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Abstract 1 

Enteric pathogens cause widespread foodborne illness and are increasingly found to harbor 2 

antimicrobial resistance. The ecological impact of these pathogens on the human gut microbiome 3 

and resistome, however, has yet to be fully elucidated. This study applied shotgun metagenome 4 

sequencing to stools from 60 patients (cases) with enteric bacterial infections for comparison to 5 

stools collected from the same patients’ post-recovery (follow-ups). Overall, the case samples 6 

harbored more antimicrobial resistance genes (ARGs) and had greater resistome diversity than 7 

the follow-up samples (p<0.001), while follow-ups had much more diverse microbiomes 8 

(p<0.001). Although cases were primarily defined by genera Escherichia, Salmonella, and 9 

Shigella along with ARGs for multi-compound and multidrug resistance, follow-ups had a 10 

greater abundance of Bacteroidetes and Firmicutes phyla and genes for tetracycline, macrolides, 11 

lincosamides, and streptogramins (MLS), and aminoglycoside resistance. A host-tracking 12 

analysis revealed that Escherichia was the primary carrier of ARGs in both cases and follow-ups, 13 

with a greater abundance occurring during infection. Eleven distinct extended spectrum beta-14 

lactamases (ESBLs) were identified during infection, some of which appear to be lost or 15 

transferred to different microbial hosts upon recovery. The increasing incidence of disease 16 

caused by foodborne pathogens, coupled with their evolving role in harboring and transferring 17 

antimicrobial resistance determinants within communities, justifies further examination of the 18 

repercussions of enteric infection on human gut ecology. 19 

 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2023. ; https://doi.org/10.1101/2023.01.13.523990doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.13.523990
http://creativecommons.org/licenses/by-nd/4.0/


3 
 

Introduction 20 

Foodborne illness caused by enteric pathogens impacts ~9.4 million people in the United 21 

States each year, with over one-third being attributed to bacterial pathogens [1]. In 2019, the 22 

Centers for Disease Control and Prevention (CDC) documented a marked increase in the 23 

incidence of foodborne infection caused by Campylobacter and Shiga toxin-producing 24 

Escherichia coli (STEC) [2]. Salmonella and Shigella also contribute to a high incidence of 25 

infections, though case numbers remained unchanged relative to previous years. In addition to 26 

their role in enteric disease, Campylobacter, non-Typhoidal Salmonella, Shigella, and members 27 

of Enterobacteriaceae (e.g., Escherichia) have been classified by the CDC as serious threats for 28 

harboring and transmitting antimicrobial resistance [2]. Indeed, each of these pathogens have 29 

been shown to transfer ARGs horizontally within and between microbial species residing in a 30 

niche [3]. Such resistance determinants can cross environmental boundaries, thereby increasing 31 

frequencies within different hosts and environments and enhancing the likelihood of horizontal 32 

gene transfer (HGT).  33 

The consequences of enteric infection on the health of the human gut microbiome are not 34 

fully understood. Prior studies conducted in our lab showed a marked decrease in gut microbiota 35 

diversity attributed to enteric infection [4]. This lack of diversity was suggested to reduce 36 

beneficial microbially-mediated metabolism and exacerbate gut inflammation [5]. Others have 37 

also demonstrated an increase in the proportion of Proteobacteria upon infection with 38 

Salmonella¸ Campylobacter, Shigella, and other pathogens in multiple host organisms [6-9]. 39 

More recently, we have documented shifts in the gut resistome, or compilation of antimicrobial 40 

resistance genes (ARGs), among patients with Campylobacter infections when compared to their 41 

healthy family members [10]. The potential ecological repercussions relevant to recovery from 42 
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enteric infection, however, have yet to be explored. If the microbiome demonstrates a certain 43 

degree of resilience, then perturbations should not be felt with such amplitude and be resolved 44 

over time [11]. In the context of pathogen invasion, various ecological interactions such as direct 45 

antagonism from commensal microbes, resource competition and competitive exclusion, and 46 

secondary metabolite production, must be considered [12, 13]. Each of these factors may 47 

influence the success of an enteric pathogen in the gut environment and the ability of the human 48 

host to recover from the acute infection.   49 

Consideration must also be given to the invading pathogen, which can potentially 50 

introduce virulence and antimicrobial resistance determinants into the gut community. Indeed, 51 

pathogens harboring ARGs can transfer these to other gut microbes during infection or vice 52 

versa, thereby transforming the gut into a resistance gene reservoir [14]. This reservoir is 53 

particularly concerning given that pathobionts found in the community can acquire genetic 54 

factors that encode for pathogenic properties as well as resistance to clinically important 55 

antibiotics. Because infection with enteric pathogens was shown to alter the relative abundance 56 

of certain microbial populations in the gut [4], it is probable that ARGs harbored by microbes 57 

that “bloom” during infection will also increase in abundance. Although new sequence-based 58 

approaches have been developed to identify the microbial hosts of specific ARGs in different 59 

environments [15], these have not been applied to enteric infections. 60 

Consequently, we used shotgun metagenome data to determine how infection by and 61 

recovery from enteric pathogens influences the human gut resistome and microbiome. We also 62 

sought to identify which microbial hosts harbor ARGs to advance understanding of how drug 63 

resistance spreads and is maintained within the dysbiotic and healthy gut microbiome. Further 64 

defining the impacts of these infections on the makeup and function of the gut microbiome is 65 
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necessary to counteract the dissemination of drug resistance and discover novel therapeutic 66 

solutions.  67 

 68 

Methods   69 

Sample collection and sequencing 70 

Sixty stools were obtained from patients with enteric infections (cases) caused by 71 

Campylobacter (n=24), Salmonella (n=29) Shigella (n=4) and Shiga toxin-producing E. coli 72 

(STEC) (n=3) from, 2011-2015. Stools were preserved in Cary-Blair transport media and 73 

submitted to the Michigan Department of Health and Human Services (MDHHS) in 74 

collaboration with four hospitals as described [4]. Patient demographics, exposures, and 75 

symptoms were reported through the Michigan Disease Surveillance System (MDSS). Counties 76 

were classified as ‘rural’ or ‘urban’ as was done in our prior analysis [10]. Each patient 77 

submitted a follow-up sample 1 week to 29 weeks after their acute infection, yielding 120 paired 78 

samples for analysis. Moreover, 91 household members (controls) linked to 38 of the 60 patients 79 

submitted stools for comparison 5-29 weeks after the cases’ infection. Resistome data from 80 

