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Abstract  36 

 37 

Routine clinical assays, such as conventional immunohistochemistry, often fail to resolve the 38 

regional heterogeneity of complex inflammatory skin conditions. Here we introduce MANTIS 39 

(Multiplexed Annotated Tissue Imaging System), a flexible analytic pipeline compatible with 40 

routine practice, specifically-designed for spatially-resolved immune phenotyping of the skin 41 

in experimental or clinical samples. Based on phenotype attribution matrices coupled to α-shape 42 

algorithms, MANTIS projects a representative digital immune landscape, while enabling 43 

automated detection of major inflammatory clusters and concomitant single-cell data 44 

quantification of biomarkers. We observed that severe pathological lesions from systemic lupus 45 

erythematosus, Kawasaki syndrome or COVID-19-associated skin manifestations share 46 

common quantitative immune features, while displaying a non-random distribution of cells with 47 

the formation of disease-specific dermal immune structures. Given its accuracy and flexibility, 48 

MANTIS is designed to solve the spatial organization of complex immune environments to 49 

better apprehend the pathophysiology of skin manifestations. 50 

 51 

 52 

 53 

Introduction 54 

 55 

The skin acts as a barrier organ that separates the body from the external environment. Upon 56 

inflammation, blood-circulating immune cells are recruited to help orchestrate the cutaneous 57 

immunity and are often nested nearby key structural elements (e.g., postcapillary venules, hair 58 

follicles, dermal-epidermal junction, etc.)1,2. In pathological settings, the nature and activation 59 

status of the skin immune landscape often represent precious biological information that can 60 

help establish an accurate diagnosis, apprehend interpatient heterogeneity and select the most 61 

appropriate treatment. The use of imaging-based approaches to identify cutaneous immune cells 62 

is still challenging because of the high level of autofluorescence arising from the tissue itself, 63 

the potential spectral spillover when more than 4 fluorochromes are used simultaneously and 64 

the entanglement of all cells within thick and polarized structural appendages. 65 

 66 

The vast majority of microscopic diagnoses of inflammatory skin conditions relies on repeated 67 

immunohistochemistry (IHC) analysis of one or two proteins and/or hematoxylin eosin (H&E) 68 

staining in thin (2 to 5 μm) formalin-fixed, paraffin-embedded (FFPE) specimens3,4. While such 69 
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two-dimensional approaches are reproducible and suitable for routine practice, they do not 70 

permit to apprehend the complex topology and heterogeneity of immune cells5, in particular 71 

those nested in-between epidermal appendices. The development of image-based histo-72 

cytometry, which consists in analyzing segmented multicolor images with classical flow 73 

cytometry gating strategies, has paved the way toward the development of sophisticated image-74 

generation systems coupled to computational imaging6. Recently, highly-multiplexed imaging 75 

systems have significantly advanced our understanding of tissue-resident immune subsets and 76 

of their spatial distribution with regards to tissue structures, with a strong focus on cancer 77 

samples and tumor heterogeneity, such as CODEX7,8, MIBI-TOF9, IMC10, MuSIC11, CyCIF12, 78 

Cell Dive13 and others14. While multiplexed imaging has an immense potential, there is a strong 79 

need to democratize these methods with the use of inexpensive instrumentation compatible with 80 

standard tissue processing and coupled to an analysis interface that is user-friendly enough to 81 

be used in routine practice.  82 

 83 

Here we present an integrated framework primarily designed for spatially-resolved immune 84 

cells phenotyping in FFPE human skin biopsies. We first set up a simple and inexpensive 85 

method to acquire 10 fluorescent signals simultaneously and in 3-D using a classical confocal 86 

microscope. We next designed MANTIS (Multiplexed Annotated Tissue Imaging System), an 87 

adaptable and interactive analytical system which automatically generates a digitalized version 88 

of the skin immune landscape and enables single-cell quantitative data visualization. Based on 89 

these settings, MANTIS could be implemented in most laboratories coupled to existing 90 

confocal equipment to bridge the gap between sophisticated research tools and standard-of-care 91 

diagnostic procedures with minimal human intervention. 92 

 93 

Results 94 

 95 

Extraction of single-cell statistics from skin sections by combining conventional confocal 96 

laser-scanning microscopy and computational imaging 97 

We developed a simple method to generate 3-D multiplexed fluorescent images from FFPE (20 98 

μm thick) skin biopsies which could be implemented in most research or clinical laboratories 99 

on existing equipment. Skin sections were first stained with different panels of commercially-100 

available fluorochrome-coupled antibodies added simultaneously, then quenched to avoid 101 

excessive natural autofluorescence of skin structural elements (Fig. 1A). We acquired 3-D 102 

fluorescent multiplexed images with a conventional inverted confocal laser-scanning 103 
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microscope equipped with 5 laser lines, 5 detectors and a 40X oil immersion objective, using a 104 

strategy of sequential acquisition composed of fast consecutive steps (Fig. 1B; the detailed 105 

description of optical paths and lasers of our 8-year-old Leica SP8 system is provided in the 106 

Materials and Methods section). This setting enabled the acquisition of 8 to 10 fluorescent 107 

channels, on a system primarily designed for 4 colors, over a skin section of the following 3 108 

dimensions, 0.6 mm (x) x 0.4 mm (y) x 20 μm (z) within 25 minutes. The obtained 3-D images 109 

were then deconvoluted and compensated to correct 3-D fluorescent spectral spillovers (Fig. 110 

1C, D) using the Huygens software (Scientific Volume Imaging), a strategy routinely applied 111 

in flow cytometry to combine multiple fluorochromes simultaneously6,15. Compared to classical 112 

segmentation strategies based on nucleus expansion16, which often lead to under or over-113 

estimation of cellular cluster composition, we used the general immune biomarker CD45 as a 114 

robust immune staining visualized in most skin-resident immune cells to constitute the core of 115 

our cell segmentation strategy for future single immune cell statistics extraction (Fig. 1E, F). 116 

