

1 **Genetic mapping reveals new loci and alleles for flowering time and plant height**
2 **using the double round-robin population of barley**

3

4 **Authors**

5

6 Francesco Cosenza¹, Asis Shrestha¹, Delphine Van Inghelandt¹, Federico A. Casale¹, Po-
7 Ya Wu¹, Marius Weisweiler¹, Jinquan Li^{2,3}, Franziska Wespel⁴, and Benjamin Stich^{1,2,5*}

8

9 ¹ Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225
10 Düsseldorf, Germany

11

12 ² Max Planck Institute for Plant Breeding Research, Köln, Germany

13

14 ³ Current address: Strube D&S GmbH, Söllingen, Germany

15

16 ⁴ Saatzucht Josef Breun GmbH Co. KG, Amselweg 1, 91074 Herzogenaurach, Germany

17

18 ⁵ Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225
19 Düsseldorf, Germany

20

21 * Correspondence (Tel +49 211 81 13395; e-mail benjamin.stich@hhu.de)

22 **ABSTRACT**

23

24 Flowering time and plant height are two critical determinants of yield potential in barley
25 (*Hordeum vulgare*). Although their role as key traits, a comprehensive understanding of the
26 genetic complexity of flowering time and plant height regulation in barley is still lacking.
27 Through a double round-robin population originated from the crossings of 23 diverse
28 parental inbred lines, we aimed to determine the variance components in the regulation of
29 flowering time and plant height in barley as well as identify new genetic variants by single
30 and multi-population quantitative trait loci (QTL) analyses and allele mining. Despite similar
31 genotypic variance, we observed higher environmental variance components for plant
32 height than flowering time. Furthermore, we detected one new QTL for flowering time and
33 two new QTL for plant height. Finally, we identified a new functional allelic variant of the
34 main regulatory gene *Ppd-H1*. Our results show that the genetic architecture of flowering
35 time and plant height might be more complex than reported earlier and that a number of
36 undetected, small effect or low frequency, genetic variants underlie the control of these two
37 traits.

38 1 INTRODUCTION

39

40 The increase in world population, the reduction of available arable land, and climate change
41 represent some of the greatest challenges that humanity is and will further have to face in
42 the near future (Vyas *et al.*, 2022). One of the answers to these challenges is to reduce the
43 influence of biotic and abiotic stress factors and by that increase crop productivity (Khush,
44 2013). Of particular importance are yield increases of cereals (Araus *et al.*, 2008), which are
45 essential for human nutrition as they alone contribute about 44.5% of the calory uptake of
46 the world population (FAO, 2019). In addition, they are important for animal feeding and
47 beverage production (FAO, 2020).

48 Flowering time is one of the critical determinants of yield potential in cereals (Hill and Li,
49 2016). This is because, at this phenological stage, the plant transits from the vegetative to
50 the reproductive phase, and grain filling starts (Cockram *et al.*, 2007). In turn, the efficiency
51 of grain filling is maximized if it coincides with optimal environmental conditions (Wiegmann
52 *et al.*, 2019). Therefore, plants and farmers have adapted several strategies to synchronize
53 the phenological stages to environmental conditions (Anderson and Song, 2020).

54 Barley (*Hordeum vulgare* L.) is ranked fourth among the most cultivated cereals worldwide
55 (FAO, 2020). This species is characterized by great environmental plasticity that allows it to
56 be cultivated at different latitudes, with extremely dissimilar conditions of temperature and
57 photoperiod (Dawson *et al.*, 2015). It has been demonstrated that the adaptive success of
58 barley is also due to the selection of favorable allelic variants at the main genes determining
59 the transition from the vegetative to the reproductive phase (Comadran *et al.*, 2012;
60 Göransson *et al.*, 2019; Turner *et al.*, 2005). Three types of genes have been identified to
61 be responsible for the modulation of flowering time in barley: genes that act under the
62 influence of photoperiod, genes that act under the influence of temperature, and genes,
63 called as *earliness per se*, that act independently of environmental variables (Fernández-
64 Calleja *et al.*, 2021).

65 The main genes whose expression is influenced by the photoperiod are *Ppd-H1* (Turner *et*
66 *al.*, 2005) and *Ppd-H2* (Kikuchi and Handa, 2009). *Ppd-H1*, which is located on chromosome
67 2H, has been described as the major determinant of the response to long day conditions in
68 barley, acting jointly with *HvCO1* and *HvCO2* (Campoli *et al.*, 2012). At the same time, *Ppd-*
69 *H1* indirectly influences the response to vernalization by promoting the expression of *Vrn-*
70 *H3* (Mulki and von Korff, 2016). *Ppd-H2* is the second main driver of the photoperiod
71 response in barley, but unlike *Ppd-H1* it acts in short day conditions. The non-functional

72 allelic variant of *Ppd-H2* allowed the expansion of the cultivation area of barley at higher
73 latitudes (Casao *et al.*, 2011).

74 The major determinants of the response to temperature are genes involved in the
75 vernalization process. *Vrn-H1*, which is located on chromosome 5H, promotes flowering
76 after the plant has satisfied its vernalization requirement (Yan *et al.*, 2003). Furthermore,
77 *Vrn-H1* inhibits the expression of *Vrn-H2*, which is located on chromosome 4H. *Vrn-H2*
78 delays flowering, allowing the plant to fulfill its cold needs (Deng *et al.*, 2015; Yan *et al.*,
79 2004). The interaction between *Vrn-H1* and *Vrn-H2* is therefore one of the main mechanisms
80 that allow the control of flowering time in winter or facultative barley varieties (Yan *et al.*,
81 2004). The third gene responsible for the temperature response in barley is *Vrn-H3* on
82 chromosome 7H (Yan *et al.*, 2006). *Vrn-H3*, when not repressed by *Vrn-H2*, promotes
83 flowering by allowing the transition from the vegetative to the reproductive phase in long day
84 conditions (Hemming *et al.*, 2008).

85 Within the group of *earliness per se* genes, the major determinant is *HvCEN* which is located
86 on chromosome 2H. Because its expression is not directly influenced by environmental
87 variables, the allelic variants of *HvCEN* allowed the expansion and adaptation of barley to
88 new areas through the regulation of flowering time (Comadran *et al.*, 2012). In addition, three
89 other genes have been described as circadian clock-related *earliness per se* genes which,
90 although not directly influencing flowering, alter the expression of *Ppd-H1*: *HvELF3* (Faure
91 *et al.*, 2012), on chromosome 1H, *HvLUX1* (Campoli *et al.*, 2013), on chromosome 3H, and
92 *HvPHYC* (Nishida *et al.*, 2013), on chromosome 5H. Furthermore, mutations in *HvELF3* can
93 also affect the expression of *HvGI* (Dunford *et al.*, 2005), causing earlier flowering
94 (Zakhrebekova *et al.*, 2012). Finally, other genes initially reported to be responsible for
95 controlling other quantitative traits have also been described to have an influence on
96 flowering time or flower development: *HvAP2* (Shoesmith *et al.*, 2021), on chromosome 2H,
97 and *Hv20ox2 (sdw1/denso)* (Bezant *et al.*, 1996; Jia *et al.*, 2009), on chromosome 3H.

98 Another key trait responsible for determining production performance in cereal species is
99 plant height (Mikołajczak *et al.*, 2017). An adequate plant height allows to obtain a lower
100 exposure to lodging and a higher harvest index but on the other side, it is essential to keep
101 the spikes far from the soil to reduce the risk of yield losses caused by infectious diseases
102 (Vidal *et al.*, 2018). Plant height and flowering time are two interrelated characters. This is
103 because flowering is possible when the meristem has switched from the vegetative to the
104 reproductive phase. For this reason, many of the genes controlling flowering time, such as
105 *Ppd-H1* (Turner *et al.*, 2005), *Vrn-H1* (Wiegmann *et al.*, 2019), *Vrn-H2* (Rollins *et al.*, 2013),
106 *Vrn-H3* (Arifuzzaman *et al.*, 2016), *Hv20ox2* (Jia *et al.*, 2009), *HvCEN* (Bi *et al.*, 2019), and

107 *HvAP2* (Patil *et al.*, 2019), have a pleiotropic effect on plant height. In addition to these
108 genes, other genes involved in the biosynthesis of brassinosteroids, such as *HvBRD* on
109 chromosome 2H, *HvBRI1* (*uzu*) on chromosome 3H, *HvDWF4*, on chromosome 4H, *HvCPD*
110 and *HvDEP1* on chromosome 5H, and *HvDIM* on chromosome 7H (Dockter *et al.*, 2014;
111 Wendt *et al.*, 2016), have been described to be involved in plant height regulation of barley.
112 Some of the above mentioned genes, such as *HvAP2* and the genes regulating
113 brassinosteroids biosynthesis, have been identified based on mutant approaches (Dockter
114 *et al.*, 2014; Shoesmith *et al.*, 2021). When instead natural variation was exploited, bi-
115 parental (Arifuzzaman *et al.*, 2014; Von Korff *et al.*, 2006; Rollins *et al.*, 2013; Schmalenbach
116 *et al.*, 2009) or nested association mapping populations (Maurer *et al.*, 2015; Nice *et al.*,
117 2017) were used. When multi-parental populations were examined instead, the experiments
118 comprised a restricted number of inbred lines (Cuesta-Marcos *et al.*, 2008), and/or the
119 selected parental inbreds were from a restricted geographical range (Afsharyan *et al.*, 2020;
120 Cuesta-Marcos *et al.*, 2008). All these factors reduce the likelihood of identifying genes and
121 allelic variants with low population frequency (Yu *et al.*, 2006). Therefore, the utilization of
122 segregating populations derived from genetic resources with high genotypic and phenotypic
123 diversity could allow the identification of further genes that are mechanistically involved in
124 flowering time and plant height regulation. This has the potential to facilitate and speed up
125 breeding and provide new targets for genetic modification through, for example, CRISPR
126 platforms. In turn, this could help to extend the cultivation area of barley by allowing its
127 adaptation to new environmental conditions. Furthermore, the knowledge gained in barley
128 has a high potential to be transferred to other cereal species that are genetically close but
129 have a polyplloid chromosomal structure, such as tetraploid (*Triticum turgidum* var. *durum*)
130 and hexaploid (*Triticum aestivum*) wheat (Langridge, 2018).
131 In this study, a multi-parent population was used to explore the genetic landscape of
132 flowering time and plant height in barley with the objectives of: (i) determining the genetic
133 variance components in the regulation of flowering time and plant height, (ii) obtaining a
134 comprehensive understanding of the genetic complexity of flowering time and plant height
135 in barley by single and multi-population QTL analyses, (iii) identifying candidate genes for
136 the detected QTL regulating flowering time and plant height, and detecting new allelic
137 variants of genes responsible for the control of these two traits.

138 **2 MATERIALS AND METHODS**

139

140 **2.1 Plant material and genotypic evaluation**

141

142 The plant material used in this study consisted of a population which is designated in the
143 following as *Hordeum vulgare* Double Round-Robin (HvDRR). The population originated
144 from the crossings of 23 parental inbred lines, including eleven cultivars and twelve
145 landraces (Shrestha *et al.*, 2022), in a double round-robin scheme (Stich, 2009)
146 (Supplementary Table 1). The parental inbred lines have been chosen from a diversity panel
147 of 224 spring barley accessions selected from the Barley Core Collection (BCC) (Pasam *et*
148 *al.*, 2012) to maximize the combined genotypic and phenotypic richness index (Weisweiler
149 *et al.*, 2019).

150 Starting from the 45 F1s, a single seed descent strategy has been applied to develop
151 between 35 and 146 recombinant inbred lines (RIL) for each of the 45 sub-populations
152 (Casale *et al.*, 2022). The RILs were genotyped at the F4 generation using a 50K SNP
153 genotyping array (Bayer *et al.*, 2017).

154

155 **2.2 Phenotyping**

156

157 Flowering time (FT) evaluation was carried out in seven environments in Germany: Cologne
158 from 2017 to 2019, Mechernich from 2018 to 2019, and Quedlinburg from 2018 to 2019.

159 Plant height (PH) was evaluated in the same environments except for Quedlinburg, totaling
160 five environments. At the Cologne and Mechernich environments, 33 seeds were sown in
161 single rows of 1.6 meters length. In Quedlinburg, double rows of the same length were
162 sowed. The inter-row distance was 20 cm. Fertilization and plant protection followed local
163 practices.

164 In each environment, an augmented design was used. RILs of the HvDRR population and
165 the inbreds of the diversity panel were planted with one replicate and only the parental
166 inbreds of the HvDRR population were replicated 15-20 times per environment.

167 FT was recorded as days after sowing when 50% of the plants within the (double) row were
168 flowering. PH was measured on average across all available plants within a row as height
169 in cm from the collar to the peak of the plant when the spike was fully developed.

170

171 **2.3 Statistical analyses**

172

173 The collected phenotypic data were subject to statistical analysis using the following linear
174 mixed model:

175

176
$$Y_{ijk} = \mu + G_i + E_j + e_{ijk} \quad (1)$$

177

178 where Y_{ijk} indicated the observed phenotypic value for the i^{th} genotype in the j^{th} environment
179 within the k^{th} replication, μ the general mean of the trait, G_i the effect of the i^{th} genotype, E_j
180 the effect of the j^{th} environment, and e_{ijk} the random error. For the calculation of adjusted
181 entry means, the genotypic effect was considered fixed, while the environmental effect was
182 considered random.

183 The broad sense heritability (h^2) was calculated as:

184

185
$$h^2 = V_g / (V_g + \bar{c}) \quad (2)$$

186

187 where V_g represented the genotypic variance and \bar{c} the mean of the standard errors of the
188 contrasts among all pairs of genotypes (Piepho and Möhring, 2007). For the calculation of
189 the genotypic variance (V_g), model (1) was used, but all effects were considered as random.
190 In addition, we calculated h^2 , when applying for each environment a correction based on the
191 augmented design considering different grid sizes, and then estimating V_g and \bar{c} across the
192 environments.

193 In order to quantify the interaction between genotype and environment, we used a second
194 linear mixed model:

195
$$Y_{ijk} = \mu + G_i + E_j + (G:E)_{ij} + e_{ijk} \quad (3)$$

196

197 where $(G:E)_{ij}$ represented the interaction between the i^{th} genotype in the j^{th} environment,
198 which was fitted to the data of the parental inbreds.

199

200 2.3.1 QTL analyses

201

202 Two different QTL analyses were performed in this study on the HvDRR population: multi-
203 parent population (MPP) and single population (SP) analyses.

204 The estimation of genetic maps necessary for the SP analysis, as well as that of the
205 consensus map used in the MPP, have been described by Casale *et al.* (2022).

206 For each sub-population and each trait, an SP QTL analysis was performed, based on the
207 adjusted entry means for each RIL calculated with model (1), using the following scheme:

208 first, standard interval mapping using the Haley-Knott regression algorithm (Knott and Haley,
209 1992) was applied, followed by forward selection in order to determine the number of QTL
210 to include in the model. Then a forward and backward selection algorithm was applied to
211 perform multiple QTL mapping. Model selection was based on the highest penalized LOD
212 score with penalties determined through 4000 permutations. A two-dimensional genome-
213 wide scan was performed to detect epistatic interactions between all pairs of loci in the
214 genome. The SP analyses were carried out with the R package “qtl” (Broman *et al.*, 2003).
215 The MPP analyses were performed by jointly analyzing all sub-populations using an
216 ancestral model that took into account the degree of relatedness among the parental inbreds
217 (Garin *et al.*, 2017). The degree of relatedness was calculated by clustering the haplotypes.
218 The haplotype window size was chosen as the consensus genetic map distance for which
219 the linkage disequilibrium (LD), measured as r^2 , was 0.2 (Giraud *et al.*, 2014)
220 (Supplementary Table 2). The MPP analysis was performed using the R package “mppR”
221 (Garin *et al.*, 2015).
222 Confidence intervals for the QTL detected via SP and MPP were calculated using a 1.5 LOD
223 drop method (Manichaikul *et al.*, 2006).
224

225 2.3.2 Genomic prediction

226
227 Genomic predictions of FT and PH in the HvDRR population were performed by genomic
228 best linear unbiased prediction (GBLUP) using the following model (VanRaden, 2008):
229

$$230 \mathbf{y} = \mathbf{1}\mu + \mathbf{Z}\mathbf{u} + \boldsymbol{\varepsilon} \quad (4)$$

231
232 where \mathbf{y} was the vector of the adjusted entry means of the considered trait (FT or PH), $\mathbf{1}$
233 was a unit vector, μ the general mean, \mathbf{Z} the design matrix that assigned the random effects
234 to the genotypes, and \mathbf{u} the vector of genotypic effects that were assumed to be normally
235 distributed with $N(0, \mathbf{K}\sigma_u^2)$, in which \mathbf{K} denoted the realized kinship matrix between inbreds
236 and σ_u^2 the genetic variance of the GBLUP model. In addition, $\boldsymbol{\varepsilon}$ was the vector of residuals
237 following a normal distribution $N(0, I\sigma_e^2)$.

238 The prediction ability of the GBLUP model was evaluated by Pearson’s correlation
239 coefficient (r) between observed and predicted phenotypes. To assess the model
240 performance, five-fold cross-validation (CV) with 20 replications was performed. In that case,
241 the prediction ability was defined as the median of the prediction abilities across the 20 runs
242 of each 5 fold-CV.

243

244 2.3.3 Candidate gene analysis and allele mining

245

246 The candidate gene analysis was performed for those QTL from the SP analysis that did not
247 carry inside their confidence intervals previously reported genes controlling the
248 corresponding trait, explained $\geq 15\%$ of the phenotypic variance, and had a confidence
249 interval ≤ 30 cM. For the QTL that fulfilled these criteria, all the genes within the confidence
250 interval were extracted using the Morex v3 reference sequence (Mascher *et al.*, 2021). Next,
251 variant calling data of single nucleotide polymorphisms (SNPs), causing tolerated and
252 deleterious mutations, insertion and deletions (INDELs), and predicted structural variants
253 (SV), obtained as described by Weisweiler *et al.* (2022), were used to identify genes that
254 were polymorphic between the two parental inbreds of the sub-population in which the QTL
255 was detected. For each gene, we took into account all the polymorphisms inside the coding,
256 non-coding, and, for SV, potential regulatory regions of the gene within 5 kb up and
257 downstream of the gene.

258 Subsequently, we performed a weighted gene co-expression network analysis (WGCNA) to
259 identify modules of co-expressed genes that were associated with the phenotypic variability
260 of the traits. The mRNA sequencing experiment of leaf samples of 21 parental inbred lines,
261 described by Weisweiler *et al.* (2019), was the basis for this analysis. The selected soft
262 thresholding power was two, based on the scale-free topology criterion (Zhang and Horvath,
263 2005). We predicted the gene networks for the three modules with the highest and the three
264 lowest correlations for both traits. In order to have a comprehensive understanding of the
265 networks we selected genes with a gene-module membership p-value < 0.01 and, within
266 them, the top 30% of gene-gene interactions based on the interactions weight. Because of
267 the high number of gene-gene interactions in the module “turquoise”, we selected the top
268 5% of interactions with the highest weight. For the “lightyellow” and “tan” modules we did
269 not filter the interactions based on weight. Furthermore, for the “black” module we selected
270 the genes with a gene-module membership p-value < 0.05 .

271 In the next step, the results of the WGCNA and SP QTL analyses were combined: we further
272 filtered the polymorphic genes within the confidence intervals based on their membership to
273 a module (Wei *et al.*, 2022). The genes within the three modules with the highest and the
274 three with the lowest correlation with the trait under consideration were evaluated for their
275 functional annotation. We selected as candidate genes those with an annotation similar to
276 that of genes previously reported to control the trait under consideration in barley and those
277 for whom functional annotation has been described to be involved in plant vegetative or

278 reproductive development. All the analyses for the calculation of the weighted gene co-
279 expression networks were performed with the R package “WGCNA” (Langfelder and
280 Horvath, 2008).

281 Allele mining was performed for the known genes with pleiotropic effect on FT and PH
282 located within SP QTL confidence intervals. For each gene, polymorphisms between the
283 parental inbreds of the respective segregating sub-populations were extracted from the
284 whole genome sequencing data (Weisweiler *et al.*, 2022). To confirm the accuracy of the
285 whole genome sequencing data, we performed Sanger sequencing of the 23 parental
286 inbreds for *Ppd-H1*. To predict the effect of polymorphisms on the phenotype, we used the
287 SIFT algorithm (Vaser *et al.*, 2016). In addition, we performed PCR, as described in Karsai
288 *et al.* (2005), to check the presence/absence of the three *Vrn-H2* genes.

289

290 **2.3.4 Fine mapping of QTL by association genetics**

291

292 We used association genetics in the diversity panel of Pasam *et al.* (2012) to fine map the
293 QTL that did not carry within their confidence intervals genes reported to control the
294 corresponding trait, explained $\geq 15\%$, and had a confidence interval ≤ 30 cM. We used the
295 phenotypic data of the 224 inbreds collected in our field trials and the genotypic information
296 available from Milner *et al.* (2019). To construct the kinship matrix among the 224 inbreds,
297 we used all the SNPs in the SNP matrix. Association analysis was performed using only
298 polymorphisms from QTL fulfilling the above mentioned criteria. For association analysis,
299 we used a mixed model approach, implemented for the variance component (Kang *et al.*,
300 2010), with the R package “statgenGWAS” (van Rossum *et al.*, 2022).

301 **3 RESULTS**

302

303 **3.1 Phenotypic variation and covariation**

304

305 FT and PH were evaluated for each RIL across seven and five environments, respectively.
306 For both traits, the environmental variance (V_e) was about two to three times higher than the
307 genotypic variance (Table 1). Furthermore, for FT, the G:E variance was about half the
308 genotypic variance, while for PH the G:E variance was about 87% of the genotypic variance.
309 The values of broad-sense heritability on an entry means basis were high to very high,
310 ranging from 0.76 for PH to 0.86 for FT (Table 1).

311 To take into account possible intra-environmental variation, the phenotypic values were
312 adjusted using moving grids of three different sizes, exploiting the possibilities of an
313 augmented design. For all three examined grid sizes, we observed that the resulting
314 heritability values across all environments were reduced compared to the analysis without
315 adjustment. Therefore, we decided to discuss in the following only results from analyses
316 where intra-environmental variation was not corrected for.

317 Across all environments, the sub-population that was found to be the earliest to flower was
318 HvDRR35, where RILs flowered on average 58 days after sowing. In contrast, the latest
319 sub-population to flower was HvDRR46 for which, on average, RILs reached flowering 79
320 days after sowing (Figure 1; Supplementary Table 3). HvDRR46 was also the sub-population
321 with the smallest plants, with an average height of 48 cm. In contrast, HvDRR12 was, with
322 an average of 87 cm, the sub-population with the tallest plants (Figure 1; Supplementary
323 Table 3). HvDRR09 was the sub-population with the lowest coefficient of variation (CoV)
324 value for FT (2.73 days), while the highest CoV was observed for HvDRR43 (23.31 days)
325 (Supplementary Table 3). Regarding PH, the sub-population with the smallest variability was
326 HvDRR15 (CoV = 3.83 cm), while the highest CoV, 30.53 cm, was observed for HvDRR46
327 (Supplementary Table 3). The CoV was, for the diversity panel across the same
328 environments, 7.35 days for FT and 14.01 cm for PH (Supplementary Table 3).

329 The differences between the mean of the parental inbreds and the mean of the sub-
330 populations were also examined as these are an indicator for the presence of epistasis. For
331 flowering time, the differences between the means of the parental inbred lines and the
332 respective sub-populations were statistically significant ($p < 0.05$) in 22 cases. Among them,
333 the highest differences were observed for sub-populations HvDRR43, with 7.2 days, and
334 HvDRR46, with 10.5 days. For plant height the differences of the means of the sub-
335 populations and the parental inbreds were significant ($p < 0.05$) in 14 cases. The strongest

336 difference between the parental inbreds and the progeny mean was observed for sub-
337 populations HvDRR10, with 9.62 cm, HvDRR12, with 9.88 cm, and HvDRR11, with 10.60
338 cm. All these sub-populations had Sanalta as common parental inbred (Figure 1).
339 Across all sub-populations, the correlation coefficient of FT and PH was -0.012
340 (Supplementary Figure 1). However, considerable differences were observed for the single
341 sub-populations (Figure 2). HvDRR28 was the sub-population for which the highest
342 correlation coefficient has been observed (0.44), while the sub-population where the two
343 traits were most negatively correlated was HvDRR43 (-0.77) (Supplementary Figure 2).
344

345 **3.2 Multi-parent population analysis**

346

347 The multi-parent population analysis identified each 21 QTL for FT and PH, distributed
348 across all seven chromosomes (Figure 3). The analysis was performed using the genetic
349 haplotype window sizes estimated from the extent of linkage disequilibrium (Supplementary
350 Table 2). The percentage of phenotypic variance explained by all the QTL detected in the
351 MPP analysis was 39.1% and 24.9% for FT and PH, respectively. For FT, the confidence
352 interval of 17 QTL overlapped with the interval of at least one QTL identified in the SP
353 analysis (Supplementary Tables 4-5). Out of 21 QTL identified for PH, 16 overlapped with
354 one or more QTL detected in SP analysis (Supplementary Tables 4-6). Among the QTL
355 detected for both traits, the intervals of two pairs of QTL overlapped: *FT-MP-Q3* with *PH-*
356 *MP-Q3* and *FT-MP-Q19* with *PH-MP-Q20*.

357 The additive effect of the 23 parental inbreds for the 21 QTL for FT ranged from -2.42 days,
358 observed for Ancap2 at *FT-MP-Q5*, to 5.14 days, for Kombyne at *FT-MP-Q13* (Figure 4).
359 However, in about 92% of cases, the additive effect for FT was between -1 and 1 day
360 (Supplementary Figure 3). For PH, the effect ranged from -3.88 cm for Kombyne at *PH-MP-*
361 *Q15*, to a maximum of 1.99 cm at *PH-MP-Q5*, for seven parental inbreds (Figure 4). Also in
362 this case more than 90% of the additive effects had a value between -1 and 1 cm
363 (Supplementary Figure 3). The crossings design underlying our population allows to
364 estimate the number of alleles at each QTL. The QTL with the highest number of significantly
365 different allele effects and thereby with presumably alleles were, for FT, *FT-MP-Q20*, with 9
366 alleles, and, for PH, *PH-MP-Q20*, with 8 detected alleles.

367

368 **3.3 Genomic prediction ability**

369

370 The prediction abilities of the GBLUP model across the HvDRR population were high with
371 values of 0.89 and 0.87 for FT and PH respectively (Supplementary Table 7). To compare
372 the prediction performance of the GBLUP model with those of the detected QTL, we used
373 the squared prediction abilities. The coefficient of determinations (r^2) obtained by genomic
374 prediction without CV was 0.79 for FT and 0.76 for PH. The cross-validated prediction
375 abilities were 0.77 for both FT and PH.

376

377 **3.4 Single population QTL analysis**

378

379 Through single population analysis, 89 QTL were identified for FT and 80 for PH (Figures 5-
380 6; Supplementary Tables 5-6). The percentages of explained variance by the individual QTL
381 detected for FT sized from 1.02%, for *qHvDRR47-FT-7.1*, to 77.75%, for *qHvDRR27-FT-2.1*
382 (Supplementary Table 5), while for PH the values ranged from 2.52%, for *qHvDRR11-PH-2.2*,
383 to 63.62%, for *qHvDRR10-PH-3.1* (Supplementary Table 6). HvDRR22 was the sub-
384 population with the highest values of explained variance for both FT (70.24%) and PH
385 (78.54%), while the lowest percentages of variance explained by the detected QTL were
386 observed for FT in HvDRR35 (33.49%) and for PH in HvDRR31 (23.65%) (Supplementary
387 Tables 5-6).

388 Out of 89 QTL identified in the single population analysis for FT, 43 mapped to chromosome
389 2H (Figure 5). A cluster comprising 21 QTL was located at the beginning of chromosome
390 2H. The region covered by the confidence interval of these QTL included *Ppd-H1*. Also for
391 other major effect genes, responsible for the control of FT, QTL clusters had been identified:
392 six QTL at the end of chromosome 4H, whose confidence intervals included *Vrn-H2*, ten
393 QTL at the beginning of chromosome 5H, a region in which *Vrn-H1* was positioned, and
394 eleven QTL at the beginning of chromosome 7H in which *Vrn-H3* was located. Other QTL
395 comprised additional genes within their confidence intervals such as *HvELF3*, *HvCEN*,
396 *Hv20ox2 (sdw1/denso)*, *HvFT4* (Pieper *et al.*, 2021), and *HvAP2* (Supplementary Table 5).
397 Single population analysis for PH identified 80 QTL, where these QTL were characterized
398 by wider confidence intervals compared to those detected for FT (Figure 6, Supplementary
399 Table 6). As observed for FT, the chromosome with the highest number of QTL was 2H. A
400 cluster, including 14 QTL, comprised within their confidence interval *Ppd-H1*. Other clusters
401 of QTL that included in their confidence interval *HvAP2*, *Hv20ox2 (sdw1/denso)*, *Vrn-H1*,
402 and *Vrn-H3* had been identified (Supplementary Table 6).

