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Abstract 
 
A protein’s molecular interactions and post-translational modifications (PTMs), such as 

phosphorylation, can be co-dependent and reciprocally co-regulate each other. Although this 
interplay is central for many biological processes, a systematic method to simultaneously study 
assembly-states and PTMs from the same sample is critically missing. Here, we introduce SEC-
MX (Size Exclusion Chromatography fractions MultipleXed), a global quantitative method 
combining Size Exclusion Chromatography and PTM-enrichment for simultaneous 
characterization of PTMs and assembly-states. SEC-MX enhances throughput, allows 
phosphopeptide enrichment, and facilitates quantitative differential comparisons between 
biological conditions. Applying SEC-MX to HEK293 and HCT116 cells, we generated a proof-
of-concept dataset mapping thousands of phosphopeptides and their assembly-states. Our analysis 
revealed intricate relationships between phosphorylation events and assembly-states and generated 
testable hypotheses for follow-up studies. Overall, we establish SEC-MX as a valuable tool for 
exploring protein functions and regulation beyond abundance changes. 
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Introduction 
 
A major effort in studying the dynamics of biological systems is to measure differential 

changes in the proteome. Classically, proteome dynamics have been studied by measuring 
differences in total protein expression levels. However, total proteome levels do not convey the 
full array of post-translational dynamics. For example, the protein’s assembly-state – whether a 
protein is acting alone as a monomer or as part of different complexes – often changes between 
biological conditions and systems, despite similarities in overall expression levels1–3. These 
differences in assembly-states, often driven by protein-protein interactions (PPIs), may reflect 
distinct functions that contribute to differential cell states.  

An additional central mechanism contributing to the complexity of the proteome is the 
attachment of functional groups to proteins, referred to as post-translational modifications 
(PTMs)4. Notable examples encompass ubiquitination, acetylation, methylation, and 
phosphorylation – which is one of the most extensively studied. PTMs can induce various 
alterations in protein activity, including activation or inhibition, tagging for degradation, and 
subcellular localization, among others. Notably, most PTMs and PPIs are dynamic and take part 
in regulatory mechanisms, and therefore change between biological conditions5–9. Therefore, 
characterizing these dynamic "states" is essential for a comprehensive biological understanding. 

Cumulative research over several decades has demonstrated the interdependence of a protein's 
assembly-state and PTM-status5,8–11. For instance, phosphorylation can modulate a protein's 
interaction interface, and conversely, protein interactors can obstruct phosphorylation sites, 
thereby denying access to kinases or phosphatases. Past works on the interplay between PPIs and 
PTMs have relied on targeted methods, such as co-immunopurification, to enrich the interactomes 
of specific proteoforms5,8. However, these approaches are limited in their scope and a global scale 
method to simultaneously study assembly-states and PTMs is critically missing. Therefore, we set 
out to develop an approach to systematically study the interplay between protein assembly-states 
and phosphorylation events. 

Previously, Size Exclusion Chromatography followed by Mass Spectrometry (SEC-MS) has 
been used successfully to analyze assembly-states, identify PPIs and characterize the composition 
of molecular-complexes1,12–26. SEC is used to distinguish different assembly-states of the same 
protein, which elute in distinct fractions based on the different molecular weight (MW) of each 
assembly (for example, a monomer will elute in a low MW fraction versus a multimeric complex 
of a higher MW2). However, SEC-MS is limited by input amounts that render PTM enrichment 
challenging. As a result, previous works have mined phosphopeptides in SEC datasets by meta-
analysis27, or studied the effects of phosphatase-treatment on SEC elution profiles28. However, no 
study to date has directly measured enriched phosphopeptides with SEC-MS. 

Here, we introduce a global and quantitative methodology that enables the simultaneous 
characterization of PTMs and assembly-states, in the same sample, to explore their relationship 
across various biological processes. Expanding on prior SEC-MS and co-fractionation 
multiplexing works29, we use isobaric tags to develop SEC-MX – Size Exclusion Chromatography 
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fractions MultipleXed – and demonstrate its advantages in; (1) improving throughput by reducing 
the number of LC-MS/MS runs required to reconstruct the PPI network, (2) enabling 
phosphopeptide enrichment and measurements thereby allowing characterization of PTMs along 
the SEC range, and (3) simplifying quantitative comparisons between biological conditions that 
are multiplexed together.  

In this study, we employed SEC-MX to comprehensively characterize the SEC elution profiles 
of both non-modified and phosphorylated peptides from HEK293 and HCT116 cells. This yielded 
a novel dataset, marking the first instance of concurrent non-targeted measurements of 
phosphorylation events and assembly-states for thousands of proteins across two distinct biological 
conditions. Our analysis enabled a comparative examination of assembly-states and their 
phosphorylation status between the two cell-lines. Overall, our study provides insights into the 
intricate interplay between post-translational modifications and protein assembly-states, 
underscoring the unique value of SEC-MX in unraveling the complexities of protein regulation. 

 
 

Results 
 

Development and benchmarking of SEC-MX 
We developed SEC-MX (SEC fractions MultipleXed) to enable quantitative comparison 

between different samples, as well as to measure phosphorylation events on proteins in distinct 
assembly-states by enriching phosphopeptides from SEC fractions. First, we set out to multiplex 
SEC fractions to increase the sample-yield for phosphopeptide enrichment. Multiplexing was 
achieved by labeling SEC fractions with isobaric tags. Tandem mass tags (TMTpro) were used 
because they provide the highest number of labeling channels currently available, allowing 
combinations of up to 18 samples in a single liquid-chromatography tandem mass spectrometry 
(LC-MS/MS) run. We multiplexed SEC-adjacent fractions within the same TMT mix to minimize 
the occurrence of missing data points and reduce sample complexity (Figure 1A-B, Extended Data 
Figure 1A). In doing so, we took advantage of the fact that once a peptide is triggered for MS2 
acquisition, TMT reporter intensity values are, in most cases, assigned to all channels and therefore 
achieve more complete elution profiles. In addition, we designed a “full-overlap” scheme (Figure 
1B, Extended Data Figure 1C) in which every fraction is measured twice, in different mixes, 
increasing coverage and enabling batch correction between different TMT-mixes (the 
development of the mixing scheme is detailed in the Materials and Methods section, Extended 
Data Figure 1). 

To compare SEC-MX to the field’s current gold standard – label-free SEC measured with data 
independent acquisition (DIA), we conducted SEC on HEK293 cells and measured the resulting 
fractions either individually or multiplexed by TMT labeling, in duplicate biological replicates for 
each. We found that coverage in SEC-MX was comparable to SEC-DIA, with only a 10% 
difference in protein-group identifications, despite a 9-fold reduction in the number of LC-MS/MS 
runs (57 versus 8 in DIA or TMT, respectively) (Figure 1C). Additionally, SEC-MX produced 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2023.01.12.523793doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523793
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

very similar SEC 
elution patterns to 
that of SEC-DIA, 
evident by the 
positions of the 
elution peaks per 
protein, as well as 
in the high-

correlation 
between elution 
profiles measured 
by both methods 
(Figure 1D-F). 
We then used the 

network-centric 
analysis 

algorithm SECAT 
22 to identify high-
confidence PPIs 
and observed that 

SEC-MX 
identified a 
similar number of 
PPIs as did SEC-
DIA, (3,588 and 
4,208 at 5% false-
discovery rate, 
respectively, of 
which 54% were 

overlapping), 
with similar 

network 
parameters 

(Figure 1G-H, 
Extended Data 
Figure 2A-B). We 

additionally 
analyzed the data 
with a reference-
free PPI analysis 

Figure 1 – SEC-MX performs comparably to SEC-DIA in coverage and resolution: (A) 
Overview of experimental pipeline: Cells are lysed under physiological conditions, followed 
by fractionation on a size exclusion chromatography (SEC) column into ~90 fractions. The 
protein-containing fractions (54-72 fractions total) are further processed by tryptic digestion. 
The resulting peptides are either measured individually using DIA (SEC-DIA), or labeled by 
TMT, multiplexed and measured in pools of 18 fractions (SEC-MX). (B) A “full overlap” 
mixing scheme was developed, in which each fraction is divided in two and each half is 
measured in a different mix, keeping adjacent fractions together. (C) Protein and peptide 
identifications in SEC-DIA and SEC-MX. (D) Heatmap representation comparing signals in 
SEC-DIA and SEC-MX, for proteins measured in both. Columns represent fractions, rows 
represent different proteins, which are row-normalized from 0 to 1 so that the max elution 
peak per protein is represented in red. Rows in both heatmaps are arranged in the same 
order. (E) Elution traces and heatmap representation of the SEC elution of the CCT complex 
subunits in either SEC-DIA or SEC-MX. (F) Distribution of Pearson correlation coefficients 
between elution profiles in SEC-MX versus SEC-DIA per protein measured in both. (G) 
Parameters of the PPI networks build by SECAT analysis of either SEC-DIA or SEC-MX 
data. (H) The overlap of interactions between SEC-DIA and SEC-MX, q-value < 0.05 in at 
least one condition and < 0.1 in the other, (see Materials and Methods section for details).  
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tool which allows identifications of novel interactions24, resulting in 12,620 and 14,406 PPIs in 
SEC-MX and SEC-DIA, respectively (Extended Data Figure 2C-E).  

Together, our observations showed that SEC-MX performs comparably to the field’s gold 
standards in building a context-specific human PPI network while requiring an order of magnitude 
less LC-MS/MS runs. 

 
SEC-MX enables phospho-peptide enrichment  

After validating SEC-MX performance for studying protein interactions, we next set out to test 
the feasibility of the multiplexing approach in enabling phosphopeptide enrichment using standard 
immobilized metal affinity chromatography (IMAC). As mentioned above, we were interested in 
developing the method in order to facilitate differential analysis between biological conditions. 
Therefore, we designed the study to compare between two distinct cell-lines, HEK293 and 
HCT116. Fifty-four SEC fractions were collected from each cell-line, in two biological replicates. 
To minimize variability in protein coverage and to increase the chances of identifying the same 
phosphopeptides from the two cell-lines, we multiplexed fractions from both samples together in 
the same TMT mixes (Figure 2A, Extended Data Figure 1B). After labeling and multiplexing, 20% 
of each mix were taken for measuring the ‘global’ proteome for analysis of protein assembly-
states, while the rest of the sample was further allocated for phosphopeptide enrichment using 
IMAC (Figure 2A).  