Using the Isosurface algorithm of the Imaris software (Bitplane) we next modeled the 3D 117 

fluorescence signal of CD45 for individual immune cells and exported a corresponding single-118 

cell database composed of the mean fluorescence intensity (MFI) of all individual biomarkers 119 

and precise x, y, z tissue coordinates obtained with a resolution of 299 x 299 x 999 nm/voxel 120 

(Fig. 1F). We found that CD45-based segmentation enabled an efficient isolation of single 121 

immune cell characteristics, even when those were found aggregated around dermal structural 122 

elements. Overall, we demonstrate that it is possible to extract a 10 parameter- single-cell 123 

database using regular confocal equipment coupled to basic computational imaging steps. 124 

 125 

Analysis of the skin immune landscape using MANTIS phenotypes attribution matrices 126 

Based on the literature, we designed two panels composed of antibodies directed against 127 

immune biomarkers suitable to generate a non-exhaustive overview of lymphoid and myeloid 128 

cell landscape of the skin, with an average cost of approximately $65 per sample. The 129 

combination of CD45, CD3e, CD4, CD8, TCRγδ, CD20 and CD57 (a terminally sulfated 130 

glycan carbohydrate epitope shared by NK and T cells with high cytotoxic potential17,18) allows 131 

to identify the following lymphoid cells: conventional CD4 and CD8 T cells (being CD57low or 132 

CD57high), CD4+ CD8+ double positive (dp) T cells19, CD4- CD8- double negative (dn) T cells20, 133 

γδ T cells, B cells and NK cells (Table 1). The combination of CD45, CD207, CD1c, HLA-134 

DR, CD123, Siglec-8, myeloperoxidase (MPO) and tryptase allows to identify the following 135 

myeloid cells: Langerhans cells, Langerin+ (CD207+) dermal dendritic cells (dDCs) and 136 

Langerin- dDCs, eosinophils, basophils, neutrophils and mast cells (Table 1). The activation 137 
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status of DC, Langerin+ DC and LC was investigated using levels of HLA-DR expression. A 138 

detailed list of excitation/emission/detection strategies is provided in Table 2.  139 

 140 

We next aimed to develop an adaptable analytical system that could integrate and batch-process 141 

extracted single-cell databases and enable an unsupervised phenotyping of immune subsets. To 142 

address this latter challenge, we developed MANTIS, an interactive digital tool based on 143 

phenotype attribution matrices inspired by the analytical logic of single-cell RNA sequencing 144 

that identifies correlations between the single-cell database and the expression profiles of 145 

different cell types (Fig. 2A). Such an analysis is possible by computing Spearman’s Rho 146 

correlation, which accommodates non-linear relationships in the expression values (i.e., in our 147 

case the collected MFI of each biomarker). In practice, MANTIS runs instantaneously a 148 

pairwise Spearman’s correlation analysis, for each detected single-cell, against selected 149 

combinations of biomarkers to identify the immune subsets annotated in the phenotype 150 

attribution matrices. The output information is the attribution of specific Rho values per single 151 

cell which then automatically finds the best match of cellular identity and generates associated 152 

quantitative statistics (Fig. 2A-C, Supp Fig. 1A, B). As a proof of concept, we generated data 153 

from two serial sections of an acral lesion from a patient with systemic lupus erythematosus 154 

(SLE, i.e., lupus chilblains) stained with a lymphoid and a myeloid panel. The fast 3-D 155 

acquisition of one region of interest (ROI) composed of 6 fields of view (i.e., 0.6 mm (x) x 0.4 156 

mm (y) x 20 μm (z)) enabled the annotation of 519 myeloid cells and 708 lymphoid cells for a 157 

total of 19 different immune subsets identified (Supp Fig. 1C, Fig. 2D). One can then decide 158 

to visualize annotated immune populations using either a heatmap, in which the MFI of 159 

individual biomarkers is displayed per single cell (Supp Fig. 1D), or a graph-based 160 

dimensionality reduction, i.e., t-distributed stochastic neighbor embedding (t-SNE), specifically 161 

designed for visualizing clusters of populations and corresponding expression of biomarkers 162 

per cluster (Fig. 2E). 163 

A particularly challenging aspect of multiplexed imaging technologies is to circumvent the 164 

spatial distribution of immune cells with respect to longitudinal and polarized structural 165 

elements (e.g., epidermal appendages of the skin) in thick tissue sections. We developed an 166 

interactive software interface that contextualizes the immune topology of the skin by replacing 167 

all annotated single immune cells within their 3-D spatial context and leverages the natural 168 

autofluorescence of keratinocytes to model the epidermal layer to facilitate biopsy orientation 169 

(Fig. 2F, Supp Fig. 1E, F). The algorithm allows to use two complementary analytical 170 

approaches and to switch from one to the other with a simple drawing tool (Supp Video 1). 171 
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The analysis can start from the visualization of the skin digital immune landscape, then be 172 

pursued with the investigation of the immune composition of defined microregions via 173 

instantaneous re-computation of drawn ROI. Conversely, it is also possible to start from all 174 

annotated immune cells on a t-SNE graph, draw around subsets of interest, and immediately 175 

visualize their anatomical distribution in the skin digital immune landscape (Supp Video 1, 176 

Fig. 2G). Taken together, these data suggest that MANTIS interactive analytical system can be 177 

used to compute the 3-D spatial organization of immune and structural elements of 178 

inflammatory skin samples from patients.  179 

 180 

Quantitative validation of MANTIS annotation system using healthy-looking skin and 181 

inflammatory pathological lesions  182 

With the constant increase in the number of cases, a large panel of putative skin manifestations 183 

of COVID-19 have been observed worldwide21,22, including an unprecedented high rate of acral 184 

lesions which represent ~ 75% of all cases and commonly named “COVID-Toes”23-26. Such 185 

manifestations (Supp Fig. 2A), compared to non-inflamed healthy-looking skin (Supp Fig. 186 