403 However, we identified 16 QTL for FT and 31 QTL for PH for which no genes previously
404 described for the control of the trait were included within their confidence interval

405 (Supplementary Tables 5-6). Among the 16 QTL detected for FT, the QTL with the lowest
406 number of genes in the confidence interval were *qHvDRR02-FT-5.1* and *qHvDRR31-FT-5.2*.
407 The QTL comprised 52 and 71 genes, respectively, which reduced to 35 and 45 when
408 neglecting the low confidence genes. *qHvDRR31-FT-5.2* was with 3.4 cM the QTL with the
409 shortest genetic confidence interval. For PH, *qHvDRR48-PH-4.1* was the QTL with the
410 lowest number of genes in its confidence interval (115 low and high confidence or 79 high
411 confidence genes). The QTL with the shortest confidence interval was *qHvDRR22-PH-7.1*
412 with 3.9 cM.

413 Eight sub-populations showed significant epistatic interactions between loci on a genome-
414 wide scale. In total, ten significant epistatic interactions were detected. Nine interactions
415 were detected for PH and one for FT. Two epistatic interactions each were observed for
416 populations HvDRR34 and HvDRR44 (Supplementary Table 8).

417

418 **3.5 Allele mining**

419

420 For FT, 21 sub-populations showed a QTL that included *Ppd-H1*. For 14 of these, a QTL that
421 included *Ppd-H1* was also identified for PH. A total of 16 of the 21 sub-populations were
422 polymorphic for the causal SNP 22 of *Ppd-H1* (Turner *et al.*, 2005). However, five sub-
423 populations (HvDRR02, HvDRR04, HvDRR20, HvDRR23, and HvDRR48), for which the
424 QTL confidence intervals comprised *Ppd-H1*, did not segregate for this polymorphism. All
425 non-polymorphic sub-populations for SNP 22 had HOR1842 or IG128104 as parental inbred
426 lines (Supplementary Table 1). Through Sanger sequencing, we identified the presence of
427 a unique SNP in HOR1842 and IG128104 in the CCT domain of *Ppd-H1* (Figure 7). The
428 primers used to amplify *Ppd-H1* are listed in Supplementary Table 9. Based on the SNP
429 position on the *Ppd-H1* coding sequence of Morex, we refer to it as SNP 1945. SNP 1945
430 determines the synthesis of a threonine instead of an alanine (Supplementary Figure 4). We
431 then used the SIFT algorithm to predict the effect of this SNP on the phenotype. The effect
432 of this polymorphism was classified by the SIFT algorithm as deleterious.

433 At the *Vrn-H2* locus, an FT QTL was detected in six sub-populations. We evaluated by PCR,
434 as described in Karsai *et al.* (2005) (Supplementary Table 9), the presence/absence of the
435 three causal *Vrn-H2* genes. Out of six sub-populations, five were polymorphic for the genes
436 regulating the *Vrn-H2* locus. In HvDRR29, both parental inbred lines, HOR8160 and
437 IG128216, had the complete set of genes (Supplementary Figure 5).

438

439 **3.6 Candidate gene analysis**

440

441 The candidate gene analysis was performed for the QTL detected in the SP analysis that
442 did not carry in their confidence interval previously reported genes controlling the trait under
443 consideration, explaining $\geq 15\%$ of the phenotypic variance, and having a confidence interval
444 ≤ 30 cM. For these QTL, we combined the results of QTL mapping with variant calling data
445 and results from WGCNA. Through WGCNA, 27 different gene modules were detected
446 across all the expressed genes in the barley genome (Supplementary Figure 6). The
447 correlation of the gene expression of modules and the adjusted entry means ranged from -
448 0.52 to 0.49 for FT and from -0.54 to 0.47 for PH. Interestingly, the module with the highest
449 correlation was the same for both traits. After selecting genes within the QTL range and
450 which were included in one of the three modules with the highest or the lowest correlation
451 (Supplementary Figure 7), we searched for candidate genes. The most represented class
452 of genes for the two traits was that of receptor-like kinase, followed by genes involved in the
453 ethylene pathways, and genes coding for F-box proteins (Supplementary Table 10).
454 In addition to the functional based candidate gene analysis, we used association genetics
455 in the diversity panel to fine map the selected QTL using the genome-wide genotyping-by-
456 sequencing data of Milner *et al.* (2019). For FT, none of the polymorphisms in the QTL
457 confidence intervals was significantly associated with the phenotype. For PH, we identified
458 four significant SNPs associated with the phenotype (Supplementary Figure 8).

459 **4 DISCUSSION**

460

461 With this study, we aimed to obtain a comprehensive overview of the environmental and
462 genotypic contributions to the regulation of flowering time and plant height in barley. We
463 performed MPP and SP analysis to elucidate the genetic complexity underlying the control
464 of FT and PH. Finally, we identified candidate genes and new allelic variants using additional
465 approaches such as WGCNA and association genetics.

466

467 **4.1 Flowering time variation is less environmental sensitive than that of plant height**

468

469 We observed that relative to the genotypic variance, the variance components of
470 environment and genotype by environment interaction were higher for PH than FT (Table 1).
471 This finding was in discordance with a previous study where the variance component of the
472 genotype-environment interaction was higher for FT than for PH (Rodriguez *et al.*, 2008).
473 This result might be explained thereby by that the environments of our study differed mainly
474 with respect to soil, precipitations, and temperature, which influence PH more strongly than
475 FT (Li *et al.*, 2003). In contrast, latitudinal differences, which heavily impact FT (Kikuchi and
476 Handa, 2009), were very small among our environments. An additional explanation is the
477 limited number of studied genotypes by Rodriguez *et al.* (2008), which reduced the precision
478 to estimate variance components. Nevertheless, we observed for both traits high to very
479 high heritabilities indicating that the adjusted entry means calculated for FT and PH are very
480 suitable to unravel the genetics of both traits (Table 1).

481

482 **4.2 The double round-robin population shows high variability of flowering time and**
483 **plant height**

484

485 We observed in our study, with a range of adjusted entry means of 51.2 to 105.7 days as
486 well as 12.6 to 101.2 cm for FT and PH, respectively, a high phenotypic diversity among the
487 RILs of the HvDRR population (Figure 1). This range was considerably higher than that
488 observed in earlier studies (Afsharyan *et al.*, 2020; Arifuzzaman *et al.*, 2016; Cuesta-Marcos
489 *et al.*, 2008; Maurer *et al.*, 2015; Nice *et al.*, 2017). Also, the standard deviation of the
490 adjusted entry means of the RILs of the HvDRR population was higher for both traits than
491 that described in previous studies (Pauli *et al.*, 2014; Wang *et al.*, 2014) (Supplementary
492 Table 3). These observations might be due to the higher number of RILs but also because
493 of the selection of the 23 parental inbreds with maximal genotypic and phenotypic richness.

494 In addition, the variation observed for FT and PH in the diversity panel of 224 spring barley
495 inbreds (Pasam *et al.*, 2012) was similar to that observed in individual sub-populations.
496 However, it was considerably smaller (FT) and more influenced by a few outliers (PH)
497 compared to the diversity observed in the entire HvDRR population (Figure 1).
498 These findings of high phenotypic variability, combined with high heritability values and high-
499 quality genotypic data suggest that the double-round-robin population is a very powerful tool
500 for exploring and detecting new genetic variants underlying the control of agronomic traits
501 in barley, also compared to association mapping panels.

502

503 **4.3 QTL analyses uncovered the role of the genetic background in determining the**
504 **correlation between FT and PH**

505

506 We observed that the correlation between FT and PH was different among the HvDRR sub-
507 populations (Figure 2; Supplementary Figure 2). These results are in agreement with those
508 of previous studies where positive and negative correlations have been identified between
509 FT and PH (Von Korff *et al.*, 2006; Maurer *et al.*, 2016; Nice *et al.*, 2017; Schmalenbach *et*
510 *al.*, 2009), although only one direction of the correlation index, positive or negative, was
511 observed in each of these studies. The high variability of the correlation values could be due
512 to the great genotypic diversity of the parental inbreds used in our study. In order to
513 understand this aspect better, we considered in detail the co-located QTL for FT and PH in
514 the SP analysis.

515 Considering the sub-populations in which the adjusted entry means of the two traits had the
516 most negative correlation (HvDRR10, HvDRR11, and HvDRR43), all QTL detected for FT
517 were also detected for PH, although additional QTL were observed for the latter trait
518 (Supplementary Tables 5-6). For four of the five FT/PH QTL pairs, the parental inbred line
519 conferring a positive additive effect for PH revealed a negative additive effect for FT and vice
520 versa (Supplementary Tables 5-6; Supplementary Figure 2). At the same time, the three
521 sub-populations with the highest correlation coefficient between FT and PH (HvDRR19,
522 HvDRR28, and HvDRR29) had QTL falling within the same interval for the two traits (Figures
523 5-6). In this case, however, for the three overlapping pairs of QTL, the positive additive effect
524 was given by the same parental inbred for both traits (Supplementary Tables 5-6;
525 Supplementary Figure 2).

526 In order to increase the resolution of the dissection of the genetic origin of the correlation
527 between FT and PH, we exploited the MPP analysis. For each of the two studied traits, we
528 identified 21 QTL through MPP analysis (Figure 3). The QTL profiles obtained through MPP

529 analysis for both traits had peaks falling within neighboring regions for the main genes
530 previously reported to control FT and PH, such as *Ppd-H1* and the three vernalization genes.
531 The diversity of the parental inbreds and the large number of sub-populations as well as the
532 total RILs resulted in a high mapping resolution that led to narrow confidence intervals. In
533 our study, we observed a pleiotropic effect only for two QTL pairs (*FT-MP-Q3/PH-MP-Q3*
534 and *FT-MP-Q19/PH-MP-Q20*). *FT-MP-Q3/PH-MP-Q3*, included in their common interval
535 HORVU.MOREX.r3.1HG0075860 which was functionally annotated as transcription factor,
536 while *FT-MP-Q19/PH-MP-Q20*, which explained a higher percentage of phenotypic variance
537 compared to *FT-MP-Q3/PH-MP-Q3*, included in their intervals *Vrn-H3*. For all other QTL, the
538 effect was separated by recombination.

539 Therewith, our results suggest that FT and PH variations are, with the exception of two QTL,
540 caused by independent genetic factors (Figures 2-3-6-7; Supplementary Tables 4-5-6).

541

542 **4.4 Multi-parent and single population analyses revealed new genome regions as well 543 as genomic variants involved in the control of flowering time and plant height**

544

545 The number of QTL identified through MPP analysis (Figure 3; Supplementary Table 4) was,
546 with 21 each, higher compared to the maximum number of QTL, 13 for FT and 20 for PH,
547 that were detected in earlier studies using bi- and multi-parental populations of spring barley
548 (Arifuzzaman *et al.*, 2014; Cuesta-Marcos *et al.*, 2008; Von Korff *et al.*, 2006; Maurer *et al.*,
549 2015; Nice *et al.*, 2017; Pauli *et al.*, 2014; Rollins *et al.*, 2013; Schmalenbach *et al.*, 2009).

550 The only exception was the study of Hemshrot *et al.* (2019) where a total of 23 QTL were
551 identified for FT. However, in Hemshrot *et al.* (2019), QTL with the same genetic position
552 were detected which reduced the number of QTL with different genetic positions to 13. The
553 reasons for the higher number of QTL detected in our study compared to earlier studies
554 were most probably the greater number of RILs and environments as well as the selection
555 of very diverse parental inbreds (Weisweiler *et al.*, 2019) which both increased the statistical
556 power to detect QTL (Stich, 2009). Our observation suggested that the genetic complexity
557 of FT and PH is higher than initially reported. This conclusion is furthermore supported by
558 the observation that for both traits the percentage of explained variance by a genomic
559 prediction model was about twice the value of the variance explained by the QTL detected
560 in the MPP analysis (Supplementary Table 7). This result suggested that even with about
561 4000 RILs many small effect QTL remain undetected.

562 The difference between the percentage of variance explained by a genomic prediction model
563 and the variance explained by the QTL detected in the MPP analysis was greater in the case

564 of PH compared to FT (Supplementary Table 7). This observation suggests that PH is more
565 strongly influenced by small (and undetected) effect QTL than FT. In addition, the total
566 proportion of variance explained by the detected QTL was with 25.7% lower for PH than for
567 FT (37.4%). This trend was in agreement with the observation that epistatic interaction
568 played a bigger role for PH than for FT (Supplementary Table 8).

569 The SP QTL analyses detected 89 QTL for FT and 80 for PH (Figures 5-6; Supplementary
570 Tables 5-6). We determined the physical position of QTL reported in earlier studies
571 (Afsharyan *et al.*, 2020; Druka *et al.*, 2011; Hemshrot *et al.*, 2019; Laurie *et al.*, 1994; Maurer
572 *et al.*, 2015; Nice *et al.*, 2017; Pauli *et al.*, 2014), wherever possible, and compared it to the
573 QTL observed in our study. We observed for 166 QTL detected in our study a co-localization
574 with earlier reported QTL. However, three QTL detected with SP analyses, one for FT and
575 two for PH, did not overlap with other previously reported QTL. The novel QTL detected by
576 SP were *qHvDRR30-FT-3.1*, *qHvDRR24-PH-3.1*, and *qHvDRR48-PH-4.1*. The percentage
577 of variance explained by these QTL was relatively low for *qHvDRR30-FT-3.1* (4.3%) but
578 higher for *qHvDRR24-PH-3.1* (26.2%) and *qHvDRR48-PH-4.1* (19.5%). Because of the high
579 percentage of variance explained by *qHvDRR24-PH-3.1*, we started fine mapping project of
580 this QTL, as well as for *qHvDRR28-FT-2.2*, *qHvDRR41-FT-2.2*, *qHvDRR42-FT-3.1*,
581 *qHvDRR22-PH-7.1*, *qHvDRR29-PH-2.1*, and *qHvDRR47-PH-2.1*.

582 We observed for 21 sub-populations an FT QTL whose confidence interval included the *Ppd-*
583 *H1* locus. Five of these sub-populations (HvDRR02, HvDRR04, HvDRR20, HvDRR23, and
584 HvDRR48) were not polymorphic for SNP 22 (Figure 7; Supplementary Table 1). SNP 22 is
585 located within the CCT domain of *Ppd-H1*, one of the two main regulatory regions of the
586 *Ppd-H1* causal gene (Turner *et al.*, 2005). SNP 22 was described as the polymorphism
587 responsible for the difference between the dominant and recessive allelic variant of *Ppd-H1*
588 (Turner *et al.*, 2005). Although more than 80 variants had been detected for *Ppd-H1* (Jones
589 *et al.*, 2008), SNP 22 was so far the only functionally characterized polymorphism for which
590 a difference in phenotype has been reported. A further polymorphism of *Ppd-H1*, SNP 48
591 (Jones *et al.*, 2008), had previously been associated with FT variation. However, the study
592 of Sharma *et al.* (2020) did not observe hints that SNP 48 was the causal SNP of the *Ppd-*
593 *H1* mutation. In addition, in none of the above mentioned five sub-populations, SNP 48 was
594 segregating. All five sub-populations had HOR1842 or IG128104 as parental inbreds
595 (Supplementary Table 1). From the whole genome sequencing data of the parental inbreds
596 (Weisweiler *et al.*, 2022), followed by Sanger sequencing, we identified a not previously
597 reported polymorphism, SNP 1945, unique to HOR1842 and IG128104 (Figure 7). SNP
598 1945 is located within the CCT domain of *Ppd-H1* and it causes the synthesis of threonine

599 instead of alanine (Supplementary Figure 4). This amino acid change was predicted by the
600 SIFT algorithm as deleterious. In the sub-population HvDRR24, whose parental inbreds
601 were HOR1842 and IG128104, we did not detect a QTL either for FT or for PH in the genome
602 region of *Ppd-H1*. Together with the fact that HOR1842 and IG128104 originated from the
603 same geographical region (south-central Asia), these observations support the hypothesis
604 that HOR1842 and IG128104 might carry the same causal polymorphism. In addition, we
605 observed that the additive effect for FT QTL co-locating with *Ppd-H1* was, with about 3.5
606 days, higher in sub-populations that segregated for SNP 22 compared to about 2.3 days for
607 the five sub-populations that did not segregate for SNP 22 (Supplementary Table 5). For the
608 latter sub-populations, the additive effect assumed a positive value for the RILs that inherited
609 the *Ppd-H1* allele from HOR1842 or IG128104. These findings suggest that SNP 1945 is
610 the causal polymorphism for the QTL in those sub-populations that are monomorphic for
611 SNP 22 as well as a new functional allelic variant of *Ppd-H1*.

612 A similar observation was made for the QTL co-localizing with *Vrn-H2*. The *Vrn-H2* locus has
613 been described as one of the main loci responsible for the difference between winter and
614 spring barley varieties (Distelfeld *et al.*, 2009). This difference is caused by the total deletion
615 of a complex of three genes (*ZCCT-Ha*, *ZCCT-Hb*, and *ZCCT-Hc*) in the spring barley
616 genotypes or, in the case of facultative genotypes, of a partial deletion (Fernández-Calleja
617 *et al.*, 2021; Karsai *et al.*, 2005). Surprisingly, we observed for four of the HvDRR parental
618 inbreds the complete set of *Vrn-H2* causal genes in spring varieties of barley
619 (Supplementary Figure 5), which was previously reported only for winter varieties
620 (Fernández-Calleja *et al.*, 2021). This observation suggests that the plant response to the
621 vernalization requirement may be more complex than previously assumed and not merely
622 based on the presence/absence of the *Vrn-H2* genes. In addition, among the six sub-
623 populations for which an FT QTL was detected at the *Vrn-H2* genome position, one sub-
624 population, HvDRR29, was monomorphic for the number of *Vrn-H2* genes. Both parental
625 lines, HOR8160 and IG128126 carried three *Vrn-H2* causal genes (Supplementary Figure
626 5). Similarly to *Ppd-H1*, it could be hypothesized that one of the parental lines of sub-
627 population HvDRR29 carried a new functional allelic variant or that an additional gene, that
628 acted on the phenotype in a similar way to *ZCCT-Ha:c*, was present within the same QTL
629 confidence interval.

630 These two examples suggest that the genetic complexity of the studied traits might be higher
631 than anticipated from the simple comparison of the list of co-localizing QTL and can now be
632 resolved using multiple segregating populations together with next-generation sequencing

633 of the parental inbreds. In addition, the cloning of the underlying genes will complement our
634 understanding of the regulatory mechanisms of flowering time and plant height.

635

636 **4.5 Candidate gene analysis for a subset of the QTL**

637

638 We first extracted the polymorphic genes among the parental inbred lines within the
639 confidence interval of the QTL that explained $\geq 15\%$ of the phenotypic variance, had a
640 confidence interval ≤ 30 cM, and did not carry in their confidence interval any previously
641 reported gene controlling the trait under consideration. Then, we combined this screening
642 with the results obtained from the WGCNA, selecting the three modules that showed each
643 the lowest and highest correlation with FT and PH (Supplementary Figure 6).

644 Among the QTL detected for FT, *qHvDRR28-FT-2.2* was the one that had the highest
645 percentage of explained variance and, at the same time, had the shortest genetic confidence
646 interval. Two, out of the five candidate genes identified for this QTL, encoded for the pseudo-
647 response regulator 3 (PRR3) HORVU.MOREX.r3.2HG0170150 and the ethylene-
648 responsive transcription factor HORVU.MOREX.r3.2HG0170460 (Supplementary Table 10).

649 Pseudo-response regulator is the same class of genes to which *Ppd-H1* belongs. The role
650 of these genes is critical for the regulation of the plant circadian clock (Eriksson and Millar,
651 2003; Mizuno and Nakamichi, 2005) and it has been described, among the other functions,
652 to be involved in the control of flowering time (Hayama and Coupland, 2004). Five different
653 sub-groups belonging to this class of genes have been reported: PRR1, PRR3, PRR5,
654 PRR7 (to which *Ppd-H1* belongs), and PRR9 (Matsushika *et al.*, 2000). Phylogenetic
655 analyses grouped the five sub-groups into three main clusters: PRR1, PRR5-PRR9, and
656 PRR3-PRR7 (Nakamichi *et al.*, 2020). Although genes belonging to all three clusters have
657 been described to control flowering time or to be influenced by the photoperiod, the only
658 cluster containing genes from grass species described to be dependent on the photoperiod
659 and at the same time to control flowering time was PRR3-PRR7 (Nakamichi *et al.*, 2020).

660 Therewith this gene is an interesting target for further functional studies.

661 Genes responsible for ethylene biosynthesis are instead involved in a multitude of
662 developmental processes throughout the plant life cycle, ranging from the early stages of
663 plant development to the regulation of senescence (Bleecker and Kende, 2000). The
664 concentration of ethylene also influences gene networks that regulate flowering in order to
665 optimize the timing of the transition from the vegetative to the reproductive stage in relation
666 to endogenous and external stimuli (Iqbal *et al.*, 2017). Although further studies are needed
667 to identify the pathways regulated by ethylene in barley, in rice, overexpression of an

668 ethylene receptor (*ETR2*) was associated with delayed flowering (Hada *et al.*, 2009). The
669 delay was associated with an up-regulation of a homologous gene of GIGANTEA and
670 TERMINAL FLOWER 1/CENTRORADIALIS (Hada *et al.*, 2009), both of these classes of
671 genes are involved in barley in the control of flowering since *HvGI* (Dunford *et al.*, 2005) and
672 *HvCEN* (Comadran *et al.*, 2012) belong to them. Ethylene is also involved in plant growth
673 (Dubois *et al.*, 2018) and its role in vegetative development in plants has been described in
674 barley (Patil *et al.*, 2019). In addition to the one found in *qHvDRR28-FT-2.2*, we also
675 identified two ethylene-responsive transcription factors (HORVU.MOREX.r3.7HG0685230
676 and HORVU.MOREX.r3.2HG0182430) in *qHvDRR22-PH-7.1* and *qHvDRR29-PH-2.1*.
677 Besides being an ethylene-responsive transcription factor,
678 HORVU.MOREX.r3.2HG0182430 also belongs to the same class of genes as *HvAP2*.
679 In addition to functional data, we used association genetics to fine map the detected QTL
680 using the diversity panel which was evaluated in the same set of environments as the
681 *HvDRR* population. For FT, none of the polymorphisms from Milner *et al.* (2019) that were
682 located in the QTL confidence intervals were significantly associated ($p < 0.05$) with FT
683 variation. The reason for this discrepancy was most probably that association mapping
684 panels have a low power to detect marker-trait associations in the case of low frequency
685 alleles (Myles *et al.*, 2009), which is overcome by using segregating populations as in the
686 *HvDRR* population. For PH, low significant marker-trait associations have been detected.
687 However, only one of the polymorphisms was in proximity (< 150 kbp) to
688 HORVU.MOREX.r3.3HG0222500, a candidate gene detected for *qHvDRR24-PH-3.1* using
689 the WGCNA approach (Supplementary Table 10; Supplementary Figure 8).
690 These results suggest that the integration of QTL analyses with other omics data sets
691 supports the detection of candidate genes regulating traits of agronomic interest.

692 **5 CONCLUSIONS**

693

694 The great phenotypic variability observed for FT and PH in the HvDRR population suggests
695 that this population will be a powerful genetic resource to detect new regulatory mechanisms
696 that could allow to extend the barley cultivation area or its adaptation in changing
697 environmental conditions. Furthermore, it was observed how environmental variables
698 affected these traits and how the environmental component had a greater influence on plant
699 height compared to flowering time. In addition, our study provides a comprehensive
700 summary of the genetic architecture of FT and PH and serves as basis for future QTL cloning
701 studies. Finally, the detection of novel QTL but also the observation that additional alleles or
702 genes segregate at known loci like *Ppd-H1* and *Vrn-H2* suggests that the studied traits are
703 genetically more complex than previously reported.

704 **6 ACKNOWLEDGMENTS**

705

706 We would like to thank our former colleagues George Alskief and Florian Esser for their
707 technical support and for organizing and managing the field trials of the HvDRR population
708 in the Cologne and Eifel location. We acknowledge Muenteha Yilmaz and Srinivasa Reddy
709 Mothukuri for contribution to data collection and analyses. We thank the team of Saatzaucht
710 Breun for running the field trials in Quedlinburg. Computational infrastructure and support
711 were provided by the Centre for Information and Media Technology at Heinrich Heine
712 University, Düsseldorf.

713 **7 AUTHORS CONTRIBUTIONS**

714

715 Conceptualization: F.C., A.S. and B.S.

716 Data analysis: F.C., A.S., D.V.I., F.Ca., P.W., M.W and B.S.

717 Investigation: F.C and B.S.

718 Resources: J.L., F.W. and B.S.

719 Funding acquisition: B.S.

720 Writing: F.C. and B.S.

721 **8 CONFLICT OF INTEREST**

722 The authors declare no conflict of interest.

723 **9 FUNDING**

724 This work was supported by Deutsche Forschungsgemeinschaft (DFG, German Research
725 Foundation) in the frame of an International Research Training Group (GRK 2466, Project
726 ID: 391465903).

727 **10 DATA AVAILABILITY**

728

729 The codes used for the calculation of the adjusted entry means, the single and multi-parent
730 population QTL analyses, the epistatic QTL models, the WGCNA analysis, as well as the
731 data sets of the adjusted entry means of the HvDRR population, the genetic haplotypes
732 used to build the ancestral model, and the genotypic and phenotypic data used in the QTL
733 analyses are deposited at https://github.com/cosenzaf/HvDRR_FT_PH. The data of
734 membership of genes to gene modules used in the WGCNA are deposited in
735 https://zenodo.org/record/7525604#.Y7_VgxXMLIW. Genetic maps and variant calling data
736 can be obtained from Casale *et al.* (2022) and Weisweiler *et al.* (2022). Seeds of the RILs
737 of the HvDRR population can be requested from the corresponding author.

738 **11 REFERENCES**

- 739
- 740 Afsharyan, N.P., Sannemann, W., Léon, J., and Ballvora, A. (2020) *Effect of epistasis and*
741 *environment on flowering time in barley reveals a novel flowering-delaying QTL allele.*
742 *J. Exp. Bot.*, **71**, 893–906.
- 743 Anderson, J.T. and Song, B.H. (2020) *Plant adaptation to climate change—Where are we?*
744 *J. Syst. Evol.*, **58**, 533–545.
- 745 Araus, J.L., Slafer, G.A., Royo, C., and Serret, M.D. (2008) *Breeding for yield potential and*
746 *stress adaptation in cereals*. *CRC. Crit. Rev. Plant Sci.*, **27**, 377–412.
- 747 Arifuzzaman, M., Günal, S., Bungartz, A., Muzammil, S., Afsharyan, N.P., Léon, J., and
748 Naz, A.A. (2016) *Genetic mapping reveals broader role of vrn-h3 gene in root and*
749 *shoot development beyond heading in barley*. *PLoS One*, **11**, 1–16.
- 750 Arifuzzaman, M., Sayed, M.A., Muzammil, S., Pillen, K., Schumann, H., Naz, A.A., and
751 Léon, J. (2014) *Detection and validation of novel QTL for shoot and root traits in*
752 *barley (Hordeum vulgare L.)*. *Mol. Breed.*, **34**, 1373–1387.
- 753 Bayer, M.M., Rapazote-Flores, P., Ganal, M., Hedley, P.E., Macaulay, M., Plieske, J., et al.
754 (2017) *Development and evaluation of a barley 50k iSelect SNP array*. *Front. Plant*
755 *Sci.*, **8**, 1–10.
- 756 Bezzant, J., Laurie, D., Pratchett, N., Chojecki, J., and Kearsey, M. (1996) *Marker*
757 *regression mapping of QTL controlling flowering time and plant height in a spring*
758 *barley (Hordeum vulgare L.) cross*. *Heredity (Edinb)*, **77**, 64–73.
- 759 Bi, X., Esse, W. Van, Mulki, M.A., Kirschner, G., Zhong, J., Simon, R., and Korff, M. Von
760 (2019) *Centroradialis interacts with flowering locus t-like genes to control floret*
761 *development and grain number*. *Plant Physiol.*, **180**, 1013–1030.
- 762 Bleecker, A.B. and Kende, H. (2000) *Ethylene: A gaseous signal molecule in plant*. *Annu.*
763 *Rev. Cell Dev. Biol.*, **16**, 1–18.
- 764 Broman, K.W., Wu, H., Sen, Š., and Churchill, G.A. (2003) *R/qtl: QTL mapping in*
765 *experimental crosses*. *Bioinformatics*, **19**, 889–890.
- 766 Campoli, C., Drosse, B., Searle, I., Coupland, G., and Von Korff, M. (2012) *Functional*
767 *characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of*
768 *CONSTANS*. *Plant J.*, **69**, 868–880.
- 769 Campoli, C., Pankin, A., Drosse, B., Casao, C.M., Davis, S.J., and Von Korff, M. (2013)
770 *HvLUX1 is a candidate gene underlying the early maturity 10 locus in barley: Phylogeny, diversity, and interactions with the circadian clock and photoperiodic*
771 *pathways*. *New Phytol.*, **199**, 1045–1059.

