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Abstract

Routine clinical assays, such as conventional immunohistochemistry, often fail to resolve the
regional heterogeneity of complex inflammatory skin conditions. Here we introduce MANTIS
(Multiplexed Annotated Tissue Imaging System), a flexible analytic pipeline compatible with
routine practice, specifically-designed for spatially-resolved immune phenotyping of the skin
in experimental or clinical samples. Based on phenotype attribution matrices coupled to a-shape
algorithms, MANTIS projects a representative digital immune landscape, while enabling
automated detection of major inflammatory clusters and concomitant single-cell data
quantification of biomarkers. We observed that severe pathological lesions from systemic lupus
erythematosus, Kawasaki syndrome or COVID-19-associated skin manifestations share
common quantitative immune features, while displaying a non-random distribution of cells with
the formation of disease-specific dermal immune structures. Given its accuracy and flexibility,
MANTIS is designed to solve the spatial organization of complex immune environments to
better apprehend the pathophysiology of skin manifestations.

Introduction

The skin acts as a barrier organ that separates the body from the external environment. Upon
inflammation, blood-circulating immune cells are recruited to help orchestrate the cutaneous
immunity and are often nested nearby key structural elements (e.g., postcapillary venules, hair
follicles, dermal-epidermal junction, etc.)*2. In pathological settings, the nature and activation
status of the skin immune landscape often represent precious biological information that can
help establish an accurate diagnosis, apprehend interpatient heterogeneity and select the most
appropriate treatment. The use of imaging-based approaches to identify cutaneous immune cells
is still challenging because of the high level of autofluorescence arising from the tissue itself,
the potential spectral spillover when more than 4 fluorochromes are used simultaneously and

the entanglement of all cells within thick and polarized structural appendages.

The vast majority of microscopic diagnoses of inflammatory skin conditions relies on repeated
immunohistochemistry (IHC) analysis of one or two proteins and/or hematoxylin eosin (H&E)

staining in thin (2 to 5 um) formalin-fixed, paraffin-embedded (FFPE) specimens®4. While such

2


https://doi.org/10.1101/2023.01.13.523748
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523748; this version posted January 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Main manuscript

70  two-dimensional approaches are reproducible and suitable for routine practice, they do not
71  permit to apprehend the complex topology and heterogeneity of immune cells®, in particular
72 those nested in-between epidermal appendices. The development of image-based histo-
73 cytometry, which consists in analyzing segmented multicolor images with classical flow
74 cytometry gating strategies, has paved the way toward the development of sophisticated image-
75  generation systems coupled to computational imaging®. Recently, highly-multiplexed imaging
76  systems have significantly advanced our understanding of tissue-resident immune subsets and
77  of their spatial distribution with regards to tissue structures, with a strong focus on cancer
78  samples and tumor heterogeneity, such as CODEX"®, MIBI-TOF®, IMC'°, MuSIC*!, CyCIF*?,
79  Cell Dive® and others**. While multiplexed imaging has an immense potential, there is a strong
80  need to democratize these methods with the use of inexpensive instrumentation compatible with
81 standard tissue processing and coupled to an analysis interface that is user-friendly enough to
82  be used in routine practice.
83
84  Here we present an integrated framework primarily designed for spatially-resolved immune
85  cells phenotyping in FFPE human skin biopsies. We first set up a simple and inexpensive
86  method to acquire 10 fluorescent signals simultaneously and in 3-D using a classical confocal
87  microscope. We next designed MANTIS (Multiplexed Annotated Tissue Imaging System), an
88 adaptable and interactive analytical system which automatically generates a digitalized version
89  of the skin immune landscape and enables single-cell quantitative data visualization. Based on
90 these settings, MANTIS could be implemented in most laboratories coupled to existing
91 confocal equipment to bridge the gap between sophisticated research tools and standard-of-care
92  diagnostic procedures with minimal human intervention.
93
94  Results
95
96  Extraction of single-cell statistics from skin sections by combining conventional confocal
97 laser-scanning microscopy and computational imaging
98  We developed a simple method to generate 3-D multiplexed fluorescent images from FFPE (20
99  um thick) skin biopsies which could be implemented in most research or clinical laboratories
100  on existing equipment. Skin sections were first stained with different panels of commercially-
101  available fluorochrome-coupled antibodies added simultaneously, then quenched to avoid
102  excessive natural autofluorescence of skin structural elements (Fig. 1A). We acquired 3-D

103  fluorescent multiplexed images with a conventional inverted confocal laser-scanning
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104  microscope equipped with 5 laser lines, 5 detectors and a 40X oil immersion objective, using a
105  strategy of sequential acquisition composed of fast consecutive steps (Fig. 1B; the detailed
106  description of optical paths and lasers of our 8-year-old Leica SP8 system is provided in the
107  Materials and Methods section). This setting enabled the acquisition of 8 to 10 fluorescent
108 channels, on a system primarily designed for 4 colors, over a skin section of the following 3
109  dimensions, 0.6 mm (x) x 0.4 mm (y) x 20 um (z) within 25 minutes. The obtained 3-D images
110  were then deconvoluted and compensated to correct 3-D fluorescent spectral spillovers (Fig.
111  1C, D) using the Huygens software (Scientific Volume Imaging), a strategy routinely applied
112 inflow cytometry to combine multiple fluorochromes simultaneously®!®. Compared to classical
113  segmentation strategies based on nucleus expansion’®, which often lead to under or over-
114  estimation of cellular cluster composition, we used the general immune biomarker CD45 as a
115  robust immune staining visualized in most skin-resident immune cells to constitute the core of
116  our cell segmentation strategy for future single immune cell statistics extraction (Fig. 1E, F).
117  Using the Isosurface algorithm of the Imaris software (Bitplane) we next modeled the 3D
118  fluorescence signal of CD45 for individual immune cells and exported a corresponding single-
119  cell database composed of the mean fluorescence intensity (MFI) of all individual biomarkers
120  and precise X, Y, z tissue coordinates obtained with a resolution of 299 x 299 x 999 nm/voxel
121 (Fig. 1F). We found that CD45-based segmentation enabled an efficient isolation of single
122 immune cell characteristics, even when those were found aggregated around dermal structural
123 elements. Overall, we demonstrate that it is possible to extract a 10 parameter- single-cell
124  database using regular confocal equipment coupled to basic computational imaging steps.