Campylobacter patients were examined previously [10], though no prior metagenome analyses 81 

were performed on the post-recovery samples. 82 

Metagenomic DNA was extracted, sheared, and normalized as described [4]. Libraries 83 

were constructed using the TruSeq Nano library kit (Illumina, Inc., San Diego, CA, USA) and 84 

shotgun sequencing was performed in four runs using an Illumina HiSeq 2500. Reads were 85 

demultiplexed at the MSU Research Technology Support Facility and poor quality and 86 

contaminated samples were removed after filtering.  87 
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Reads-based identification of antimicrobial resistance genes (ARGs) 88 

The AmrPlusPlus v2.0 pipeline was used for quality control checking, aligning, and 89 

annotating metagenomic fragments with the MEGARes 2.0 database [16] and previously 90 

described parameters [10]. Reads were mapped to human genome GRCh38 91 

(GRCh38_latest_genomic.fna.gz, downloaded December 2020) in RefSeq using the Burrows-92 

Wheeler Aligner (BWA) [17] and removed using SAMTools [18] and BEDTools [19]. The non-93 

host FASTQ files were stored and aligned to MEGARes 2.0 to identify ARGs using default 94 

values for the BWA and SAMTools. Reads were deduplicated and annotated with 95 

ResistomeAnalyzer (identity threshold of ≥80%) to quantify ARG abundance per sample, while 96 

RarefactionAnalzyer estimated sequencing depth. Single nucleotide polymorphisms (SNPs) 97 

requiring specific haplotypes to be classified as ARGs were also extracted for confirmation using 98 

the Resistance Gene Identifier via the Comprehensive Antibiotic Resistance Database [20]. 99 

Following annotation and quantifying ARG abundances, MicrobeCensus [21] was used to 100 

determine the average genome size and number of genome equivalents (GE) for normalizing 101 

ARG and taxonomic abundances (Additional file 1). Lastly, metagenomic coverage was 102 

estimated with Nonpareil [22] (Additional file 2).  103 

Assembly-based identification of ARGs 104 

The non-host FASTQ files were used for metagenome assembly after employing 105 

BBTools for paired end read merging using the ‘bbmerge-auto.sh’ script. Reads that failed 106 

merging were error-corrected using Tadpole [23] and reexamined. If merging continued to fail, 107 

reads were extended 20 bp and merging was iterated up to five additional times or unmerged 108 

reads were included. Assembly was performed with MEGAHIT [24] using the merged and 109 
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paired-end reads. The Quality Assessment Tool for Genome Assemblies [25] evaluated assembly 110 

quality and coverage (Additional file 3). 111 

A custom workflow was developed using anvi’o to analyze microbial genomes from 112 

metagenomes as described [26]. Briefly, assembled contigs were reformatted using ‘anvi-script-113 

reformat-fasta’ to generate a contigs database per sample with ‘anvi-gen-contigs-database’. The 114 

script ‘anvi-run-hmms’ was used to populate the contigs database with hits detected using 115 

Hidden Markov Models, which improves assembly annotation. Prodigal [27] was used in the 116 

script ‘anvi-get-sequences-for-gene-calls’ to obtain amino acid sequences of assembled genes for 117 

use in the ARG-carrying contigs (ACC) analysis. 118 

Classifying microbial taxa 119 

  Non-host paired-end reads were taxonomically annotated with Kaiju, a protein-based 120 

classifier that translates reads to amino acid sequences while searching for maximum exact 121 

matches (MEMs) among microbial reference genomes [28]. The National Center for 122 

Biotechnology Information (NCBI) BLAST nr reference database was used with previously 123 

published parameters [10]. Raw abundances of reads assigned to taxa were normalized by the 124 

estimated number of GEs. Those sequencing reads without enough resolution were categorized 125 

as “unassigned”, which comprised ≥50% of annotated reads at the genus and species levels. The 126 

composition analysis was restricted to assigned reads.  127 

Identifying bacterial hosts harboring ARGs 128 

Gene calls from anvi’o were used to identify ARG-carrying contigs (ACCs) by aligning 129 

the amino acid sequences to the HMD-ARG database [29] using DIAMOND [30] using a 130 

modified pipeline that was described previously [15, 31]. The SAM files were filtered to identify 131 

contigs with gene hits, and Seqtk (https://github.com/lh3/seqtk) was used to extract the ACCs 132 
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from the genes as a FASTA file for alignment to the BLAST database v5.0 using blastp. An E-133 

value of 0.00001 cutoff was used with a maximum of 50 target sequences (i.e., 50 matches per 134 

contig). One Campylobacter sample could not be annotated and was excluded along with the 135 

paired follow-up sample leaving 59 pairs (118 samples) for analysis.  136 

Alignment output was used to identify taxa associated with each ARG on a contig. Since 137 

50 matches were allowed per contig, a custom Python script ‘ERIN_ACCpipeline_blastp_merge’ 138 

was used to quantify the average proportion of each genus per sample on the ACCs and the 139 

average percentage of different ARGs per genus within all ACCs in a sample. Taxa with the 140 

most hits per contig were considered the most likely to harbor a given ARG.  141 

Abundance and diversity analyses 142 

The identity and diversity of ARGs and taxa were determined among all samples. For the 143 

resistome analyses, the gene, group, mechanism, class, and type levels were used [16]. Actual 144 

estimated abundance of ARGs and taxa was determined by normalizing raw abundance counts to 145 

the number of GE per sample. Relative abundance was calculated by dividing the number of GE-146 

normalized reads assigned to a specific feature by the total number of GE-normalized reads for 147 

that sample. Alpha diversity metrics such as richness, Shannon diversity, and the Pielou’s 148 

evenness score were estimated using the vegan package [32] in R (https://www.R-project.org/). 149 

Nonparametric tests evaluated differences between groups and the Shapiro-Wilk test indicated 150 

that both the resistome and microbiome data were not normally distributed (Additional file 4).  151 

The Wilcoxon signed-rank test was used to detect significant differences between paired 152 

samples, whereas the Wilcoxon rank-sum test was applied to unpaired samples. Beta diversity 153 

metrics and ordination plots (e.g., Principal Coordinate Analysis (PCoA)) based on Bray-Curtis 154 

dissimilarity at the gene and group (ARGs) or species and genus (taxa) levels were also 155 
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estimated with vegan [32]. The overall mean dissimilarity among cases and follow-ups was 156 

compared to the mean dissimilarity between paired samples using a Welch’s t-test (Additional 157 

file 5). A Permutational Analysis of Variance (PERMANOVA) was calculated using the Bray-158 

