing positive by SARS-CoV-2 PCR and were experiencing any of symptoms such as
fatigue, dyspnoea, brain fog etc. Additional metadata parameters were received and
considered for analysis: age and gender status (0 — male, 1 — female, for the purpose of
categorization within statistical software). This study was performed in accordance with the
Declaration of Helsinki and all patients have been given written consent.

Sample preparation for the study

Blood samples were collected in the morning at the clinics and delivered to our institute in
the afternoon. Initial samples were 9.0 mL EDTA tubes (S-Monovette® K2 EDTA Gel, 9 ml,
cap red; Sarstedt, Germany) collected for the isolation of DNA of whole genome and
epigenetic study. After completing routine blood tests in the clinical laboratory, the leftover
surplus blood from participants who signed informed consents was used for subsequent
metabolomics, lipoproteome and inflammation analysis used in this manuscript. The
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remaining discarded blood samples (2-5 mL) were used for plasma isolation. Plasma
separation was performed within 3-4 h after blood collection by centrifuging the blood
samples at 2,000 x g for 10 min at room temperature and collected the upper layer. Plasma
was stored at — 80°C or until use for both IVDr NMR spectroscopy and 13-plex inflammatory
cytokine panel measurements.

Flow cytometry-based 13-plex inflammatory cytokine assay

To determine cytokine levels from plasma samples obtained from HC, Recov, and acute
COVID-19 patients, we employed the LEGENDplex™ Human Inflammation Panel 1 (13-plex)
flow cytometry-based assay kit (#740809, BioLegend, San Diego, CA, USA). This panel
allowed us for simultaneous quantification of 13 human inflammatory cytokines and
chemokines (IL-1B, IFN-a2, IFN-y, TNF-a, MCP-1 (CCL2), IL-6, IL-8 (CXCLS8), IL-10, IL-
12p70, IL-17A, IL-18, IL-23, and IL-33). The measurement principle is based on beads which
are differentiated from each other based on their size and internal fluorescence intensities on
a flow cytometer platform. Each bead set is bound with a specific antibody on its surface and
forms capture beads for individual analyte. To detect the cytokine levels, we followed the
protocol as recommended by manufacturer's instruction. Briefly, we first prepared the
standard using 1:4 dilution of the top standard (C7) was first prepared as the highest
concentration, then serial dilution was done for C6, C5, C4, C3, C2, and C1 by taking 25 pL
of diluted standard and added into 75 pL assay buffer. Following, 15 pL of plasma samples
were equally diluted with 15 pL assay buffer. Next, 25 pL of the diluted samples were
carefully transferred to each well. 25 pL of mixed beads was added to each well. Importantly,
beads were mixed well before using by vortex for 30 seconds to avoid bead setting in the
bottle. The plate was sealed with a plate sealer, covered entirely with aluminium foil to
protect the plate from light, and put on a plate shaker at 800 rpm for 2 h incubation at room
temperature. After incubation, the plate was centrifuged at 1.050 rpm for 5 minutes,
immediately the supernatant was carefully discarded by flicking the plate in one continuous
and forceful motion. The plate then was washed by 200 puL washing buffer. Following 25 uL
of detection antibodies were added to each well, the plate was again sealed with a plate
sealer, covered entirely with aluminium foil, and incubated for 1 h at room temperature. After
incubation, 25 pL of streptavidin-phycoerythrin (SA-PE) was directly added to each well
without washing the plate and the plate was sealed and covered in the same manner as
described in a previous step. Following the plate was centrifuged for 5 minutes and washed
in the same manner as described before. Finally, 150 pL of washing buffer was added to
each well and the samples were stored in the cold room until the reading day by flow
cytometer.

Data were analysed both manually and automatically by standard curve detection. In
automatic gating strategy, two sets of beads were used in this experiment. Each set has a
unique size that can be identified by its forward scatter (FSC) and side scatters (SSC)
profiles. Based on the internal fluorescence intensities of each set of beads, different
resolutions can be achieved. Depending on the type of flow cytometer used, the internal dye
was detected via the APC channels. In Beads A there are six bead populations, whereas, in
Beads B, there are seven bead populations. The predicted concentration of the cytokine
standard levels depicted in different colours. C7 represents the highest level of cytokines,
serious dilution taken place among C6, C5, C4, C3, C2, C1 and finally CO represents the
lowest level of cytokines. Log5P analysis were performed to calculate the concentrations of
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each cytokine for multiple samples based on cloud-based online software provided by
BioLegend.

'H-NMR spectroscopy-based metabolomics and lipoprotein quantification

Raw NMR spectra were recorded using Bruker IVDr (B.l.) methods package for blood
samples, which is compatible with EDTA- (ethylenediaminetetraacetate), citrate-, and
heparin blood plasma as well as serum samples [36]. The sample preparation was
performed following the included standards of procedure (SOP) to ensure reliable results.
For quality control, the B.l. BioBank QC™ module was applied. For gquantification, the
modules B.l. QUANT-PS™ for metabolites and B.l. LISA™ for lipoproteins, respectively,
were applied. Blood plasma samples were thawed for approximately 30 minutes at room
temperature. An aliquot of 120 pL of each aliquot was pipetted into a 1.5 mL
polytetrafluoroethylene (PTFE) container and mixed with 120 pL of commercially prepared
pH 7.4 sodium phosphate plasma buffer (Bruker BioSpin GmbH, Ettlingen, Germany). The
mixture was then shaken gently for 1 min before transferring 200 uL of it to fill a 3 mm NMR
tube (Bruker BioSpin GmbH, Ettlingen, Germany). The autosampler cooling setting was set
to 279 Kelvin (4°C). 1D *H-NMR spectra were acquired using a 5 mm triple resonance (TXI;
'H, 3¢, and **N) room temperature probe on a Bruker IVDr Avance Il HD 600 MHz system
(Bruker BioSpin GmbH, Ettlingen, Germany), which was operated using Bruker’s standard
NMR software TopSpin (version 3.6.2). Five one-dimensional *H-NMR spectral experiments
were run for each blood sample with water peak suppression and varied pulse sequences to
selectively observe molecular components. Firstly, a Nuclear Overhauser Effect
SpectroscopY (NOESY) 32-scans NMR experiment was used to show NMR spectrum
quality (via the B.l. BioBank QC™) and to enable quantification of metabolites (e.g. glucose,
lactic acid, amino acids of the B.l. BioBank Quant-PS™) and high-molecular-weight
compounds lipoproteins (as shown in B.l. LISA™). Then, a 32-scan (CPMG Carr-Purcell-
Mei-boom-Gill, filtering out macromolecular resonance signals) program was run, as well as
32-scan DIFFusion measurement of, primarily, macromolecular signal massifs (DIFF). Also,
a two-dimensional NMR experiment is included within the IVDr methods package and 2-
scans J-RESolved spectroscopy (JRES) were recorded to analyse J coupling constants.
Additionally, JRES can be useful for a manual data look-up. NMR experiments utilize a
group of sample-dependent parameters of frequency offset O1 and duration of 90° pulse P1.
Accordingly, regarding the B.l. QUANT-PS™ module, final concentration values as per
report pages were used for analysis. The annotation and quantification of serum spectra
were provided automatically and server-based by Bruker BioSpin GmbH. Herein, 38
metabolites (via Bruker IVDr Quantification in Plasma/Serum, B.l. Quant-PS™, analysis
package) and 112 lipoprotein parameters (via Bruker IVDr Lipoprotein Subclass Analysis, B.I.
LISA™, analysis package; Supp. Tab. 2) were identified and quantified in all spectra. As
input, final concentrations from B.I. reports were employed.

Statistical analysis

Statistical analysis was performed with the quantified parameters using the web-based tool
MetaboAnalyst 5.0 (Pang et al., 2021). For the software’s analyses, we excluded all features
that showed >50% missing values. The remaining missing values were estimated using the
feature-wise replacement with 1/5 of a minimum variable value via the Singular Value
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Decomposition (SVD) computation [37]. The probabilistic quotient normalization (PQN)
techniqgue was used to adjust for dilution effects in the corresponding metabolite
concentration spreadsheets [38]. To correct for heteroskedasticity, which is not uncommon
in this context as concentration magnitudes from metabolites, lipoproteins, and other
markers vary strongly, we performed a logarithmic transformation prior statistic. For
univariate analysis, volcano plots were generated, which combine p-values generated from
unpaired t-tests, and fold change (FC) in one illustration. For figure generation, thresholds
for the p-value were established at 0.10 and for the FC at 1.2, respectively. For correlation
analyses, we focused on Spearman’s correlation coefficient. Further analyses were
conducted using the multivariate approach of unsupervised principal component analysis
(PCA) and supervised orthogonal partial least squares discriminant analysis (0PLS-DA).
Besides that, PLS-DA was used to assess the discrimination between two groups and
identify the parameters that drive this separation. MetaboAnalyst's biomarker toolbox was
used for further biomarker analysis [39]. The univariate analysis (via Mann-Whitney tests),
correlational analysis and violin plots, were illustrated using GraphPad PRISM 9.0.1.
BioRender.com services were utilized to create some figures within this work.

Results:
Cohort description and patient demographics

To better interpret the obtained NMR and cytokine data, we first collected the basic
metadata from all recruited patients used in the study. We hereby identified in the healthy
control group (HC) an age average of 54.4 years, whereas Recov was 67.5 years, LTCS
was 56.9 years and acute COVID-19 was 61.1 years (Fig. 1a). Kruskal-Wallis multiple test
comparison revealed that the HC group age was significantly less compared with Recov
(p=0.022) patients. However, no statistical difference was observed among Recov, LTCS,
and acute COVID-19 patients’ age. Gender based analyses were also performed for each
group and male and female subjects appeared to be distributed equally in HC and LTCS
patients (Fig. 1b & Suppl. Table 1). Further, we identified the LTCS patient sample collection
from date of infection to plasma collection for the study. We identified that median of the
sample collection was 152 days after viral infection with minimum 47 and maximum 308
days (Fig. 1c), whereas in. the case of Recov patient group it was 128 days (Fig. 1c). LTCS
and Recov patients sample collection was significantly different (p=0.03), thus it appeared
that LTCS patients and Recov patients had a clear demarcation of the symptoms. Further,
we obtained ten major different symptom parameters to define LTCS patients: we identified
that our cohort (n=33) had fatigue (>54.5%), dyspnea (>51.5%), dizziness (>21%) as major
symptoms (Fig. 1d). Anosmia (>15%), ageusia (>15%), headache (>9%), anxiety (>9%),
myalgia (>9%), and neuropathy were less common symptoms (>6%).