2B), are associated with an important immune cell infiltration (Supp Fig. 2C) and tend to 187 

develop in young patients with no or very mild respiratory symptoms26,27. While some 188 

pathological features of those lesions have been described 28,3,29, a precise analysis of their 189 

spatial immune profile is currently missing, which impairs the development of a clear readout 190 

to better diagnose and treat these rare cutaneous lesions. A possible explanation could be a 191 

collateral clinical manifestation of an efficient anti-viral type 1 interferon response, since acral 192 

lesions are also commonly observed in patients with interferonopathies, such as the Aicardi-193 

Goutières syndrome 30 ref and SLE31. With this in mind, we decided to benchmark the effective 194 

performance of MANTIS to resolve the immune topology of skin lesions of similar clinical 195 

severity from 5 patients with COVID-toes, 2 patients with the multi-system inflammatory 196 

syndrome (MIS), which is clinically similar to Kawasaki syndrome (i.e., a rare severe systemic 197 

inflammatory condition triggered by SARS-CoV-2 infection, named there after “Kawasaki 198 

syndrome”) and 3 patients with SLE chilblains. Abdominal skin biopsies from 5 healthy-199 

looking controls were used to set the baseline of a natural steady-state immune environment, 200 

albeit from a distant anatomical region. 201 

We validated the quantitative performance of MANTIS to annotate immune cells by 202 

calculations of statistical correlations with a supervised approach of histo-cytometry15,32 applied 203 

on the same datasets for each antibody panel in all skin samples. This last method consists in a 204 

manual gating of immune subsets on the same principle used in traditional flow cytometry. A 205 
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total of 20,464 single CD45+ immune cells were identified with the following distribution per 206 

condition: 1,670 immune cells in 5 healthy-looking skin samples (i.e., with 895 myeloid and 207 

775 lymphoid cells), 1,703 in 2 Kawasaki syndrome patients (i.e., with 932 myeloid and 775 208 

lymphoid cells), 5,076 in 3 SLE chilblain patients (i.e., with 1,560 myeloid and 3,516 lymphoid 209 

cells) and 12,015 in 5 COVID-toes patients (i.e., with 2,838 myeloid and 9,177 lymphoid cells). 210 

A classical gating strategy based on mutually exclusive biomarkers was used to assess the 211 

presence of myeloid (Supp Fig. 3A) and lymphoid (Supp Fig. 4A) cell subsets by histo-212 

cytometry. We identified a total of 19 different immune subsets and found very similar 213 

distributions of cell counts by either supervised histo-cytometry or unsupervised MANTIS 214 

algorithm (Supp Fig. 3B-E, 4B-E). The calculated R coefficients were between 0.75 and 1, 215 

regardless of the antibody panel, the patients analyzed or the disease (Supp Fig. 3F and 4F). 216 

Importantly, we observed that all healthy-looking skin samples exhibited a proportion of 217 

immune cells aligned with previously described skin-resident immune populations at steady 218 

state in human1,33. However, we noted a slightly higher tendency to detect rare populations of 219 

blood-circulating CD45+CD3-CD20+ B cells or CD45+HLA-DR-CD123+Siglec8+ basophils, 220 

only when 3-D images were computationally analyzed with MANTIS (Supp Fig. 3B and 4B). 221 

This is consistent with the fact that the skin is a highly-vascularized tissue and that recent studies 222 

identified rare B cells in healthy skin34. 223 

Having validated the quantitative and qualitative performance of MANTIS-based annotation, 224 

we next defined a high-level view of the complex immune environment of pathological lesions 225 

from all 10 patients. Compared to healthy-looking samples, pathological lesions contained large 226 

immune infiltrates confirming their inflammatory status (Fig. 3A, B). All three conditions were 227 

associated with an infiltration of myeloid cells composed of a large number of neutrophils, 228 

eosinophils, mast cells and conventional CD45+CD1c+CD207-HLA-DR+ dDCs (Fig. 3A, C). 229 

While detected in relatively low numbers in all analyzed skin samples, no difference was 230 

observed between healthy-looking and pathological samples for CD45+CD1c-CD207+HLA-231 

DR+ LCs or CD45+CD1c+CD207+HLA-DR+ dDCs populations.  232 

Compared to Kawasaki syndrome patients, SLE and COVID-19 patients tended to have an 233 

increased proportion of lymphoid cells (Fig. 3B, C), with an enrichment in conventional CD4+ 234 

or CD8+ T cells and NK cells, and to a lesser extent in γδ T cells. Interestingly, we also observed 235 

double-positive (dp) CD45+CD4+CD8+CD3+TCRγδ- and double-negative (dn) CD45+CD4-236 

CD8-CD3+TCRγδ- T cells in all inflamed and some healthy-looking samples, albeit in smaller 237 

numbers (Fig. 3B, C and Supp Fig. 3). Such populations of T cells were often understudied, as 238 
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CD4 and CD8 biomarkers are thought to be mutually exclusive, however they have been often 239 

reported in autoimmune and chronic inflammatory disorders19,35, including SLE36,37.  240 

We next performed an unsupervised clustering of all patients and healthy-looking controls 241 

based on the quantitative analysis of their immune signature using both a detailed heatmap 242 

based on immune profiles (Fig. 3C) and a principal component analysis (PCA) per patient (Fig. 243 

