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Abstract

A protein’s molecular interactions and post-translational modifications (PTMs), such as
phosphorylation, can be co-dependent and reciprocally co-regulate each other. Although this
interplay is central for many biological processes, a systematic method to simultaneously study
assembly-states and PTMs from the same sample is critically missing. Here, we introduce SEC-
MX (Size Exclusion Chromatography fractions MultipleXed), a global quantitative method
combining Size Exclusion Chromatography and PTM-enrichment for simultaneous
characterization of PTMs and assembly-states. SEC-MX enhances throughput, allows
phosphopeptide enrichment, and facilitates quantitative differential comparisons between
biological conditions. Applying SEC-MX to HEK293 and HCT116 cells, we generated a proof-
of-concept dataset mapping thousands of phosphopeptides and their assembly-states. Our analysis
revealed intricate relationships between phosphorylation events and assembly-states and generated
testable hypotheses for follow-up studies. Overall, we establish SEC-MX as a valuable tool for
exploring protein functions and regulation beyond abundance changes.
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Introduction

A major effort in studying the dynamics of biological systems is to measure differential
changes in the proteome. Classically, proteome dynamics have been studied by measuring
differences in total protein expression levels. However, total proteome levels do not convey the
full array of post-translational dynamics. For example, the protein’s assembly-state — whether a
protein is acting alone as a monomer or as part of different complexes — often changes between
biological conditions and systems, despite similarities in overall expression levels!™. These
differences in assembly-states, often driven by protein-protein interactions (PPIs), may reflect
distinct functions that contribute to differential cell states.

An additional central mechanism contributing to the complexity of the proteome is the
attachment of functional groups to proteins, referred to as post-translational modifications
(PTMs)*. Notable examples encompass ubiquitination, acetylation, methylation, and
phosphorylation — which is one of the most extensively studied. PTMs can induce various
alterations in protein activity, including activation or inhibition, tagging for degradation, and
subcellular localization, among others. Notably, most PTMs and PPIs are dynamic and take part
in regulatory mechanisms, and therefore change between biological conditions®™. Therefore,
characterizing these dynamic "states" is essential for a comprehensive biological understanding.

Cumulative research over several decades has demonstrated the interdependence of a protein's

assembly-state and PTM-status>*!!

. For instance, phosphorylation can modulate a protein's
interaction interface, and conversely, protein interactors can obstruct phosphorylation sites,
thereby denying access to kinases or phosphatases. Past works on the interplay between PPIs and
PTMs have relied on targeted methods, such as co-immunopurification, to enrich the interactomes
of specific proteoforms>®. However, these approaches are limited in their scope and a global scale
method to simultaneously study assembly-states and PTMs is critically missing. Therefore, we set
out to develop an approach to systematically study the interplay between protein assembly-states
and phosphorylation events.

Previously, Size Exclusion Chromatography followed by Mass Spectrometry (SEC-MS) has
been used successfully to analyze assembly-states, identify PPIs and characterize the composition
of molecular-complexes!-12726, SEC is used to distinguish different assembly-states of the same
protein, which elute in distinct fractions based on the different molecular weight (MW) of each
assembly (for example, a monomer will elute in a low MW fraction versus a multimeric complex
of a higher MW?). However, SEC-MS is limited by input amounts that render PTM enrichment
challenging. As a result, previous works have mined phosphopeptides in SEC datasets by meta-
analysis?’, or studied the effects of phosphatase-treatment on SEC elution profiles?®. However, no
study to date has directly measured enriched phosphopeptides with SEC-MS.

Here, we introduce a global and quantitative methodology that enables the simultaneous
characterization of PTMs and assembly-states, in the same sample, to explore their relationship
across various biological processes. Expanding on prior SEC-MS and co-fractionation
multiplexing works?’, we use isobaric tags to develop SEC-MX — Size Exclusion Chromatography
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fractions MultipleXed — and demonstrate its advantages in; (1) improving throughput by reducing
the number of LC-MS/MS runs required to reconstruct the PPI network, (2) enabling
phosphopeptide enrichment and measurements thereby allowing characterization of PTMs along
the SEC range, and (3) simplifying quantitative comparisons between biological conditions that
are multiplexed together.

In this study, we employed SEC-MX to comprehensively characterize the SEC elution profiles
of both non-modified and phosphorylated peptides from HEK293 and HCT116 cells. This yielded
a novel dataset, marking the first instance of concurrent non-targeted measurements of
phosphorylation events and assembly-states for thousands of proteins across two distinct biological
conditions. Our analysis enabled a comparative examination of assembly-states and their
phosphorylation status between the two cell-lines. Overall, our study provides insights into the
intricate interplay between post-translational modifications and protein assembly-states,
underscoring the unique value of SEC-MX in unraveling the complexities of protein regulation.

Results

Development and benchmarking of SEC-MX

We developed SEC-MX (SEC fractions MultipleXed) to enable quantitative comparison
between different samples, as well as to measure phosphorylation events on proteins in distinct
assembly-states by enriching phosphopeptides from SEC fractions. First, we set out to multiplex
SEC fractions to increase the sample-yield for phosphopeptide enrichment. Multiplexing was
achieved by labeling SEC fractions with isobaric tags. Tandem mass tags (TMTpro) were used
because they provide the highest number of labeling channels currently available, allowing
combinations of up to 18 samples in a single liquid-chromatography tandem mass spectrometry
(LC-MS/MS) run. We multiplexed SEC-adjacent fractions within the same TMT mix to minimize
the occurrence of missing data points and reduce sample complexity (Figure 1 A-B, Extended Data
Figure 1A). In doing so, we took advantage of the fact that once a peptide is triggered for MS2
acquisition, TMT reporter intensity values are, in most cases, assigned to all channels and therefore
achieve more complete elution profiles. In addition, we designed a “full-overlap” scheme (Figure
1B, Extended Data Figure 1C) in which every fraction is measured twice, in different mixes,
increasing coverage and enabling batch correction between different TMT-mixes (the
development of the mixing scheme is detailed in the Materials and Methods section, Extended
Data Figure 1).

To compare SEC-MX to the field’s current gold standard — label-free SEC measured with data
independent acquisition (DIA), we conducted SEC on HEK293 cells and measured the resulting
fractions either individually or multiplexed by TMT labeling, in duplicate biological replicates for
each. We found that coverage in SEC-MX was comparable to SEC-DIA, with only a 10%
difference in protein-group identifications, despite a 9-fold reduction in the number of LC-MS/MS
runs (57 versus 8 in DIA or TMT, respectively) (Figure 1C). Additionally, SEC-MX produced
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Figure 1 — SEC-MX performs comparably to SEC-DIA in coverage and resolution: (A)
Overview of experimental pipeline: Cells are lysed under physiological conditions, followed
by fractionation on a size exclusion chromatography (SEC) column into ~90 fractions. The
protein-containing fractions (54-72 fractions total) are further processed by tryptic digestion.
The resulting peptides are either measured individually using DIA (SEC-DIA), or labeled by
TMT, multiplexed and measured in pools of 18 fractions (SEC-MX). (B) A “full overlap”
mixing scheme was developed, in which each fraction is divided in two and each half is
measured in a different mix, keeping adjacent fractions together. (C) Protein and peptide
identifications in SEC-DIA and SEC-MX. (D) Heatmap representation comparing signals in
SEC-DIA and SEC-MX, for proteins measured in both. Columns represent fractions, rows
represent different proteins, which are row-normalized from 0 to 1 so that the max elution
peak per protein is represented in red. Rows in both heatmaps are arranged in the same
order. (E) Elution traces and heatmap representation of the SEC elution of the CCT complex
subunits in either SEC-DIA or SEC-MX. (F) Distribution of Pearson correlation coefficients
between elution profiles in SEC-MX versus SEC-DIA per protein measured in both. (G)
Parameters of the PPI networks build by SECAT analysis of either SEC-DIA or SEC-MX
data. (H) The overlap of interactions between SEC-DIA and SEC-MX, g-value < 0.05 in at
least one condition and < 0.1 in the other, (see Materials and Methods section for details).