Dysregulated metabolites in severe and LTCS patients

Several studies identified that blood metabolites are dysregulated especially in severe
COVID-19 patients and in recovered patients [3; 39; 40; 41; 42]. This is further affected by
different variant strains and collection times [43]. However, information on how metabolites
and inflammation affect for LTCS patients has started to emerge only recently [22; 26]. In our
study, we used quantitative IVDr *H-NMR spectroscopy to distinguish metabolites levels in
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HC, Recov, LTCS, and acute COVID-19 patients. First, we confirmed QC check using B.I.
QUANT-PS™ analysis method and identified that only 84 out of 89 passed strict quality
check and similarly Recov 12/14, LTCS 33/54, and all acute COVID-19 patient was used
with different time points (Fig. 2a). We first compared entire cohort of samples with different
groups based on quantifiable metabolites data (B.I. QUANT-PS™) and untargeted principal
component analysis (PCA). We found that the acute COVID-19 patient group showed a clear
separation with either with LTCS, Recov or HC group (Fig. 2b). PCA loadings and the
graphical representation of metabolic parameters contributed was performed as well (Suppl.
Fig. 1). Further, PLS-DA’s variables in projection importance score plot (VIP) loading rating
suggested that the amino acid creatine and a ketone body 3-hydroxibutryrate were present
at highest level in the plasma samples of acute COVID-19 patient whilst citrate and histidine
were present in LTCS patients among all other groups (Fig. 2¢). Recov patients had the
highest amount of pyruvate and lactate levels (Fig. 2c-d), as illustrated also on the heat map
plot. Further, we identified that formate, acetone, and citrate were present in higher amount
in LTCS compared to Recov patients (Suppl. Fig. 2). Due to the limited number of samples
in the Recov and acute group we mostly focus in this paper on the comparison between HC
and LTCS. A supervised classification model was built using orthogonal projections to latent
structures discriminant analysis (0PLS-DA) to distinguish between HC and LTCS patients,
using metabolites as variables. We hereby could observe a clear difference and heightened
levels of pyruvate, lactate, methionine and alanine in LTCS patient compared with HC (Fig.
2e-g). The regression analysis also highlighted that pyruvate, lactate and methionine were
top on the S plot. Furthermore, the metabolite panel volcano analysis results showing trend-
like (FC > 1.2, p < 0.10) changes for lactate, pyruvate, and methionine (up) and
phenylalanine, glycine, GIn/Glu (glutamine-glutamate ratio), lysine and acetate (down) in
LTCS compared with HC (Fig. 2h). Finally, we compared and revealed the overall changes
in the metabolites among different groups (Fig. 2i). Despite the low concentrations of some
metabolites, we were able to determine the degree to which the dimethylsulfone was low for
different LTCS patients at its average concentrations.

We delineate that LTCS compared with acute COVID-19 patients have a highly significant
change in several metabolites including alanine, histidine, citrate, lactate, pyruvate, creatine,
succinate, and glucose (Suppl. Table 3). Yet, we have been unable to establish any
differences between the LTCS and Recov groups that are statistically significant. This is also
not surprising, as the n-number for the Recov group is very small. The examination by a
regression model, however, made it possible to zero in on factors that had a hand in the
classification of the groups (Suppl. Fig. 2). Elevated levels of formate were detected for the
LTCS, but the group also had a tendency of lowered amounts of acetate, creatinine, lysine,
valine, pyruvate, phenylalanine, and lactate when compared to the Recov individuals.

Overall, the energy metabolites of citrate and pyruvate were much higher in the LTCS and
Recov groups than in the acute COVID-19 patients (Fig. 2 & Suppl. Fig. 3). We next
identified pathway alterations. Overall, six pathways were mainly identified which had a
significant difference including TCA cycle, ketone bodies, alanine/aspartate/glutamate
metabolism, glycolysis, glycine/serine/threonine  metabolism, and arginine/proline
metabolism. In all six pathways, glycolysis pathway has less abundant metabolites from the
acute patient samples. At the same time, TCA cycle metabolites were high in both Recov
and LTCS patient groups with high significance levels. Finally, we were able to observe
slightly lowered levels of glycolysis metabolites in the LTCS group as well. Thus, our
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presented data defines that metabolic dysregulation in LTCS and acute COVID-19 spectra of
metabolites changes.

Imbalanced lipoproteins are key characteristics for LTCS

Several studies on mild/moderate and acute COVID-19 patients have implicated the
important functions of lipoproteins in disease development [12; 33; 36; 44; 45; 46; 47]. In our
study, the four cohort groups were partially separated by the PCA (Fig. 3a, PCA loadings
plot — Suppl. Fig. 4). showed that the Recov group was characterized by the highest levels of
LDL-5 and LDL-6 subfraction cholesterol content (Fig.3b). Lipoproteins such as V5FC, V5CH,
L6TG, and L4PL were increased mostly in LTCS patients (Fig. 3b&c). We also identified that
several lipoproteins were present in lower amounts in LTCS compared with Recov patients
(Suppl. Fig. 5). Herein, we found that HDL-4 triglycerides were significantly higher in the
Recov group compared to the LTCS group. Due to the small n-number of the Recov group
we then focused only on HC and LTCS patients. Here we observed in the oPLS-DA plots
that HC and LTCS form two clusters though not being entirely separated (Fig. 3d). Variable
projection regression analysis revealed that a greater number of lipoproteins were highly
abundant in HC compared with LTCS patients (Fig. 3e- f). Based on volcano plots, we
identified that 18 lipoproteins were increased whilst 38 lipoproteins were decreased in LTCS
patients compared with HC, (Fig 3g). On the Volcano analysis plot, we saw decreases in
Apo-A2 and cholesterol parameters (fold changes > 1.2, p values 0.10) and triglycerides
LTCS-elevated lipoprotein variables. We detailed the substantial differences in several
metabolites between LTCS and severe acute COVID-19 patients, including HDL cholesterol
and apolipoprotein B100 Apo-B (Fig. 3h).

Performing an additional analysis based on the Mann-Whitney test (Suppl. Table 4), we
identified that Recov (**), acute (****), and LTCS (****) had higher blood triglycerides than
the healthy control group, something that has been reported for COVID-positive individuals
previously [31; 48; 49]. Moreover, very low-density lipoprotein (VLDL) phospholipids were
also higher in Recov (*) and LTCS (****, Suppl. Table 5). Interestingly, free cholesterol levels
were not significantly different between LTCS and acute COVID-19 groups. Acute COVID-19
group had the highest blood triglyceride levels versus the Recov (**) and LTCS (***) groups
(Suppl. Table 4).

The combination of metabolites, lipoproteins and cytokines orchestrates pathological
phenotypes

Several studies identified that inflammation, metabolism, and lipoprotein content act in
unison to overall inform the status of specific disease state such as mild, moderate, or
severe in COVID-19 patients and thus can help us to predict and stratify the disease severity
[2; 3; 21; 36; 46; 50; 51; 52; 53]. Our cytokines and chemokine profiling showed that acute
COVID-19 samples had a trend of highest levels of cytokines & chemokines compared with
either HC, LTCS or Recov (Suppl. Table 8). Furthermore, most of the cytokines and
chemokines had a tendency of lower levels in either LTCS or Recov compared HC, except
IL-18 chemokine which was found to be higher in LTCS and Recov compared with HC,
however not reaching a significance level (Suppl. Table 6). We validated previously
published data that IL-8 chemokine and IL-6 and IL-10 cytokines were abundantly present in
the acute COVID-19 patients [54; 55]. With our data we also performed PCA and PLS-DA


https://doi.org/10.1101/2023.01.13.523998
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523998; this version posted January 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

analysis and identified a major separation among acute and LTCS patients (Suppl. Fig. 6a).
In a correlation analysis of cytokines, chemokines and metabolites revealed that acute
COVID-19 patient had the highest levels of cytokines (Suppl. Fig. 6b). The Recov patients
showed medium levels compared with LTCS, whereas all these cytokines and chemokines
were present in low abundance in LTCS patients in overall comparison (Supp. Fig. 6b-c).
The key observation is high citrate, histidine and ornithine abundance in LTCS patients
compared with any other group (HC, Recov, and acute) (Suppl. Fig. 6b-c). Furthermore,
Spearman correlation analysis was performed to identify possible interaction among
cytokines, chemokines, metabolites and lipoproteins. Herein, we identified relatively high
negative correlations against 2-aminobutyrate (2-AB), an antioxidant’'s synthesis controlling
metabolite [56]), alanine, threonine, pyruvate, tyrosine, sarcosine, ornithine, glutamine,
citrate, and several cytokine panel's parameters (IL-10/23/12p70/8/33/6/1b/18/17A, INF-g,
IFN-a2, TNF-a, and MCP-1). On the other side, the amino acid histidine was also highly
elevated in the LTCS group. These results indicate a metabolic shift of LTCS individuals.
Some of these findings above were confirmed in [28; 57]. As the patient's health deteriorated,
phenylalanine and histidine concentrations increased, as did ketone body levels [44]. We
believe that these results are novel regarding LTCS patients.

Spearman correlation analysis with a filter of |r] 2 0.5 demonstrate (Fig. 4) that the acute
group appeared to have a strong gender-based bias positive to (VLDL and IDL) triglycerides,
succinate, 2-oxoglutaric acid (2-OG), 3-hydroxybutyrate (3-HB), acetoacetate; and a
negative correlation towards HDL free cholesterol and phospholipids (Fig. 4a and Suppl.
Table 7). Furthermore, several cytokine panel data entries had a positively correlation with
several lipoproteins especially with VLDL triglycerides (Fig. 4a). A negative correlation
among cytokines and creatinine together with sarcosine was also observed. The
macrophage attractant chemokine protein MCP-1 had a special correlational profile
dedicated in a r positive towards creatine and succinate whilst, r negative for the correlations
with lactate, HDL free cholesterol and phospholipids. These findings highlighted a complex
nexus in acute COVID-19 patients among inflammation and metabolic regulation.