3D). Healthy-looking skin samples clustered together, with no apparent relationship with the 244 

pathological samples (Fig. 3C, D). Kawasaki syndrome and COVID-toes patients had a 245 

tendency to form disease-specific clusters, while SLE patients were distributed between both 246 

conditions (Fig. 3C, D). Even though these data were obtained on a restricted number of 247 

patients, they suggest that all analyzed pathological lesions displayed common quantitative 248 

immune features (Fig. 3C), with nevertheless potential disease-intrinsic characteristics 249 

suggested upon analysis with a dimensional reduction PCA (Fig. 3D). To explore further this 250 

hypothesis, we refined our analysis by investigating the activation status of conventional CD4+ 251 

and CD8+ T cells based on their expression level of CD57, a biomarker classically associated 252 

with a high cytotoxic potential (i.e., pro-tissue damage) during viral infections and autoimmune 253 

disorders, including COVID-1938. We found that, compared to other pathological conditions, 3 254 

COVID-toes cases were particularly enriched in CD4+ and CD8+ T cells exhibiting high levels 255 

of CD57 (i.e., CD57high; calculated as CD57 MFI z-score, Fig. 3E-G).  256 

During inflammatory skin conditions, cytotoxic immune cells can relocate nearby to/in contact 257 

with keratinocytes and contribute to severe epidermal damage39,40. In order to calculate the 258 

anatomical location of all immune cells with respect to the epidermal layers, we acquired the 259 

spatial coordinates of the modeled epidermis. We next incorporated into MANTIS a k-260 

dimensional tree algorithm41,42, which automatically decomposes the structural element 261 

coordinates (i.e., as exemplified here with the epidermis) into virtual subspaces and enables to 262 

calculate the nearest neighbor to each immune cell (Supp Fig. 5A). A batch calculation of the 263 

distance of each individual cell can then be visualized under the format of a heatmap, providing 264 

a quick overview of the dataset (Supp Fig. 5B). We found that HLAhigh dDCs (Supp Fig. 5C), 265 

NK cells (Supp Fig. 5D) and CD8+ CD57high T cells (Supp Fig. 5E) were all significantly 266 

enriched near the epidermal layer in cases of COVID-toes. Importantly, CD8+ CD57low T cells 267 

were not found enriched in the epidermis (Fig. 3 H-K), suggesting a biological link between 268 

the expression levels of CD57 and epidermal migration in CD8 T cells.  Even though the 269 

number of patients studied is limited, these findings strongly suggest the potential formation of 270 

tissue damaging subepidermal inflammatory clusters composed of cytotoxic T cells and NK 271 

cells in COVID-toes.  272 
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 273 

MANTIS enables topographic exploration of skin lesions by solving the α-shape of in situ 274 

immune substructures  275 

Inflammatory dermatoses are characterized by the presence of large inflammatory infiltrates 276 

composed of specific immune cells and thought to be critical for the development of the 277 

pathology (e.g., type 2 immune cells and eosinophils in atopic dermatitis). To better understand 278 

the regional heterogeneity of pathological lesions from SLE, Kawasaki syndrome and COVID-279 

toes, we took advantage of alpha (α)-shape algorithms that enable, by tuning the α parameter, 280 

to define a precise shape of sets of points by drawing bounding polygons based on the principle 281 

of Delaunay triangulation43. When combined with the digital immune landscapes generated 282 

with MANTIS, α-shape algorithms automatically generate polymorphic α-shapes around n-283 

clusters composed of a minimum of 15 cells (Fig. 4A, i.e., 15 being the minimum number of 284 

cells often found in clusters of inflammatory but not in healthy-looking samples). This method 285 

enables to automatically detect and quantify the major inflammatory clusters (i.e., named 286 

thereafter “αROIs”) to provide a high-level view of the in situ immune architecture of the skin 287 

lesion for each patient and disease. We generated lymphoid (Fig. 4B, C) and myeloid (Fig. 4D, 288 

E) αROIs for all the samples. Healthy-looking controls displayed a few lymphoid αROIs, and 289 

4/5 controls did not show myeloid αROIs. These data indicate that, in human skin at the steady-290 

state, lymphoid cells have a tendency to form aggregates (i.e., composed of perivascular T 291 

lymphocytes1), while myeloid cells are more likely to be randomly distributed. In line with the 292 

data presented in Fig. 3, we found a higher proportion of both lymphoid and myeloid αROIs in 293 

pathological samples as compared to healthy-looking controls (Fig. 4B-E). Using global 294 

unsupervised hierarchical clustering of αROIs per disease, we can generate a high-level view 295 

of inflammatory clusters composition and observe trends in disease-specific immune responses 296 

(Fig. 4F, G). Notably, lymphoid αROIs of both Kawasaki syndrome and COVID-toes exhibited 297 

a significantly higher proportion of CD4+CD57low T cells than that of SLE patients (Fig. 4F, 298 

H). Interestingly, both COVID-toes and SLE lesions displayed significant clusters of 299 

CD8+CD57high cytotoxic T cells, highlighting the cytolytic aspect of pathological lesions 300 

microenvironment in these conditions (Fig. 4F, I). We next analyzed myeloid αROIs for all 301 

cases. We found that, COVID-toes had a particularly high density of clusters enriched in 302 

activated HLA-DRhigh dDCs (Fig. 4G,J). Conversely, Kawasaki syndrome lesions showed an 303 

enrichment in both HLA-DRhigh LCs (Fig. 4G,K) and mast cells (Fig. 4G,L), while SLE lesions 304 

displayed large aggregates of eosinophils (Fig. 4G,M). This finding is consistent with previous 305 

reports of strong eosinophilia in SLE44-46. No significant differences were observed regarding 306 
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other immune cell subsets in αROIs (unpublished). While the precise role played by specific 307 

inflammatory clusters of immune cells in each disease remains elusive, these data strongly 308 

suggest that combining MANTIS digital maps with α-shape-based algorithms can reveal a 309 

significant non-random distribution of skin immune cells in skin lesions, with the presence of 310 

disease-specific immune structures. MANTIS analytic pipeline can thus enable to quickly solve 311 

the spatial organization of complex immune environments and open interesting perspectives for 312 

future investigations in the field of dermatopathology. 313 

 314 

Discussion 315 

Here we propose a general framework for 3-D quantitative and spatial analysis of skin immune 316 

cells at the cellular level. We first describe a simple method to perform a fast 3-D acquisition 317 

of up to 10 biomarkers simultaneously and extract a single-cell database containing the 318 

biological identity (including spatial coordinates) of skin lymphoid and myeloid cells. We then 319 

analyze the extracted databases using an automated and interactive analytic pipeline composed 320 

of phenotype attribution matrices coupled with cell-to-structure distance calculations and α-321 

shape algorithm-based detection of major inflammatory clusters. Our analysis was focused on 322 