Overall, the global dataset (hereafter referred as gSEC) yielded 59,659 peptides, covering 
5,503 protein groups (Table 1). In the phosphopeptide SEC dataset (phSEC) we recovered 4,762 
phosphorylated peptides, spanning 2,196 proteins, out of which 1,593 overlapped with the gSEC 
dataset (Figure 2B). To initially assess the quality of the phSEC data, we compared the elution 
patterns of peptides in phSEC to their corresponding peptides in gSEC and observed a high degree 
of correlation (Figure 2C, Extended Data Figure 3A-D). For example, we inspected the elution 
profiles of phosphopeptides mapping to subunits of the stable CCT complex and found that they 
co-eluted with the fully assembled form of the complex (Figure 2D, Extended Data Figure 3E). Of 
note, since the information content of different phosphopeptides is not necessarily linked to each 
other, meaning they might not belong to the same proteoforms, from here on we report all phSEC 
data on the peptide-level and match it to the protein-level data of the parent-protein in the gSEC 
dataset (3,609 phosphopeptides, matched to 1,593 proteins). In conclusion, our PTM enrichment 
downstream from SEC fractionation created a unique and first-of-its-kind dataset measuring SEC 
elution profiles for ~4000 phosphopeptides and their matching parent proteins, which enables 
overlaying PTM-status with protein assembly-states.  
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Figure 2 – SEC-MX enables phosphopeptide enrichment: (A) Overview of experimental setup. The same 
fractions from HEK293 or HCT116 cells were multiplexed together, digested, and labeled. After pooling, 80% of the 
sample was allocated for phosphopeptide enrichment and measurement of phSEC, while the remaining 20% was 
processed for gSEC. (B) Venn diagram showing the overlap of protein identifications between the gSEC and phSEC 
datasets. (C) Heatmap representation of the elution profiles of overlapping peptides in gSEC and phSEC from 
HEK293 cells in both replicates. Columns represent fractions, rows represent different peptides, which are scaled 
from 0 to 1 so that the max elution peak per protein is represented in red. Rows in all 4 heatmaps are arranged in 
the same order. For similar heatmaps from HCT116 cells see Extended Data Figure 3. (D) Elution traces for CCT 
complex members identified in gSEC and phSEC (HEK293 cells, average of both replicates, similar results were 
obtained for HCT116 cells, shown in Extended Data Figure 3).  
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A protein-centric analysis framework to study assembly-states 

Next, we aimed to analyze our unique dataset in order to; (1) define assembly-states for every 
measured protein, (2) map phosphorylation events onto assembly-states and, (3) study how these 
patterns differ between conditions. Previously, SEC-MS has been widely used to identify pair-
wise PPIs, characterize the composition of molecular-complexes, or compare interactions between 
samples1,18,22,24,30. As opposed to a focus on interactions, recent work has shown the potential of a 
protein-centric approach that looks at the assembly-state changes of individual proteins between 
conditions 2. Based on this approach, we first identified assembly-states by taking into account that 
each SEC elution peak represents a distinct assembly-state of the protein (Figure 3A). This allowed 
us to assign/map phosphorylation events by aligning individual peaks between gSEC and phSEC. 
Lastly, we used a protein-centric approach to compare those assembly-states between biological 
conditions and discover potential regulatory events that occur on specific assembly-states of the 
same protein (Figure 3A).  

The first step in our analysis pipeline was to define assembly-states per protein. We used a 
peak-calling algorithm (as detailed in Materials and Methods) to identify assembly-states for each 
protein in each dataset independently (gSEC/phSEC, for each cell-line and biological replicate). 
This analysis identified that the average ~5000 proteins in each gSEC sample are eluting in ~8,500 
assembly-states, with an average multiplicity of 1.76 peaks per protein, and 1.4 peaks per peptide 
(Table 1, Figure 3B, Extended Data Figure 3F), suggesting that over half the proteins in the cell 
are present in at least two different assembly-states. 

Following peak calling, each assembly-state was categorized as monomeric or complexed 
based on the peak position along the SEC dimension (detailed in Materials and Methods). We 
observed that only ~17% of proteins eluted exclusively as monomeric, 62% exclusively in their 
complexed form, and 21% in both (Figure 3C), suggesting that the majority of proteins in the cell 
are complexed with other molecules, in line with previous observations 1,2,15. This trend toward 
assembled proteins was even more prominent for phSEC profiles, where less than 6% of proteins 
eluted exclusively as monomeric, 85% exclusively in their complexed form, and 9% in both 
(Figure 3D). Comparing these distributions, we observed that the phSEC assembly-states eluted 

Table 1 – Overview of assembly-state relevant identifications per dataset 
Groups Numbers 
Replicate Condition Dataset Proteins Peptides Pep Peaks Prot Peaks Assembly 

States 

01 
HCT 

gSEC 4,578 41,429 57,234 7,747 

8,519 
phSEC 2,027 4,237 6,314 

 

HEK 
gSEC 4,583 41,466 52,236 7,083 
phSEC 1,993 4,159 5,473 

 

02 
HCT 

gSEC 5,154 46,763 69,702 9,508 

11,592 
phSEC 1,477 2,745 4,101 

 

HEK 
gSEC 5,151 46,743 71,240 10,005 
phSEC 1,483 2,761 3,837 
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less frequently as monomers than in gSEC, a finding that we confirmed for the subset of proteins 
matched with measured phosphopeptides (Extended Data Figure 3G). Moreover, the lower 
percentage of monomeric assembly-states in phSEC compared to gSEC suggests that 
phosphorylation occurs more often on the assembled form of a given protein, rather than its 
monomeric. 

In conclusion, we used a peak-focused approach to define assembly-states from SEC data. 
Using this method, we showed that more than half of the measured proteins presented in two or 
more assembly-states, highlighting the importance of considering how alternative assembly-states 
might be regulated. Therefore, we next turned to assign phosphorylation-events to specific 
assembly-states.  

 
 

Mapping PTM onto 
assembly-states  

To map 
phosphorylation onto 
assembly-states, we 
aligned the peaks identified 
in phSEC to the peaks of 
their parent-protein in 
gSEC based on peak-apex 
position along the SEC 
range (see Materials and 
Methods). This analysis 
covered 1,592 proteins that 
were measured in both 
datasets, and showed that 
90% of the phSEC proteins 
had at least one peak 
aligned between gSEC and 
phSEC, showing high 
agreement between the two 
datasets (1,446 out of 
1,592, Figure 4A). When a 
phSEC peak aligned with 
gSEC peak, we considered 
that as evidence that the 
protein is phosphorylated 
in the specific assembly-
state. Interestingly, many 

Figure 3 – A novel protein-centric analysis framework to study assembly-
states: (A) Hypothetical SEC-MX elution traces depicting a protein with 
multiple assembly-states, each represented as a distinct peak. Elution peaks 
can also differ between conditions; for example, under condition 1, the 
depicted protein elutes as a monomer (not phosphorylated) and a large 
complex including a phosphorylated-site. Under condition 2, the monomer 
peak is still evident, while the different position of the larger MW elution peak 
suggests that the protein is taking part in a different complex, which is not 
phosphorylated. (B) Frequency distribution of peak multiplicity per protein 
showing that >50% of proteins elute with >1 peaks. (C-D) Pie charts showing 
the percentage of proteins that eluted exclusively with a peak categorized as 
monomeric, complexed, or both (based on MW estimation) in gSEC (C) and 
phSEC (D).  
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of the 1,446 proteins had gSEC peaks that were not aligned with the phSEC peak, suggesting that 
a substantial fraction of the phosphorylated proteins were selectively phosphorylated on specific 
assembly-states. Since this pattern can be affected by the lower coverage in the phSEC versus 
gSEC dataset, we filtered the proteins based on replicate reproducibility and delineated 257 
candidate proteins for which phosphorylation differed between different assembly-states of the 
same protein (see Supplementary Material). We next discuss a few of these examples.  

Among the candidate proteins we found the non-muscle myosin IIA Myosin-9 (MYH9), an 
abundant actin-motor expressed in most eukaryotic cells. MYH9 eluted in both a high MW peak 
(multimeric assembly-state), and a smaller MW peak in the monomeric range (Figure 4B, 
Extended Data Figure 4A). Interestingly, phosphopeptides spanning the sequence around the 
known phosphorylation site on Serine-1943 were reproducibly measured in phSEC, all co-eluting 
only with the multimeric assembly-state, suggesting that MYH9 is differentially phosphorylated 
between its monomeric and assembled forms. This observation is in-line with previous works 
showing that association of MYH9 with its binding partners is regulated by Serine-1943 
phosphorylation31,32.  

In addition to multimeric assembly-states determined by PPIs, assembly-states may form by 
interaction with various other molecules, such as nucleic acids. One of the advantages of using our 
protein-centric approach for analyzing SEC data, as opposed to a PPI focused approach, is the 
ability to identify that a given protein has significant assembly-state changes without the 
requirement to identify the underlying interactors. For example, we observed that several RNA 
binding proteins (RBPs) in our data eluted in multiple gSEC peaks that seemed to be differentially 
matched with a peak in phSEC. For instance, Polypyrimidine tract-binding protein 1 (PTBP1) 
eluted in two prominent assembly-states; in fractions 8 (high MW) and 40 (low MW). 
Interestingly, PTBP1 phosphopeptides eluted within a single peak overlapping the smaller MW 
assembly-state (Figure 4C, Extended Data Figure 4B), suggesting that only this assembly-state of 
PTBP1 is phosphorylated. One potential explanation to this phenomenon could be that 
phosphorylation regulates the association of the protein to RNA transcripts. To test this hypothesis, 
we plotted the elution profile of PTBP1 in SEC from HEK293 cells, before and after RNAse 
digestion (Figure 4D). We observed that the intensity of the high MW peak of PTBP1 is decreased 
following RNAse digestion, and the smaller MW peak is increased – supporting the notion that 
the phosphorylated PTBP1 form is no longer interacting with RNA. A similar pattern was observed 
in our data for various other RBPs including CPSF3, which like PTBP1 seems to be 
phosphorylated only in its RNA-free form (Extended Data Figure 4C). On the other hand, other 
RBPs, like DDX54 (Extended Data Figure 4D), exhibited the opposite pattern with phSEC peaks 
only matching the high MW RNA-bound assembly-state. Together, these observations suggest a 
role for phosphorylation in regulating RBPs interactions with RNA. 