We further were interested to decipher and understand a correlation for the Recov and LTCS
patients. The Recov group showed a wide spectrum of correlational dependencies, however,
is based on a relatively low number of participants which must be considered as confounding
factor. Nonetheless, we were able to identify a strong positive correlation among glutamate
(with TNF-a), ornithine, lactate (with IL-8), and pyruvate (with IFN-a2) (Fig. 4b and Suppl.
Table 8). In contrary, lipoproteins showed a mostly negative correlation to the cytokines and
were mostly represented by intermediate-density lipoprotein (IDL) parameters. Most
importantly, a gender-based bias positive correlation was identified for apolipoproteins Al
and A2 whilst, histidine, ornithine, and lactate negatively correlated with gender. The age
appeared to be positively associated with HDL cholesterol and ornithine and negatively with
overall blood cholesterol and LDL/HDL lipoprotein fractions ratio (Fig. 4b).

In case of LTCS patients some unique findings were identified. We were able to determine
that a large set of cytokines were changing in a similar way to Recov amongst patients as
creatine, histidine, formate, 3-HB, HDL phospholipids, HDL cholesterol, and apolipoproteins
Al1-A2 (Fig. 4c). Negative associations were found for glutamine, HDL triglycerides, VLDL
cholesterol, and VLDL free cholesterol. Most importantly, a few gender/age-based biases
were found in LTCS patients which is contrary to acute COVID-19 patients. We also noticed
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positive correlations of citrate and (HDL) apolipoprotein A1 with gender and negatively
correlation for proline and acetoacetate. For the age-related correlations, glutamate, 3-HB,
glucose, and LDL triglycerides were positively responding to the factor whilst, negative
correlational response was obtained from glutamine and acetate.

In case of HC only two major negative correlations were found for the healthy controls:
creatinine — gender and ornithine — IL-12p70 (Fig. 4d). Overall, it seems that each disease
state has its own bubble network to combat the virus and regulate the function of host
system.

Discussion:

LTCS is a condition which is thought to debilitate a person’s life after a SARS-CoV-2 viral
infection and post-recovery for several months up to years. It is estimated that approximately
20-30% of all COVID-19 patients are susceptible to develop LTCS. Through our integrative
metabolomics/lipoproteins and inflammation, in this finding, we identified several metabolites
and lipoprotein and cytokines which are dysregulated in LTCS patient compared with either
HC, Recov or acute COVID-19 patients (Fig. 5). Our major findings revealed that lactate and
pyruvate were highly upregulated in LTCS patients compared with HC and similar
metabolites were also upregulated in Recov patients. This could be due to dysregulated
oxidative phosphorylation in Recov or LTCS patients. Furthermore, phenylalanine, glycine,
acetate, GIn/Glu ratio, glutamine, and creatinine were downregulated in LTCS patients
compared with HC or Recov which may be indicative of the LTCS symptom. A sign of a
greater long COVID-related severity state could be demonstrated by phenylalanine, ketone
bodies (acetoacetate, acetone, and 3-hydroxybutyrate), formate, creatine, and pyruvate
blood levels (Fig. 5). As there is a demand for the amino acid and its further pathway
products, phenylalanine levels go down in COVID recovery phase patients as reported in
[58], similarly to currently investigated LTCS group versus convalescent comparison. In here,
a slight change of acetoacetate could be an indicator of dietary habits changes [59] or in
combination with other statistically significant parameters could predict COVID-19 disease
severity [60]. From the correlational analysis, we were able to determine that correlations of
creatine, glutamine, lysine, and 3-HB were stronger to the cytokine data in the LTCS group.
As they had been previously reported for COVID-19-positive patients [31; 58; 61], these
metabolites can provide an insight which metabolic shifts could be persisting and represent a
continuous risk to the patients’ health.

Recov and LTCS patients showed very similar types of metabolic dysregulations. We
identified some difference between the groups especially for the formate, acetate, creatinine,
HDL-4 triglycerides and HDL-4 Apo-Al apolipoprotein levels, however no significance level
was achieved. Further, we investigated a correlation between groups of Recov and LTCS.
The findings therefore suggest a contrastingly higher role of creatine to IL-1b, INF-g, TNF-a
(predominantly), IL-8/10/18 cytokines positive correlations among the LTCS individuals.
However, our finding is similar to the previously reported association of mild/acute COVID-19
patients metabolomic analysis and its classification to the cytokine panel data [10]. Moreover,
we also identified a LTCS-specific positive correlation between HDL phospholipids and IL-1b,
INF-g, IL-6, IL-12p70, IL-23/33. This evidence could be complemented with finding of HDL
phospholipids among other NMR-defined lipoprotein variables in COVID-19 patients [33].
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We further identified an elevation of citrate and pyruvate in blood of the LTCS patient group
compared with HC. This is in line with another study which identified higher levels of pyruvic
acid are accumulated in the bloodstream of COVID-19 patients and which could be used to
prognose disease severity [62]. Further, greater levels of lactate in COVID-19 patients are
an already established finding [63]. We therefore speculate that glycolysis/gluconeogenesis
and Krebs cycle metabolic pathways will lead to the elevated consumption of glucose to
produce citric acid into the blood plasma. It is interesting to note that the citrate levels did not
significantly correlate to any of the chemokine or cytokines as yet it was only connected to
the gender factor. Therefore, gender based metabolic dysregulation could play an important
role to understand the disease severity. This is especially important as certain LTCS
symptoms have been reported more for female or male patients.

Maintained triglycerides and other lipoproteins changes indicate that COVID-19 like features
still exist in LTCS patients when comparisons were made with HC. Elevated apolipoproteins
ratio B100 to Al and overall blood triglycerides could be attributed to the disease group [49].
Although, in our study, only triglycerides showed negative correlations to IFN-a2, IL-17A,
and IL-23. IFN-IT is connected to the innate inflammatory reaction and this could portray the
ongoing need of LTCS patients to lower down SARS-CoV-2 induced dysregulation of innate
immune system [64]. Our findings are prompting to speculate that a core change in cytokine
levels as well as high number of triglycerides were in present in the bloodstream of LTCS
patients. This could be result of dysregulated innate immune response which could lead to a
higher severity of COVID-19 like symptoms. In a similar context of lipid levels, an increase of
COVID-19 severity is increased with diabetes and as a result of lowered amounts of HDL
cholesterol in COVID-19 patients [65]. Our data implies that HDL cholesterol (HDCH) is
lowered in the LTCS together with correlating INF-g, IL-6, and IL-23. Previously, it was
identified that severe immunosuppression is key for the severity of COVID-19 rather than the
cytokine storm [66]. Thus, it is plausible that lower level of lipids and inflammatory cytokines
may be important for further disease symptoms in LTCS patients. Another likeliness of the
LTCS group to acute COVID-19 patients is noticed via lowered apolipoproteins Al & A2
levels, among other close structures they had been lowered in ill subjects [67; 68].

Conclusion & limitation of the study

Our study provides a large set of quantitative NMR data on metabolites and lipoproteins and
inflammation parameters in LTCS patients and highlights that formate, acetate, creatinine,
citrate, lactate, pyruvate, histidine, ornithine, HDL and total blood triglycerides, HDL
apolipoproteins Apo-Al, IL-18, TNF-a, IL-23, IL-8, MCP-1 could be key parameters in the
pathophysiology of maintained disease symptoms and even progression. It should be noted
as a limitation, that for this analysis only a very basic set of patient metadata is used. Thus,
the estimation of the role of underlying comorbidities and the comparability to healthy
controls is limited. Especially with severe COVID-19 patients (i.e. those who were
hospitalized) it can be assumed that a majority of them had risk factors like diabetes, obesity,
hypertension, etc. — adjustment for these risk factors in the “healthy controls” would be very
interesting. The centre of this study thereof was based on the two larger groups LTCS and
HC, however also within LTCS comorbidities might have contributed to changes.
Furthermore, the limited number of samples for the Recov and acute group should be
considered when comparing the results of this study with similar projects. Nonetheless, our
results confirm and align with some of the previously published results and show novel
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insights into persisting altered blood metabolome, lipoproteome and inflammation
parameters when comparing healthy controls with LTCS specimen.
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Figure legends:

Fig. 1 Patient demographics of LTCS patients and study cohort. Age dependency in clinical
patient groups and a substantial age difference between healthy controls and recovered
patients (sub-plot a). Gender-based structural map for the patient groups (sub-plot b). There
is a statistically significant difference between the recovered group and the LTCS group in
number of days post infection registered (sub-plot c). The rows graph shows (sub-plot d), in
percentages, comorbidities as subclinical cofactors for the LTCS group.
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Fig. 2 Identification of metabolites in LTCS patients. The image above depicts the study's
methodology (sub-plot a). PCA and PLS-DA studies were performed for the whole cohort
data. This analysis was done out based only on quantifiable metabolites data (B.I. QUANT-
PS™). The 4-group distribution was shown in (b) using the coordinates of principal
components 1 and 2. The values that contributed the most to these VIP scores are shown
here by the subplot (c), which are sorted from most significant to least significant. The
metabolite panel variables' average trends were presented by sub-plot (d). oPLS-DA study
was performed, and LTCS vs control patients (HC) were compared. This analysis was done
out based only on quantifiable metabolites data (B.. QUANT-PS™). The two-group
distribution was shown in (e) using the coordinates of loading components 1 and 2. The
values that contributed the most to these VIP scores and S-plot data of the regression model
are shown here by the subplots (f) and (g), which are sorted from most significant to least
significant. Metabolite panel Volcano analysis results showing trend-like (FC > 1.2, p < 0.10)
changes in ratio of LTCS/HC as presented by sub-plot (h). For each patient group (Recov
(EDTA plasma) n=12, HC (serum or heparin plasma) n=73, LTCS (EDTA plasma) n=33,
Acute (Heparin plasma) n=16 samples), an average normalized (scaled 0 to 1, averages
were divided by a maximal average per variable) Heat map analysis conducted by sub-plot

0}

Fig. 3 Lipoprotein profiling in LTCS patients. PLS-DA was done out based only on the
lipoprotein data panel (B.l. LISA™). The 4-group distribution was shown in (a) using the
coordinates of loading components 1 and 2. The values that contributed the most to these
VIP scores are shown here by the subplot (b). Lipoprotein data variables' average trends
were presented by sub-plot (c). oPLS-DA study was performed, and LTCS vs control
patients (HC) were compared. This analysis was done out based only on the lipoprotein data
panel (B.l. LISA™). The two-group distribution was shown in (d) using the coordinates of
loading components 1 and 2. The values that contributed the most to these VIP scores and
S-plot data of the regression model are shown here by the subplots (e) and (f), which are
sorted from most significant to least significant. Lastly, the lipoprotein panel Volcano analysis
results showing trend-like (FC > 1.2, p < 0.10) changes in ratio of LTCS/HC as presented by
sub-plot (g). Lastly, the main lipoprotein panel variables' average trends were presented by
sub-plot (h). For each patient group (Recov (EDTA plasma) n=12, HC (serum or heparin
plasma) n=73, LTCS (EDTA plasma) n=33, Acute (Heparin plasma) n=16 samples), an
average normalized (scaled 0 to 1, averages were divided by a maximal average per
variable)

Fig. 4 Integrated analysis of metabolites, lipoproteins, chemokines and cytokines in LTCS
and comparators groups. For each patient group (Recov (EDTA plasma) n=11, HC (Heparin
plasma) n=32, LTCS (EDTA plasma) n=24, acute (Heparin plasma) n=15 samples), based
on the cytokine data availability, Spearman correlation test with exact p values (r values of
the correlational analysis scaled -1 to 1, colored blue to red respectively) was conducted.
Based on measurable metabolites data (B.l. QUANT-PS™) and a selection of lipoprotein
parameter list data (B.I. LISA™). The graphical representation is performed with a filter of |r|
2 0.500 and has been shown in panels (sub-plot (a) — acute group, sub-plot (b) — Recov
group, sub-plot (¢) — LTCS group, sub-plot (d) — HC group). Correlational values for Ca-
EDTA and K-EDTA not shown.