- 773 Casale, F., Van Inghelandt, D., Weisweiler, M., Li, J., and Stich, B. (2022) *Genomic*
774 *prediction of the recombination rate variation in barley – A route to highly*
775 *recombinogenic genotypes. Plant Biotechnol. J.*, **20**, 676–690.
- 776 Casao, M.C., Karsai, I., Igartua, E., Gracia, M.P., Veisz, O., and Casas, A.M. (2011)
777 *Adaptation of barley to mild winters: A role for PPDH2. BMC Plant Biol.*, **11**.
- 778 Cockram, J., Jones, H., Leigh, F.J., O’Sullivan, D., Powell, W., Laurie, D.A., and
779 Greenland, A.J. (2007) *Control of flowering time in temperate cereals: Genes,*
780 *domestication, and sustainable productivity. J. Exp. Bot.*, **58**, 1231–1244.
- 781 Comadran, J., Kilian, B., Russell, J., Ramsay, L., Stein, N., Ganal, M., et al. (2012) *Natural*
782 *variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth*
783 *habit and environmental adaptation in cultivated barley. Nat. Genet.*, **44**, 1388–1391.
- 784 Cuesta-Marcos, A., Casas, A.M., Yahiaoui, S., Gracia, M.P., Lasa, J.M., and Igartua, E.
785 (2008) *Joint analysis for heading date QTL in small interconnected barley populations.*
786 *Mol. Breed.*, **21**, 383–399.
- 787 Dawson, I.K., Russell, J., Powell, W., Steffenson, B., Thomas, W.T.B., and Waugh, R.
788 (2015) *Barley: A translational model for adaptation to climate change. New Phytol.*,
789 **206**, 913–931.
- 790 Deng, W., Casao, M.C., Wang, P., Sato, K., Hayes, P.M., Finnegan, E.J., and Trevaskis, B.
791 (2015) *Direct links between the vernalization response and other key traits of cereal*
792 *crops. Nat. Commun.*, **6**.
- 793 Distelfeld, A., Li, C., and Dubcovsky, J. (2009) *Regulation of flowering in temperate*
794 *cereals. Curr. Opin. Plant Biol.*, **12**, 178–184.
- 795 Dockter, C., Gruszka, D., Braumann, I., Druka, A., Druka, I., Franckowiak, J., et al. (2014)
796 *Induced variations in brassinosteroid genes define barley height and sturdiness, and*
797 *expand the green revolution genetic toolkit. Plant Physiol.*, **166**, 1912–1927.
- 798 Druka, A., Franckowiak, J., Lundqvist, U., Bonar, N., Alexander, J., Houston, K., et al.
799 (2011) *Genetic dissection of barley morphology and development. Plant Physiol.*, **155**,
800 617–627.
- 801 Dubois, M., Van den Broeck, L., and Inzé, D. (2018) *The Pivotal Role of Ethylene in Plant*
802 *Growth. Trends Plant Sci.*, **23**, 311–323.
- 803 Dunford, R.P., Griffiths, S., Christodoulou, V., and Laurie, D.A. (2005) *Characterisation of a*
804 *barley (*Hordeum vulgare L.*) homologue of the *Arabidopsis* flowering time regulator*
805 *GIGANTEA. Theor. Appl. Genet.*, **110**, 925–931.
- 806 Eriksson, M.E. and Millar, A.J. (2003) *The circadian clock. A plant’s best friend in a*
807 *spinning world. Plant Physiol.*, **132**, 732–738.

- 808 Food and Agriculture Organization of the United Nations. (2019). FAOSTAT statistical
809 database. [Rome] :FAO
- 810 Food and Agriculture Organization of the United Nations. (2020). FAOSTAT statistical
811 database. [Rome] :FAO
- 812 Faure, S., Turner, A.S., Gruszka, D., Christodoulou, V., Davis, S.J., Von Korff, M., and
813 Laurie, D.A. (2012) *Mutation at the circadian clock gene EARLY MATURITY 8 adapts*
814 *domesticated barley (Hordeum vulgare) to short growing seasons. Proc. Natl. Acad.*
815 *Sci. U. S. A.*, **109**, 8328–8333.
- 816 Fernández-Calleja, M., Casas, A.M., and Igartua, E. (2021) *Major flowering time genes of*
817 *barley: allelic diversity, effects, and comparison with wheat*. Springer Berlin
818 Heidelberg.
- 819 Garin, V., Wimmer, V., and Malosetti, M. (2015) *mppR : An R Package for QTL Analysis in*
820 *Multi-parent Populations using Linear Mixed Models*.
- 821 Garin, V., Wimmer, V., Mezmouk, S., Malosetti, M., and van Eeuwijk, F. (2017) *How do the*
822 *type of QTL effect and the form of the residual term influence QTL detection in multi-*
823 *parent populations? A case study in the maize EU-NAM population. Theor. Appl.*
824 *Genet.*, **130**, 1753–1764.
- 825 Giraud, H., Lehermeier, C., Bauer, E., Falque, M., Segura, V., Bauland, C., et al. (2014)
826 *Linkage disequilibrium with linkage analysis of multiline crosses reveals different*
827 *multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize.*
828 *Genetics*, **198**, 1717–1734.
- 829 Göransson, M., Hallsson, J.H., Lillemo, M., Orabi, J., Backes, G., Jahoor, A., et al. (2019)
830 *Identification of ideal allele combinations for the adaptation of spring barley to*
831 *northern latitudes. Front. Plant Sci.*, **10**, 1–13.
- 832 Hada, W., Bo, Z., Cao, W.H., Biao, M., Gang, L., Liu, Y.F., et al. (2009) *The Ethylene*
833 *Receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant*
834 *Cell*, **21**, 1473–1494.
- 835 Hayama, R. and Coupland, G. (2004) *The molecular basis of diversity in the photoperiodic*
836 *flowering responses of arabidopsis and rice. Plant Physiol.*, **135**, 677–684.
- 837 Hemming, M.N., Peacock, W.J., Dennis, E.S., and Trevaskis, B. (2008) *Low-temperature*
838 *and daylength cues are integrated to regulate Flowering Locus T in barley. Plant*
839 *Physiol.*, **147**, 355–366.
- 840 Hemshrot, A., Poets, A.M., Tyagi, P., Lei, L., Carter, C.K., Hirsch, C.N., et al. (2019)
841 *Development of a multiparent population for genetic mapping and allele discovery in*
842 *six-row barley. Genetics*, **213**, 595–613.

- 843 Hill, C.B. and Li, C. (2016) *Genetic architecture of flowering phenology in cereals and*
844 *opportunities for crop improvement*. *Front. Plant Sci.*, **7**, 1–23.
- 845 Iqbal, N., Khan, N.A., Ferrante, A., Trivellini, A., Francini, A., and Khan, M.I.R. (2017)
846 *Ethylene role in plant growth, development and senescence: interaction with other*
847 *phytohormones*. *Front. Plant Sci.*, **8**, 1–19.
- 848 Jia, Q.J., Zhang, J.J., Westcott, S., Zhang, X.Q., Bellgard, M., Lance, R., and Li, C.D.
849 (2009) *GA-20 oxidase as a candidate for the semidwarf gene *sdw1/denso* in barley*.
850 *Funct. Integr. Genomics*, **9**, 255–262.
- 851 Jones, H., Leigh, F.J., Mackay, I., Bower, M.A., Smith, L.M.J., Charles, M.P., et al. (2008)
852 *Population-based resequencing reveals that the flowering time adaptation of*
853 *cultivated barley originated east of the fertile crescent*. *Mol. Biol. Evol.*, **25**, 2211–
854 2219.
- 855 Kang, H.M., Sul, J.H., Service, S.K., Zaitlen, N.A., Kong, S.Y., Freimer, N.B., et al. (2010)
856 *Variance component model to account for sample structure in genome-wide*
857 *association studies*. *Nat. Genet.*, **42**, 348–354.
- 858 Karsai, I., Szucs, P., Mészáros, K., Filichkina, T., Hayes, P.M., Skinner, J.S., et al. (2005)
859 *The Vrn-H2 locus is a major determinant of flowering time in a facultative x winter*
860 *growth habit barley (Hordeum vulgare L.) mapping population*. *Theor. Appl. Genet.*,
861 **110**, 1458–1466.
- 862 Khush, G.S. (2013) *Strategies for increasing the yield potential of cereals: Case of rice as*
863 *an example*. *Plant Breed.*, **132**, 433–436.
- 864 Kikuchi, R. and Handa, H. (2009) *Photoperiodic control of flowering in barley*. *Breed. Sci.*,
865 **59**, 546–552.
- 866 Knott, S.A. and Haley, C.S. (1992) *A simple regression method for mapping quantitative*
867 *trait loci in line crosses using flanking markers*. *Heredity (Edinb)*, **69**, 315–324.
- 868 Von Korff, M., Wang, H., Léon, J., and Pillen, K. (2006) *AB-QTL analysis in spring barley*:
869 *II. Detection of favourable exotic alleles for agronomic traits introgressed from wild*
870 *barley (H. vulgare ssp. spontaneum)*. *Theor. Appl. Genet.*, **112**, 1221–1231.
- 871 Langfelder, P. and Horvath, S. (2008) *WGCNA: An R package for weighted correlation*
872 *network analysis*. *BMC Bioinformatics*, **9**.
- 873 Langridge (2018), Peter. *Economic and academic importance of barley*. In *The barley*
874 *genome*. Springer, Cham, 1-10.
- 875 Laurie, D.A., Pratchett, N., Bezant, J.H., and Snape, J.W. (1994) *Genetic analysis of a*
876 *photoperiod response gene on the short arm of chromosome 2(2h) of Hordeum*
877 *vulgare (barley)*. *Heredity (Edinb)*, **72**, 619–627.

- 878 Li, Z.K., Yu, S.B., Lafitte, H.R., Huang, N., Courtois, B., Hittalmani, S., et al. (2003) *QTL x*
879 *environment interactions in rice. I. Heading date and plant height. Theor. Appl. Genet.*,
880 **108**, 141–153.
- 881 Manichaikul, A., Dupuis, J., Sen, S., and Broman, K.W. (2006) *Poor performance of*
882 *bootstrap confidence intervals for the location of a quantitative trait locus. Genetics*,
883 **174**, 481–489.
- 884 Mascher, M., Wicker, T., Jenkins, J., Plott, C., Lux, T., Koh, C.S., et al. (2021) *Long-read*
885 *sequence assembly: A technical evaluation in barley. Plant Cell*, **33**, 1888–1906.
- 886 Matsushika, A., Makino, S., Kojima, M., and Mizuno, T. (2000) *Circadian waves of*
887 *expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis*
888 *thaliana: Insight into the plant circadian clock. Plant Cell Physiol.*, **41**, 1002–1012.
- 889 Maurer, A., Draba, V., Jiang, Y., Schnaithmann, F., Sharma, R., Schumann, E., et al.
890 (2015) *Modelling the genetic architecture of flowering time control in barley through*
891 *nested association mapping. BMC Genomics*, **16**, 1–12.
- 892 Maurer, A., Draba, V., and Pillen, K. (2016) *Genomic dissection of plant development and*
893 *its impact on thousand grain weight in barley through nested association mapping. J.*
894 *Exp. Bot.*, **67**, 2507–2518.
- 895 Mikołajczak, K., Kuczyńska, A., Krajewski, P., Sawikowska, A., Surma, M., Ogrodowicz, P.,
896 et al. (2017) *Quantitative trait loci for plant height in Maresi × CamB barley population*
897 *and their associations with yield-related traits under different water regimes. J. Appl.*
898 *Genet.*, **58**, 23–35.
- 899 Sharma, R., Shaaf, S., Neumann, K., Go, Y., Mascher, M., David, M., et al. (2020) *On the*
900 *origin of photoperiod non-responsiveness in barley. bioRxiv*, 2020.07.02.185488.
- 901
- 902 Mizuno, T. and Nakamichi, N. (2005) *Pseudo-response regulators (PRRs) or true oscillator*
903 *components (TOCs). Plant Cell Physiol.*, **46**, 677–685.
- 904 Mulki, M.A. and von Korff, M. (2016) *CONSTANS controls floral repression by up-*
905 *regulating VERNALIZATION2 (VRN-H2) in Barley1. Plant Physiol.*, **170**, 325–337.
- 906 Myles, S., Peiffer, J., Brown, P.J., Ersoz, E.S., Zhang, Z., Costich, D.E., and Buckler, E.
907 (2009) *Association mapping: Critical considerations shift from genotyping to*
908 *experimental design. Plant Cell*, **21**, 2194–2202.
- 909 Nakamichi, N., Kudo, T., Makita, N., Kiba, T., Kinoshita, T., and Sakakibara, H. (2020)
910 *Flowering time control in rice by introducing Arabidopsis clock-associated PSEUDO-*
911 *RESPONSE REGULATOR 5. Biosci. Biotechnol. Biochem.*, **84**, 970–979.
- 912 Nice, L.M., Steffenson, B.J., Blake, T.K., Horsley, R.D., Smith, K.P., and Muehlbauer, G.J.

- 913 (2017) *Mapping agronomic traits in a wild barley advanced backcross–nested*
914 *association mapping population*. *Crop Sci.*, **57**, 1199–1210.
- 915 Nishida, H., Ishihara, D., Ishii, M., Kaneko, T., Kawahigashi, H., Akashi, Y., et al. (2013)
916 *Phytochrome C is a key factor controlling long-day flowering in barley*. *Plant Physiol.*,
917 **163**, 804–814.
- 918 Pasam, R.K., Sharma, R., Malosetti, M., van Eeuwijk, F. a, Haseneyer, G., Kilian, B., and
919 Graner, A. (2012) *Genome-wide association studies for agronomical traits in a world*
920 *wide spring barley collection*. *BMC Plant Biol.*, **12**, 16.
- 921 Patil, V., McDermott, H.I., McAllister, T., Cummins, M., Silva, J.C., Mollison, E., et al.
922 (2019) *APETALA2 control of barley internode elongation*. *Dev.*, **146**.
- 923 Pauli, D., Muehlbauer, G.J., Smith, K.P., Cooper, B., Hole, D., Obert, D.E., et al. (2014)
924 *Association Mapping of Agronomic QTLs in U.S. Spring Barley Breeding Germplasm*.
925 *Plant Genome*, **7**.
- 926 Pieper, R., Tomé, F., Pankin, A., and Von Korff, M. (2021) *FLOWERING LOCUS T4 delays*
927 *flowering and decreases floret fertility in barley*. *J. Exp. Bot.*, **72**, 107–121.
- 928 Piepho, H.P. and Möhring, J. (2007) *Computing heritability and selection response from*
929 *unbalanced plant breeding trials*. *Genetics*, **177**, 1881–1888.
- 930 Rodriguez, M., Rau, D., Papa, R., and Attene, G. (2008) *Genotype by environment*
931 *interactions in barley (*Hordeum vulgare L.*): Different responses of landraces,*
932 *recombinant inbred lines and varieties to Mediterranean environment*. *Euphytica*, **163**,
933 231–247.
- 934 Rollins, J.A., Drosse, B., Mulki, M.A., Grando, S., Baum, M., Singh, M., et al. (2013)
935 *Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield*
936 *stability in barley (*Hordeum vulgare*) grown under dryland conditions in Syria*. *Theor.*
937 *Appl. Genet.*, **126**, 2803–2824.
- 938 van Rossum, B.J., Kruijer, W., van Eeuwijk, F., Boer, M., Malosetti, M., Bustos-Korts, D.,
939 and Wehrens, R. (2022) *Package ‘statgenGWAS’*. *R Packag. version*, **1**.
- 940 Schmalenbach, I., Léon, J., and Pillen, K. (2009) *Identification and verification of QTLs for*
941 *agronomic traits using wild barley introgression lines*. *Theor. Appl. Genet.*, **118**, 483–
942 497.
- 943 Sharma, R., Shaaf, S., Neumann, K., Go, Y., Mascher, M., David, M., et al. (2020) *On the*
944 *origin of photoperiod non-responsiveness in barley*. *bioRxiv*, 2020.07.02.185488.
- 945 Shoesmith, J.R., Solomon, C.U., Yang5, X., Wilkinson, L.G., Sheldrick, S., Eijden, E. Van,
946 et al. (2021) *APETALA2 functions as a temporal factor together with BLADE-ON-*
947 *PETIOLE2 and MADS29 to control flower and grain development in barley*. *Dev.*, **148**.

- 948 Shrestha, A., Cosenza, F., van Inghelandt, D., Wu, P.-Y., Li, J., Casale, F.A., et al. (2022)
949 *The double round-robin population unravels the genetic architecture of grain size in*
950 *barley. J. Exp. Bot.*, **73**, 7344–7361.
- 951 Stich, B. (2009) *Comparison of mating designs for establishing nested association*
952 *mapping populations in maize and Arabidopsis thaliana. Genetics*, **183**, 1525–1534.
- 953 Turner, A., Beales, J., Faure, S., Dunford, R.P., and Laurie, D.A. (2005) *The pseudo-*
954 *response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science*
955 *(80-.)*, **310**, 1031–1034.
- 956 VanRaden, P.M. (2008) *Efficient methods to compute genomic predictions. J. Dairy Sci.*,
957 **91**, 4414–4423.
- 958 Vaser, R., Adusumalli, S., Leng, S.N., Sikic, M., and Ng, P.C. (2016) *SIFT missense*
959 *predictions for genomes. Nat. Protoc.*, **11**, 1–9.
- 960 Vidal, T., Gigot, C., De Vallavieille-Pope, C., Huber, L., and Saint-Jean, S. (2018)
961 *Contrasting plant height can improve the control of rain-borne diseases in wheat*
962 *cultivar mixture: Modelling splash dispersal in 3-D canopies. Ann. Bot.*, **121**, 1299–
963 1308.
- 964 Vyas, S., Khatri-Chhetri, A., Aggarwal, P., Thornton, P., and Campbell, B.M. (2022)
965 *Perspective: The gap between intent and climate action in agriculture. Glob. Food*
966 *Sec.*, **32**, 100612.
- 967 Wang, J., Yang, J., Jia, Q., Zhu, J., Shang, Y., Hua, W., and Zhou, M. (2014) *A new QTL*
968 *for plant height in barley (*hordeum vulgare* L.) showing no negative effects on grain*
969 *yield. PLoS One*, **9**.
- 970 Wei, J., Fang, Y., Jiang, H., Wu, X. ting, Zuo, J. hong, Xia, X. chun, et al. (2022)
971 *Combining QTL mapping and gene co-expression network analysis for prediction of*
972 *candidate genes and molecular network related to yield in wheat. BMC Plant Biol.*, **22**,
973 1–14.
- 974 Weisweiler, M., Arlt, C., Wu, P.-Y., Van Inghelandt, D., Hartwig, T., Stich, B., et al. (2022)
975 *Structural variants in the barley gene pool: precision and sensitivity to detect them*
976 *using short-read sequencing and their association with gene expression and*
977 *phenotypic variation. bioRxiv*, 2022.04.25.489331.
- 978 Weisweiler, M., Montaigu, A. De, Ries, D., Pfeifer, M., and Stich, B. (2019) *Transcriptomic*
979 *and presence/absence variation in the barley genome assessed from multi-tissue*
980 *mRNA sequencing and their power to predict phenotypic traits. BMC Genomics*, **20**,
981 1–15.
- 982 Wendt, T., Holme, I., Dockter, C., Preu, A., Thomas, W., Druka, A., et al. (2016) *HvDep1 Is*

- 983 a Positive regulator of culm elongation and grain size in barley and impacts yield in an
984 environment-dependent manner. *PLoS One*, **11**, 1–21.
- 985 Wiegmann, M., Maurer, A., Pham, A., March, T.J., Al-Abdallat, A., Thomas, W.T.B., et al.
986 (2019) Barley yield formation under abiotic stress depends on the interplay between
987 flowering time genes and environmental cues. *Sci. Rep.*, **9**, 1–16.
- 988 Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., et al. (2006) The wheat and
989 barley vernalization gene VRN3 is an orthologue of FT. *Proc. Natl. Acad. Sci. U. S. A.*,
990 **103**, 19581–19586.
- 991 Yan, L., Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., et al.
992 (2004) The Wheat VRN2 Gene Is a Flowering Repressor Down-Regulated by
993 Vernalization. *Science* (80-.), **303**, 1640–1644.
- 994 Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T., and Dubcovsky, J. (2003)
995 Positional cloning of the wheat vernalization gene VRN1. *Proc. Natl. Acad. Sci. U. S.*
996 **A**, **100**, 6263–6268.
- 997 Yu, J., Pressoir, G., Briggs, W.H., Bi, I.V., Yamasaki, M., Doebley, J.F., et al. (2006) A
998 unified mixed-model method for association mapping that accounts for multiple levels
999 of relatedness. *Nat. Genet.*, **38**, 203–208.
- 1000 Zakhrebekova, S., Gough, S.P., Braumann, I., Müller, A.H., Lundqvist, J., Ahmann, K., et
1001 al. (2012) Induced mutations in circadian clock regulator Mat-a facilitated short-
1002 season adaptation and range extension in cultivated barley. *Proc. Natl. Acad. Sci. U.*
1003 **S. A.**, **109**, 4326–4331.
- 1004 Zhang, B. and Horvath, S. (2005) A general framework for weighted gene co-expression
1005 network analysis. *Stat. Appl. Genet. Mol. Biol.*, **4**.

1006 **12 TABLES AND FIGURES LEGENDS**

1007

1008 **Table 1:** Variance components of the multi-environment linear mixed model and heritability
1009 values for flowering time and plant height. G represents the genetic variance, E the
1010 environmental variance, G:E the variance explained by the interaction between G and E,
1011 and e the residual error.

1012

1013 **Figure 1:** Violin plots for adjusted entry means for flowering time and plant height of each
1014 HvDRR sub-population and for the 224 inbreds of the diversity panel. The flowering time is
1015 presented as days after sowing (DAS) and the plant height values are reported in cm. The
1016 green dots represent the adjusted entry means of the parental inbreds of the sub-population.
1017 The orange lines represent the average of the adjusted entry means of the recombinant
1018 inbred lines of the respective sub-population.

1019

1020 **Figure 2:** Distribution of correlation coefficients between flowering time and plant height
1021 calculated for the HvDRR sub-populations. On the x axis the correlation coefficients are
1022 represented and on the y axis the number of sub-populations.

1023

1024 **Figure 3:** Negative decadic logarithm of the p-value of the multi-parent population analysis
1025 for flowering time (top) and plant height (bottom) using an ancestral model. On the x axis,
1026 the position on the consensus genetic map is reported. Each dashed line indicates the peak
1027 position of the corresponding QTL.

1028

1029 **Figure 4:** Heat map of the effects of the parental inbreds at the QTL detected through multi-
1030 parent population analysis for flowering time (top, in days after sowing) and for plant height
1031 (bottom, in cm). Indexed letters indicate the significance of the difference ($p < 0.05$) between
1032 the effects of the same QTL.

1033

1034 **Figure 5:** Genetic position of the QTL detected in single population analyses for flowering
1035 time projected to the consensus map. The position of the QTL confidence intervals is
1036 represented as a vertical bar parallel to the right of the chromosome. The color of the bar
1037 indicates if the sub-population was obtained by crossing two landraces (yellow), two cultivars
1038 (blue), or a landrace and a cultivar (green). The genetic positions of the known genes
1039 regulating flowering time in barley are shown in red. The positions of the markers that flank
1040 each QTL are also reported.

1041

1042 **Figure 6:** Genetic position of the QTL detected in single population analysis for plant height
1043 projected to the consensus map. The position of the QTL confidence intervals is shown as
1044 a vertical bar to the right of the chromosome. The color of the bar indicates if the sub-
1045 population was obtained by crossing two landraces (yellow), two cultivars (blue), or a
1046 landrace and a cultivar (green). The known regulatory genes previously described to be
1047 responsible for plant height regulation and their genetic position are reported in red. The
1048 positions of the markers at the borders of each QTL are also reported.

1049

1050 **Figure 7:** Genomic sequence of the last exon of *Ppd-H1* of Morex, Igri, Optic, Golden
1051 Promise, Triumph, and the 23 parental inbreds of the HvDRR population. SNP 22 is
1052 highlighted in yellow, SNP 1945 in orange. On top, the gene structure of *Ppd-H1* is given.
1053 Lines indicate the positions of SNP 21, SNP 22 (Turner *et al*, 2005), and SNP 1945 within
1054 the last exon.

1055

1056 **Supplementary Table 1:** Crossing scheme of the 45 HvDRR sub-populations. The name of
1057 the sub-populations is reported in the first column. In the second and third column are
1058 indicated the inbred lines that originated the sub-populations.

1059

1060 **Supplementary Table 2:** Genetic and physical distances for which the linkage
1061 disequilibrium measured r^2 reached a value of 0.2.

1062

1063 **Supplementary Table 3:** Average of the adjusted entry means, standard deviations (SD),
1064 and coefficients of variation (CoV) across all 45 sub-populations for flowering time, in days
1065 after sowing, and plant height, in cm.

1066

1067 **Supplementary Table 4:** Summary of the results of the multi-parent population analysis for
1068 flowering time and plant height. Chr indicates the chromosome on which the QTL was
1069 detected, LOD the logarithm of odds, PVE the percentage of variance explained by the QTL.

1070

1071 **Supplementary Table 5:** Summary of the results of the single population analysis for
1072 flowering time. The information regarding the peak and the borders of the confidence interval
1073 of each QTL are reported. Chr represents the chromosome on which the QTL was detected,
1074 LOD the logarithm of odds, and PVE the percentage of variance explained by the QTL
1075 individually and in a simultaneous fit. The additive effect is given in days after sowing.

1076

1077 **Supplementary Table 6:** Summary of the results of the single population analysis for plant
1078 height. The information regarding the peak and the borders of the confidence interval of
1079 each QTL are reported. Chr represents the chromosome on which the QTL was detected,
1080 LOD the logarithm of odds, and PVE the percentage of variance explained by the QTL
1081 individually and in a simultaneous fit. The additive effect is given in cm.

1082

1083 **Supplementary Table 7:** Prediction ability of the genomic SNP marker data for flowering
1084 time and plant height without cross-validation (CV) and with five fold cross-validation across
1085 all sub-populations. SD indicates the standard deviation.

1086

1087 **Supplementary Table 8:** Genome-wide epistatic loci detected in the HvDRR population.
1088 LOD indicates the logarithm of odds of the interaction.

1089

1090 **Supplementary Table 9:** Lists of primers used to amplify *Ppd-H1* and *Vrn-H2*. The *Ppd-H1*
1091 primers are listed for each parental inbred. N-ter primers were used to amplify the start while
1092 the C-ter primers the end of the coding sequences. The primers pairs marked with * amplified
1093 the whole genet. Primers used to amplify *Vrn-H2* have the same nomenclature as described
1094 in Karsai *et al.* (2005).

1095

1096 **Supplementary Table 10:** List of candidate genes in the confidence interval of selected QTL
1097 that carried a polymorphism among the parental lines. IN/DEL indicates an insertion or a
1098 deletion, SV indicates predicted structural variants.

1099

1100 **Supplementary Figure 1:** Histogram and correlation plot between flowering time (FT) and
1101 plant height (PH) across all 45 HvDRR sub-populations. Flowering time is reported in days
1102 after sowing (DAS) and plant height in cm.

1103

1104 **Supplementary Figure 2:** Histograms and correlation plots between flowering time (FT, in
1105 days after sowing) and plant height (PH, in cm), for each of the 45 HvDRR sub-populations.