FFPE samples as it is still the most easily-available source of pathological tissues and can 323 

enable analysis of patients’ skin-sampled in routine clinical practice. However, the use of cryo-324 

preserved samples is compatible with the approach we describe here, and enables the analysis 325 

of thicker tissue sections (unpublished data).  326 

We identified that the first steps of the process, which consists in the generation of good quality 327 

3-D multiplexed images with a significantly high ratio signal over autofluorescent background 328 

and no spectral spillover, were not necessarily obvious, while being critical for the rest of the 329 

study. This is why we emphasized the capability of a conventional 8-year-old (non-custom-330 

built) confocal laser-scanning system to acquire 10 different fluorochromes simultaneously. 331 

This method of acquisition can be democratized to most academic/clinical facilities since they 332 

involve a conventional equipment coupled to basic spectral spillover compensation and single-333 

cell data extraction strategies, via the use of commercially-available softwares (Huygens and 334 

Imaris; described in detail in the Methods section).  335 

Single-cell segmentation is also very critical as it will constitute the very core of the future 336 

analysis of immune subpopulations and expression of biomarkers. Possible mistakes made at 337 

this step, e.g. the inability to separate immune cells in large infiltrates, would then result in 338 

misinterpretation of MANTIS-generated results. We tested different approaches to 339 

automatically segment healthy-looking and inflammatory skin samples, including random 340 
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forest-based classifiers (e.g., Ilastik machine learning). While such a method was suitable to 341 

segment healthy-looking images with a low concentration of immune cells, it failed to segment 342 

complex inflammatory lesions, where large and packed immune clusters were present 343 

(unpublished). We thus opted for a semi-supervised segmentation of single immune cells using 344 

the software Imaris, in which the segmentation of each inflammatory cluster was quality-345 

controlled manually and in 3-D (Fig. 1F). While this approach is probably more time-346 

consuming, we could ensure a precise 3-D segmentation and further extraction of an accurate 347 

single-cell database to be processed with MANTIS. A recent study has reported the use of an 348 

analysis pipeline, including a new segmentation strategy, adapted from the field of astronomy 349 

named “AstroPath”47. Using this approach and only six biomarkers, they could identify 350 

important pathological features in biopsies from melanoma patients. These results, in line with 351 

our findings, highlight the importance of carefully selecting a list of biomarkers to be studied 352 

and of having the right analytic pipeline to draw reliable insights. 353 

Because immunologists are more commonly used to identify immune cell populations with 354 

manual gating of populations based on flow cytometry, we validated the quantitative 355 

performance of MANTIS by analyzing the extracted single-cell databases for the 15 patients 356 

analyzed with the conventional flow cytometry software, FlowJo. We found that the MANTIS-357 

based analysis on 3-D images generated with two different panels, and just a minimal number 358 

of 10 antibodies per panel, were sufficient to distinguish 19 immune subsets and identify 359 

disease-specific trends in skin lesions.  360 

Because MANTIS attribution matrices can be quickly adjusted to any sets of markers, they 361 

could be compatible with single-cell databases generated using technology with high 362 

multiplexing capabilities such as CODEX7,8, MIBI-TOF9, IMC10, MuSIC11, CyCIF12, Cell 363 

Dive13 and others14. We included in MANTIS the α-shape algorithm that enables us to define 364 

the precise shape of inflammatory immune clusters based on the principle of Delaunay 365 

triangulation43. When applied to digital immune landscapes, the α-shape algorithm 366 

automatically identifies and quantifies dermal and epidermal inflammatory clusters (i.e., 367 

αROIs) composed of a minimum of 15 immune cells (Fig. 4A). This method enables one to 368 

directly analyze the major αROIs to provide a fast high-level view of the skin immune 369 

architecture in a given lesion. Using this method, we could quickly identify that immune subset 370 

(e.g., mast cells, HLA-DRhigh dDCs, CD8+CD57high cytotoxic T cells, eosinophils etc.) were 371 

specifically enriched in dermal areas only in some patient subgroups. These preliminary 372 

observations suggest that, depending on their etiology, pathological lesions could be due to 373 

distinct pathological mechanisms. This type of analysis opens interesting perspectives for the 374 
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3-D cartography of complex inflammatory skin lesions and should be pursued by additional 375 

studies on a larger number of patients. Importantly, while 2D immune landscapes are 376 

represented here to facilitate the visual assessment on Figures (3-D graphs are hardly 377 

perceivable on static pictures), the single-cell segmentation and extraction of cellular spatial 378 

coordinates were all performed in 3-D.  379 

Based on CODEX high multiplexing capacity, previous studies8,48 have shown that it is possible 380 

to generate a high-level view of the cell-to-cell interaction landscape based on the principle of 381 

the Delaunay neighborhood graph49. The MANTIS α-shape algorithm is complementary, as it 382 

automatically identifies major immune structures while deciphering their cellular composition. 383 