Fig. 5 Graphical summary of the study. Sub-plot (a) focuses on phenylalanine, formate, and
ketone bodies (mainly, 3-hydroxybutyrate) as significant variables identified via regression
model analysis. Sub-plot (b) demonstrates further strong metabolite correlations with the
cytokine data. Sub-plot (c) is showing highlights of the lipoprotein data analysis.

Suppl. Fig. 1 Loadings plot of the principal component analysis (PCA, Fig. 2b).
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Suppl. Fig. 2 Identification of metabolites in LTCS and Recov patients via o PLS-DA studies.
This analysis was done out based only on quantifiable metabolites data (B.l. QUANT-PS™),
The 4-group distribution was shown in (a-b) using the coordinates of T score and orthogonal
T score. The values that contributed the most to these VIP scores and S plot loadings of the
regression model are shown here by the subplot (c). Lastly, the metabolite panel variables'
average trends were presented by sub-plot (d).

Suppl. Fig. 3 Pathway analysis of dysregulated metabolites and lipoproteins. For each
patient group pairs (Recov (EDTA plasma) n=12, HC (Heparin plasma) n=32, LTCS (EDTA
plasma) n=33, acute (Heparin plasma) n=16 samples), a number of metabolic pathways
(sub-plots a-f) related to the measurable metabolites data (B.l. QUANT-PS™) were identified
in the patient groups. Predicted metabolic pathways are listed with p-values after the FDR
applied (false discovery rate correction). The group distribution whose statistical importance
has been shown in panels. Statistical significances: ns p>0.05, * p <0.05, ** p<0.01, ***
p=<0.001, **** p<0.0001. = - higher average levels in a patient group; = — lower average levels
in a patient group. TCA cycle — tricarboxylic acid cycle. CoA — coenzyme A. ATP -
adenosine triphosphate. ADP — adenosine diphosphate. SCFA — short-chain fatty acids.

Suppl. Fig. 4 PLS-DA analysis supplement. Sub-plot is a representation of applied
lipoprotein parameters in the PLS-DA analysis loadings coordinates per components 1,2 (Fig.
3a-b).

Suppl. Fig. 5 oPLS-DA study was performed, and LTCS vs recovered patients (Recov) were
compared. This analysis was done out based only on lipoprotein data panel (B.l. LISA™).
The two-group distribution was shown in (a) using the coordinates of loading components 1
and 2. The values that contributed the most to these VIP scores and S-plot data of the
regression model are shown here by the subplots (b) and (c), which are sorted from most
significant to least significant. Lastly, the metabolite panel regression model analysis
highlighted results (VIP > 1.0) visualized via a Heat map as presented by sub-plot (d).

Suppl. Fig. 6 PLS-DA study was performed, and the available data from the cytokine panel
table (Suppl. Table 6) were compared. The group distribution was shown in (a). The values
that contributed the most to these loadings of the regression model are shown here by the
subplots (b) by Component 1) and (c) by Component 2, which are sorted from most
significant to least significant via variables in projection score (VIP) plots. Lastly, variables’
panel of Spearman correlations for IL-10 cytokines showed trends against the main cytokine
parameters by sub-plot (d).

Reference:

[1] W.L. Dashboard, https://covid19.who.int. (2020).

[2] F.C. Ceballos, A. Virseda-Berdices, S. Resino, P. Ryan, O. Martinez-Gonzalez, F. Perez-
Garcia, M. Martin-Vicente, O. Brochado-Kith, R. Blancas, S. Bartolome-Sanchez, E.J.
Vidal-Alcantara, O.E. Alboniga-Diez, J. Cuadros-Gonzalez, N. Blanca-Lopez, |. Martinez,
I.R. Martinez-Acitores, C. Barbas, A. Fernandez-Rodriguez, and M.A. Jimenez-Sousa,
Metabolic Profiling at COVID-19 Onset Shows Disease Severity and Sex-Specific
Dysregulation. Front Immunol 13 (2022) 925558.

[3] J.W. Lee, Y. Su, P. Baloni, D. Chen, A.J. Pavlovitch-Bedzyk, D. Yuan, V.R. Duvvuri, R.H. Ng, J.
Choi, J. Xie, R. Zhang, K. Murray, S. Kornilov, B. Smith, A.T. Magis, D.S.B. Hoon, J.J.
Hadlock, J.D. Goldman, N.D. Price, R. Gottardo, M.M. Davis, L. Hood, P.D. Greenberg,
and J.R. Heath, Integrated analysis of plasma and single immune cells uncovers
metabolic changes in individuals with COVID-19. Nat Biotechnol 40 (2022) 110-120.



https://doi.org/10.1101/2023.01.13.523998
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523998; this version posted January 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[4] Y. Singh, C. Trautwein, R. Fendel, N. Krickeberg, G. Berezhnoy, R. Bissinger, S. Ossowski,
M.S. Salker, N. Casadei, O. Riess, and C.-O.l. Deutsche, SARS-CoV-2 infection
paralyzes cytotoxic and metabolic functions of the immune cells. Heliyon 7 (2021)
e07147.

[5] X. Liu, J. Zhao, H. Wang, W. Wang, X. Su, X. Liao, S. Zhang, J. Sun, and Z. Zhang, Metabolic
Defects of Peripheral T Cells in COVID-19 Patients. J Immunol 206 (2021) 2900-2908.

[6] S.M. O'Carroll, and L.A.J. O'Neill, Targeting immunometabolism to treat COVID-19.
Immunother Adv 1 (2021) Itab013.

[7] M. Cornillet, B. Strunz, O. Rooyackers, A. Ponzetta, P. Chen, J.R. Muvva, M. Akber, M.
Buggert, B.J. Chambers, M. Dzidic, I. Filipovic, J.B. Gorin, S. Gredmark-Russ, L.
Hertwig, J. Klingstrom, E. Kokkinou, E. Kvedaraite, M. Lourda, J. Mjosberg, C.
Maucourant, A. Norrby-Teglund, T. Parrot, A. Perez-Potti, O. Rivera-Ballesteros, J.K.
Sandberg, J.T. Sandberg, T. Sekine, M. Svensson, R. Varnaite, K.I.LK.C.-S.G. Karolinska,
L.l. Eriksson, S. Aleman, K. Stralin, H.G. Ljunggren, and N.K. Bjorkstrom, COVID-19-
specific metabolic imprint yields insights into multiorgan system perturbations. Eur J
Immunol 52 (2022) 503-510.

[8] H. Jia, C. Liu, D. Li, Q. Huang, D. Liy, Y. Zhang, C. Ye, D. Zhou, Y. Wang, Y. Tan, K. Li, F. Lin,
H. Zhang, J. Lin, Y. Xu, J. Liu, Q. Zeng, J. Hong, G. Chen, H. Zhang, L. Zheng, X. Deng, C.
Ke, Y. Gao, J. Fan, B. Di, and H. Liang, Metabolomic analyses reveal new stage-
specific features of COVID-19. Eur Respir J 59 (2022).

[9] M. Costanzo, M. Caterino, R. Fedele, A. Cevenini, M. Pontillo, L. Barra, and M. Ruoppolo,
COVIDomics: The Proteomic and Metabolomic Signatures of COVID-19. Int J Mol Sci
23 (2022).

[10] F.X. Danlos, C. Grajeda-lglesias, S. Durand, A. Sauvat, M. Roumier, D. Cantin, E. Colomba,
J. Rohmer, F. Pommeret, G. Baciarello, C. Willekens, M. Vasse, F. Griscelli, J.E.
Fahrner, A.G. Goubet, A. Dubuisson, L. Derosa, N. Nirmalathasan, D. Bredel, S.
Mouraud, C. Pradon, A. Stoclin, F. Rozenberg, J. Duchemin, G. Jourdi, S. Ellouze, F.
Levavasseur, L. Albiges, J.C. Soria, F. Barlesi, E. Solary, F. Andre, F. Pene, F. Ackerman,
L. Mouthon, L. Zitvogel, A. Marabelle, J.M. Michot, M. Fontenay, and G. Kroemer,
Metabolomic analyses of COVID-19 patients unravel stage-dependent and prognostic
biomarkers. Cell Death Dis 12 (2021) 258.

[11] T.S. Di Wu, Xiaobo Yang, Jian-Xin Song Mingliang Zhang Chengye Yao Wen Liu, Muhan
Huang, Yuan Yu, Qingyu Yang Tingju Zhu, Jigian Xu, Jingfang Mu, Yaxin Wang, Hong
Wang, Tang Tang, Yujie Ren Yongran Wu, Shu-Hai Lin, Yang Qiu, Ding-Yu Zhang, You
Shang, Xi Zhou, Plasma Metabolomic and Lipidomic Alterations Associated with
COVID-19. Natl Sci Rev (2020).

[12] S. Lodge, P. Nitschke, T. Kimhofer, J.D. Coudert, S. Begum, S.H. Bong, T. Richards, D.
Edgar, E. Raby, M. Spraul, H. Schaefer, J.C. Lindon, R.L. Loo, E. Holmes, and J.K.
Nicholson, NMR Spectroscopic Windows on the Systemic Effects of SARS-CoV-2
Infection on Plasma Lipoproteins and Metabolites in Relation to Circulating Cytokines.
J Proteome Res 20 (2021) 1382-1396.