Curtis dissimilarities in R to assess differences in centroids (mean) between cases and follow-ups 159 

for both the resistome and microbiome composition; Permutational Analysis of Multivariate 160 

Dispersion (PERMDISP) detected differences in dispersion (degree of spread) of these groups. 161 

Differential abundance of taxa and ARGs 162 

To assess representative features in cases and follow-ups, MMUPHin was used to 163 

construct general linear models relating sample features to relative abundances [33]. Batch 164 

adjustment of relative abundance data was performed by sequencing run, which significantly 165 

influenced the distribution of points in the microbiome ordination (Additional file 6). To 166 

identify differentially abundant ARGs and taxa, a linear model was constructed with follow-ups 167 

serving as the reference for the fixed effect. Age in years, average genome size, number of GE, 168 

year of collection, and use of antibiotics were included as covariates. Significance values were 169 

adjusted using the Benjamini-Hochberg method of correction for multiple hypothesis testing (q-170 

value representing False Discovery Rate). The Analysis of Compositions of Microbiomes with 171 

Bias Correction (ANCOM-BC) method [34], which considers absolute abundances from the GE-172 

normalized counts as input but cannot implement a mixed model with fixed and random effects, 173 

was used for differential abundance testing. The data were concordant with MMUPHin data at 174 

each comparison level (Additional file 7), though differences in rank of correlation was 175 

observed for some features.  176 
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Identification of continuous population structure  177 

MMUPHin [33] was also used to identify continuous population structure from the 178 

microbiome and resistome abundance data to identify taxonomic or resistance gene tradeoffs that 179 

impact data structure in ordination. The ‘continous_discover()’ function was applied to the 180 

abundance data, which performs unsupervised continuous structure discovery using Principal 181 

Components Analysis (PCA). Continuous structure scores (called “loadings”) that comprise the 182 

top principal components were compared across batches to identify “consensus” loadings 183 

assigned to microbial features. The ‘var_perc_cutoff()’ parameter, which filters out the top 184 

components accounting for a set proportion of the variability within the samples, was set to 0.75 185 

for phylum and ARG class levels, 0.50 for genus and ARG groups, and 0.40 for species. Plots 186 

were constructed to visualize the drivers of continuous data structure and to overlay data onto 187 

ordination plots based on Bray-Curtis dissimilarity of microbiome or resistome relative 188 

abundances.  189 

 190 

 191 

Results 192 

Study population 193 

Among the 60 cases, 28 were male (46.7%) and 32 were female (53.3%) ranging between 194 

1.5 and 90 years of age; most patients were between 19-64 years (n=26; 43.3%) or less than 9 195 

(n=16; 26.7%). No difference in the proportion of stool submissions was observed by year, 196 

though the fewest (n=13.3%) were recovered in 2011 and the most (36.7%) in 2013. Among the 197 

59 patients reporting symptoms, 50 (84.8%) had abdominal pain, 57 (96.6%) reported diarrhea, 198 

and 22 (37.3%) reported blood in the stool. Seventeen (28.3%) cases required hospitalization and 199 
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33 (55.0%) resided in a rural area. Most cases did not take antibiotics within two weeks of 200 

sampling, though two (3.3%) reported amoxicillin use, while five (8.3%) reported use of 201 

amoxicillin (n=2), azithromycin (n=1), ciprofloxacin (n=1), or an unknown antibiotic (n=1) 202 

before submitting the follow-up sample. Most follow-up samples were collected 51-100 days 203 

(n=20; 33.9%) or 101-150 days (n=28; 47.5%) post-infection, however, a small number was 204 

submitted ≤50 (n=4; 6.78%) or >150 (n=7;11.9%) days after the initial sample was collected; the 205 

date was missing for one patient. The range of follow-up submissions was 8 to 205 days post-206 

recovery with an average of 107.9 days. 207 

Changes in resistome composition and diversity post-recovery  208 

Among the 120 stool samples, 1,212 ARGs were identified encoding resistance to 209 

biocides, antibiotic drugs, metals, and multi-compound substrates comprising 474 distinct gene 210 

groups or operons. These genes represented 120 distinct mechanisms conferring resistance to 44 211 

classes of compounds. In all, the case samples had significantly more diverse resistomes than 212 

follow-up samples with a greater mean ARG richness (Scases=254 vs. Sfollow-ups=103; p=4.5e-10) 213 

(Figure 1). The Shannon Diversity Index was also greater in cases than follow-ups (Hcases=4.79 214 

vs. Hfollow-ups=3.36; p=2.1e-10) as was the Pielou’s evenness index (J’cases=0.87 vs. J’follow-215 

ups=0.80; p=8.1e-10). Notably, the family member controls did not significantly differ from 216 

follow-up samples, suggesting recovery to a “normal” state post-infection (Additional file 8).  217 
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 218 

Figure 1. Resistome diversity is greater during infection than after recovery. Three alpha 219 

diversity measures (Richness, Shannon’s Diversity Index, and Pielou’s Evenness Index) are 220 

presented. Case samples (Case) are indicated with green dots and follow-up samples (FollowUp) 221 

are purple. Points are slightly offset from the vertical to allow interpretation of all samples. The 222 

median of each measure is indicated by the thick bar within each box and the first and third 223 

quartiles are indicated at the bottom and top of the box, respectively. Gray lines between points 224 

connect both samples from the same individual. P-values were calculated using the Wilcoxon 225 

signed-rank test for paired samples and are shown above the comparison bar within each plot. 226 

 227 

The resistome composition also differed during and after infection as was demonstrated 228 

in the PCoA based on the Bray-Curtis dissimilarity (PERMANOVA p=0.000999; F=38.75) 229 

(Figure 2). No difference was observed in the level of dispersion between groups (PERMDISP 230 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 14, 2023. ; https://doi.org/10.1101/2023.01.13.523990doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.13.523990
http://creativecommons.org/licenses/by-nd/4.0/


13 
 

p=0.52; F=0.468). The samples from those reporting antibiotic use did not cluster separately 231 

from those without antibiotics. Data for residence type, antibiotic use, gender, age, hospital, 232 

county of origin, stool type, sequencing run, and number of days between samplings were fit to 233 

the ordination. Age in years (p=0.013) and year of collection (p=0.043) independently influenced 234 

the distribution of points, whereas residence location, hospital, and the number of days since 235 

infection only trended toward significance. The pathogen responsible for the acute infections did 236 

not have a significant effect on alpha or beta diversity trends (Additional file 9). 237 

