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Abstract

Enteric pathogens cause widespread foodborne illness and are increasingly found to harbor
antimicrobial resistance. The ecological impact of these pathogens on the human gut microbiome
and resistome, however, has yet to be fully elucidated. This study applied shotgun metagenome
sequencing to stools from 60 patients (cases) with enteric bacterial infections for comparison to
stools collected from the same patients’ post-recovery (follow-ups). Overall, the case samples
harbored more antimicrobial resistance genes (ARGs) and had greater resistome diversity than
the follow-up samples (p<<0.001), while follow-ups had much more diverse microbiomes
(p<0.001). Although cases were primarily defined by genera Escherichia, Salmonella, and
Shigella along with ARGs for multi-compound and multidrug resistance, follow-ups had a
greater abundance of Bacteroidetes and Firmicutes phyla and genes for tetracycline, macrolides,
lincosamides, and streptogramins (MLS), and aminoglycoside resistance. A host-tracking
analysis revealed that Escherichia was the primary carrier of ARGs in both cases and follow-ups,
with a greater abundance occurring during infection. Eleven distinct extended spectrum beta-
lactamases (ESBLs) were identified during infection, some of which appear to be lost or
transferred to different microbial hosts upon recovery. The increasing incidence of disease
caused by foodborne pathogens, coupled with their evolving role in harboring and transferring
antimicrobial resistance determinants within communities, justifies further examination of the

repercussions of enteric infection on human gut ecology.
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Introduction

Foodborne illness caused by enteric pathogens impacts ~9.4 million people in the United
States each year, with over one-third being attributed to bacterial pathogens [1]. In 2019, the
Centers for Disease Control and Prevention (CDC) documented a marked increase in the
incidence of foodborne infection caused by Campylobacter and Shiga toxin-producing
Escherichia coli (STEC) [2]. Salmonella and Shigella also contribute to a high incidence of
infections, though case numbers remained unchanged relative to previous years. In addition to
their role in enteric disease, Campylobacter, non-Typhoidal Salmonella, Shigella, and members
of Enterobacteriaceae (e.g., Escherichia) have been classified by the CDC as serious threats for
harboring and transmitting antimicrobial resistance [2]. Indeed, each of these pathogens have
been shown to transfer ARGs horizontally within and between microbial species residing in a
niche [3]. Such resistance determinants can cross environmental boundaries, thereby increasing
frequencies within different hosts and environments and enhancing the likelihood of horizontal
gene transfer (HGT).

The consequences of enteric infection on the health of the human gut microbiome are not
fully understood. Prior studies conducted in our lab showed a marked decrease in gut microbiota
diversity attributed to enteric infection [4]. This lack of diversity was suggested to reduce
beneficial microbially-mediated metabolism and exacerbate gut inflammation [5]. Others have
also demonstrated an increase in the proportion of Proteobacteria upon infection with
Salmonella, Campylobacter, Shigella, and other pathogens in multiple host organisms [6-9].
More recently, we have documented shifts in the gut resistome, or compilation of antimicrobial
resistance genes (ARGs), among patients with Campylobacter infections when compared to their

healthy family members [10]. The potential ecological repercussions relevant to recovery from
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enteric infection, however, have yet to be explored. If the microbiome demonstrates a certain
degree of resilience, then perturbations should not be felt with such amplitude and be resolved
over time [11]. In the context of pathogen invasion, various ecological interactions such as direct
antagonism from commensal microbes, resource competition and competitive exclusion, and
secondary metabolite production, must be considered [12, 13]. Each of these factors may
influence the success of an enteric pathogen in the gut environment and the ability of the human
host to recover from the acute infection.

Consideration must also be given to the invading pathogen, which can potentially
introduce virulence and antimicrobial resistance determinants into the gut community. Indeed,
pathogens harboring ARGs can transfer these to other gut microbes during infection or vice
versa, thereby transforming the gut into a resistance gene reservoir [14]. This reservoir is
particularly concerning given that pathobionts found in the community can acquire genetic
factors that encode for pathogenic properties as well as resistance to clinically important
antibiotics. Because infection with enteric pathogens was shown to alter the relative abundance
of certain microbial populations in the gut [4], it is probable that ARGs harbored by microbes
that “bloom” during infection will also increase in abundance. Although new sequence-based
approaches have been developed to identify the microbial hosts of specific ARGs in different
environments [15], these have not been applied to enteric infections.

Consequently, we used shotgun metagenome data to determine how infection by and
recovery from enteric pathogens influences the human gut resistome and microbiome. We also
sought to identify which microbial hosts harbor ARGs to advance understanding of how drug
resistance spreads and is maintained within the dysbiotic and healthy gut microbiome. Further

defining the impacts of these infections on the makeup and function of the gut microbiome is
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necessary to counteract the dissemination of drug resistance and discover novel therapeutic

solutions.

Methods

Sample collection and sequencing

Sixty stools were obtained from patients with enteric infections (cases) caused by
Campylobacter (n=24), Salmonella (n=29) Shigella (n=4) and Shiga toxin-producing E. coli
(STEC) (n=3) from, 2011-2015. Stools were preserved in Cary-Blair transport media and
submitted to the Michigan Department of Health and Human Services (MDHHS) in
collaboration with four hospitals as described [4]. Patient demographics, exposures, and
symptoms were reported through the Michigan Disease Surveillance System (MDSS). Counties
were classified as ‘rural’ or ‘urban’ as was done in our prior analysis [10]. Each patient
submitted a follow-up sample 1 week to 29 weeks after their acute infection, yielding 120 paired
samples for analysis. Moreover, 91 household members (controls) linked to 38 of the 60 patients
submitted stools for comparison 5-29 weeks after the cases’ infection. Resistome data from
Campylobacter patients were examined previously [10], though no prior metagenome analyses
were performed on the post-recovery samples.

