

1 **Phenotypic and genotypic adaptation of *E. coli* to thermal stress is contingent on genetic**
2 **background**

3

4 Tiffany N. Batarseh, Sarah N. Batarseh, Alejandra Rodríguez-Verdugo, Brandon S. Gaut

5

6 ¹Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA 92617

7 *Author for Correspondence: Brandon S. Gaut, Department of Ecology and Evolutionary

8 Biology, University of California Irvine, Irvine, CA, USA, (949) 824-2564, (949) 824-2181,

9 bgaut@uci.edu

10 **ABSTRACT**

11 Evolution can be contingent on history, but we do not yet have a clear understanding of the
12 processes and dynamics that govern contingency. Here we performed the second phase of a two-
13 phase evolution experiment to investigate features of contingency. The first phase of the
14 experiment was based on *Escherichia coli* clones that had evolved population at the stressful
15 temperature of 42.2°C. The Phase 1 lines generally evolved through two adaptive pathways:
16 mutations of *rpoB*, which encodes the beta subunit of RNA polymerase, or through *rho*, a
17 transcriptional terminator. We hypothesized that epistatic interactions within the two pathways
18 constrained their future adaptative potential, thus affecting patterns of historical contingency.
19 Using 10 different *E. coli* Founders representing both adaptive pathways, we performed a second
20 phase of evolution at 19.0°C to investigate how prior genetic divergence or adaptive history
21 (*rpoB* vs. *rho*) may affect the likelihood of parallel responses and evolutionary outcomes. We
22 found that phenotype, as measured by relative fitness, was contingent on founder genotypes and
23 pathways. This finding extended to genotypes, because *E. coli* from different Phase 1 histories
24 evolved by adaptive mutations in distinct sets of genes. Our results suggest that evolution
25 depends critically on genetic history, likely due to idiosyncratic epistatic interactions within and
26 between evolutionary modules.

27 INTRODUCTION

28 Stephen Jay Gould famously argued that historical contingency is a defining feature of
29 evolution (Gould 1989). He asserted that evolution is contingent on the idiosyncratic nature of
30 historical events, leading to unpredictable and perhaps unrepeatable evolutionary outcomes. In
31 contrast, natural selection is deterministic in the absence of historical contingency, and hence it
32 can, in theory, converge on an optimal solution to any challenge. Although it is obvious that
33 evolution must be historically contingent to some degree, questions remain about the patterns
34 and mechanisms of contingency. Exploring the interplay of contingency and determinism, and
35 the genetic effects that drive their dynamics, is crucial for understanding the evolutionary
36 process. Moreover, understanding this interplay is helpful for predicting outcomes to applied
37 problems - e.g., projecting which species will survive climate change, identifying
38 chemotherapeutic agents that do not generate resistance, and forecasting pathogen variation,
39 mutation and epidemiology (Vlachostergios & Faltas 2018; Leray et al. 2021; Bay et al. 2017).

40 Historical contingency has been studied in both natural populations and in the laboratory.
41 In the field, experiments have inferred deterministic outcomes from convergent evolutionary
42 events (Losos 2011). For example, one experiment tested brown anole lizard populations that
43 were subjected to living on narrow perches and found that all lizard populations evolved shorter
44 limbs (Kolbe et al. 2012). Similarly, male guppies across different populations evolved shorter
45 life histories in the absence of predators (Reznick & Bryga 1987). These pervasive convergent
46 outcomes have been used to argue that natural selection is predictable and that historical
47 contingency does therefore not play a major role in evolution (Losos 2010; McGhee 2016). This
48 interpretation is debated, however, because natural populations may contain standing genetic
49 variation that increases the probability of parallel responses (Blount et al. 2018).

50 In the laboratory, controlled experiments have investigated contingency by evolving
51 populations from a single ancestral genotype (Blount et al. 2018). For example, in the Long
52 Term Evolution Experiment (LTEE), twelve replicated *Escherichia coli* populations converged
53 phenotypically, as evidenced by increased fitness, faster growth, and larger cells (Bennett &
54 Lenski 1993; Wiser et al. 2013), suggesting a lack of contingency based on mutations that arose
55 during the experiment (Blount et al. 2018). However, one rare adaptation in the LTEE, the ability
56 to utilize citrate (Blount et al. 2008), was contingent on previously-occurring, “potentiating”
57 mutations. Another example from the LTEE is the evolution of antibiotic resistance, because
58 both the level of resistance and the complement of resistance mutations varied as a function of
59 the starting genetic background of the LTEE line (Card et al. 2021). These studies show that the
60 evolution of phenotypes can be, but are not always, historically contingent on the genetic
61 background. Nonetheless, important questions remain (Blount et al., 2018). For example, what
62 circumstances favor contingent vs. deterministic evolutionary outcomes? How does prior genetic
63 divergence between populations affect the likelihood of parallel evolutionary responses? And to
64 what extent does epistasis shape evolutionary outcomes?

65 One approach to study these questions is two-phase (or ‘historical difference’; Blount et
66 al., 2018) evolution experiments (**Figure 1**). In this experimental set-up, Phase 1 consists of
67 initially identical populations that are evolved in the same environment, leading to potential
68 genetic and phenotypic divergence among the populations. These populations are then subjected
69 to a second phase (Phase 2) by allowing them to evolve in a new environment. The question is
70 whether Phase 2 evolution differs across populations as a function of Phase 1 history. That is, is
71 evolution in Phase 2 constrained by (or contingent upon) phenotypic and genotypic variation that
72 was generated in Phase 1?

73 Thus far, the two-phase approach has uncovered nuanced insights into contingency. For
74 example, Plucain et al. (2016) evolved 16 *E. coli* populations in four different chemical
75 environments for 1,000 generations (Phase 1) before propagating them for another 1,000
76 generations in a single, new environment (Phase 2). The evidence for contingency was mixed:
77 they found some evidence for contingency on phenotypic evolution, because both the growth rate
78 and fitness of Phase 2 populations varied according to their Phase 1 history. However, they
79 found no evidence for contingency at the molecular level; the mutations that arose during Phase
80 2 evolution did not vary as a function of the genetic backgrounds generated during Phase 1
81 (Plucain et al., 2016). Another two-phase evolution experiment used yeast and estimated that
82 ~50% of the variance in fitness across Phase 2 populations was attributable to Phase 1 history,
83 mostly because Phase 1 populations with low fitness evolved more rapidly in Phase 2
84 (Kryazhimskiy et al. 2014). However, like the *E. coli* study, this study also found no evidence to
85 suggest that Phase 2 genotypic changes were influenced by Phase 1 history.

86 Based on their two-phase experiment, Kryazhimskiy et al. (2014) proposed the “global
87 epistasis hypothesis” a form of diminishing-returns epistasis. Diminishing-returns epistasis
88 implies that adaptive mutations have larger selective effect in relatively unfit genotypes (Griffing
89 1950; Jerison & Desai 2015). The global epistasis hypothesis further posits that a mutation’s
90 effect depends solely on the fitness of the genetic background and not on the background
91 genotype (Wei and Zhang, 2019). In this framework, evolutionary trajectories are predictable
92 based on fitness information alone. In contrast, recent work has suggested that epistasis may be
93 idiosyncratic, in that the direction and/or magnitude of epistatic interactions may depend on
94 specific genotypes (Wei & Zhang 2019; Bakerlee et al. 2022), potentially making evolutionary
95 outcomes less predictable. Idiosyncratic epistasis may even be modular, because it is a property

96 of interactions among of genes that contribute to specific functions (Tenailion et al., 2012) or
97 that vary by environment (Wei and Zhang, 2019).

98 To examine these ideas further, we perform a two-phase evolution experiment in *E. coli*
99 that uses extreme temperatures as the selective environments. We focus on extreme temperatures
100 for four reasons. First, temperature is a fundamental environmental property that affects
101 physiological traits and often defines species' distributions; hence it often requires a complex
102 evolutionary response (Cooper et al. 2001; Somero 1978). Second, temperature adaptation often,
103 but not always, leads to trade-offs at other temperatures (Rodríguez-Verdugo et al. 2014),
104 suggesting that contingency could be important in this system. Third, temperature is a topic with
105 rich historical precedent in the experimental evolution literature. For example, Bennett and
106 Lenski (1993) evolved *E. coli* at 20°C, near the lower edge of the temperature niche, after first
107 adapting them to the upper end of the temperature niche (42.2°C). They found no convincing
108 evidence of contingency at the phenotypic level, but their work was based on a relatively small
109 number of samples ($n=12$) and lacked genetic information.

110 The fourth reason that we focus on temperature is because we can take advantage of a
111 previous large-scale experiment. Tenailion et al. (2012) evolved 115 lines from a single *E. coli*
112 founder strain (REL1206) at 42.2°C. After 2000 generations of evolution, they evaluated a single
113 clone from each population for fitness gains and sequence changes. The sequence changes
114 revealed that adaptation often occurred through two distinct adaptive pathways defined by
115 mutations in either the RNA polymerase subunit beta (*rpoB*) gene or the transcriptional
116 terminator (*rho*) gene. Mutations in *both* of these genes occurred statistically less often than
117 expected by chance, suggesting negative epistatic interactions. Intriguingly, the two pathways
118 were each positively associated with additional distinct sets of mutations. For example, *rpoB*

119 clones tended to have mutations in *rod*, *ILV* and *RSS* genes, but mutations in these genes were
120 rare in the *rho* lines. The complex landscape of both negative (e.g., *rpoB* vs. *rho*) and positive
121 (e.g., *rpoB* with *rod* and *ILV*) epistasis suggests that evolutionary changes are partially dependent
122 on the genetic background and that the two pathways may represent discrete evolutionary
123 modules.

124 Here we hypothesize that patterns of epistasis constrain future adaptation and thus affect
125 patterns of historical contingency. To test this hypothesis, we utilize evolved clones from
126 Tenaillon et al. (2012) to represent Phase 1 of a two-phase experiment. After choosing a set of
127 clones representing *rpoB* and *rho* genotypes, we evolve them at the lower extreme of *E. coli*'s
128 temperature niche (19°C) and then measure phenotypic and genotypic differences among
129 evolved populations. In doing so, we address three sets of questions: First, do the *rpoB* and *rho*
130 lines differ in their response to selection at 19°C, as measured by their fitness response? We are
131 particularly interested in testing one of the predictions of the global epistasis model, which is that
132 populations with lower fitness should exhibit larger fitness gains. Second, is there evidence to
133 suggest that evolution of *rpoB* and *rho* lines differ in their genotypic patterns of change? That is,
134 do the mutations that appeared during Phase 1 evolution shape the set of adaptive mutations that
135 accumulate in Phase 2? Finally, what do our results imply about the evolutionary process,
136 particularly whether epistasis is global or more idiosyncratic and modular?