Combining α-shape and neighborhood approaches could help to quickly solve the biology of 384 

major inflammatory clusters in the skin, by drawing the ligand-receptor interactome of immune 385 

and structural cells within the identified cluster. Such a high dimensional analysis of the skin 386 

immune architecture could provide a promising avenue for understanding the complexity of 387 

inflammatory skin manifestations with potential benefits for patient stratification and/or 388 

diagnosis. 389 

There is a strong need to design new tools to assist clinical decision making and/or better 390 

apprehend the complexity of inflammatory dermatoses. While very promising processes have 391 

been made in the field of spatial biology50-52, there is an unmet need for a non-expensive and 392 

standardized multiplexed imaging analytical framework capable of automatically resolving the 393 

immune architecture of an inflamed skin. Here we show that the MANTIS analytical system is 394 

uniquely positioned to examine numerous questions in the fields of skin immuno-biology and 395 

should lay the foundation for a fast and automated analysis pipeline of relevant in situ 396 

inflammatory environments in both research and clinical facilities. 397 

   398 

Materials and Methods 399 

Human skin samples. Control normal skin biopsies were obtained from Genoskin SAS 400 

(https://www.genoskin.com/). Genoskin has obtained all legal authorizations necessary from 401 

the French Ministry of Higher Education, Research and Innovation (AC-2017-2897) and the 402 

Personal Protection Committee (2017-A01041-52). Skin biopsies from patients with lupus 403 

erythematosus were obtained from Toulouse University Hospital. Biopsies of COVID-toes 404 

were obtained from Toulouse, Reims and Lyon University Hospitals. Skin biopsies of multi-405 

system inflammatory syndrome were obtained from Reims University Hospital. 406 
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Skin section preparation, histology, and staining. Human skin samples were either frozen in 407 

optimal cutting temperature compounds (OCT, Tissue-Tek, unpublished) or formalin-fixed and 408 

paraffin embedded (FFPE). 10 µm FFPE-tissue sections were heated at 95°C for 20 minutes. 409 

Sections were subsequently immersed into Xylene for 30 minutes, washed in a graded series of 410 

ethanol (100%, 95%, 70%, 50% and 30%for 5 minutes each) and abundantly washed with 411 

distilled water. They were then treated using a heat-induced epitope retrieval method as 412 

previously described53. 413 

FFPE-tissue sections were blocked and permeabilized with PBS 0.5 % (w/v)% BSA (Sigma-414 

Aldrich), 0.3 % Triton X-100 (Merck) for 30 to 60 minutes  at room temperature, then incubated 415 

with fluorophore-coupled antibodies or unconjugated antibodies overnight at 4°C in the dark. 416 

The sections were then washed three times in PBS 0.5 % (w/v)% BSA, 0.3 % Triton X-100 and 417 

incubated, if needed, with secondary antibodies in PBS 0.5 % (w/v)% BSA, 0.3 % Triton X-418 

100 for 2 hours at room temperature in the dark. Finally, samples were treated with an 419 

autofluorescence quenching solution named TrueView (Vector Lab) for 5 minutes. The slides 420 

were mounted in Mowiol medium (Sigma-Aldrich) and sealed with a coverslip. 421 

All conjugated and unconjugated antibodies used in this study were validated in single 422 

immunostainings of human skin and tonsils (unpublished), and are listed in Supplementary 423 

Table 1.  424 

Acquisition. 512x512 pixel Z-Stack Images were acquired using an 8-year-old confocal 425 

microscope SP8 (Leica Microsystems) equipped with a HC PL APO CS2 with 40X NA 1.3 oil 426 

objective, a UV diode (405nm) and four lasers in visible range wavelengths (405, 488, 532, 552 427 

and 635nm). The setup was made up of five detectors (three hybrid detectors with high quantum 428 

yield compared to classical photomultiplier (PMTs) detectors, and two PMTs). Mosaic 429 

sequential images were acquired using the between-stack configuration in order to 430 

simultaneously collect individual 7/8 channels and tiles before merging them to obtain one 431 

single image. Use of the between-stack configuration and the modulation of the detectors’ 432 

detection windows help to reduce the leaking of fluorophores. Finally, a digital zoom of 1.9 433 

was applied during the acquisition and a mosaic multicolor image was obtained and exported 434 

into a .lif format. Detection windows and microscope configuration used in our study are listed 435 

in Supplementary Table 2. 436 
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Image deconvolution and correction of spectral spillover. 3-D mosaic images were then 437 

imported into Huygens SVI software, in order to correct the signal by applying deconvolution 438 

and crosstalk correction. Two deconvolution methods were used: the express deconvolution 439 

(theoretical and fast) or the deconvolution wizard (possibility to use experimental or theoretical 440 

parameters and to adjust the background value). Automatic crosstalk correction estimation was 441 

obtained and the coefficients were slightly adjusted manually, if needed, for optimal spillover 442 

correction. 443 

Segmentation. 3-D mosaic images were imported into Imaris software to separate objects 444 

(cells) using a 3-D surface segmentation. Before creating the surface objects in Imaris, classical 445 

image processing was required. For instance, defining a threshold, adding a median filter, 446 

and/or normalizing the layers were sometimes applied in order to clean the background. Images 447 

were either cleaned using the CD45 surface objects or other channels by applying appropriate 448 

masks for each channel. Then, segmentation was applied on the CD45 channel surface. 449 

Statistics were exported into .csv format. 450 

Segmentation troubleshooting. In some cases, the surface creation parameters were not 451 

efficient to automatically obtain good object creation, or the module was not sensitive enough 452 

to detect low intensity objects. In this case, the creation of small objects was done manually and 453 

the threshold selection was also reduced. If the detected object was below 1 µm, a manual object 454 

unification with surrounding objects of same intensity was performed. 455 

Statistical data exportation. Statistical properties of each segmented object (cell) in the 456 

processed 3-D Imaris Multiplex image were automatically calculated. Object Volume, 457 