Another layer of information in our matching analysis comes from comparing the patterns of 
different phosphopeptides mapped to the same parent-protein. In some cases, although all 
assembly-states were identified as phosphorylated, a deeper dive in the data showed that each 
assembly-state is phosphorylated on a different site, as in the example of the DNA replication 
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licensing factor MCM3 (MCM3). MCM3 is a subunit of the minichromosome maintenance 2–7 
complex (MCM2-7), a hetero-hexameric complex that functions as a DNA replication licensing 
factor. It is loaded onto replication origins to form inactive pre-replicative complexes, which are 

Figure 4 – Mapping PTMs onto assembly-states: (A) Number of proteins for which phSEC peaks were matched 
to the gSEC peaks, based on their apex position: 1,446 out of the 1,593 proteins (90%) measured in both gSEC 
and phSEC had a least one phSEC peak that matched to a gSEC peak. (B) SEC-MX elution traces in gSEC (top) 
and phSEC (bottom) for MYH9 in HEK293 cells (averaged across replicates. HCT116 elution patterns shown in 
Extended Data Figure 4). Gray boxes indicate the range of fractions covering the monomeric form of the protein. 
(C) Same as B, for PTBP1. (D) PTBP1 elution in SEC-DIA performed on HEK293 cell lysates before/after RNAse 
treatment. (E) Same as B, for MCM3. (F) gSEC elution traces for all MCM2-7 complex subunits (HEK293, averaged 
across replicates) support the existence of two assembly-states: the full complex and an intermediate assembly-
product comprising of MCM3-MCM5-MCMBP. Crystal structure of human single hexameric MCM2-7 complex is 
shown (PDB 7W68, deposited by Xu, N.N. et al., 2021-12-01).  
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then activated by kinases to form the active CDC45-GINS-MCM helicase complex33,34. In gSEC, 
MCM3 eluted in two assembly-states: the full hexameric complex in fraction 24 (higher MW) and 
a lower MW complex in fraction 36 with MCM5 and the auxiliary protein MCM binding-protein 
(MCMBP), (Figure 4E-F, Extended Data Figure 4F). In phSEC, we identified three distinct 
phosphopeptides of MCM3, each containing known phosphorylation sites; one spanning AA 668-
689 including Serine-672 and Serine-681, the other spanning AA 701-724 including Tyrosine-708 
and Threonine-722, and the third spanning AA 725-732 including Serine-728. Interestingly, while 
phPEP725-732 co-eluted with both gSEC peaks, phPEP701-724 and phPEP668-689 eluted only in the 
lower MW peak (Figure 4E, Extended Data Figure 4E). Of note, a recent study suggested that 
MCMBP may play a role in forming the MCM2-7 hexameric complex before it is loaded onto the 
chromatin35, meaning that the MCM3-MCM5-MCMBP complex is potentially a stable 
intermediate assembly product of the full complex. Therefore, the observation that phPEP668-689 
and phPEP701-724 elute only with the MCM3-MCM5-MCMBP assembly-state raises the hypothesis 
that the sites within these peptides are dephosphorylated prior to the assembly of the full complex. 
While further studies are required to test this hypothesis, these observations exemplify the potential 
of our method in formulating testable hypotheses of how phosphorylation contributes to 
differential assembly-states and functions.  

In conclusion, we used a peak-focused analysis to map phosphorylation events to individual 
assembly-states. We showed how this approach can be used to explore the relationship between 
protein-interactions and PTM regulation. Furthermore, we found hundreds of potential cases of 
differential phosphorylation between assembly-states, such as in cases where the monomeric and 
assembled forms differ in phosphorylation (MYH9), how phosphorylation may regulate the 
binding of proteins to nucleic acids (PTBP1, CPSF3, DDX54), or the assembly-process of large 
multimeric complexes (MCM3). Next, we expanded the analysis to compare assembly-states and 
their phosphorylation between the two analyzed cell-lines.  

 
SEC-MX enables differential analysis between biological samples 

One of the main considerations in designing SEC-MX was to facilitate differential analyses of 
assembly-state changes between different biological samples and/or conditions. In this study, we 
focused on analyzing the assembly-state changes and their phosphorylation-state between two 
human cell-lines, HEK293 and HCT116, whose PPIs were previously compared36. We analyzed 
differences between the samples at the peak level as most proteins in our study were observed 
eluting in more than one assembly-state. We speculated that a peak-level approach would be highly 
sensitive to the detection of proteins differentially regulated in only one of several assembly-states.  

Overall, the SEC profiles of HEK293 and HCT116 correlated very well in both gSEC and 
phSEC (Extended Data Figure 5A), with ~70% of gSEC assembly-states and 63% of phSEC 
assembly-states identified in both cell-lines (Figure 5A-B). In accordance with previous studies, 
these observations indicate substantial differences between the interactomes of the two cell lines, 
with 30-40% uniquely identified assembly-states in either of the cell-lines36. Of note, SEC-MX is 
well-suited for identifying condition-specific assembly-states since the mixing scheme provides 
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nearly 100% overlap in peptide coverage between the biological samples. Meaning that, in the 
presence of a peak in one condition, absence from the other is most likely not due to disparities in 
coverage and can be more confidently interpreted as a difference in assembly-state. Therefore, we 
looked at the reproducible differences between HEK293 and HCT116 and identified 587 proteins 
with assembly-states exclusive to HEK293 and 672 exclusive to HCT116. Additionally, we found 
76 proteins with assembly-states phosphorylated only in HEK293 and 111 only in HCT116 (Figure 
5C, see Supplementary Materials for detailed lists).  

Among the proteins with uniquely phosphorylated assembly-states we found the protein 
Septin-2 (Figure 5D). The Septin family is a group of conserved GTP-binding proteins, interacting 
with each other to form heteromeric complexes of 2, 3, or 4 members37–40. In HCT116 gSEC, 
Septin-2 eluted in one assembled form (fraction 11, high MW), and in its monomeric form (fraction 
46, low MW). In HEK293 cells, an additional third assembly-state was identified in fraction 17 
(Figure 5D). Overlaying the traces of all other identified Septins in gSEC, we observed that this 
additional assembly-state represents a different combination of Septins than the one in fraction 11, 
suggesting that different heteromeric complexes are formed in each cell-line (Figure 5E). 
Interestingly, the Septin-2 HEK293 phSEC elution pattern shows that the HEK293-exclusive 
assembly-state is more highly phosphorylated in this sample than its common (higher MW) 
counterpart (Figure 5D).  

While our approach showed much potential for finding unique assembly-states, we were also 
interested in comparing the assembly-states common between conditions. Therefore, we quantified 
the abundance-differences of specific assembly-states by calculating the gSEC peak-ratios 
between the two conditions (HCT116/HEK293). To support this quantification, we compared the 
gSEC peak ratios to the total HCT116/HEK293 expression level ratios calculated based on shotgun 
DIA proteomics of the corresponding unfractionated samples (UF). We measured 4,163 proteins 
that were common between gSEC and UF and we observed a high correlation of the 
HCT116/HEK293 ratios measured by SEC-MX versus UF-DIA (Extended Data Figure 5B-C). 
Furthermore, we used an absolute log2 > 1 cutoff on the HCT116/HEK293 ratios in gSEC or UF 
to delineate differential proteins using each method and observed a ~40% overlap between the 
candidate lists (Extended Data Figure 5D). Overall, the comparison to UF expression levels 
supports the use of the peak-focused quantification, while showcasing its potential to find 
differentially expressed assembly states. 

Next, we applied the peak ratio analysis to discover differences in phosphorylation of assembly 
states using the phSEC dataset. Of the 1,446 proteins previously included in the analysis based on 
phSEC-gSEC peak alignment, we found 1,215 proteins for which at least one phosphorylated 
assembly-state was identified in both HEK293 and HCT116 (1,918 assembly-states). We then 
quantified the abundance-differences of specific assembly-states, or their relative phosphorylation, 
by calculating the peak-ratios (HCT116/HEK293) in gSEC and phSEC, respectively (Figure 6A). 
We used a cutoff of 2-fold difference in peak ratio to classify differential assembly-states at either 
the gSEC or phSEC datasets. These cutoffs divided our data to 9 groups based on whether 
assembly-states differ between HEK293 and HCT116 at the global level and/or phosphorylation 
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level (Figure 6A). We 
observed that 788 
proteins had assembly-
states which were not 
significantly changed 
at either level 

(gNS/phNS). 
However, we found 88 
and 89 proteins that 
had assembly-states 
enriched in HCT116 
and HEK293, 
respectively, both at 
the abundance-level 
(gSEC) and the 
phosphorylation-level 

(phSEC), (groups B: 
gHCT/phHCT and C: 

gHEK/phHEK). 
Interestingly, our 
analysis discovered 
301 proteins in 
HCT116 and 207 in 
HEK293 for which 
there was an assembly-
state upregulated at the 
phosphorylation level, 
without a significant 
change in assembly-

state abundance (groups A: gNS/phHCT, and D: gNS/phHEK). Moving forward, we focused on 
the four groups portraying differential phosphorylation and either concomitant abundance changes 
(groups B, C) or no significant abundance changes (groups A, D) (genes listed in Supplementary 
Materials). 