137

138 **RESULTS**

139 **Selecting Phase 2 Founders that represent two adaptive pathways**

140 Phase 1 consisted of 115 lines evolved at 42.2°C (Tenaillon et al. 2012). After 2,000
141 generations of evolution, single clones from these lines experienced fitness gains of ~42%, on

142 average, relative to the single founding ancestor, which we call the Phase 1 Ancestor (**Figure 1**).
143 To perform our Phase 2 experiment, we selected five *rpoB* clones and five *rho* clones as the
144 founding genotypes for evolution at 19°C. We refer to these ten clones as the Phase 2 Founders
145 (**Figure 1**), and label each by its founding line and by its *rho* or *rpoB* genotype (e.g., *rho_A43T*)
146 (**Table 1**). It is important to recognize, however, that the Phase 2 Founders had mutations in
147 additional genes (i.e., not just *rpoB* and *rho*) relative to the REL1206 Phase 1 Ancestor
148 (Tenaillon et al., 2012).

149 We selected the Phase 2 Founders based on five criteria. First, each clone had a single
150 mutation in either *rpoB* or *rho* but not in both genes. Second, we chose a set of clones that
151 reflected the range of fitness values at both 19.0°C and 42.2°C for Phase 1 evolved clones
152 (Rodriguez-Verdugo et al. 2014; Table 1). Third, we selected *rpoB* and *rho* lines with similar
153 average relative fitness (w_r) values at 19.0°C, at 0.954 for *rpoB* and 0.990 for *rho* (t-test, $P =$
154 0.0947). We note, however, that the w_r variance was higher among the *rpoB* founders ($\text{Var}(w_r) =$
155 0.0033) compared to the *rho* founders ($\text{Var}(w_r) = 0.00075$). Fourth, we chose a sample of distinct
156 *rpoB* and *rho* mutations, because Phase 1 mutations occurred across different codons and caused
157 different amino acid replacements (**Table 1**). Finally, we only chose clones that survived an
158 initial nine-day extinction test at 19.0°C (see Methods).

159 Once chosen, Phase 2 Founders were propagated at 19°C for 1,000 generations, with six
160 replicate populations per founder, under conditions identical to the Phase 1 experiment except for
161 temperature (19°C vs 42.2°C). We also evolved 12 replicates of the Phase 1 Ancestor as a
162 control (**Figure 1**), making a total of 72 (= 6 x 10 + 12) populations in the Phase 2 experiment.
163 Among the 72 populations, seven went extinct, including one of the 12 descended from the
164 Phase 1 Ancestor, four of six populations descended from Phase 2 Founder Line 3 (*rpoB* I966S),

165 and two populations descended from Phase 2 Founder Line 142 (*rpoB* I572L) (**Table 1**). The
166 following analyses were therefore performed on the set of 65 surviving populations.

167

168 **Relative Fitness at 19.0°C varied significantly among pathways and founder genotypes**

169 Previous two-phase experiments have shown that fitness can be affected by historical
170 contingency (Plucain et al., 2016; Kryazhimskiy et al. 2014). To test for such contingencies, we
171 first measured w_r of the Phase 2 populations against the Phase 1 Ancestor, based on three
172 technical replicates per population. From a total of ~200 competition experiments, we estimated
173 that the fitness of evolved populations increased by 3.6%, on average, at 19.0°C ($P < 0.01$,
174 Wilcoxon test; **Figure 2**). On average, lines descended from *rpoB* backgrounds had 1.0% higher
175 fitness than the Phase 1 Ancestor; the *rho* lines had higher fitness by 6.4%; and the control lines
176 increased by 3.4% (**Table 2**). To test whether these differences were significant, we applied
177 ANOVAs that partitioned by pathway (*rho* vs. *rpoB*) and were nested by Phase 2 founder
178 genotypes (**Table 2**). The pathway effect was significant ($p < 0.003$) and explained 10.0% of the
179 w_r variance, but the Phase 2 genotype explained an even higher proportion of the variance
180 (23.0%; $p = 0.11$). [Note that w_r values were not normally distributed (Shapiro-Wilk, $p < 0.01$),
181 despite the large sample size and even after routine normality transformations. However, we
182 repeated these analyses using non-parametric tests and obtained similar results (effect of
183 pathway: $p = 0.00023$, $\eta^2 = 0.0784$; effect of Phase 2 Founder: $p = 0.00018$; $\eta^2 = 0.153$.)] Overall,
184 these observations indicate that the fitness response depended on both the pathway and the Phase
185 2 founding genotypes within pathways.

186 In their yeast experiment, Kryazhimskiy et al. (2014) found that the rate of change of
187 Phase 2 populations varied as a function of the fitness of Phase 2 Founders – i.e., less fit

188 Founders led to generally larger leaps in fitness during Phase 2 evolution. To assess this potential
189 effect, we competed Phase 2 populations against their respective Phase 2 Founders at 19.0°C,
190 constituting another ~160 w_r competition assays. On average, the Phase 2 populations had $w_r =$
191 1.08, thus reflecting, on average, a significant 8% fitness advantage at the end of the experiment
192 ($P < 2.2 \times 10^{-16}$, one-sample t-test) compared to their Founders. Lines descended from *rpoB*
193 genotypes experienced a 9% fitness advantage on average ($P = 1.41 \times 10^{-15}$, one-sample t-test),
194 those descended from *rho* founders had a 7% fitness advantage ($P = 1.32 \times 10^{-10}$, one-sample t-
195 test), and the difference was not significant ($P = 0.063$, unpaired t-test; Figure 3A). However, the
196 effect of the Phase 2 Founder genotype on fitness was again significant ($\eta^2 = 0.23$, $P = 1.49 \times 10^{-$
197 6 , Kruskal-Wallis Test), and eight of the ten sets of Phase 2 populations had significant fitness
198 advantages relative to their Founders (**Table 2**; **Figure 3B**).

199 To test explicitly whether populations with relatively low fitness Phase 2 Founders had
200 larger fitness gains, we plotted w_r for all Phase 2 Founders against the difference in w_r between
201 the Phase 2 Founder and each of its evolved populations (**Figure 3C**). [All of these fitness values
202 were relative to the Phase 1 ancestor.] We expected a negative slope, and the combined set of
203 *rpoB* and *rho* populations followed this prediction, because lower-fitness founders had slightly
204 bigger shifts in fitness during Phase 2 evolution (slope = -0.36, Figure 3C). The trend was
205 especially evident among the *rpoB* populations (*rpoB* slope = -0.90; Figure 3C) but did not hold
206 for *rho* Founders and descendant populations. In fact, the slope based on *rho* populations was
207 positive (*rho* slope = 0.70; Figure 3C). A linear model demonstrated that the two slopes were
208 significantly different from each other ($P = 0.0026$). Although the cause(s) of these different
209 patterns between pathways is not clear, it suggests, at a minimum, that the rate of fitness change

210 during Phase 2 evolution differed by pathway and was not a simple function of the fitness of
211 Phase 2 Founders.

212

213 **High temperature trade-offs are contingent on the founders' adaptive history and genotype**

214 Previous research has demonstrated significant differences in tradeoff dynamics between
215 adaptive high-temperature genotypes (Rodríguez-Verdugo et al. 2014). For example, nearly half
216 of the 42.2°C adapted lines from Tenaillon et al. (2012) were less fit than the Phase 1 Ancestor at
217 lower temperatures (37°C and 20°C), slightly more than half exhibited no obvious trade-off, and
218 a surprising few were actually fitter than the ancestor at low temperatures (Rodríguez-Verdugo et
219 al. 2014). These trade-off dynamics imply the possibility of genotype-specific contingencies; we
220 thus investigated trade-off dynamics at 42.2°C for Phase 2 populations relative to their Phase 2
221 Founders. As expected, the Phase 2 evolved populations generally had lower fitness (average w_r
222 = 0.89, $P = 1.14 \times 10^{-14}$, Wilcoxon test) than their Founders at 42.2°C. Of the ten *rho* and *rpoB*
223 Phase 2 groups, seven of ten had significantly lower w_r at 42.2°C compared to their Phase 2
224 Founder (Table 2).

225 We investigated whether these patterns mapped to either pathways or starting genotypes;
226 the difference in average w_r between *rho* and *rpoB* populations was not statistically significant (P
227 = 0.38, Wilcoxon test; **Figure 3D**). It was nonetheless notable that *rho* lines experienced a fitness
228 decline (relative to their Founder) of 8.5% while *rpoB* declined by 15% on average, suggesting
229 some difference in trade-off dynamics between pathways. Moreover, the starting genotype had a
230 significantly large effect on the values of w_r at 42.2°C ($\eta^2 = 0.34$, $P = 1.36 \times 10^{-9}$, Kruskal-Wallis
231 test; **Figure 3E**). For example, lines descended from the *rpoB* G556S and *rho* V206A Founders
232 had extremely low fitness at 42.2°C, at $w_r = 0.52$ ($P < 0.01$, Wilcoxon test) and $w_r = 0.80$ ($P <$

233 0.01, Wilcoxon test). The take-home point is that trade-offs differed as a consequence of Phase 2
234 Founder pathways and genotypes.

235

236 **Mutations that arose during Phase 2 evolution are contingent on the genetic history**

237 To examine contingency at the level of individual mutations, we sequenced the DNA of
238 all 65 Phase 2 and control populations. After filtering the sequencing data and calling genomic
239 variants, we identified 1,387 point mutations and short indels (<50 bases in length) that arose
240 during the Phase 2 experiment and had population frequencies > 5% (Supplemental Figure 1).
241 Almost half (45%) of the 1,387 mutations were present at a frequency of < 10%, but 119 were
242 “fixed” (as defined by a frequency > 85% in single evolved population). Fixed mutations were
243 present in 51 of the 65 sequenced populations, but there was no discernible pattern across the 14
244 lines that lacked fixed mutations by pathway (*rho*, *rpoB* and control Founders). Overall, the
245 largest proportion of mutations 54.4% (742/1387) occurred in intergenic regions (Figure 4A),
246 and 95.8% of these were point mutations. Within genes, most (89.8% or 371/413) point
247 mutations were nonsynonymous (371/413).