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.12.523793; this version posted August 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

very similar SEC
elution patterns to
that of SEC-DIA,
evident by the
positions of the
elution peaks per
protein, as well as

in the  high-
correlation
between elution

profiles measured
by both methods
(Figure  1D-F).
We then used the
network-centric
analysis
algorithm SECAT
22 to identify high-
confidence PPIs
and observed that
SEC-MX
identified a
similar number of
PPIs as did SEC-
DIA, (3,588 and
4,208 at 5% false-
discovery  rate,
respectively, of
which 54% were
overlapping),
with similar
network
parameters
(Figure 1G-H,
Extended  Data
Figure 2A-B). We
additionally
analyzed the data
with a reference-
free PPI analysis


https://doi.org/10.1101/2023.01.12.523793
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.12.523793; this version posted August 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

tool which allows identifications of novel interactions®*, resulting in 12,620 and 14,406 PPIs in
SEC-MX and SEC-DIA, respectively (Extended Data Figure 2C-E).

Together, our observations showed that SEC-MX performs comparably to the field’s gold
standards in building a context-specific human PPI network while requiring an order of magnitude
less LC-MS/MS runs.

SEC-MX enables phospho-peptide enrichment

After validating SEC-MX performance for studying protein interactions, we next set out to test
the feasibility of the multiplexing approach in enabling phosphopeptide enrichment using standard
immobilized metal affinity chromatography (IMAC). As mentioned above, we were interested in
developing the method in order to facilitate differential analysis between biological conditions.
Therefore, we designed the study to compare between two distinct cell-lines, HEK293 and
HCT116. Fifty-four SEC fractions were collected from each cell-line, in two biological replicates.
To minimize variability in protein coverage and to increase the chances of identifying the same
phosphopeptides from the two cell-lines, we multiplexed fractions from both samples together in
the same TMT mixes (Figure 2A, Extended Data Figure 1B). After labeling and multiplexing, 20%
of each mix were taken for measuring the ‘global’ proteome for analysis of protein assembly-
states, while the rest of the sample was further allocated for phosphopeptide enrichment using
IMAC (Figure 2A).

Overall, the global dataset (hereafter referred as gSEC) yielded 59,659 peptides, covering
5,503 protein groups (Table 1). In the phosphopeptide SEC dataset (phSEC) we recovered 4,762
phosphorylated peptides, spanning 2,196 proteins, out of which 1,593 overlapped with the gSEC
dataset (Figure 2B). To initially assess the quality of the phSEC data, we compared the elution
patterns of peptides in phSEC to their corresponding peptides in gSEC and observed a high degree
of correlation (Figure 2C, Extended Data Figure 3A-D). For example, we inspected the elution
profiles of phosphopeptides mapping to subunits of the stable CCT complex and found that they
co-eluted with the fully assembled form of the complex (Figure 2D, Extended Data Figure 3E). Of
note, since the information content of different phosphopeptides is not necessarily linked to each
other, meaning they might not belong to the same proteoforms, from here on we report all phSEC
data on the peptide-level and match it to the protein-level data of the parent-protein in the gSEC
dataset (3,609 phosphopeptides, matched to 1,593 proteins). In conclusion, our PTM enrichment
downstream from SEC fractionation created a unique and first-of-its-kind dataset measuring SEC
elution profiles for ~4000 phosphopeptides and their matching parent proteins, which enables
overlaying PTM-status with protein assembly-states.
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Figure 2 — SEC-MX enables phosphopeptide enrichment: (A) Overview of experimental setup. The same
fractions from HEK293 or HCT116 cells were multiplexed together, digested, and labeled. After pooling, 80% of the
sample was allocated for phosphopeptide enrichment and measurement of phSEC, while the remaining 20% was
processed for gSEC. (B) Venn diagram showing the overlap of protein identifications between the gSEC and phSEC
datasets. (C) Heatmap representation of the elution profiles of overlapping peptides in gSEC and phSEC from
HEK293 cells in both replicates. Columns represent fractions, rows represent different peptides, which are scaled
from 0 to 1 so that the max elution peak per protein is represented in red. Rows in all 4 heatmaps are arranged in
the same order. For similar heatmaps from HCT116 cells see Extended Data Figure 3. (D) Elution traces for CCT
complex members identified in gSEC and phSEC (HEK293 cells, average of both replicates, similar results were
obtained for HCT116 cells, shown in Extended Data Figure 3).
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Table 1 — Overview of assembly-state relevant identifications per dataset

Groups Numbers
Replicate Condition Dataset Proteins Peptides Pep Peaks Prot Peaks Assembly
States
gSEC 4,578 41,429 57,234 7,747
HCT phSEC 2,027 4,237 6,314
01 gSEC 4,583 41,466 52,236 7,083 8,519
phSEC 1,993 4,159 5,473
gSEC 5,154 46,763 69,702 9,508
HCT phSEC 1,477 2,745 4,101
02 11,592
gSEC 5,151 46,743 71,240 10,005
phSEC 1,483 2,761 3,837

A protein-centric analysis framework to study assembly-states

Next, we aimed to analyze our unique dataset in order to; (1) define assembly-states for every
measured protein, (2) map phosphorylation events onto assembly-states and, (3) study how these
patterns differ between conditions. Previously, SEC-MS has been widely used to identify pair-
wise PPIs, characterize the composition of molecular-complexes, or compare interactions between
samples!-18:222430 A5 opposed to a focus on interactions, recent work has shown the potential of a
protein-centric approach that looks at the assembly-state changes of individual proteins between
conditions 2. Based on this approach, we first identified assembly-states by taking into account that
each SEC elution peak represents a distinct assembly-state of the protein (Figure 3A). This allowed
us to assign/map phosphorylation events by aligning individual peaks between gSEC and phSEC.
Lastly, we used a protein-centric approach to compare those assembly-states between biological
conditions and discover potential regulatory events that occur on specific assembly-states of the
same protein (Figure 3A).

The first step in our analysis pipeline was to define assembly-states per protein. We used a
peak-calling algorithm (as detailed in Materials and Methods) to identify assembly-states for each
protein in each dataset independently (gSEC/phSEC, for each cell-line and biological replicate).
This analysis identified that the average ~5000 proteins in each gSEC sample are eluting in ~8,500
assembly-states, with an average multiplicity of 1.76 peaks per protein, and 1.4 peaks per peptide
(Table 1, Figure 3B, Extended Data Figure 3F), suggesting that over half the proteins in the cell
are present in at least two different assembly-states.

Following peak calling, each assembly-state was categorized as monomeric or complexed
based on the peak position along the SEC dimension (detailed in Materials and Methods). We
observed that only ~17% of proteins eluted exclusively as monomeric, 62% exclusively in their
complexed form, and 21% in both (Figure 3C), suggesting that the majority of proteins in the cell
are complexed with other molecules, in line with previous observations >!°, This trend toward
assembled proteins was even more prominent for phSEC profiles, where less than 6% of proteins
eluted exclusively as monomeric, 85% exclusively in their complexed form, and 9% in both
(Figure 3D). Comparing these distributions, we observed that the phSEC assembly-states eluted

7
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less frequently as monomers than in gSEC, a finding that we confirmed for the subset of proteins
matched with measured phosphopeptides (Extended Data Figure 3G). Moreover, the lower
percentage of monomeric assembly-states in phSEC compared to gSEC suggests that
phosphorylation occurs more often on the assembled form of a given protein, rather than its
monomeric.

In conclusion, we used a peak-focused approach to define assembly-states from SEC data.
Using this method, we showed that more than half of the measured proteins presented in two or
more assembly-states, highlighting the importance of considering how alternative assembly-states
might be regulated. Therefore, we next turned to assign phosphorylation-events to specific

A

assembly-states.

Condition 1 Condition 2
L ® I

Mapping PTM onto
assembly-states g g

To map £ A £
phosphorylation onto ‘
assembly-states, we Fractions Fractions
aligned the peaks identified
in phSEC to the peaks of — gSEC étsjer::tﬂl mono.meric conﬁaxl cmll
their  parent-protein  in .
gSEC based on peak-apex = phSEC gpaiﬁs!mr lation IXI |z|

position along the SEC

EI;%}TO;:)GG ,II\‘/IIEEGHZLSM;;(: BM Glob.al Protein Multiplicity C gSEC D phSEC
covered 1,592 proteins that g“ . mean: 1.76 gﬂ-(;omer
were measured in both %0,3 L
datasets, and showed that %0,2

90% of the phSEC proteins E - gi}?:l - gi'nz]iflex

had at least one peak oo

1 2 3 4 5 6
Number of Peaks

aligned between gSEC and
phSEC, showing high
agreement between the two
datasets (1,446 out of
1,592, Figure 4A). When a
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phosphorylated. (B) Frequency distribution of peak multiplicity per protein
showing that >50% of proteins elute with >1 peaks. (C-D) Pie charts showing
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of the 1,446 proteins had gSEC peaks that were not aligned with the phSEC peak, suggesting that
a substantial fraction of the phosphorylated proteins were selectively phosphorylated on specific
assembly-states. Since this pattern can be affected by the lower coverage in the phSEC versus
gSEC dataset, we filtered the proteins based on replicate reproducibility and delineated 257
candidate proteins for which phosphorylation differed between different assembly-states of the
same protein (see Supplementary Material). We next discuss a few of these examples.