[13] Q. Wan, M. Chen, Z. Zhang, Y. Yuan, H. Wang, Y. Hao, W. Nig, L. Wu, and S. Chen,
Machine Learning of Serum Metabolic Patterns Encodes Asymptomatic SARS-CoV-2
Infection. Front Chem 9 (2021) 746134.

[14] M.A. Hassan, K. Al-Sakkaf, M.R. Shait Mohammed, A. Dallol, J. Al-Maghrabi, A.
Aldahlawi, S. Ashoor, M. Maamra, J. Ragoussis, W. Wu, M.I. Khan, A.L. Al-Malki, and
H. Choudhry, Integration of Transcriptome and Metabolome Provides Unique


https://doi.org/10.1101/2023.01.13.523998
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523998; this version posted January 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Insights to Pathways Associated With Obese Breast Cancer Patients. Front Oncol 10
(2020) 804.

[15] Y. Su, D. Chen, D. Yuan, C. Lausted, J. Choi, C.L. Dai, V. Voillet, V.R. Duvvuri, K. Scherler,
P. Troisch, P. Baloni, G. Qin, B. Smith, S.A. Kornilov, C. Rostomily, A. Xu, J. Li, S. Dong,
A. Rothchild, J. Zhou, K. Murray, R. Edmark, S. Hong, J.E. Heath, J. Earls, R. Zhang, J.
Xie, S. Li, R. Roper, L. Jones, Y. Zhou, L. Rowen, R. Liu, S. Mackay, D.S. O'Mahony, C.R.
Dale, J.A. Wallick, H.A. Algren, M.A. Zager, 1.5.-S.C.B. Unit, W. Wei, N.D. Price, S.
Huang, N. Subramanian, K. Wang, A.T. Magis, J.J. Hadlock, L. Hood, A. Aderem, J.A.
Bluestone, L.L. Lanier, P.D. Greenberg, R. Gottardo, M.M. Davis, J.D. Goldman, and
J.R. Heath, Multi-Omics Resolves a Sharp Disease-State Shift between Mild and
Moderate COVID-19. Cell 183 (2020) 1479-1495 e20.

[16] F. He, T. Zhang, K. Xue, Z. Fang, G. Jiang, S. Huang, K. Li, Z. Gu, H. Shi, Z. Zhang, H. Zhu, L.
Lin, J. Li, F. Xiao, H. Shan, R. Yan, X. Li, and Z. Yan, Fecal multi-omics analysis reveals
diverse molecular alterations of gut ecosystem in COVID-19 patients. Anal Chim Acta
1180 (2021) 338881.

[17] L. Lv, H. Jiang, Y. Chen, S. Gu, J. Xia, H. Zhang, Y. Lu, R. Yan, and L. Li, The faecal
metabolome in COVID-19 patients is altered and associated with clinical features and
gut microbes. Anal Chim Acta 1152 (2021) 338267.

[18] C. Wang, X. Li, W. Ning, S. Gong, F. Yang, C. Fang, Y. Gong, D. Wu, M. Huang, Y. Gou, S.
Fu, Y.Ren, R.Yang, Y. Qiu, Y. Xue, Y. Xu, and X. Zhou, Multi-omic profiling of plasma
reveals molecular alterations in children with COVID-19. Theranostics 11 {2021)
8008-8026.

[19] P. Wu, D. Chen, W. Ding, P. Wu, H. Hou, Y. Bai, Y. Zhou, K. Li, S. Xiang, P. Liu, J. Ju, E. Guo,
J. Liu, B. Yang, J. Fan, L. He, Z. Sun, L. Feng, J. Wang, T. Wu, H. Wang, J. Cheng, H. Xing,
Y. Meng, Y. Li, Y. Zhang, H. Luo, G. Xie, X. Lan, Y. Tao, J. Li, H. Yuan, K. Huang, W. Sun,
X. Qian, Z. Li, M. Huang, P. Ding, H. Wang, J. Qiu, F. Wang, S. Wang, J. Zhu, X. Ding, C.
Chai, L. Liang, X. Wang, L. Luo, Y. Sun, Y. Yang, Z. Zhuang, T. Li, L. Tian, S. Zhang, L.
Zhu, A. Chang, L. Chen, Y. Wu, X. Ma, F. Chen, Y. Ren, X. Xu, S. Liu, J. Wang, H. Yang, L.
Wang, C. Sun, D. Ma, X. Jin, and G. Chen, The trans-omics landscape of COVID-19.
Nat Commun 12 (2021) 4543.

[20] Z. Song, L. Bao, W. Deng, J. Liu, E. Ren, Q. Lv, M. Liu, F. Qj, T. Chen, R. Deng, F. Li, Y. Liu,
Q. Wei, H. Gao, P. Yu, Y. Han, W. Zhao, J. Zheng, X. Liang, F. Yang, and C. Qin,
Integrated histopathological, lipidomic, and metabolomic profiles reveal mink is a
useful animal model to mimic the pathogenicity of severe COVID-19 patients. Signal
Transduct Target Ther 7 (2022) 29.

[21] Y.M. Chen, Y. Zheng, Y. Yu, Y. Wang, Q. Huang, F. Qian, L. Sun, Z.G. Song, Z. Chen, J.
Feng, Y. An, J. Yang, Z. Su, S. Sun, F. Dai, Q. Chen, Q. Lu, P. Li, Y. Ling, Z. Yang, H. Tang,
L. Shi, L. Jin, E.C. Holmes, C. Ding, T.Y. Zhu, and Y.Z. Zhang, Blood molecular markers
associated with COVID-19 immunopathology and multi-organ damage. EMBO J 39
(2020) e105896.

[22] M. Bizkarguenaga, C. Bruzzone, R. Gil-Redondo, I. SanJuan, I. Martin-Ruiz, D. Barriales, A.
Palacios, S.T. Pasco, B. Gonzalez-Valle, A. Lain, L. Herrera, A. Azkarate, M.A. Vesga, C.
Eguizabal, J. Anguita, N. Embade, J.M. Mato, and O. Millet, Uneven metabolic and
lipidomic profiles in recovered COVID-19 patients as investigated by plasma NMR
metabolomics. NMR Biomed 35 (2022) e4637.

[23] S. Falck-Jones, S. Vangeti, M. Yu, R. Falck-Jones, A. Cagigi, |. Badolati, B. Osterberg, M.J.
Lautenbach, E. Ahlberg, A. Lin, R. Lepzien, I. Szurgot, K. Lenart, F. Hellgren, H.


https://doi.org/10.1101/2023.01.13.523998
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523998; this version posted January 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Maecker, J. Salde, J. Albert, N. Johansson, M. Bell, K. Lore, A. Farnert, and A. Smed-
Sorensen, Functional monocytic myeloid-derived suppressor cells increase in blood
but not airways and predict COVID-19 severity. J Clin Invest 131 (2021).

[24] M.S. Abers, O.M. Delmonte, E.E. Ricotta, J. Fintzi, D.L. Fink, A.A.A. de Jesus, K.A.
Zarember, S. Alehashemi, V. Oikonomou, J.V. Desai, S.W. Canna, B. Shakoory, K.
Dobbs, L. Imberti, A. Sottini, E. Quiros-Roldan, F. Castelli, C. Rossi, D. Brugnoni, A.
Biondi, L.R. Bettini, M. D'Angio, P. Bonfanti, R. Castagnoli, D. Montagna, A. Licari, G.L.
Marseglia, E.F. Gliniewicz, E. Shaw, D.E. Kahle, A.T. Rastegar, M. Stack, K. Myint-Hpu,
S.L. Levinson, M.J. DiNubile, D.W. Chertow, P.D. Burbelo, J.I. Cohen, K.R. Calvo, J.S.
Tsang, N.C.-. Consortium, H.C. Su, J.I. Gallin, D.B. Kuhns, R. Goldbach-Mansky, M.S.
Lionakis, and L.D. Notarangelo, An immune-based biomarker signature is associated
with mortality in COVID-19 patients. JCl Insight 6 (2021).

[25] Z. Al-Aly, B. Bowe, and Y. Xie, Long COVID after breakthrough SARS-CoV-2 infection. Nat
Med 28 (2022) 1461-1467.

[26] V.P. Guntur, T. Nemkov, E. de Boer, M.P. Mohning, D. Baraghoshi, F.l. Cendali, I. San-
Millan, I. Petrache, and A. D'Alessandro, Signatures of Mitochondrial Dysfunction
and Impaired Fatty Acid Metabolism in Plasma of Patients with Post-Acute Sequelae
of COVID-19 (PASC). Metabolites 12 (2022).

[27] H.L. Correa, L.A. Deus, T.B. Araujo, A.L. Reis, C.E.N. Amorim, A.B. Gadelha, R.L. Santos,
F.S. Honorato, D. Motta-Santos, C. Tzanno-Martins, R.V.P. Neves, and T.S. Rosa,
Phosphate and IL-10 concentration as predictors of long-covid in hemodialysis
patients: A Brazilian study. Front Immunol 13 (2022) 1006076.

[28] T. Kimhofer, S. Lodge, L. Whiley, N. Gray, R.L. Loo, N.G. Lawler, P. Nitschke, S.-H. Bong,
D.L. Morrison, S. Begum, T. Richards, B.B. Yeap, C. Smith, K.G.C. Smith, E. Holmes,
and J.K. Nicholson, Integrative Modeling of Quantitative Plasma Lipoprotein,
Metabolic, and Amino Acid Data Reveals a Multiorgan Pathological Signature of
SARS-CoV-2 Infection. J. Proteome Res. 19 (2020) 4442-4454.

[29] B.S.B. Correia, V.G. Ferreira, P.M.F.D. Piagge, M.B. Almeida, N.A. Assuncdo, J.R.S.
Raimundo, F.L.A. Fonseca, E. Carrilho, and D.R. Cardoso, 1H qNMR-Based
Metabolomics Discrimination of Covid-19 Severity. J. Proteome Res. 21 (2022) 1640-
1653.

[30] V. Ghini, L. Maggi, A. Mazzoni, M. Spinicci, L. Zammarchi, A. Bartoloni, F. Annunziato,
and P. Turano, Serum NMR Profiling Reveals Differential Alterations in the
Lipoproteome Induced by Pfizer-BioNTech Vaccine in COVID-19 Recovered Subjects
and Naive Subjects. Frontiers in molecular biosciences 9 (2022) 839809.