248 We used the sequencing data to confirm that our populations were not cross contaminated
249 during the 1,000 generation experiment by first assessing whether mutations from the Phase 2
250 Founder were fixed in the evolved populations, as expected. It was true in every case. We then
251 built phylogenies based on all of the sites in the Phase 2 populations that differed from the Phase
252 1 Ancestor. The data confirmed expected phylogenetic relationships based on the experimental
253 design (Supplemental Figure 2) and thus yielded no evidence of contamination.

254 Given a lack of obvious evidence for contamination, we first asked whether the patterns
255 and numbers of mutations differed significantly among pathways. We identified 22 Phase 2

256 mutations in *rpoB* lines and 20 Phase 2 mutations in *rho* lines that were at a frequency of 5% or
257 higher in the population on average, a difference that was not significantly different ($P = 0.17$,
258 unpaired t-test). There was also no difference between pathways in the number of fixed
259 mutations ($P = 0.14$, unpaired t-test). We also contrasted the proportions of mutational variant
260 types (intergenic, frameshift, nonsynonymous, and synonymous mutations and large deletions >
261 50 bps) between *rho* and *rpoB* pathways, again finding no difference for the complete set of
262 mutations ($P = 0.78$, contingency test; Figure 4B) or for fixed mutations ($P = 0.0803$,
263 contingency test; Figure 4C). Thus, we detected no obvious difference in the number or pattern
264 of mutations between *rho* and *rpoB* mutations.

265 We then investigated whether there was evidence of historical contingency at the level of
266 specific mutations. Did *rho* and *rpoB* lines tend to accumulate mutations in different sets of
267 genes? We first used a phylogenetic approach: focusing only on mutations that arose during
268 Phase 2 evolution, we calculated a distance matrix and resulting Neighbor-Joining tree from the
269 presence-absence of mutations among populations. We then tested for associations between
270 phylogenetic clustering and the pathways of origin (i.e., *rho*, *rpoB* or control lines evolved from
271 the Phase 1 Ancestor) against the null hypothesis of no associations between pathway and
272 phylogenetic history. We found significant association between the mutations that arose during
273 Phase 2 and the adaptive history at the level of pathway (ANOSIM $R = 0.139$, $P = 4 \times 10^{-4}$;
274 Figure 5A). We also tested the association between mutational patterns and variation across
275 the Phase 2 Founder genotypes, instead of pathways. Here again, the test was significant
276 (ANOSIM $R = 0.2398$, $P = 1 \times 10^{-4}$). These results are consistent with the idea that the identity
277 of mutations differed among Phase 2 populations based in part on their Founder genotype.

278 Our second approach relied on Dice's similarity coefficient (DSC) (Dice 1945).

279 Following Card et al. (2021), we calculated DSC at the genic level between all pairs of evolved

280 populations. We based DSC on two sets of mutations: all Phase 2 mutations (Supplemental

281 Figure 3) and Phase 2 fixed mutations (Figure 5B). For the former, the average DSC between

282 populations was 0.38, indicating that the evolved populations shared 38% of their mutated genes

283 on average. The mean DSC within a historical background was 0.39, which was similar to, but

284 significantly different from, the mean DSC between historical backgrounds (DSC=0.37; $P = 4.87$

285 $\times 10^{-14}$, Wilcoxon Test). The same analyses based on fixed mutations had an average DSC 0.10

286 across all comparisons, an average DSC of 0.18 between populations from different pathways,

287 and a mean DSC of 0.06 within the same pathway (Figure 5C). The average DSC within and

288 between historical backgrounds again differed significantly ($P < 2.2 \times 10^{-16}$, Wilcoxon Test),

289 suggesting that fixed (and presumably adaptive) mutations differed among populations in part

290 due to their Phase 2 Founder. We also detected a significant, moderate effect of the adaptive

291 history on DSC across comparison types ($\eta^2 = 0.078$, $P < 2.2 \times 10^{-16}$, Kruskal-Wallis test). For

292 example, *rpoB* evolved populations had higher DSC values to each other than to populations

293 derived from *rho* or the Phase 2 Founders ($P < 0.5$, Post-Hoc Pairwise Wilcoxon/Mann-Whitney

294 test). These results further indicate that the fixed mutations that arose in the Phase 2 experiment

295 differed due, in part, to genetic history.

296 Finally, we sought to identify specific genes that differed in their propensity to house

297 mutations in *rho* vs. *rpoB* pathways. To do so, we counted the number of populations with and

298 without a mutation in each gene or intergenic region and performed these counts separately for

299 *rho* and *rpoB* populations. Using a Fisher's Exact Test (FET), we identified six genes or

300 intergenic regions that were more frequently mutated in one adaptive pathway but not the other

301 (P < 0.05, Table 3). The significance levels of these tests were no longer significant (P > 0.05)
302 after FDR correction, likely reflecting low statistical power due to sample size and many (163)
303 FET tests. Nonetheless, the results provide evidence of contingency that affects specific genomic
304 regions.

305

306 DISCUSSION

307 Evolution is an inherently historical process, but the magnitude and effect of history on
308 adaptation remains somewhat enigmatic. To yield insights into the dynamics of historical
309 contingency, we have performed the second phase of a two-phase evolution experiment. Phase 1
310 was based on a study that evolved 115 initially identical populations of *E. coli* to the stressful
311 temperature of 42.2°C (Tenaillon et al. 2012). These populations evolved primarily by one of
312 two distinct pathways involving mutations in either the RNA polymerase beta subunit gene
313 (*rpoB*) or the transcription termination factor *rho*. We chose five clones from each of the two
314 pathways and evolved them for 1,000 generations in a second, low temperature (19.0°C)
315 environment. At the end of the Phase 2 experiment, we compared the phenotypes (relative
316 fitness, w_r) and genotypes of evolved populations to both their immediate ancestors (Phase 2
317 Founders) and to the ancestor of the entire experiment (Phase 1 Ancestor; **Figure 1**).

318 Based on these data, our first finding is that w_r varied significantly among evolved
319 populations both among pathways (*rho* or *rpoB*) and among Founder genotypes (**Figure 2**),
320 explaining 10% and 23% of the w_r variance. Thus, the fitness of Phase 2 populations was
321 contingent upon their Founder fitnesses and genotypes. A more nuanced question is whether
322 there was a predictable pattern to the fitness response. It is reasonable to expect, based on
323 diminishing-returns epistasis, that w_r among populations vary as a function of the fitness of the

324 Phase 2 Founder, specifically that lower-fitness Founders give rise to populations with more
325 dramatic fitness gains. We have found the expected general trend across all *rho* and *rpoB* Phase
326 2 populations (**Figure 3C**) and for the *rpoB* lines. Surprisingly, however, this relationship did not
327 hold for the *rho* lines (**Figure 3C**). These contrasting results not only suggest differences among
328 pathways (**Figures 3AB**) but raise important questions about what might drive these differences.

329 One must first consider the caveats and limitations of our experimental design. For
330 example, practical considerations limited the number of *rho* and *rpoB* Founders; perhaps more or
331 different *rho* samples would have yielded additional insights. Moreover, one of the *rpoB*
332 Founders (*rpoB* I966S) had a much lower w_r than the rest of the Phase 2 Founders, experienced
333 the biggest shift in fitness during Phase 2 fitness, and may have driven the overall trend (**Figure**
334 **3C**). Unfortunately, we did not have a Phase 2 *rho* founder for comparison, because the only
335 potential Phase 2 *rho* founders with similarly low fitness did not survive a 9-day extinction test.
336 Finally, we recognize that the timescale of 1,000 generations likely does not provide a complete
337 view of the fitness landscape; perhaps populations will converge on the same fitness optima with
338 further evolution.

339 Another explanation has to do with the structure of epistasis. The ongoing debate about
340 diminishing-returns epistasis does not center on whether it exists, because diminishing-returns
341 have been found both by testing the effects of individual mutations (Moore et al. 2000;
342 Kryazhimskiy et al. 2009; Perfeito et al. 2014) and by inferring patterns of evolutionary change
343 for experimental evolution data (Khan et al. 2011; Wang et al. 2018; Bakerlee et al. 2022; Chou
344 et al. 2011). Instead, it centers on whether the dynamics of diminishing-returns can be predicted
345 based on starting fitness alone or whether diminishing-returns is a product of more idiosyncratic
346 epistatic interactions that depend, in part, on the genetic background. As an example of the latter,

347 Card et al. (2019) measured the evolution of antibiotic resistance and found that less-fit
348 genotypes do not always evolve bigger changes in fitness resistance. Like Card et al. (2019), our
349 experiment has not been designed to measure diminishing-returns epistasis directly. Nonetheless,
350 our results suggest that fitness evolution is more idiosyncratic than predicted by the global
351 epistasis model, given differences in fitness responses between pathways and genotypes (**Figures**
352 **2, 3ABC**). Several recent studies have similarly concluded that epistasis is often idiosyncratic
353 (Wei & Zhang 2019; Bakerlee et al. 2022; Lyons et al. 2020), calling to question the universality
354 of the global epistasis model.

355 The next pertinent question is: What might drive these idiosyncrasies? We do not have a
356 complete answer to this question, but we can offer some insights. Previous work has shown that
357 the complete set of 115 high-temperature adapted lines differed substantially in their fitness
358 trade-offs between 42.2°C and 19°C (Rodriguez-Verdugo et al., 2014, 2017). A few lines that
359 evolved at 42.2°C were *more* fit than their ancestor at 18°C, while others were much less fit. Our
360 work further illustrates that Phase 2 populations vary in their trade-off dynamics (**Figure 3DE**).
361 Furthermore, studies of single mutants have shown that some of the *rpoB* mutations in this study
362 confer fitness advantages at 42.2°C, but in contrast two *rho* mutations (*rho* A43T and *rho*
363 T231A), likely require positively epistatic interactions to become adaptive (González-González
364 et al. 2017). We suspect that all of these patterns feed into idiosyncratic evolutionary responses.
365 Given, for example, that some genotypes appear to be thermal specialists and others are
366 generalists, one can envision that founding populations with distinct generalist *versus* specialist
367 mutations have substantially different numbers, directions, and types of potential epistatic
368 interactions across the genome.