Among the candidate proteins we found the non-muscle myosin IIA Myosin-9 (MYH9), an
abundant actin-motor expressed in most eukaryotic cells. MYHO eluted in both a high MW peak
(multimeric assembly-state), and a smaller MW peak in the monomeric range (Figure 4B,
Extended Data Figure 4A). Interestingly, phosphopeptides spanning the sequence around the
known phosphorylation site on Serine-1943 were reproducibly measured in phSEC, all co-eluting
only with the multimeric assembly-state, suggesting that MYH9 is differentially phosphorylated
between its monomeric and assembled forms. This observation is in-line with previous works
showing that association of MYH9 with its binding partners is regulated by Serine-1943
phosphorylation®!-2,

In addition to multimeric assembly-states determined by PPIs, assembly-states may form by
interaction with various other molecules, such as nucleic acids. One of the advantages of using our
protein-centric approach for analyzing SEC data, as opposed to a PPI focused approach, is the
ability to identify that a given protein has significant assembly-state changes without the
requirement to identify the underlying interactors. For example, we observed that several RNA
binding proteins (RBPs) in our data eluted in multiple gSEC peaks that seemed to be differentially
matched with a peak in phSEC. For instance, Polypyrimidine tract-binding protein 1 (PTBP1)
eluted in two prominent assembly-states; in fractions 8 (high MW) and 40 (low MW).
Interestingly, PTBP1 phosphopeptides eluted within a single peak overlapping the smaller MW
assembly-state (Figure 4C, Extended Data Figure 4B), suggesting that only this assembly-state of
PTBPI1 is phosphorylated. One potential explanation to this phenomenon could be that
phosphorylation regulates the association of the protein to RNA transcripts. To test this hypothesis,
we plotted the elution profile of PTBP1 in SEC from HEK293 cells, before and after RNAse
digestion (Figure 4D). We observed that the intensity of the high MW peak of PTBP1 is decreased
following RNAse digestion, and the smaller MW peak is increased — supporting the notion that
the phosphorylated PTBP1 form is no longer interacting with RNA. A similar pattern was observed
in our data for various other RBPs including CPSF3, which like PTBP1 seems to be
phosphorylated only in its RNA-free form (Extended Data Figure 4C). On the other hand, other
RBPs, like DDX54 (Extended Data Figure 4D), exhibited the opposite pattern with phSEC peaks
only matching the high MW RNA-bound assembly-state. Together, these observations suggest a
role for phosphorylation in regulating RBPs interactions with RNA.

Another layer of information in our matching analysis comes from comparing the patterns of
different phosphopeptides mapped to the same parent-protein. In some cases, although all
assembly-states were identified as phosphorylated, a deeper dive in the data showed that each
assembly-state is phosphorylated on a different site, as in the example of the DNA replication
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Figure 4 — Mapping PTMs onto assembly-states: (A) Number of proteins for which phSEC peaks were matched
to the gSEC peaks, based on their apex position: 1,446 out of the 1,593 proteins (90%) measured in both gSEC
and phSEC had a least one phSEC peak that matched to a gSEC peak. (B) SEC-MX elution traces in gSEC (top)
and phSEC (bottom) for MYH9 in HEK293 cells (averaged across replicates. HCT116 elution patterns shown in
Extended Data Figure 4). Gray boxes indicate the range of fractions covering the monomeric form of the protein.
(C) Same as B, for PTBP1. (D) PTBP1 elution in SEC-DIA performed on HEK293 cell lysates before/after RNAse
treatment. (E) Same as B, for MCM3. (F) gSEC elution traces for all MCM2-7 complex subunits (HEK293, averaged
across replicates) support the existence of two assembly-states: the full complex and an intermediate assembly-
product comprising of MCM3-MCM5-MCMBP. Crystal structure of human single hexameric MCM2-7 complex is
shown (PDB 7W68, deposited by Xu, N.N. et al., 2021-12-01).

licensing factor MCM3 (MCM3). MCM3 is a subunit of the minichromosome maintenance 2—7
complex (MCM2-7), a hetero-hexameric complex that functions as a DNA replication licensing
factor. It is loaded onto replication origins to form inactive pre-replicative complexes, which are
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then activated by kinases to form the active CDC45-GINS-MCM helicase complex®*34. In gSEC,
MCM3 eluted in two assembly-states: the full hexameric complex in fraction 24 (higher MW) and
a lower MW complex in fraction 36 with MCMS and the auxiliary protein MCM binding-protein
(MCMBP), (Figure 4E-F, Extended Data Figure 4F). In phSEC, we identified three distinct
phosphopeptides of MCM3, each containing known phosphorylation sites; one spanning AA 668-
689 including Serine-672 and Serine-681, the other spanning AA 701-724 including Tyrosine-708
and Threonine-722, and the third spanning AA 725-732 including Serine-728. Interestingly, while
phPEP7%-732 ¢co-eluted with both gSEC peaks, phPEP7°!-72* and phPEP®6%-6% eluted only in the
lower MW peak (Figure 4E, Extended Data Figure 4E). Of note, a recent study suggested that
MCMBP may play a role in forming the MCM2-7 hexameric complex before it is loaded onto the
chromatin®>, meaning that the MCM3-MCMS5-MCMBP complex is potentially a stable
intermediate assembly product of the full complex. Therefore, the observation that phPEP¢8-689
and phPEP’?!724 elute only with the MCM3-MCMS5-MCMBP assembly-state raises the hypothesis
that the sites within these peptides are dephosphorylated prior to the assembly of the full complex.
While further studies are required to test this hypothesis, these observations exemplify the potential
of our method in formulating testable hypotheses of how phosphorylation contributes to
differential assembly-states and functions.

In conclusion, we used a peak-focused analysis to map phosphorylation events to individual
assembly-states. We showed how this approach can be used to explore the relationship between
protein-interactions and PTM regulation. Furthermore, we found hundreds of potential cases of
differential phosphorylation between assembly-states, such as in cases where the monomeric and
assembled forms differ in phosphorylation (MYH9), how phosphorylation may regulate the
binding of proteins to nucleic acids (PTBP1, CPSF3, DDX54), or the assembly-process of large
multimeric complexes (MCM3). Next, we expanded the analysis to compare assembly-states and
their phosphorylation between the two analyzed cell-lines.

SEC-MX enables differential analysis between biological samples

One of the main considerations in designing SEC-MX was to facilitate differential analyses of
assembly-state changes between different biological samples and/or conditions. In this study, we
focused on analyzing the assembly-state changes and their phosphorylation-state between two
human cell-lines, HEK293 and HCT116, whose PPIs were previously compared®®. We analyzed
differences between the samples at the peak level as most proteins in our study were observed
eluting in more than one assembly-state. We speculated that a peak-level approach would be highly
sensitive to the detection of proteins differentially regulated in only one of several assembly-states.

Overall, the SEC profiles of HEK293 and HCT116 correlated very well in both gSEC and
phSEC (Extended Data Figure 5A), with ~70% of gSEC assembly-states and 63% of phSEC
assembly-states identified in both cell-lines (Figure 5SA-B). In accordance with previous studies,
these observations indicate substantial differences between the interactomes of the two cell lines,
with 30-40% uniquely identified assembly-states in either of the cell-lines*¢. Of note, SEC-MX is
well-suited for identifying condition-specific assembly-states since the mixing scheme provides
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nearly 100% overlap in peptide coverage between the biological samples. Meaning that, in the
presence of a peak in one condition, absence from the other is most likely not due to disparities in
coverage and can be more confidently interpreted as a difference in assembly-state. Therefore, we
looked at the reproducible differences between HEK293 and HCT116 and identified 587 proteins
with assembly-states exclusive to HEK293 and 672 exclusive to HCT116. Additionally, we found
76 proteins with assembly-states phosphorylated only in HEK293 and 111 only in HCT116 (Figure
5C, see Supplementary Materials for detailed lists).