1106

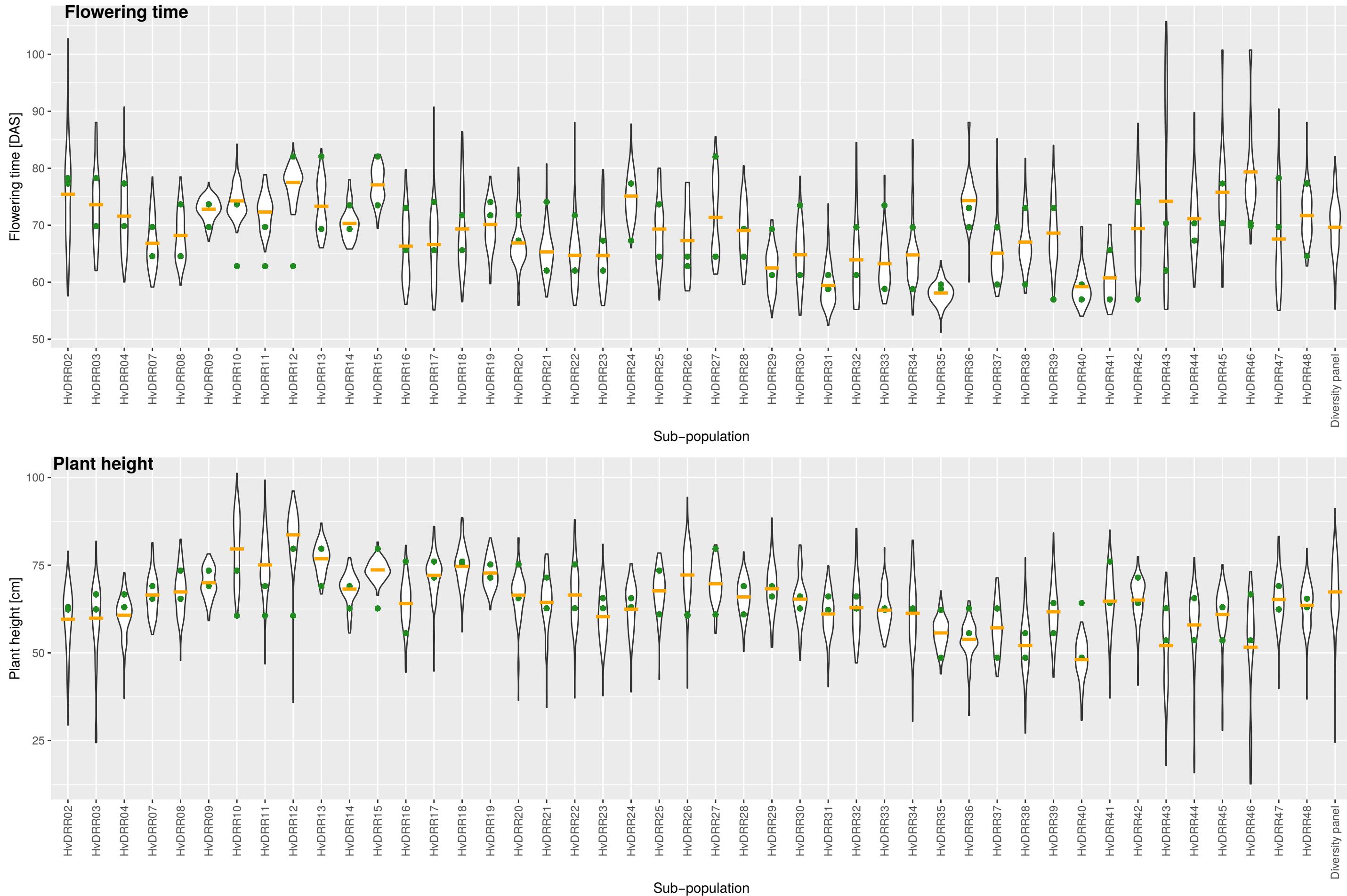
1107 **Supplementary Figure 3:** Effect size of the QTL detected through multi-parent population
1108 analysis for flowering time (top, in days after sowing) and plant height (bottom, in cm), for
1109 each of the parental lines.

1110

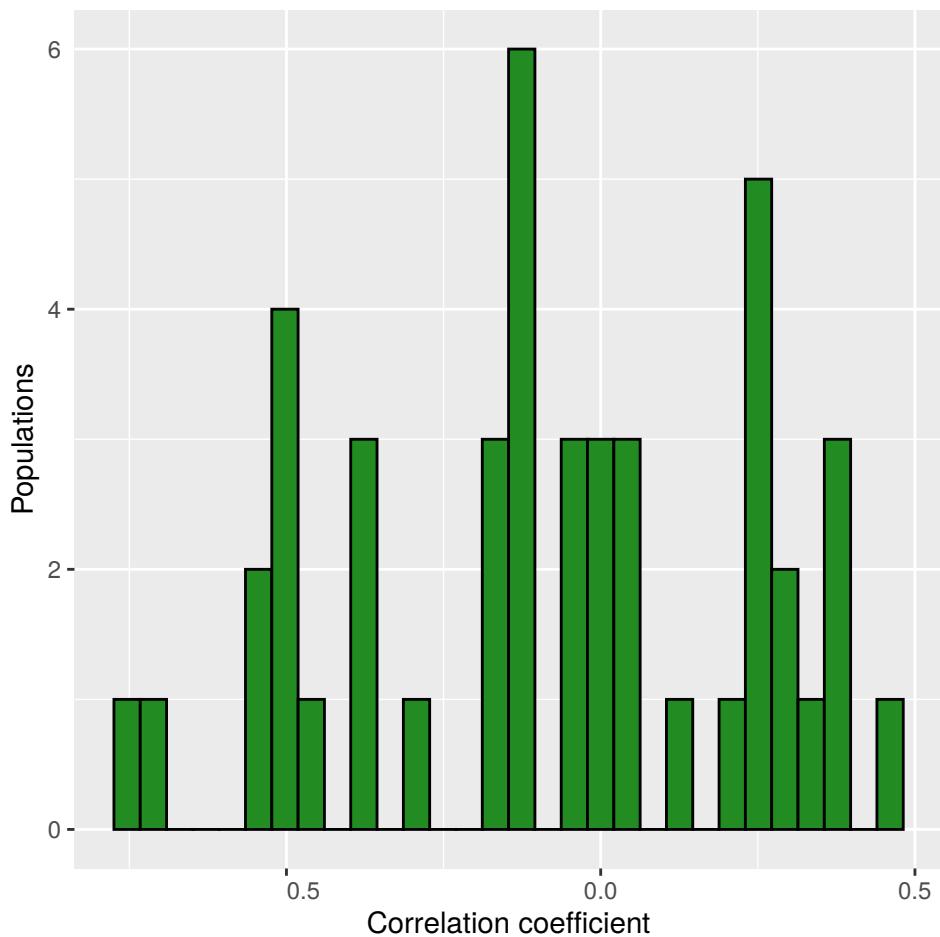
1111 **Supplementary Figure 4:** Amino acid sequence of the terminal region of *Ppd-H1* of Morex,
1112 Igri, Optic, Golden Promise, Triumph, and the 23 parental inbreds of the HvDRR population.
1113 The amino acid synthesized by the triplet containing SNP 22 is highlighted in yellow, the one
1114 synthesized by the triplet containing SNP 1945 is highlighted in blue.
1115

1116 **Supplementary Figure 5:** Gel pictures of PCRs performed to detect the presence/absence
1117 of *ZCCT-Ha:b* (top) and *ZCCT-Hc* (bottom) as described in Karsai *et al.* (2005). The analyzed
1118 genotypes are Bowman (control spring variety), Antonella (control winter variety), Igri
1119 (control winter variety), and the parental inbreds of the sub-populations for which a QTL co-
1120 localizing with *Vrn-H2* was detected.

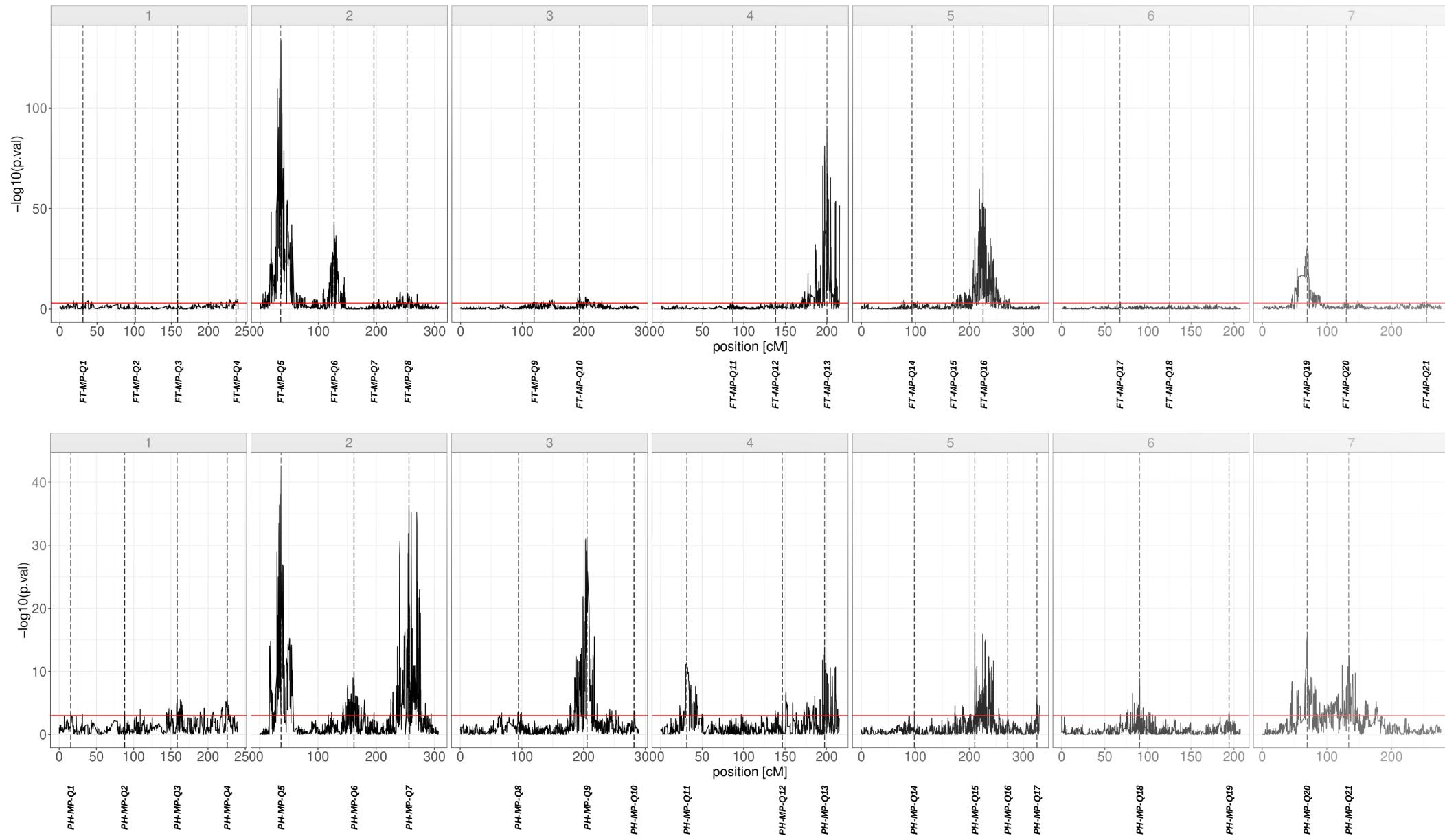
1121
1122 **Supplementary Figure 6:** Heat map of the module-trait relationships for plant height (PH)
1123 and flowering time (FT). On the y axis, the 27 detected modules are reported. For each
1124 module-trait correlation p-values are given in brackets.
1125

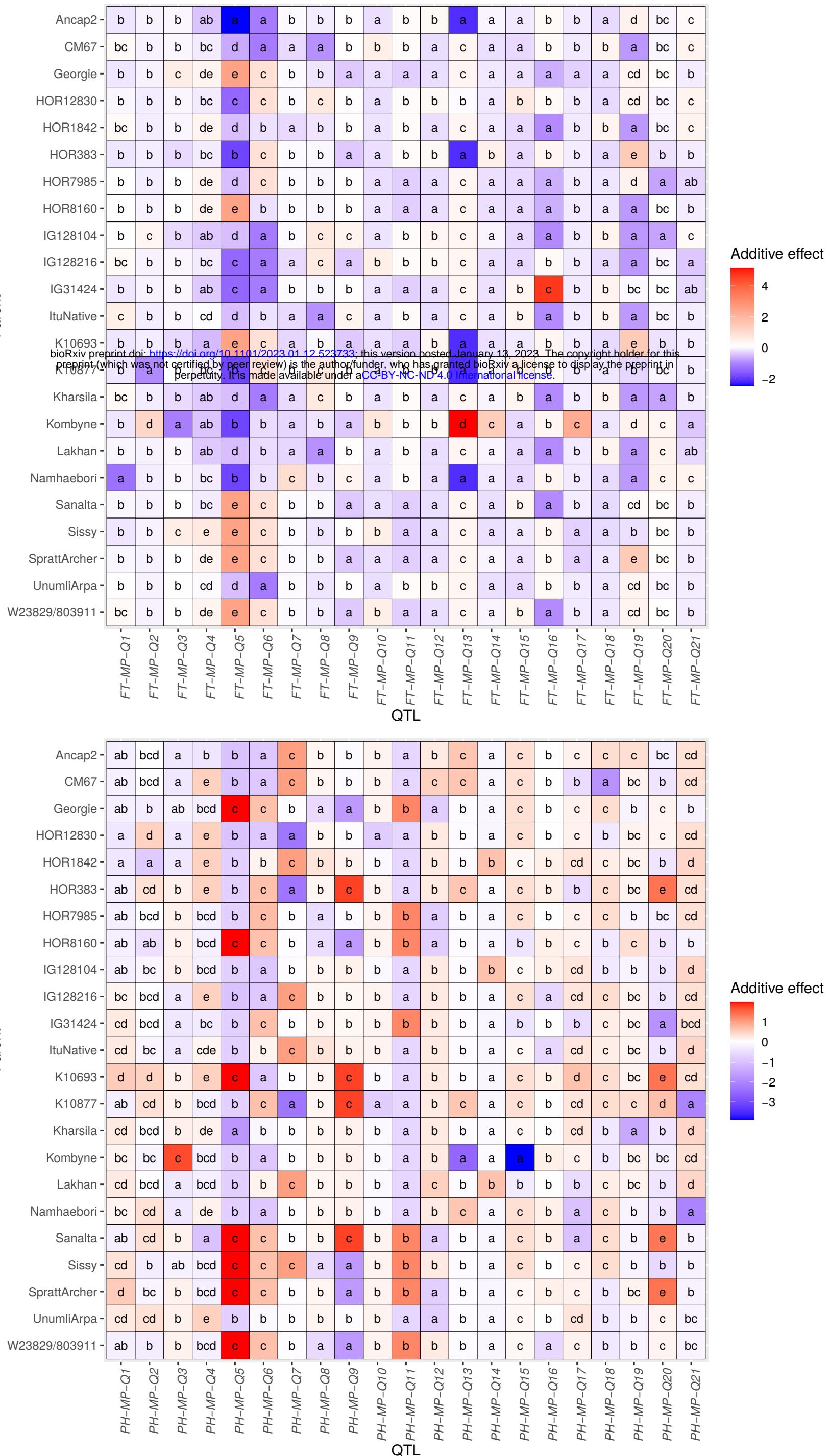

1126 **Supplementary Figure 7:** Network predictions for modules “orange” (a), “black” (b),
1127 “darkgreen” (c), “purple” (d), “tan” (e), “lightyellow” (f), “green” (g), “blue” (h), and “turquoise”
1128 (i). Gene names with a gene-module membership p-value < 0.01 are indicated in the orange
1129 circles. Gene-gene interactions are represented by grey lines.
1130

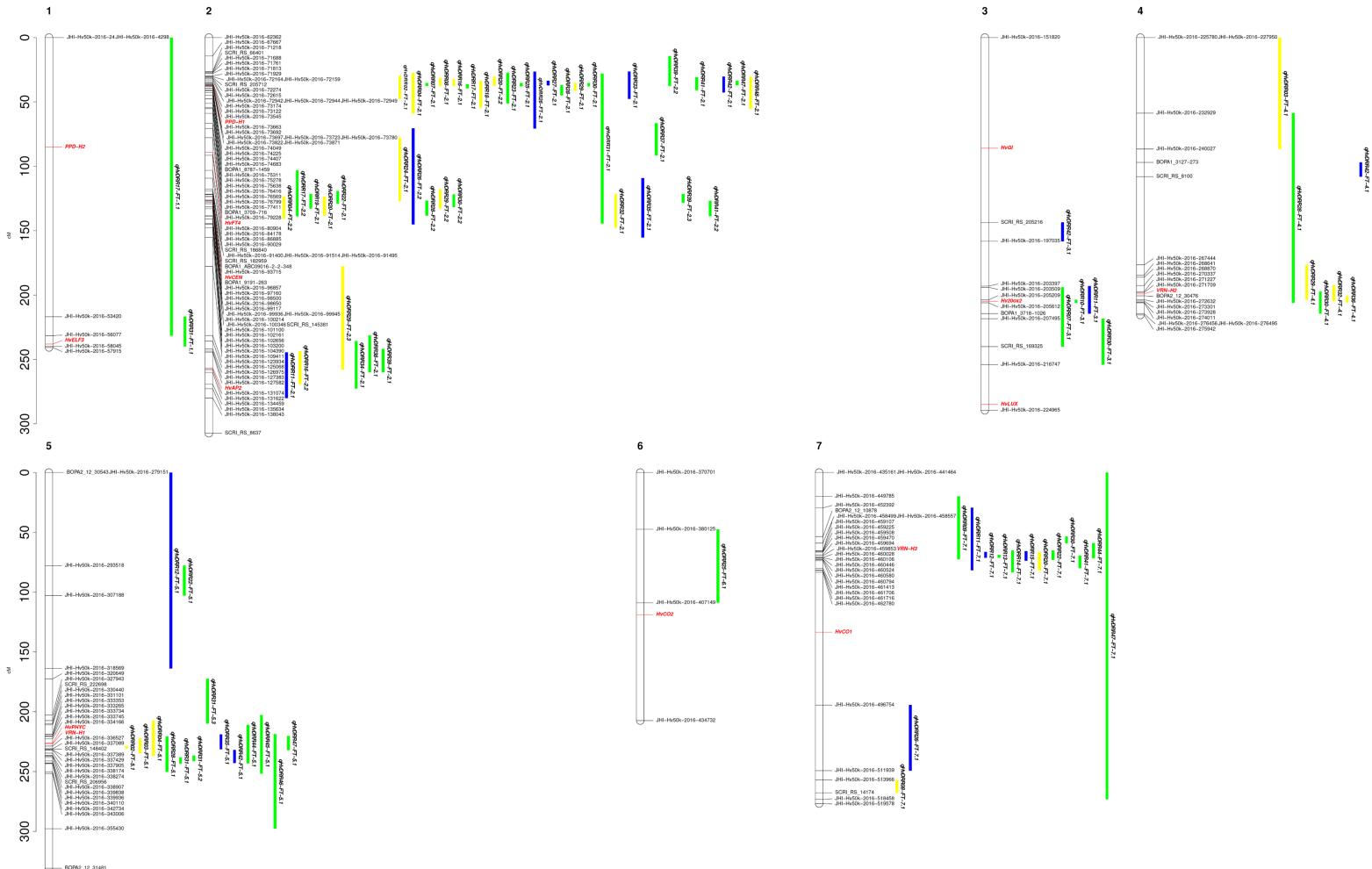
1131 **Supplementary Figure 8:** Negative decadic logarithm of the p-value for association tests
1132 of sequence variants in QTL without previously reported genes for the control of the trait
1133 within their interval, explaining $\geq 15\%$ variance, and with interval ≤ 30 cM for flowering time
1134 (left) and plant height (right). The QTL confidence intervals from single population analyses
1135 are indicated by colored bars.

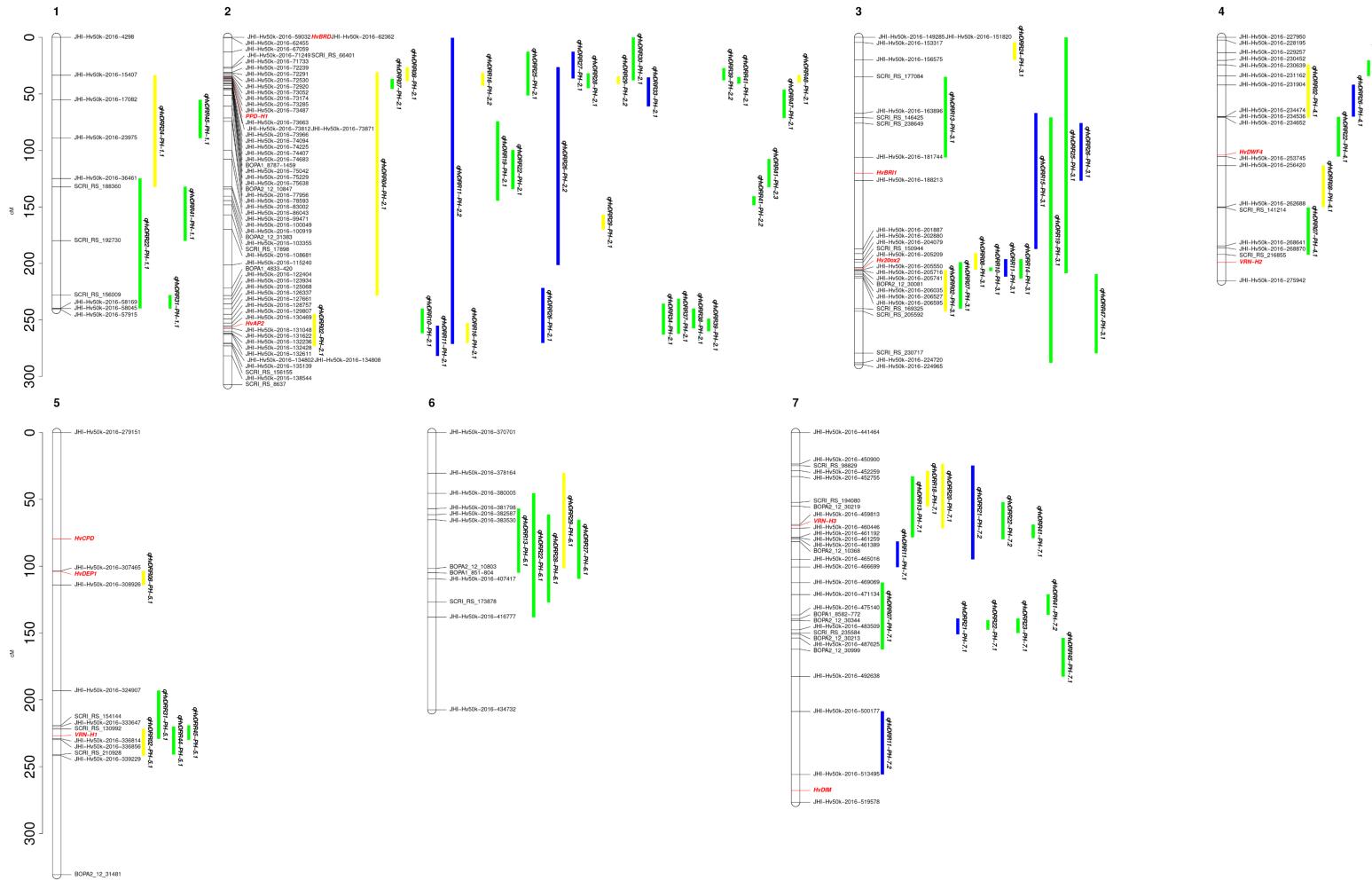

Table 1: Variance components of the multi-environment linear mixed model and heritability values for flowering time and plant height. G represents the genetic variance, E the environmental variance, G:E the variance explained by the interaction between G and E, and e the residual error.

Trait	Groups	Variance	h^2
Flowering time	G	41.33	0.86
	E	77.12	
	G:E	22.31	
	e	17.02	
Plant height	G	41.46	0.76
	E	128.55	
	G:E	36.32	
	e	56.04	


Figure 1: Violin plots for adjusted entry means for flowering time and plant height of each HvDRR sub-population and for the 224 inbreds of the diversity panel. The flowering time is presented as days after sowing (DAS) and the plant height values are reported in cm. The green dots represent the adjusted entry means of the parental inbreds of the sub-population. The orange lines represent the average of the adjusted entry means of the recombinant inbred lines of the respective sub-population.


Figure 2: Distribution of correlation coefficients between flowering time and plant height calculated for the HvDRR sub-populations. On the x axis the correlation coefficients are represented and on the y axis the number of sub-populations.


Figure 3: Negative decadic logarithm of the p-value of the multi-parent population analysis for flowering time (top) and plant height (bottom) using an ancestral model. On the x axis, the position on the consensus genetic map is reported. Each dashed line indicates the peak position of the corresponding QTL.


Figure 4: Heat map of the effects of the parental inbreds at the QTL detected through multi-parent population analysis for flowering time (top, in days after sowing) and for plant height (bottom, in cm). Indexed letters indicate the significance of the difference ($p < 0.05$) between the effects of the same QTL.

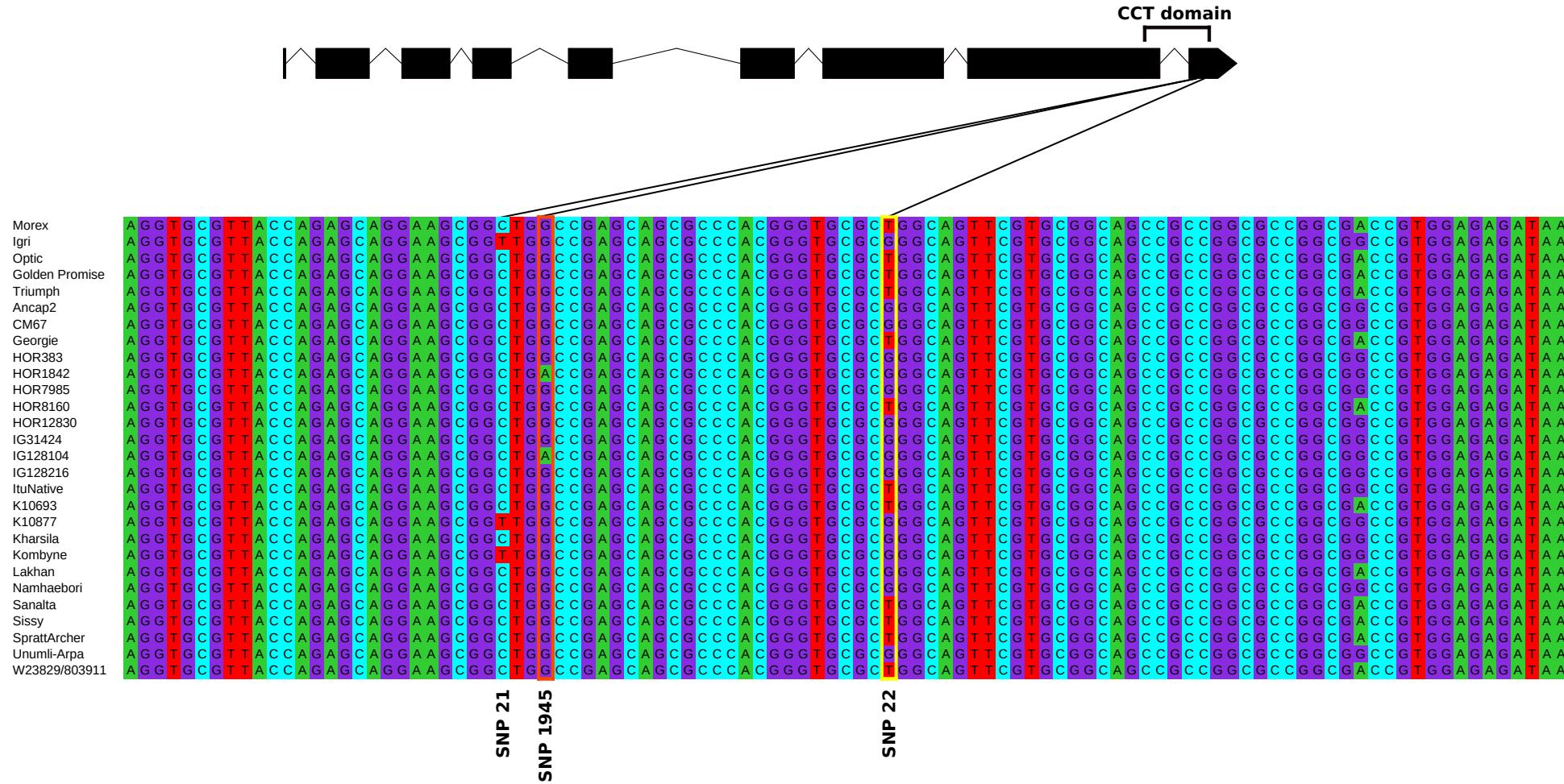

Figure 5: Genetic position of the QTL detected in single population analyses for flowering time projected to the consensus map. The position of the QTL confidence intervals is represented as a vertical bar parallel to the right of the chromosome. The color of the bar indicates if the sub-population was obtained by crossing two landraces (yellow), two cultivars (blue), or a landrace and a cultivar (green). The genetic positions of the known genes regulating flowering time in barley are shown in red. The positions of the markers that flank each QTL are also reported.

Figure 6: Genetic position of the QTL detected in single population analysis for plant height projected to the consensus map. The position of the QTL confidence intervals is shown as a vertical bar to the right of the chromosome. The color of the bar indicates if the sub-population was obtained by crossing two landraces (yellow), two cultivars (blue), or a landrace and a cultivar (green). The known regulatory genes previously described to be responsible for plant height regulation and their genetic position are reported in red. The positions of the markers at the borders of each QTL are also reported.

Figure 7: Genomic sequence of the last exon of *Ppd-H1* of Morex, Igri, Optic, Golden Promise, Triumph, and the 23 parental inbreds of the HvDRR population. SNP 22 is highlighted in yellow, SNP 1945 in orange. On top, the gene structure of *Ppd-H1* is given. Lines indicate the positions of SNP 21, SNP 22 (Turner et al., 2005), and SNP 1945 within the last exon.

Supplementary Table 1: Crossing scheme of the 45 HvDRR sub-populations. The name of the sub-populations is reported in the first column. In the second and third column are indicated the inbred lines that originated the sub-populations.