 238 

Figure 2. Resistome composition differs significantly during and after infection. A Principal 239 

Coordinates Analysis (PCoA) plot of case (green circles) and follow-up (purple, squares) 240 

resistomes based on Bray-Curtis dissimilarity calculated from gene-level abundances. The first 241 

and second coordinates include the corresponding percentage of similarity explained. Patients 242 

that used antibiotics two weeks prior to sample collection are indicated by triangular data points. 243 
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Changes in microbiome composition and diversity post-recovery  244 

A total of 40,022 species, 4,851 genera, 1,157 families, 537 orders, 236 classes, and 224 245 

phyla was found in all samples combined. Notably, the follow-up samples had more diverse gut 246 

microbiomes than the cases (Figure 3) with significantly greater mean species richness 247 

(Scases=3,426, Sfollow-ups=5,789; p=2.5e-08), mean evenness (J’case=0.150, J’follow-up=0.190; p=9.8e-248 

06), and Shannon Diversity (Hcases=1.21, Hfollow-ups=1.65; p=1.3e-06). When compared to control 249 

samples, the follow-ups had similar Shannon Diversity and evenness, though the richness 250 

differed (Sfollow-ups=5,789, Scontrols=6,872; p=0.012, Wilcoxon rank-sum test (two-sided, 251 

unpaired); Additional file 8).    252 

 253 

Figure 3. Microbiome diversity is greater after recovery. Box plots show the resistome alpha 254 

diversity measures (Pielou’s Evenness Index, Richness, Shannon Diversity Index). Separate 255 

points represent case (Case, green) and follow-up (FollowUp, purple) samples and are offset 256 
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from the vertical for clarity. The median is indicated by the thick bar, while the first and third 257 

quartiles are represented by lines at the bottom and top of the box, respectively. Gray lines 258 

connect samples from one individual. P-values were calculated using the Wilcoxon signed-rank 259 

test for paired samples and are shown above the comparison bars.  260 

 261 

The microbiome composition was also significantly different in the case and follow-up 262 

samples (PERMANOVA p=0.000999, F=7.31; Figure 4), though no difference in the dispersion 263 

of points between groups was observed (PERMDISP p=0.086; F=2.86). The same extrinsic 264 

covariates were fitted to the PCoA. Age (p=0.008), sequencing run (p=0.001), average genome 265 

size (p=0.001), number of genome equivalents (p=0.001), year of sampling (p=0.005), days to 266 

follow-up (p=0.013), hospital (p=0.030), and antibiotic use (p=0.008) significantly impacted the 267 

point distribution. Similar to the resistome analysis, no differences were observed across 268 

pathogens (Additional file 10).  269 
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Figure 4. Microbiome compositional differences between cases and follow-ups are nuanced. 270 

A Principal Coordinates Analysis plot is shown for case (Case, green circles) and follow-up 271 

(FollowUp, purple squares) microbiomes based on Bray-Curtis dissimilarity at the species level. 272 

A biplot was overlaid to display variables that had a significant influence on the distribution of 273 

points in the ordination. Age (Age.years), number of follow-up days (Followup.days), antibiotic 274 

use (Yes and No) were influential vectors. The first and second coordinate are shown and include 275 

the corresponding percentage of similarity explained. Patients that self-reported use of antibiotics 276 

two weeks prior to sample collection are indicated by triangular data points. 277 

ARG composition and abundance varied during and after infection. 278 

The relative abundance of ARGs differed between groups (Additional file 11). The top-279 

three resistance classes in cases accounted for 39.8% of the total resistance genes relative to 280 

71.0% for follow-ups, supporting the observation of greater resistome diversity during infection. 281 

Classes for drugs and biocides (15.1%), MLS (13.3%), and multi-metals (11.3%) were most 282 

abundant in cases compared to MLS (33.5%), tetracyclines (22.0%), and aminoglycosides 283 

(15.5%) in the follow-ups (Figure 5). In the differential abundance analysis, classes for multi-284 

metal resistance (coef= -0.243; q-value=1.04e-04), drug and biocide resistance genes (coef= -285 

0.243; q-value= 1.46e-03), drug, metal, biocide resistance (coef=-0.212; q-value=7.86e-09), and 286 

fluoroquinolone resistance genes (coef= -0.168; q-value= 8.19e-10) were more abundant in cases 287 

(Additional file 12). Comparatively, tetracycline resistance genes (coef=0.352; q-value=2.26e-288 

05) were more abundant in the follow-up samples followed by MLS (coef=0.251; q-289 

value=1.49e-25) and aminoglycoside (coef=0.118; q-value= 7.86e-09) genes. 290 

 291 
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Figure 5. Relative abundance of the top-10 resistance gene classes differs between case and 292 

follow-up samples. The top-10 most abundant compound classes is shown for cases (Case, top 293 

panel) and follow-ups (FollowUp, bottom panel). Each column represents the resistome from one 294 

individual and columns are ordered by the paired samples, meaning that the column position in 295 

each side of the plot refers to the same individual during or after infection. Relative abundances 296 

were determined using raw gene abundances normalized by the approximate number of genome 297 

equivalents in the sample as determined using MicrobeCensus [21]. CAP = cationic 298 

antimicrobial peptides; MLS = Macrolide, Lincosamide, Streptogramin; MDR = Multidrug 299 

resistance; QACs = Quaternary Ammonium Compounds. 300 
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At the group level, specific ARGs were identified for the predominant classes. In the 301 

cases, the most abundant groups were MLS23S (11.9%) conferring MLS resistance, rpoB 302 

(2.8%), a rifampin resistance gene, and A16S (3.8%), which is important for aminoglycoside 303 

resistance (Additional file 13). Similarly, the differential abundance analysis detected MDR 304 

genes, rpoB (coef= -0.123; q-value=6.30e-05) and mdtC (coef= -0.103; q-value=4.97e-09), to be 305 

the most differentiating ARG groups for cases (Additional file 12). Genes such as parC (coef= -306 

0.102; q-value= 3.90e-11) and gyrA (coef= -0.101; q-value=7.38e-08), that encode resistance to 307 

fluoroquinolones, were also more abundant in cases.  308 

In the follow-ups, the most abundant groups were for MLS, tetracycline, and 309 

aminoglycoside resistance, with MLS23S (n=6.6; 24.3%), tetQ (n=4.0; 17.0%), A16S (n=2.4; 310 

9.5%), and cfx (n=0.84; 3.8%) predominating, respectively (Additional file 13). tetQ had the 311 

greatest differential abundance in favor of follow-ups (coef=0.30; q-value=6.56e-05) 312 