Among the proteins with uniquely phosphorylated assembly-states we found the protein
Septin-2 (Figure 5D). The Septin family is a group of conserved GTP-binding proteins, interacting
with each other to form heteromeric complexes of 2, 3, or 4 members®*’°. In HCT116 gSEC,
Septin-2 eluted in one assembled form (fraction 11, high MW), and in its monomeric form (fraction
46, low MW). In HEK293 cells, an additional third assembly-state was identified in fraction 17
(Figure 5D). Overlaying the traces of all other identified Septins in gSEC, we observed that this
additional assembly-state represents a different combination of Septins than the one in fraction 11,
suggesting that different heteromeric complexes are formed in each cell-line (Figure SE).
Interestingly, the Septin-2 HEK293 phSEC elution pattern shows that the HEK293-exclusive
assembly-state is more highly phosphorylated in this sample than its common (higher MW)
counterpart (Figure 5D).

While our approach showed much potential for finding unique assembly-states, we were also
interested in comparing the assembly-states common between conditions. Therefore, we quantified
the abundance-differences of specific assembly-states by calculating the gSEC peak-ratios
between the two conditions (HCT116/HEK?293). To support this quantification, we compared the
gSEC peak ratios to the total HCT116/HEK?293 expression level ratios calculated based on shotgun
DIA proteomics of the corresponding unfractionated samples (UF). We measured 4,163 proteins
that were common between gSEC and UF and we observed a high correlation of the
HCT116/HEK?293 ratios measured by SEC-MX versus UF-DIA (Extended Data Figure 5B-C).
Furthermore, we used an absolute log2 > 1 cutoff on the HCT116/HEK?293 ratios in gSEC or UF
to delineate differential proteins using each method and observed a ~40% overlap between the
candidate lists (Extended Data Figure 5D). Overall, the comparison to UF expression levels
supports the use of the peak-focused quantification, while showcasing its potential to find
differentially expressed assembly states.

Next, we applied the peak ratio analysis to discover differences in phosphorylation of assembly
states using the phSEC dataset. Of the 1,446 proteins previously included in the analysis based on
phSEC-gSEC peak alignment, we found 1,215 proteins for which at least one phosphorylated
assembly-state was identified in both HEK293 and HCT116 (1,918 assembly-states). We then
quantified the abundance-differences of specific assembly-states, or their relative phosphorylation,
by calculating the peak-ratios (HCT116/HEK293) in gSEC and phSEC, respectively (Figure 6A).
We used a cutoff of 2-fold difference in peak ratio to classify differential assembly-states at either
the gSEC or phSEC datasets. These cutoffs divided our data to 9 groups based on whether
assembly-states differ between HEK293 and HCT116 at the global level and/or phosphorylation
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Figure 5 — SEC-MX enables differential analysis between conditions: (A-B) HCT116 and 207 in
Percentage of gSEC (A) and phSEC (B) peaks identified exclusively in HEK293 HEK293 for which
(green), HCT116 (purple) or in both (gray), across replicates. (C) Number of proteins

with peaks identified exclusively in one of the cell-lines, reproducibly in both there was an assembly-
replicates. (D) SEC-MX elution traces for Septin-2, gSEC (top) or phSEC (bottom) state upregulated at the
in HEK293 (green) or HCT116 (purple). Gray boxes indicate the range of fractions
covering the monomeric forms. (E) gSEC elution profiles for all measured Septin ] o
family members in HEK293 (top), or HCT116 (bottom). without a significant

change in assembly-
state abundance (groups A: gNS/phHCT, and D: gNS/phHEK). Moving forward, we focused on
the four groups portraying differential phosphorylation and either concomitant abundance changes
(groups B, C) or no significant abundance changes (groups A, D) (genes listed in Supplementary
Materials).

Given we identified 4 distinct groups, all enriched in phosphorylation (but not necessarily total
protein changes — groups A and D), we hypothesized that each group may be regulated by different
kinases. Therefore, we conducted a kinase target over-representation analysis*'**> on the proteins
in each of the groups, which identified different potential upstream kinases in each group (Figure
6B). For example, group A (gNS/phHCT) was enriched in targets of the Ribosomal protein S6
kinase beta-1 (RPS6KBI1). In group A, RPS6KBI1 itself was enriched, along with its
phosphorylation targets EEF2K, EIF4B, IRS1, MAPT, MTOR, RPS6, and NCBP1. As an

phosphorylation level,
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example, we plotted the elution profiles of NCBP1, confirming it elutes in several peaks with
similar abundance and distribution between HEK293 and HCT116 in gSEC, but with differential
peaks in phSEC (Figure 6C).

RPS6KBI is known to act downstream of mTOR signaling, promoting protein-synthesis by
phosphorylating EIF4B, EEF2K and RPS6%%. In-line with the observations of increased
phosphorylation of these targets in HCT116, we found that ribosomal subunit expression (Gene
Ontology (molecular function) enrichment*! on group B: gHCT/phHCT) and mTORC1-mediated
signaling and Eukaryotic translation (Reactome pathway enrichment*! analysis on groups A and
B: phHCT) were increased in this cell-line (Extended Data Figure 5E-F). Altogether, these
observations highlight the power of our method as a tool for differential analysis between
biological conditions.

As our data shows, proteins often elute with multiple assembly-states. These distinct assembly-
states may be differently regulated, making them fall into different regions of our scatterplot,
despite all being associated with the same parent-protein. For example, we identified that the RNA
binding protein Nucleolin (NCL) had one assembly state upregulated in HCT116 (group B) and
another upregulated in HEK293 (group C), indicating an inversed expression-pattern of the
different assembly states (Figure 6D). Overall, we found that as many as 236 proteins had multiple
assembly-states that were differentially regulated at the phSEC level (Figure 6A). For example,
the FH1/FH2 domain-containing protein 1 (FHOD1) eluted in two peaks, which were not different
in abundance in gSEC. However, one assembly-state (higher MW) was more highly
phosphorylated in HEK293 and the other was more highly phosphorylated in HCT116 (Figure
6E). Notably, a closer inspection of the phSEC data showed that this pattern comes from distinct
phosphopeptides: the phosphopeptide enriched in HEK293 spanned AA 367-376 including the
known site on Serine-367, and the phosphopeptide enriched in HCT116 spanned AA 517-525
including the known site on Serine-523. Kinase prediction analysis®® showed these
phosphorylation sites are most likely phosphorylated by distinct kinase groups, with Serine-367
(upregulated in HEK293) most probably regulated by kinases from the Aurora kinase family
(AURB, AURC) and Serine-523 (upregulated in HCT116) most probably regulated by a kinase
from the CMGC group (P38B, P38A, GSKB). Together, these observations support a model
whereby FHODI is alternatively phosphorylated in an assembly-state specific manner. Meaning
that, regardless of overall similar abundance of the two assembly-states, they are likely
differentially regulated via phosphorylation between the two cell lines. This illustrates that
integrating assembly data with phosphorylation status not only offers valuable insights into how
PTMs influence protein interactions, but also sheds light on how PTMs contribute to distinct
regulation patterns on different assembly states across samples.