Sphericity, Area, xyz Position and Mean Fluorescence Intensity (MFI) in all channels were 458 

exported as a .csv table. 459 

FlowJo analysis and gating strategies. Identification and density assessment of immune cell 460 

subsets were analyzed using classical histo-cytometry32. 461 

Immune cell populations were gated in FlowJo software as follows: 462 

B cells: CD45+ CD20+ 463 

NK cells: CD45+ CD20- CD3- CD57+ 464 

CD4+ T cells: CD45+ CD20- CD3+ TCRγδ- CD4+ CD8- CD57low or high 465 

CD8+ T cells: CD45+ CD20- CD3+ TCRγδ- CD4- CD8+ CD57low or high 466 

γδ T cells: CD45+ CD20- CD3+ TCRγδ+ 467 
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dn T cells: CD45+ CD20- CD3+ TCRγδ- CD4- CD8- 468 

dp T cells: CD45+ CD20- CD3+ TCRγδ- CD4+ CD8+ 469 

Mast cells: CD45+ Tryptase+ 470 

DC: CD45+ CD1c+ CD207- HLA-DRlow or high 471 

LC: CD45+ CD1c- CD207+ HLA-DRlow or high 472 

DC CD207+: CD45+ CD1c+ CD207+ HLA-DRlow or high 473 

Neutrophils: CD45+ CD1c- CD207- Tryptase- Siglec8- MPO+ 474 

Eosinophils: CD45+ CD1c- CD207- MPO- Tryptase- Siglec8+ CD123- 475 

Basophils: CD45+ CD1c- CD207- MPO- Siglec8+ CD123+ 476 

 477 

Tissue annotation 478 

Implementation of MANTIS reference panels. In order to enable cell identification, we built 479 

a binary table containing a literature-based theoretical signature of biomarkers expressed in 480 

each cell population identified by the used panel (naturally depending on the used set of 481 

antibodies), known as the reference attribution panel. If a cell population is positive for a 482 

marker, the value is set to 1, otherwise it is set to 0. If a cell population can be positive for a 483 

marker, there are two columns, one with the value set to 1, the other with the value set to 0 (i.e., 484 

γδ T cells can express CD4 or not). Two reference tables were implemented and designated by 485 

lymphoid and myeloid reference attribution matrices. 486 

Dynamic adaptation of reference matrices. Sample heterogeneity led to different acquisition 487 

parameters (laser power, gain, etc.). In order to standardize data processing, we scaled the 488 

reference tables and dynamically adapted, for each sample, the table values according to the 489 

MFI values. In practice, the value “1” in the binary table was replaced by the maximum MFI 490 

value acquired in the corresponding channel from the tested sample. 491 

Automatic cell type identification. To annotate the segmented objects, a correlation matrix 492 

between the MFI table and the adapted reference panel was generated by performing a pairwise 493 

Spearman’s Rank Correlation using the R software (2021). Each object was then phenotypically 494 

assigned to the cell type having the highest correlation coefficient. Objects with multiple highest 495 

correlation coefficients were assigned as “Other” cell types. 496 

Accuracy validation. The accuracy of MANTIS automatic cell identification was verified by 497 

comparing quantification results to classical histo-cytometry32. Briefly, linear regression of cell 498 
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type density was computed between both attribution methods and regression coefficients were 499 

calculated. Regression coefficients ranging between 0.75 and 1 reflect MANTIS technique 500 

robustness. 501 

Activation status detection. MANTIS panels were designed to not only include discriminant 502 

markers for cell attribution but also non-discriminant and informative markers, for instance, 503 

activation markers. The cell populations of interest (CD4+ and CD8+ T cells in the lymphoid 504 

panel, DCs, LCs and CD207+ DCs in the myeloid panel) as well as the activation markers that 505 

reflect the activation status of these populations (CD57 in the lymphoid panel, and HLA-DR in 506 

the myeloid panel) were defined in the MANTIS algorithm. This latter automatically computes 507 

the MFI density curve associated with the activation markers within the selected populations. 508 

Subsequently, the MFI corresponding to the first peak of the density curve is defined as the 509 

MFI value above which the cell is considered positive for the activation marker. 510 

Alpha (α)-shape calculation. α-shape was calculated using the alphashape Python package. 511 

Briefly, Delauney triangulation of a given set of points formed a bounding polygon that contains 512 

all the points of the set. The α parameter was defined by the value α, and a circle with 1/α radius 513 

was drawn in such a way that two points of the dataset are located on the boundaries of the 514 

circle and the circle is empty. For each empty circle found, the line between the two points 515 

formed a side of the bounding polygon, i.e., the α shape. As α decreased, the alpha shape 516 

changed from a convex hull (e.g., epidermis α shape, α = 0.4) to a more tightly-fitting bounding 517 

box resulting in more refined alpha shapes (e.g., region of interest alpha shape [αROI], α = 0.1). 518 

Cell to structure distance calculation and nearest neighbor search. x-y coordinates of 519 

epidermis α-shape contours were stored using the k-dimensional tree method, which allows 520 

data ranking and structuration. Briefly, data points were classified based on nodes and branches 521 

space-partitioning, allowing a fast nearest neighbor calculation. For a given point (cell) of the 522 

dataset, the nearest neighbor in the epidermis alpha shape was found and the distance defined 523 

by r was calculated using the scipy.spatial Python package41. The distance of cells contained in 524 

the epidermis α shape was set to 0. 525 

Data clustering and αROI analysis. Regions of interest (αROI, i.e., inflammatory cell 526 

clusters) were identified using the α shape algorithm with a tuned α parameter (α = 0.1), 527 

allowing correct detection of high cell density areas. αROI with less than 15 cells were removed 528 

from the analysis. For each selected αROI, specific characteristics were calculated and 529 
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extracted, such as area, total number of cells, cell number, proportion by cell type and αROI 530 

center coordinates. 531 

Data visualization. Visualization charts were obtained using the ggplot2, Pigengene & 532 

ComplexHeatmap R packages, and matplotlib & seaborn Python packages. t-Distributed 533 