369 A unique feature of our work is that the set of Phase 2 Founders represent pathways that
370 were defined by epistatic interactions among distinct set of mutations and genes. We predicted
371 that these pathways affect the evolutionary response by shaping the type and identity of future
372 mutations. Although the two pathways do not vary in their number or types of mutations (**Figure**
373 **4**), there is ample evidence to support our prediction. For example, Phase 2 mutations cluster
374 non-randomly on a phylogeny (**Figure 5A**), suggesting that the set of successful mutations is not
375 independent of the Phase 2 Founding genotype. Similarly, the complement of Phase 2 mutations
376 is more similar within a pathway than between pathways (**Figure 3B**). Finally, specific genic and
377 intergenic regions vary in their enrichment for mutations depending on the genetic pathway of
378 their Founders (**Table 3**). [We included intergenic regions because they have been previously
379 implicated as drivers for bacterial adaptation (Khademi et al. 2019).] These patterns hold to some
380 extent for the entire complement of > 1,000 mutations, but they are especially clear for the set of
381 119 fixed mutations (**Figure 5**; **Table 3**). Since fixed mutations are more likely to be adaptive,
382 and also because the number of mutations is unlikely to be limiting in this system, our results
383 show that the identity of adaptive mutations depends on genetic background, likely due to
384 idiosyncratic interactions.

385 Although our results are not compatible with the global epistasis model (Kryazhimskiy et
386 al. 2014), they do appear to adhere to a modular model of evolution (Tenaillon et al., 2012; Wei
387 and Zhang, 2019). Of course, two-phase evolution experiments do have inherent biases, as the
388 second phase is always founded by lines already defined by differences in evolutionary
389 outcomes. In this case we have introduced an additional bias, because we chose Founders from
390 two distinct pathways. However, this should not inhibit our ability to distinguish between the
391 global or modular models of epistasis in the second phase of evolution. Interestingly, Wei and

392 Zhang (2019) have documented that an emergent property of their modular model is the
393 appearance of global diminishing-returns epistasis (Wei and Zhang, 2019). That is, epistatic
394 interactions within specific modules may combine, in some cases, to provide an apparent signal
395 of global diminishing-returns epistasis. This emergent property may explain why diminishing-
396 returns epistasis sometimes appears to be a genome-wide phenomenon but perhaps more often
397 does not.

398 Our finding -- i.e., that mutations detected in Phase 2 mutations are associated with
399 Founder genotype -- may provide insights about mechanisms of adaptation. We have identified
400 seven genes and intergenic regions that are enriched for Phase 2 mutations in either *rpoB* or *rho*
401 populations (Table 3). Of the seven, five are more likely to accrue mutations within *rpoB*
402 populations. In this context, it is worth recalling that *rpoB* is component of RNA polymerase,
403 which is a global regulator of gene expression and that has numerous pleiotropic effects and
404 potential epistatic interactions. At least three of the five enriched regions are related to
405 transcriptional function: *rpoC* also codes for beta subunit of RNA polymerase (Conrad et al.
406 2010; Trinh et al. 2006); the RHO protein terminates RNA polymerase activity; and *hepA* (which
407 also known as *rapA*) codes for a transcription factor with ATPase activity and also an RNA
408 polymerase associated protein (Sukhodolets et al. 2001). Previous work has shown that
409 modifying RNA polymerase is a key feature of adaptation to thermal stress but also that this is a
410 blunt instrument that may cause more phenotypic changes (as measured by gene expression;
411 Rodriguez-Verdugo et al., 2017) than may be necessary to achieve fitness gains. If true, it is
412 reasonable to speculate that adaptation to 19.0°C from 42.2°C includes further tuning of RNA
413 polymerase, as reflected by an enrichment of genes related to transcriptional activity like *rpoC*,
414 *rho* and *hepA*.

415 Three further features about the enriched regions stand out. First, two enriched regions
416 within *rpoB* populations (*valY* and *lysV*; Table 3) encode tRNA synthetases (Andersen et al.
417 1997; Ruan et al. 2011; Agrawal et al. 2014), suggesting that one additional or alternative route
418 to adaptation is through modifications of translational speed or dynamics. Second, the Phase 2
419 evolved populations that descended from *rho* backgrounds were significantly enriched in one
420 gene (*ECB_01992*) and one intergenic region (*ybcW/ECB_01526*) (Table 3). Both of these
421 regions have unknown functions, and thus they yield no clues into the molecular mechanisms of
422 19.0°C adaptation for *rho* populations. Finally, it is interesting to speculate about the fact that
423 more enriched regions (5 vs. 2) were found in *rpoB* vs. *rho* lines. Previous work has shown that
424 engineered mutations of *rho_A43T* and *rho_T231A* lead to fewer modifications of gene
425 expression than do *rpoB* mutations I572L, I572N and I966S (Gonzalez-Gonzalez et al., 2017).
426 These observations suggest that some of the *rho* mutations are “less-connected” than the *rpoB*
427 mutations, which could again lead to substantially different dynamics of fitness and epistasis
428 between the two pathways.

429 To sum, our Phase 2 experiment has shown that the fitness response of evolved
430 population varies by the pathway and phenotype of their Founders, but Founder fitness is not
431 strongly predictive of fitness gains. More importantly, our work clearly demonstrates that the
432 suite of fixed and presumably adaptive mutations in Phase 2 differs according to their Phase 1
433 history. Our observations indicate that history has shaped, defined, and perhaps even canalized
434 the adaptive response of Phase 2 populations. Overall, these observations are not consistent with
435 the global epistasis hypothesis, but instead add to a growing literature suggesting both that
436 epistasis is idiosyncratic and evolution is often contingent on genetic history.

437

438 **METHODS**

439 **Two-Phase Evolution Experiment Isolate Criteria and Selection**

440 To study evolutionary contingency, we chose ten clones from Tenaillon et al. (2012)
441 (**Table 1**) to evolve at 19°C, which is towards the lower limit of the temperature niche for the
442 REL1206 ancestor (Rodríguez-Verdugo et al. 2014). It is worth noting that the REL1206
443 ancestor had been evolved for 2,000 generations at 37.0°C in minimal media prior to the Phase 1
444 experiment and was therefore preadapted to media and laboratory conditions (Lenski et al.
445 1991).

446 Before clones were subjected to the Phase 2 evolution experiment, they were first
447 assessed for survivability. To test survivability, isolates from frozen stock were placed into
448 Luria-Bertani medium (LB) and incubated at 37.0°C for one day to acclimate from frozen
449 conditions (Rodríguez-Verdugo et al. 2014; Bennett & Lenski 1993; Lenski & Travisano 1994).
450 The overnight culture was diluted 1,000-fold in saline and this dilution was transferred into fresh
451 Davis Minimal (DM) Media supplemented with 25mg/L of glucose and grown for one day at
452 37.0°C. Following incubation, 100 µl of the culture was transferred into 9.9ml of fresh DM
453 media and incubated at 19.0°C and serially propagated for at least nine days. Each day we
454 measured the cell density to determine if extinctions had occurred, by diluting 50 µl of overnight
455 culture into 9.9ml of Isoton II Diluent (Beckman Coulter) and measuring cell density in
456 volumetric mode on a Multisizer 3 Coulter Counter (Beckman Coulter). An isolate survived if its
457 cell density measurements were maintained over the course of the test while allowing for
458 fluctuations of +/- 1x10⁶ cells.

459

460 **Evolution Experiment at 19.0°C**

461 To prepare the isolates for the Phase 2 experiment, the Phase 2 Founders and the Phase 1
462 Ancestor (REL1206) were grown from frozen stock in 10 ml of LB at 37.0°C with 120 RPM.
463 After 24 hours of incubation, the overnight cultures were diluted 10,000-fold and plated onto TA
464 plates and incubated at 37.0°C. On the next day, single colonies were picked from the plates and
465 inoculated into 10 mL of fresh LB and incubated at 37.0°C with 120 RPM. The next day, we
466 transferred 100 µl of the bacterial culture into 9.9 ml of fresh DM25 media, which was incubated
467 at 37.0°C at 120 RPM for 24 hours to acclimate to experimental conditions, following common
468 practice (Lenski & Travisano 1994; Bennett & Lenski 1993; Rodríguez-Verdugo et al. 2014).
469 After incubation, we began the Phase 2 evolution experiment by transferring 100 µl of culture
470 into 9.9 ml of fresh DM25 and incubated the tubes at 19.0°C with 120 RPM and incubated for 24
471 hours.

472 Each day, the cultures were transferred daily into fresh media via a 100-fold dilution. At
473 regular intervals (at generation 100 and roughly every 200 generations after that), we mixed 800
474 µl of each line with 800 µl of 80% glycerol to prepare whole population frozen stocks. We began
475 the experiment in January 2020 but had to pause it after 297 bacterial generations due to the
476 Covid-19 pandemic. To restart the experiment, we revived the bacterial populations by
477 transferring 100 µl of thawed glycerol stock into 9.9 mL of fresh DM25 media and continued the
478 experiment until the bacteria had grown for 1000 generations or 152 days.

479

480 **Measuring Relative Fitness**

481 We performed competition experiments to measure the relative fitness of the Phase 2
482 evolved lines. We competed the Phase 2 evolved lines against the Phase 1 Ancestor at 42.2°C
483 and their respective Phase 2 Founders at both 19.0°C and 42.2°C. To perform the competitions,

484 we mixed the cells in a single glass culture tube and plated the mixture to count the colonies
485 before and after 24 hours of competition. We used the neutral Ara+ marker to differentiate
486 between the two lines when plating on tetrazolium-arabinose (TA) plates. To generate Ara+
487 mutants from the Phase 2 Founders for competitions, we followed previously published methods
488 (Lenski et al. 1991). To validate neutrality, we competed the Ara+ mutants against the original
489 Ara- stock using the methods described below. Control competition experiments were performed
490 by competing the Phase 1 Ancestor, *E. coli* strain B REL1206, against its Ara+ mutant,
491 REL1207 (Wiser & Lenski 2015).

492 To perform competition assays, bacteria from frozen glycerol stocks were revived with a
493 loop into 10 mL of LB and incubated at 37°C with 120 RPM for 24 hours. After incubation, the
494 overnight cultures were vortexed and 100 µl of each were diluted in 9.9 ml of 0.0875% saline
495 solution. From each dilution tube, 100 µl was transferred to 9.9ml DM25 to incubate at 37.0°C
496 with 120 RPM for 24 hours. Following incubation and in order for the bacteria to acclimate to
497 the experimental temperature, we transferred 100 µl of the overnight cultures into 9.9 ml of
498 DM25 and incubated the tubes at the experimental temperature (19.0°C or 42.2°C) with 120
499 RPM for 24 hours (Bennett & Lenski 1993). The next day, we mixed the Ara- and Ara+
500 competitor strains into sterile DM25 media. For competitions at 19.0°C, we mixed the bacteria
501 1:1. For competitions at 42.2°C, we mixed the bacteria 1:1 or we adjusted the ratio to 1:3 if the
502 original ratio resulted in too few colonies (<20) on the plate for either competitor. The mixture
503 was incubated at the experimental temperature with 120 rpm for 24 hours. After allowing the
504 cells to compete, we quantified the cell density of each competitor by plating the overnight
505 culture onto tetrazolium-arabinose (TA) plates and counting the number of colonies. All
506 competitions were performed in at least triplicate, resulting in roughly 600 competitions.