125

126 Analysis of the skin immune landscape using MANTIS phenotypes attribution matrices
127  Based on the literature, we designed two panels composed of antibodies directed against
128  immune biomarkers suitable to generate a non-exhaustive overview of lymphoid and myeloid
129  cell landscape of the skin, with an average cost of approximately $65 per sample. The
130  combination of CD45, CD3e, CD4, CD8, TCRyd, CD20 and CD57 (a terminally sulfated
131  glycan carbohydrate epitope shared by NK and T cells with high cytotoxic potential*”®) allows
132 to identify the following lymphoid cells: conventional CD4 and CD8 T cells (being CD57'°" or
133  CD57"9") CD4* CD8" double positive (dp) T cells!®, CD4  CD8" double negative (dn) T cells®,
134  yd T cells, B cells and NK cells (Table 1). The combination of CD45, CD207, CD1c, HLA-
135 DR, CD123, Siglec-8, myeloperoxidase (MPQO) and tryptase allows to identify the following
136  myeloid cells: Langerhans cells, Langerin® (CD207") dermal dendritic cells (dDCs) and

137  Langerin® dDCs, eosinophils, basophils, neutrophils and mast cells (Table 1). The activation
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138  status of DC, Langerin® DC and LC was investigated using levels of HLA-DR expression. A
139  detailed list of excitation/emission/detection strategies is provided in Table 2.

140

141 We next aimed to develop an adaptable analytical system that could integrate and batch-process
142  extracted single-cell databases and enable an unsupervised phenotyping of immune subsets. To
143  address this latter challenge, we developed MANTIS, an interactive digital tool based on
144 phenotype attribution matrices inspired by the analytical logic of single-cell RNA sequencing
145  that identifies correlations between the single-cell database and the expression profiles of
146  different cell types (Fig. 2A). Such an analysis is possible by computing Spearman’s Rho
147  correlation, which accommodates non-linear relationships in the expression values (i.e., in our
148  case the collected MFI of each biomarker). In practice, MANTIS runs instantaneously a
149  pairwise Spearman’s correlation analysis, for each detected single-cell, against selected
150 combinations of biomarkers to identify the immune subsets annotated in the phenotype
151  attribution matrices. The output information is the attribution of specific Rho values per single
152 cell which then automatically finds the best match of cellular identity and generates associated
153  quantitative statistics (Fig. 2A-C, Supp Fig. 1A, B). As a proof of concept, we generated data
154  from two serial sections of an acral lesion from a patient with systemic lupus erythematosus
155  (SLE, i.e., lupus chilblains) stained with a lymphoid and a myeloid panel. The fast 3-D
156  acquisition of one region of interest (ROI) composed of 6 fields of view (i.e., 0.6 mm (x) x 0.4
157 mm (y) x 20 pm (z)) enabled the annotation of 519 myeloid cells and 708 lymphoid cells for a
158  total of 19 different immune subsets identified (Supp Fig. 1C, Fig. 2D). One can then decide
159  to visualize annotated immune populations using either a heatmap, in which the MFI of
160 individual biomarkers is displayed per single cell (Supp Fig. 1D), or a graph-based
161  dimensionality reduction, i.e., t-distributed stochastic neighbor embedding (t-SNE), specifically
162  designed for visualizing clusters of populations and corresponding expression of biomarkers
163  per cluster (Fig. 2E).

164 A particularly challenging aspect of multiplexed imaging technologies is to circumvent the
165  spatial distribution of immune cells with respect to longitudinal and polarized structural
166  elements (e.g., epidermal appendages of the skin) in thick tissue sections. We developed an
167 interactive software interface that contextualizes the immune topology of the skin by replacing
168  all annotated single immune cells within their 3-D spatial context and leverages the natural
169  autofluorescence of keratinocytes to model the epidermal layer to facilitate biopsy orientation
170  (Fig. 2F, Supp Fig. 1E, F). The algorithm allows to use two complementary analytical

171  approaches and to switch from one to the other with a simple drawing tool (Supp Video 1).
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172  The analysis can start from the visualization of the skin digital immune landscape, then be
173 pursued with the investigation of the immune composition of defined microregions via
174  instantaneous re-computation of drawn ROI. Conversely, it is also possible to start from all
175 annotated immune cells on a t-SNE graph, draw around subsets of interest, and immediately
176  visualize their anatomical distribution in the skin digital immune landscape (Supp Video 1,
177  Fig. 2G). Taken together, these data suggest that MANTIS interactive analytical system can be
178 used to compute the 3-D spatial organization of immune and structural elements of
179  inflammatory skin samples from patients.