Stochastic Neighbor Embedding (tSNE) was computed with Rtsne. 534 

Statistics. Statistical tests were performed using Prism 8 (GraphPad Software), the Rstats and 535 

rstatix R packages. One-way ANOVA with Tukey’s test for multiple comparisons or Mann-536 

Whitney test were performed on samples as noted in the respective figure legends. A p-value 537 

of less than 0.05 was considered statistically significant.  538 
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Figures and legends 539 

 540 

Figure 1. Between-stack microscope configuration allows sequential acquisition of 7+ 541 

channels with classical image processing. A, Sample preparation. FFPE-skin sections were 542 

cut and stained for myeloid and lymphoid panels after appropriate epitope retrieval and 543 

autofluorescence quenching. Sample images were then acquired using a SP8 confocal 544 

microscope from Leica Microsystems as described in B. B, Microscope configuration and 545 

acquisition settings. Mosaic sequential images were acquired using the between-stack 546 

configuration with tunable detection windows. Sequences were overlaid and 3-D-stitched. An 547 

example of data acquisition is given for healthy (left panel) and pathological (lupus 548 

erythematosus [SLE], right panel) skin. C, Deconvolution of regions of interest and spectral 549 

unmixing. Acquired 3-D images were deconvoluted and compensated to correct optical 550 
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aberrations and 3-D fluorescent spectral spillovers. D, Representative 3D multiplex image of 551 

healthy (upper panel) and pathological SLE (lower panel) skin sample for lymphoid panel, 552 

staining CD45, CD3, CD4, CD8, TCRγδ, CD57 and CD20. E, Co-localization of DAPI and 553 

CD45 staining and respective RGB profiles. F, Segmentation and single-cell database creation. 554 

Cell segmentation using the CD45 fluorescence channel allowed efficient isolation of 555 

individual objects, i.e., immune cells. Individual object statistics (xyz coordinates, sphericity, 556 

volume and Mean Fluorescence Intensity) were extracted for each sample. 557 
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 558 

Figure 2. MANTIS algorithm allows automated cell type attribution and interactive 559 

exploration of skin myeloid immune topology. A, Automated tissue annotation. A reference 560 

attribution matrix defining the literature-based theoretical signature of a particular cell type was 561 

constructed and designated as MANTIS attribution matrix. A correlation matrix calculating 562 

Spearman coefficient between the single-cell database and MANTIS attribution matrix was 563 

computed. Each segmented cell was annotated to the cell type having the highest correlation 564 
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coefficient, and cell type proportions were extracted. B, Single-cell staining of all used 565 

biomarkers in identified myeloid cells. C, MANTIS simplified attribution matrix for myeloid 566 

panel. D, Tissue annotation and cell proportion of pathological (SLE) skin. E, Representative 567 

t-SNE plot of myeloid cell populations (upper panel) and MFI levels of used markers (colored 568 

intensity scale, lower panel). F, Representative 3D confocal multiplex image (upper panel) and 569 

associated digital map (lower panel) of pre-designed MANTIS myeloid panel of pathological 570 

(SLE) skin. G, Interactive reverse-gating. A population of interest (neutrophils) was selected 571 

on the tSNE plot. Recomputation of the corresponding digital map enabled the visualization of 572 

the anatomical distribution of this particular population in the skin biopsy.  573 
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 574 

Figure 3. 3-D quantitative and spatial analysis of skin immune cells at the cellular level 575 

provide insight into disease signatures. A, B, Representative 3-D confocal multiplex images 576 

(upper panel) and associated digital maps (lower panel) of pre-designed MANTIS myeloid (A) 577 

and lymphoid (B) panels of healthy and pathological skin. C, Representative heatmap of 578 

lymphoid and myeloid cell densities in logarithmic scale with hierarchical clustering. D, 579 

Principal Component Analysis (PCA) of immune signatures of healthy and diseased skin. E, 580 

Cell count per mm3 of CD57low and CD57high T cells. F, G, Dotplot of CD57 Mean Fluorescence 581 

Intensity (MFI) z-score in CD4+ (F) and CD8+ (G) T cells in healthy and diseased skin. H, I, 582 

Representative digital map (H) and mean distance to epidermis (in µm [I]) of CD8+ CD57low 583 

(left panel) and CD57high (right panel) T cells in COVID skin lesions.  584 
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 585 

Figure 4. Automatic detection of α-regions of interest (αROI) enables exploration of 586 

inflammatory cluster topography in healthy and diseased skin. A, Alpha shape algorithm. 587 
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Delauney triangulation of a given set of points formed a bounding polygon that contains all the 588 

points of the set. The alpha parameter was defined by the value α, and a circle with 1/α radius 589 

was drawn around each point of the dataset. The line between two circles meeting points formed 590 

a side of the bounding polygon, i.e., the alpha shape. α value defines the detail level of the alpha 591 

shape and allows modeling of voluminous structures (1/α1) or smaller structures (1/a2) having 592 

1/α1 > 1/α2. B, C, Violin plot (B) and representative digital maps (C) of lymphoid α-ROI density 593 

in healthy and pathological skin. D, E, Violin plot (D) and representative digital maps (E) of 594 

myeloid α-ROI density in healthy and diseased skin. F-K, Mean proportion of CD4+ CD57low 595 

T cells (F), CD8+ CD57high T cells (G), HLA-DRhigh dDCs (H), HLA-DRhigh LCs (I), mast cells 596 

(J) and eosinophils (K) per αROI in diseased skin. Mean ± SEM; *P<0.05, **P<0.01, 597 

***P<0.001 One-way ANOVA (F-K). L, M, Representative heatmaps of cell proportions in 598 

lymphoid (L) and myeloid (M) αROIs in pathological skin. A hierarchical clustering was 599 

applied on rows and on each pathology’s column.  600 
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