Sub-population	Parent A	Parent B
HvDRR02	HOR1842	IG31424
HvDRR03	Kharsila	IG31424
HvDRR04	HOR1842	Kharsila
HvDRR07	Sissy	HOR7985
HvDRR08	HOR7985	W23829/803911
HvDRR09	Sissy	W23829/803911
HvDRR10	Sanalta	W23829/803911
HvDRR11	Sanalta	Sissy
HvDRR12	SprattArcher	Sanalta
HvDRR13	SprattArcher	HOR8160
HvDRR14	Georgie	HOR8160
HvDRR15	SprattArcher	Georgie
HvDRR16	K10693	HOR12830
HvDRR17	K10693	Ancap2
HvDRR18	HOR383	K10693
HvDRR19	HOR383	Ancap2
HvDRR20	IG128104	HOR383
HvDRR21	Ancap2	Namhaebori
HvDRR22	HOR383	Namhaebori
HvDRR23	IG128104	Namhaebori
HvDRR24	IG128104	HOR1842
HvDRR25	W23829/803911	Unumli-Arpa
HvDRR26	Unumli-Arpa	Sanalta
HvDRR27	Unumli-Arpa	SprattArcher
HvDRR28	Unumli-Arpa	HOR8160
HvDRR29	HOR8160	IG128216
HvDRR30	IG128216	Georgie
HvDRR31	Lakhan	IG128216
HvDRR32	IG128216	K10877
HvDRR33	Georgie	Lakhan
HvDRR34	K10877	Lakhan
HvDRR35	Lakhan	CM67
HvDRR36	HOR12830	K10877
HvDRR37	K10877	CM67
HvDRR38	HOR12830	CM67
HvDRR39	HOR12830	ItuNative
HvDRR40	ItuNative	CM67
HvDRR41	ItuNative	K10693
HvDRR42	Ancap2	ItuNative
HvDRR43	Kombyne	Namhaebori
HvDRR44	IG128104	Kombyne
HvDRR45	HOR1842	Kombyne
HvDRR46	Kharsila	Kombyne
HvDRR47	IG31424	Sissy
HvDRR48	HOR1842	HOR7985

Supplementary Table 2: Genetic and physical distances for which the linkage disequilibrium measured r^2 reached a value of 0.2.

Chromosome	cM	bp
1H	3.03	1462496
2H	2.21	1214368
3H	1.85	1254651
4H	1.75	998605
5H	2.05	898399
6H	1.51	915485
7H	3.15	1077964

Supplementary Table 3: Average of the adjusted entry means, standard deviations (SD), and coefficients of variation (CoV) across all 45 sub-populations for flowering time, in days after sowing, and plant height, in cm.

Sub-population	Flowering time (DAS)			Plant height (cm)		
	Mean	SD	CoV	Mean	SD	CoV
HvDRR02	75.42	8.61	11.41	59.57	9.45	15.86
HvDRR03	73.61	6.57	8.93	59.87	11.16	18.65
HvDRR04	71.59	5.87	8.20	60.74	5.72	9.42
HvDRR07	66.82	4.44	6.65	66.51	5.66	8.51
HvDRR08	68.19	4.36	6.39	67.38	6.32	9.37
HvDRR09	72.81	1.99	2.73	70.02	4.28	6.11
HvDRR10	74.27	2.81	3.78	79.62	9.72	12.20
HvDRR11	72.31	3.07	4.24	75.07	8.42	11.21
HvDRR12	77.52	2.72	3.51	83.64	8.29	9.91
HvDRR13	73.32	4.45	6.07	76.84	4.31	5.61
HvDRR14	70.32	2.79	3.96	68.18	4.60	6.74
HvDRR15	77.08	3.07	3.98	73.66	2.82	3.83
HvDRR16	66.33	5.89	8.88	64.06	7.02	10.95
HvDRR17	66.62	6.24	9.36	72.10	6.37	8.84
HvDRR18	69.34	7.20	10.39	74.67	5.90	7.90
HvDRR19	70.12	3.91	5.57	72.75	4.27	5.87
HvDRR20	66.89	4.44	6.64	66.44	7.17	10.80
HvDRR21	65.32	4.14	6.33	64.37	8.32	12.92
HvDRR22	64.71	5.11	7.89	66.50	8.82	13.26
HvDRR23	64.69	5.68	8.78	60.31	7.47	12.38
HvDRR24	75.11	4.13	5.50	62.45	7.78	12.45
HvDRR25	69.32	5.42	7.82	67.68	6.28	9.28
HvDRR26	67.30	5.87	8.72	72.20	9.23	12.78
HvDRR27	71.36	6.77	9.49	69.71	5.55	7.96
HvDRR28	69.08	4.87	7.04	65.94	5.23	7.93
HvDRR29	62.49	3.79	6.07	68.28	7.20	10.55
HvDRR30	64.81	5.27	8.13	65.31	6.75	10.33
HvDRR31	59.43	3.71	6.24	61.09	6.35	10.39
HvDRR32	63.93	7.26	11.36	62.89	8.78	13.96
HvDRR33	63.25	4.64	7.33	62.17	5.43	8.73
HvDRR34	64.78	5.79	8.94	61.29	10.01	16.33
HvDRR35	58.09	2.00	3.44	55.69	4.58	8.23
HvDRR36	74.31	4.30	5.79	53.87	5.40	10.03
HvDRR37	65.08	5.25	8.06	57.15	6.90	12.07
HvDRR38	67.04	4.68	6.98	52.11	8.83	16.94
HvDRR39	68.62	5.80	8.46	61.73	8.12	13.15
HvDRR40	59.23	3.32	5.60	48.10	5.85	12.17
HvDRR41	60.76	4.03	6.63	64.73	9.18	14.18
HvDRR42	69.42	6.91	9.96	65.06	6.51	10.01
HvDRR43	74.19	17.29	23.31	52.10	11.48	22.03
HvDRR44	71.14	6.25	8.79	57.96	11.51	19.86
HvDRR45	75.79	8.50	11.22	60.96	8.47	13.89
HvDRR46	79.35	8.21	10.34	51.62	15.76	30.53
HvDRR47	67.57	8.42	12.47	65.24	7.40	11.35
HvDRR48	71.68	4.37	6.09	63.54	6.29	9.91
Diversity panel	69.63	5.12	7.35	67.38	9.44	14.01

Supplementary Table 4: Summary of the results of the multi-parent population analysis for flowering time and plant height. Chr indicates the chromosome on which the QTL was detected, LOD the logarithm of odds, PVE the percentage of variance explained by the QTL.

Trait	QTL	Chr	Peak marker	Peak cM	Marker position (bp)	LOD	Left border marker	Left border cM	Left border bp	Right border marker	Right border cM	Right border marker bp	PVE
Flowering time	FT-MP-Q1	1H	JHI-Hv50k-2016-15152	31.2	20945275	5.1	JHI-Hv50k-2016-15113	31.1	20931089	JHI-Hv50k-2016-15160	31.2	20945741	0.47
Flowering time	FT-MP-Q2	1H	JHI-Hv50k-2016-29220	101.4	383491828	3.2	JHI-Hv50k-2016-29224	101.4	383487512	JHI-Hv50k-2016-29301	101.5	383908136	0.41
Flowering time	FT-MP-Q3	1H	JHI-Hv50k-2016-40963	158.5	473573522	4.5	JHI-Hv50k-2016-40966	158.5	473572474	BOPA1_8867-459	158.6	473633633	0.20
Flowering time	FT-MP-Q4	1H	JHI-Hv50k-2016-57415	237.0	514738633	5.0	JHI-Hv50k-2016-57153	235.4	514047135	SCR1_RS_195067	237.5	514995168	0.09
Flowering time	FT-MP-Q5	2H	JHI-Hv50k-2016-73174	35.2	25327192	134.5	JHI-Hv50k-2016-73052	34.6	25023220	JHI-Hv50k-2016-73184	35.3	25332315	11.31
Flowering time	FT-MP-Q6	2H	JHI-Hv50k-2016-96906	126.9	471939672	41.8	SCR1_RS_231725	126.7	470678535	JHI-Hv50k-2016-97380	127.1	474383159	3.63
Flowering time	FT-MP-Q7	2H	JHI-Hv50k-2016-113511	195.4	601391766	4.1	JHI-Hv50k-2016-113490	195.2	601232283	JHI-Hv50k-2016-113518	195.4	601395368	0.57
Flowering time	FT-MP-Q8	2H	JHI-Hv50k-2016-129773	252.5	633282569	8.5	JHI-Hv50k-2016-129562	252.0	633013755	JHI-Hv50k-2016-129785	252.5	633229906	0.70
Flowering time	FT-MP-Q9	3H	JHI-Hv50k-2016-186187	119.2	462714357	4.7	JHI-Hv50k-2016-186122	118.9	462283595	JHI-Hv50k-2016-186284	119.5	463381185	0.16
Flowering time	FT-MP-Q10	3H	JHI-Hv50k-2016-203283	192.7	555799017	7.7	JHI-Hv50k-2016-203302	192.6	555747286	JHI-Hv50k-2016-203280	192.7	555799748	0.60
Flowering time	FT-MP-Q11	4H	JHI-Hv50k-2016-240101	86.6	98719384	3.3	JHI-Hv50k-2016-239980	86.5	96686737	JHI-Hv50k-2016-240141	86.8	103960077	0.27
Flowering time	FT-MP-Q12	4H	JHI-Hv50k-2016-260654	138.2	566586983	3.3	JHI-Hv50k-2016-260734	138.2	566569810	JHI-Hv50k-2016-260896	138.5	566780698	0.36
Flowering time	FT-MP-Q13	4H	JHI-Hv50k-2016-272205	200.3	602110401	89.1	JHI-Hv50k-2016-272207	200.3	602110153	JHI-Hv50k-2016-272270	200.5	602228904	8.09
Flowering time	FT-MP-Q14	5H	JHI-Hv50k-2016-305151	93.6	408438294	4.4	JHI-Hv50k-2016-305116	93.2	406868619	BOPA1_1910-1343	93.6	408439377	0.34
Flowering time	FT-MP-Q15	5H	JHI-Hv50k-2016-320334	170.0	494941401	3.5	BOPA1_6315-914	169.7	494772390	JHI-Hv50k-2016-320591	172.4	496478147	0.59
Flowering time	FT-MP-Q16	5H	JHI-Hv50k-2016-335345	225.2	527249716	68.0	JHI-Hv50k-2016-335374	225.1	527215217	JHI-Hv50k-2016-335344	225.2	527249879	6.53
Flowering time	FT-MP-Q17	6H	JHI-Hv50k-2016-384060	67.4	37903550	3.8	JHI-Hv50k-2016-384032	67.3	37813552	JHI-Hv50k-2016-384334	68.1	38660657	0.06
Flowering time	FT-MP-Q18	6H	SCR1_RS_187506	125.2	505526557	3.7	JHI-Hv50k-2016-413770	125.1	505418085	JHI-Hv50k-2016-413779	125.3	505747019	0.26
Flowering time	FT-MP-Q19	7H	BOPA2_12_30893	69.6	42285518	31.2	JHI-Hv50k-2016-459744	68.9	41824854	JHI-Hv50k-2016-460024	71.0	43186352	2.16
Flowering time	FT-MP-Q20	7H	JHI-Hv50k-2016-473460	130.0	107115320	4.7	JHI-Hv50k-2016-473455	130.0	107102377	JHI-Hv50k-2016-473673	130.7	109831240	0.33
Flowering time	FT-MP-Q21	7H	JHI-Hv50k-2016-513247	254.2	617492723	4.1	JHI-Hv50k-2016-513245	254.2	617492616	JHI-Hv50k-2016-513260	254.4	617569820	0.31
Plant height	PH-MP-Q1	1H	JHI-Hv50k-2016-11753	15.5	13379830	3.4	JHI-Hv50k-2016-11824	15.5	13388270	JHI-Hv50k-2016-11704	15.6	13343738	0.32
Plant height	PH-MP-Q2	1H	BOPA2_12_10489	87.9	304792051	3.2	BOPA2_12_30562	87.5	2989923320PA1_ABC1V13-1-1-104		88.1	306458264	0.30
Plant height	PH-MP-Q3	1H	JHI-Hv50k-2016-40963	158.5	473573522	5.6	JHI-Hv50k-2016-40966	158.5	473572474	BOPA1_8867-459	158.6	473633633	0.82
Plant height	PH-MP-Q4	1H	JHI-Hv50k-2016-55210	225.8	509418137	5.5	JHI-Hv50k-2016-54826	223.9	508501007	JHI-Hv50k-2016-55434	226.2	509597380	0.33
Plant height	PH-MP-Q5	2H	JHI-Hv50k-2016-735362	36.6	25931885	42.6	BOPA2_12_30871	36.5	25877164	JHI-Hv50k-2016-73570	36.6	25936707	4.90
Plant height	PH-MP-Q6	2H	JHI-Hv50k-2016-106330	161.9	567013913	9.9	JHI-Hv50k-2016-106282	161.8	566933880	JHI-Hv50k-2016-106390	162.0	567072224	1.20
Plant height	PH-MP-Q7	2H	SCR1_RS_121952	256.4	635204036	36.4	JHI-Hv50k-2016-130926	256.2	635123928	JHI-Hv50k-2016-131006	256.6	63515429	3.33
Plant height	PH-MP-Q8	3H	JHI-Hv50k-2016-166560	94.4	119616143	3.6	BOPA2_12_31015	93.4	105848215	JHI-Hv50k-2016-166737	94.6	122286959	0.28
Plant height	PH-MP-Q9	3H	JHI-Hv50k-2016-205550	205.6	564418824	31.2	JHI-Hv50k-2016-205539	205.6	564416604	JHI-Hv50k-2016-205562	205.9	564609618	3.64
Plant height	PH-MP-Q10	3H	JHI-Hv50k-2016-223901	281.6	612465708	3.8	JHI-Hv50k-2016-223777	281.5	612375068	JHI-Hv50k-2016-224069	283.2	613316424	0.27
Plant height	PH-MP-Q11	4H	JHI-Hv50k-2016-231027	31.5	15657353	11.4	JHI-Hv50k-2016-230951	30.2	15129543	JHI-Hv50k-2016-231059	32.4	16054056	1.72
Plant height	PH-MP-Q12	4H	JHI-Hv50k-2016-262480	146.7	572549098	4.7	JHI-Hv50k-2016-262456	146.7	572543403	JHI-Hv50k-2016-262558	146.9	572678710	0.32
Plant height	PH-MP-Q13	4H	JHI-Hv50k-2016-271589	197.7	600782790	13.9	JHI-Hv50k-2016-271581	197.7	600782213	JHI-Hv50k-2016-271592	197.7	600783028	1.36
Plant height	PH-MP-Q14	5H	JHI-Hv50k-2016-306384	98.3	420841523	3.0	JHI-Hv50k-2016-306366	98.3	420833104	JHI-Hv50k-2016-306385	98.3	420841822	0.24
Plant height	PH-MP-Q15	5H	JHI-Hv50k-2016-330572	210.1	519056336	16.0	JHI-Hv50k-2016-330602	210.1	519050727	JHI-Hv50k-2016-330549	210.2	519110040	1.66
Plant height	PH-MP-Q16	5H	JHI-Hv50k-2016-347448	271.0	553116131	3.1	JHI-Hv50k-2016-347397	270.6	552925862	JHI-Hv50k-2016-347557	271.0	553150806	0.20
Plant height	PH-MP-Q17	5H	JHI-Hv50k-2016-363863	325.3	581272563	6.1	JHI-Hv50k-2016-363837	324.9	581089442	JHI-Hv50k-2016-363883	325.3	581277156	0.71
Plant height	PH-MP-Q18	6H	JHI-Hv50k-2016-394110	90.4	187857305	8.9	JHI-Hv50k-2016-394106	90.4	187847223	JHI-Hv50k-2016-394159	90.5	189994776	0.89
Plant height	PH-MP-Q19	6H	SCR1_RS_152414	194.3	555135170	3.4	JHI-Hv50k-2016-429401	193.9	554931535	JHI-Hv50k-2016-429588	194.6	555268907	0.46
Plant height	PH-MP-Q20	7H	JHI-Hv50k-2016-459853	69.6	42283766	15.5	JHI-Hv50k-2016-459744	68.9	41824854	BOPA2_12_10218	70.1	42640729	1.58
Plant height	PH-MP-Q21	7H	JHI-Hv50k-2016-481104	133.8	123257426	12.6	JHI-Hv50k-2016-481152	133.8	123251196	JHI-Hv50k-2016-474847	134.9	128949958	1.19

Supplementary Table 5: Summary of the results of the single population analysis for flowering time. The information regarding the peak and the borders of the confidence interval of each QTL are reported. Chr represents the chromosome on which the QTL was detected, LOD the logarithm of odds, and PVE the percentage of variance explained by the QTL individually and in a simultaneous fit. The additive effect is given in days after sowing.

QTL / Population	Chr	Peak		LOD	Start			Stop			Additive effect	Parent	PVE	Locus	
		Associated marker	Peak (cM)		Marker position (bp)	Start marker	Start (cM)	Start position (bp)	Stop marker	Stop (cM)	Stop position (bp)				
qHvDRR02-FT-2.1	2H	JHI-Hv50k-2016-73780	56.3	26380311	8.4	JHI-Hv50k-2016-71929	50.7	22342142	JHI-Hv50k-2016-75278	61.8	31307172	3.0	HOR1842	11.2	Ppd-H1
qHvDRR02-FT-5.1	5H	JHI-Hv50k-2016-336770	205.3	529432664	29.1	JHI-Hv50k-2016-336527	202.6	529178521	JHI-Hv50k-2016-337089	214.0	530327920	6.7	IG31424	56.7	ear5
66.1															
qHvDRR03-FT-5.1	5H	JHI-Hv50k-2016-335902	242.0	528058903	13.9	JHI-Hv50k-2016-334166	239.4	525813906	JHI-Hv50k-2016-337905	247.0	532356493	4.8	IG31424	50.7	Vrn-H1
qHvDRR03-FT-4.1	4H	JHI-Hv50k-2016-234502	73.7	34574624	3.6	JHI-Hv50k-2016-225780	0.6	1399990	JHI-Hv50k-2016-240027	82.0	97435598	2.1	Kharsila	9.1	Qft. HEB25-4a
HvDRR03															
66.8															
qHvDRR04-FT-2.1	2H	JHI-Hv50k-2016-73615	54.6	25944268	4.3	JHI-Hv50k-2016-71761	46.5	21294256	JHI-Hv50k-2016-76799	77.8	36552741	1.9	HOR1842	9.3	Ppd-H1
qHvDRR04-FT-5.1	5H	BOPA2_12_31202	212.0	526335233	5.9	SCRI_RS_222698	199.7	517515363	JHI-Hv50k-2016-338274	224.9	533637328	2.2	Kharsila	12.9	Vrn-H1
qHvDRR04-FT-2.2	2H	BOPA1_5233-1070	122.5	428835705	4.5	BOPA1_ABC09016-2-2-348	121.3	346735328	JHI-Hv50k-2016-101100	142.3	537701109	1.9	HOR1842	9.6	HvCEN
HvDRR04															
38.0															
qHvDRR07-FT-2.1	2H	BK_14	43.8	25877164	16.6	JHI-Hv50k-2016-73122	43	25381159	JHI-Hv50k-2016-73697	45.1	26363248	3.0	Sissy	45.2	Ppd-H1
qHvDRR07-FT-3.1	3H	SCRI_RS_150944	155.0	560042502	6.7	JHI-Hv50k-2016-203509	147.3	556739164	SCRI_RS_169325	187.2	588226210	1.8	Sissy	14.2	sdw1
HvDRR07															
61.7															
qHvDRR08-FT-2.1	2H	JHI-Hv50k-2016-73500	58.4	25802728	16.4	JHI-Hv50k-2016-72274	55.5	23612704	JHI-Hv50k-2016-73697	60.7	26363248	3.3	W23829/803911	52.7	Ppd-H1
qHvDRR08-FT-7.1	7H	SCRI_RS_14174	3.5	624114922	3.5	JHI-Hv50k-2016-513966	303.4	618890340	SCRI_RS_14174	342.5	624114922	1.3	HOR7985	8.0	7_02 (Hemshrot et al., 2019)
HvDRR08															56.4
qHvDRR09-FT-7.1	7H	SCRI_RS_220780	90.0	40279198	7	JHI-Hv50k-2016-449785	32.2	15413819	JHI-Hv50k-2016-460524	100.9	44088334	1.1	W23829/803911	27.4	Vrn-H3
qHvDRR10-FT-3.1	3H	JHI-Hv50k-2016-205404	123.7	564118077	14.9	JHI-Hv50k-2016-205209	121.5	563172279	JHI-Hv50k-2016-205612	124.2	564697182	2.1	W23829/803911	53.6	sdw1
qHvDRR11-FT-2.1	2H	JHI-Hv50k-2016-131359	166.0	636275614	7.8	JHI-Hv50k-2016-127582	151.5	629176434	JHI-Hv50k-2016-138043	176.2	648214097	1.4	Sanalta	20.1	HvAP2
qHvDRR11-FT-3.1	3H	JHI-Hv50k-2016-204079	107.3	558351096	8.8	JHI-Hv50k-2016-203397	105.2	556048946	BOPA1_3718-1026	114.9	571209231	1.6	Sissy	23.3	sdw1
qHvDRR11-FT-7.1	7H	JHI-Hv50k-2016-460580	53.4	44393592	3.9	JHI-Hv50k-2016-452392	31.2	20554909	JHI-Hv50k-2016-461706	60.0	50031910	1.0	Sanalta	9.2	Vrn-H3
HvDRR11															55.2
qHvDRR12-FT-5.1	5H	JHI-Hv50k-2016-278416	8.0	3692924	3.3	BOPA2_12_30543	0	338140	JHI-Hv50k-2016-318569	103.0	491068447	0.9	Sanalta	10.7	HvHeading-5H-SA
qHvDRR12-FT-7.1	7H	BOPA2_12_30893	41.5	42285518	10.7	JHI-Hv50k-2016-459470	39.4	40274346	JHI-Hv50k-2016-460106	44.0	43288624	1.8	SprattArcher	45.9	Vrn-H3
HvDRR12															59.4
qHvDRR13-FT-7.1	7H	BOPA2_12_10218	55.0	42640729	16.6	JHI-Hv50k-2016-459694	54.4	41778424	JHI-Hv50k-2016-460028	55.6	43186739	3.8	SprattArcher	67.5	Vrn-H3
qHvDRR14-FT-7.1	7H	SCRI_RS_121774	71.0	49048644	5.9	JHI-Hv50k-2016-459107	56.9	39462837	JHI-Hv50k-2016-462780	74.6	51169072	1.5	Georgie	30.1	Vrn-H3
qHvDRR15-FT-7.1	7H	JHI-Hv50k-2016-460172	45.5	43317456	9.7	JHI-Hv50k-2016-459225	38.8	39790897	JHI-Hv50k-2016-460794	48.6	44882536	2.4	SprattArcher	61.5	Vrn-H3
qHvDRR16-FT-2.1	2H	JHI-Hv50k-2016-73581	59.2	25938609	19.8	JHI-Hv50k-2016-72615	44.9	23984263	JHI-Hv50k-2016-73697	61.2	26363248	5.0	K10693	63.7	Ppd-H1
qHvDRR16-FT-2.2	2H	JHI-Hv50k-2016-129807	264.2	633397466	4.6	JHI-Hv50k-2016-127383	260.1	628668500	JHI-Hv50k-2016-134459	285.1	642392428	2.0	HOR12830	9.6	HvAP2
HvDRR16															64.2
qHvDRR17-FT-1.1	1H	JHI-Hv50k-2016-51526	222.6	499028262	1.4	JHI-Hv50k-2016-24	0	84161	JHI-Hv50k-2016-56077	265.7	512145022	0.9	Ancap2	2.0	mat-f
qHvDRR17-FT-2.1	2H	JHI-Hv50k-2016-73780	53.1	26380311	23.4	JHI-Hv50k-2016-73545	48.8	25800459	JHI-Hv50k-2016-74049	56.0	27287895	4.6	K10693	53.2	Ppd-H1
qHvDRR17-FT-2.2	2H	JHI-Hv50k-2016-87930	107.5	108053739	5.7	JHI-Hv50k-2016-84178	102.0	79964580	SCRI_RS_145381	123.3	532823915	1.9	K10693	8.8	HvCEN
HvDRR17															66.2
qHvDRR18-FT-2.1	2H	JHI-Hv50k-2016-73692	51.9	26152710	9	JHI-Hv50k-2016-72942	33.7	24594197	JHI-Hv50k-2016-76416	68.1	34425590	5.0	K10693	40.8	Ppd-H1
qHvDRR19-FT-2.1	2H	BOPA1_ABC08774-1-1-752	100.0	447579727	7.2	JHI-Hv50k-2016-91400	97.6	200103165	JHI-Hv50k-2016-99936	105.7	514610106	2.3	HOR383	33.0	HvCEN
qHvDRR20-FT-2.1	2H	BOPA1_ABC08774-1-1-752	114.9	447579727	7.9	JHI-Hv50k-2016-93715	113.6	404912006	JHI-Hv50k-2016-100214	121.3	531718337	2.5	HOR383	26.5	HvCEN
qHvDRR20-FT-2.2	2H	JHI-Hv50k-2016-73370	33.2	25761089	7	JHI-Hv50k-2016-72164	28.1	23156158	JHI-Hv50k-2016-73780	35.3	26380311	2.4	IG128104	22.8	Ppd-H1
qHvDRR20-FT-7.1	7H	BOPA2_12_30894	42.5	42285311	4	JHI-Hv50k-2016-459508	39.1	40243638	JHI-Hv50k-2016-461716	63.0	50132127	1.9	HOR383	12.2	Vrn-H3
HvDRR20															41.3
HvDRR21	NO QTL														
qHvDRR22-FT-2.1	2H	JHI-Hv50k-2016-90437	88.1	357413708	7.6	SCRI_RS_186840	79.9	16611285	JHI-Hv50k-2016-98650	89.5	491963798	2.0	HOR383	14.3	HvCEN
qHvDRR22-FT-5.1	5H	SCRI_RS_223712	79.2	338641277	4.1	JHI-Hv50k-2016-293518	70.1	92336105	JHI-Hv50k-2016-307188	96.1	428832402	1.5	HOR383	6.9	5_01 (Hemshrot et al., 2019)
qHvDRR22-FT-7.1	7H	JHI-Hv50k-2016-460104	63.1	43288076	16.3	JHI-Hv50k-2016-459107	60.3	39462837	JHI-Hv50k-2016-460580	66.8	44393592	3.3	HOR383	38.7	Vrn-H3
HvDRR22															70.2
qHvDRR23-FT-2.1	2H	BOPA2_12_30870	37.9	25878042	3.5	JHI-Hv50k-2016-71688	23.1	21266654	JHI-Hv50k-2016-75638	64.8	33040970	2.4	IG128104	16.9	Ppd-H1