180

181  Quantitative validation of MANTIS annotation system using healthy-looking skin and
182  inflammatory pathological lesions

183  With the constant increase in the number of cases, a large panel of putative skin manifestations
184  of COVID-19 have been observed worldwide?'??, including an unprecedented high rate of acral
185  lesions which represent ~ 75% of all cases and commonly named “COVID-Toes”?*%, Such
186  manifestations (Supp Fig. 2A), compared to non-inflamed healthy-looking skin (Supp Fig.
187  2B), are associated with an important immune cell infiltration (Supp Fig. 2C) and tend to
188  develop in young patients with no or very mild respiratory symptoms®®?’. While some
189  pathological features of those lesions have been described 2632°, a precise analysis of their
190  spatial immune profile is currently missing, which impairs the development of a clear readout
191  to better diagnose and treat these rare cutaneous lesions. A possible explanation could be a
192  collateral clinical manifestation of an efficient anti-viral type 1 interferon response, since acral
193  lesions are also commonly observed in patients with interferonopathies, such as the Aicardi-
194  Goutiéres syndrome 3 ref and SLE3L. With this in mind, we decided to benchmark the effective
195  performance of MANTIS to resolve the immune topology of skin lesions of similar clinical
196  severity from 5 patients with COVID-toes, 2 patients with the multi-system inflammatory
197  syndrome (MIS), which is clinically similar to Kawasaki syndrome (i.e., a rare severe systemic
198 inflammatory condition triggered by SARS-CoV-2 infection, named there after “Kawasaki
199  syndrome”) and 3 patients with SLE chilblains. Abdominal skin biopsies from 5 healthy-
200 looking controls were used to set the baseline of a natural steady-state immune environment,
201  albeit from a distant anatomical region.

202  We validated the quantitative performance of MANTIS to annotate immune cells by
203  calculations of statistical correlations with a supervised approach of histo-cytometry>22 applied
204 on the same datasets for each antibody panel in all skin samples. This last method consists in a

205  manual gating of immune subsets on the same principle used in traditional flow cytometry. A
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206  total of 20,464 single CD45" immune cells were identified with the following distribution per
207  condition: 1,670 immune cells in 5 healthy-looking skin samples (i.e., with 895 myeloid and
208 775 lymphoid cells), 1,703 in 2 Kawasaki syndrome patients (i.e., with 932 myeloid and 775
209  lymphoid cells), 5,076 in 3 SLE chilblain patients (i.e., with 1,560 myeloid and 3,516 lymphoid
210  cells)and 12,015 in 5 COVID-toes patients (i.e., with 2,838 myeloid and 9,177 lymphoid cells).
211 A classical gating strategy based on mutually exclusive biomarkers was used to assess the
212 presence of myeloid (Supp Fig. 3A) and lymphoid (Supp Fig. 4A) cell subsets by histo-
213  cytometry. We identified a total of 19 different immune subsets and found very similar
214  distributions of cell counts by either supervised histo-cytometry or unsupervised MANTIS
215  algorithm (Supp Fig. 3B-E, 4B-E). The calculated R coefficients were between 0.75 and 1,
216  regardless of the antibody panel, the patients analyzed or the disease (Supp Fig. 3F and 4F).
217  Importantly, we observed that all healthy-looking skin samples exhibited a proportion of
218 immune cells aligned with previously described skin-resident immune populations at steady
219  state in human!33. However, we noted a slightly higher tendency to detect rare populations of
220  blood-circulating CD45"CD3"CD20* B cells or CD45"HLA-DR"CD123"Siglec8" basophils,
221  only when 3-D images were computationally analyzed with MANTIS (Supp Fig. 3B and 4B).
222  Thisis consistent with the fact that the skin is a highly-vascularized tissue and that recent studies
223 identified rare B cells in healthy skin®*.

224  Having validated the quantitative and qualitative performance of MANTIS-based annotation,
225  we next defined a high-level view of the complex immune environment of pathological lesions
226  fromall 10 patients. Compared to healthy-looking samples, pathological lesions contained large
227  immune infiltrates confirming their inflammatory status (Fig. 3A, B). All three conditions were
228  associated with an infiltration of myeloid cells composed of a large number of neutrophils,
229  eosinophils, mast cells and conventional CD45"CD1¢c*CD207'HLA-DR™* dDCs (Fig. 3A, C).
230  While detected in relatively low numbers in all analyzed skin samples, no difference was
231  observed between healthy-looking and pathological samples for CD45"CD1¢c"CD207 "HLA-
232 DR* LCsor CD45"CD1c*CD207"HLA-DR™* dDCs populations.

233  Compared to Kawasaki syndrome patients, SLE and COVID-19 patients tended to have an
234 increased proportion of lymphoid cells (Fig. 3B, C), with an enrichment in conventional CD4*
235 orCD8" T cells and NK cells, and to a lesser extent in y3 T cells. Interestingly, we also observed
236  double-positive (dp) CD45"CD4"CD8*CD3"TCRYS™ and double-negative (dn) CD45"CD4
237 CD8CD3'TCRyd T cells in all inflamed and some healthy-looking samples, albeit in smaller
238  numbers (Fig. 3B, C and Supp Fig. 3). Such populations of T cells were often understudied, as
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239  CD4 and CD8 biomarkers are thought to be mutually exclusive, however they have been often
240  reported in autoimmune and chronic inflammatory disorders!®%® including SLE®%'.