Using the methods described in Lenski *et al.* (1991) and Tenaillon *et al.* (2012), we calculated the relative fitness, w_r . The fitness of a Phase 2 evolved line relative to its competitor was estimated by:

$$w_r = [\log_2(N_f^E/N_i^E)]/[\log_2(N_f^A/N_i^A)]$$

511 where E refers to the evolved line and A refers to the ancestral clone, where N_i^E and N_i^A 512 represent the initial cell densities of the two competitors, and N_f^E and N_f^A represent the final cell 513 densities after one day of competition.

514

515 DNA Library Preparation and DNA Sequencing

To sequence the evolved populations, we revived populations from ~10 µl of frozen glycerol stock in 10ml of DM media supplemented with 1000mg/L of glucose. The culture tubes were incubated at 19.0°C with 120 RPM. We extracted from 65 bacterial populations using the Promega Wizard Genomic DNA Purification kit. DNA concentrations were measured with Qubit dsDNA HS Assay kits. We prepared our DNA sequencing libraries with the Illumina Nextera DNA Flex Library Preparation kit. The libraries were multiplexed and sequenced using the Illumina NovaSeq on an S4 flow cell to generate 100bp paired-end reads at UC Irvine’s Genomics High-Throughput Facility (<https://ghtf.biochem.uci.edu>). Sequencing read quality was assessed with FastQC v. 0.11.9 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc>), trimmed with fastp v. 0.23.2 (Chen et al. 2018), and visualized with MultiQC v. 1.9 (Ewels et al. 2016). Each population had 25,000,000 sequencing reads on average (min = 8,600,000 reads, max = 35,000,000 reads), resulting in a minimum of > 150x coverage per population.

528

529 Variant Detection

530 We detected mutations and their respective frequencies in each evolved Phase 2
531 population using breseq v. 0.35.5 (Deatherage & Barrick 2014). We performed the breseq
532 analysis in polymorphism mode with two different reference genomes. First, we performed
533 breseq analysis using *E. coli* strain B REL606 as the reference genome. This *E. coli* strain differs
534 from the Phase 1 Ancestor, REL1206, in seven positions (*topA*, *spoT* *K662I*, *glmU/atpC*, *pykF*,
535 *yeiB*, *fimA* and the *rbs* operon) that were excluded from our analysis (Barrick et al. 2009;
536 Tenaillon et al. 2012). We performed a first-round of variant detection using breseq in
537 polymorphism mode on all of evolved populations relative to *E. coli* strain B REL606.

538 Following this first-step of the analysis, we generated a new, mutated reference sequence
539 to represent each Phase 2 Founder using the gdtools APPLY command in breseq using the
540 sequencing data available in Tenaillon et al. (2012). We then ran the breseq analysis again with
541 respect to the Phase 2 Founder using the mutated references to verify mutation predictions, as
542 described in Deatherage and Barrick (2014). Using gdtools available through breseq, we
543 compiled the mutation information into readable tables and as an alignment file in PHYLIP
544 format. A phylogeny was constructed using IQ-tree and the PHYLIP alignment as input (Nguyen
545 et al. 2015).

546

547 **Statistical Analyses**

548 All statistical analyses were performed in R v 4.0.2 (R Core Team 2019). For relative
549 fitness results and statistical analysis, we first assessed normality of the data using the Shapiro-
550 Wilk test and the variance with Levene's test available through R. To statistically test for
551 associations between the mutation patterns observed in Phase 2 and their initial adaptive
552 pathway, we first built a distance matrix from the presence and absence matrix of Phase 2

553 mutations in R. Using the *vegan* package v 2.5-7 in R, we directly tested for associations
554 between the distance matrix of Phase 2 mutations and the adaptive pathway or mutated codon
555 with ANOSIM (Oksanen et al. 2020). We also built a Neighbor-Joining (NJ) tree based on the
556 presence-absence matrix of accessory genes. To do so, we first calculated the Euclidean
557 distances from the presence-absence matrix of the accessory genes using the *dist* function in R.
558 We then built the NJ tree from the Euclidean distances using the *ape* package in R (Paradis &
559 Schliep 2019). We calculated Dice's similarity coefficient (DSC) for each pair of Phase 2
560 evolved populations using the *vegan* package. Dice's coefficient of similarity was calculated
561 using the same distance matrix used to build the NJ tree described above, as well as on a distance
562 matrix containing only the fixed mutations. To identify genes or intergenic regions that were
563 more frequently mutated in populations descended from one adaptive history but not the other,
564 we built a 2×2 Fisher's Exact Test for each mutated gene or intergenic region in R, for a total of
565 163 contingency tests.

566

567 **DATA AVAILABILITY STATEMENT**

568 All high-throughput sequence data generated in this study have been submitted to the NCBI
569 database and can be accessed through BioProject #####.

570

571 **ACKNOWLEDGEMENTS**

572 We thank R. Gaut and the UC Irvine Genomics High-Throughput Facility for contributing to
573 data generation. We also thank A. Martiny for helpful input on methodology. T. Batarseh was
574 supported by the National Science Foundation Graduate Research Fellowship Program and the
575 University of California Irvine President's Dissertation Year Fellowship.

576

577 **REFERENCES**

578 Agrawal A, Mohanty BK, Kushner SR. 2014. Processing of the seven valine tRNAs in
579 *Escherichia coli* involves novel features of RNase P. *Nucleic Acids Res.* 42:11166–11179. doi:
580 10.1093/nar/gku758.

581 Andersen CL, Matthey-Dupraz A, Missiakas D, Raina S. 1997. A new *Escherichia coli* gene,
582 *dsbG*, encodes a periplasmic protein involved in disulphide bond formation, required for
583 recycling DsbA/DsbB and DsbC redox proteins. *Mol. Microbiol.* 26:121–132. doi:
584 10.1046/j.1365-2958.1997.5581925.x.

585 Bakerlee CW, Nguyen Ba AN, Shulgina Y, Rojas Echenique JI, Desai MM. 2022. Idiosyncratic
586 epistasis leads to global fitness–correlated trends. *Science.* 376:630–635. doi:
587 10.1126/science.abm4774.

588 Barrick JE et al. 2009. Genome evolution and adaptation in a long-term experiment with
589 *Escherichia coli*. *Nature.* 461:1243–1247. doi: 10.1038/nature08480.

590 Bay RA et al. 2017. Predicting Responses to Contemporary Environmental Change Using
591 Evolutionary Response Architectures. *Am. Nat.* 189:463–473. doi: 10.1086/691233.

592 Bennett AF, Lenski RE. 1993. EVOLUTIONARY ADAPTATION TO TEMPERATURE II.
593 THERMAL NICHES OF EXPERIMENTAL LINES OF *ESCHERICHIA COLI*. *Evol. Int. J.*
594 *Org. Evol.* 47:1–12. doi: 10.1111/j.1558-5646.1993.tb01194.x.

595 Blount ZD, Borland CZ, Lenski RE. 2008. Historical contingency and the evolution of a key
596 innovation in an experimental population of *Escherichia coli*. *Proc. Natl. Acad. Sci.* 105:7899–
597 7906. doi: 10.1073/pnas.0803151105.

598 Blount ZD, Lenski RE, Losos JB. 2018. Contingency and determinism in evolution: Replaying
599 life’s tape. *Science.* 362. doi: 10.1126/science.aam5979.

600 Card KJ, LaBar T, Gomez JB, Lenski RE. 2019. Historical contingency in the evolution of
601 antibiotic resistance after decades of relaxed selection. *PLOS Biol.* 17:e3000397. doi:
602 10.1371/journal.pbio.3000397.

603 Card KJ, Thomas MD, Graves JL, Barrick JE, Lenski RE. 2021. Genomic evolution of antibiotic
604 resistance is contingent on genetic background following a long-term experiment with
605 *Escherichia coli*. *Proc. Natl. Acad. Sci.* 118:e2016886118. doi: 10.1073/pnas.2016886118.

606 Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor.
607 *Bioinformatics.* 34:i884–i890. doi: 10.1093/bioinformatics/bty560.

608 Chou H-H, Chiu H-C, Delaney NF, Segrè D, Marx CJ. 2011. Diminishing-returns Epistasis
609 Among Beneficial Mutations Decelerates Adaptation. *Science.* 332:1190–1192. doi:
610 10.1126/science.1203799.

611 Conrad TM et al. 2010. RNA polymerase mutants found through adaptive evolution reprogram
612 *Escherichia coli* for optimal growth in minimal media. *Proc. Natl. Acad. Sci. U. S. A.*
613 107:20500–20505. doi: 10.1073/pnas.0911253107.

614 Cooper VS, Bennett AF, Lenski RE. 2001. EVOLUTION OF THERMAL DEPENDENCE OF
615 GROWTH RATE OF *ESCHERICHIA COLI* POPULATIONS DURING 20,000
616 GENERATIONS IN A CONSTANT ENVIRONMENT. *Evolution*. 55:889–896. doi:
617 10.1554/0014-3820(2001)055[0889:EOTDOG]2.0.CO;2.

618 Deatherage DE, Barrick JE. 2014. Identification of mutations in laboratory evolved microbes
619 from next-generation sequencing data using breseq. *Methods Mol. Biol.* Clifton NJ. 1151:165–
620 188. doi: 10.1007/978-1-4939-0554-6_12.

621 Dice LR. 1945. Measures of the Amount of Ecologic Association Between Species. *Ecology*.
622 26:297–302. doi: 10.2307/1932409.

623 Ewels P, Magnusson M, Lundin S, Käller M. 2016. MultiQC: summarize analysis results for
624 multiple tools and samples in a single report. *Bioinformatics*. 32:3047–3048. doi:
625 10.1093/bioinformatics/btw354.

626 González-González A, Hug SM, Rodríguez-Verdugo A, Patel JS, Gaut BS. 2017. Adaptive
627 Mutations in RNA Polymerase and the Transcriptional Terminator Rho Have Similar Effects on
628 *Escherichia coli* Gene Expression. *Mol. Biol. Evol.* 34:2839–2855. doi:
629 10.1093/molbev/msx216.