Given we identified 4 distinct groups, all enriched in phosphorylation (but not necessarily total 
protein changes – groups A and D), we hypothesized that each group may be regulated by different 
kinases. Therefore, we conducted a kinase target over-representation analysis41,42 on the proteins 
in each of the groups, which identified different potential upstream kinases in each group (Figure 
6B). For example, group A (gNS/phHCT) was enriched in targets of the Ribosomal protein S6 
kinase beta-1 (RPS6KB1). In group A, RPS6KB1 itself was enriched, along with its 
phosphorylation targets EEF2K, EIF4B, IRS1, MAPT, MTOR, RPS6, and NCBP1. As an 

Figure 5 – SEC-MX enables differential analysis between conditions: (A-B) 
Percentage of gSEC (A) and phSEC (B) peaks identified exclusively in HEK293 
(green), HCT116 (purple) or in both (gray), across replicates. (C) Number of proteins 
with peaks identified exclusively in one of the cell-lines, reproducibly in both 
replicates. (D) SEC-MX elution traces for Septin-2, gSEC (top) or phSEC (bottom) 
in HEK293 (green) or HCT116 (purple). Gray boxes indicate the range of fractions 
covering the monomeric forms. (E) gSEC elution profiles for all measured Septin 
family members in HEK293 (top), or HCT116 (bottom).  
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example, we plotted the elution profiles of NCBP1, confirming it elutes in several peaks with 
similar abundance and distribution between HEK293 and HCT116 in gSEC, but with differential 
peaks in phSEC (Figure 6C).  

RPS6KB1 is known to act downstream of mTOR signaling, promoting protein-synthesis by 
phosphorylating EIF4B, EEF2K and RPS643–49. In-line with the observations of increased 
phosphorylation of these targets in HCT116, we found that ribosomal subunit expression (Gene 
Ontology (molecular function) enrichment41 on group B: gHCT/phHCT) and mTORC1-mediated 
signaling and Eukaryotic translation (Reactome pathway enrichment41 analysis on groups A and 
B: phHCT) were increased in this cell-line (Extended Data Figure 5E-F). Altogether, these 
observations highlight the power of our method as a tool for differential analysis between 
biological conditions. 

As our data shows, proteins often elute with multiple assembly-states. These distinct assembly-
states may be differently regulated, making them fall into different regions of our scatterplot, 
despite all being associated with the same parent-protein. For example, we identified that the RNA 
binding protein Nucleolin (NCL) had one assembly state upregulated in HCT116 (group B) and 
another upregulated in HEK293 (group C), indicating an inversed expression-pattern of the 
different assembly states (Figure 6D). Overall, we found that as many as 236 proteins had multiple 
assembly-states that were differentially regulated at the phSEC level (Figure 6A). For example, 
the FH1/FH2 domain-containing protein 1 (FHOD1) eluted in two peaks, which were not different 
in abundance in gSEC. However, one assembly-state (higher MW) was more highly 
phosphorylated in HEK293 and the other was more highly phosphorylated in HCT116 (Figure 
6E). Notably, a closer inspection of the phSEC data showed that this pattern comes from distinct 
phosphopeptides: the phosphopeptide enriched in HEK293 spanned AA 367-376 including the 
known site on Serine-367, and the phosphopeptide enriched in HCT116 spanned AA 517-525 
including the known site on Serine-523. Kinase prediction analysis50 showed these 
phosphorylation sites are most likely phosphorylated by distinct kinase groups, with Serine-367 
(upregulated in HEK293) most probably regulated by kinases from the Aurora kinase family 
(AURB, AURC) and Serine-523 (upregulated in HCT116) most probably regulated by a kinase 
from the CMGC group (P38B, P38A, GSKB). Together, these observations support a model 
whereby FHOD1 is alternatively phosphorylated in an assembly-state specific manner. Meaning 
that, regardless of overall similar abundance of the two assembly-states, they are likely 
differentially regulated via phosphorylation between the two cell lines. This illustrates that 
integrating assembly data with phosphorylation status not only offers valuable insights into how 
PTMs influence protein interactions, but also sheds light on how PTMs contribute to distinct 
regulation patterns on different assembly states across samples. 

In conclusion, we used our peak-focused approach to analyze differences in assembly-states 
between biological conditions, both at the full-protein (gSEC) and at the phosphopeptide level 
(phSEC). Our results brought forward proteins with assembly states exclusively found in one of 
the cell lines, as well as proteins with differentially expressed assembly states – both on a global 
and phosphorylation-level. Furthermore, we delineated unique cases of differential 
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phosphorylation between distinct assembly states of the same proteins. Further inspection of these 
candidates exemplified how this method can generate testable hypotheses on the regulatory 
connections between phosphorylation and assembly-states. Together, our results support the utility 
of SEC-MX and the peak-focused analysis approach in providing valuable information on the 
dynamics of assembly-state regulation (abundance and phosphorylation) between conditions, 
beyond what is detected by analysis of expression levels. 

 

Figure 6 – a peak-centric analysis uncovers different regulation of distinct assembly-states: (A) Scatter plot 
comparing the log2 ratio of peak heights (HCT116/HEK293) in phSEC (y-axis) and gSEC (x-axis), based on the 
subset of peaks identified in both cell-lines (gray area in Figure 5A-B). Dashed lines indicate the absolute log2 of 1, 
which was used as a cutoff for each dimension. These cutoffs divide the plot to 9 groups, based on whether 
assembly-states differ between the conditions at the global level and/or phosphorylation level, as indicated on the 
top and right sides of the scatter. (B) Kinase prediction by kinase target enrichment analysis results for each group 
indicated in A. Top 3 kinases are shown per group. Black font indicates q-value < 0.2 (FDR), while gray is q-value > 
0.2. (C-E) SEC-MX elution traces for the indicated proteins (C-NCBP1, D- NCL, E-FHOD1), gSEC (top) or phSEC 
(bottom) in HEK293 (green) or HCT116 (purple). Gray areas indicate the range of fractions covering the monomeric 
form of each protein. For C-D, peak categories based on their position on the scatter (A) are shown on the bottom. 
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Discussion 
 
In this study we developed SEC-MX, a multiplexed SEC-MS method that enabled the mapping 

of PTMs to assembly-states and performing differential quantification between conditions. We 
showed that SEC-MX performs as well as state-of-the-art label free SEC-MS methods in terms of 
coverage and PPI identification, and in a fraction of the needed LC-MS/MS runs. More 
importantly, we showed that SEC-MX enabled phosphopeptide enrichment downstream of SEC – 
generating a unique, proof-of-concept, dataset comprising the SEC elution profiles of thousands 
of phosphopeptides and their corresponding parent-proteins. We displayed how a careful 
multiplexing design can position SEC-MX as especially well-suited for quantifying differences 
between samples. Additionally, we analyzed these datasets with a focus on peak-level comparisons 
to overlay PTM information on assembly-states and/or compare them between biological 
conditions. 

Our dataset provides a unique and rare systematic view of the interplay between 
phosphorylation events and assembly-states, highlighting proteome dynamics beyond abundance 
changes. In-line with previous reports1,2,15, we confirmed that the large majority of the proteins in 
the cell are assembled with other molecules. Expanding on this notion, our analysis shows that 
over half of the measured-proteins eluted in multiple assembly-states, and that PTMs may coincide 
with only a subset of them, and can change between conditions. We further exemplified how our 
approach can generate testable hypotheses regarding the relationships between phosphorylation 
events and molecular complex-assembly (Figure 4), and how they may differ between conditions 
(Figures 5-6). 

In developing our protein-centric analysis approach, we decided to deviate from state-of-the-
art protein-correlation profiling (PCP) that aims to uncover pair-wise PPIs (Prince51, EPIC24, 
SECAT22,52). Inspired by complex-centric programs such as CCprofiler15 and PCprophet30, we 
defined assembly “states” based on distinct SEC elution peaks and focused on individual proteins 
– how they change between samples, similar to other protein-centric approaches2. Our analysis 
framework proved to be a simple and comprehensive tool to compare assembly-states between 
conditions while overlaying PTMs. Additionally, we identified assembly states for nearly every 
analyzed protein/peptide, as opposed to methods focused solely on the complex/PPI level, which 
often result in limited networks, covering only a fraction of all measured proteins. However, future 
applications of SEC-MX analyses should attempt to tie-in PPI networks to provide the composition 
of different assembly-states. 

Similar to SEC-MX, other techniques apply a protein-centric approach to detect dynamic 
changes in the functional proteome, such as thermal proteome profiling (TPP53,54), covalent 
protein-painting (CPP55) and limited-proteolysis mass spectrometry (LiP-MS3). These methods are 
sensitive in detecting protein functional changes that can result from a wide-array of mechanisms, 
including and not limited to, molecular interactions and PTMs. However, they are limited in their 
ability to identify the specific molecular-mechanism underlying an observed change in a given 
protein, requiring prior information such as structure, and/or detailed biochemical follow-ups. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2023.01.12.523793doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523793
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

Moreover, co-fractionation analysis following treatment with non-specific phosphatases 
(phospho-DIFFRAC28) also took a protein-centric approach to identify proteins with altered SEC 
elution profiles post-treatment. Although phospho-DIFFRAC can provide some degree of 
causality on the effects of phosphorylation on assembly-states, it lacks direct measurements of 
phosphopeptides and cannot shed light on the specific modified sites. For example, both our study 
and phospho-DIFFRAC suggested that the assembly-state of MYH9 is regulated by 
phosphorylation. However, we also pinpointed the specific phosphorylated peptide, which 
contained a modification site known to affect interactions. While SEC-MX cannot determine 
causality in the relationships between PTMs and assembly-states, we showed how it can serve as 
a valuable hypothesis-generating tool, guiding the design of follow-up studies into the causal 
effects of PPIs and PTMs. Furthermore, SEC-MX can facilitate the collection of detailed time-
course measurements to validate these hypotheses.  

In its current form, SEC-MX depends on data-dependent-acquisition (DDA), due to the use of 
isobaric tags. As with other DDA methods, this potentially reduces the depth of coverage, which 
can result in missing data points. Therefore, special attention should be made in the analysis step 
to make certain that intensities were at least measured in a given TMT-mix before claiming that a 
peptide does not have a peak in a certain region. To mitigate these issues, future development of 
SEC-MX should test the use of isotopic tags compatible with DIA methods, such as mTRAQ56, as 
they are expected to become available in >3 channels.  