241  We next performed an unsupervised clustering of all patients and healthy-looking controls
242  based on the quantitative analysis of their immune signature using both a detailed heatmap
243  based on immune profiles (Fig. 3C) and a principal component analysis (PCA) per patient (Fig.
244  3D). Healthy-looking skin samples clustered together, with no apparent relationship with the
245  pathological samples (Fig. 3C, D). Kawasaki syndrome and COVID-toes patients had a
246  tendency to form disease-specific clusters, while SLE patients were distributed between both
247  conditions (Fig. 3C, D). Even though these data were obtained on a restricted number of
248  patients, they suggest that all analyzed pathological lesions displayed common quantitative
249  immune features (Fig. 3C), with nevertheless potential disease-intrinsic characteristics
250  suggested upon analysis with a dimensional reduction PCA (Fig. 3D). To explore further this
251  hypothesis, we refined our analysis by investigating the activation status of conventional CD4*
252 and CD8" T cells based on their expression level of CD57, a biomarker classically associated
253  with a high cytotoxic potential (i.e., pro-tissue damage) during viral infections and autoimmune
254 disorders, including COVID-19%, We found that, compared to other pathological conditions, 3
255  COVID-toes cases were particularly enriched in CD4* and CD8* T cells exhibiting high levels
256  of CD57 (i.e., CD57"9": calculated as CD57 MFI z-score, Fig. 3E-G).

257  During inflammatory skin conditions, cytotoxic immune cells can relocate nearby to/in contact
258  with keratinocytes and contribute to severe epidermal damage®>*°. In order to calculate the
259  anatomical location of all immune cells with respect to the epidermal layers, we acquired the
260  spatial coordinates of the modeled epidermis. We next incorporated into MANTIS a k-
261  dimensional tree algorithm*“2 which automatically decomposes the structural element
262  coordinates (i.e., as exemplified here with the epidermis) into virtual subspaces and enables to
263  calculate the nearest neighbor to each immune cell (Supp Fig. 5A). A batch calculation of the
264  distance of each individual cell can then be visualized under the format of a heatmap, providing
265  aquick overview of the dataset (Supp Fig. 5B). We found that HLA"9" dDCs (Supp Fig. 5C),
266  NK cells (Supp Fig. 5D) and CD8" CD57"" T cells (Supp Fig. 5E) were all significantly
267  enriched near the epidermal layer in cases of COVID-toes. Importantly, CD8* CD57"" T cells
268  were not found enriched in the epidermis (Fig. 3 H-K), suggesting a biological link between
269  the expression levels of CD57 and epidermal migration in CD8 T cells. Even though the
270  number of patients studied is limited, these findings strongly suggest the potential formation of
271  tissue damaging subepidermal inflammatory clusters composed of cytotoxic T cells and NK
272  cells in COVID-toes.
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273

274  MANTIS enables topographic exploration of skin lesions by solving the a-shape of in situ
275  immune substructures

276  Inflammatory dermatoses are characterized by the presence of large inflammatory infiltrates
277  composed of specific immune cells and thought to be critical for the development of the
278  pathology (e.g., type 2 immune cells and eosinophils in atopic dermatitis). To better understand
279  the regional heterogeneity of pathological lesions from SLE, Kawasaki syndrome and COVID-
280  toes, we took advantage of alpha (a)-shape algorithms that enable, by tuning the a parameter,
281  to define a precise shape of sets of points by drawing bounding polygons based on the principle
282  of Delaunay triangulation®®, When combined with the digital immune landscapes generated
283  with MANTIS, a-shape algorithms automatically generate polymorphic a-shapes around n-
284  clusters composed of a minimum of 15 cells (Fig. 4A, i.e., 15 being the minimum number of
285  cells often found in clusters of inflammatory but not in healthy-looking samples). This method
286  enables to automatically detect and quantify the major inflammatory clusters (i.e., named
287  thereafter “aROIs”) to provide a high-level view of the in situ immune architecture of the skin
288  lesion for each patient and disease. We generated lymphoid (Fig. 4B, C) and myeloid (Fig. 4D,
289 E) aROIs for all the samples. Healthy-looking controls displayed a few lymphoid aROIs, and
290  4/5 controls did not show myeloid aROIs. These data indicate that, in human skin at the steady-
291  state, lymphoid cells have a tendency to form aggregates (i.e., composed of perivascular T
292  lymphocytes?), while myeloid cells are more likely to be randomly distributed. In line with the
293  data presented in Fig. 3, we found a higher proportion of both lymphoid and myeloid aROIs in
294  pathological samples as compared to healthy-looking controls (Fig. 4B-E). Using global
295  unsupervised hierarchical clustering of aROIs per disease, we can generate a high-level view
296  of inflammatory clusters composition and observe trends in disease-specific immune responses
297  (Fig. 4F, G). Notably, lymphoid aROIs of both Kawasaki syndrome and COVID-toes exhibited
298  a significantly higher proportion of CD4*CD57"% T cells than that of SLE patients (Fig. 4F,
299  H). Interestingly, both COVID-toes and SLE lesions displayed significant clusters of
300 CD8*CD57"9" cytotoxic T cells, highlighting the cytolytic aspect of pathological lesions
301  microenvironment in these conditions (Fig. 4F, 1). We next analyzed myeloid aROIs for all
302 cases. We found that, COVID-toes had a particularly high density of clusters enriched in
303 activated HLA-DR"9" dDCs (Fig. 4G,J). Conversely, Kawasaki syndrome lesions showed an
304  enrichment in both HLA-DR"9" |Cs (Fig. 4G,K) and mast cells (Fig. 4G,L), while SLE lesions
305 displayed large aggregates of eosinophils (Fig. 4G,M). This finding is consistent with previous

306  reports of strong eosinophilia in SLE*+¢, No significant differences were observed regarding
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307  other immune cell subsets in aROIs (unpublished). While the precise role played by specific
308 inflammatory clusters of immune cells in each disease remains elusive, these data strongly
309  suggest that combining MANTIS digital maps with a-shape-based algorithms can reveal a
310  significant non-random distribution of skin immune cells in skin lesions, with the presence of
311  disease-specific immune structures. MANTIS analytic pipeline can thus enable to quickly solve
312  the spatial organization of complex immune environments and open interesting perspectives for
313  future investigations in the field of dermatopathology.