[31] G. Meoni, V. Ghini, L. Maggi, A. Vignoli, A. Mazzoni, L. Salvati, M. Capone, A. Vanni, L.
Tenori, P. Fontanari, F. Lavorini, A. Peris, A. Bartoloni, F. Liotta, L. Cosmi, C. Luchinat,
F. Annunziato, and P. Turano, Metabolomic/lipidomic profiling of COVID-19 and
individual response to tocilizumab. PLoS Pathog 17 (2021) e1009243.

[32] E. Holmes, J. Wist, R. Masuda, S. Lodge, P. Nitschke, T. Kimhofer, R.L. Loo, S. Begum, B.
Boughton, R. Yang, A.-C. Morillon, S.-T. Chin, D. Hall, M. Ryan, S.-H. Bong, M. Gay,
D.W. Edgar, J.C. Lindon, T. Richards, B.B. Yeap, S. Pettersson, M. Spraul, H. Schaefer,
N.G. Lawler, N. Gray, L. Whiley, and J.K. Nicholson, Incomplete Systemic Recovery
and Metabolic Phenoreversion in Post-Acute-Phase Nonhospitalized COVID-19
Patients: Implications for Assessment of Post-Acute COVID-19 Syndrome. J.
Proteome Res. 20 (2021) 3315-3329.


https://doi.org/10.1101/2023.01.13.523998
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523998; this version posted January 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[33] R. Masuda, S. Lodge, P. Nitschke, M. Spraul, H. Schaefer, S.H. Bong, T. Kimhofer, D. Hall,
R.L. Loo, M. Bizkarguenaga, C. Bruzzone, R. Gil-Redondo, N. Embade, J.M. Mato, E.
Holmes, J. Wist, O. Millet, and J.K. Nicholson, Integrative Modeling of Plasma
Metabolic and Lipoprotein Biomarkers of SARS-CoV-2 Infection in Spanish and
Australian COVID-19 Patient Cohorts. J Proteome Res 20 (2021) 4139-4152.

[34] P. Nitschke, S. Lodge, D. Hall, H. Schaefer, M. Spraul, N. Embade, O. Millet, E. Holmes, J.
Wist, and J.K. Nicholson, Direct low field J-edited diffusional proton NMR
spectroscopic measurement of COVID-19 inflammatory biomarkers in human serum.
Analyst 147 (2022) 4213-4221.

[35] F. Schmelter, B. F6h, A. Mallagaray, J. Rahmdller, M. Ehlers, S. Lehrian, V. von Kopylow, .
Kinsting, A.S. Lixenfeld, E. Martin, M. Ragab, R. Meyer-Saraei, F. Kreutzmann, I. Eitel,
S. Taube, N. Kading, E. Jantzen, T. Graf, C. Sina, and U.L. Glinther, Metabolic and
Lipidomic Markers Differentiate COVID-19 From Non-Hospitalized and Other
Intensive Care Patients. 8 (2021).

[36] T. Rossler, G. Berezhnoy, Y. Singh, C. Cannet, T. Reinsperger, H. Schafer, M. Spraul, M.
Kneilling, U. Merle, and C. Trautwein, Quantitative Serum NMR Spectroscopy
Stratifies COVID-19 Patients and Sheds Light on Interfaces of Host Metabolism and
the Immune Response with Cytokines and Clinical Parameters. Metabolites 12 (2022).

[37] W. Stacklies, H. Redestig, M. Scholz, D. Walther, and J. Selbig, pcaMethods--a
bioconductor package providing PCA methods for incomplete data. Bioinformatics
23 (2007) 1164-7.

[38] F. Dieterle, A. Ross, G. Schlotterbeck, and H. Senn, Probabilistic quotient normalization
as robust method to account for dilution of complex biological mixtures. Application
in 1H NMR metabonomics. Anal Chem 78 (2006) 4281-90.

[39] Z. Pang, G. Zhou, J. Chong, and J. Xia, Comprehensive Meta-Analysis of COVID-19 Global
Metabolomics Datasets. Metabolites 11 (2021).

[40] N. Karu, A. Kindt, A.J. van Gammeren, A.A.M. Ermens, A.C. Harms, L. Portengen, R.C.H.
Vermeulen, W.A. Dik, A.W. Langerak, V.H.J. van der Velden, and T. Hankemeier,
Severe COVID-19 Is Characterised by Perturbations in Plasma Amines Correlated with
Immune Response Markers, and Linked to Inflammation and Oxidative Stress.
Metabolites 12 (2022).

[41] G. Kaur, X. Ji, and I. Rahman, SARS-CoV2 Infection Alters Tryptophan Catabolism and
Phospholipid Metabolism. Metabolites 11 (2021).

[42] S. Krishnan, H. Nordqvist, A.T. Ambikan, S. Gupta, M. Sperk, S. Svensson-Akusjarvi, F.
Mikaeloff, R. Benfeitas, E. Saccon, S.M. Ponnan, J.E. Rodriguez, N. Nikouyan, A. Odeh,
G. Ahlen, M. Asghar, M. Sallberg, J. Vesterbacka, P. Nowak, A. Vegvari, A. Sonnerborg,
C.J. Treutiger, and U. Neogi, Metabolic Perturbation Associated With COVID-19
Disease Severity and SARS-CoV-2 Replication. Mol Cell Proteomics 20 (2021) 100159.

[43] H.M. Lewis, Y. Liu, C.F. Frampas, K. Longman, M. Spick, A. Stewart, E. Sinclair, N. Kasar,
D. Greener, A.D. Whetton, P.E. Barran, T. Chen, D. Dunn-Walters, D.J. Skene, and M.J.
Bailey, Metabolomics Markers of COVID-19 Are Dependent on Collection Wave.
Metabolites 12 (2022).

[44] C. Bruzzone, M. Bizkarguenaga, R. Gil-Redondo, T. Diercks, E. Arana, A. Garcia de Vicuna,
M. Seco, A. Bosch, A. Palazon, I. San Juan, A. Lain, J. Gil-Martinez, G. Bernardo-
Seisdedos, D. Fernandez-Ramos, F. Lopitz-Otsoa, N. Embade, S. Lu, J.M. Mato, and O.
Millet, SARS-CoV-2 Infection Dysregulates the Metabolomic and Lipidomic Profiles of
Serum. iScience 23 (2020) 101645.


https://doi.org/10.1101/2023.01.13.523998
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523998; this version posted January 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[45] B.S.B. Correia, V.G. Ferreira, P. Piagge, M.B. Almeida, N.A. Assuncao, J.R.S. Raimundo,
F.L.A. Fonseca, E. Carrilho, and D.R. Cardoso, (1)H gqNMR-Based Metabolomics
Discrimination of Covid-19 Severity. J Proteome Res 21 (2022) 1640-1653.

[46] A.R. Gafson, T. Thorne, C.I.J. McKechnie, B. Jimenez, R. Nicholas, and P.M. Matthews,
Lipoprotein markers associated with disability from multiple sclerosis. Sci Rep 8
(2018) 17026.

[47] M. Sindelar, E. Stancliffe, M. Schwaiger-Haber, D.S. Anbukumar, K. Adkins-Travis, C.W.
Goss, J.A. O'Halloran, P.A. Mudd, W.C. Liu, R.A. Albrecht, A. Garcia-Sastre, L.P.
Shriver, and G.J. Patti, Longitudinal metabolomics of human plasma reveals
prognostic markers of COVID-19 disease severity. Cell Rep Med 2 (2021) 100369.

[48] C. Bruzzone, M. Bizkarguenaga, R. Gil-Redondo, T. Diercks, E. Arana, A. Garcia de Vicuiia,
M. Seco, A. Bosch, A. Palazdn, I. San Juan, A. Lain, J. Gil-Martinez, G. Bernardo-
Seisdedos, D. Fernandez-Ramos, F. Lopitz-Otsoa, N. Embade, S. Lu, J.M. Mato, and O.
Millet, SARS-CoV-2 Infection Dysregulates the Metabolomic and Lipidomic Profiles of
Serum. iScience 23 (2020) 101645.

[49] S. Lodge, P. Nitschke, T. Kimhofer, J.D. Coudert, S. Begum, S.-H. Bong, T. Richards, D.
Edgar, E. Raby, M. Spraul, H. Schaefer, J.C. Lindon, R.L. Loo, E. Holmes, and J.K.
Nicholson, NMR Spectroscopic Windows on the Systemic Effects of SARS-CoV-2
Infection on Plasma Lipoproteins and Metabolites in Relation to Circulating Cytokines.
J. Proteome Res. 20 (2021) 1382-1396.

[50] M. Buyukozkan, S. Alvarez-Mulett, A.C. Racanelli, F. Schmidt, R. Batra, K.L. Hoffman, H.
Sarwath, R. Engelke, L. Gomez-Escobar, W. Simmons, E. Benedetti, K. Chetnik, G.
Zhang, E. Schenck, K. Suhre, J.J. Choi, Z. Zhao, S. Racine-Brzostek, H.S. Yang, M.E.
Choi, A.M.K. Choi, S.J. Cho, and J. Krumsiek, Integrative metabolomic and proteomic
signatures define clinical outcomes in severe COVID-19. iScience 25 (2022) 104612.

[51] V. Ghini, G. Meoni, L. Pelagatti, T. Celli, F. Veneziani, F. Petrucci, V. Vannucchi, L. Bertini,
C. Luchinat, G. Landini, and P. Turano, Profiling metabolites and lipoproteins in
COMETA, an Italian cohort of COVID-19 patients. PLoS Pathog 18 (2022) e1010443.

[52] J.J. Kovarik, A. Bileck, G. Hagn, S.M. Meier-Menches, T. Frey, A. Kaempf, M. Hollenstein,
T. Shoumariyeh, L. Skos, B. Reiter, M.C. Gerner, A. Spannbauer, E. Hasimbegovic, D.
Schmidl, G. Garhéfer, M. Gyongyosi, K.G. Schmetterer, and C. Gerner, (2022).

[53] P.E. Scherer, J.P. Kirwan, and C.J. Rosen, Post-acute sequelae of COVID-19: A metabolic
perspective. Elife 11 (2022).

[54] J. Liu, S. Li, J. Liu, B. Liang, X. Wang, H. Wang, W. Li, Q. Tong, J. Yi, L. Zhao, L. Xiong, C.
Guo, J. Tian, J. Luo, J. Yao, R. Pang, H. Shen, C. Peng, T. Liu, Q. Zhang, J. Wu, L. Xu, S.
Lu, B. Wang, Z. Weng, C. Han, H. Zhu, R. Zhou, H. Zhou, X. Chen, P. Ye, B. Zhu, L.
Wang, W. Zhou, S. He, Y. He, S. Jie, P. Wei, J. Zhang, Y. Lu, W. Wang, L. Zhang, L. Li, F.
Zhou, J. Wang, U. Dittmer, M. Lu, Y. Hu, D. Yang, and X. Zheng, Longitudinal
characteristics of lymphocyte responses and cytokine profiles in the peripheral blood
of SARS-CoV-2 infected patients. EBioMedicine 55 (2020) 102763.