Metagenomic DNA was extracted, sheared, and normalized as described [4]. Libraries
were constructed using the TruSeq Nano library kit (Illumina, Inc., San Diego, CA, USA) and
shotgun sequencing was performed in four runs using an Illumina HiSeq 2500. Reads were
demultiplexed at the MSU Research Technology Support Facility and poor quality and

contaminated samples were removed after filtering.
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88  Reads-based identification of antimicrobial resistance genes (ARGsS)

89 The AmrPlusPlus v2.0 pipeline was used for quality control checking, aligning, and
90 annotating metagenomic fragments with the MEGARes 2.0 database [16] and previously
91  described parameters [10]. Reads were mapped to human genome GRCh38
92  (GRCh38 latest genomic.fna.gz, downloaded December 2020) in RefSeq using the Burrows-
93  Wheeler Aligner (BWA) [17] and removed using SAMTools [18] and BEDTools [19]. The non-
94  host FASTQ files were stored and aligned to MEGARes 2.0 to identify ARGs using default
95  values for the BWA and SAMTools. Reads were deduplicated and annotated with
96  ResistomeAnalyzer (identity threshold of >80%) to quantify ARG abundance per sample, while
97  RarefactionAnalzyer estimated sequencing depth. Single nucleotide polymorphisms (SNPs)
98  requiring specific haplotypes to be classified as ARGs were also extracted for confirmation using
99 the Resistance Gene Identifier via the Comprehensive Antibiotic Resistance Database [20].
100  Following annotation and quantifying ARG abundances, MicrobeCensus [21] was used to
101  determine the average genome size and number of genome equivalents (GE) for normalizing
102 ARG and taxonomic abundances (Additional file 1). Lastly, metagenomic coverage was

103  estimated with Nonpareil [22] (Additional file 2).

104  Assembly-based identification of ARGs

105 The non-host FASTQ files were used for metagenome assembly after employing

106  BBTools for paired end read merging using the ‘bbmerge-auto.sh’ script. Reads that failed

107  merging were error-corrected using Tadpole [23] and reexamined. If merging continued to fail,
108 reads were extended 20 bp and merging was iterated up to five additional times or unmerged

109  reads were included. Assembly was performed with MEGAHIT [24] using the merged and
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110  paired-end reads. The Quality Assessment Tool for Genome Assemblies [25] evaluated assembly
111 quality and coverage (Additional file 3).

112 A custom workflow was developed using anvi’o to analyze microbial genomes from

113  metagenomes as described [26]. Briefly, assembled contigs were reformatted using ‘anvi-script-
114  reformat-fasta’ to generate a contigs database per sample with ‘anvi-gen-contigs-database’. The
115  script ‘anvi-run-hmms’ was used to populate the contigs database with hits detected using

116  Hidden Markov Models, which improves assembly annotation. Prodigal [27] was used in the

117  script ‘anvi-get-sequences-for-gene-calls’ to obtain amino acid sequences of assembled genes for

118  use in the ARG-carrying contigs (ACC) analysis.

119  Classifying microbial taxa

120 Non-host paired-end reads were taxonomically annotated with Kaiju, a protein-based
121 classifier that translates reads to amino acid sequences while searching for maximum exact

122 matches (MEMs) among microbial reference genomes [28]. The National Center for

123 Biotechnology Information (NCBI) BLAST nr reference database was used with previously

124  published parameters [10]. Raw abundances of reads assigned to taxa were normalized by the
125  estimated number of GEs. Those sequencing reads without enough resolution were categorized
126  as “unassigned”, which comprised >50% of annotated reads at the genus and species levels. The

127  composition analysis was restricted to assigned reads.

128  Identifying bacterial hosts harboring ARGs

129 Gene calls from anvi’o were used to identify ARG-carrying contigs (ACCs) by aligning
130  the amino acid sequences to the HMD-ARG database [29] using DIAMOND [30] using a
131  modified pipeline that was described previously [15, 31]. The SAM files were filtered to identify

132 contigs with gene hits, and Seqtk (https://github.com/lh3/seqtk) was used to extract the ACCs


https://doi.org/10.1101/2023.01.13.523990
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523990; this version posted January 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

133 from the genes as a FASTA file for alignment to the BLAST database v5.0 using blastp. An E-
134 value of 0.00001 cutoff was used with a maximum of 50 target sequences (i.e., 50 matches per
135  contig). One Campylobacter sample could not be annotated and was excluded along with the
136  paired follow-up sample leaving 59 pairs (118 samples) for analysis.

137 Alignment output was used to identify taxa associated with each ARG on a contig. Since
138 50 matches were allowed per contig, a custom Python script ‘ERIN_ACCpipeline blastp merge’
139  was used to quantify the average proportion of each genus per sample on the ACCs and the

140  average percentage of different ARGs per genus within all ACCs in a sample. Taxa with the

141 most hits per contig were considered the most likely to harbor a given ARG.

142 Abundance and diversity analyses

143 The identity and diversity of ARGs and taxa were determined among all samples. For the
144  resistome analyses, the gene, group, mechanism, class, and type levels were used [16]. Actual
145  estimated abundance of ARGs and taxa was determined by normalizing raw abundance counts to
146  the number of GE per sample. Relative abundance was calculated by dividing the number of GE-
147  normalized reads assigned to a specific feature by the total number of GE-normalized reads for
148  that sample. Alpha diversity metrics such as richness, Shannon diversity, and the Pielou’s

149  evenness score were estimated using the vegan package [32] in R (https://www.R-project.org/).
150  Nonparametric tests evaluated differences between groups and the Shapiro-Wilk test indicated
151  that both the resistome and microbiome data were not normally distributed (Additional file 4).
152 The Wilcoxon signed-rank test was used to detect significant differences between paired
153  samples, whereas the Wilcoxon rank-sum test was applied to unpaired samples. Beta diversity
154  metrics and ordination plots (e.g., Principal Coordinate Analysis (PCoA)) based on Bray-Curtis

155  dissimilarity at the gene and group (ARGs) or species and genus (taxa) levels were also
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156  estimated with vegan [32]. The overall mean dissimilarity among cases and follow-ups was

157  compared to the mean dissimilarity between paired samples using a Welch’s t-test (Additional
158  file 5). A Permutational Analysis of Variance (PERMANOVA) was calculated using the Bray-
159  Curtis dissimilarities in R to assess differences in centroids (mean) between cases and follow-ups
160  for both the resistome and microbiome composition; Permutational Analysis of Multivariate

161  Dispersion (PERMDISP) detected differences in dispersion (degree of spread) of these groups.

162  Differential abundance of taxa and ARGs

163 To assess representative features in cases and follow-ups, MMUPHin was used to

164  construct general linear models relating sample features to relative abundances [33]. Batch