(Additional file 12). Despite its noted prevalence among cases, MLS23S was also a defining 313 

group for follow-ups since it comprised a greater proportion of ARGs (coef=0.172; q-314 

value=5.54e-06). The cfx (coef=0.124; q-value=0.0078) and other genes important for MLS 315 

resistance such as mefE (coef=0.08; q-value=3.54e-07) and ermF (coef=0.07; q-value=3.68e-08), 316 

were also more abundant in the follow-ups as were aminoglycoside resistance genes ant(6) 317 

(coef= 0.103; q-value=5.23e-04) and A16S (coef= 0.092; q-value=5.14e-04). 318 

 319 

Taxa composition and abundance differ markedly during and after infection.  320 

Although both cases and follow-ups were dominated by Bacteria (relative abundance = 321 

82.0% and 84.4%, respectively) with fewer Archaea or Eukarya, the members of this kingdom 322 

comprising the respective microbiomes were distinct. During infection, cases had a high 323 

proportion Proteobacteria (37.1%) with decreased abundance of Bacteroidetes (29.6%) and 324 
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Firmicutes (13.7%) (Figure 6). It is notable that a large proportion of reads could not be assigned 325 

to the Phylum level for both the case (16.4%) and follow-up (13.5%) samples.  In the differential 326 

abundance analysis, Proteobacteria strongly represented cases as well (coef= -0.461; q-327 

value=9.35e-28).  328 

 329 

Figure 6. Relative abundance of microbial phyla differs between cases and follow-ups. The 330 

top-10 microbial phylum with the greatest average relative abundance among cases (Case, top 331 

panel) or follow-ups (FollowUp, bottom panel) is shown; each column represents the 332 

microbiome from one individual. Columns are ordered by their sample pairing (i.e., the column 333 
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position in each plot corresponds to the same individual. Relative abundances were determined 334 

using raw gene abundances that had been normalized by the approximate number of genome 335 

equivalents in the sample as determined using MicrobeCensus [21]. 336 

 337 

At the genus level, cases and follow-ups each had high proportions of reads that could not 338 

be assigned to a specific genus (case=50.1%; follow-up=46.9%). Beyond this, Bacteroides was 339 

the most prevalent in both the cases and follow-ups (14.5% and 18.7%, respectively). In cases, 340 

this followed by two prominent members of the Enterobacteriaceae family within 341 

Proteobacteria: Salmonella (7.1%) and Escherichia (5.0%) (Additional file 14). The next highest 342 

relatively abundant genus in cases was Pseudomonas (2.8%), which is also a member of 343 

Proteobacteria. In concordance with these findings, the differential abundance analysis identified 344 

Escherichia (coef= -0.156; q-value=0.0021) as the predominant genus among the cases, which is 345 

mainly represented by Escherichia coli (coef=-0.146; q-value=0.0082) (Additional file 15). 346 

Moreover, Shigella (coef= -0.057; q-value=0.0059), which was represented by three species (S. 347 

sonnei, S. flexneri, and S. dysenteriae), as well as Enterobacter (coef= -0.020; q-value= 1.10e-348 

08) and Citrobacter (coef= -0.017; q-value= 8.07e-06) were also more abundant in the cases.  349 

In follow-ups, both the Bacteroidetes and Firmicutes populations appeared to rebound 350 

during recovery and were notably more prevalent (49.3% and 26.9%, respectively). These phyla 351 

also defined follow-ups in the differential abundance analysis (Bacteroidetes (coef=0.305; q-352 

value=1.87e-05); Firmicutes (coef=0.199; q-value= 4.61e-07)). Specifically, increases in 353 

beneficial genera such as Alistipes (5.0%) and Prevotella (2.5%) from the Bacteroidetes phylum 354 

were observed. The differential abundance analysis, however, detected Firmicutes genera 355 

comprising Roseburia (coef=0.050; q-value=6.28e-05), Dialister (coef=0.038; q-value=0.0036), 356 

and Ruminococcus (coef=0.037; q-value=2.83e-06) to predominate. Phocaeicola was the most 357 
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abundant genus of Bacteroidetes (coef=0.037; q-value=1.82e-08), which was represented by 358 

Phocaeicola vulgatus and Phocaeicola dorei. One consistent finding among both methods is the 359 

heightened abundance of Akkermansia (2.8%) from phylum Verrucomicrobia, a defining genus 360 

of follow-ups (coef=0.033; q-value= 0.0069).  361 

The continuous structure of resistome and microbiome compositions 362 

For each level examined (e.g., phylum, genus, ARG class, ARG group), the top 363 

contributing features were determined and relevant continuous structure scores were overlaid 364 

onto ordination plots using MMUPHin [33]. When considering taxonomy, a tradeoff was 365 

observed between the case dominant Proteobacteria phyla and Bacteroides and Firmicutes, which 366 

were most abundant in follow-ups and only a subset of cases. At the genus level, an evident 367 

gradient was observed between samples containing Escherichia, Salmonella, Klebsiella, 368 

Shigella, and Pseudomonas versus those dominated by Bacteroides and Alistipes (Figure 7A). 369 

These differences are visible when overlaid onto ordination as a gradient relevant to loading 370 

score (Figure 7B). At the species level, which reveals gradients at the greatest resolution, we 371 

observed a tradeoff between harboring Escherichia coli, Klebsiella pneumoniae, and Shigella 372 

sonnei versus many Bacteroides species including B. fragilis, B. stercoris, B. uniformis, etc., and 373 

Phocaeicola species such as P. vulgatus and P. plebeius (Additional file 16).  374 

Tradeoffs were also observed for different resistance genes. At the class level, there was a 375 

continuous gradient relative to tetracycline, MLS, and aminoglycoside dominant resistomes 376 

versus ARGs for multi-metal resistance, drug and biocide resistance, and drug, metal, and 377 

biocide resistance classes (data not shown). At the ARG group level, tetQ was identified as a 378 

dominant driver of continuous structure scoring for follow-ups (Figure 7C), whereas resistance 379 

genes such as rpoB, acrA, acrB, mdtC, and mdtB were defining for the opposite side of the PCoA 380 
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axis. Overlaying these loading scores onto ordination further revealed the taxonomic gradients 381 

among case and follow-up samples (Figure 7D). 382 

Figure 7. Continuous structure analysis reveals gradients driving the distribution of 383 

samples across the population. The top consensus loadings of the PCA for A) genus and C) 384 

antibiotic resistance gene (ARG) groups are shown stratified by sample for cases (Case=red) and 385 

follow-ups (FollowUp=blue) drawn from the differential abundance analyses. The composition 386 

gradients at the B) genus and D) ARG group levels overlaid onto ordination plots based on Bray-387 