In conclusion, we used our peak-focused approach to analyze differences in assembly-states
between biological conditions, both at the full-protein (gSEC) and at the phosphopeptide level
(phSEC). Our results brought forward proteins with assembly states exclusively found in one of
the cell lines, as well as proteins with differentially expressed assembly states — both on a global
and phosphorylation-level. Furthermore, we delineated unique cases of differential
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phosphorylation between distinct assembly states of the same proteins. Further inspection of these
candidates exemplified how this method can generate testable hypotheses on the regulatory
connections between phosphorylation and assembly-states. Together, our results support the utility
of SEC-MX and the peak-focused analysis approach in providing valuable information on the
dynamics of assembly-state regulation (abundance and phosphorylation) between conditions,
beyond what is detected by analysis of expression levels.
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Figure 6 — a peak-centric analysis uncovers different requlation of distinct assembly-states: (A) Scatter plot

comparing the log2 ratio of peak heights (HCT116/HEK293) in phSEC (y-axis) and gSEC (x-axis), based on the
subset of peaks identified in both cell-lines (gray area in Figure 5A-B). Dashed lines indicate the absolute log2 of 1,
which was used as a cutoff for each dimension. These cutoffs divide the plot to 9 groups, based on whether
assembly-states differ between the conditions at the global level and/or phosphorylation level, as indicated on the
top and right sides of the scatter. (B) Kinase prediction by kinase target enrichment analysis results for each group
indicated in A. Top 3 kinases are shown per group. Black font indicates g-value < 0.2 (FDR), while gray is g-value >
0.2. (C-E) SEC-MX elution traces for the indicated proteins (C-NCBP1, D- NCL, E-FHOD1), gSEC (top) or phSEC
(bottom) in HEK293 (green) or HCT116 (purple). Gray areas indicate the range of fractions covering the monomeric
form of each protein. For C-D, peak categories based on their position on the scatter (A) are shown on the bottom.
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Discussion

In this study we developed SEC-MX, a multiplexed SEC-MS method that enabled the mapping
of PTMs to assembly-states and performing differential quantification between conditions. We
showed that SEC-MX performs as well as state-of-the-art label free SEC-MS methods in terms of
coverage and PPI identification, and in a fraction of the needed LC-MS/MS runs. More
importantly, we showed that SEC-MX enabled phosphopeptide enrichment downstream of SEC —
generating a unique, proof-of-concept, dataset comprising the SEC elution profiles of thousands
of phosphopeptides and their corresponding parent-proteins. We displayed how a careful
multiplexing design can position SEC-MX as especially well-suited for quantifying differences
between samples. Additionally, we analyzed these datasets with a focus on peak-level comparisons
to overlay PTM information on assembly-states and/or compare them between biological
conditions.

Our dataset provides a unique and rare systematic view of the interplay between
phosphorylation events and assembly-states, highlighting proteome dynamics beyond abundance
changes. In-line with previous reports'%!°, we confirmed that the large majority of the proteins in
the cell are assembled with other molecules. Expanding on this notion, our analysis shows that
over half of the measured-proteins eluted in multiple assembly-states, and that PTMs may coincide
with only a subset of them, and can change between conditions. We further exemplified how our
approach can generate testable hypotheses regarding the relationships between phosphorylation
events and molecular complex-assembly (Figure 4), and how they may differ between conditions
(Figures 5-6).

In developing our protein-centric analysis approach, we decided to deviate from state-of-the-
art protein-correlation profiling (PCP) that aims to uncover pair-wise PPIs (Prince’!, EPIC?,
SECAT?>?), Inspired by complex-centric programs such as CCprofiler'®> and PCprophet®, we
defined assembly “‘states” based on distinct SEC elution peaks and focused on individual proteins
— how they change between samples, similar to other protein-centric approaches?. Our analysis
framework proved to be a simple and comprehensive tool to compare assembly-states between
conditions while overlaying PTMs. Additionally, we identified assembly states for nearly every
analyzed protein/peptide, as opposed to methods focused solely on the complex/PPI level, which
often result in limited networks, covering only a fraction of all measured proteins. However, future
applications of SEC-MX analyses should attempt to tie-in PPI networks to provide the composition
of different assembly-states.

Similar to SEC-MX, other techniques apply a protein-centric approach to detect dynamic
changes in the functional proteome, such as thermal proteome profiling (TPP>*), covalent
protein-painting (CPP*3) and limited-proteolysis mass spectrometry (LiP-MS?). These methods are
sensitive in detecting protein functional changes that can result from a wide-array of mechanisms,
including and not limited to, molecular interactions and PTMs. However, they are limited in their
ability to identify the specific molecular-mechanism underlying an observed change in a given
protein, requiring prior information such as structure, and/or detailed biochemical follow-ups.
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Moreover, co-fractionation analysis following treatment with non-specific phosphatases
(phospho-DIFFRAC?®) also took a protein-centric approach to identify proteins with altered SEC
elution profiles post-treatment. Although phospho-DIFFRAC can provide some degree of
causality on the effects of phosphorylation on assembly-states, it lacks direct measurements of
phosphopeptides and cannot shed light on the specific modified sites. For example, both our study
and phospho-DIFFRAC suggested that the assembly-state of MYHO9 is regulated by
phosphorylation. However, we also pinpointed the specific phosphorylated peptide, which
contained a modification site known to affect interactions. While SEC-MX cannot determine
causality in the relationships between PTMs and assembly-states, we showed how it can serve as
a valuable hypothesis-generating tool, guiding the design of follow-up studies into the causal
effects of PPIs and PTMs. Furthermore, SEC-MX can facilitate the collection of detailed time-
course measurements to validate these hypotheses.

In its current form, SEC-MX depends on data-dependent-acquisition (DDA), due to the use of
isobaric tags. As with other DDA methods, this potentially reduces the depth of coverage, which
can result in missing data points. Therefore, special attention should be made in the analysis step
to make certain that intensities were at least measured in a given TMT-mix before claiming that a
peptide does not have a peak in a certain region. To mitigate these issues, future development of
SEC-MX should test the use of isotopic tags compatible with DIA methods, such as mTRAQ?%, as
they are expected to become available in >3 channels.

In conclusion, SEC-MX represents a significant advancement in the study of protein regulation
and cellular functions by providing a comprehensive platform for the simultaneous
characterization of post-translational modifications and assembly-states. Our method not only
streamlines measurement processes and enables PTM enrichment but also offers a novel approach
to explore the intricate interplay between these molecular events. By generating a proof-of-concept
dataset encompassing the identification and quantification of assembly-states and PTMs across
two distinct biological samples, we provide a granular perspective on protein regulation.
Moreover, our focus on distinct assembly states highlights the diverse regulatory processes that
proteins undergo, underscoring the necessity of novel analytical tools such as SEC-MX. While our
study primarily examined phosphorylation for proof-of-concept, the versatility of SEC-MX allows
for future exploration of additional modifications (e.g., acetylation), thereby broadening its
applicability across various biological contexts. Ultimately, SEC-MX enables researchers to
explore dynamic cellular processes and sheds light on the intricate mechanisms driving protein
complexity and regulation.

17


https://doi.org/10.1101/2023.01.12.523793
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.12.523793; this version posted August 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Materials and Methods

Cell culture

HEK293XT cells (Takara Bio Lenti-X 293T, #632180) were provided by the Yeo lab at UC
San Diego (SEC-DIA versus SEC-MX experiments), or purchased from ATCC (ATCC, CRL-
3216, in HEK293 versus HCT116 experiments), HCT116 cells were provided by the Prives lab at
Columbia University. HEK293 cells were cultured in DMEM (containing L-glutamine and
Sodium pyruvate) and HCT116 in McCoy’s 5SA media. Both media were supplemented with 10%
Fetal Bovine Serum and Penicillin (100 U/mL) Streptomycin (100 pg/mL). Cells were grown to
80-90% confluency and were harvested at passages 6-20.

Sample preparation for SEC

SEC sample preparation was as previously described in Bludau et al. 2020. Cells (25-40
million per sample) were harvested by scraping in ice cold PBS, washed and pelleted. Pellets were
flash frozen in liquid nitrogen and stored in -80 °C. Upon thawing, cell pellets were lysed in cold
lysis buffer (for TMT versus DIA comparisons: 150mM NaCl, 50mM Tris pH 7.5, 1% IGPAL-
CA-630, 5% Glycerol; for HEK-HCT experiments: 50 mM HEPES pH 7.5, 150 mM NacCl, 0.5%
NP40) supplemented with S0mM NaF, 2mM Na3;VO4, ImM PMSF, and 1X protease inhibitor
cocktail (Sigma), followed by 10-30 minutes incubation on ice with intermittent vortexing. Cell
lysates was then pre-cleared by 10 minutes centrifugation at 10,000g (4 °C) followed by 20
minutes of ultracentrifugation at 100,000g, 4 °C. To dilute detergents in the buffer, samples
underwent buffer exchange on Amicon® ultra-0.5 centrifugal filter with 30 kDa molecular weight
cutoff (Sigma) into 50 mM HEPES pH 7.5, 150 mM NaCl and 50 mM NaF in iterative steps of no
larger than 1:3 dilutions. The final dilution ratio of the original lysis buffer to detergent free buffer
was 1:50. The cell lysate was further cleared by 5 minutes of centrifugation at 17,000g, 4 °C. The
concentration of the supernatant was measured by Nanodrop spectrophotometer (Thermo
Scientific) and adjusted to 20-50mg/ml. Two mg of lysate were loaded on the SEC column per
run.