In conclusion, SEC-MX represents a significant advancement in the study of protein regulation 
and cellular functions by providing a comprehensive platform for the simultaneous 
characterization of post-translational modifications and assembly-states. Our method not only 
streamlines measurement processes and enables PTM enrichment but also offers a novel approach 
to explore the intricate interplay between these molecular events. By generating a proof-of-concept 
dataset encompassing the identification and quantification of assembly-states and PTMs across 
two distinct biological samples, we provide a granular perspective on protein regulation. 
Moreover, our focus on distinct assembly states highlights the diverse regulatory processes that 
proteins undergo, underscoring the necessity of novel analytical tools such as SEC-MX. While our 
study primarily examined phosphorylation for proof-of-concept, the versatility of SEC-MX allows 
for future exploration of additional modifications (e.g., acetylation), thereby broadening its 
applicability across various biological contexts. Ultimately, SEC-MX enables researchers to 
explore dynamic cellular processes and sheds light on the intricate mechanisms driving protein 
complexity and regulation. 
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Materials and Methods 
 

Cell culture 
HEK293XT cells (Takara Bio Lenti-X 293T, #632180) were provided by the Yeo lab at UC 

San Diego (SEC-DIA versus SEC-MX experiments), or purchased from ATCC (ATCC, CRL-
3216, in HEK293 versus HCT116 experiments), HCT116 cells were provided by the Prives lab at 
Columbia University. HEK293 cells were cultured in DMEM (containing L-glutamine and 
Sodium pyruvate) and HCT116 in McCoy’s 5A media. Both media were supplemented with 10% 
Fetal Bovine Serum and Penicillin (100 U/mL) Streptomycin (100 μg/mL). Cells were grown to 
80-90% confluency and were harvested at passages 6-20. 

 
Sample preparation for SEC 

SEC sample preparation was as previously described in Bludau et al. 2020. Cells (25-40 
million per sample) were harvested by scraping in ice cold PBS, washed and pelleted. Pellets were 
flash frozen in liquid nitrogen and stored in -80 °C. Upon thawing, cell pellets were lysed in cold 
lysis buffer (for TMT versus DIA comparisons: 150mM NaCl, 50mM Tris pH 7.5, 1% IGPAL-
CA-630, 5% Glycerol; for HEK-HCT experiments: 50 mM HEPES pH 7.5, 150 mM NaCl, 0.5% 
NP40) supplemented with 50mM NaF, 2mM Na3VO4, 1mM PMSF, and 1X protease inhibitor 
cocktail (Sigma), followed by 10-30 minutes incubation on ice with intermittent vortexing. Cell 
lysates was then pre-cleared by 10 minutes centrifugation at 10,000g (4 °C) followed by 20 
minutes of ultracentrifugation at 100,000g, 4 °C. To dilute detergents in the buffer, samples 
underwent buffer exchange on Amicon® ultra-0.5 centrifugal filter with 30 kDa molecular weight 
cutoff (Sigma) into 50 mM HEPES pH 7.5, 150 mM NaCl and 50 mM NaF in iterative steps of no 
larger than 1:3 dilutions. The final dilution ratio of the original lysis buffer to detergent free buffer 
was 1:50. The cell lysate was further cleared by 5 minutes of centrifugation at 17,000g, 4 °C. The 
concentration of the supernatant was measured by Nanodrop spectrophotometer (Thermo 
Scientific) and adjusted to 20-50mg/ml. Two mg of lysate were loaded on the SEC column per 
run. 

 
Size Exclusion Chromatography 

Size exclusion was conducted on an Agilent 1260 Infinity II system operated with Agilent 
OpenLAB ChemStation software (version C.01.09). Two mg of cell lysate at 20-50mg/ml were 
loaded onto a Yarra SEC-4000 column (Phenomenex 00H-4514-K0, 3μm silica particles, 500A 
pores, column dimensions: 300 x 7.8mm) and fractionated in SEC running buffer (50 mM HEPES 
pH 7.5, 150 mM NaCl) at a flow rate of 1ml/min (first TMT experiment) or 0.5ml/min (all other 
experiments) and 100μL fractions were collected between minutes 6.5 to 16 or 11 to 30, 
respectively into 96 Well DeepWell Polypropylene Microplates (Thermo Scientific).  
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Protein digestion and desalting  
Following SEC fractionation protein concentration was measured using the Pierce™ BCA 

protein assay kit (Thermo Scientific) based on the manufacturer’s instructions. Equal volumes 
(~80μL) from each of the fractions containing proteins (54 - 72) were subsequently processed. 
Proteins were denatured by incubation with an equal volume of urea buffer containing 8 M urea, 
75 mM NaCl, 50 mM HEPES (pH 8.5) and 1 mM EDTA at 25 °C, 600 rpm for 20 mins in 96 Well 
DeepWell Polypropylene Microplates (Thermo Scientific). Proteins were then reduced with 5 mM 
DTT at 25 °C, 600 rpm for 45 minutes and then alkylated with 10 mM iodoacetamide (IAA) at 25 
°C, 600 rpm for 45 mins in the dark. Proteins were then diluted in a ratio of 1:3 with 50 mM 
HEPES (pH 8.5) to lower the urea concentration less than 2M, and digested with trypsin enzyme 
(Promega) at 25 °C, 600 rpm overnight using 1:50 (enzyme: substrate) ratio. Digested peptides 
were acidified using formic acid and desalted on in-house packed C18 StageTips (two plugs) on 
top of 96 Well DeepWell Polypropylene Microplates as elaborated in Rappsilber et al., 2007 57. 
For DIA measurements, dried peptides were reconstituted to a final concentration of 0.5μg/μL with 
3% acetonitrile/ 0.2% formic acid. For TMT labeling purposes dried peptides were reconstituted 
in 50 mM HEPES (pH 8.5). An aliquot of 0.2mg of each non-fractionated sample (for HEK and 
HCT global protein expression analysis using DIA) was processed in a similar manner.   

For the HEK-HCT dataset we used a direct labeling method. Following fraction selection based 
on BCA measurements, proteins were denatured by incubation at 95 °C, 600 rpm for 10 mins, 
followed by two cycles of 1 minute bath sonication. After samples cooled down to room 
temperature, proteins were reduced with 5 mM DTT at 25 °C, 600 rpm for 45 minutes and then 
alkylated with 10 mM iodoacetamide (IAA) at 25 °C, 600 rpm for 45 mins in the dark. Proteins 
were then diluted in a ratio of 1:3 with 50 mM 4-(2-hydroxyethyl)-1-piperazinepropanesulfonic 
acid (EPPS), pH 9.0.  pH was adjusted to ~ 8.2, and samples were subsequently digested with 
trypsin enzyme (Promega) at 25 °C, rpm 600 overnight using 1:50 (enzyme: substrate) ratio, and 
TMT labeled following digestion. 

 
TMT labeling 

For SEC-MX experiments used to compare to SEC-DIA samples were digested and desalted 
as elaborated above. The resulting peptides were reconstituted with 50 mM HEPES (pH 8.5). For 
direct labeling peptides were labeled in the adjusted digestion buffer (50mM EPPS, pH adjusted 
to ~8.2). This protocol resulted in a mean labeling efficiency of 98.3%, (comparable to the classic 
protocol, mean efficiency of 98.7%), while minimizing loss of material due to multiple desalting 
steps. 

For all samples, peptides were labeled by addition of TMTpro™ 18 plex reagents (Thermo 
Scientific) into the sample at a ratio of 1:3 (peptide: TMT) by mass in a final volume of 29% 
acetonitrile. The labeling reaction was incubated at 25 °C, 600 rpm for 1 hour before being 
quenched with a final concentration of 0.3% hydroxylamine. Samples were then pooled as 
described in the pooling scheme and dried at least half of the volume to lower the acetonitrile 
concentration to less than 5%. The labeled peptides were then acidified using formic acid (pH <3) 
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and desalted on C18 StageTips (two plugs), 57. The desalted peptides were dried and resuspended 
in 3% acetonitrile/ 0.2% formic acid for subsequent liquid chromatography-tandem mass 
spectrometry (LC-MS/MS) processing. 

 
Considerations for the choice of TMT multiplexing schemes 

We initially attempted to perform IMAC enrichment on SEC fractions multiplexed using the 
“full overlap” scheme, resulting in a low number of recovered phosphopeptides (~1000 across all 
mixes). However, IMAC enrichment from SEC-MX mixes that were multiplexed with the “no 
overlap” scheme resulted in ~5 times phosphopeptide identifications. Interestingly, comparing 
protein coverage in global datasets mixed with the full-overlap versus no-overlap schemes showed 
that protein coverage with the no-overlap scheme was only 10% lower, despite the 2-fold 
difference in measurements (3 versus 6 runs, for no-overlap versus full-overlap, respectively). 
However, the no-overlap multiplexing scheme yielded only a third of the PPI identifications using 
SECAT (Extended Data Figure 1). Therefore, we concluded that while the “full-overlap” scheme 
is more suited for interaction analyses, the “no-overlap” scheme was preferable for subsequent 
enrichment of phosphorylated-peptides.  

 
Phosphopeptide enrichment using immobilized metal affinity chromatography (IMAC) 

IMAC enrichment from pooled TMT labeled peptides was conducted following the protocol 
by Mertins and colleagues 58. Briefly, Ni-NTA Superflow Agarose beads (Qiagen, cat. no. 30410, 
20 µl beads / 40 µl slurry per sample) were washed in water 3 times, then stripped from nickel by 
30 minutes incubation with 100mM EDTA, washed 3 times in water, and incubated with 10mM 
iron (III) chloride in water for 30 minutes in room temperature. After 3 additional washes in water, 
iron coupled beads were resuspended in binding buffer (1:1:1 (vol/vol/vol) ratio of 
acetonitrile/methanol/0.01% (vol/vol) acetic acid) in a final ratio of 1:1:1:1 
beads/acetonitrile/methanol/0.01% (vol/vol) acetic acid. In parallel, TMT labeled peptides (post 
pooling) were resuspended to 0.5 µg/µl (~100 µg per sample, estimated based on BCA assay of 
the SEC fractions) in 80% (vol/vol) MeCN/0.1% (vol/vol) Trifluoroacetic acid (TFA). Eighty µl 
of bead slurry were added to the peptides solution and incubated for 30 minutes at room 
temperature. Following this binding step, supernatants were aspirated and the coupled beads were 
resuspended in 200 µl of 80% (vol/vol) acetonitrile /0.1% (vol/vol) TFA in order to be loaded on 
C18 stage tips for desalting. Two-plug C-18 stage-tips were conditioned twice with 100% 
Methanol, washed in 50% (vol/vol) acetonitrile in 0.1% (vol/vol) formic acid (FA), and 
equilibrated twice with 1% (vol/vol) FA. Then, the enriched beads were loaded onto the stage tips. 
Loaded beads were washed twice with 50 µl of 80% (vol/vol) acetonitrile/0.1% (vol/vol) TFA, 
then twice with 50 µl of 1% (vol/vol) FA. Phosphopeptides were trans-eluted from the beads to 
the C18 material by three iterations of 70 µl of agarose-bead elution buffer (192.5 mM monobasic 
potassium phosphate / 307.5 mM dibasic potassium phosphate). Stage tips were washed twice in 
1% (vol/vol) FA, and peptides eluted using 60 µl of 60% (vol/vol) acetonitrile / 0.2% (vol/vol) 
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FA. Eluted peptides were dried using a savant speedvac and reconstituted in 15 µl of 3% (vol/vol) 
acetonitrile / 0.2% (vol/vol) FA. 
 