qHvDRR24-FT-2.1	2H	JHI-Hv50k-2016-87488	97.0	102240001	3.8	JHI-Hv50k-2016-79228	78.6	47882932	JHI-Hv50k-2016-97160	107.3	473146023	2.0	HOR1842	23.7	HvCEN
qHvDRR25-FT-2.1	2H	BK_14	43.9	25877164	16.5	JHI-Hv50k-2016-73122	39.6	25381159	JHI-Hv50k-2016-73822	47.0	26540524	4.7	W23829/803911	63.1	Ppd-H1
qHvDRR25-FT-6.1	6H	JHI-Hv50k-2016-382481	75.6	33514697	3.6	JHI-Hv50k-2016-380125	61.7	26327004	JHI-Hv50k-2016-407149	100.9	447687783	1.7	Unumli-Arpa	8.9	ert-v
qHvDRR26-FT-2.1	2H	JHI-Hv50k-2016-73562	34.3	25931885	4.4	SCRI_RS_66401	28.1	20871415	BOPA1_3709-716	60.9	43264415	2.7	Sanalta	13.6	Ppd-H1
qHvDRR26-FT-7.1	7H	JHI-Hv50k-2016-497524	157.9	581874096	2.5	JHI-Hv50k-2016-496754	149.0	578906347	JHI-Hv50k-2016-511939	190.4	614823443	1.8	Unumli-Arpa	7.0	mm5
qHvDRR26-FT-2.2	2H	JHI-Hv50k-2016-78164	70.0	44129204	3.8	BOPA1_3709-716	60.9	43264415	JHI-Hv50k-2016-102656	134.7	545723577	2.1	Sanalta	11.4	HvCEN
qHvDRR27-FT-2.1	2H	BOPA2_12_30870	44.4	25878042	30.3	JHI-Hv50k-2016-72944	41.8	24596379	JHI-Hv50k-2016-73692	45.8	26152710	6.0	SprattArcher	77.7	Ppd-H1
qHvDRR28-FT-2.1	2H	JHI-Hv50k-2016-74702	48.3	28827313	6.6	JHI-Hv50k-2016-73692	45.1	26152710	BOPA1_8787-1459	50.4	30044023	2.1	HOR8160	16.7	Ppd-H1
qHvDRR28-FT-2.2	2H	BOPA1_4136-869	123.2	516046308	7.5	BOPA1_191-263	117.1	470676341	JHI-Hv50k-2016-100214	127.6	531718337	2.4	HOR8160	19.4	Qft.HEB25-2c
qHvDRR28-FT-5.1	5H	JHI-Hv50k-2016-335896	186.0	527898012	3.8	JHI-Hv50k-2016-333745	181.9	524805307	JHI-Hv50k-2016-342734	200.0	541120940	1.6	Unumli-Arpa	8.9	Vrn-H1
qHvDRR28-FT-4.1	4H	JHI-Hv50k-2016-250940	70.6	500815893	3.5	JHI-Hv50k-2016-232929	49.9	27305200	JHI-Hv50k-2016-274011	171.7	605081758	1.4	Unumli-Arpa	8.1	Vrn-H2
qHvDRR29-FT-2.1	2H	JHI-Hv50k-2016-73584	41.9	25938729	17.6	JHI-Hv50k-2016-73174	41.2	25327192	JHI-Hv50k-2016-74407	47.5	28202988	2.5	HOR8160	41.8	Ppd-H1
qHvDRR29-FT-2.2	2H	JHI-Hv50k-2016-94652	109.0	432869619	5.4	JHI-Hv50k-2016-90029	103.0	146772819	JHI-Hv50k-2016-99945	120.2	514612781	1.2	HOR8160	9.7	HvCEN
qHvDRR29-FT-4.1	4H	JHI-Hv50k-2016-272251	169.8	602047895	5.4	JHI-Hv50k-2016-267444	150.8	590465290	JHI-Hv50k-2016-272632	171.4	603700158	1.2	IG128216	9.7	Vrn-H2
qHvDRR29-FT-2.3	2H	JHI-Hv50k-2016-126298	224.7	626703141	3	JHI-Hv50k-2016-109411	162.3	585633374	JHI-Hv50k-2016-131074	236.8	635950528	0.9	IG128216	5.2	HvAP2
HvDRR29															
qHvDRR30-FT-2.1	2H	JHI-Hv50k-2016-73566	42.8	25934047	15.8	JHI-Hv50k-2016-73174	42.1	25327192	JHI-Hv50k-2016-73871	49.0	26542729	2.9	Georgie	28.1	Ppd-H1
qHvDRR30-FT-7.1	7H	SCRI_RS_160723	76.8	31766007	8.3	BOPA2_12_10878	75.1	31483632	JHI-Hv50k-2016-458499	79.6	34113655	2.0	Georgie	12.7	Qft.HEB25-7a
qHvDRR30-FT-3.1	3H	SCRI_RS_169325	230.3	588226210	3.1	JHI-Hv50k-2016-207495	209.9	574021612	JHI-Hv50k-2016-216747	243.9	595847162	1.1	Georgie	4.3	
qHvDRR30-FT-4.1	4H	JHI-Hv50k-2016-272270	232.8	602228904	9	JHI-Hv50k-2016-271227	227.6	600591532	JHI-Hv50k-2016-276456	238.3	609247127	2.0	IG128216	13.9	Vrn-H2
qHvDRR30-FT-2.2	2H	JHI-Hv50k-2016-97657	122.8	477301174	4.5	SCRI_RS_182959	116.6	205588975	JHI-Hv50k-2016-99117	128.3	508011086	1.4	Georgie	6.4	HvCEN
HvDRR30															
qHvDRR31-FT-5.1	5H	JHI-Hv50k-2016-338907	212.9	535802677	7.3	SCRI_RS_206956	211.5	534240130	JHI-Hv50k-2016-340110	213.5	537093432	6.8	IG128216	13.5	Vrn-H1
qHvDRR31-FT-1.1	1H	JHI-Hv50k-2016-55370	263.4	509641983	6.2	JHI-Hv50k-2016-53420	258.1	505296418	JHI-Hv50k-2016-58045	269.8	516079896	1.2	IG128216	11.1	HvELF3
qHvDRR31-FT-2.1	2H	JHI-Hv50k-2016-91422	155.0	200469849	5.3	JHI-Hv50k-2016-71813	24.5	21559000	JHI-Hv50k-2016-102161	179.9	544572700	1.1	Lakhan	9.5	HvCEN
qHvDRR31-FT-5.2	5H	JHI-Hv50k-2016-338278	209.8	533639298	4.8	JHI-Hv50k-2016-338174	209.5	533435507	JHI-Hv50k-2016-338907	212.9	535802677	5.4	Lakhan	8.5	team5
qHvDRR31-FT-5.3	5H	JHI-Hv50k-2016-321854	171.3	500427524	5	JHI-Hv50k-2016-320649	169.1	496537582	JHI-Hv50k-2016-330440	192.3	518881864	1.1	IG128216	8.9	team5
HvDRR31															
qHvDRR32-FT-4.1	4H	JHI-Hv50k-2016-273301	202.5	604261236	5.5	JHI-Hv50k-2016-270337	184.4	598246191	JHI-Hv50k-2016-273301	202.5	604261236	4.7	IG128216	38.6	Vrn-H2
qHvDRR32-FT-2.1	2H	JHI-Hv50k-2016-99627	101.3	513466965	3.6	JHI-Hv50k-2016-91514	84.1	201408273	JHI-Hv50k-2016-103200	109.5	549570111	3.4	K10877	21.8	HvCEN
HvDRR32															
qHvDRR33-FT-2.1	2H	JHI-Hv50k-2016-73510	61.8	25802287	6	JHI-Hv50k-2016-71218	54.5	20825473	JHI-Hv50k-2016-75311	69.2	31264487	2.5	Georgie	29.1	Ppd-H1
qHvDRR34-FT-2.1	2H	JHI-Hv50k-2016-132317	289.6	637977625	3.9	JHI-Hv50k-2016-125068	223.5	624622312	JHI-Hv50k-2016-135634	311.4	644195578	4.6	K10877	41.2	HvAP2
qHvDRR35-FT-5.1	5H	JHI-Hv50k-2016-333666	253.4	524450825	5.1	JHI-Hv50k-2016-333265	250.7	523858991	SCRI_RS_148402	261.4	530490087	0.9	CM67	21.2	Vrn-H1
qHvDRR35-FT-2.1	2H	JHI-Hv50k-2016-99962	175.8	514746577	3.6	JHI-Hv50k-2016-86885	134.0	97901851	JHI-Hv50k-2016-104390	198.6	559662952	0.8	Lakhan	14.2	HvCEN
HvDRR35															
qHvDRR36-FT-4.1	4H	JHI-Hv50k-2016-273434	196.5	604293070	5	BOPA2_12_30476	189.5	602249110	JHI-Hv50k-2016-273928	198.9	604961427	2.1	HOR12830	32.7	Vrn-H2
qHvDRR37-FT-2.1	2H	SCRI_RS_207244	75.9	43626804	3.3	JHI-Hv50k-2016-77411	66.3	40933207	JHI-Hv50k-2016-80904	95.7	60696083	2.5	K10877	21.7	HvFT4
qHvDRR38-FT-2.1	2H	SCRI_RS_147230	363.3	633228850	4.2	JHI-Hv50k-2016-123934	348.2	622368414	JHI-Hv50k-2016-131622	378.4	637093530	2.6	HOR12830	22.6	HvAP2
qHvDRR39-FT-2.1	2H	SCRI_RS_121952	239.7	635204036	7.3	JHI-Hv50k-2016-126975	235.4	627838967	JHI-Hv50k-2016-131622	243.6	637093530	2.5	HOR12830	18.0	HvAP2
qHvDRR39-FT-2.2	2H	JHI-Hv50k-2016-69230	23.8	17261817	6.6	JHI-Hv50k-2016-67667	19.5	14076281	JHI-Hv50k-2016-73723	50.3	26372182	2.5	ItuNative	16.0	Ppd-H1
qHvDRR39-FT-2.3	2H	JHI-Hv50k-2016-94897	121.1	440899866	4.9	JHI-Hv50k-2016-91495	117.1	201420899	JHI-Hv50k-2016-98500	124.6	484522285	2.0	HOR12830	11.4	HvCEN
HvDRR39															
HvDRR40		NO QTL													
qHvDRR41-FT-2.1	2H	JHI-Hv50k-2016-73417	45.8	25879034	12.3	SCRI_RS_205712	41.1	23346149	JHI-Hv50k-2016-74225	49.0	27980386	2.5	K10693	35.5	Ppd-H1
qHvDRR41-FT-2.2	2H	SCRI_RS_141789	129.6	484678185	6.9	JHI-Hv50k-2016-96857	127.3	471271325	JHI-Hv50k-2016-100346	138.8	532815321	1.8	K10693	17.0	Qft.HEB25-2c
qHvDRR41-FT-7.1	7H	JHI-Hv50k-2016-460797	52.6	44881543	5.5	JHI-Hv50k-2016-459853	47.8	42283766	JHI-Hv50k-2016-461413	56.8	48866586	1.6	K10693	13.1	Vrn-H3
HvDRR41															
qHvDRR42-FT-2.1	2H	JHI-Hv50k-2016-72896	67.6	24497103	4	JHI-Hv50k-2016-72164	65.1	23156158	JHI-Hv50k-2016-74683	83.5	28819655	2.4	ItuNative	9.4	Ppd-H1
qHvDRR42-FT-3.1	3H	JHI-Hv50k-2016-196425	286.4	525404837	7.3	JHI-Hv50k-2016-193988	266.9	511021783	JHI-Hv50k-2016-197035	292.8	528466597	3.3	Ancap2	19.3	sld5

<i>qHvDRR42-FT-4.1</i>	4H	JHI-Hv50k-2016-253833	155.7	523801355	2.7	BOPA1_3127-273	141.6	483208363	JHI-Hv50k-2016-255019	162.3	531420971	1.9	Ancap2	6.1	<i>ari-q</i>
<i>qHvDRR42-FT-5.1</i>	5H	JHI-Hv50k-2016-338482	455.7	534377940	5.9	JHI-Hv50k-2016-337429	449.5	530982821	JHI-Hv50k-2016-339838	459.0	536729125	3.0	Ancap2	14.6	<i>Vrn-H1</i>
<i>HvDRR42</i>														67.8	
<i>qHvDRR43-FT-4.1</i>	4H	JHI-Hv50k-2016-268870	131.1	595132794	12	JHI-Hv50k-2016-268641	129.0	594360356	No more polymorphisms upstream of peak marker			10.9	Kombyne	36.6	
<i>qHvDRR44-FT-5.1</i>	5H	JHI-Hv50k-2016-334016	258.8	525535984	5.6	JHI-Hv50k-2016-331101	248.0	519493734	JHI-Hv50k-2016-339936	273	537016242	3.8	Kombyne	21.7	<i>Vrn-H1</i>
<i>qHvDRR44-FT-7.1</i>	7H	JHI-Hv50k-2016-459818	74.7	41807357	4.5	JHI-Hv50k-2016-458557	72.9	34116480	JHI-Hv50k-2016-460446	80.1	43517682	2.7	Kombyne	16.8	<i>Vrn-H3</i>
<i>HvDRR44</i>														34.8	
<i>qHvDRR45-FT-5.1</i>	5H	JHI-Hv50k-2016-337093	200.9	530329021	6.1	JHI-Hv50k-2016-327943	175.3	514628747	JHI-Hv50k-2016-343006	220.7	541947536	5.4	Kombyne	30.5	<i>Vrn-H1</i>
<i>qHvDRR46-FT-5.1</i>	5H	JHI-Hv50k-2016-335345	355.3	527249716	3.1	JHI-Hv50k-2016-333353	347.8	523824571	JHI-Hv50k-2016-355430	428.2	567924333	5.6	Kombyne	34.4	<i>Vrn-H1</i>
<i>qHvDRR47-FT-2.1</i>	2H	JHI-Hv50k-2016-73422	40.7	25877853	11.8	JHI-Hv50k-2016-72949	38.7	24597354	JHI-Hv50k-2016-73663	41.5	26107957	4.5	Sissy	27.0	<i>Ppd-H1</i>
<i>qHvDRR47-FT-4.1</i>	4H	SCRI_RS_221876	242.2	604259662	10.5	JHI-Hv50k-2016-271709	238.0	600927835	JHI-Hv50k-2016-276495	243.4	609268367	4.3	IG31424	23.5	<i>Vrn-H2</i>
<i>qHvDRR47-FT-5.1</i>	5H	SCRI_RS_193529	272.4	525928975	9.2	JHI-Hv50k-2016-333734	268.6	524587621	JHI-Hv50k-2016-337389	281.5	530890859	4.0	IG31424	19.9	<i>Vrn-H1</i>
<i>qHvDRR47-FT-7.1</i>	7H	JHI-Hv50k-2016-475698	200.0	187984054	0.6	JHI-Hv50k-2016-435161	0	2549430	JHI-Hv50k-2016-518458	360.9	627531040	0.9	Sissy	1.0	<i>Vrn-H3</i>
<i>HvDRR47</i>														62.4	
<i>qHvDRR48-FT-2.1</i>	2H	JHI-Hv50k-2016-75250	50.6	31093363	4.2	JHI-Hv50k-2016-72159	23.5	23156664	JHI-Hv50k-2016-76569	59.1	34867730	2.0	HOR1842	20.8	<i>Ppd-H1</i>

Supplementary Table 6: Summary of the results of the single population analysis for plant height. The information regarding the peak and the borders of the confidence interval of each QTL are reported. Chr represents the chromosome on which the QTL was detected, LOD the logarithm of odds, and PVE the percentage of variance explained by the QTL individually and in a simultaneous fit. The additive effect is given in cm.

QTL / Population	Chr	Peak		LOD	Start		Stop		Additive effect		Parent	PVE	Locus		
		Associated marker	Peak (cM)		Marker position (bp)	Start marker	Start (cM)	Start position (bp)	Stop marker	Stop (cM)	Stop position (bp)				
qHvDRR02-PH-2.1	2H	JHI-Hv50k-2016-132262	242.7	637974692	3.9	JHI-Hv50k-2016-127661	233.7	629444744	SCRI_RS_156155	254.8	644348170	2.8	HOR1842	8.2	HvAP2
qHvDRR02-PH-5.1	5H	JHI-Hv50k-2016-338436	216.9	534224386	7.4	SCRI_RS_130992	198.1	525431316	JHI-Hv50k-2016-339229	222.0	536164535	3.9	HOR1842	16.4	Vrn-H1
qHvDRR02-PH-3.1	3H	JHI-Hv50k-2016-207933	196.5	576804876	4.7	JHI-Hv50k-2016-205716	183.9	564905926	SCRI_RS_20592	216.2	589574347	3.2	IG31424	9.9	sdw1
qHvDRR02-PH-4.1	4H	JHI-Hv50k-2016-231100	44.1	16384199	3.5	JHI-Hv50k-2016-230639	37.1	13052112	JHI-Hv50k-2016-234652	71.1	35448323	2.6	IG31424	7.3	brh9
HvDRR02														41.6	
HvDRR03		NO QTL													
qHvDRR04-PH-2.1	2H	JHI-Hv50k-2016-116511	209.6	608449388	3.3	JHI-Hv50k-2016-72239	49.8	23346162	JHI-Hv50k-2016-122404	239.1	620783775	1.9	HOR1842	10.3	Ppd-H1
qHvDRR07-PH-2.1	2H	SCRI_RS_170337	46.0	27283212	11.1	JHI-Hv50k-2016-73663	44.3	26107957	JHI-Hv50k-2016-75042	50.1	30307054	2.7	Sissy	22.8	Ppd-H1
qHvDRR07-PH-3.1	3H	JHI-Hv50k-2016-205562	158.2	564609618	11.2	SCRI_RS_150944	152.6	560042502	SCRI_RS_169325	187.2	588226210	2.7	HOR7985	23	sdw1
qHvDRR07-PH-4.1	4H	JHI-Hv50k-2016-268537	124.1	592785835	3.0	SCRI_RS_141214	93.3	575753195	SCRI_RS_216855	138.4	598006884	1.3	Sissy	5.0	ari-q
qHvDRR07-PH-7.1	7H	JHI-Hv50k-2016-475138	129.4	137977116	6.3	JHI-Hv50k-2016-469069	121.3	74922565	BOPA2_12_30999	139.5	509069522	1.9	HOR7985	11.4	brh7
HvDRR07														66.8	
qHvDRR08-PH-2.1	2H	JHI-Hv50k-2016-72853	57.6	24508569	7.9	JHI-Hv50k-2016-71249	51.6	20862461	JHI-Hv50k-2016-73966	64.2	26842811	2.7	W23829/803911	16.5	Ppd-H1
qHvDRR08-PH-3.1	3H	JHI-Hv50k-2016-205257	223.6	563231300	8.1	JHI-Hv50k-2016-202880	211.0	554784656	JHI-Hv50k-2016-205550	225.4	564418824	2.6	HOR7985	17.0	sdw1
qHvDRR08-PH-4.1	4H	SCRI_RS_176669	135.2	566061970	6.8	JHI-Hv50k-2016-256420	120.7	541858127	JHI-Hv50k-2016-262688	146.9	575372062	2.5	W23829/803911	13.9	ari-q
qHvDRR08-PH-5.1	5H	JHI-Hv50k-2016-307515	118.1	430059350	4.1	JHI-Hv50k-2016-307465	116.2	429632399	JHI-Hv50k-2016-308926	146.4	441596516	1.8	W23829/803911	7.8	HvDep1
HvDRR08														64.5	
HvDRR09		NO QTL													
qHvDRR10-PH-3.1	3H	JHI-Hv50k-2016-205404	123.7	564118077	23.3	JHI-Hv50k-2016-205209	121.5	563172279	JHI-Hv50k-2016-205741	124.8	565023140	7.8	Sanalta	63.6	sdw1
qHvDRR10-PH-2.1	2H	JHI-Hv50k-2016-130123	189.2	633688209	4.4	JHI-Hv50k-2016-126337	181.7	626889809	JHI-Hv50k-2016-132236	197.9	637973669	2.7	W23829/803911	7.0	HvAP2
HvDRR10														72.8	
qHvDRR11-PH-2.1	2H	JHI-Hv50k-2016-135139	175.3	643345831	10.8	JHI-Hv50k-2016-130469	165.1	634659802	JHI-Hv50k-2016-138544	177.1	649502780	4.2	Sissy	21.2	HvAP2
qHvDRR11-PH-3.1	3H	JHI-Hv50k-2016-205774	112.8	567242962	17.9	JHI-Hv50k-2016-204079	107.3	558351096	JHI-Hv50k-2016-206527	113.6	569278995	6.1	Sanalta	42.2	sdw1
qHvDRR11-PH-2.2	2H	BOPA1_4833-420	136.9	617233959	1.6	JHI-Hv50k-2016-62455	5.1	5549885	JHI-Hv50k-2016-135139	175.3	643345831	1.5	Sanalta	2.5	HvCEN
qHvDRR11-PH-7.1	7H	JHI-Hv50k-2016-464308	76.8	55406818	3.8	BOPA2_12_10368	60.0	49964856	JHI-Hv50k-2016-466699	81.2	63672450	2.2	Sanalta	6.2	brh7
qHvDRR11-PH-7.2	7H	JHI-Hv50k-2016-505814	160.3	601772379	3.8	JHI-Hv50k-2016-500177	142.7	590201204	JHI-Hv50k-2016-513495	185.0	618285111	2.2	Sanalta	6.3	mnd5
HvDRR11														68.5	
HvDRR12		NO QTL													
qHvDRR13-PH-3.1	3H	JHI-Hv50k-2016-164723	66.7	44836033	4.8	SCRI_RS_177084	45.5	20531937	JHI-Hv50k-2016-181744	73.9	418703261	2.0	SprattArcher	17.7	sdw1
qHvDRR13-PH-6.1	6H	JHI-Hv50k-2016-383599	69.0	36341989	3.6	JHI-Hv50k-2016-381798	61.1	31180257	BOPA1_851-804	78.9	413234840	1.7	SprattArcher	12.6	ert-k
qHvDRR13-PH-7.1	7H	JHI-Hv50k-2016-458766	53.1	34687802	3.6	JHI-Hv50k-2016-452755	34.8	21937819	JHI-Hv50k-2016-461192	59.6	47753959	1.6	SprattArcher	12.8	Vrn-H3
HvDRR13														54.2	
qHvDRR14-PH-3.1	3H	BOPA1_ABC07496-pHv1343-02	177.0	562581369	3.8	JHI-Hv50k-2016-204079	172.1	558351096	JHI-Hv50k-2016-206595	183.3	570352909	2.0	HOR8160	20.8	sdw1
qHvDRR15-PH-3.1	3H	JHI-Hv50k-2016-183463	98.0	443119491	3.4	JHI-Hv50k-2016-163896	87.9	35406401	JHI-Hv50k-2016-201887	139.0	551776522	1.5	SprattArcher	28.6	ari-a
qHvDRR16-PH-2.1	2H	JHI-Hv50k-2016-131048	268.9	635724995	7.9	JHI-Hv50k-2016-129807	264.6	633397466	JHI-Hv50k-2016-134802	287.0	642978551	4.2	K10693	26.0	HvAP2
qHvDRR16-PH-2.2	2H	BOPA2_12_30872	47.5	25879588	5.1	JHI-Hv50k-2016-72291	41.4	23609188	JHI-Hv50k-2016-74683	68.0	28819655	2.9	K10693	15.4	Ppd-H1
HvDRR16														48.6	
HvDRR17		NO QTL													
qHvDRR18-PH-7.1	7H	JHI-Hv50k-2016-454940	37.1	27942550	3.5	JHI-Hv50k-2016-452259	27.4	19265644	BOPA2_12_30219	41.2	32279583	2.6	HOR383	18.4	brh1
qHvDRR19-PH-2.1	2H	JHI-Hv50k-2016-98990	103.6	502130218	3.6	JHI-Hv50k-2016-78593	72.0	45543263	BOPA2_12_31383	113.9	544622565	1.7	HOR383	14.1	HvCEN
qHvDRR19-PH-3.1	3H	JHI-Hv50k-2016-203690	192.2	557107513	2.9	JHI-Hv50k-2016-163568	58.5	33364832	JHI-Hv50k-2016-224720	290.4	616302985	1.5	HOR383	11.3	sdw1
HvDRR19														36.2	
qHvDRR20-PH-7.1	7H	JHI-Hv50k-2016-455231	29.6	28232124	3.7	JHI-Hv50k-2016-450900	16.5	17063873	JHI-Hv50k-2016-460446	45.9	43517682	2.8	HOR383	15.9	Vrn-H3
qHvDRR21-PH-7.1	7H	JHI-Hv50k-2016-481738	135.0	323336489	6.9	BOPA1_9582-772	128.5	160630477	BOPA2_12_30213	140.7	445207235	4.8	AnCap2	31.5	brh7
qHvDRR21-PH-7.2	7H	JHI-Hv50k-2016-459234	65.5	39788787	3.1	SCRI_RS_98829	39.1	17593266	JHI-Hv50k-2016-465016	88.1	58991477	3.0	AnCap2	12.7	Vrn-H3

HvDRR21															43.9
qHvDRR22-PH-7.1	7H	JHI-Hv50k-2016-479763	119.3	280304048	20.8	BOPA2_12_30344	117.3	172307219	JHI-Hv50k-2016-483509	121.2	386505847	5.5	HOR383	40.7	brh7
qHvDRR22-PH-1.1	1H	SCRI_RS_147318	214.1	510414373	2.4	JHI-Hv50k-2016-36461	126.9	437726587	JHI-Hv50k-2016-58169	220.7	516001848	1.6	HOR383	2.8	eam8
qHvDRR22-PH-2.1	2H	JHI-Hv50k-2016-93257	85.2	38583711	5.9	JHI-Hv50k-2016-83002	66.5	73195772	JHI-Hv50k-2016-100049	93.6	518890224	2.4	HOR383	7.5	HvCEN
qHvDRR22-PH-7.2	7H	JHI-Hv50k-2016-460104	63.1	43288076	7.6	SCRI_RS_194080	53.0	30808856	JHI-Hv50k-2016-461389	69.0	48714131	2.8	HOR383	10.1	Vrn-H3
qHvDRR22-PH-4.1	4H	JHI-Hv50k-2016-242645	64.4	406709482	6.4	JHI-Hv50k-2016-234536	54.4	34760445	JHI-Hv50k-2016-253745	79.2	523027560	2.5	Namhaebori	8.3	brh9
qHvDRR22-PH-6.1	6H	SCRI_RS_118381	57.5	161943460	4.3	JHI-Hv50k-2016-380005	34.5	25548365	JHI-Hv50k-2016-416777	97.5	521286626	2.1	Namhaebori	5.3	ert-k
HvDRR22															78.5
qHvDRR23-PH-7.1	7H	JHI-Hv50k-2016-479764	115.9	280303948	7.3	BOPA1_8582-772	106.4	160630477	SCRI_RS_235584	129.3	435303585	4.3	IG128104	32.4	brh7
qHvDRR24-PH-3.1	3H	JHI-Hv50k-2016-154007	20.0	8888089	5.1	JHI-Hv50k-2016-153317	12.3	6784714	JHI-Hv50k-2016-156575	32.0	13791261	3.9	IG128104	26.2	
qHvDRR24-PH-1.1	1H	JHI-Hv50k-2016-34594	105.9	425018349	3.4	JHI-Hv50k-2016-15407	56.1	22087681	SCRI_RS_188360	116.3	447057229	3.1	IG128104	16.4	ari-t
HvDRR24															41.2
qHvDRR25-PH-2.1	2H	BOPA1_2646-1277	48.8	28086868	5.5	JHI-Hv50k-2016-67059	15.9	13308057	JHI-Hv50k-2016-75638	55.9	33040970	3.1	W23829/803911	23.1	Ppd-H1
qHvDRR25-PH-3.1	3H	JHI-Hv50k-2016-205406	152.4	564114289	4.6	JHI-Hv50k-2016-149285	0	1799813	BOPA2_12_30081	162.7	567161897	2.8	Unumli-Arpa	18.5	sdw1
HvDRR25															43.5
qHvDRR26-PH-2.1	2H	BOPA2_12_30396	217.9	634394889	5.8	BOPA1_4833-420	196.3	617233959	JHI-Hv50k-2016-134808	222.9	642978976	4.4	Unumli-Arpa	22.0	HvAP2
qHvDRR26-PH-3.1	3H	JHI-Hv50k-2016-186194	87.4	462670492	4.9	SCRI_RS_238649	64.1	42458039	JHI-Hv50k-2016-188213	90.4	479908157	3.8	Sanalta	18.1	HvBR1
qHvDRR26-PH-4.1	4H	JHI-Hv50k-2016-232799	67.4	24125272	5.4	JHI-Hv50k-2016-231904	55.8	19763786	JHI-Hv50k-2016-234474	74.5	34288184	4.1	Sanalta	20.1	brh9
qHvDRR26-PH-2.2	2H	JHI-Hv50k-2016-109198	161.3	582019742	2.5	SCRI_RS_66401	28.1	20871415	JHI-Hv50k-2016-115240	171.8	605942036	2.7	Sanalta	8.0	Ppd-H1
HvDRR26															65.4
qHvDRR27-PH-2.1	2H	JHI-Hv50k-2016-71249	33.0	20862461	4.4	JHI-Hv50k-2016-67059	14.4	13308057	JHI-Hv50k-2016-73487	43.4	25810005	2.5	SprattArcher	19.6	Ppd-H1
qHvDRR28-PH-2.1	2H	JHI-Hv50k-2016-73692	45.1	26152710	10.6	JHI-Hv50k-2016-72530	40.1	23831226	BOPA1_8787-1459	50.4	30044023	3.3	HOR8160	36.5	Ppd-H1
qHvDRR28-PH-6.1	6H	JHI-Hv50k-2016-408338	89.3	461666718	3.2	JHI-Hv50k-2016-382587	68.3	33857352	SCRI_RS_207284	97.5	511223129	1.7	Unumli-Arpa	8.8	ert-k
HvDRR28															55.9
qHvDRR29-PH-2.1	2H	BOPA2_12_30897	146.2	570803230	8.9	SCRI_RS_17898	139.4	561858220	JHI-Hv50k-2016-108681	152.3	574833138	3.6	HOR8160	23.1	ert-j
qHvDRR29-PH-2.2	2H	JHI-Hv50k-2016-73780	43.4	26380311	5.9	JHI-Hv50k-2016-73052	40.1	25023220	JHI-Hv50k-2016-74407	47.5	28202988	2.8	HOR8160	14.4	Ppd-H1
qHvDRR29-PH-6.1	6H	JHI-Hv50k-2016-395685	73.8	289251842	3.8	JHI-Hv50k-2016-378164	38.2	19699707	BOPA2_12_10803	95.9	396967363	2.2	IG128216	8.8	ert-k
HvDRR29															48.3
qHvDRR30-PH-2.1	2H	JHI-Hv50k-2016-67694	20.0	14065564	4.3	JHI-Hv50k-2016-59032	0	566575	JHI-Hv50k-2016-73871	49.0	26542729	2.5	Georgie	12.9	Ppd-H1
qHvDRR30-PH-4.1	4H	SCRI_RS_98443	49.0	13871241	4.8	JHI-Hv50k-2016-230452	40.9	11788248	JHI-Hv50k-2016-231162	52.5	16680700	2.6	Georgie	14.8	QHT4H.26
HvDRR30															25.8
qHvDRR31-PH-1.1	1H	JHI-Hv50k-2016-58045	269.8	516079896	5.6	SCRI_RS_156009	264.8	510473721	JHI-Hv50k-2016-58045	269.8	516079896	2.6	IG128216	17.0	eam8
qHvDRR31-PH-5.1	5H	JHI-Hv50k-2016-335543	201.8	527185413	3.4	JHI-Hv50k-2016-324907	181.8	508775487	JHI-Hv50k-2016-336814	204.1	529367527	2.0	IG128216	9.9	Vrn-H1
HvDRR31															23.6
HvDRR32 NO QTL															
qHvDRR33-PH-2.1	2H	JHI-Hv50k-2016-75950	93.9	33607845	6.9	JHI-Hv50k-2016-73285	60.7	25434173	BOPA2_12_10847	100.6	37534650	3.1	Georgie	32.7	Ppd-H1
qHvDRR34-PH-2.1	2H	SCRI_RS_55841	250.2	629407561	4.0	JHI-Hv50k-2016-125068	223.5	624622312	JHI-Hv50k-2016-132611	301.9	638549040	5.3	Lakhan	42.1	HvAP2
HvDRR35 NO QTL															
HvDRR36 NO QTL															
qHvDRR37-PH-2.1	2H	JHI-Hv50k-2016-131048	285.7	635724995	5.8	JHI-Hv50k-2016-123934	276.0	622368414	JHI-Hv50k-2016-132428	319.2	638148957	4.1	CM67	29.6	HvAP2
qHvDRR37-PH-6.1	6H	JHI-Hv50k-2016-401443	111.5	377513797	3.9	JHI-Hv50k-2016-383530	84.7	36126314	JHI-Hv50k-2016-407417	131.5	449902392	3.1	K10877	18.4	ert-k
HvDRR37															44.5
qHvDRR38-PH-2.1	2H	SCRI_RS_147230	363.3	633228850	10.0	JHI-Hv50k-2016-126337	354.7	626889809	JHI-Hv50k-2016-131048	372.7	635724995	6.5	CM67	45.4	HvAP2
qHvDRR39-PH-2.1	2H	JHI-Hv50k-2016-130184	238.8	633708485	14.1	JHI-Hv50k-2016-128757	237.5	631502800	JHI-Hv50k-2016-131622	243.6	637093530	5.2	ItuNative	41.0	HvAP2
qHvDRR39-PH-2.2	2H	JHI-Hv50k-2016-73618	41.6	25941826	4.5	JHI-Hv50k-2016-71733	35.3	21290528	JHI-Hv50k-2016-73812	53.4	26541621	2.7	ItuNative	10.5	Ppd-H1
HvDRR39															52.3
HvDRR40 NO QTL															
qHvDRR41-PH-1.1	1H	BOPA2_12_30191	147.4	485117907	3.4	SCRI_RS_188360	112.3	447057229	SCRI_RS_192730	155.1	488343190	2.0	K10693	4.4	ert-b