Curtis dissimilarity. Cases (circles), follow-ups (squares), and individuals who received 388 
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antibiotics (triangles) are shown. The color gradient (“Score”) refers to the continuous structure 389 

score affiliated with Loading 1 for phyla and genera, respectively. Juxtaposition of (A-C) and (B-390 

D) allow interpretation of tradeoffs within the samples. 391 

Different ARG-harboring microbial hosts are present in cases and follow-ups 392 

In cases, ACCs, on average, were primarily attributed to Escherichia (38.05%) followed 393 

by Salmonella (18.31%) and Klebsiella (9.92%) (Figure 8). Of the Escherichia-associated 394 

ARGs, 27.4% were assigned to MDR on average, though ARGs relevant to drug and biocide 395 

resistance (8.12%), fluoroquinolone resistance (7.06%), and aminoglycoside resistance (6.21%) 396 

were also identified. Comparatively, the Salmonella-associated ACCs mostly contained genes for 397 

MDR and drug and biocide resistance (16.5% and 11.7%, respectively), while the Klebsiella 398 

ACCs harbored an array of fosfomycin resistance genes (13.3%) followed by transposase genes 399 

in the IS5 family (12.6%). Klebsiella ACCs also contained ARGs for elfamycin resistance 400 

(10.4%) and MDR (9.08%).                                                                                                    401 

Figure 8. The top-10 genera assigned to antibiotic resistance gene (ARG)-carrying contigs 402 
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(ACCs) in case samples. The percentages associated with each genus indicate the percent of 403 

ACCs assigned to that genus. Each bar chart associated with a genus displays the top-5 or top-3 404 

ARG classes affiliated with that particular genus on the ACCs.  405 

 406 

Although the most prominent genus in follow-up ACCs was also Escherichia (19.81%), 407 

the next most prevalent genera were classified as Bacteroides (15.12%) and Faecalibacterium 408 

(5.99%) (Figure 9). Notably, the array of ARGs harbored in the Escherichia-associated ACCs 409 

was nearly identical to cases with MDR genes predominating (25.1%), followed by resistance to 410 

drugs and biocides (4.71%), fluoroquinolones (4.70%), and aminoglycosides (3.84%). Of the 411 

Bacteroidetes-associated ACCs, genes for MLS, beta-lactam, and tetracycline resistance were 412 

the most common. The 5.21% of the ACCs that could not be classified and represented an 413 

“Uncultured” taxon harbored ARGs for tetracyclines, beta-lactams and phenicols.  414 

Figure 9. The top-10 genera assigned to antibiotic resistance gene (ARG)-carrying contigs 415 

(ACCs) in follow-up samples. The percentages associated with each genus indicate the percent 416 
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of ACCs assigned to that genus. Each bar chart associated with a genus displays the top-5 or top-417 

3 ARG classes affiliated with that particular genus on the ACCs. 418 

 419 

Microbes linked to case infections harbor ARGs during and after recovery 420 

Differences in ACCs were also identified after stratifying by the bacterium linked to each 421 

infection. Among the 23 cases with Campylobacter (n=23) infections, for instance, the genera 422 

comprising the greatest proportion of ACCs were Escherichia (42.84%), Klebsiella (10.01%), 423 

and Salmonella (7.09%). Upon recovery, however, Campylobacter cases most often had ACCs 424 

representing Bacteroides (18.34%), followed by Escherichia (17.31%) and Faecalibacterium 425 

(6.76%). It is also notable that Campylobacter was in the top-20 genera represented on ACCs, 426 

with proportions of 1.96% and 3.81% in cases and follow-ups, respectively. ARGs harbored by 427 

Campylobacter in case samples conferred resistance to tetracyclines (27.6%), aminoglycosides 428 

(9.92%), and rifampin (8.31%). Among the Campylobacter ACCs in follow-up samples, 429 

tetracycline (29.0%) and aminoglycoside (27.0%) resistance genes were commonly detected as 430 

were genes for MLS resistance (10.3%). Importantly, genes encoding resistance to 431 

aminoglycosides were 2.7 times more prevalent among Campylobacter ACCs in the follow-up 432 

samples relative to the case samples. 433 

In the 29 cases with Salmonella infections, most ACCs were classified as Escherichia 434 

(32.39%), Salmonella (30.96%), and Klebsiella (7.89%) compared to Escherichia (20.66%), 435 

Bacteroides (14.16%), and Faecalibacterium (6.29%) for the follow-up samples. The most 436 

common genes detected in Salmonella ACCs were important for multi-compound resistance 437 

including drug and biocide resistance (14.1%) and MFS transporters (13.1%), which can have 438 

MDR effects or high specificity to certain classes. ARGs for drug, biocide, and metal resistance 439 

(7.61%) were also identified. Among the follow-up samples, the most prevalent class within 440 
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Salmonella-associated ACCs was RND efflux transporters (9.29%), followed by MFS 441 

transporters (6.84%) and fluoroquinolone resistance genes (6.31%). 442 

Multiple clinically relevant ESBLs can be found after recovery from enteric infections  443 

In all, 49 distinct genes encoding beta-lactam resistance were identified representing class 444 

A, C, and D beta-lactamases (Additional file 17); 11 (22.4%) were classified as distinct genes 445 

encoding ESBL production that confer resistance to multiple beta-lactam antibiotics. Among the 446 

ESBL genes detected, those belonging to the CepA family of class A beta-lactamases were most 447 

prevalent occurring in 19 case and 13 follow-up samples; each gene was taxonomically assigned 448 

to Bacteroides. Of these 19 cases, the gene was absent or “lost” in nine patients at follow-up 449 

despite being detected in the case sample (Additional file 18). For the remaining 10 cases, the 450 

same gene was detected in both the case and follow-up samples, indicating persistence with the 451 

Bacteroides population. Additionally, three patients acquired a gene during the recovery period 452 

as it was present in follow-up sample but not the initial sample collected during infection.  453 

ESBL genes of the OXA family, which included OXA-1, OXA-50, OXA-51, and OXA-454 

61, were also detected; however, each gene was attributed to a different microbial host in the 455 

ACC analysis and was only found in 2-3 individuals. Although the OXA-61 family of class D 456 

beta-lactamases was harbored by Campylobacter, it was only found in two of the 23 cases with 457 