LC-MS/MS 

LC-MS/MS analysis was performed on a Q-Exactive HF. 5μL of total peptides (at 0.5 µg/µL) 
were analyzed on a Waters M-Class UPLC using a C18 Thermo EASY-Spray column (2um, 100A, 
75um x 25cm, or 15cm) or IonOpticks Aurora ultimate column (1.7um, 75um x 25cm) coupled to 
a benchtop ThermoFisher Scientific Orbitrap Q Exactive HF mass spectrometer. Peptides were 
separated at a flow rate of 400 nL/min with the following gradients: 70 minutes (SEC-DIA), 160 
minutes (DIA runs for unfractionated samples), or 150 minutes (SEC-MX), all including sample 
loading and column equilibration times. For DIA runs MS1 Spectra were measured with a 
resolution of 120,000, an AGC target of 5e6 and a mass range from 350 to 1650 m/z. 63 isolation 
windows of 20 m/z were measured at a resolution of 30,000, an AGC target of 3e6, normalized 
collision energies of 22.5, 25, 27.5, and a fixed first mass of 200 m/z. For DDA runs MS1 Spectra 
were measured with a resolution of 120,000, an AGC target of 3e6 and a mass range from 300 to 
1800 m/z. Top12 MS2 spectra were acquired at a resolution of 60,000, an AGC target of 1e5, an 
isolation window of 0.8m/z, normalized collision energies of 27, and a fixed first mass of 110 m/z.  
 
Data analysis 

 
Searches 

Proteomics raw data were analyzed using the directDIA method on SpectroNaut v16.0 for DIA 
runs or SpectroMine (3.2.220222.52329) for DDA runs (Biognosys). Reference proteome used 
was human UniProt database (Homo sapiens, UP000005640, downloaded on August 8th 2023). 
Search parameters were set to BGS factory settings for TMTpro 18 channels, modified without 
automatic cross-run normalization or imputation for SEC runs. Cross run median normalization 
and global imputation were used for global expression analysis (HEK-HCT non fractionated 
samples). Peptide spectral matches (PSMs), peptides and protein group data were exported for 
subsequent analysis. For phSEC, raw files were searched similarly on SpectroMine 
(3.2.220222.52329) with an additional variable phospho(STY) modification, with PTM 
localization workflow.  

 
Signal Processing 

The peptide intensities were spread out along ~55 SEC fractions. Peptides were filtered by 
being proteotypic and non-decoy. Empty or NA measurements were converted to zeros 19, and a 
single uniprot ID was assigned to each peptide. In TMT experiments, peptide reporter intensity 
values were normalized to their respective MS1 peak intensity. In experiments conducted with the 
full overlap TMT mixing scheme, TMT batch effects were corrected based on the signal in the 
common fractions between any two adjacent mixes. A normalization factor was calculated by 
dividing the peptide fraction intensities of mix [n+1] by mix [n], then taking the median of all the 
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peptides and the mean of all the overlapping fractions in common between the mixes. Mix [n+1] 
was then normalized to mix [n] by multiplying all intensities by the normalization factor. Lastly, 
the peptide intensities of overlapping fractions were averaged.  

Then, for the HEK-HCT dataset, the intensities were normalized between conditions. To do 
this, the median intensities were calculated in each sample (ptm/replicate/condition) and then the 
medians were used to find a total intensity ratio between the samples, which was then used to 
normalize HCT intensities to HEK intensities. Lastly, for plotting and matching purposes, the 
intensities were smoothed using scipy.signal.filtfilt a linear digital two-way filter (b=[1.0/2]*2, 
a=1).  

Two normalized datasets were generated as described above to create smoothed elution 
profiles. The first consisted of protein-level global intensities and peptide-level phospho-enriched 
intensities. This dataset was generated to analyze the assembly-states on a protein level given the 
higher amount of protein ID overlap. The second dataset was on the peptide level for both the 
global and the phospho-enriched intensities. This dataset was used for certain comparisons where 
the peptide overlap between gSEC and phSEC would more accurately control for sources of 
variance.  
 
SECAT 

 SECAT was used to identify previously reported protein interactions 22,52. Replicates were 
analyzed in the same run to leverage the predictive power of the classifier. SECAT analysis was 
conducted on the processed peptide level signal (as mentioned above) using the default (SECAT 
provided) positive and negative interaction networks for the training step, and a target database of 
STRING’s human interactions (9606.protein.links.v11.5) for the query step. The default SECAT 
parameters were set except for a ‘pi0_lambda’ of 0.4 0 0 0, an ‘ss_initial_fdr’ of 0.5 and 
‘ss_iteration_fdr’ of 0.2 during the ‘learn’ step. Additionally, the ‘export_tables’ option of the 
SECAT ‘learn’ step was used to export tables for extracting the STRING target and learning 
interactions along with their scores. The HEK-HCT data was also quantified by setting HEK as 
the ‘control_condition’, and using a ‘maximum_interaciton_qvalue’ of 0.1 for the quantify and 
export steps.  

The networks were obtained by setting a q-value cutoff of 0.05 on the exported network tables. 
However, we initially observed that only 34% of the interactions were mutual to both DIA and 
SEC-MX datasets, but found a large number of interactions unique at a q-value < 0.05 cutoff were 
very close to the cutoff in the other experimental setup (Extended Data Figure 3B). Therefore, we 
adjusted the cutoff to include any interaction with a q-value between 0.05 and 0.1 (in at least 3 out 
of 5 SECAT runs), if its q-value was lower than 0.05 in the other dataset. With this adjusted cutoff 
we observed that 54% of interactions were identified in both datasets, while 29% were unique to 
DIA and 17% unique to TMT (Extended Data Figure 2B).  
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EPIC 
The EPIC tool was used to identify high confidence interactions allowing the discovery of 

novel interactions 24. Replicates were analyzed in the same run to leverage the predictive power of 
the classifier. Peptides were collapsed to the protein level by adding the top three peptide intensities 
for each protein. Proteins that eluted in only one fraction were filtered out. Pairwise protein-protein 
similarities were then computed using the Pearson Correlation-Coefficent (with and without 
noise), Jaccard, Apex, Mutual Information, and Euclidean metrics respectively. A cutoff of 0.5 for 
the features was chosen prior to analysis by a Random Forest Classifier which was trained on 
reference complexes generated using CORUM, INTact, and GO human proteins. The classifier 
was trained using an 80/20 cross validation split to minimize variance across runs and maximize 
predictive capabilities. Finally, de-novo protein-protein interactions were found by querying the 
classifier and reporting every interaction above 50% confidence as an interaction. To further 
benchmark the classifier a precision-recall graph was generated by varying the confidence of the 
classifier and reporting the metrics, the intersection of the precision and recall occurs at 60% 
confidence. However, as we are trying to minimize false positives, we picked a higher confidence 
of 80% (as previously reported by Pourhaghighi et al. 2020) which has less but more precise 
interactions. Confidence score cutoffs were further adjusted as elaborated for the SECAT dataset, 
to include any interaction with an EPIC score between 0.6 and 0.8, if its score was higher than 0.8 
in the other dataset (Extended Data Figure 2E). 

 
Molecular weight (MW) estimation and monomeric fraction cutoff calculation 

Molecular size estimations per SEC fraction were performed using a standard (Biorad 
1511901), which was injected and measured onto the SEC column at the start and end of each 
experimental day. The calibration standard’s fractions and log MW were input into 
sklearn.linear_model.LinearRegression to create a log-linear model and predict the MW of each 
fraction. In this regard, the monomer fractions were predicted by using the Uniprot determined 
MW to get an estimated fraction of elution for the monomer. Additionally, a MW multiplier of 1.5 
was used to account for wide or slightly shifted elution peaks. 
 
Peak Picking and Matching 

Using the smoothed elution profiles (as describe in Signal Processing), peaks were identified 
using scipy.signal.find_peaks (prominence=max(intensity)*0.05, distance=3, height=1000) to get 
the apex position (the identity of the peak) and scipy.signal.peak_widths to get other attributes 
such as the peak height. In downstream analysis, peaks are synonymous with apex position. Each 
protein/peptide was expanded into a list of one or more peaks. When no peaks were identified, the 
protein/peptide was dropped due to noise. 

With peaks identified in each sample, we then matched them within protein/peptide (protein-
centric) between ptm enrichment and conditions. Peaks were matched within protein/peptide 
between condition/ptm/replicate by finding the best path. In order to do this, we first started with 
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the list of identified peaks for a given protein/peptide in a sample (condition/ptm/replicate) as 
follows: 𝐿!"!#$ = [𝐿%, 𝐿&, … , 𝐿'], where Li is the list of peaks for the ith sample, out of ‘n’ samples.  

Then, to account for non-matching peaks between samples (i.e., the peaks are too far away and 
therefore are not identified in one or more sample), we added NaN to each list of peaks (Li ). The 
operation was performed such that 𝐿() = [𝑙(%, 𝑙(&, … , 𝑙(* , 𝑁𝑎𝑁], where lij are the peaks of Li, and ‘k’ 
is the final peak out ‘j’ peaks in sample ‘i’.  