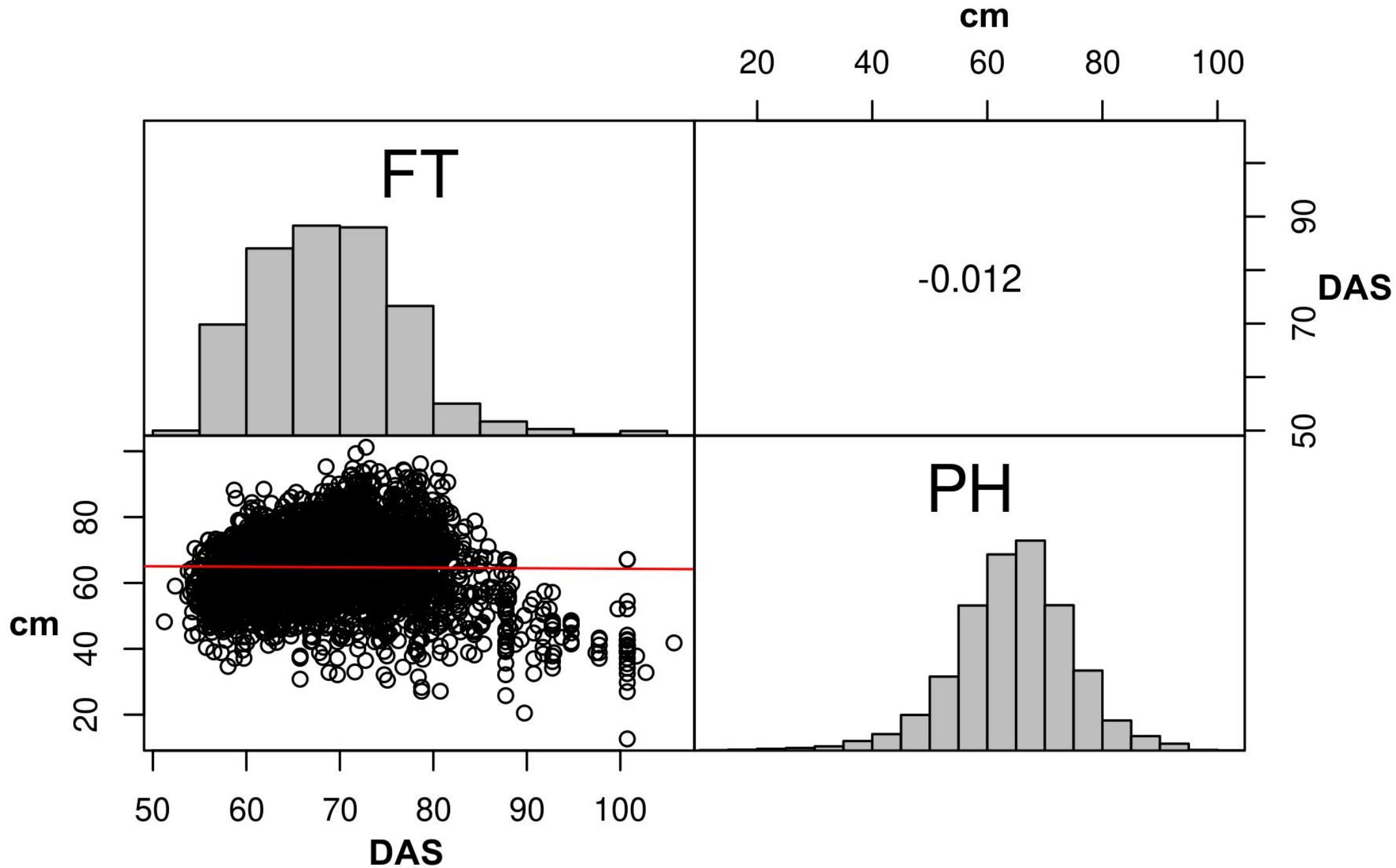
Supplementary Table 7: Prediction ability of the genomic SNP marker data for flowering time and plant height without cross-validation (CV) and with five fold cross-validation across all sub-populations. SD indicates the standard deviation.

	Prediction ability across sub-populations		SD
	Without CV	5 Fold CV 20 runs	
Flowering time	0.89	0.766	0.015
Plant height	0.874	0.773	0.014

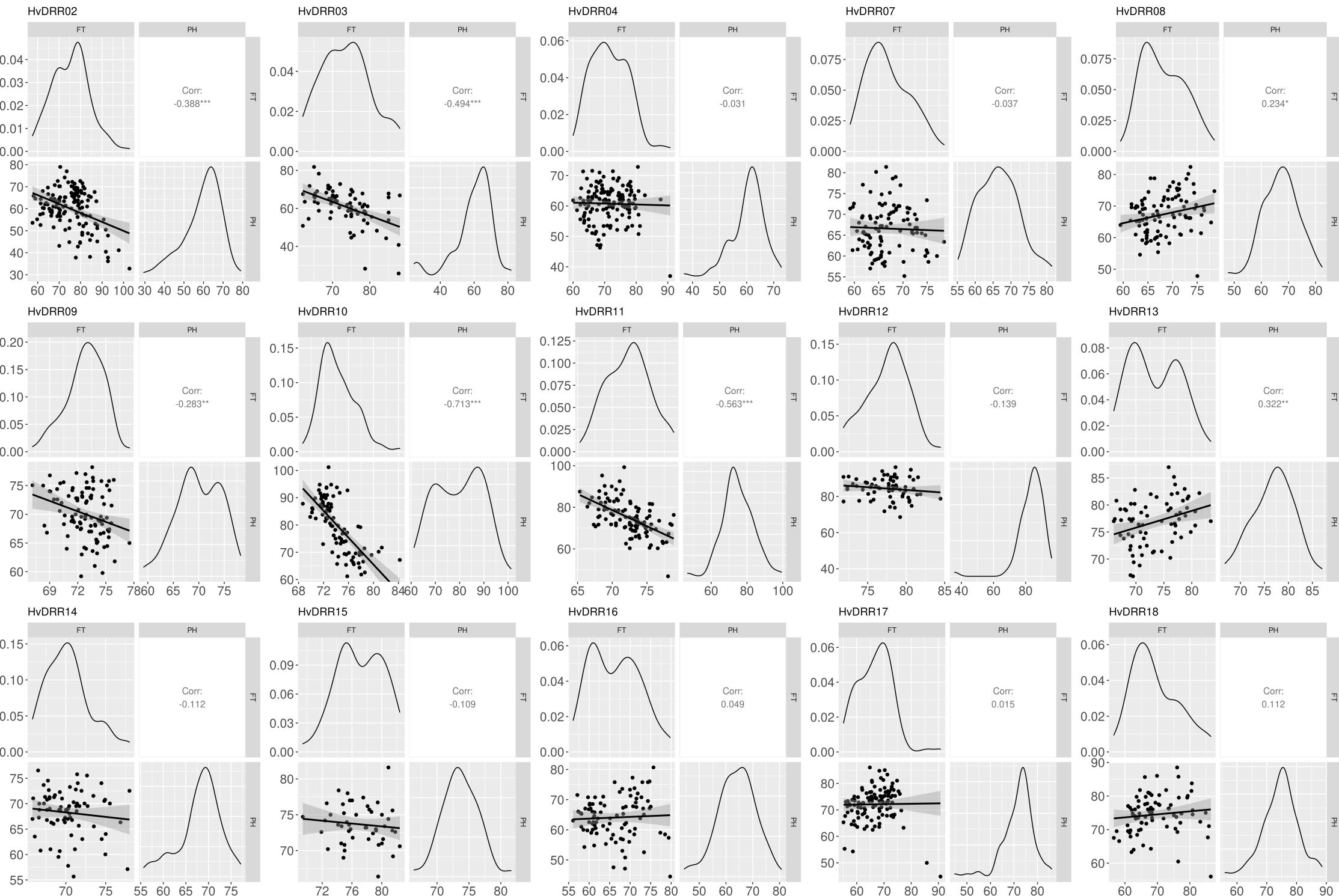
Supplementary Table 8: Genome-wide epistatic loci detected in the HvDRR population. LOD indicates the logarithm of odds of the interaction.

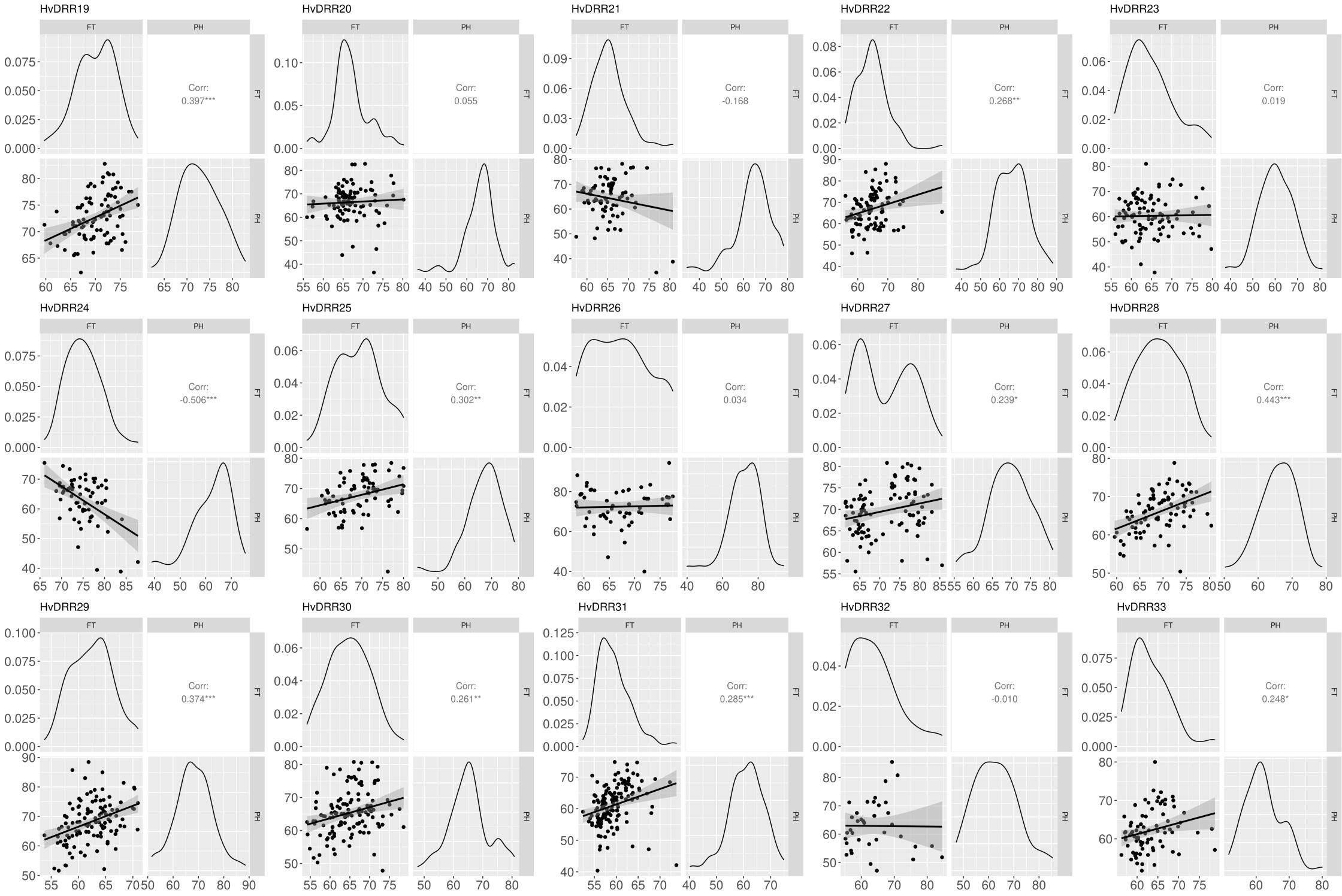
Trait	Population	Chromosome locus 1	Position locus 1 (cM)	Chromosome locus 2	Position locus 2 (cM)	LOD	p-value
Flowering time	HvDRR13	5H	107.5	6H	87.5	6.74345	0.006
Plant height	HvDRR02	5H	205.0	7H	72.5	11.5203	0
Plant height	HvDRR09	1H	172.5	7H	97.5	4.273374	0.042
Plant height	HvDRR17	1H	2.5	1H	7.5	4.125857	0.046
Plant height	HvDRR34	4H	165.0	5H	180.0	4.260018	0.034
Plant height	HvDRR34	4H	160.0	7H	215.0	4.484935	0.022
Plant height	HvDRR41	1H	122.5	5H	225.0	3.985981	0.042
Plant height	HvDRR44	2H	75.0	5H	262.5	11.46462	0.002
Plant height	HvDRR44	5H	262.5	7H	195.0	11.14014	0.002
Plant height	HvDRR45	1H	85.0	5H	197.5	5.781251	0.032

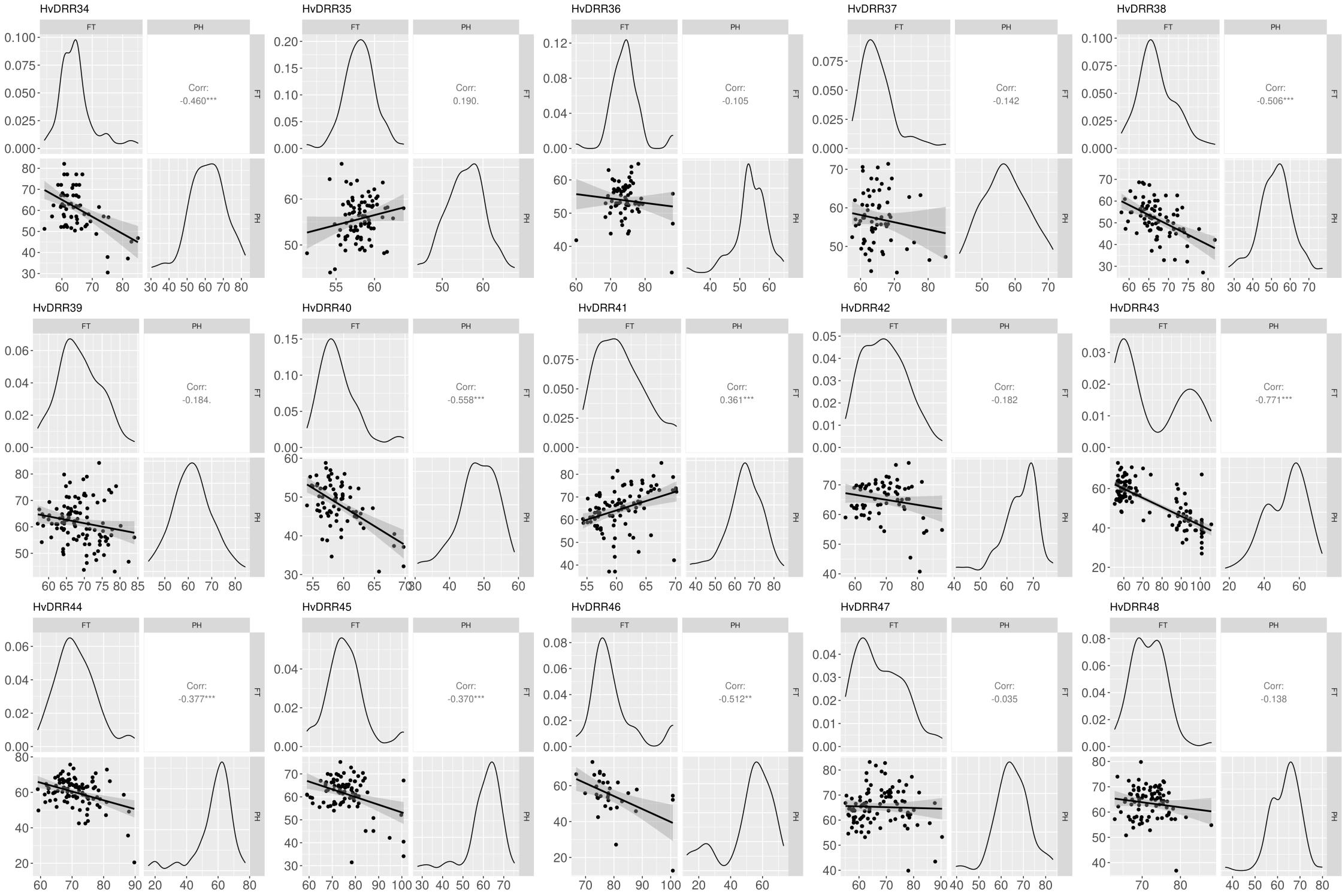
Supplementary Table 9: Lists of primers used to amplify *Ppd-H1* and *Vrn-H2*. The *Ppd-H1* primers are listed for each parental inbred. N-ter primers were used to amplify the start while the C-ter primers the end of the coding sequences. The primers pairs marked with * amplified the whole gene. Primers used to amplify *Vrn-H2* have the same nomenclature as described in Karsai *et al.* (2005).

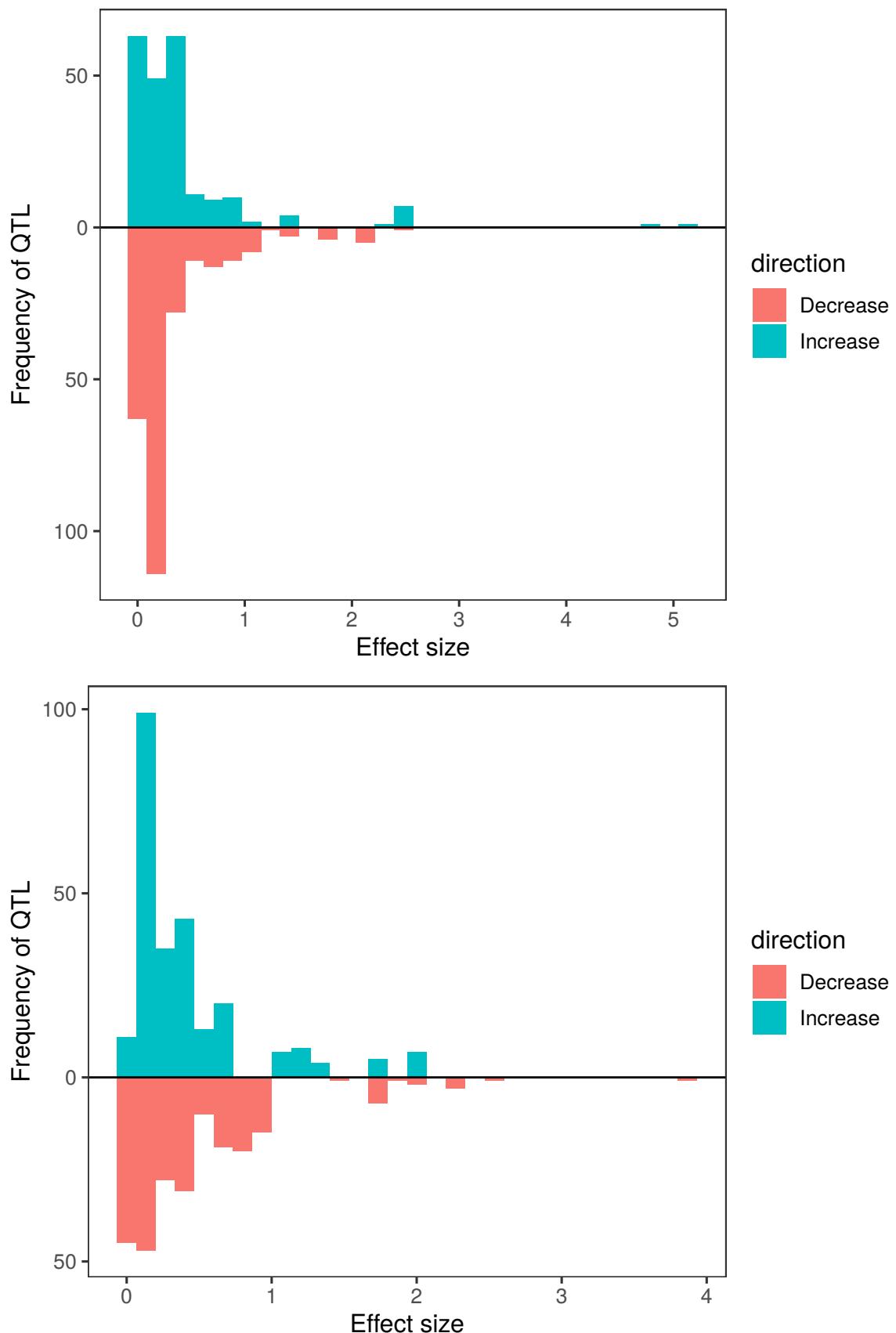

Parental inbred	N-ter		Middle 1st		Middle 2nd		C-ter	
	Forward primer	Reverse primer	Forward primer	Reverse prime	Forward primer	Reverse primer	Forward primer	Reverse primer
Anc2p2	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	ATCGAATCACCGTTCAATC*	TCCACACGCTGTAATGT*
CM67	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TGGTGACCAAGCCCTGT	AGCACAAATACTCACTCATACTGC
Georgie	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	CTGAACAAAAGCTGCTGT	GCCGGCATGTTCTATGGTAG
HOR12830	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCAGC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TGGTGACCAAGCCCTGT	AGCACAAATACTCACTCATACTGC
HOR1842	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TCCGTATGTTGCATACTAAC	CTCCCAATGATCCATGGCC
HOR383	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TCCGTATGTTGCATACTAAC	CTCCCAATGATCCATGGCC
HOR7985	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TGGTGACCAAGCCCTGT	AGCACAAATACTCACTCATACTGC
HOR8160	CTCTGTTCCGCTGATTGG	CGAGCACATCACTGGAAACG	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TCCGTATGTTGCATACTAAC	CTCCCAATGATCCATGGCC
IG128104	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TCCGTATGTTGCATACTAAC	CTCCCAATGATCCATGGCC
IG128216	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TCCGTATGTTGCATACTAAC	CTCCCAATGATCCATGGCC
IG31424	CTCTGTTCCGCTGATTGG	CGAGCACATCACTGGAAACG	CAAATGTTATCTGCTCAGC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TGGTGACCAAGCCCTGT	AGCACAAATACTCACTCATACTGC
ItuNat ve	CTCTGTTCCGCTGATTGG	CGAGCACATCACTGGAAACG	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	CCAAATGTTGAGCTGCTGA	TCTTCAGGAGATGAGACGAG
K10693	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TCCGTATGTTGCATACTAAC	CTCCCAATGATCCATGGCC
K10877	CTCTGTTCCGCTGATTGG	CGAGCACATCACTGGAAACG	CAAATGTTATCTGCTCAGC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	ATCGAATCACCGTTCAATC*	TCCACACGCTGTAATGT*
Kharsila	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TCCGTATGTTGCATACTAAC	CTCCCAATGATCCATGGCC
Kombyne	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TCCGTATGTTGCATACTAAC	CTCCCAATGATCCATGGCC
Lakhan	CTCTGTTCCGCTGATTGG	CGAGCACATCACTGGAAACG	CAAATGTTATCTGCTCAGC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	CAGGAGGAACAGAGGAACGT	TCTTCAGGAGATGAGACGAG
Namhaebori	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TGGTGACCAAGCCCTGT	AGCACAAATACTCACTCATACTGC
Sanalta	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TCCGTATGTTGCATACTAAC	CTCCCAATGATCCATGGCC
Sissy	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TCCGTATGTTGCATACTAAC	CTCCCAATGATCCATGGCC
Sprat Archer	ATCGAATCACCGTTCAATC	TACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCAGC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TCCGTATGTTGCATACTAAC	CTCCCAATGATCCATGGCC
Unumli-Arpa	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TCCGTATGTTGCATACTAAC	CTCCCAATGATCCATGGCC
W23829/803911	ATCGAATCACCGTTCAATC	GACACCATCAGAGATAGTAAC	CAAATGTTATCTGCTCACC	CGCACACATATTGTACCTTG	AGATGCTCTTAACGTCTCT	ACCCATTCTTCGCTGCTG	TCCGTATGTTGCATACTAAC	CTCCCAATGATCCATGGCC

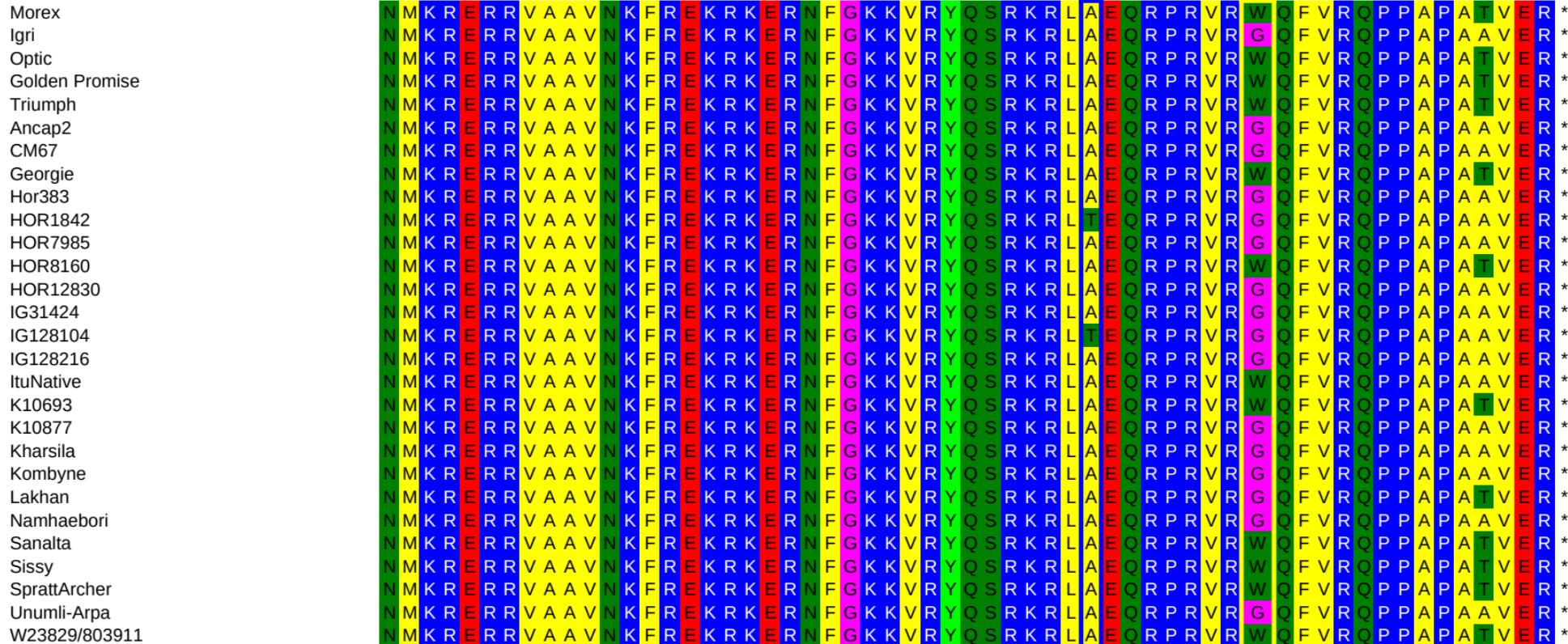
Primer name	Primer sequence
HvZCCT.06F	CCTAGTTAAAACATATATCCATAGAGC
HvZCCT.07R	GATCGTTGCGTTGCTAATAGTG
HvZCCT.HcF	CACCATCGCATGATGCAC
HvZCCT.HcR	TCATATGGCGAAGCTGGAG

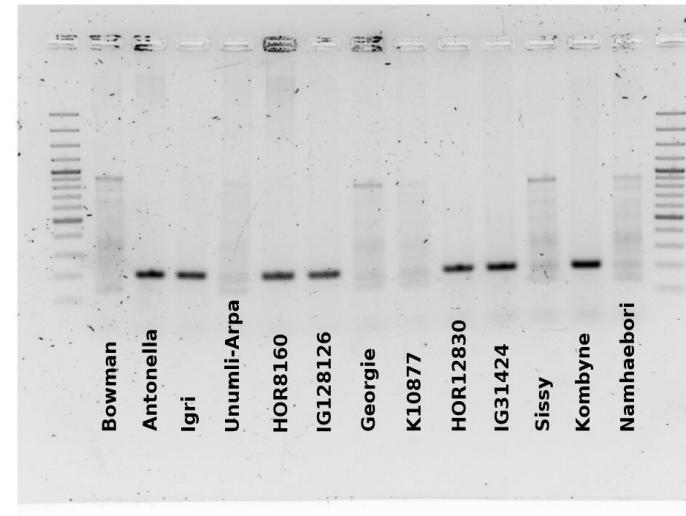
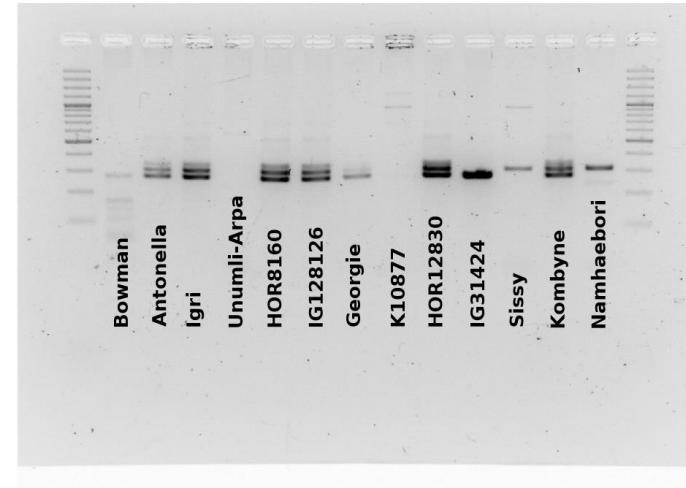

Supplementary Table 10: List of candidate genes in the confidence interval of selected QTL that carried a polymorphism among the parental lines. IN/DEL indicates an insertion or a deletion, SV indicates predicted structural variants.