165  adjustment of relative abundance data was performed by sequencing run, which significantly
166  influenced the distribution of points in the microbiome ordination (Additional file 6). To

167  identify differentially abundant ARGs and taxa, a linear model was constructed with follow-ups
168  serving as the reference for the fixed effect. Age in years, average genome size, number of GE,
169  year of collection, and use of antibiotics were included as covariates. Significance values were
170  adjusted using the Benjamini-Hochberg method of correction for multiple hypothesis testing (q-
171 value representing False Discovery Rate). The Analysis of Compositions of Microbiomes with
172 Bias Correction (ANCOM-BC) method [34], which considers absolute abundances from the GE-
173 normalized counts as input but cannot implement a mixed model with fixed and random effects,
174  was used for differential abundance testing. The data were concordant with MMUPHin data at
175  each comparison level (Additional file 7), though differences in rank of correlation was

176  observed for some features.
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177  Identification of continuous population structure

178 MMUPHin [33] was also used to identify continuous population structure from the

179  microbiome and resistome abundance data to identify taxonomic or resistance gene tradeoffs that
180  impact data structure in ordination. The ‘continous_discover()’ function was applied to the

181  abundance data, which performs unsupervised continuous structure discovery using Principal
182  Components Analysis (PCA). Continuous structure scores (called “loadings”) that comprise the
183  top principal components were compared across batches to identify “consensus” loadings

184  assigned to microbial features. The ‘var perc cutoff()’ parameter, which filters out the top

185  components accounting for a set proportion of the variability within the samples, was set to 0.75
186  for phylum and ARG class levels, 0.50 for genus and ARG groups, and 0.40 for species. Plots
187  were constructed to visualize the drivers of continuous data structure and to overlay data onto
188  ordination plots based on Bray-Curtis dissimilarity of microbiome or resistome relative

189  abundances.

190

191

192 Results

193  Study population

194 Among the 60 cases, 28 were male (46.7%) and 32 were female (53.3%) ranging between
195 1.5 and 90 years of age; most patients were between 19-64 years (n=26; 43.3%) or less than 9
196  (n=16; 26.7%). No difference in the proportion of stool submissions was observed by year,

197  though the fewest (n=13.3%) were recovered in 2011 and the most (36.7%) in 2013. Among the
198 59 patients reporting symptoms, 50 (84.8%) had abdominal pain, 57 (96.6%) reported diarrhea,

199  and 22 (37.3%) reported blood in the stool. Seventeen (28.3%) cases required hospitalization and

10
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200 33 (55.0%) resided in a rural area. Most cases did not take antibiotics within two weeks of

201 sampling, though two (3.3%) reported amoxicillin use, while five (8.3%) reported use of

202  amoxicillin (n=2), azithromycin (n=1), ciprofloxacin (n=1), or an unknown antibiotic (n=1)

203  before submitting the follow-up sample. Most follow-up samples were collected 51-100 days
204  (n=20; 33.9%) or 101-150 days (n=28; 47.5%) post-infection, however, a small number was

205  submitted <50 (n=4; 6.78%) or >150 (n=7;11.9%) days after the initial sample was collected; the
206  date was missing for one patient. The range of follow-up submissions was 8 to 205 days post-

207  recovery with an average of 107.9 days.

208  Changes in resistome composition and diversity post-recovery

209 Among the 120 stool samples, 1,212 ARGs were identified encoding resistance to

210  biocides, antibiotic drugs, metals, and multi-compound substrates comprising 474 distinct gene
211 groups or operons. These genes represented 120 distinct mechanisms conferring resistance to 44
212 classes of compounds. In all, the case samples had significantly more diverse resistomes than
213 follow-up samples with a greater mean ARG richness (Scases=254 vs. Stollow-ups=103; p=4.5¢-10)
214  (Figure 1). The Shannon Diversity Index was also greater in cases than follow-ups (Hcases=4.79
215  vs. Hiollow-ups=3.36; p=2.1e-10) as was the Pielou’s evenness index (J’cases=0.87 vs. J follow-

216 ups=0.80; p=8.1e-10). Notably, the family member controls did not significantly differ from

217  follow-up samples, suggesting recovery to a “normal” state post-infection (Additional file 8).

11
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219  Figure 1. Resistome diversity is greater during infection than after recovery. Three alpha
220  diversity measures (Richness, Shannon’s Diversity Index, and Pielou’s Evenness Index) are

221 presented. Case samples (Case) are indicated with green dots and follow-up samples (FollowUp)
222 are purple. Points are slightly offset from the vertical to allow interpretation of all samples. The
223 median of each measure is indicated by the thick bar within each box and the first and third

224  quartiles are indicated at the bottom and top of the box, respectively. Gray lines between points
225  connect both samples from the same individual. P-values were calculated using the Wilcoxon

226  signed-rank test for paired samples and are shown above the comparison bar within each plot.

227

228 The resistome composition also differed during and after infection as was demonstrated
229  in the PCoA based on the Bray-Curtis dissimilarity (PERMANOVA p=0.000999; F=38.75)
230  (Figure 2). No difference was observed in the level of dispersion between groups (PERMDISP

12


https://doi.org/10.1101/2023.01.13.523990
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523990; this version posted January 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

231 p=0.52; F=0.468). The samples from those reporting antibiotic use did not cluster separately

232 from those without antibiotics. Data for residence type, antibiotic use, gender, age, hospital,

233 county of origin, stool type, sequencing run, and number of days between samplings were fit to
234 the ordination. Age in years (p=0.013) and year of collection (p=0.043) independently influenced
235  the distribution of points, whereas residence location, hospital, and the number of days since

236  infection only trended toward significance. The pathogen responsible for the acute infections did

237  not have a significant effect on alpha or beta diversity trends (Additional file 9).

238
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239  Figure 2. Resistome composition differs significantly during and after infection. A Principal
240  Coordinates Analysis (PCoA) plot of case (green circles) and follow-up (purple, squares)

241  resistomes based on Bray-Curtis dissimilarity calculated from gene-level abundances. The first
242 and second coordinates include the corresponding percentage of similarity explained. Patients

243  that used antibiotics two weeks prior to sample collection are indicated by triangular data points.