630 Gould SJ. 1989. *Wonderful Life: The Burgess Shale and the Nature of History*. W.W. Norton.

631 Griffing B. 1950. Analysis of Quantitative Gene Action by Constant Parent Regression and
632 Related Techniques. *Genetics*. 35:303–321.

633 Jerison ER, Desai MM. 2015. Genomic investigations of evolutionary dynamics and epistasis in
634 microbial evolution experiments. *Curr. Opin. Genet. Dev.* 35:33–39. doi:
635 10.1016/j.gde.2015.08.008.

636 Khademi SMH, Sazinas P, Jelsbak L. 2019. Within-Host Adaptation Mediated by Intergenic
637 Evolution in *Pseudomonas aeruginosa*. *Genome Biol. Evol.* 11:1385–1397. doi:
638 10.1093/gbe/evz083.

639 Khan AI, Dinh DM, Schneider D, Lenski RE, Cooper TF. 2011. Negative Epistasis Between
640 Beneficial Mutations in an Evolving Bacterial Population. *Science*. 332:1193–1196. doi:
641 10.1126/science.1203801.

642 Kolbe JJ, Leal M, Schoener TW, Spiller DA, Losos JB. 2012. Founder Effects Persist Despite
643 Adaptive Differentiation: A Field Experiment with Lizards. *Science*. 335:1086–1089. doi:
644 10.1126/science.1209566.

645 Kryazhimskiy S, Rice DP, Jerison ER, Desai MM. 2014. Global epistasis makes adaptation
646 predictable despite sequence-level stochasticity. *Science*. 344:1519–1522. doi:
647 10.1126/science.1250939.

648 Kryazhimskiy S, Tkačik G, Plotkin JB. 2009. The dynamics of adaptation on correlated fitness
649 landscapes. *Proc. Natl. Acad. Sci.* 106:18638–18643. doi: 10.1073/pnas.0905497106.

650 Lenski RE, Rose MR, Simpson SC, Tadler SC. 1991. Long-Term Experimental Evolution in
651 *Escherichia coli*. I. Adaptation and Divergence During 2,000 Generations. *Am. Nat.* 138:1315–
652 1341.

653 Lenski RE, Travisano M. 1994. Dynamics of adaptation and diversification: a 10,000-generation
654 experiment with bacterial populations. *Proc. Natl. Acad. Sci.* 91:6808–6814. doi:
655 10.1073/pnas.91.15.6808.

656 Leray M et al. 2021. Natural experiments and long-term monitoring are critical to understand and
657 predict marine host–microbe ecology and evolution. *PLoS Biol.* 19:e3001322. doi:
658 10.1371/journal.pbio.3001322.

659 Losos JB. 2010. Adaptive Radiation, Ecological Opportunity, and Evolutionary Determinism.
660 *Am. Nat.* 175:623–639. doi: 10.1086/652433.

661 Losos JB. 2011. Convergence, Adaptation, and Constraint. *Evolution*. 65:1827–1840. doi:
662 10.1111/j.1558-5646.2011.01289.x.

663 Lyons DM, Zou Z, Xu H, Zhang J. 2020. Idiosyncratic epistasis creates universals in mutational
664 effects and evolutionary trajectories. *Nat. Ecol. Evol.* 4:1685–1693. doi: 10.1038/s41559-020-
665 01286-y.

666 McGhee GR. 2016. Can evolution be directional without being teleological? *Stud. Hist. Philos.*
667 *Sci. Part C Stud. Hist. Philos. Biol. Biomed. Sci.* 58:93–99. doi: 10.1016/j.shpsc.2015.12.006.

668 Moore FB-G, Rozen DE, Lenski RE. 2000. Pervasive compensatory adaptation in *Escherichia*
669 *coli*. *Proc. R. Soc. Lond. B Biol. Sci.* 267:515–522. doi: 10.1098/rspb.2000.1030.

670 Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: A Fast and Effective
671 Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. *Mol. Biol. Evol.*
672 32:268–274. doi: 10.1093/molbev/msu300.

673 Oksanen J et al. 2020. vegan: Community Ecology Package. [https://CRAN.R-
674 project.org/package=vegan](https://CRAN.R-project.org/package=vegan).

675 Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary
676 analyses in R. *Bioinformatics*. 35:526–528. doi: 10.1093/bioinformatics/bty633.

677 Perfeito L, Sousa A, Bataillon T, Gordo I. 2014. Rates of Fitness Decline and Rebound Suggest
678 Pervasive Epistasis. *Evolution*. 68:150–162. doi: 10.1111/evol.12234.

679 Reznick DN, Bryga H. 1987. Life-History Evolution in Guppies (*poecilia Reticulata*): 1.
680 Phenotypic and Genetic Changes in an Introduction Experiment. *Evolution*. 41:1370–1385. doi:
681 <https://doi.org/10.1111/j.1558-5646.1987.tb02474.x>.

682 Rodríguez-Verdugo A, Carrillo-Cisneros D, González-González A, Gaut BS, Bennett AF. 2014.
683 Different tradeoffs result from alternate genetic adaptations to a common environment. *Proc.*
684 *Natl. Acad. Sci.* 111:12121–12126. doi: 10.1073/pnas.1406886111.

685 Ruan L, Pleitner A, Gänzle MG, McMullen LM. 2011. Solute transport proteins and the outer
686 membrane protein NmpC contribute to heat resistance of *Escherichia coli* AW1.7. *Appl.*
687 *Environ. Microbiol.* 77:2961–2967. doi: 10.1128/AEM.01930-10.

688 Somero GN. 1978. Temperature Adaptation of Enzymes: Biological Optimization Through
689 Structure-Function Compromises. *Annu. Rev. Ecol. Syst.* 9:1–29. doi:
690 10.1146/annurev.es.09.110178.000245.

691 Sukhodolets MV, Cabrera JE, Zhi H, Jin DJ. 2001. RapA, a bacterial homolog of SWI2/SNF2,
692 stimulates RNA polymerase recycling in transcription. *Genes Dev.* 15:3330–3341. doi:
693 10.1101/gad.936701.

694 Tenaillon O et al. 2012. The Molecular Diversity of Adaptive Convergence. *Science*. 335:457–
695 461. doi: 10.1126/science.1212986.

696 Trinh V, Langelier M-F, Archambault J, Coulombe B. 2006. Structural Perspective on Mutations
697 Affecting the Function of Multisubunit RNA Polymerases. *Microbiol. Mol. Biol. Rev.* 70:12–36.
698 doi: 10.1128/MMBR.70.1.12-36.2006.

699 Vlachostergios PJ, Faltas BM. 2018. Treatment resistance in urothelial carcinoma: an
700 evolutionary perspective. *Nat. Rev. Clin. Oncol.* 15:495–509. doi: 10.1038/s41571-018-0026-y.

701 Wang X, Zorraquino V, Kim M, Tsoukalas A, Tagkopoulos I. 2018. Predicting the evolution of
702 *Escherichia coli* by a data-driven approach. *Nat. Commun.* 9:3562. doi: 10.1038/s41467-018-
703 05807-z.

704 Wei X, Zhang J. 2019. Patterns and Mechanisms of Diminishing-returns from Beneficial
705 Mutations. *Mol. Biol. Evol.* 36:1008–1021. doi: 10.1093/molbev/msz035.

706 Wiser MJ, Lenski RE. 2015. A Comparison of Methods to Measure Fitness in *Escherichia coli*.
707 *PLOS ONE*. 10:e0126210. doi: 10.1371/journal.pone.0126210.

708 Wiser MJ, Ribeck N, Lenski RE. 2013. Long-Term Dynamics of Adaptation in Asexual
709 Populations. *Science*. <https://www.science.org/doi/abs/10.1126/science.1243357> (Accessed
710 September 7, 2021).

711

712 **Table 1.** Phase 2 Founders

Phase 1 Evolved Line*	Phase 1 Adaptive Pathway	Phase 1 Adaptive Pathway Genotype	Mean Absolute Fitness at 19.0°C ¹	Mean Relative Fitness at 19.0°C ²	Mean Relative Fitness at 42.2°C ¹	Number of replicates
2	<i>rho</i>	T231A	0.018	0.97	1.484	6
66	<i>rho</i>	V206A	0.053	1.004	1.43	6
82	<i>rho</i>	I15N_1	-0.003	0.952	1.498	6
87	<i>rho</i>	I15N_2	0.044	1.015	1.703	6
134	<i>rho</i>	A43T	0.07	1.008	1.38	6
3	<i>rpoB</i>	I966S	0.022	0.895	1.257	6
34	<i>rpoB</i>	G556S	-0.082	0.962	1.51	6
94	<i>rpoB</i>	E84G	0.07	1.031	1.767	6
137	<i>rpoB</i>	I966N	0.046	0.982	1.349	6
142	<i>rpoB</i>	I527L	0.106	0.899	1.609	6
REL1206	Phase 1 Ancestor	NA	-0.004	1	1	12

713 * Line numbers designated in Tenaillon et al. 2012

714 ¹ Relative fitness value data for 42.2°C and absolute fitness value data for 19.0°C from Rodríguez-
715 Verdugo et al. 2014