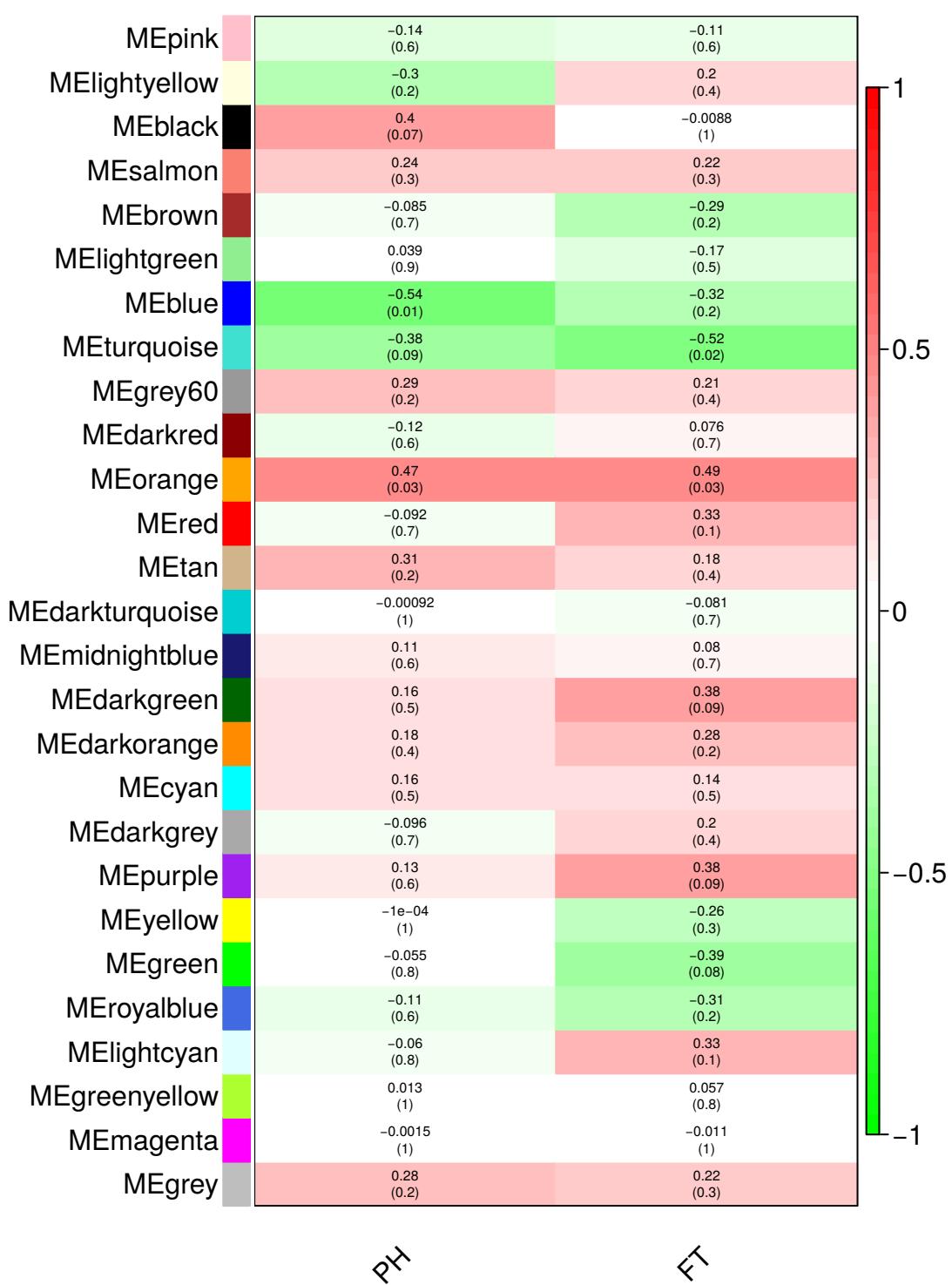

Trait	QTL	Gene name	Annotation	Polymorphism	Start (bp)	End (bp)
Flowering time	<i>qHvDRR02-FT-5.1</i>	HORVU.MOREX.r3.5HG0511790	WRKY transcription factor	IN/DEL	529688151	529692066
Flowering time	<i>qHvDRR28-FT-2.2</i>	HORVU.MOREX.r3.2HG0170150	pseudo-response regulator 3	SNP	489043031	489043723
Flowering time	<i>qHvDRR28-FT-2.2</i>	HORVU.MOREX.r3.2HG0170460	Ethylene responsive transcription factor	SV	491338258	491338785
Flowering time	<i>qHvDRR28-FT-2.2</i>	HORVU.MOREX.r3.2HG0172990	Receptor kinase-like protein	IN/DEL	508602510	508608623
Flowering time	<i>qHvDRR28-FT-2.2</i>	HORVU.MOREX.r3.2HG0173600	Receptor-like kinase	SNP	513985255	513987841
Flowering time	<i>qHvDRR28-FT-2.2</i>	HORVU.MOREX.r3.2HG0173720	F-box protein	SNP	514884459	514886953
Flowering time	<i>qHvDRR41-FT-2.2</i>	HORVU.MOREX.r3.2HG0172990	Receptor kinase-like protein	SNP	508602510	508608623
Flowering time	<i>qHvDRR41-FT-2.2</i>	HORVU.MOREX.r3.2HG0173600	Receptor-like kinase	IN/DEL	513985255	513987841
Flowering time	<i>qHvDRR41-FT-2.2</i>	HORVU.MOREX.r3.2HG0173720	F-box protein	SNP	514884459	514886953
Flowering time	<i>qHvDRR42-FT-3.1</i>	HORVU.MOREX.r3.3HG0294500	F-box family protein	IN/DEL	514548165	514552750
Flowering time	<i>qHvDRR42-FT-3.1</i>	HORVU.MOREX.r3.3HG0295240	Transcription factor	SNP	518705563	518707116
Plant height	<i>qHvDRR18-PH-7.1</i>	HORVU.MOREX.r3.7HG0647440	Cytochrome P450 family protein, expressed	IN/DEL	24114355	24116823
Plant height	<i>qHvDRR18-PH-7.1</i>	HORVU.MOREX.r3.7HG0650260	WRKY family transcription factor	IN/DEL	30228811	30233849
Plant height	<i>qHvDRR21-PH-7.1</i>	HORVU.MOREX.r3.7HG0679760	Basic helix-loop-helix transcription factor	IN/DEL	174290744	174293655
Plant height	<i>qHvDRR21-PH-7.1</i>	HORVU.MOREX.r3.7HG0679780	ETHYLENE INSENSITIVE 3-like 3 protein	IN/DEL	174906435	174909757
Plant height	<i>qHvDRR21-PH-7.1</i>	HORVU.MOREX.r3.7HG0679980	Squamoses promoter binding protein	IN/DEL	175604764	175609951
Plant height	<i>qHvDRR21-PH-7.1</i>	HORVU.MOREX.r3.7HG0681550	Auxin response factor	IN/DEL	186801101	186809084
Plant height	<i>qHvDRR21-PH-7.1</i>	HORVU.MOREX.r3.7HG0685230	Ethylene-responsive transcription factor	IN/DEL	214418007	214419708
Plant height	<i>qHvDRR21-PH-7.1</i>	HORVU.MOREX.r3.7HG0685870	Ankyrin repeat domain containing protein	IN/DEL	217930102	217934698
Plant height	<i>qHvDRR21-PH-7.1</i>	HORVU.MOREX.r3.7HG0687530	F-box protein	SNP	237430504	237431780
Plant height	<i>qHvDRR21-PH-7.1</i>	HORVU.MOREX.r3.7HG0692330	Basic helix-loop-helix transcription factor	SNP	287414769	287415368
Plant height	<i>qHvDRR21-PH-7.1</i>	HORVU.MOREX.r3.7HG0693000	Receptor-like protein kinase 1	IN/DEL	298396043	298396558
Plant height	<i>qHvDRR21-PH-7.1</i>	HORVU.MOREX.r3.7HG0695760	Cytochrome P450 family protein	SNP	335129415	335134705
Plant height	<i>qHvDRR21-PH-7.1</i>	HORVU.MOREX.r3.7HG0701240	Receptor-like kinase	SNP	395316354	395317058
Plant height	<i>qHvDRR21-PH-7.1</i>	HORVU.MOREX.r3.7HG0706930	F-box protein	SV	441359842	441361274
Plant height	<i>qHvDRR22-PH-7.1</i>	HORVU.MOREX.r3.7HG0679760	Basic helix-loop-helix transcription factor	SV	174290744	174293655
Plant height	<i>qHvDRR22-PH-7.1</i>	HORVU.MOREX.r3.7HG0681550	Auxin response factor	IN/DEL	186801101	186809084
Plant height	<i>qHvDRR22-PH-7.1</i>	HORVU.MOREX.r3.7HG0684710	Leucine-rich repeat receptor-like protein kinase	IN/DEL	211389528	211390699
Plant height	<i>qHvDRR22-PH-7.1</i>	HORVU.MOREX.r3.7HG0685230	Ethylene-responsive transcription factor	IN/DEL	214418007	214419708
Plant height	<i>qHvDRR22-PH-7.1</i>	HORVU.MOREX.r3.7HG0685360	Receptor protein kinase, putative	IN/DEL	215316327	215319934
Plant height	<i>qHvDRR22-PH-7.1</i>	HORVU.MOREX.r3.7HG0685870	Ankyrin repeat domain containing protein	SNP	217520399	217520773
Plant height	<i>qHvDRR22-PH-7.1</i>	HORVU.MOREX.r3.7HG0687530	F-box protein	SNP	217930102	217934698
Plant height	<i>qHvDRR22-PH-7.1</i>	HORVU.MOREX.r3.7HG0692330	Basic helix-loop-helix transcription factor	SNP	237430504	237431780
Plant height	<i>qHvDRR22-PH-7.1</i>	HORVU.MOREX.r3.7HG0693000	Receptor-like protein kinase 1	IN/DEL	298396043	298396558
Plant height	<i>qHvDRR22-PH-7.1</i>	HORVU.MOREX.r3.7HG0695760	Cytochrome P450 family protein	SNP	335129415	335134705
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0679350	Leucine-rich repeat receptor-like protein kinase family	IN/DEL	171303078	171304775
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0679760	Basic helix-loop-helix transcription factor	IN/DEL	174290744	174293655
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0679780	ETHYLENE INSENSITIVE 3-like 3 protein	IN/DEL	174906435	174909757
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0681550	Auxin response factor	IN/DEL	186801101	186809084
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0684710	Leucine-rich repeat receptor-like protein kinase	IN/DEL	211389528	211390699
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0685230	Ethylene-responsive transcription factor	IN/DEL	214418007	214419708
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0685360	Receptor protein kinase, putative	IN/DEL	215316327	215319934
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0685720	Ankyrin repeat domain containing protein	SNP	217520399	217520773
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0685870	F-box protein	SNP	217930102	217934698
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0687530	Basic helix-loop-helix transcription factor	IN/DEL	237430504	237431780
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0692330	Receptor-like protein kinase 1	IN/DEL	298396043	298396558
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0693000	Cytochrome P450 family protein	SNP	335129415	335134705
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0695760	Leucine-rich repeat receptor-like protein kinase family	IN/DEL	171303078	171304775
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0701080	Basic helix-loop-helix transcription factor	IN/DEL	174290744	174293655
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0701240	ETHYLENE INSENSITIVE 3-like 3 protein	IN/DEL	174906435	174909757
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0702010	Auxin response factor	IN/DEL	186801101	186809084
Plant height	<i>qHvDRR23-PH-7.1</i>	HORVU.MOREX.r3.7HG0704030	Leucine-rich repeat receptor-like protein kinase	IN/DEL	211389528	211390699
Plant height	<i>qHvDRR24-PH-3.1</i>	HORVU.MOREX.r3.7HG0222140	Ethylene-responsive transcription factor	IN/DEL	214418007	214419708
Plant height	<i>qHvDRR24-PH-3.1</i>	HORVU.MOREX.r3.7HG0222500	Receptor protein kinase, putative	IN/DEL	215316327	215319934
Plant height	<i>qHvDRR24-PH-3.1</i>	HORVU.MOREX.r3.7HG0224910	Ankyrin repeat domain containing protein	SNP	217520399	217520773
Plant height	<i>qHvDRR24-PH-3.1</i>	HORVU.MOREX.r3.7HG0225310	F-box protein	IN/DEL	217930102	217934698
Plant height	<i>qHvDRR26-PH-4.1</i>	HORVU.MOREX.r3.4HG0340090	Basic helix-loop-helix transcription factor	IN/DEL	237430504	237431780
Plant height	<i>qHvDRR29-PH-2.1</i>	HORVU.MOREX.r3.2HG0182430	Receptor-like protein kinase 1	IN/DEL	298396043	298396558
Plant height	<i>qHvDRR29-PH-2.1</i>	HORVU.MOREX.r3.2HG0184300	Cytochrome P450 family protein	SNP	335129415	335134705
Plant height	<i>qHvDRR31-PH-1.1</i>	HORVU.MOREX.r3.1HG0094840	MYB transcription factor	IN/DEL	393617557	393619314
Plant height	<i>qHvDRR47-PH-2.1</i>	HORVU.MOREX.r3.2HG0110400	Receptor-like kinase	IN/DEL	395316354	395317058
Plant height	<i>qHvDRR47-PH-2.1</i>	HORVU.MOREX.r3.2HG0111100	BHLH transcription factor	IN/DEL	402393931	402398482
Plant height	<i>qHvDRR47-PH-2.1</i>	HORVU.MOREX.r3.2HG0111780	Leucine-rich repeat (LRR) family protein	IN/DEL	418434701	418435006
Plant height	<i>qHvDRR47-PH-2.1</i>	HORVU.MOREX.r3.2HG0111790	Abscisic acid-deficient 4	SNP	7879841	7881157
Plant height	<i>qHvDRR47-PH-2.1</i>	HORVU.MOREX.r3.2HG0111960	F-box family protein	SNP	8689676	8690920
Plant height	<i>qHvDRR47-PH-2.1</i>	HORVU.MOREX.r3.2HG0112180	Receptor-like protein kinase	IN/DEL	12550264	12558296
Plant height	<i>qHvDRR47-PH-2.1</i>	HORVU.MOREX.r3.2HG0112200	GATA transcription factor	IN/DEL	13210488	13214494
Plant height	<i>qHvDRR47-PH-2.1</i>	HORVU.MOREX.r3.2HG0113130	AP2-like ethylene-responsive transcription factor SNZ	SNP + SV	28519563	28523383
Plant height	<i>qHvDRR48-PH-4.1</i>	HORVU.MOREX.r3.4HG033850	Receptor-like kinase, putative	IN/DEL	561922125	561924536
Plant height	<i>qHvDRR48-PH-4.1</i>	HORVU.MOREX.r3.4HG0334320	Leucine-rich repeat receptor-like protein kinase family protein	IN/DEL	568960838	568965967
Plant height	<i>qHvDRR48-PH-4.1</i>	HORVU.MOREX.r3.4HG0334320	F-box family protein	SNP	514742923	514744137
Plant height	<i>qHvDRR48-PH-4.1</i>	HORVU.MOREX.r3.4HG0334320	Ethylene insensitive 3	IN/DEL	32468345	32469451
Plant height	<i>qHvDRR48-PH-4.1</i>	HORVU.MOREX.r3.4HG0334320	Cytochrome P450 family protein, expressed	IN/DEL	34542934	34544805
Plant height	<i>qHvDRR48-PH-4.1</i>	HORVU.MOREX.r3.4HG0334320	Receptor-like kinase	IN/DEL	38503489	38507833
Plant height	<i>qHvDRR48-PH-4.1</i>	HORVU.MOREX.r3.4HG0334320	WRKY transcription factor	IN/DEL	38585238	38590568
Plant height	<i>qHvDRR48-PH-4.1</i>	HORVU.MOREX.r3.4HG0334320	Receptor-like kinase	IN/DEL	39128713	39130996
Plant height	<i>qHvDRR48-PH-4.1</i>	HORVU.MOREX.r3.4HG0334320	F-box family protein	SNP	40089781	40091197
Plant height	<i>qHvDRR48-PH-4.1</i>	HORVU.MOREX.r3.4HG0334320	F-box family protein	SNP	40165471	40167198
Plant height	<i>qHvDRR48-PH-4.1</i>	HORVU.MOREX.r3.4HG0334320	F-box family protein	SNP	43185684	43187206
Plant height	<i>qHvDRR48-PH-4.1</i>	HORVU.MOREX.r3.4HG0334320	F-box family protein	IN/DEL	6499457	6502480
Plant height	<i>qHvDRR48-PH-4.1</i>	HORVU.MOREX.r3.4HG0334320	F-box family protein	IN/DEL	8320765	8323470

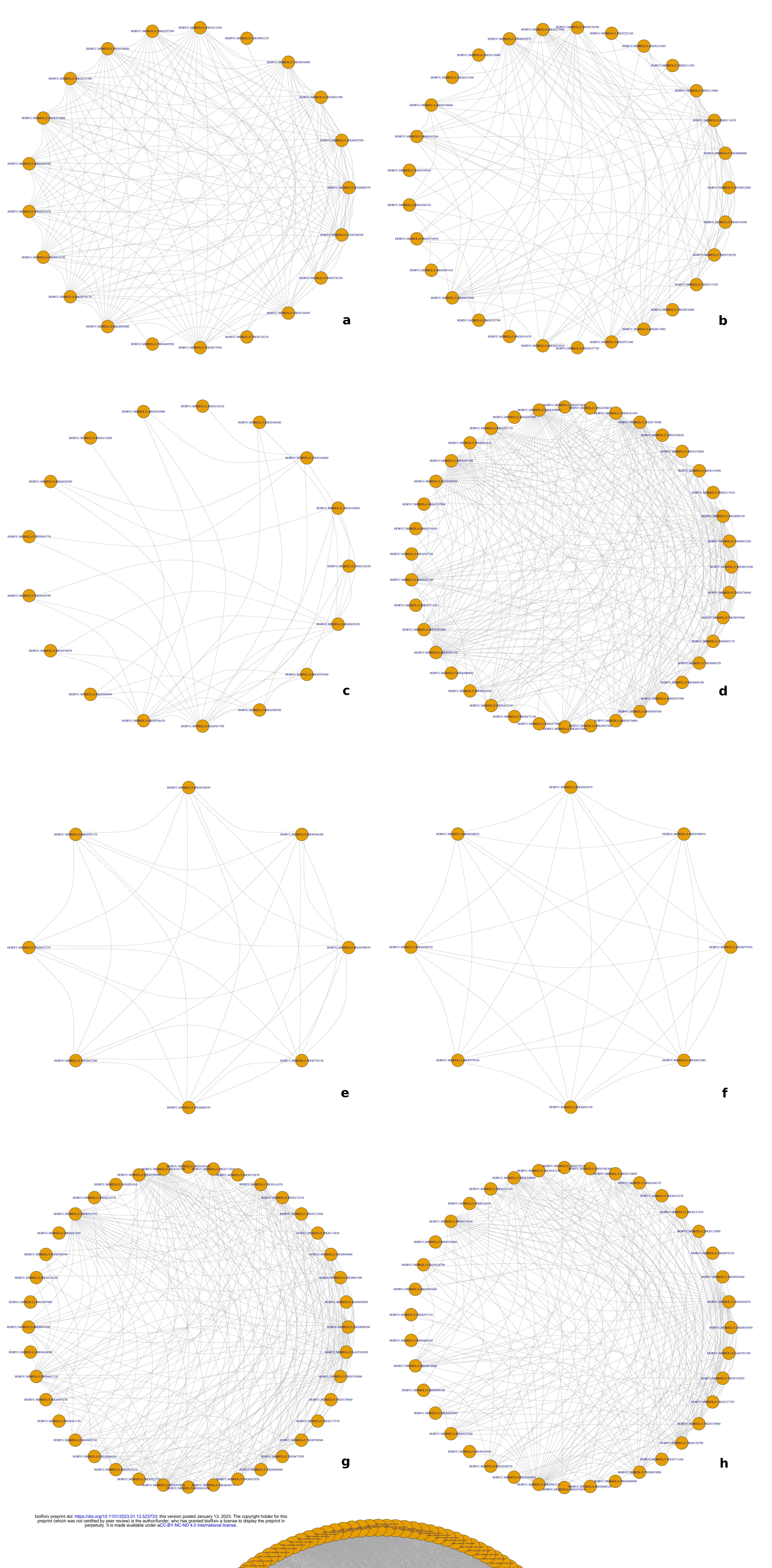

Supplementary Figure 1: Histogram and correlation plot between flowering time (FT) and plant height (PH) across all 45 HvDRR sub-populations. Flowering time is reported in days after sowing (DAS) and plant height in cm.

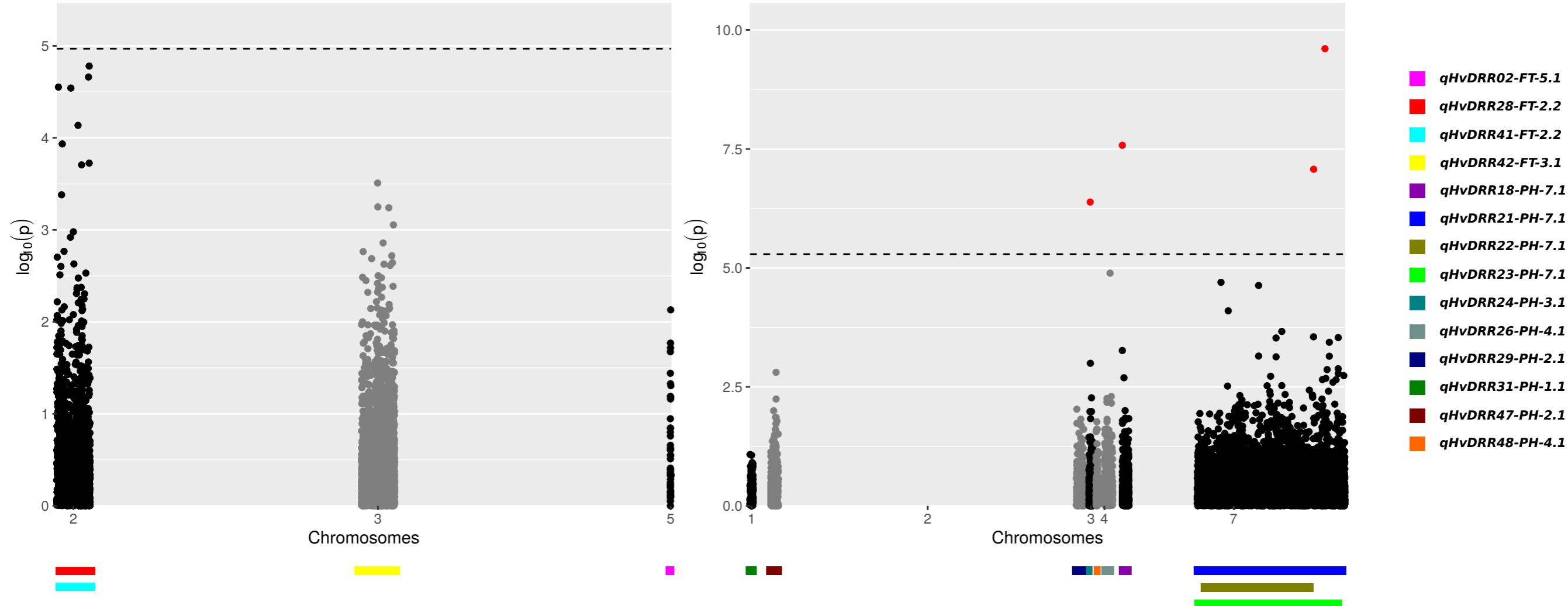

Supplementary Figure 2: Histograms and correlation plots between flowering time (FT, in days after sowing) and plant height (PH, in cm), for each of the 45 HvDRR sub-populations.





Supplementary Figure 3: Effect size of the QTL detected through multi-parent population analysis for flowering time (top, in days after sowing) and plant height (bottom, in cm), for each of the parental lines.


Supplementary Figure 4: Amino acid sequence of the terminal region of *Ppd-H1* of Morex, Igri, Optic, Golden Promise, Triumph, and the 23 parental inbreds of the HvDRR population. The amino acid synthesized by the triplet containing SNP 22 is highlighted in yellow, the one synthesized by the triplet containing SNP 1945 is highlighted in blue.


Supplementary Figure 5: Gel pictures of PCRs performed to detect the presence/absence of *ZCCT-Ha:b* (top) and *ZCCT-Hc* (bottom) as described in Karsai *et al.* (2005). The analyzed genotypes are Bowman (control spring variety), Antonella (control winter variety), Igri (control winter variety), and the parental inbreds of the sub-populations for which a QTL co-localizing with *Vrn-H2* was detected.


Supplementary Figure 6: Heat map of the module-trait relationships for plant height (PH) and flowering time (FT). On the y axis, the 27 detected modules are reported. For each module-trait correlation p-values are given in bracket

Supplementary Figure 7: Network predictions for modules “orange” (a), “black” (b), “darkgreen” (c), “purple” (d), “tan” (e), “lightyellow” (f), “green” (g), “blue” (h), and “turquoise” (i). Gene names with a gene-module membership p-value < 0.01 are indicated in the orange circles. Gene-gene interactions are represented by grey lines.

Supplementary Figure 8: Negative decadic logarithm of the p-value for association tests of sequence variants in QTL without previously reported genes for the control of the trait within their interval, explaining $\geq 15\%$ variance, and with interval $\leq 30\text{ cM}$ for flowering time (left) and plant height (right). The QTL confidence intervals from single population analyses are indicated by colored bars.