[55] D.M. Del Valle, S. Kim-Schulze, H.-H. Huang, N.D. Beckmann, S. Nirenberg, B. Wang, Y.
Lavin, T.H. Swartz, D. Madduri, A. Stock, T.U. Marron, H. Xie, M. Patel, K. Tuballes, O.
Van Oekelen, A. Rahman, P. Kovatch, J.A. Aberg, E. Schadt, S. Jagannath, M.
Mazumdar, A.W. Charney, A. Firpo-Betancourt, D.R. Mendu, J. Jhang, D. Reich, K.
Sigel, C. Cordon-Cardo, M. Feldmann, S. Parekh, M. Merad, and S. Gnjatic, An
inflammatory cytokine signature predicts COVID-19 severity and survival. Nature
Medicine (2020).


https://doi.org/10.1101/2023.01.13.523998
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523998; this version posted January 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[56] Y. Irino, R. Toh, M. Nagao, T. Mori, T. Honjo, M. Shinohara, S. Tsuda, H. Nakajima, S.
Satomi-Kobayashi, T. Shinke, H. Tanaka, T. Ishida, O. Miyata, and K.-i. Hirata, 2-
Aminobutyric acid modulates glutathione homeostasis in the myocardium. Sci Rep 6
(2016) 36749.

[57] D. Shi, R. Yan, L. Lv, H. Jiang, Y. Lu, J. Sheng, J. Xie, W. Wu, J. Xia, K. Xu, S. Gu, Y. Chen, C.
Huang, J. Guo, Y. Du, and L. Li, The serum metabolome of COVID-19 patients is
distinctive and predictive. Metabolism 118 (2021) 154739.

[58] L. Ansone, M. Briviba, I. Silamikelis, A. Terentjeva, |. Perkons, L. Birzniece, V. Rovite, B.
Rozentale, L. Viksna, O. Kolesova, K. Klavins, and J. Klovins, Amino Acid Metabolism is
Significantly Altered at the Time of Admission in Hospital for Severe COVID-19
Patients: Findings from Longitudinal Targeted Metabolomics Analysis. 9 (2021)
e00338-21.

[59] M. Watanabe, A. Balena, D. Masi, R. Tozzi, R. Risi, A. Caputi, R. Rossetti, M.E. Spoltore, F.
Biagi, E. Anastasi, A. Angeloni, S. Mariani, C. Lubrano, D. Tuccinardi, and L. Gnessi,
Rapid Weight Loss, Central Obesity Improvement and Blood Glucose Reduction Are
Associated with a Stronger Adaptive Immune Response Following COVID-19 mRNA
Vaccine. 10 (2022) 79.

[60] J.W. Lee, Y. Su, P. Baloni, D. Chen, A.l. Pavlovitch-Bedzyk, D. Yuan, V.R. Duvvuri, R.H. Ng,
J. Choi, J. Xie, R. Zhang, K. Murray, S. Kornilov, B. Smith, A.T. Magis, D.S.B. Hoon, J.J.
Hadlock, J.D. Goldman, N.D. Price, R. Gottardo, M.M. Davis, L. Hood, P.D. Greenberg,
and J.R. Heath, Integrated analysis of plasma and single immune cells uncovers
metabolic changes in individuals with COVID-19. Nature Biotechnology 40 (2022)
110-120.

[61] Y. Su, D. Chen, D. Yuan, C. Lausted, J. Choi, C.L. Dai, V. Voillet, V.R. Duvvuri, K. Scherler,
P. Troisch, P. Baloni, G. Qin, B. Smith, S.A. Kornilov, C. Rostomily, A. Xu, J. Li, S. Dong,
A. Rothchild, J. Zhou, K. Murray, R. Edmark, S. Hong, J.E. Heath, J. Earls, R. Zhang, J.
Xie, S. Li, R. Roper, L. Jones, Y. Zhou, L. Rowen, R. Liu, S. Mackay, D.S. O’'Mahony, C.R.
Dale, J.A. Wallick, H.A. Algren, M.A. Zager, W. Wei, N.D. Price, S. Huang, N.
Subramanian, K. Wang, A.T. Magis, J.J. Hadlock, L. Hood, A. Aderem, J.A. Bluestone,
L.L. Lanier, P.D. Greenberg, R. Gottardo, M.M. Davis, J.D. Goldman, and J.R. Heath,
Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate
COVID-19. Cell 183 (2020) 1479-1495.e20.

[62] V. Ceperuelo-Mallafre, L. Reverte, J. Peraire, A. Madeira, E. Maymo-Masip, M. Lopez-
Dupla, A. Gutierrez-Valencia, E. Ruiz-Mateos, M.J. Buzon, R. Jorba, J. Vendrell, T.
Auguet, M. Olona, F. Vidal, A. Rull, and S. Fernandez-Veledo, Circulating pyruvate is a
potent prognostic marker for critical COVID-19 outcomes. Front Immunol 13 (2022)
912579.

[63] G. Carpeng, D. Onorato, R. Nocini, G. Fortunato, J.G. Rizk, B.M. Henry, and G. Lippi,
Blood lactate concentration in COVID-19: a systematic literature review. 60 (2022)
332-337.

[64] Z. Wang, H. Pan, and B. Jiang, Type | IFN deficiency: an immunological characteristic of
severe COVID-19 patients. Signal Transduct Target Ther 5 (2020) 198.

[65] G. Targher, A. Mantovani, X.B. Wang, H.D. Yan, Q.F. Sun, K.H. Pan, C.D. Byrne, K.l. Zheng,
Y.P. Chen, M. Eslam, J. George, and M.H. Zheng, Patients with diabetes are at higher
risk for severe illness from COVID-19. Diabetes Metab 46 (2020) 335-337.

[66] K.E. Remy, M. Mazer, D.A. Striker, A.H. Ellebedy, A.H. Walton, J. Unsinger, T.M. Blood,
P.A. Mudd, D.J. Yi, D.A. Mannion, D.F. Osborne, R.S. Martin, N.J. Anand, J.P.


https://doi.org/10.1101/2023.01.13.523998
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523998; this version posted January 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Bosanguet, J. Blood, A.M. Drewry, C.C. Caldwell, I.R. Turnbull, S.C. Brakenridge, L.L.
Moldwawer, and R.S. Hotchkiss, Severe immunosuppression and not a cytokine
storm characterizes COVID-19 infections. ICl Insight 5 (2020).

[67] C.B. Messner, V. Demichev, D. Wendisch, L. Michalick, M. White, A. Freiwald, K.
Textoris-Taube, S.I. Vernardis, A.S. Egger, M. Kreidl, D. Ludwig, C. Kilian, F. Agostini, A.
Zelezniak, C. Thibeault, M. Pfeiffer, S. Hippenstiel, A. Hocke, C. von Kalle, A. Campbell,
C. Hayward, D.J. Porteous, R.E. Marioni, C. Langenberg, K.S. Lilley, W.M. Kuebler, M.
Mulleder, C. Drosten, N. Suttorp, M. Witzenrath, F. Kurth, L.E. Sander, and M. Ralser,
Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection.
Cell Syst 11 (2020) 11-24 e4.

[68] B. Shen, X.Yi, Y. Sun, X. Bi, J. Du, C. Zhang, S. Quan, F. Zhang, R. Sun, L. Qjan, W. Ge, W.
Liu, S. Liang, H. Chen, Y. Zhang, J. Li, J. Xu, Z. He, B. Chen, J. Wang, H. Yan, Y. Zheng, D.
Wang, J. Zhu, Z. Kong, Z. Kang, X. Liang, X. Ding, G. Ruan, N. Xiang, X. Cai, H. Gao, L. Li,
S. Li, Q. Xiao, T. Lu, Y. Zhu, H. Liu, H. Chen, and T. Guo, Proteomic and Metabolomic
Characterization of COVID-19 Patient Sera. Cell 182 (2020) 59-72 e15.


https://doi.org/10.1101/2023.01.13.523998
http://creativecommons.org/licenses/by-nc-nd/4.0/

Age in years

Days post infection sample collections

120
*
bioRxiv preprint doi: Hitps://doi.org/}0.1101/2023.01.13.523998; s version pog@d January 47| 2023. The yright holdef for this preprint
90_(Nhich wgk not certifigd Ry peer revi@w) is the author/funder, who lfgs grgdnted biolxiv a licens display thareprint in pdrpetuity. It is made
availablg under aCC-BYEIC-N D 4.0 Intdrnational licefyse.
()
(118
60
Q0
. ©
30 =
0 T T T T 0
HC Recov LTCS Acute HC Recov LTCS Acute
>
400~ S 60+
=)
(7]
s —
L
=)
* £
300 2
S
40-
t
o
L
3
200+ (7))
e
1 -
c —
= 20-
£
1001 [}
et
Q.
g
>
J—— ()]
(T
o
X

¢ o @ NN ) DD NP
F &SSO S0
& 35 KR F W F
‘2@ 0\10 v.eé‘ 60 90 0* 0\
@ 2
& P
o°
v v

Fig. 1


https://doi.org/10.1101/2023.01.13.523998
http://creativecommons.org/licenses/by-nc-nd/4.0/

PC 2 (15 %)

Orthogonal T score [1] ( 13.4 %)

Scheme of the experimental set up

Recov

B.l. QUANT-PS™

aRxiv preprint doi: http

-pS™
10.11

FdoRong

38 metabolites with raw concentrations
rangers,
occurring in human plasma samples