Size Exclusion Chromatography

Size exclusion was conducted on an Agilent 1260 Infinity II system operated with Agilent
OpenLAB ChemStation software (version C.01.09). Two mg of cell lysate at 20-50mg/ml were
loaded onto a Yarra SEC-4000 column (Phenomenex 00H-4514-K0, 3um silica particles, S00A
pores, column dimensions: 300 x 7.8mm) and fractionated in SEC running buffer (50 mM HEPES
pH 7.5, 150 mM NaCl) at a flow rate of 1ml/min (first TMT experiment) or 0.5ml/min (all other
experiments) and 100uL fractions were collected between minutes 6.5 to 16 or 11 to 30,
respectively into 96 Well DeepWell Polypropylene Microplates (Thermo Scientific).
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Protein digestion and desalting

Following SEC fractionation protein concentration was measured using the Pierce™ BCA
protein assay kit (Thermo Scientific) based on the manufacturer’s instructions. Equal volumes
(~80uL) from each of the fractions containing proteins (54 - 72) were subsequently processed.
Proteins were denatured by incubation with an equal volume of urea buffer containing 8 M urea,
75 mM NaCl, 50 mM HEPES (pH 8.5) and 1 mM EDTA at 25 °C, 600 rpm for 20 mins in 96 Well
DeepWell Polypropylene Microplates (Thermo Scientific). Proteins were then reduced with 5 mM
DTT at 25 °C, 600 rpm for 45 minutes and then alkylated with 10 mM iodoacetamide (IAA) at 25
°C, 600 rpm for 45 mins in the dark. Proteins were then diluted in a ratio of 1:3 with 50 mM
HEPES (pH 8.5) to lower the urea concentration less than 2M, and digested with trypsin enzyme
(Promega) at 25 °C, 600 rpm overnight using 1:50 (enzyme: substrate) ratio. Digested peptides
were acidified using formic acid and desalted on in-house packed C18 StageTips (two plugs) on
top of 96 Well DeepWell Polypropylene Microplates as elaborated in Rappsilber et al., 2007 7.
For DIA measurements, dried peptides were reconstituted to a final concentration of 0.5pug/uL. with
3% acetonitrile/ 0.2% formic acid. For TMT labeling purposes dried peptides were reconstituted
in 50 mM HEPES (pH 8.5). An aliquot of 0.2mg of each non-fractionated sample (for HEK and
HCT global protein expression analysis using DIA) was processed in a similar manner.

For the HEK-HCT dataset we used a direct labeling method. Following fraction selection based
on BCA measurements, proteins were denatured by incubation at 95 °C, 600 rpm for 10 mins,
followed by two cycles of 1 minute bath sonication. After samples cooled down to room
temperature, proteins were reduced with 5 mM DTT at 25 °C, 600 rpm for 45 minutes and then
alkylated with 10 mM iodoacetamide (IAA) at 25 °C, 600 rpm for 45 mins in the dark. Proteins
were then diluted in a ratio of 1:3 with 50 mM 4-(2-hydroxyethyl)-1-piperazinepropanesulfonic
acid (EPPS), pH 9.0. pH was adjusted to ~ 8.2, and samples were subsequently digested with
trypsin enzyme (Promega) at 25 °C, rpm 600 overnight using 1:50 (enzyme: substrate) ratio, and
TMT labeled following digestion.

TMT labeling

For SEC-MX experiments used to compare to SEC-DIA samples were digested and desalted
as elaborated above. The resulting peptides were reconstituted with 50 mM HEPES (pH 8.5). For
direct labeling peptides were labeled in the adjusted digestion buffer (50mM EPPS, pH adjusted
to ~8.2). This protocol resulted in a mean labeling efficiency of 98.3%, (comparable to the classic
protocol, mean efficiency of 98.7%), while minimizing loss of material due to multiple desalting
steps.

For all samples, peptides were labeled by addition of TMTpro™ 18 plex reagents (Thermo
Scientific) into the sample at a ratio of 1:3 (peptide: TMT) by mass in a final volume of 29%
acetonitrile. The labeling reaction was incubated at 25 °C, 600 rpm for 1 hour before being
quenched with a final concentration of 0.3% hydroxylamine. Samples were then pooled as
described in the pooling scheme and dried at least half of the volume to lower the acetonitrile
concentration to less than 5%. The labeled peptides were then acidified using formic acid (pH <3)
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and desalted on C18 StageTips (two plugs), >’. The desalted peptides were dried and resuspended
in 3% acetonitrile/ 0.2% formic acid for subsequent liquid chromatography-tandem mass
spectrometry (LC-MS/MS) processing.

Considerations for the choice of TMT multiplexing schemes

We initially attempted to perform IMAC enrichment on SEC fractions multiplexed using the
“full overlap” scheme, resulting in a low number of recovered phosphopeptides (~1000 across all
mixes). However, IMAC enrichment from SEC-MX mixes that were multiplexed with the “no
overlap” scheme resulted in ~5 times phosphopeptide identifications. Interestingly, comparing
protein coverage in global datasets mixed with the full-overlap versus no-overlap schemes showed
that protein coverage with the no-overlap scheme was only 10% lower, despite the 2-fold
difference in measurements (3 versus 6 runs, for no-overlap versus full-overlap, respectively).
However, the no-overlap multiplexing scheme yielded only a third of the PPI identifications using
SECAT (Extended Data Figure 1). Therefore, we concluded that while the “full-overlap” scheme
is more suited for interaction analyses, the “no-overlap” scheme was preferable for subsequent
enrichment of phosphorylated-peptides.

Phosphopeptide enrichment using immobilized metal affinity chromatography (IMAC)

IMAC enrichment from pooled TMT labeled peptides was conducted following the protocol
by Mertins and colleagues 8. Briefly, Ni-NTA Superflow Agarose beads (Qiagen, cat. no. 30410,
20 pl beads / 40 pl slurry per sample) were washed in water 3 times, then stripped from nickel by
30 minutes incubation with 100mM EDTA, washed 3 times in water, and incubated with 10mM
iron (IIT) chloride in water for 30 minutes in room temperature. After 3 additional washes in water,
iron coupled beads were resuspended in binding buffer (1:1:1 (vol/vol/vol) ratio of
acetonitrile/methanol/0.01%  (vol/vol) acetic acid) in a final ratio of 1:1:1:1
beads/acetonitrile/methanol/0.01% (vol/vol) acetic acid. In parallel, TMT labeled peptides (post
pooling) were resuspended to 0.5 pg/ul (~100 pg per sample, estimated based on BCA assay of
the SEC fractions) in 80% (vol/vol) MeCN/0.1% (vol/vol) Trifluoroacetic acid (TFA). Eighty ul
of bead slurry were added to the peptides solution and incubated for 30 minutes at room
temperature. Following this binding step, supernatants were aspirated and the coupled beads were
resuspended in 200 pl of 80% (vol/vol) acetonitrile /0.1% (vol/vol) TFA in order to be loaded on
C18 stage tips for desalting. Two-plug C-18 stage-tips were conditioned twice with 100%
Methanol, washed in 50% (vol/vol) acetonitrile in 0.1% (vol/vol) formic acid (FA), and
equilibrated twice with 1% (vol/vol) FA. Then, the enriched beads were loaded onto the stage tips.
Loaded beads were washed twice with 50 pl of 80% (vol/vol) acetonitrile/0.1% (vol/vol) TFA,
then twice with 50 ul of 1% (vol/vol) FA. Phosphopeptides were trans-eluted from the beads to
the C18 material by three iterations of 70 pl of agarose-bead elution buffer (192.5 mM monobasic
potassium phosphate / 307.5 mM dibasic potassium phosphate). Stage tips were washed twice in
1% (vol/vol) FA, and peptides eluted using 60 ul of 60% (vol/vol) acetonitrile / 0.2% (vol/vol)
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FA. Eluted peptides were dried using a savant speedvac and reconstituted in 15 pl of 3% (vol/vol)
acetonitrile / 0.2% (vol/vol) FA.