Next, we wanted to find all possible peak paths (Pathsall) for a given protein 𝑃𝑎𝑡ℎ#$$ =
	.𝑃𝑎𝑡ℎ%, … 𝑃𝑎𝑡ℎ'_,#!-./, where each path (Pathx) is that protein’s alignment of peaks (𝑃𝑎𝑡ℎ/ =
	{𝑃𝑒𝑎𝑘%, … , 𝑃𝑒𝑎𝑘'})  between the different samples (1 to ‘n’). Furthermore, the total number of 
paths found for each protein/peptide can be expressed as the product of length of each peak list as 
follows  ∏ |𝐿() |'

(0% . In other words, we generated all combinations of peaks (lij) between each 
sample (L’i). Furthermore, each Pathx is comprised of a ‘n’ elements, one element for each sample 
(each element as either a peak or an NaN), where ‘m_peaks’ is the number of peaks in a Pathx 
(non-NaN values). 

With all possible peak paths (Pathsall), we wanted to find the best, non-redundant paths for 
each protein’s peaks to determine alignment. To do this, we first needed to score each path. First, 
we found the mean peak location of each path such that 𝑚𝑒𝑎𝑛,#!-! =	

%
1_,2#*.

∑ 𝑝𝑒𝑎𝑘(
1_,2#*.
(0% , 

where peaki is the peak (or NaN) selected in pathx for sample ‘i’. Then the paths were scored via 
a variance measure using a Threshold of 3 as follows:  

 

𝑃𝑎𝑡ℎ𝑉𝑎𝑟 = 	
1
𝑛= >?𝑝𝑒𝑎𝑘( −𝑚𝑒𝑎𝑛,#!-!A

&	𝑖𝑓	𝑝𝑒𝑎𝑘( 	𝑖𝑠	𝑛𝑜𝑡	𝑁𝑎𝑁	
(𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)&	𝑖𝑓	𝑝𝑒𝑎𝑘( 	𝑖𝑠	𝑁𝑎𝑁

'

(0%
 

 

𝑃𝑎𝑡ℎ𝑆𝑐𝑜𝑟𝑒 = 	
1

𝑃𝑎𝑡ℎ𝑉𝑎𝑟 + 1 

 
The Threshold was used to allow for the preferential selection of a given Pathx with an NaN in 

sample ‘i’ rather than a different Path where the variance introduced would exceed the threshold 
of 3 fractions. In other words, the Threshold value represents an estimate of the maximum 
permitted distance between peaks for matching. 

With all the Paths (Pathsall) each scored, we used an iterative method to select the lowest 
scoring Pathx  (𝑃1(' = 𝑎𝑟𝑔𝑚𝑖𝑛3#!-.!∈3#!-."##𝑃𝑎𝑡ℎ𝑆𝑐𝑜𝑟𝑒(𝑃𝑎𝑡ℎ/)). Then, we remove any other 
path elements from Pathsall that contain Peaki from the Pmin Pathx, thereby making sure to only find 
the best non-redundant paths. Once the non-redundant paths are removed from Pathsall, the lowest 
scoring Pathx is once again chosen (operation performed iteratively). This operation is iterated 
until all peaks are exhausted, whether matched with other peaks or by themselves: 

Using the above formulas, the peak-level data was matched for each common protein between 
HEK and HCT116 as well as gSEC and phSEC. Fold changes were calculated as 
log2(HCT116/HEK293) for each assembly state based on identified peak height. When multiple 
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phosphorylated peptides were identified for a given peak, their heights were summed before 
calculating fold changes. Additionally, peaks/assembly-states were classified as in the complex or 
monomer region based on the mean peak apex position of the matched peaks.  

 
Enrichment analysis 

Enrichment analysis was performed using the WebGetalt (http://www.webgestalt.org) 
platform using the over-representation analysis (ORA) on Gene Ontology terms (molecular 
function non redundant) and Reactome Pathway41,42. Kinase target over representation analysis 
was conducted similarly on the same platform. Enriched sets were compared to a background list 
containing all the proteins identified in the experiment. 

 
 
 
Declaration of interests 
The authors declare no competing interests. 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2023.01.12.523793doi: bioRxiv preprint 

http://www.webgestalt.org/
https://doi.org/10.1101/2023.01.12.523793
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

References 
 

1. Heusel, M. et al. A Global Screen for Assembly State Changes of the Mitotic Proteome by 
SEC-SWATH-MS. Cell Syst. 10, 133-155.e6 (2020). 

2. Bludau, I. et al. Rapid Profiling of Protein Complex Reorganization in Perturbed Systems. J. 
Proteome Res. 22, 1520–1536 (2023). 

3. Cappelletti, V. et al. Dynamic 3D proteomes reveal protein functional alterations at high 
resolution in situ. Cell 184, 545-559.e22 (2021). 

4. Bludau, I. & Aebersold, R. Proteomic and interactomic insights into the molecular basis of 
cell functional diversity. Nat. Rev. Mol. Cell Biol. 21, 327–340 (2020). 

5. Wehle, D. T., Bass, C. S., Sulc, J., Mirzaa, G. & Smith, S. E. P. Protein interaction network 
analysis of mTOR signaling reveals modular organization. J. Biol. Chem. 105271 (2023) 

6. Caron, E. et al. A comprehensive map of the mTOR signaling network. Mol. Syst. Biol. 6, 
453 (2010). 

7. Saxton, R. A. & Sabatini, D. M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 
168, 960–976 (2017). 

8. Hegemann, B. et al. Systematic Phosphorylation Analysis of Human Mitotic Protein 
Complexes. Sci. Signal. 4, rs12 (2011). 

9. Kraft, C. et al. Mitotic regulation of the human anaphase-promoting complex by 
phosphorylation. EMBO J. 22, 6598–6609 (2003). 

10. Nishi, H., Hashimoto, K. & Panchenko, A. R. Phosphorylation in protein-protein binding: 
effect on stability and function. Struct. Lond. Engl. 1993 19, 1807–1815 (2011). 

11. Byeon, S. et al. Proteomic Identification of Phosphorylation-Dependent Septin 7 Interactors 
that Drive Dendritic Spine Formation. Front. Cell Dev. Biol. 10, (2022). 

12. Kirkwood, K. J., Ahmad, Y., Larance, M. & Lamond, A. I. Characterization of Native Protein 
Complexes and Protein Isoform Variation Using Size-fractionation-based Quantitative 
Proteomics. Mol. Cell. Proteomics 12, 3851–3873 (2013). 

13. Kristensen, A. R. & Foster, L. J. Protein correlation profiling-SILAC to study protein-protein 
interactions. Methods Mol. Biol. Clifton NJ 1188, 263–270 (2014). 

14. Kristensen, A. R., Gsponer, J. & Foster, L. J. A high-throughput approach for measuring 
temporal changes in the interactome. Nat. Methods 9, 907–909 (2012). 

15. Heusel, M. et al. Complex-centric proteome profiling by SEC-SWATH-MS. Mol. Syst. Biol. 
15, e8438 (2019). 

16. Bludau, I. et al. Complex-centric proteome profiling by SEC-SWATH-MS for the parallel 
detection of hundreds of protein complexes. Nat. Protoc. 15, 2341–2386 (2020). 

17. Bludau, I. et al. Systematic detection of functional proteoform groups from bottom-up 
proteomic datasets. Nat. Commun. 12, 3810 (2021). 

18. Skinnider, M. A. et al. An atlas of protein-protein interactions across mouse tissues. Cell 
184, 4073-4089.e17 (2021). 

19. Skinnider, M. A. & Foster, L. J. Meta-analysis defines principles for the design and analysis 
of co-fractionation mass spectrometry experiments. Nat. Methods 18, 806–815 (2021). 

20. Havugimana, P. C. et al. A Census of Human Soluble Protein Complexes. Cell 150, 1068–
1081 (2012). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2023.01.12.523793doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523793
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

21. Hein, M. Y. et al. A Human Interactome in Three Quantitative Dimensions Organized by 
Stoichiometries and Abundances. Cell 163, 712–723 (2015). 

22. Rosenberger, G. et al. SECAT: Quantifying Protein Complex Dynamics across Cell States 
by Network-Centric Analysis of SEC-SWATH-MS Profiles. Cell Syst. 11, 589-607.e8 (2020). 

23. Mallam, A. L. et al. Systematic Discovery of Endogenous Human Ribonucleoprotein 
Complexes. Cell Rep. 29, 1351-1368.e5 (2019). 

24. Hu, L. Z. et al. EPIC: software toolkit for elution profile-based inference of protein 
complexes. Nat. Methods 16, 737–742 (2019). 

25. Pourhaghighi, R. et al. BraInMap Elucidates the Macromolecular Connectivity Landscape of 
Mammalian Brain. Cell Syst. 10, 333-350.e14 (2020). 

26. Fossati, A. et al. System-Wide Profiling of Protein Complexes Via Size Exclusion 
Chromatography–Mass Spectrometry (SEC–MS). in Shotgun Proteomics (eds. Carrera, M. 
& Mateos, J.) vol. 2259 269–294 (Springer US, New York, NY, 2021). 

27. Skinnider, M. A., Akinlaja, M. O. & Foster, L. J. Mapping protein states and interactions 
across the tree of life with co-fractionation mass spectrometry. Nat. Commun. 14, 8365 
(2023). 

28. Floyd, B. M., Drew, K. & Marcotte, E. M. Systematic Identification of Protein 
Phosphorylation-Mediated Interactions. J. Proteome Res. 20, 1359–1370 (2021). 

29. Havugimana, P. C. et al. Scalable multiplex co-fractionation/mass spectrometry platform for 
accelerated protein interactome discovery. Nat. Commun. 13, 4043 (2022). 

30. Fossati, A. et al. PCprophet: a framework for protein complex prediction and differential 
analysis using proteomic data. Nat. Methods 18, 520–527 (2021). 

31. Semelakova, M. et al. Vimentin and Non-Muscle Myosin IIA are Members of the Neural 
Precursor Cell Expressed Developmentally Down-Regulated 9 (NEDD9) Interactome in 
Head and Neck Squamous Cell Carcinoma Cells. Transl. Oncol. 12, 49–61 (2019). 

32. Sanborn, K. B. et al. Phosphorylation of the myosin IIA tailpiece regulates single myosin IIA 
molecule association with lytic granules to promote NK-cell cytotoxicity. Blood 118, 5862–
5871 (2011). 

33. Lin, D. I., Aggarwal, P. & Diehl, J. A. Phosphorylation of MCM3 on Ser-112 regulates its 
incorporation into the MCM2–7 complex. Proc. Natl. Acad. Sci. U. S. A. 105, 8079–8084 
(2008). 