13
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Changes in microbiome composition and diversity post-recovery

A total of 40,022 species, 4,851 genera, 1,157 families, 537 orders, 236 classes, and 224
phyla was found in all samples combined. Notably, the follow-up samples had more diverse gut
microbiomes than the cases (Figure 3) with significantly greater mean species richness
(Scases=3,426, Stollow-ups=5,789; p=2.5e-08), mean evenness (J’case=0.150, I’ follow-up=0.190; p=9.8e-
06), and Shannon Diversity (Hcases=1.21, Hfollow-ups=1.65; p=1.3e-06). When compared to control
samples, the follow-ups had similar Shannon Diversity and evenness, though the richness
differed (Stolow-ups=5,789, Scontrols=6,872; p=0.012, Wilcoxon rank-sum test (two-sided,

unpaired); Additional file 8).

Pielou Richness Shannon
9.841e-06 2 455e-08 4 1.297e-06
100001
3_
2_
5000+
1_
0_

Ca'se Follolep

Health Status

Figure 3. Microbiome diversity is greater after recovery. Box plots show the resistome alpha
diversity measures (Pielou’s Evenness Index, Richness, Shannon Diversity Index). Separate

points represent case (Case, green) and follow-up (FollowUp, purple) samples and are offset

14
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257  from the vertical for clarity. The median is indicated by the thick bar, while the first and third
258  quartiles are represented by lines at the bottom and top of the box, respectively. Gray lines
259  connect samples from one individual. P-values were calculated using the Wilcoxon signed-rank

260  test for paired samples and are shown above the comparison bars.

261

262 The microbiome composition was also significantly different in the case and follow-up
263  samples (PERMANOVA p=0.000999, F=7.31; Figure 4), though no difference in the dispersion
264  of points between groups was observed (PERMDISP p=0.086; F=2.86). The same extrinsic

265  covariates were fitted to the PCoA. Age (p=0.008), sequencing run (p=0.001), average genome
266  size (p=0.001), number of genome equivalents (p=0.001), year of sampling (p=0.005), days to
267  follow-up (p=0.013), hospital (p=0.030), and antibiotic use (p=0.008) significantly impacted the
268  point distribution. Similar to the resistome analysis, no differences were observed across

269  pathogens (Additional file 10).
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270  Figure 4. Microbiome compositional differences between cases and follow-ups are nuanced.
271 A Principal Coordinates Analysis plot is shown for case (Case, green circles) and follow-up

272 (FollowUp, purple squares) microbiomes based on Bray-Curtis dissimilarity at the species level.
273 A biplot was overlaid to display variables that had a significant influence on the distribution of
274  points in the ordination. Age (Age.years), number of follow-up days (Followup.days), antibiotic
275 use (Yes and No) were influential vectors. The first and second coordinate are shown and include
276  the corresponding percentage of similarity explained. Patients that self-reported use of antibiotics

277  two weeks prior to sample collection are indicated by triangular data points.

278 ARG composition and abundance varied during and after infection.

279 The relative abundance of ARGs differed between groups (Additional file 11). The top-
280 three resistance classes in cases accounted for 39.8% of the total resistance genes relative to

281  71.0% for follow-ups, supporting the observation of greater resistome diversity during infection.
282  C(lasses for drugs and biocides (15.1%), MLS (13.3%), and multi-metals (11.3%) were most

283  abundant in cases compared to MLS (33.5%), tetracyclines (22.0%), and aminoglycosides

284 (15.5%) in the follow-ups (Figure 5). In the differential abundance analysis, classes for multi-
285  metal resistance (coef=-0.243; q-value=1.04e-04), drug and biocide resistance genes (coef= -
286  0.243; g-value= 1.46e-03), drug, metal, biocide resistance (coef=-0.212; g-value=7.86e-09), and
287  fluoroquinolone resistance genes (coef=-0.168; g-value= 8.19e-10) were more abundant in cases
288  (Additional file 12). Comparatively, tetracycline resistance genes (coef=0.352; g-value=2.26e-
289  05) were more abundant in the follow-up samples followed by MLS (coef=0.251; g-

290  value=1.49¢-25) and aminoglycoside (coef=0.118; g-value= 7.86¢-09) genes.

291
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Figure 5. Relative abundance of the top-10 resistance gene classes differs between case and
follow-up samples. The top-10 most abundant compound classes is shown for cases (Case, top
panel) and follow-ups (FollowUp, bottom panel). Each column represents the resistome from one
individual and columns are ordered by the paired samples, meaning that the column position in
each side of the plot refers to the same individual during or after infection. Relative abundances
were determined using raw gene abundances normalized by the approximate number of genome
equivalents in the sample as determined using MicrobeCensus [21]. CAP = cationic

antimicrobial peptides; MLS = Macrolide, Lincosamide, Streptogramin; MDR = Multidrug

300 resistance; QACs = Quaternary Ammonium Compounds.
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301 At the group level, specific ARGs were identified for the predominant classes. In the

302  cases, the most abundant groups were MLS23S (11.9%) conferring MLS resistance, rpoB

303  (2.8%), a rifampin resistance gene, and A16S (3.8%), which is important for aminoglycoside
304 resistance (Additional file 13). Similarly, the differential abundance analysis detected MDR

305  genes, rpoB (coef=-0.123; g-value=6.30e-05) and md¢C (coef=-0.103; g-value=4.97e-09), to be
306  the most differentiating ARG groups for cases (Additional file 12). Genes such as parC (coef= -
307  0.102; g-value= 3.90e-11) and gyr4 (coef=-0.101; g-value=7.38e-08), that encode resistance to
308 fluoroquinolones, were also more abundant in cases.

309 In the follow-ups, the most abundant groups were for MLS, tetracycline, and

310 aminoglycoside resistance, with MLS23S (n=6.6; 24.3%), tetQ (n=4.0; 17.0%), A16S (n=2.4;
311 9.5%), and cfx (n=0.84; 3.8%) predominating, respectively (Additional file 13). fetQ had the
312 greatest differential abundance in favor of follow-ups (coef=0.30; q-value=6.56e-05)

313  (Additional file 12). Despite its noted prevalence among cases, MLS23S was also a defining
314  group for follow-ups since it comprised a greater proportion of ARGs (coef=0.172; g-

315  value=5.54e-06). The cfx (coef=0.124; g-value=0.0078) and other genes important for MLS

316  resistance such as mefE (coef=0.08; g-value=3.54e-07) and ermF (coef=0.07; g-value=3.68e-08),
317  were also more abundant in the follow-ups as were aminoglycoside resistance genes ant(6)

318  (coef=0.103; g-value=5.23e-04) and A16S (coef= 0.092; g-value=5.14e-04).