716 ² Relative fitness value data at 19.0°C generated for this study

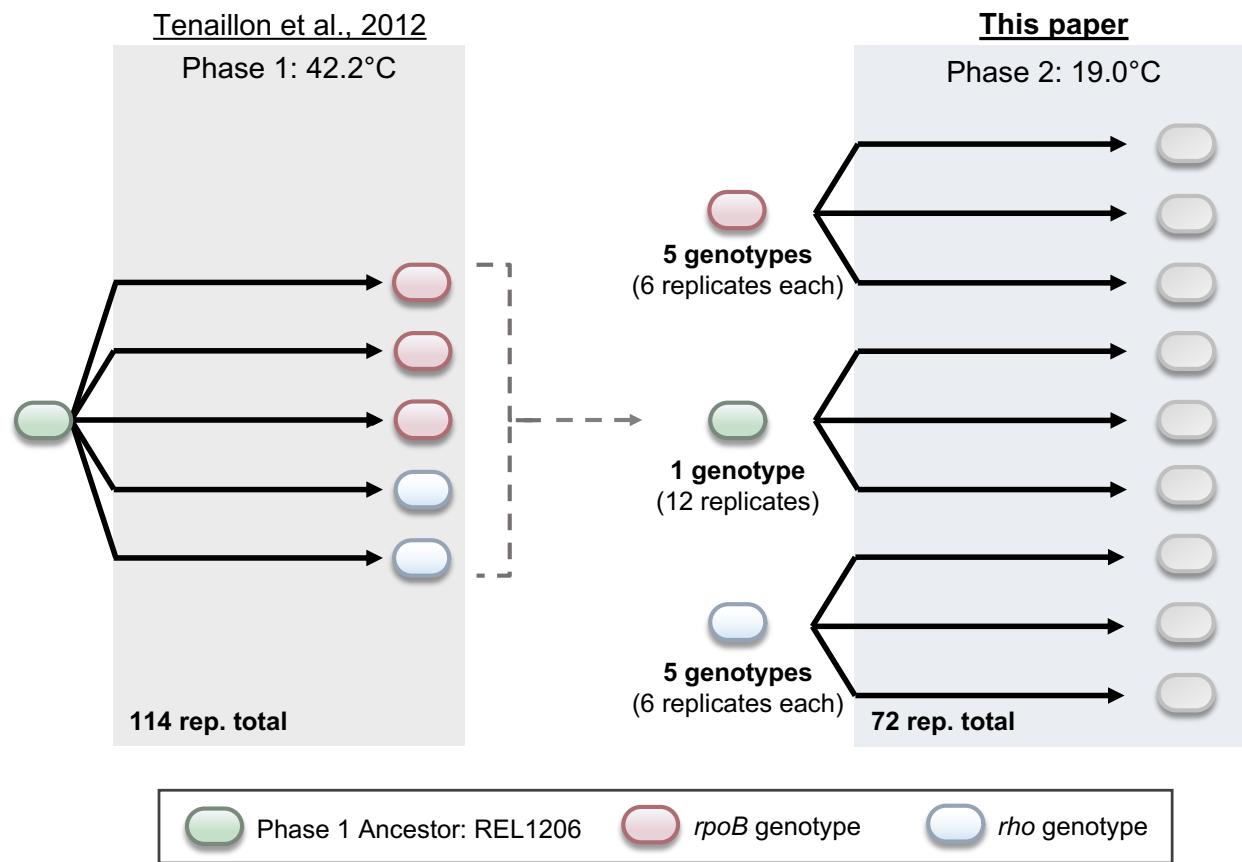
717

718 **Table 2.** Relative fitness measurements for Phase 2 Evolved Populations

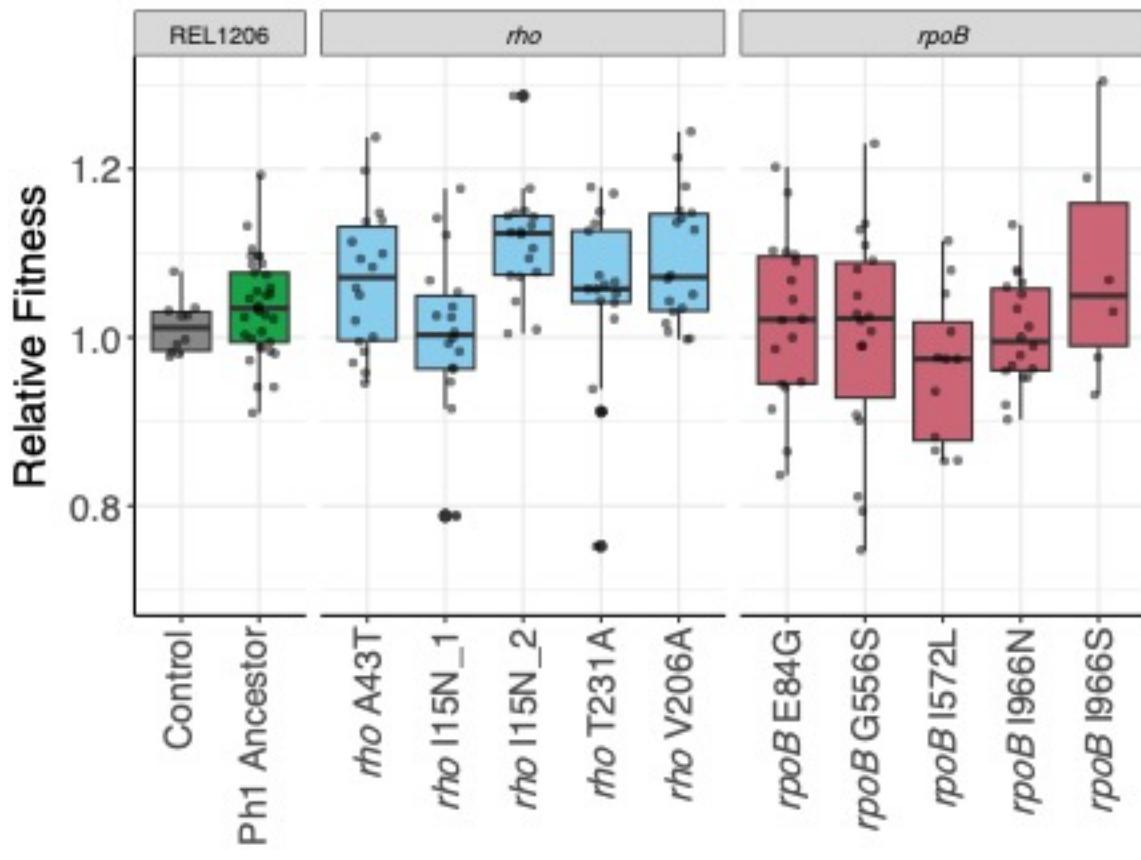
Phase 1 Evolved Line*	Phase 1 Adaptive Codon Background	Phase 1 Ancestor Competitor		Phase 2 Founder Competitor		Phase 2 Founder Competitor	
		Average w_r (19.0°C)	P-value ¹ (19.0°C)	Average w_r (19.0°C)	P-value ¹ (19.0°C)	Average w_r (42.2°C)	P-value ¹ (42.2°C)
2	<i>rho</i> T231A	1.02	<0.01	1.12	0.17	0.91	<0.01
66	<i>rho</i> V206A	1.09	<0.01	1.06	<0.01	0.8	<0.01
82	<i>rho</i> I15N_1	1	<0.01	1.04	1	0.93	0.02
87	<i>rho</i> I15N_2	1.11	<0.01	1.13	<0.01	0.98	0.08
134	<i>rho</i> A43T	1.07	0.6	1.01	<0.01	0.96	<0.01
3	<i>rpoB</i> I966S	1.08	<0.01	1.15	0.2	1.04	0.44
34	<i>rpoB</i> G556S	1	<0.01	1.08	0.93	0.52	<0.01
94	<i>rpoB</i> E84G	1.02	<0.01	1.08	0.42	1	0.59
137	<i>rpoB</i> 1966N	1.01	<0.01	1.14	0.71	0.92	0.02
142	<i>rpoB</i> I572L	0.96	0.13	1.06	0.19	0.9	0.02
REL1206	Phase 1 Ancestor	1.04	NA	NA	<0.01	NA	NA

719 * Line numbers designated in Tenaillon et al. 2012

720 ¹ Bolded p-values indicate a statistically significant difference from 1.0, indicating a significant change in
721 relative fitness compared to the competitor. T-test or Wilcoxon test dependent on Shapiro-Wilk test.


722

723


724 **Table 3.** Genic or intergenic regions with evidence of biased mutation histories by pathway.
725

Gene or Intergenic Region	Adaptive pathway	Fisher's Exact Test P-value	Adjusted P-value (FDR)
<i>nmpC/dsbG</i>	<i>rpoB</i>	8.20E-05	0.0134
<i>hepA</i>	<i>rpoB</i>	0.00195	0.160
<i>ECB_01992</i>	<i>rho</i>	0.00521	0.2123
<i>valY/lysV</i>	<i>rpoB</i>	0.00521	0.212
<i>rpoC</i>	<i>rpoB</i>	0.0223	0.726
<i>ybcW/ECB_01526</i>	<i>rho</i>	0.0282	0.766
<i>rho</i>	<i>rpoB</i>	0.0336	0.782