Campylobacter infections. Similarly, Klebsiella was found to harbor OXY genes in four case 458 

samples, though these were absent in the follow-up samples.  Klebsiella also possessed genes 459 

representing the SHV family of class A beta-lactamases, which were detected in eight cases. 460 

Because SHV genes were also detected in two unpaired follow-ups, it is likely that all eight cases 461 

lost the genes and two patients acquired it during recovery.  462 
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Genes representing the ADC family of class C ESBLs harbored by Acinetobacter were 463 

also detected, though there was not enough evidence to infer transfer of these genes between 464 

taxa. Since many of the ESBLs were present in cases but not follow-ups, we could not assess 465 

whether they were transferred horizontally among bacteria during recovery. Other relevant beta-466 

lactamases were also identified including the BlaEC family of class C beta-lactamases, which 467 

were primarily attributed to genus Escherichia and were found in 49 cases and 19 follow-ups. 468 

Intriguingly, the ARG was lost in 35 cases, maintained in 14, and acquired in 5 follow-ups.  469 

Genes encoding the CfxA family of class A broad-spectrum beta-lactamases were also 470 

detected and were primarily harbored by Bacteroides, but also appeared within Prevotella. 471 

Among these Bacteroides-associated ARGs, 46 were found in cases and 48 in follow-ups. 472 

Although only 7 of these genes were lost by cases, 39 were maintained and 9 were acquired 473 

during recovery. A similar trend was observed for cfxA within Prevotella as three of the five 474 

cases lost the genes, two maintained them, and seven acquired them during recovery. 475 

Interestingly, there is evidence of horizontal transfer of these CfxA genes between Bacteroides 476 

and Prevotella. For example, six separate case-follow-up pairs show cfxA as being “acquired” by 477 

Prevotella in follow-ups but also maintained by Bacteroides, suggesting potential Bacteroides-478 

to-Prevotella transfer. Two other case-follow-up pairs had cfxA maintained in both Bacteroides 479 

and Prevotella during recovery, while there were three instances in which the Prevotella-480 

harbored ARG was “lost” and the Bacteroides-harbored cfxA was maintained, suggesting the 481 

possibility of Prevotella-to-Bacteroides transfer.  482 

Genes encoding the broad CMY-family of class C beta-lactamases were also identified 483 

and assigned to Salmonella in 3 cases (all lost) and 2 follow-ups (both acquired). Relatedly, the 484 

CMY-2 family of class C beta-lactamases was identified within Citrobacter and Salmonella. 485 

Among these ARGs harbored by Citrobacter, 8 were found in case samples and 3 in follow-ups; 486 
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6 cases lost the gene, 2 maintained it, and one follow-up acquired it. Of the CMY-2 ARGs 487 

harbored by Salmonella, two were found in cases (each of which were lost) and one was 488 

acquired in a follow-up sample. Although the CMY family is a broader category than the CMY-2 489 

family of beta-lactamases, it is possible that the CMY family defined in our study contains 490 

CMY-2 genes relevant to this analysis. For example, there is one case-follow-up pair in which 491 

the CMY-2 family was maintained in Citrobacter and the CMY family was acquired in 492 

Salmonella; yet another case-follow-up pair indicated loss of the CMY family of beta-lactamases 493 

in Salmonella but maintenance and noted increase of the CMY-2 family in Citrobacter. 494 

Although loosely inferred, these data indicate the potential for the horizontal transfer of CMY-495 

family genes across genera.  496 

Finally, genes for the general subclass A2 of class A beta-lactamases were found in 497 

Bacteroides among both the cases (n=45) and follow-ups (n=47); 7 cases lost the gene during 498 

recovery, while 38 maintained it and 9 follow-ups acquired it. The more general “class A beta-499 

lactamase” gene was also found in nine other genera including Atlantibacter, Bacillus, 500 

Burkholderia, Clostridium, Proteus, Salmonella, Yersinia, Escherichia, and Klebsiella. Although 501 

there is a slight difference in resolution of these identified features, it is helpful to consider the 502 

potential for transfere across genera.  503 

 504 

DISCUSSION 505 

The human gut microbiome, when disrupted by an infectious pathogen, can drastically 506 

change in composition taxonomically, genetically, and functionally [35]. In most instances, 507 

pathogen invasion leads to a state of dysbiosis linked to a decrease in gut microbiota diversity [4, 508 

36]. Our study supports these findings, as markedly lower microbiome diversity was observed 509 
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among cases during infection than after recovery regardless of the bacterial pathogen causing 510 

infection. The observed shifts in microbiome composition post-recovery are indicative of gut 511 

health, as healthy family members (controls) and follow-ups had more similar microbiome 512 

profiles than the cases. In addition to the increased microbiota diversity post-recovery, specific 513 

taxonomic signatures such as enhanced abundance of Bacteroidetes and Firmicutes, were 514 

observed. For instance, members of Bacteroides, Prevotella, and Phocaeicola as well as 515 

Faecalibacterium, Roseburia, and Ruminococcus were found, which have been shown to play 516 

influential roles in maintaining gut homeostasis and metabolic health [37-39]. By contrast, the 517 

cases were defined primarily by members of Proteobacteria such as Escherichia, Salmonella, 518 

Shigella, and Klebsiella, which have been linked to acute enteric disturbances as well as 519 

prolonged dysbiosis and long-term disease outcomes [40].  520 

The opposite was true for the collection of ARGs, as cases had greater resistome diversity 521 

during infection than after recovery. Because shifts in microbial composition inherently 522 

influence the presence and abundance of ARGs harbored by microbes within a community, this 523 

finding is not surprising. Among the key differences observed, cases had more multi-compound 524 

and multi-drug resistance genes during infection than post-recovery, whereas tetracycline, MLS, 525 

and aminoglycoside resistance genes were more abundant in the recovered (follow-up) sample. 526 

Diverse sets of ARGs have previously been found in otherwise healthy individuals as well [10, 527 

41, 42], providing additional support for the human gut as an important reservoir of antibiotic 528 

resistance determinants [14].  529 

Intriguingly, a subset of five follow-up samples were more closely related to the case 530 

microbiome and resistome samples in the PCoA. Because these patients had an average number 531 

of 110 days since infection, which did not differ from the overall mean (n=108 days), other 532 

factors likely contributed to the case-like microbiome profiles observed. Indeed, four patients 533 
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were either <10 or >50 years of age and two of these individuals were hospitalized. Since 534 

children and older individuals typically have an enhanced risk of developing more severe disease 535 