319

320 Taxa composition and abundance differ markedly during and after infection.

321 Although both cases and follow-ups were dominated by Bacteria (relative abundance =
322 82.0% and 84.4%, respectively) with fewer Archaea or Eukarya, the members of this kingdom
323 comprising the respective microbiomes were distinct. During infection, cases had a high

324  proportion Proteobacteria (37.1%) with decreased abundance of Bacteroidetes (29.6%) and
18
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325  Firmicutes (13.7%) (Figure 6). It is notable that a large proportion of reads could not be assigned
326  to the Phylum level for both the case (16.4%) and follow-up (13.5%) samples. In the differential
327  abundance analysis, Proteobacteria strongly represented cases as well (coef=-0.461; q-

328  value=9.35¢-28).

329
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330 Figure 6. Relative abundance of microbial phyla differs between cases and follow-ups. The
331  top-10 microbial phylum with the greatest average relative abundance among cases (Case, top
332 panel) or follow-ups (FollowUp, bottom panel) is shown; each column represents the

333  microbiome from one individual. Columns are ordered by their sample pairing (i.e., the column
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334  position in each plot corresponds to the same individual. Relative abundances were determined
335  using raw gene abundances that had been normalized by the approximate number of genome

336  equivalents in the sample as determined using MicrobeCensus [21].

337

338 At the genus level, cases and follow-ups each had high proportions of reads that could not
339  Dbe assigned to a specific genus (case=50.1%; follow-up=46.9%). Beyond this, Bacteroides was
340 the most prevalent in both the cases and follow-ups (14.5% and 18.7%, respectively). In cases,
341 this followed by two prominent members of the Enterobacteriaceae family within

342 Proteobacteria: Salmonella (7.1%) and Escherichia (5.0%) (Additional file 14). The next highest
343  relatively abundant genus in cases was Pseudomonas (2.8%), which is also a member of

344  Proteobacteria. In concordance with these findings, the differential abundance analysis identified
345  Escherichia (coef=-0.156; gq-value=0.0021) as the predominant genus among the cases, which is
346  mainly represented by Escherichia coli (coef=-0.146; q-value=0.0082) (Additional file 15).

347  Moreover, Shigella (coef=-0.057; g-value=0.0059), which was represented by three species (S.
348  sonnei, S. flexneri, and S. dysenteriae), as well as Enterobacter (coef=-0.020; g-value= 1.10e-
349  08) and Citrobacter (coef=-0.017; g-value= 8.07e-06) were also more abundant in the cases.

350 In follow-ups, both the Bacteroidetes and Firmicutes populations appeared to rebound
351  during recovery and were notably more prevalent (49.3% and 26.9%, respectively). These phyla
352  also defined follow-ups in the differential abundance analysis (Bacteroidetes (coef=0.305; g-

353  value=1.87e-05); Firmicutes (coef=0.199; g-value= 4.61e-07)). Specifically, increases in

354  Dbeneficial genera such as Alistipes (5.0%) and Prevotella (2.5%) from the Bacteroidetes phylum
355  were observed. The differential abundance analysis, however, detected Firmicutes genera

356  comprising Roseburia (coef=0.050; g-value=6.28e-05), Dialister (coef=0.038; g-value=0.0036),

357  and Ruminococcus (coef=0.037; q-value=2.83e-06) to predominate. Phocaeicola was the most
20
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358 abundant genus of Bacteroidetes (coef=0.037; g-value=1.82e-08), which was represented by
359  Phocaeicola vulgatus and Phocaeicola dorei. One consistent finding among both methods is the
360  heightened abundance of Akkermansia (2.8%) from phylum Verrucomicrobia, a defining genus

361  of follow-ups (coef=0.033; g-value= 0.0069).

362  The continuous structure of resistome and microbiome compositions

363 For each level examined (e.g., phylum, genus, ARG class, ARG group), the top

364  contributing features were determined and relevant continuous structure scores were overlaid

365  onto ordination plots using MMUPHin [33]. When considering taxonomy, a tradeoff was

366  observed between the case dominant Proteobacteria phyla and Bacteroides and Firmicutes, which
367  were most abundant in follow-ups and only a subset of cases. At the genus level, an evident

368  gradient was observed between samples containing Escherichia, Salmonella, Klebsiella,

369  Shigella, and Pseudomonas versus those dominated by Bacteroides and Alistipes (Figure 7A).
370  These differences are visible when overlaid onto ordination as a gradient relevant to loading

371  score (Figure 7B). At the species level, which reveals gradients at the greatest resolution, we

372  observed a tradeoff between harboring Escherichia coli, Klebsiella pneumoniae, and Shigella

373  sonnei versus many Bacteroides species including B. fragilis, B. stercoris, B. uniformis, etc., and
374  Phocaeicola species such as P. vulgatus and P. plebeius (Additional file 16).

375 Tradeoffs were also observed for different resistance genes. At the class level, there was a
376  continuous gradient relative to tetracycline, MLS, and aminoglycoside dominant resistomes

377  versus ARGs for multi-metal resistance, drug and biocide resistance, and drug, metal, and

378  biocide resistance classes (data not shown). At the ARG group level, tefQ was identified as a

379  dominant driver of continuous structure scoring for follow-ups (Figure 7C), whereas resistance

380  genes such as rpoB, acrA, acrB, mdtC, and mdtB were defining for the opposite side of the PCoA
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381  axis. Overlaying these loading scores onto ordination further revealed the taxonomic gradients

382  among case and follow-up samples (Figure 7D).
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383  Figure 7. Continuous structure analysis reveals gradients driving the distribution of

384  samples across the population. The top consensus loadings of the PCA for A) genus and C)

385 antibiotic resistance gene (ARG) groups are shown stratified by sample for cases (Case=red) and
386  follow-ups (FollowUp=blue) drawn from the differential abundance analyses. The composition
387  gradients at the B) genus and D) ARG group levels overlaid onto ordination plots based on Bray-