314

315  Discussion

316  Here we propose a general framework for 3-D quantitative and spatial analysis of skin immune
317  cells at the cellular level. We first describe a simple method to perform a fast 3-D acquisition
318 of up to 10 biomarkers simultaneously and extract a single-cell database containing the
319  biological identity (including spatial coordinates) of skin lymphoid and myeloid cells. We then
320 analyze the extracted databases using an automated and interactive analytic pipeline composed
321  of phenotype attribution matrices coupled with cell-to-structure distance calculations and a-
322  shape algorithm-based detection of major inflammatory clusters. Our analysis was focused on
323  FFPE samples as it is still the most easily-available source of pathological tissues and can
324  enable analysis of patients’ skin-sampled in routine clinical practice. However, the use of cryo-
325  preserved samples is compatible with the approach we describe here, and enables the analysis
326  of thicker tissue sections (unpublished data).

327  We identified that the first steps of the process, which consists in the generation of good quality
328  3-D multiplexed images with a significantly high ratio signal over autofluorescent background
329  and no spectral spillover, were not necessarily obvious, while being critical for the rest of the
330 study. This is why we emphasized the capability of a conventional 8-year-old (non-custom-
331  built) confocal laser-scanning system to acquire 10 different fluorochromes simultaneously.
332  This method of acquisition can be democratized to most academic/clinical facilities since they
333 involve a conventional equipment coupled to basic spectral spillover compensation and single-
334  cell data extraction strategies, via the use of commercially-available softwares (Huygens and
335  Imaris; described in detail in the Methods section).

336  Single-cell segmentation is also very critical as it will constitute the very core of the future
337  analysis of immune subpopulations and expression of biomarkers. Possible mistakes made at
338 this step, e.g. the inability to separate immune cells in large infiltrates, would then result in
339  misinterpretation of MANTIS-generated results. We tested different approaches to

340 automatically segment healthy-looking and inflammatory skin samples, including random
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341  forest-based classifiers (e.g., llastik machine learning). While such a method was suitable to
342  segment healthy-looking images with a low concentration of immune cells, it failed to segment
343  complex inflammatory lesions, where large and packed immune clusters were present
344 (unpublished). We thus opted for a semi-supervised segmentation of single immune cells using
345  the software Imaris, in which the segmentation of each inflammatory cluster was quality-
346  controlled manually and in 3-D (Fig. 1F). While this approach is probably more time-
347  consuming, we could ensure a precise 3-D segmentation and further extraction of an accurate
348  single-cell database to be processed with MANTIS. A recent study has reported the use of an
349  analysis pipeline, including a new segmentation strategy, adapted from the field of astronomy
350 named “AstroPath™’. Using this approach and only six biomarkers, they could identify
351 important pathological features in biopsies from melanoma patients. These results, in line with
352  our findings, highlight the importance of carefully selecting a list of biomarkers to be studied
353 and of having the right analytic pipeline to draw reliable insights.

354  Because immunologists are more commonly used to identify immune cell populations with
355 manual gating of populations based on flow cytometry, we validated the quantitative
356  performance of MANTIS by analyzing the extracted single-cell databases for the 15 patients
357  analyzed with the conventional flow cytometry software, FlowJo. We found that the MANTIS-
358  based analysis on 3-D images generated with two different panels, and just a minimal number
359  of 10 antibodies per panel, were sufficient to distinguish 19 immune subsets and identify
360  disease-specific trends in skin lesions.

361 Because MANTIS attribution matrices can be quickly adjusted to any sets of markers, they
362 could be compatible with single-cell databases generated using technology with high
363  multiplexing capabilities such as CODEX’®, MIBI-TOF®, IMC!°, MuSIC!, CyCIF*?, Cell
364  Dive'® and others'*. We included in MANTIS the a-shape algorithm that enables us to define
365 the precise shape of inflammatory immune clusters based on the principle of Delaunay
366 triangulation**. When applied to digital immune landscapes, the o-shape algorithm
367 automatically identifies and quantifies dermal and epidermal inflammatory clusters (i.e.,
368 aROIs) composed of a minimum of 15 immune cells (Fig. 4A). This method enables one to
369  directly analyze the major aROIs to provide a fast high-level view of the skin immune
370  architecture in a given lesion. Using this method, we could quickly identify that immune subset
371  (e.g., mast cells, HLA-DR"9" dDCs, CD8*CD57"9" cytotoxic T cells, eosinophils etc.) were
372  specifically enriched in dermal areas only in some patient subgroups. These preliminary
373  observations suggest that, depending on their etiology, pathological lesions could be due to

374  distinct pathological mechanisms. This type of analysis opens interesting perspectives for the
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375  3-D cartography of complex inflammatory skin lesions and should be pursued by additional
376  studies on a larger number of patients. Importantly, while 2D immune landscapes are
377  represented here to facilitate the visual assessment on Figures (3-D graphs are hardly
378  perceivable on static pictures), the single-cell segmentation and extraction of cellular spatial
379  coordinates were all performed in 3-D.

380 Based on CODEX high multiplexing capacity, previous studies®*® have shown that it is possible
381  to generate a high-level view of the cell-to-cell interaction landscape based on the principle of
382 the Delaunay neighborhood graph*®. The MANTIS a-shape algorithm is complementary, as it
383  automatically identifies major immune structures while deciphering their cellular composition.
384  Combining a-shape and neighborhood approaches could help to quickly solve the biology of
385  major inflammatory clusters in the skin, by drawing the ligand-receptor interactome of immune
386  and structural cells within the identified cluster. Such a high dimensional analysis of the skin
387  immune architecture could provide a promising avenue for understanding the complexity of
388 inflammatory skin manifestations with potential benefits for patient stratification and/or
389  diagnosis.