LC-MS/MS

LC-MS/MS analysis was performed on a Q-Exactive HF. SuL of total peptides (at 0.5 png/uL)
were analyzed on a Waters M-Class UPLC using a C18 Thermo EASY-Spray column (2um, 100A,
75um x 25¢m, or 15¢m) or lonOpticks Aurora ultimate column (1.7um, 75um x 25c¢m) coupled to
a benchtop ThermoFisher Scientific Orbitrap Q Exactive HF mass spectrometer. Peptides were
separated at a flow rate of 400 nL/min with the following gradients: 70 minutes (SEC-DIA), 160
minutes (DIA runs for unfractionated samples), or 150 minutes (SEC-MX), all including sample
loading and column equilibration times. For DIA runs MS1 Spectra were measured with a
resolution of 120,000, an AGC target of 5¢® and a mass range from 350 to 1650 m/z. 63 isolation
windows of 20 m/z were measured at a resolution of 30,000, an AGC target of 3e®, normalized
collision energies of 22.5, 25, 27.5, and a fixed first mass of 200 m/z. For DDA runs MS1 Spectra
were measured with a resolution of 120,000, an AGC target of 3e® and a mass range from 300 to
1800 m/z. Top12 MS2 spectra were acquired at a resolution of 60,000, an AGC target of 1¢°, an
isolation window of 0.8m/z, normalized collision energies of 27, and a fixed first mass of 110 m/z.

Data analysis

Searches

Proteomics raw data were analyzed using the directDIA method on SpectroNaut v16.0 for DIA
runs or SpectroMine (3.2.220222.52329) for DDA runs (Biognosys). Reference proteome used
was human UniProt database (Homo sapiens, UP000005640, downloaded on August 8% 2023).
Search parameters were set to BGS factory settings for TMTpro 18 channels, modified without
automatic cross-run normalization or imputation for SEC runs. Cross run median normalization
and global imputation were used for global expression analysis (HEK-HCT non fractionated
samples). Peptide spectral matches (PSMs), peptides and protein group data were exported for
subsequent analysis. For phSEC, raw files were searched similarly on SpectroMine
(3.2.220222.52329) with an additional variable phospho(STY) modification, with PTM
localization workflow.

Signal Processing

The peptide intensities were spread out along ~55 SEC fractions. Peptides were filtered by
being proteotypic and non-decoy. Empty or NA measurements were converted to zeros '°, and a
single uniprot ID was assigned to each peptide. In TMT experiments, peptide reporter intensity
values were normalized to their respective MS1 peak intensity. In experiments conducted with the
full overlap TMT mixing scheme, TMT batch effects were corrected based on the signal in the
common fractions between any two adjacent mixes. A normalization factor was calculated by
dividing the peptide fraction intensities of mix [n+1] by mix [n], then taking the median of all the
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peptides and the mean of all the overlapping fractions in common between the mixes. Mix [n+1]
was then normalized to mix [n] by multiplying all intensities by the normalization factor. Lastly,
the peptide intensities of overlapping fractions were averaged.

Then, for the HEK-HCT dataset, the intensities were normalized between conditions. To do
this, the median intensities were calculated in each sample (ptm/replicate/condition) and then the
medians were used to find a total intensity ratio between the samples, which was then used to
normalize HCT intensities to HEK intensities. Lastly, for plotting and matching purposes, the
intensities were smoothed using scipy.signal filtfilt a linear digital two-way filter (b=[1.0/2]*2,
a=1).

Two normalized datasets were generated as described above to create smoothed elution
profiles. The first consisted of protein-level global intensities and peptide-level phospho-enriched
intensities. This dataset was generated to analyze the assembly-states on a protein level given the
higher amount of protein ID overlap. The second dataset was on the peptide level for both the

global and the phospho-enriched intensities. This dataset was used for certain comparisons where
the peptide overlap between gSEC and phSEC would more accurately control for sources of
variance.

SECAT

SECAT was used to identify previously reported protein interactions . Replicates were
analyzed in the same run to leverage the predictive power of the classifier. SECAT analysis was
conducted on the processed peptide level signal (as mentioned above) using the default (SECAT

22,52

provided) positive and negative interaction networks for the training step, and a target database of
STRING’s human interactions (9606.protein.links.v11.5) for the query step. The default SECAT
parameters were set except for a ‘pi0 lambda’ of 0.4 0 0 0, an ‘ss_initial fdr’ of 0.5 and
‘ss_iteration_fdr’ of 0.2 during the ‘learn’ step. Additionally, the ‘export tables’ option of the
SECAT °‘learn’ step was used to export tables for extracting the STRING target and learning
interactions along with their scores. The HEK-HCT data was also quantified by setting HEK as
the ‘control condition’, and using a ‘maximum_interaciton qvalue’ of 0.1 for the quantify and
export steps.

The networks were obtained by setting a g-value cutoff of 0.05 on the exported network tables.
However, we initially observed that only 34% of the interactions were mutual to both DIA and
SEC-MX datasets, but found a large number of interactions unique at a q-value < 0.05 cutoff were
very close to the cutoff in the other experimental setup (Extended Data Figure 3B). Therefore, we
adjusted the cutoff to include any interaction with a gq-value between 0.05 and 0.1 (in at least 3 out
of 5 SECAT runs), if its g-value was lower than 0.05 in the other dataset. With this adjusted cutoff
we observed that 54% of interactions were identified in both datasets, while 29% were unique to
DIA and 17% unique to TMT (Extended Data Figure 2B).
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EPIC

The EPIC tool was used to identify high confidence interactions allowing the discovery of
novel interactions 2*. Replicates were analyzed in the same run to leverage the predictive power of
the classifier. Peptides were collapsed to the protein level by adding the top three peptide intensities
for each protein. Proteins that eluted in only one fraction were filtered out. Pairwise protein-protein
similarities were then computed using the Pearson Correlation-Coefficent (with and without
noise), Jaccard, Apex, Mutual Information, and Euclidean metrics respectively. A cutoff of 0.5 for
the features was chosen prior to analysis by a Random Forest Classifier which was trained on
reference complexes generated using CORUM, INTact, and GO human proteins. The classifier
was trained using an 80/20 cross validation split to minimize variance across runs and maximize
predictive capabilities. Finally, de-novo protein-protein interactions were found by querying the
classifier and reporting every interaction above 50% confidence as an interaction. To further
benchmark the classifier a precision-recall graph was generated by varying the confidence of the
classifier and reporting the metrics, the intersection of the precision and recall occurs at 60%
confidence. However, as we are trying to minimize false positives, we picked a higher confidence
of 80% (as previously reported by Pourhaghighi et al. 2020) which has less but more precise
interactions. Confidence score cutoffs were further adjusted as elaborated for the SECAT dataset,
to include any interaction with an EPIC score between 0.6 and 0.8, if its score was higher than 0.8
in the other dataset (Extended Data Figure 2E).

Molecular weight (MW) estimation and monomeric fraction cutoff calculation

Molecular size estimations per SEC fraction were performed using a standard (Biorad
1511901), which was injected and measured onto the SEC column at the start and end of each
experimental day. The calibration standard’s fractions and log MW were input into
sklearn.linear_model.LinearRegression to create a log-linear model and predict the MW of each
fraction. In this regard, the monomer fractions were predicted by using the Uniprot determined
MW to get an estimated fraction of elution for the monomer. Additionally, a MW multiplier of 1.5
was used to account for wide or slightly shifted elution peaks.

Peak Picking and Matching

Using the smoothed elution profiles (as describe in Signal Processing), peaks were identified
using scipy.signal.find_peaks (prominence=max(intensity)*0.05, distance=3, height=1000) to get
the apex position (the identity of the peak) and scipy.signal.peak widths to get other attributes
such as the peak height. In downstream analysis, peaks are synonymous with apex position. Each
protein/peptide was expanded into a list of one or more peaks. When no peaks were identified, the
protein/peptide was dropped due to noise.

With peaks identified in each sample, we then matched them within protein/peptide (protein-
centric) between ptm enrichment and conditions. Peaks were matched within protein/peptide
between condition/ptm/replicate by finding the best path. In order to do this, we first started with
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the list of identified peaks for a given protein/peptide in a sample (condition/ptm/replicate) as
follows: Lyprq; = [Lq, Ly, ..., Ly ], where Li is the list of peaks for the i sample, out of ‘n’ samples.