110 lipoproteins concentration and 2 ratio values

SOP-sample preparation: 5mm NMR RT TXI probe,
3 mm tubes, Bruker SOP buffer

600 MHz NMR IVDr-ready Bruker Avance Il HD system
Plasma samples available Plasma samples used after QC check

. . . HC (n=73)
: Inﬂammall(t.lon 13 pr:ex mEammaguon panel for Acute (n= 7 patients & N= 16)
Inflammation cytokines & chemokines - detection Recov (n=12)
by Flow cytometry LTCS (n= 33)
c d
Scores Plot VIP score %, (28 - -
Y A2 L —
© - PRI I IM
o Acut . )
o note Creatine e B os B
° Recov o HOOHW o B
~ Citrate -
-Hydroxybutyrate
o mOmD gl |
igl Acetone
3-Hydorxybutyrate tsoleucine
=7 ] .D.D Fischer's ratio
Fomate
Pyruvate o
[} D . D . Glutamine
o Lysine
Histidine Gutamate
° mOmo
< Phenylalanine OEEC Low prnoate
. Creatinine
Lactate
Lactate :
o ° BOO e
Ornithine
T T T T T T T T T T presne
3 2 1 0 1 2
1.0 15 2.0 25
PC1(19.7 %)
Scores Plot S
P
PO
HC Pyruvate M o fynvate
o LTCS . .. © Lactate
< -
Lactate <
o ° [ 3
o o o Phenylalanine ° EE anine | © Metiorine
© Alanine
~ (@] o @b% @ Glycine High g | © Creatinine © Citrate
© % 6 @ ° e o 19S5
OO a o o o Acetate " & Omithine
oo & ° L L s e
O Do 0 Glutamine . cuciie
o - % (@) &) @ .. . ) -- 3Gy ityrate
© Creatine
© %o ® o GIn/Glu o o Glcose
e o (e - ° [ [ | 3 1
@) (@) 00 o Leucine I o Lysine L
. o PR ° o [ [ |
(O)Ne) Methionine Low 5 | > Acetate
(6] T
Lysine -- o Phenylalanine @ Glycine
@ .. T T T T T T T
< 4 Alanine 03 02 01 00 0.1 02 03
° [ | |
T T T T T T T I T T T T T T
3 -2 -1 0 1 2 3 4
10 12 14 16 18 20
T score [1] ( 7.5 %) . e
I i 2 'g 2 2 ‘% o) g
5 s = 2® =]
o W pyuate £ g8 S,580 $28isalsc?
2E! g5 ggaz §22885888%
23 30 3ESS L5228 30045 10
® Phenylalanine -
4 Acute
Status 0.8
@ - ® DOWN
S Glycine e
g Non-SIG HC
g 0.6
GIn/Glu L
2 % Lysine
Acetate Yethi ®
ethionine LTCS 04
0.2
0 Recov:
-1.0 -0.5 0.0 05 1.0
10g2(FC) 0 Flg 2



https://doi.org/10.1101/2023.01.13.523998
http://creativecommons.org/licenses/by-nc-nd/4.0/

Component 2 (21.8 %)

Orthogonal T score [1] ( 22.4 %)

4

10

-10

-15

b

Scores Plot @
o naue | 55 e
o HC V5FC )
o o wies | B o °
2023.01.13.523998ethis version posted
e edtpor/funder, w§io has granted bioRxiy
aiig@ble under aC@BY-NC-ND 4.0 Internatid
e R
HDFC )
L6PL Q@
IDAB @
IDPN @
L4CH @
H1A1 )
H4FC ®
L5AB 3
L5PN @
V5CH @
IDTG )
L1TG )
L5FC @
L4PL @
H3FC @
HDCH @
H4A2 @
H2A1 @
HDPL
o
° el e
il e
o
I I T T T I T T T T T
6 -4 2 0 2 4
1.0 15 2.0 25 3.0
Component 1 (22.1 %)
e
Scores Plot
oHe | B F
o LTCS | HiGh ®
° e o °
TLTG ‘
s )
VLTG !
O H4PL
LDPL
Oo 8 LB i
PO ®o e 8
R Paam © « & i 8
O O . TPA1
o 3" ViCH
1) o © DAY
o o 8% ¢ ® i
(@) 2CH
#5° 70
o o % B
o o VAL J
. o Y §
el °
g ‘
V2FC
55| @@
° ww‘J
VLPN
VLAB
H1PL
T T T T T I I I I I
0 ° 0 ° 10 10 12 14 16 18
T score [1] ( 15 %)
o TPA2
HDA2
[ ]
7.54 Acute
H3CH VoTG
LlFC. ¢ H3A2 TPTC; ®
HapL®® wLTG Status
= 5.0
§ :...: VI FC. ViTG a DOWN LTCS
g L2FC o *° JDPL vecH e o Non-SIG
N & H1CH o® 1PN VLPL. Tt; \./1C IDTG a UP Recov|
L2PL o mi \‘L\éﬁl
,5L2CH H1A2®,p 14AB N V2FC
P e L i VLAB V2PL
L2AB |1 a1® HIEC VLPR VL
L2PN Pl 155 LBFC V3FC o
P£:0.3AB ® AVAN=]
LSCH ! L4176
L3PAI
0.0
05 00 05
log2(FC)

2

e

023.

" High

Low

High

Low

LDCH

ec
display| the

] class
ép

&

<<r<:

oo e

o
T

s
e

oy

T cTorrerrrT

T
ool

SRR By 2,

W
e

class.

Acute
1
05
0

HC
05

Lics
I 1

Recov.

(5L
|
;
HBEE
i
A]
> 3 = 2
z 3 5 3
5 a g
b= T vaTe
S _puTe
o VIR G
© V2cHVICH
© VLPL o V3TG
< o VLCH o V2Fe IbTG
S © VLR&V2PL
° s
o~
S o VIFC
<
o
(3] °
S .
<
3
©
3 -

HDCH
LDHD

1.0

Fig. 3

1.0

0.8

0.6

0.4

0.2


https://doi.org/10.1101/2023.01.13.523998
http://creativecommons.org/licenses/by-nc-nd/4.0/

o uary 17, 2023. The copyright holder for this preprint
] %icense to display the preprint in perpetuity. It is made
gtignal license.

3
(0]
Gender

Gudamine
Vo=
dstidine
< B ine
S )

_u:m_,m_mg_:m

SiwSsine

LDL cBof8sterol
S /Apo-A2

VLDL Emm.k.mmzamm
IDL trigi/eerides
LDL triglyerides
HDL trigfy&erides
VLDL o_mu_mﬂma_
gIOLFC

w%_. FC
SHDLFC ( ]

VLDL phospI®lipids

IDL phospt®lipids
HDL phospholipids { ]

HDL Apo-A2

VLDL Apo-B100

.75

45

10.31

10.16

10.01

0.14

0.29

0.44

0.59

0.74

. =
) N o7 o<
2. o © S ONN0MM
o W1NF NC6811 ——QOM
OL2ZES a0
Ethanol o ® o o ()
TMAO (]
Alanine o @ e O
Glutamate ® o e o0
Glutamine, @ @ o0
Glycine @
Histidine @ ® o000 o o o
Leucine ()
Lysine @ (]
Methionine @ @ 0000 ()
Omithine ®® @ ©® @00 ©00
Phenylalanine (] [ ]
Sarcosine o
Tyrosine, @ @ o (]
Valine (]
Formate @
Lactate @ o o0ee (0]
3HB (]
Acetoacetate @ O (] (]
Pyruvate @ ] (0

Galactose
Glycerol @ () o
Dimethyl sulfone . @
Triglycerides [ ]
Cholesterol @
LDL cholesterol
HDL cholesterol | @
Apo-A1 @ ®
Apo-A2 @ []
Apo-B100 [ ]
LDL/HDL ratio
Apo-B100/Apo-A1 ratio
TBPN
IDPN
VLDL triglycerides
IDL triglycerides
LDL triglycerides
HDL triglycerides
VLDL cholesterol
IDL cholesterol
VLDL FC
IDLFC
LDLFC
HDLFC (]
VLDL phospholipids
IDL phospholipids
HDL phospholipids @
HDL Apo-A1 @
HDL Apo-A2 @
VLDL Apo-B100
IDL Apo-B100
LDL Apo-B100

0.82

0.65

0.47

0.29

-0.06

-0.23

-0.41

-0.58

-0.76

-0.94

Gender

@0 Age

Creatine
Glutamate
Glutamine

Glycine

Histidine

Isoleucine

Leucine
Lysine
Proline
Valine
Acetate
Citrate @
Formate
Lactate

3HB
Acetoacetate

Acetone

Pyruvate

Glucose

Triglycerides

HDL cholesterol
Apo-A1

Apo-A2

LDPN

VLDL triglycerides
IDL triglycerides
LDL triglycerides
HDL triglycerides
VLDL cholesterol
VLDL FC

HDL FC

VLDL phospholipids
HDL phospholipids
HDL Apo-A1

HDL Apo-A2

VLDL Apo-B100
LDL Apo-B100

IFN a2

® O INFg
000 O NFa
MCP 1

® OLLb

0.58

0.43

-0.03

-0.18

-0.33

-0.48

-0.63

-0.78

Fig. 4

€€

€z

8Ll

VL

odzL

o

8

9

L dOW

eANL

CEL]

zeNdl

a

19puan

Creatinine ’

Histidine
Ornithine

Tyrosine


https://doi.org/10.1101/2023.01.13.523998
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprln’

(which was not certifi

henylalanine
Ggher in RecoD Cower in LTCS)

LTCS vs

[]
g; this version posted January-

d by peer rewew) is the author/funder wh{; has granted bioRxiv a license)

vailable under NS fop ationaldice
higher inLTCS INF-g

Recov

.
o
N acetoacetate (with a gender bias)

Ketone bodies

’ m
.
¢ ®

various
( cytokines )

various
cytokines

o o acetone o o
. o 3-hy ( ) . MCP-1
( AL ) . e . ( IL-10/12p70 )
- generally higher in Recov -
High positive High positive
correlation correlation
LTCS .
only LI
Ve e
rd i
L
.
l High positive High negative
correlation correlation
IFNa2
( IL-12p70 ) C MCP-1 ) ( IL-17A )
C
M £
HDL HDL (free)
phospholipids cholesterol ggﬁ:ﬁg
LTCS & Recov LTCS & Recov
| | higher
higher higher
LR Cs S Recov
B only .. QY
o o o o
.
. .
High positive High positive High negative High negative
correlation correlation correlation correlation

IFNa2
IL-17A IL-12p70
3

Citrate Pyruvate
Creatine LTCS/Recov LTCS/Recov
Acute higher lower higher

. . .
. . .
] ° L] ° . °
° o ° o ° o
. . .
. . .
High positive High positive High positive
correlation correlation correlation

IFN-a2

IL-17A

IL-18
with LTCS with Recov

MCP-1
with Acute

cytokines,
not MCP-1
with LTCS

High negative
correlation

Fig.

08

06

04

02


https://doi.org/10.1101/2023.01.13.523998
http://creativecommons.org/licenses/by-nc-nd/4.0/