390 There is a strong need to design new tools to assist clinical decision making and/or better
391  apprehend the complexity of inflammatory dermatoses. While very promising processes have
392  been made in the field of spatial biology®®2, there is an unmet need for a non-expensive and
393  standardized multiplexed imaging analytical framework capable of automatically resolving the
394  immune architecture of an inflamed skin. Here we show that the MANTIS analytical system is
395  uniquely positioned to examine numerous questions in the fields of skin immuno-biology and
396 should lay the foundation for a fast and automated analysis pipeline of relevant in situ
397 inflammatory environments in both research and clinical facilities.

398

399  Materials and Methods

400 Human skin samples. Control normal skin biopsies were obtained from Genoskin SAS
401  (https://www.genoskin.com/). Genoskin has obtained all legal authorizations necessary from
402  the French Ministry of Higher Education, Research and Innovation (AC-2017-2897) and the
403  Personal Protection Committee (2017-A01041-52). Skin biopsies from patients with lupus

404  erythematosus were obtained from Toulouse University Hospital. Biopsies of COVID-toes
405  were obtained from Toulouse, Reims and Lyon University Hospitals. Skin biopsies of multi-
406  system inflammatory syndrome were obtained from Reims University Hospital.
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407  Skin section preparation, histology, and staining. Human skin samples were either frozen in
408  optimal cutting temperature compounds (OCT, Tissue-Tek, unpublished) or formalin-fixed and
409  paraffin embedded (FFPE). 10 pm FFPE-tissue sections were heated at 95°C for 20 minutes.
410  Sections were subsequently immersed into Xylene for 30 minutes, washed in a graded series of
411  ethanol (100%, 95%, 70%, 50% and 30%for 5 minutes each) and abundantly washed with
412  distilled water. They were then treated using a heat-induced epitope retrieval method as
413  previously described®,

414  FFPE-tissue sections were blocked and permeabilized with PBS 0.5 % (w/v)% BSA (Sigma-
415  Aldrich), 0.3 % Triton X-100 (Merck) for 30 to 60 minutes at room temperature, then incubated
416  with fluorophore-coupled antibodies or unconjugated antibodies overnight at 4°C in the dark.
417  The sections were then washed three times in PBS 0.5 % (w/v)% BSA, 0.3 % Triton X-100 and
418 incubated, if needed, with secondary antibodies in PBS 0.5 % (w/v)% BSA, 0.3 % Triton X-
419 100 for 2 hours at room temperature in the dark. Finally, samples were treated with an
420  autofluorescence quenching solution named TrueView (Vector Lab) for 5 minutes. The slides
421  were mounted in Mowiol medium (Sigma-Aldrich) and sealed with a coverslip.

422  All conjugated and unconjugated antibodies used in this study were validated in single
423  immunostainings of human skin and tonsils (unpublished), and are listed in Supplementary
424 Table 1.

425  Acquisition. 512x512 pixel Z-Stack Images were acquired using an 8-year-old confocal
426  microscope SP8 (Leica Microsystems) equipped with a HC PL APO CS2 with 40X NA 1.3 ol
427  objective, a UV diode (405nm) and four lasers in visible range wavelengths (405, 488, 532, 552
428  and 635nm). The setup was made up of five detectors (three hybrid detectors with high quantum
429  yield compared to classical photomultiplier (PMTs) detectors, and two PMTs). Mosaic
430 sequential images were acquired using the between-stack configuration in order to
431  simultaneously collect individual 7/8 channels and tiles before merging them to obtain one
432  single image. Use of the between-stack configuration and the modulation of the detectors’
433  detection windows help to reduce the leaking of fluorophores. Finally, a digital zoom of 1.9
434 was applied during the acquisition and a mosaic multicolor image was obtained and exported
435 into a .lif format. Detection windows and microscope configuration used in our study are listed

436  in Supplementary Table 2.
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437  Image deconvolution and correction of spectral spillover. 3-D mosaic images were then
438  imported into Huygens SVI software, in order to correct the signal by applying deconvolution
439  and crosstalk correction. Two deconvolution methods were used: the express deconvolution
440  (theoretical and fast) or the deconvolution wizard (possibility to use experimental or theoretical
441  parameters and to adjust the background value). Automatic crosstalk correction estimation was
442  obtained and the coefficients were slightly adjusted manually, if needed, for optimal spillover
443  correction.

444  Segmentation. 3-D mosaic images were imported into Imaris software to separate objects
445  (cells) using a 3-D surface segmentation. Before creating the surface objects in Imaris, classical
446  image processing was required. For instance, defining a threshold, adding a median filter,
447  and/or normalizing the layers were sometimes applied in order to clean the background. Images
448  were either cleaned using the CD45 surface objects or other channels by applying appropriate
449  masks for each channel. Then, segmentation was applied on the CD45 channel surface.

450  Statistics were exported into .csv format.

451  Segmentation troubleshooting. In some cases, the surface creation parameters were not
452  efficient to automatically obtain good object creation, or the module was not sensitive enough
453  to detect low intensity objects. In this case, the creation of small objects was done manually and
454 the threshold selection was also reduced. If the detected object was below 1 um, a manual object

455 unification with surrounding objects of same intensity was performed.

456  Statistical data exportation. Statistical properties of each segmented object (cell) in the
457  processed 3-D Imaris Multiplex image were automatically calculated. Object Volume,
458  Sphericity, Area, xyz Position and Mean Fluorescence Intensity (MFI) in all channels were

459  exported as a .csv table.