388  Curtis dissimilarity. Cases (circles), follow-ups (squares), and individuals who received
22
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389  antibiotics (triangles) are shown. The color gradient (“Score”) refers to the continuous structure
390 score affiliated with Loading 1 for phyla and genera, respectively. Juxtaposition of (A-C) and (B-

391 D) allow interpretation of tradeoffs within the samples.

392  Different ARG-harboring microbial hosts are present in cases and follow-ups

393 In cases, ACCs, on average, were primarily attributed to Escherichia (38.05%) followed
394 by Salmonella (18.31%) and Klebsiella (9.92%) (Figure 8). Of the Escherichia-associated

395 ARG s, 27.4% were assigned to MDR on average, though ARGs relevant to drug and biocide

396  resistance (8.12%), fluoroquinolone resistance (7.06%), and aminoglycoside resistance (6.21%)
397  were also identified. Comparatively, the Salmonella-associated ACCs mostly contained genes for
398  MDR and drug and biocide resistance (16.5% and 11.7%, respectively), while the Klebsiella

399  ACCs harbored an array of fosfomycin resistance genes (13.3%) followed by transposase genes
400 in the IS5 family (12.6%). Klebsiella ACCs also contained ARGs for elfamycin resistance

401 (10.4%) and MDR (9.08%).
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402  Figure 8. The top-10 genera assigned to antibiotic resistance gene (ARG)-carrying contigs
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403  (ACCs) in case samples. The percentages associated with each genus indicate the percent of
404  ACCs assigned to that genus. Each bar chart associated with a genus displays the top-5 or top-3
405 ARG classes affiliated with that particular genus on the ACCs.

406

407 Although the most prominent genus in follow-up ACCs was also Escherichia (19.81%),
408  the next most prevalent genera were classified as Bacteroides (15.12%) and Faecalibacterium
409  (5.99%) (Figure 9). Notably, the array of ARGs harbored in the Escherichia-associated ACCs
410  was nearly identical to cases with MDR genes predominating (25.1%), followed by resistance to
411 drugs and biocides (4.71%), fluoroquinolones (4.70%), and aminoglycosides (3.84%). Of the
412  Bacteroidetes-associated ACCs, genes for MLS, beta-lactam, and tetracycline resistance were
413  the most common. The 5.21% of the ACCs that could not be classified and represented an

414  “Uncultured” taxon harbored ARGs for tetracyclines, beta-lactams and phenicols.
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415  Figure 9. The top-10 genera assigned to antibiotic resistance gene (ARG)-carrying contigs

416  (ACCs) in follow-up samples. The percentages associated with each genus indicate the percent

24


https://doi.org/10.1101/2023.01.13.523990
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523990; this version posted January 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

417  of ACCs assigned to that genus. Each bar chart associated with a genus displays the top-5 or top-
418 3 ARG classes affiliated with that particular genus on the ACCs.

419

420  Microbes linked to case infections harbor ARGs during and after recovery

421 Differences in ACCs were also identified after stratifying by the bacterium linked to each
422  infection. Among the 23 cases with Campylobacter (n=23) infections, for instance, the genera
423 comprising the greatest proportion of ACCs were Escherichia (42.84%), Klebsiella (10.01%),
424 and Salmonella (7.09%). Upon recovery, however, Campylobacter cases most often had ACCs
425  representing Bacteroides (18.34%), followed by Escherichia (17.31%) and Faecalibacterium
426  (6.76%). It is also notable that Campylobacter was in the top-20 genera represented on ACCs,
427  with proportions of 1.96% and 3.81% in cases and follow-ups, respectively. ARGs harbored by
428  Campylobacter in case samples conferred resistance to tetracyclines (27.6%), aminoglycosides
429  (9.92%), and rifampin (8.31%). Among the Campylobacter ACCs in follow-up samples,

430  tetracycline (29.0%) and aminoglycoside (27.0%) resistance genes were commonly detected as
431 were genes for MLS resistance (10.3%). Importantly, genes encoding resistance to

432  aminoglycosides were 2.7 times more prevalent among Campylobacter ACCs in the follow-up
433  samples relative to the case samples.

434 In the 29 cases with Salmonella infections, most ACCs were classified as Escherichia
435  (32.39%), Salmonella (30.96%), and Klebsiella (7.89%) compared to Escherichia (20.66%),
436  Bacteroides (14.16%), and Faecalibacterium (6.29%) for the follow-up samples. The most

437  common genes detected in Salmonella ACCs were important for multi-compound resistance
438  including drug and biocide resistance (14.1%) and MFS transporters (13.1%), which can have
439  MDR effects or high specificity to certain classes. ARGs for drug, biocide, and metal resistance

440  (7.61%) were also identified. Among the follow-up samples, the most prevalent class within
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Salmonella-associated ACCs was RND efflux transporters (9.29%), followed by MFS

transporters (6.84%) and fluoroquinolone resistance genes (6.31%).

Multiple clinically relevant ESBLs can be found after recovery from enteric infections

In all, 49 distinct genes encoding beta-lactam resistance were identified representing class
A, C, and D beta-lactamases (Additional file 17); 11 (22.4%) were classified as distinct genes
encoding ESBL production that confer resistance to multiple beta-lactam antibiotics. Among the
ESBL genes detected, those belonging to the CepA family of class A beta-lactamases were most
prevalent occurring in 19 case and 13 follow-up samples; each gene was taxonomically assigned
to Bacteroides. Of these 19 cases, the gene was absent or “lost” in nine patients at follow-up
despite being detected in the case sample (Additional file 18). For the remaining 10 cases, the
same gene was detected in both the case and follow-up samples, indicating persistence with the
Bacteroides population. Additionally, three patients acquired a gene during the recovery period
as it was present in follow-up sample but not the initial sample collected during infection.