Then, to account for non-matching peaks between samples (i.e., the peaks are too far away and
therefore are not identified in one or more sample), we added NaN to each list of peaks (L; ). The
operation was performed such that L; = [l;4, l;5, ..., lix, NaN], where ljj are the peaks of L;, and ‘k’
is the final peak out ‘j” peaks in sample ‘i’

Next, we wanted to find all possible peak paths (Pathsa.i) for a given protein Path,; =
{Pathl, Pathn_paths}, where each path (Pathy) is that protein’s alignment of peaks (Path, =
{Peak,, ..., Peak,}) between the different samples (1 to ‘n’). Furthermore, the total number of
paths found for each protein/peptide can be expressed as the product of length of each peak list as
follows []i-;|L;|. In other words, we generated all combinations of peaks (lij) between each
sample (L’;). Furthermore, each Pathy is comprised of a ‘n’ elements, one element for each sample
(each element as either a peak or an NaN), where ‘m_peaks’ is the number of peaks in a Pathx
(non-NaN values).

With all possible peak paths (Pathsai), we wanted to find the best, non-redundant paths for

each protein’s peaks to determine alignment. To do this, we first needed to score each path. First,
1 Zm_peaks

we found the mean peak location of each path such that mean, g, = peak;,

m_peaks i=1
where peak; is the peak (or NaN) selected in pathx for sample ‘i’. Then the paths were scored via
a variance measure using a Threshold of 3 as follows:

2, ,
PathVar = lzn {(peaki — meanpathx) if peak; is not NaN
n 1 (Threshold)? if peak; is NaN

i=

1

PathS = —
athocore PathVar + 1

The Threshold was used to allow for the preferential selection of a given Pathy with an NaN in
sample ‘i’ rather than a different Path where the variance introduced would exceed the threshold
of 3 fractions. In other words, the Threshold value represents an estimate of the maximum
permitted distance between peaks for matching.

With all the Paths (Pathsai) each scored, we used an iterative method to select the lowest
scoring Pathy (Ppin = argminpgins, epaths,, PathScore(Path,)). Then, we remove any other
path elements from Paths.n that contain Peak; from the Pmin Pathy, thereby making sure to only find
the best non-redundant paths. Once the non-redundant paths are removed from Pathsan, the lowest
scoring Pathy is once again chosen (operation performed iteratively). This operation is iterated
until all peaks are exhausted, whether matched with other peaks or by themselves:

Using the above formulas, the peak-level data was matched for each common protein between
HEK and HCT116 as well as gSEC and phSEC. Fold changes were calculated as
log2(HCT116/HEK?293) for each assembly state based on identified peak height. When multiple
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phosphorylated peptides were identified for a given peak, their heights were summed before
calculating fold changes. Additionally, peaks/assembly-states were classified as in the complex or
monomer region based on the mean peak apex position of the matched peaks.

Enrichment analysis

Enrichment analysis was performed using the WebGetalt (http://www.webgestalt.org)
platform using the over-representation analysis (ORA) on Gene Ontology terms (molecular
function non redundant) and Reactome Pathway*'*?>. Kinase target over representation analysis
was conducted similarly on the same platform. Enriched sets were compared to a background list
containing all the proteins identified in the experiment.
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Extended Data Figure 1 — SEC-MX TMT Multiplexing: (A) Label used (TMTpro18) per fraction in the
dataset comparing SEC-MX to SEC-DIA. (B) Label used (TMTpro18) per fraction in the datasets used
for gSEC and phSEC from HEK293 and HCT116 cells. Replicate 1 was measured using a no-overlap
scheme (only using the indicated mixes 1,3,5,7,9,11. Replicate 2 was measured with the full overlap
scheme, as indicated (all 12 mixes). (C) A representation of the 72 collected fractions for the initial HEK
TMT multiplexing. Group 1 consists of evenly numbered TMT mixes of all 72 fractions. Group 2 consists
of the odd-numbered TMT mixes of all 72 fractions. The Full Overlap Scheme utilizes both TMT mixing
Groups — with all fractions measured twice, and mixes from both groups in an adjacent staggered
fashion to allow for inter-mix normalization. (D) Heatmaps of the protein intersect between both mix
groups using the same dendrogram. The intensities are max-normalized to 1 for each protein. (E) Table
of the numbers of peptides and proteins for both DIA and MX, with MX split between Group 1, Group 2,
and Full Overlap. (F) Bar graph representation of the number of interactions identified with SECAT at a
g-value less than 0.05 for DIA, MX (full overlap), Group 1 (MX), and Group 2 (MX).
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Extended Data Figure 2 — Interaction Analysis: (A) SECAT result of CORUM targets and decoys by
discriminant score for both DIA and SEC-MX data. (B) Overlap of SECAT identified interactions at a g-
value less than 0.05. For uniquely identified interactions, further g-value distribution plots for the
opposite experiment are shown. (C) Barplot of the number of interactions identified using EPIC with a
score cutoff of greater than 0.8. (D) Protein/node overlap between DIA and MX of the proteins identified
in the EPIC interaction network. (E) Similar to (B), except for EPIC at a cutoff of 0.8.
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Extended Data Figure 3 — gSEC and phSEC datasets comparisons: (A) Venn diagram showing the
overlap of peptides between the gSEC and phSEC datasets (based on stripped sequence). (B) Heatmaps
of gSEC and phSEC by replicate for HCT116 data. Normalized to 1 by peptide maximum intensity and
organized by the same dendrogram. (C-D) Distribution of Pearson correlation coefficients between gSEC
and phSEC elution profiles for each overlapping peptide in HEK293 (C) and HCT116 (D), per replicate. (E)
Elution profile plots for the CCT complex subunits in HCT116 (average intensity of replicates). Solid lines
are from gSEC and dotted lines are from phSEC, and line color correspond to CCT subunit as shown in
legend. (F) Stacked bar plot histogram of the number of peaks identified for each peptide intersecting in
gSEC and phSEC (colors indicated in legend). Dotted line represents the mean number of peaks per peptide
(same in global and phospho). (G) Pie-charts of protein peak distribution by fraction region (monomer,
complex, or both) for gSEC (left) and phSEC (right) — for the intersecting proteins.
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Extended Data Figure 4 — Additional Example Plots: (A) Replicate averaged elution profile plots of MYH9
for gSEC (top) and phSEC (bottom) in HCT116. Monomer region is grayed. (B) Similar plots for PTBP1 in
HCT116 (see above). (C) On top is the normalized and replicate averaged elution profiles for CPSF3 in
gSEC (blue) and phSEC (red) in HEK293. On bottom is the replicate averaged CPSF3 in SEC-DIA from
HEK293 with RNase (dashed line) and without RNase (solid line). (D) Same as C, for DDX54. (E) Replicate
averaged elution profile plots of MCM3 in gSEC (top) and phSEC (bottom) in HCT116. Monomer region is
grayed. (F) Replicate averaged elution profiles for MCM2-7 complex subunits (see legend for subunits) in
HCT116.
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Extended Data Figure 5 — HEK-HCT Differential and Unfractionated Comparison: (A) Distribution
of the Pearson correlation between HEK293 and HCT116 peptide elution profiles for the intersecting
peptides in gSEC (blue) and phSEC (maroon). (B) Scatterplot of the log2 ratio (FX) between
HCT116/HEK293 of the unfractionated analysis total intensity (y-axis) and the gSEC peak heights (x-
axis). Regression line (red) is plotted with associated correlation (R=0.46). Multiple points for each
protein’s peaks. (C) Similar to B, except the Peak Heights are averaged per protein. (D) Overall
distribution of the Log2 Fold-Change with regions colored based on 2-fold increase cutoff for HEK293
(green) and HCT116 (purple). On top is the unfractionated total intensity distribution, and on bottom is
the gSEC peak height distribution. Proteins found as significantly enriched are shown on the plots, with
955 and 1045 enriched in UF (HEK293 and HCT116 respectively), and 596 & 853 enriched in gSEC
(HEK293 and HCT116 respectively). In between the Log2fx distributions, two Venn diagrams show the
overlap in enriched proteins between UF and gSEC, with the left Venn for HEK293 (green), and the
right Venn for HCT116 (purple). (E) Table of GO Molecular Function Enrichment for 4 different phSEC
enrichment groups as determined by WebGestalt. Rows represent the cell-line of enrichment, and
column represents whether a concomitant difference was observed in gSEC or not. Terms in black have
an FDR < 0.2, and terms in gray have an FDR > 0.2. (F) Similar table as E, enriched for terms in the
Reactome Pathway.
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