460 FlowJo analysis and gating strategies. Identification and density assessment of immune cell
461  subsets were analyzed using classical histo-cytometry®,

462  Immune cell populations were gated in FlowJo software as follows:

463 B cells: CD45" CD20"

464  NK cells: CD45" CD20  CD3 CD57*

465 CD4" T cells: CD45* CD20" CD3* TCRys CD4* CD8" CD57'ow or high

466  CD8" T cells: CD45* CD20" CD3* TCRys” CD4 CD8* CD57'ow orhigh

467  y5 T cells: CD45" CD20 CD3" TCRys*
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468  dn T cells: CD45* CD20° CD3* TCRys CD4 CD§

469  dp T cells: CD45* CD20° CD3* TCRys CD4* CD8*

470  Mast cells: CD45" Tryptase®

471 DC:CD45* CDI1c* CD207° HLA-DR!oworhigh

472  LC:CD45* CD1c CD207* HLA-DRoworhigh

473  DC CD207*: CD45* CD1c* CD207* HLA-DR'ow or high

474  Neutrophils: CD45" CD1c CD207" Tryptase™ Siglec8 MPO*

475  Eosinophils: CD45" CD1c” CD207- MPO" Tryptase Siglec8* CD123"
476  Basophils: CD45* CD1c¢ CD207- MPO" Siglec8* CD123"

477

478  Tissue annotation

479  Implementation of MANTIS reference panels. In order to enable cell identification, we built
480 a binary table containing a literature-based theoretical signature of biomarkers expressed in
481  each cell population identified by the used panel (naturally depending on the used set of
482  antibodies), known as the reference attribution panel. If a cell population is positive for a
483  marker, the value is set to 1, otherwise it is set to 0. If a cell population can be positive for a
484  marker, there are two columns, one with the value set to 1, the other with the value set to 0 (i.e.,
485 5 T cells can express CD4 or not). Two reference tables were implemented and designated by
486  lymphoid and myeloid reference attribution matrices.

487  Dynamic adaptation of reference matrices. Sample heterogeneity led to different acquisition
488  parameters (laser power, gain, etc.). In order to standardize data processing, we scaled the
489  reference tables and dynamically adapted, for each sample, the table values according to the
490  MFI values. In practice, the value “1” in the binary table was replaced by the maximum MFI

491  value acquired in the corresponding channel from the tested sample.

492  Automatic cell type identification. To annotate the segmented objects, a correlation matrix
493  between the MFI table and the adapted reference panel was generated by performing a pairwise
494  Spearman’s Rank Correlation using the R software (2021). Each object was then phenotypically
495  assigned to the cell type having the highest correlation coefficient. Objects with multiple highest

496  correlation coefficients were assigned as “Other” cell types.

497  Accuracy validation. The accuracy of MANTIS automatic cell identification was verified by

498  comparing quantification results to classical histo-cytometry®2. Briefly, linear regression of cell
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499  type density was computed between both attribution methods and regression coefficients were
500 calculated. Regression coefficients ranging between 0.75 and 1 reflect MANTIS technique
501  robustness.

502  Activation status detection. MANTIS panels were designed to not only include discriminant
503  markers for cell attribution but also non-discriminant and informative markers, for instance,
504  activation markers. The cell populations of interest (CD4" and CD8" T cells in the lymphoid
505 panel, DCs, LCs and CD207* DCs in the myeloid panel) as well as the activation markers that
506 reflect the activation status of these populations (CD57 in the lymphoid panel, and HLA-DR in
507  the myeloid panel) were defined in the MANTIS algorithm. This latter automatically computes
508 the MFI density curve associated with the activation markers within the selected populations.
509  Subsequently, the MFI corresponding to the first peak of the density curve is defined as the

510  MFI value above which the cell is considered positive for the activation marker.

511  Alpha (a)-shape calculation. o-shape was calculated using the alphashape Python package.
512  Briefly, Delauney triangulation of a given set of points formed a bounding polygon that contains
513  all the points of the set. The a parameter was defined by the value a, and a circle with 1/a radius
514  was drawn in such a way that two points of the dataset are located on the boundaries of the
515 circle and the circle is empty. For each empty circle found, the line between the two points
516  formed a side of the bounding polygon, i.e., the a shape. As o decreased, the alpha shape
517  changed from a convex hull (e.g., epidermis o shape, o= 0.4) to a more tightly-fitting bounding
518  box resulting in more refined alpha shapes (e.g., region of interest alpha shape [aROI], a = 0.1).

519  Cell to structure distance calculation and nearest neighbor search. x-y coordinates of
520 epidermis a-shape contours were stored using the k-dimensional tree method, which allows
521  data ranking and structuration. Briefly, data points were classified based on nodes and branches
522  space-partitioning, allowing a fast nearest neighbor calculation. For a given point (cell) of the
523  dataset, the nearest neighbor in the epidermis alpha shape was found and the distance defined
524 by rwas calculated using the scipy.spatial Python package**. The distance of cells contained in

525  the epidermis a shape was set to 0.

526 Data clustering and aROI analysis. Regions of interest (aROI, i.e., inflammatory cell
527  clusters) were identified using the o shape algorithm with a tuned o parameter (o = 0.1),
528 allowing correct detection of high cell density areas. aROI with less than 15 cells were removed

529  from the analysis. For each selected aROI, specific characteristics were calculated and
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530 extracted, such as area, total number of cells, cell number, proportion by cell type and aROI

531  center coordinates.