ESBL genes of the OXA family, which included OXA-1, OXA-50, OXA-51, and OXA-
61, were also detected; however, each gene was attributed to a different microbial host in the
ACC analysis and was only found in 2-3 individuals. Although the OXA-61 family of class D
beta-lactamases was harbored by Campylobacter, it was only found in two of the 23 cases with
Campylobacter infections. Similarly, Klebsiella was found to harbor OXY genes in four case
samples, though these were absent in the follow-up samples. Klebsiella also possessed genes
representing the SHV family of class A beta-lactamases, which were detected in eight cases.
Because SHV genes were also detected in two unpaired follow-ups, it is likely that all eight cases

lost the genes and two patients acquired it during recovery.
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463 Genes representing the ADC family of class C ESBLs harbored by Acinetobacter were
464  also detected, though there was not enough evidence to infer transfer of these genes between
465  taxa. Since many of the ESBLs were present in cases but not follow-ups, we could not assess
466  whether they were transferred horizontally among bacteria during recovery. Other relevant beta-
467  lactamases were also identified including the BlaEC family of class C beta-lactamases, which
468  were primarily attributed to genus Escherichia and were found in 49 cases and 19 follow-ups.
469  Intriguingly, the ARG was lost in 35 cases, maintained in 14, and acquired in 5 follow-ups.

470 Genes encoding the CfxA family of class A broad-spectrum beta-lactamases were also
471  detected and were primarily harbored by Bacteroides, but also appeared within Prevotella.

472 Among these Bacteroides-associated ARGs, 46 were found in cases and 48 in follow-ups.

473  Although only 7 of these genes were lost by cases, 39 were maintained and 9 were acquired
474  during recovery. A similar trend was observed for cfx4 within Prevotella as three of the five
475  cases lost the genes, two maintained them, and seven acquired them during recovery.

476  Interestingly, there is evidence of horizontal transfer of these CfxA genes between Bacteroides
477  and Prevotella. For example, six separate case-follow-up pairs show cfxA4 as being “acquired” by
478  Prevotella in follow-ups but also maintained by Bacteroides, suggesting potential Bacteroides-
479  to-Prevotella transfer. Two other case-follow-up pairs had cfx4 maintained in both Bacteroides
480  and Prevotella during recovery, while there were three instances in which the Prevotella-

481  harbored ARG was “lost” and the Bacteroides-harbored cfx4 was maintained, suggesting the
482  possibility of Prevotella-to-Bacteroides transfer.

483 Genes encoding the broad CMY -family of class C beta-lactamases were also identified
484  and assigned to Sa/monella in 3 cases (all lost) and 2 follow-ups (both acquired). Relatedly, the
485 CMY-2 family of class C beta-lactamases was identified within Citrobacter and Salmonella.

486  Among these ARGs harbored by Citrobacter, 8 were found in case samples and 3 in follow-ups;
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487 6 cases lost the gene, 2 maintained it, and one follow-up acquired it. Of the CMY-2 ARGs

488  harbored by Salmonella, two were found in cases (each of which were lost) and one was

489  acquired in a follow-up sample. Although the CMY family is a broader category than the CMY-2
490  family of beta-lactamases, it is possible that the CMY family defined in our study contains

491  CMY-2 genes relevant to this analysis. For example, there is one case-follow-up pair in which
492  the CMY-2 family was maintained in Citrobacter and the CMY family was acquired in

493  Salmonella; yet another case-follow-up pair indicated loss of the CMY family of beta-lactamases
494 in Salmonella but maintenance and noted increase of the CMY-2 family in Citrobacter.

495  Although loosely inferred, these data indicate the potential for the horizontal transfer of CMY -
496  family genes across genera.

497 Finally, genes for the general subclass A2 of class A beta-lactamases were found in

498  Bacteroides among both the cases (n=45) and follow-ups (n=47); 7 cases lost the gene during
499  recovery, while 38 maintained it and 9 follow-ups acquired it. The more general “class A beta-
500 lactamase” gene was also found in nine other genera including Atlantibacter, Bacillus,

501  Burkholderia, Clostridium, Proteus, Salmonella, Yersinia, Escherichia, and Klebsiella. Although
502 there is a slight difference in resolution of these identified features, it is helpful to consider the

503  potential for transfere across genera.

504

505 DISCUSSION

506 The human gut microbiome, when disrupted by an infectious pathogen, can drastically
507  change in composition taxonomically, genetically, and functionally [35]. In most instances,

508 pathogen invasion leads to a state of dysbiosis linked to a decrease in gut microbiota diversity [4,
509  36]. Our study supports these findings, as markedly lower microbiome diversity was observed
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510 among cases during infection than after recovery regardless of the bacterial pathogen causing
511 infection. The observed shifts in microbiome composition post-recovery are indicative of gut
512 health, as healthy family members (controls) and follow-ups had more similar microbiome

513  profiles than the cases. In addition to the increased microbiota diversity post-recovery, specific
514  taxonomic signatures such as enhanced abundance of Bacteroidetes and Firmicutes, were

515 observed. For instance, members of Bacteroides, Prevotella, and Phocaeicola as well as

516  Faecalibacterium, Roseburia, and Ruminococcus were found, which have been shown to play
517 influential roles in maintaining gut homeostasis and metabolic health [37-39]. By contrast, the
518 cases were defined primarily by members of Proteobacteria such as Escherichia, Salmonella,
519  Shigella, and Klebsiella, which have been linked to acute enteric disturbances as well as

520  prolonged dysbiosis and long-term disease outcomes [40].

521 The opposite was true for the collection of ARGs, as cases had greater resistome diversity
522  during infection than after recovery. Because shifts in microbial composition inherently

523  influence the presence and abundance of ARGs harbored by microbes within a community, this
524  finding is not surprising. Among the key differences observed, cases had more multi-compound
525  and multi-drug resistance genes during infection than post-recovery, whereas tetracycline, MLS,
526  and aminoglycoside resistance genes were more abundant in the recovered (follow-up) sample.
527  Diverse sets of ARGs have previously been found in otherwise healthy individuals as well [10,
528 41, 42], providing additional support for the human gut as an important reservoir of antibiotic
529  resistance determinants [14].