[43, 44], these patients could have experienced lengthier infections than other members of the 536 

sample cohort. The same is true for those who were hospitalized and hence, the microbiome may 537 

have not fully recovered at the time of follow-up sampling. The complete level of microbiome 538 

recovery, however, could not be deduced for any of the patients since we did not evaluate the gut 539 

microbiome in the same patients prior to infection. It is likely that the state of the microbiome 540 

prior to infection as well as its resilience to disturbances will vary across individuals and greatly 541 

impact the trajectory of disease and recovery. Implementation of a more rigorous longitudinal 542 

study is therefore needed in the future.  543 

In the host-tracking analysis, we demonstrated that specific microbial taxa were more 544 

likely to harbor ARGs during infection. Escherichia, for instance, was a prominent host in the 545 

cases regardless of the pathogen linked to the infection. Specifically, Escherichia comprised an 546 

average of 38% of all ACCs, with most genes being important for MDR or multi-compound 547 

resistance. This result is not surprising given the increased abundance of Escherichia observed 548 

during infection. Expansion of Escherichia and Enterobacteriaceae in general, was previously 549 

suggested to be linked to inflammation in the gut [45], which was also shown to augment HGT 550 

rates between commensal and pathogenic members of this family [46]. Moreover, as the level of 551 

MDR increases within a population, so too does the number of integrons, which were also shown 552 

to persist among commensal E. coli [47]. This enhanced mobility and maintenance of resistance 553 

determinants are key contributors to the emergence of resistant pathobionts [3, 48].  554 

Evidence of ARGs harbored by genera linked to the acute infections was also observed, 555 

indicating that some pathogens bring resistance genes into the gut during infection. In patients 556 

with Salmonella infections, for instance, Salmonella accounted for ~31% of all ACCs compared 557 
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to the overall case average of 18%, with most genes encoding MDR or drug and biocide 558 

resistance. Co-selection for resistance to antibiotics, metals, and biocides has been previously 559 

documented in Salmonella and other foodborne pathogens [49]. This evidence is supported by 560 

data generated in a co-occurrence network analysis despite being a less robust approach [50]. 561 

Notably, a Salmonella-specific subnetwork comprised of multiple metal, biocide, and MDR 562 

genes was identified among Salmonella cases (Additional file 20). This subnetwork was not 563 

detected in the co-occurrence network generated using data from the Campylobacter cases alone 564 

(Additional file 21). Hence, these findings indicate that the different Salmonella pathogens 565 

brought similar ARGs into the microbial communities at the time of infection. Future whole-566 

genome sequencing studies, however, should be conducted to characterize each pathogen and 567 

determine the diversity and frequency of those ARGs that were introduced into each gut 568 

community. 569 

In the follow-up samples, Escherichia still accounted for the greatest proportion (~20%) 570 

of all ARG-carrying contigs, which mostly contained MDR genes; however, the proportion was 571 

1.9 times less than that observed during infection. Unlike the cases, Bacteroides was the second 572 

most important genus accounting for ~15% of the ARG-carrying contigs at recovery with MLS, 573 

beta-lactam, and tetracycline resistance genes predominating. Members of Bacteroidetes and 574 

Firmicutes have previously been linked to high levels of tetracycline and erythromycin resistance 575 

carrying genes such as tetQ as well as ermF and ermG, respectively [51]. These genes were 576 

previously suggested to be maintained in microbial host populations even in the absence of 577 

antibiotic selection, thereby enhancing the likelihood of HGT [51]. Although resistance to beta-578 

lactam antibiotics has been documented, variation in resistance rates has been observed across 579 

species and geographic locations, particularly for the beta-lactamase producers [52, 53].  580 
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Indeed, the transfer and acquisition of genes encoding beta-lactamase production is of 581 

great concern. During enteric infection, we detected 11 distinct ESBLs that varied in frequency 582 

among the cases, although this number may underestimate the actual diversity as not all 583 

sequences could be assigned a class designation. Except for the CepA family of genes, most 584 

genes were “lost” or undetectable during recovery. This result is consistent with a prior study 585 

showing that some ESBLs including CTX and SHV, were more readily lost, though this was 586 

dependent on the bacterial host [54]. The noted roles of Klebsiella and Escherichia in harboring 587 

ESBLs in both the case and follow-up samples calls attention to the documented capacity of 588 

these genera to transfer genes across species or clonal lineages [55]. Klebsiella, for instance, was 589 

a prominent ARG carrier in 9.2% and 4.6% of ACCs in the cases and follow-ups, respectively, 590 

and was associated with a high occurrence of the IS5 family of transposases. The identification 591 

of a genomic element with the potential to transfer ARGs within the gut microbiome is notable, 592 

particularly to other members of Enterobacteriaceae, which have contributed to the widespread 593 

distribution and spread of ESBL genes [2]. Several beta-lactamase genes were also detected that 594 

were not classified as extended spectrum. The CfxA gene family, for example, was harbored by 595 

both Bacteroides and Prevotella. In several paired case/follow-up samples, there is evidence for 596 

the transfer of cfxA between genera, which has been documented previously [56]. Because this 597 

evidence is solely based on the detection of the gene in both genera at two different time points, 598 

more rigorous methods, such as characterizing the sequence-level similarity, are required for 599 

confirmation.  600 

There are other limitations related to the ACC analysis as well. One example is the 601 

potential for misclassifying ARGs found on plasmids even though they were previously shown 602 

to contain taxonomic information regarding the host microbe [57]. Because assembly of short-603 

read sequences can inaccurately characterize plasmids and other MGEs [58], deeper sequencing 604 
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is needed to generate more complete assemblies and avoid misclassifying the microbial hosts. In 605 

addition, multiple ARGs were attributed to “uncultured” microbes, highlighting the need for 606 

more comprehensive databases that can accurately predict host taxonomies. Finally, the ACC 607 

analysis relies on classifying microbial hosts based on the co-occurrence of an ARG and its taxa 608 

on the same contig. Alternative methods such as Single-molecule Real-time sequencing, are 609 

therefore required in future studies. Despite these limitations, this study provides important data 610 

about the most common alterations in the gut microbiome and resistome among patients with 611 

enteric infections. It also illustrates how infected microbial communities recover, which is 612 

needed to guide the development of more targeted intervention strategies or therapeutic options 613 

aimed at restoring the dysbiotic gut. Future work should focus on understanding the trajectory of 614 

recovery as it pertains to the presence and dissemination of drug resistance and characterizing the 615 

interactions between microbial hosts, ARGs, and MGEs during recovery.  616 
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