532 Data visualization. Visualization charts were obtained using the ggplot2, Pigengene &
533 ComplexHeatmap R packages, and matplotlib & seaborn Python packages. t-Distributed
534  Stochastic Neighbor Embedding (tSNE) was computed with Rtsne.

535  Statistics. Statistical tests were performed using Prism 8 (GraphPad Software), the Rstats and
536  rstatix R packages. One-way ANOVA with Tukey’s test for multiple comparisons or Mann-
537  Whitney test were performed on samples as noted in the respective figure legends. A p-value

538  of less than 0.05 was considered statistically significant.
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539  Figures and legends
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541  Figure 1. Between-stack microscope configuration allows sequential acquisition of 7+
542  channels with classical image processing. A, Sample preparation. FFPE-skin sections were
543  cut and stained for myeloid and lymphoid panels after appropriate epitope retrieval and
544  autofluorescence quenching. Sample images were then acquired using a SP8 confocal
545  microscope from Leica Microsystems as described in B. B, Microscope configuration and
546  acquisition settings. Mosaic sequential images were acquired using the between-stack
547  configuration with tunable detection windows. Sequences were overlaid and 3-D-stitched. An
548 example of data acquisition is given for healthy (left panel) and pathological (lupus
549  erythematosus [SLE], right panel) skin. C, Deconvolution of regions of interest and spectral

550 unmixing. Acquired 3-D images were deconvoluted and compensated to correct optical
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551  aberrations and 3-D fluorescent spectral spillovers. D, Representative 3D multiplex image of
552  healthy (upper panel) and pathological SLE (lower panel) skin sample for lymphoid panel,
553  staining CD45, CD3, CD4, CD8, TCRys, CD57 and CD20. E, Co-localization of DAPI and
554  CD45 staining and respective RGB profiles. F, Segmentation and single-cell database creation.
555  Cell segmentation using the CD45 fluorescence channel allowed efficient isolation of
556 individual objects, i.e., immune cells. Individual object statistics (xyz coordinates, sphericity,

557  volume and Mean Fluorescence Intensity) were extracted for each sample.
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Figure 2. MANTIS algorithm allows automated cell type attribution and interactive
exploration of skin myeloid immune topology. A, Automated tissue annotation. A reference
attribution matrix defining the literature-based theoretical signature of a particular cell type was
constructed and designated as MANTIS attribution matrix. A correlation matrix calculating
Spearman coefficient between the single-cell database and MANTIS attribution matrix was

computed. Each segmented cell was annotated to the cell type having the highest correlation
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565  coefficient, and cell type proportions were extracted. B, Single-cell staining of all used
566  biomarkers in identified myeloid cells. C, MANTIS simplified attribution matrix for myeloid
567  panel. D, Tissue annotation and cell proportion of pathological (SLE) skin. E, Representative
568 t-SNE plot of myeloid cell populations (upper panel) and MFI levels of used markers (colored
569 intensity scale, lower panel). F, Representative 3D confocal multiplex image (upper panel) and
570  associated digital map (lower panel) of pre-designed MANTIS myeloid panel of pathological
571  (SLE) skin. G, Interactive reverse-gating. A population of interest (neutrophils) was selected
572  onthe tSNE plot. Recomputation of the corresponding digital map enabled the visualization of

573  the anatomical distribution of this particular population in the skin biopsy.
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574

575  Figure 3. 3-D quantitative and spatial analysis of skin immune cells at the cellular level
576  provide insight into disease signatures. A, B, Representative 3-D confocal multiplex images
577  (upper panel) and associated digital maps (lower panel) of pre-designed MANTIS myeloid (A)
578 and lymphoid (B) panels of healthy and pathological skin. C, Representative heatmap of
579  lymphoid and myeloid cell densities in logarithmic scale with hierarchical clustering. D,
580  Principal Component Analysis (PCA) of immune signatures of healthy and diseased skin. E,
581  Cell count per mm? of CD57'°% and CD57"9" T cells. F, G, Dotplot of CD57 Mean Fluorescence
582 Intensity (MFI) z-score in CD4" (F) and CD8* (G) T cells in healthy and diseased skin. H, I,
583  Representative digital map (H) and mean distance to epidermis (in um [I]) of CD8* CD57'*%

584  (left panel) and CD57"9" (right panel) T cells in COVID skin lesions.
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586  Figure 4. Automatic detection of a-regions of interest (aROI) enables exploration of

587 inflammatory cluster topography in healthy and diseased skin. A, Alpha shape algorithm.
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588  Delauney triangulation of a given set of points formed a bounding polygon that contains all the
589  points of the set. The alpha parameter was defined by the value o, and a circle with 1/a radius
590  was drawn around each point of the dataset. The line between two circles meeting points formed
591 aside of the bounding polygon, i.e., the alpha shape. o value defines the detail level of the alpha
592  shape and allows modeling of voluminous structures (1/a1) or smaller structures (1/a2) having
593  1/a1 > 1/a2. B, C, Violin plot (B) and representative digital maps (C) of lymphoid o-ROI density
594  in healthy and pathological skin. D, E, Violin plot (D) and representative digital maps (E) of
595  myeloid o-ROI density in healthy and diseased skin. F-K, Mean proportion of CD4* CD57'%
506 T cells (F), CD8* CD57"9" T cells (G), HLA-DR"9" dDCs (H), HLA-DRM" LCs (1), mast cells
597  (J) and eosinophils (K) per oROI in diseased skin. Mean + SEM; *P<0.05, **P<0.01,
598 ***P<(0.001 One-way ANOVA (F-K). L, M, Representative heatmaps of cell proportions in
599  lymphoid (L) and myeloid (M) oROIs in pathological skin. A hierarchical clustering was

600 applied on rows and on each pathology’s column.
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