530 Intriguingly, a subset of five follow-up samples were more closely related to the case
531  microbiome and resistome samples in the PCoA. Because these patients had an average number
532  of 110 days since infection, which did not differ from the overall mean (n=108 days), other

533  factors likely contributed to the case-like microbiome profiles observed. Indeed, four patients
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534  were either <10 or >50 years of age and two of these individuals were hospitalized. Since

535  children and older individuals typically have an enhanced risk of developing more severe disease
536  [43, 44], these patients could have experienced lengthier infections than other members of the
537  sample cohort. The same is true for those who were hospitalized and hence, the microbiome may
538  have not fully recovered at the time of follow-up sampling. The complete level of microbiome
539  recovery, however, could not be deduced for any of the patients since we did not evaluate the gut
540  microbiome in the same patients prior to infection. It is likely that the state of the microbiome
541  prior to infection as well as its resilience to disturbances will vary across individuals and greatly
542  impact the trajectory of disease and recovery. Implementation of a more rigorous longitudinal
543  study is therefore needed in the future.

544 In the host-tracking analysis, we demonstrated that specific microbial taxa were more

545  likely to harbor ARGs during infection. Escherichia, for instance, was a prominent host in the
546  cases regardless of the pathogen linked to the infection. Specifically, Escherichia comprised an
547  average of 38% of all ACCs, with most genes being important for MDR or multi-compound

548  resistance. This result is not surprising given the increased abundance of Escherichia observed
549  during infection. Expansion of Escherichia and Enterobacteriaceae in general, was previously
550  suggested to be linked to inflammation in the gut [45], which was also shown to augment HGT
551 rates between commensal and pathogenic members of this family [46]. Moreover, as the level of
552  MDR increases within a population, so too does the number of integrons, which were also shown
553  to persist among commensal E. coli [47]. This enhanced mobility and maintenance of resistance
554  determinants are key contributors to the emergence of resistant pathobionts [3, 48].

555 Evidence of ARGs harbored by genera linked to the acute infections was also observed,
556 indicating that some pathogens bring resistance genes into the gut during infection. In patients

557  with Salmonella infections, for instance, Sa/monella accounted for ~31% of all ACCs compared
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558 to the overall case average of 18%, with most genes encoding MDR or drug and biocide

559 resistance. Co-selection for resistance to antibiotics, metals, and biocides has been previously
560  documented in Salmonella and other foodborne pathogens [49]. This evidence is supported by
561  data generated in a co-occurrence network analysis despite being a less robust approach [50].
562  Notably, a Salmonella-specific subnetwork comprised of multiple metal, biocide, and MDR
563  genes was identified among Salmonella cases (Additional file 20). This subnetwork was not
564  detected in the co-occurrence network generated using data from the Campylobacter cases alone
565  (Additional file 21). Hence, these findings indicate that the different Salmonella pathogens

566  brought similar ARGs into the microbial communities at the time of infection. Future whole-
567  genome sequencing studies, however, should be conducted to characterize each pathogen and
568  determine the diversity and frequency of those ARGs that were introduced into each gut

569  community.

570 In the follow-up samples, Escherichia still accounted for the greatest proportion (~20%)
571  of all ARG-carrying contigs, which mostly contained MDR genes; however, the proportion was
572 1.9 times less than that observed during infection. Unlike the cases, Bacteroides was the second
573  most important genus accounting for ~15% of the ARG-carrying contigs at recovery with MLS,
574  beta-lactam, and tetracycline resistance genes predominating. Members of Bacteroidetes and
575  Firmicutes have previously been linked to high levels of tetracycline and erythromycin resistance
576  carrying genes such as fetQ as well as ermF and ermG, respectively [51]. These genes were

577  previously suggested to be maintained in microbial host populations even in the absence of

578 antibiotic selection, thereby enhancing the likelihood of HGT [51]. Although resistance to beta-
579 lactam antibiotics has been documented, variation in resistance rates has been observed across

580  species and geographic locations, particularly for the beta-lactamase producers [52, 53].
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581 Indeed, the transfer and acquisition of genes encoding beta-lactamase production is of
582  great concern. During enteric infection, we detected 11 distinct ESBLs that varied in frequency
583  among the cases, although this number may underestimate the actual diversity as not all

584  sequences could be assigned a class designation. Except for the CepA family of genes, most
585  genes were “lost” or undetectable during recovery. This result is consistent with a prior study
586  showing that some ESBLs including CTX and SHV, were more readily lost, though this was
587  dependent on the bacterial host [54]. The noted roles of Klebsiella and Escherichia in harboring
588  ESBLs in both the case and follow-up samples calls attention to the documented capacity of
589 these genera to transfer genes across species or clonal lineages [55]. Klebsiella, for instance, was
590 aprominent ARG carrier in 9.2% and 4.6% of ACCs in the cases and follow-ups, respectively,
591  and was associated with a high occurrence of the IS5 family of transposases. The identification
592  of a genomic element with the potential to transfer ARGs within the gut microbiome is notable,
593  particularly to other members of Enterobacteriaceae, which have contributed to the widespread
594  distribution and spread of ESBL genes [2]. Several beta-lactamase genes were also detected that
595  were not classified as extended spectrum. The CfxA gene family, for example, was harbored by
596  both Bacteroides and Prevotella. In several paired case/follow-up samples, there is evidence for
597 the transfer of cfx4 between genera, which has been documented previously [56]. Because this
598  evidence is solely based on the detection of the gene in both genera at two different time points,
599  more rigorous methods, such as characterizing the sequence-level similarity, are required for
600  confirmation.

601 There are other limitations related to the ACC analysis as well. One example is the

602  potential for misclassifying ARGs found on plasmids even though they were previously shown
603  to contain taxonomic information regarding the host microbe [57]. Because assembly of short-

604  read sequences can inaccurately characterize plasmids and other MGEs [58], deeper sequencing
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is needed to generate more complete assemblies and avoid misclassifying the microbial hosts. In
addition, multiple ARGs were attributed to “uncultured” microbes, highlighting the need for
more comprehensive databases that can accurately predict host taxonomies. Finally, the ACC
analysis relies on classifying microbial hosts based on the co-occurrence of an ARG and its taxa
on the same contig. Alternative methods such as Single-molecule Real-time sequencing, are
therefore required in future studies. Despite these limitations, this study provides important data
about the most common alterations in the gut microbiome and resistome among patients with
enteric infections. It also illustrates how infected microbial communities recover, which is
needed to guide the development of more targeted intervention strategies or therapeutic options
aimed at restoring the dysbiotic gut. Future work should focus on understanding the trajectory of
recovery as it pertains to the presence and dissemination of drug resistance and characterizing the

interactions between microbial hosts, ARGs, and MGEs during recovery.
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