34. Bleichert, F., Botchan, M. R. & Berger, J. M. Mechanisms for initiating cellular DNA 
replication. Science 355, eaah6317 (2017). 

35. Saito, Y., Santosa, V., Ishiguro, K. & Kanemaki, M. T. MCMBP promotes the assembly of 
the MCM2–7 hetero-hexamer to ensure robust DNA replication in human cells. eLife 11, 
e77393 (2022). 

36. Huttlin, E. L. et al. Dual proteome-scale networks reveal cell-specific remodeling of the 
human interactome. Cell 184, 3022-3040.e28 (2021). 

37. Sirajuddin, M. et al. Structural insight into filament formation by mammalian septins. Nature 
449, 311–315 (2007). 

38. Akhmetova, K. A., Chesnokov, I. N. & Fedorova, S. A. Functional Characterization of Septin 
Complexes. Mol. Biol. (Mosk.) 52, 155–171 (2018). 

39. Güler, G. Ö. & Mostowy, S. The septin cytoskeleton: Heteromer composition defines 
filament function. J. Cell Biol. 222, e202302010 (2023). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2023.01.12.523793doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523793
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

40. Martins, C. S. et al. Human septins organize as octamer-based filaments and mediate actin-
membrane anchoring in cells. J. Cell Biol. 222, e202203016 (2022). 

41. Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt 2019: gene set analysis 
toolkit with revamped UIs and APIs. Nucleic Acids Res. 47, W199–W205 (2019). 

42. Wang, J., Duncan, D., Shi, Z. & Zhang, B. WEB-based GEne SeT AnaLysis Toolkit 
(WebGestalt): update 2013. Nucleic Acids Res. 41, W77–W83 (2013). 

43. Wang, X. et al. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. 
EMBO J. 20, 4370–4379 (2001). 

44. Raught, B. et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is 
modulated by S6 kinases. EMBO J. 23, 1761–1769 (2004). 

45. Fingar, D. C. et al. mTOR controls cell cycle progression through its cell growth effectors 
S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol. Cell. Biol. 24, 200–216 
(2004). 

46. Holz, M. K., Ballif, B. A., Gygi, S. P. & Blenis, J. mTOR and S6K1 mediate assembly of the 
translation preinitiation complex through dynamic protein interchange and ordered 
phosphorylation events. Cell 123, 569–580 (2005). 

47. Kim, D., Akcakanat, A., Singh, G., Sharma, C. & Meric-Bernstam, F. Regulation and 
localization of ribosomal protein S6 kinase 1 isoforms. Growth Factors Chur Switz. 27, 12–
21 (2009). 

48. Julien, L.-A., Carriere, A., Moreau, J. & Roux, P. P. mTORC1-activated S6K1 
phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol. Cell. Biol. 
30, 908–921 (2010). 

49. Sridharan, S. & Basu, A. Distinct Roles of mTOR Targets S6K1 and S6K2 in Breast Cancer. 
Int. J. Mol. Sci. 21, 1199 (2020). 

50. Johnson, J. L. et al. An atlas of substrate specificities for the human serine/threonine 
kinome. Nature 613, 759–766 (2023). 

51. Skinnider, M. A., Cai, C., Stacey, R. G. & Foster, L. J. PrInCE: an R/Bioconductor package 
for protein–protein interaction network inference from co-fractionation mass spectrometry 
data. Bioinformatics 37, 2775–2777 (2021). 

52. Bokor, B. J., Gorhe, D., Jovanovic, M. & Rosenberger, G. Network-centric analysis of co-
fractionated protein complex profiles using SECAT. STAR Protoc. 4, 102293 (2023). 

53. Huang, J. X. et al. High throughput discovery of functional protein modifications by Hotspot 
Thermal Profiling. Nat. Methods 16, 894–901 (2019). 

54. Mateus, A. et al. Thermal proteome profiling for interrogating protein interactions. Mol. Syst. 
Biol. 16, e9232 (2020). 

55. Bamberger, C. et al. Protein Footprinting via Covalent Protein Painting Reveals Structural 
Changes of the Proteome in Alzheimer Disease. J. Proteome Res. 20, 2762–2771 (2021). 

56. Derks, J. et al. Increasing the throughput of sensitive proteomics by plexDIA. Nat. 
Biotechnol. 41, 50–59 (2023). 

57. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-
fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–
1906 (2007). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2023.01.12.523793doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523793
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

58. Mertins, P. et al. Reproducible workflow for multiplexed deep-scale proteome and 
phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. 
Nat. Protoc. 13, 1632–1661 (2018). 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2023.01.12.523793doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523793
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

Extended Data figures 
 
  

Extended Data Figure 1 – Legend on next page 
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Extended Data Figure 1 – SEC-MX TMT Multiplexing: (A) Label used (TMTpro18) per fraction in the 
dataset comparing SEC-MX to SEC-DIA. (B) Label used (TMTpro18) per fraction in the datasets used 
for gSEC and phSEC from HEK293 and HCT116 cells. Replicate 1 was measured using a no-overlap 
scheme (only using the indicated mixes 1,3,5,7,9,11. Replicate 2 was measured with the full overlap 
scheme, as indicated (all 12 mixes). (C) A representation of the 72 collected fractions for the initial HEK 
TMT multiplexing. Group 1 consists of evenly numbered TMT mixes of all 72 fractions. Group 2 consists 
of the odd-numbered TMT mixes of all 72 fractions. The Full Overlap Scheme utilizes both TMT mixing 
Groups – with all fractions measured twice, and mixes from both groups in an adjacent staggered 
fashion to allow for inter-mix normalization. (D) Heatmaps of the protein intersect between both mix 
groups using the same dendrogram. The intensities are max-normalized to 1 for each protein. (E) Table 
of the numbers of peptides and proteins for both DIA and MX, with MX split between Group 1, Group 2, 
and Full Overlap. (F) Bar graph representation of the number of interactions identified with SECAT at a 
q-value less than 0.05 for DIA, MX (full overlap), Group 1 (MX), and Group 2 (MX). 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2023.01.12.523793doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523793
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

  

Extended Data Figure 2 – Interaction Analysis: (A) SECAT result of CORUM targets and decoys by 
discriminant score for both DIA and SEC-MX data. (B) Overlap of SECAT identified interactions at a q-
value less than 0.05. For uniquely identified interactions, further q-value distribution plots for the 
opposite experiment are shown. (C) Barplot of the number of interactions identified using EPIC with a 
score cutoff of greater than 0.8. (D) Protein/node overlap between DIA and MX of the proteins identified 
in the EPIC interaction network. (E) Similar to (B), except for EPIC at a cutoff of 0.8.  
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Extended Data Figure 3 – gSEC and phSEC datasets comparisons: (A) Venn diagram showing the 
overlap of peptides between the gSEC and phSEC datasets (based on stripped sequence). (B) Heatmaps 
of gSEC and phSEC by replicate for HCT116 data. Normalized to 1 by peptide maximum intensity and 
organized by the same dendrogram. (C-D) Distribution of Pearson correlation coefficients between gSEC 
and phSEC elution profiles for each overlapping peptide in HEK293 (C) and HCT116 (D), per replicate. (E) 
Elution profile plots for the CCT complex subunits in HCT116 (average intensity of replicates). Solid lines 
are from gSEC and dotted lines are from phSEC, and line color correspond to CCT subunit as shown in 
legend. (F) Stacked bar plot histogram of the number of peaks identified for each peptide intersecting in 
gSEC and phSEC (colors indicated in legend). Dotted line represents the mean number of peaks per peptide 
(same in global and phospho). (G) Pie-charts of protein peak distribution by fraction region (monomer, 
complex, or both) for gSEC (left) and phSEC (right) – for the intersecting proteins. 
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Extended Data Figure 4 – Additional Example Plots: (A) Replicate averaged elution profile plots of MYH9 
for gSEC (top) and phSEC (bottom) in HCT116. Monomer region is grayed. (B) Similar plots for PTBP1 in 
HCT116 (see above). (C) On top is the normalized and replicate averaged elution profiles for CPSF3 in 
gSEC (blue) and phSEC (red) in HEK293. On bottom is the replicate averaged CPSF3 in SEC-DIA from 
HEK293 with RNase (dashed line) and without RNase (solid line). (D) Same as C, for DDX54. (E) Replicate 
averaged elution profile plots of MCM3 in gSEC (top) and phSEC (bottom) in HCT116. Monomer region is 
grayed. (F) Replicate averaged elution profiles for MCM2-7 complex subunits (see legend for subunits) in 
HCT116.  
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Extended Data Figure 5 – HEK-HCT Differential and Unfractionated Comparison: (A) Distribution 
of the Pearson correlation between HEK293 and HCT116 peptide elution profiles for the intersecting 
peptides in gSEC (blue) and phSEC (maroon). (B) Scatterplot of the log2 ratio (FX) between 
HCT116/HEK293 of the unfractionated analysis total intensity (y-axis) and the gSEC peak heights (x-
axis). Regression line (red) is plotted with associated correlation (R=0.46). Multiple points for each 
protein’s peaks. (C) Similar to B, except the Peak Heights are averaged per protein. (D) Overall 
distribution of the Log2 Fold-Change with regions colored based on 2-fold increase cutoff for HEK293 
(green) and HCT116 (purple). On top is the unfractionated total intensity distribution, and on bottom is 
the gSEC peak height distribution. Proteins found as significantly enriched are shown on the plots, with 
955 and 1045 enriched in UF (HEK293 and HCT116 respectively), and 596 & 853 enriched in gSEC 
(HEK293 and HCT116 respectively). In between the Log2fx distributions, two Venn diagrams show the 
overlap in enriched proteins between UF and gSEC, with the left Venn for HEK293 (green), and the 
right Venn for HCT116 (purple). (E) Table of GO Molecular Function Enrichment for 4 different phSEC 
enrichment groups as determined by WebGestalt. Rows represent the cell-line of enrichment, and 
column represents whether a concomitant difference was observed in gSEC or not. Terms in black have 
an FDR < 0.2, and terms in gray have an FDR > 0.2. (F) Similar table as E, enriched for terms in the 
Reactome Pathway.  
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