726
727

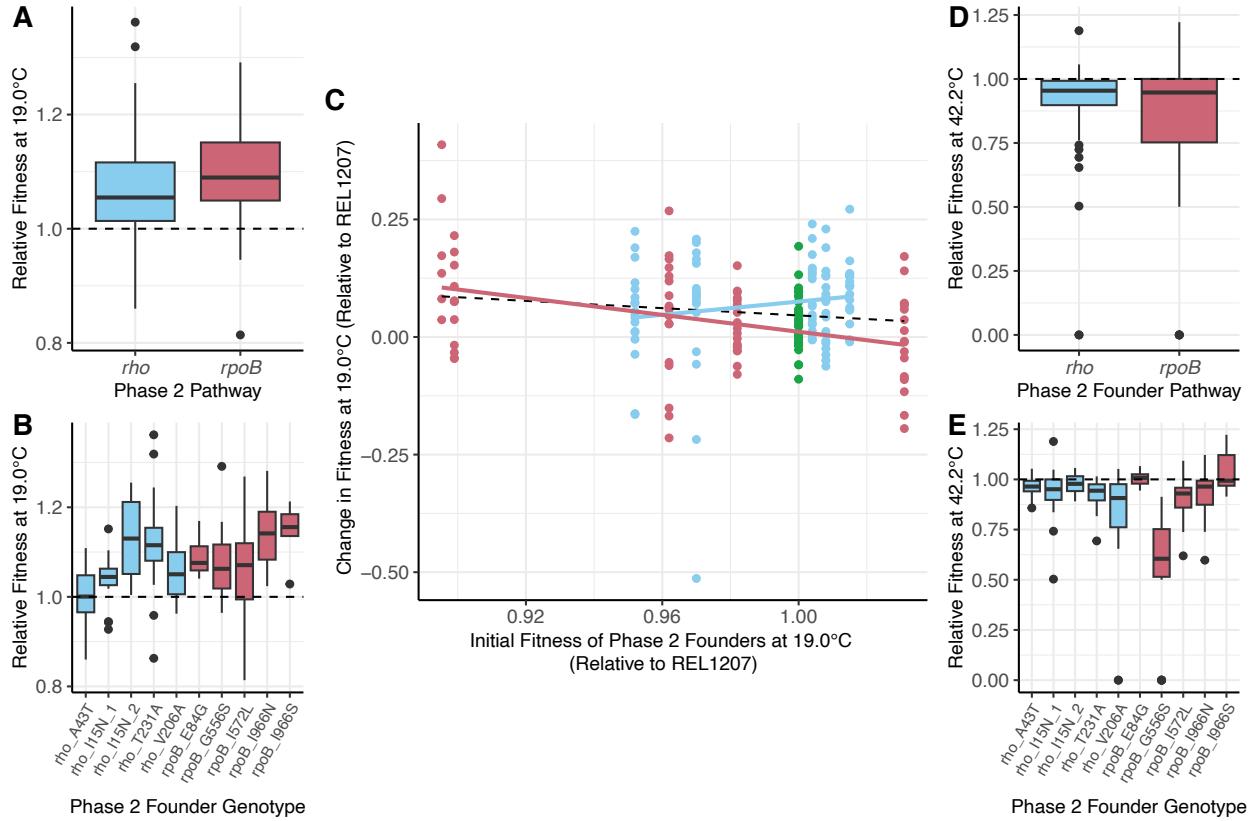
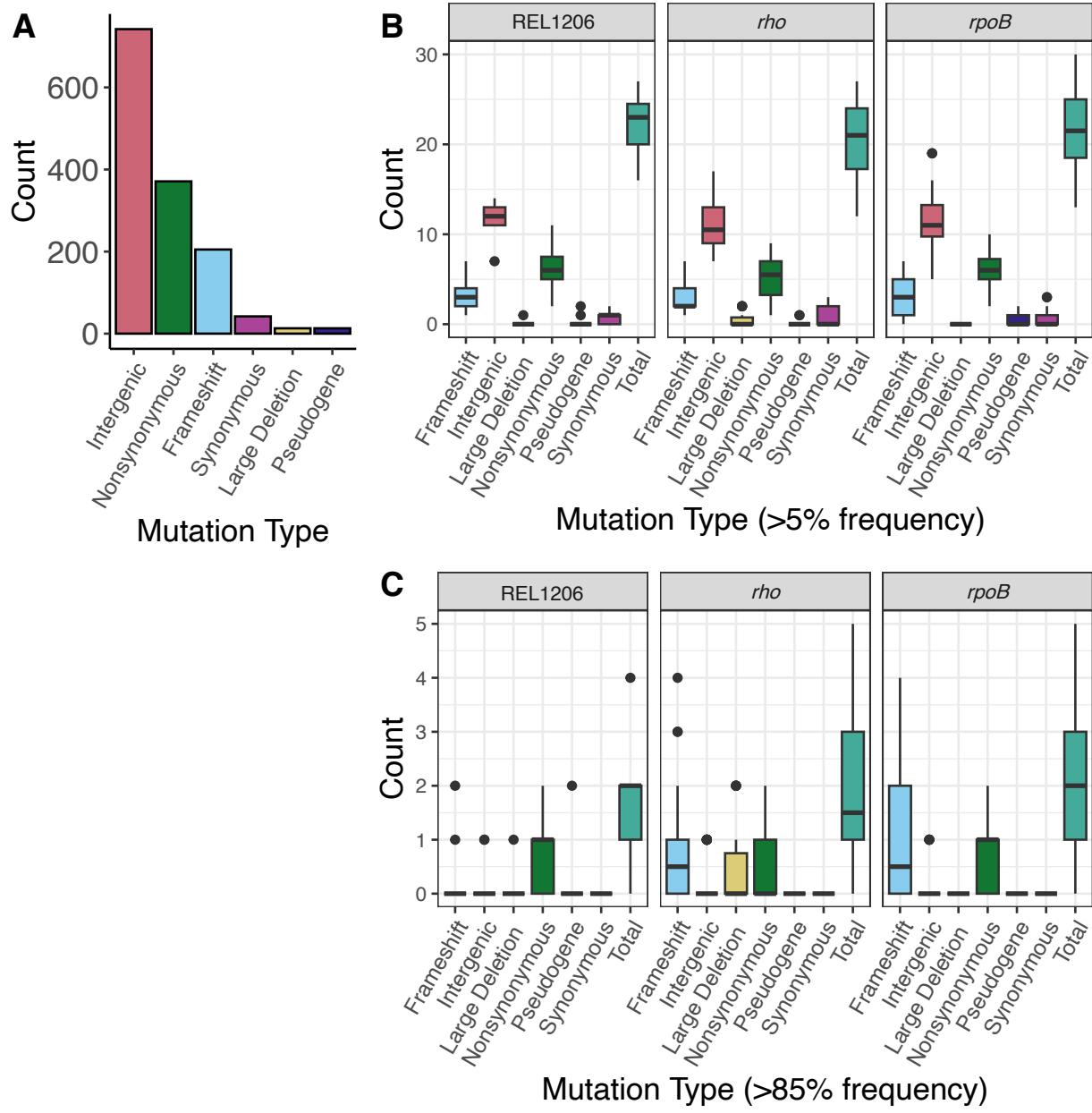

729
730
731
732
733
734
735

Figure 1: The two-phase evolution experiment designed to study contingency. The first phase of evolution was described in Tenaillon et al. (2012). The second phase used a subset of evolved clones from Phase 1 and represented three pathways: clones with *rpoB* mutations (5 genotypes), clones with *rho* mutations (5 genotypes) and the Phase 1 Ancestor.


Genotype by Historical Background

736
737 **Figure 2:** Relative fitness (w_r) of the Phase 2 evolved populations at 19.0°C based on
738 competition assays to REL1207 (an Ara+ variant of the Phase 1 Ancestor; see Methods). On the
739 x-axis, Control represents the Phase 1 Ancestor competed against itself and shows that the Phase
740 1 Ancestor (REL1206) and the REL1207 variant have similar fitnesses, as expected. The boxplot
741 for Ph1 Founder reports w_r for the control populations evolved from REL1206, and the
742 remaining boxplots show w_r values for different Phase 2 founders. The dots in each boxplot
743 show each w_r measurement cross replicated populations, with each population measured at least
744 three time. The horizontal line within the boxplot is the mean w_r value, with the box representing
745 the upper and lower quartile and whiskers showing the range.
746

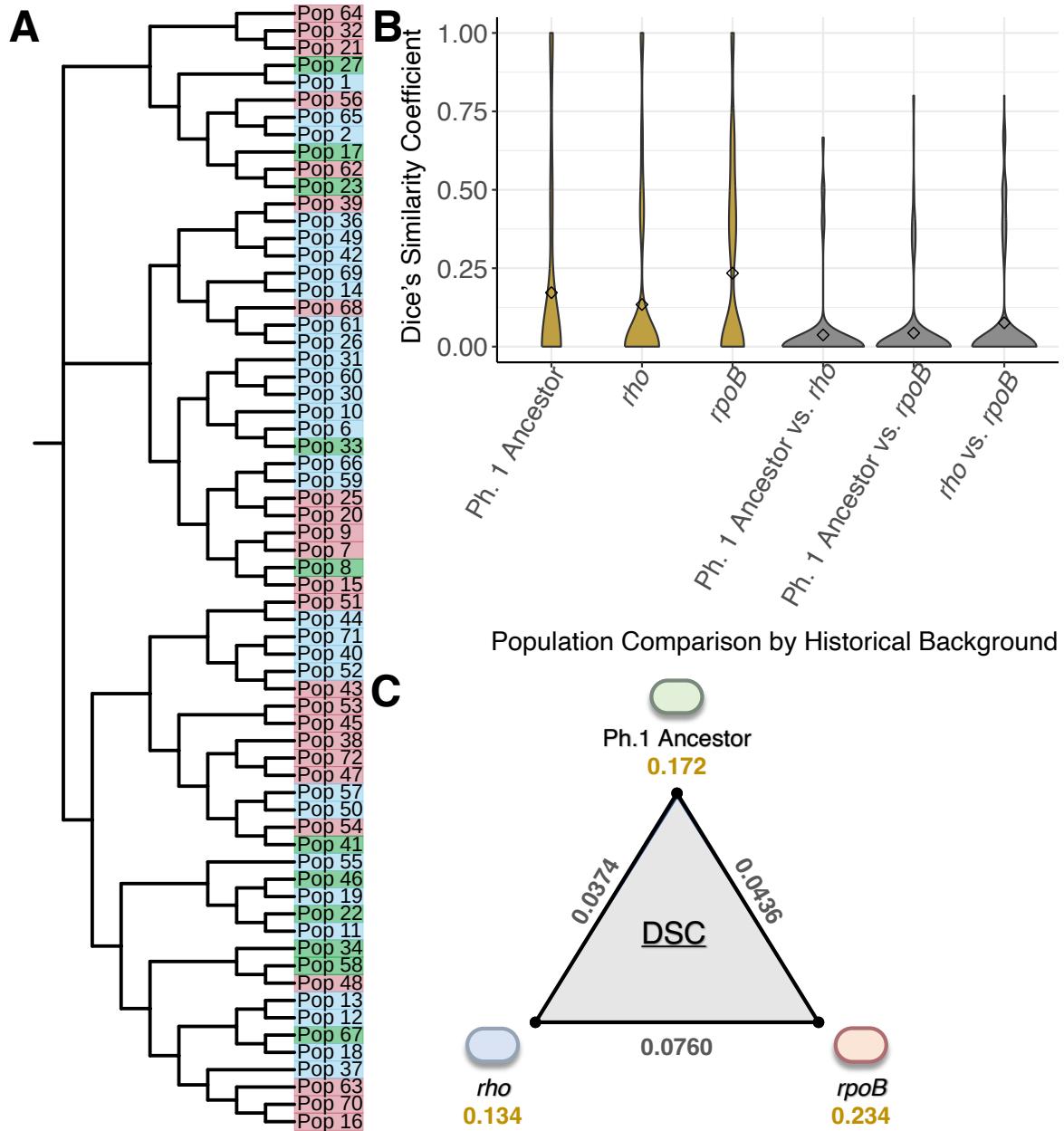

747
748
749
750
751
752
753
754
755
756
757

Figure 3: A) and B) report w_r of Phase 2 evolved populations competed against their Phase 2 ancestor at 19.0°C. A) summarizes by pathways, while B) provides the information by genotype. C) The y-axis plots the change in w_r from the Phase 2 Founder to its evolved populations. The dots represent populations descended from the Phase 1 Ancestor (green), from *rho* genotypes (blue) and *rpoB* genotypes (red). The black, dashed line represents the overall trendline; the red and blue trendlines consider only *rpoB* and *rho* populations, respectively. D) and E) report w_r of Phase 2 evolved populations competed against their Phase 2 Founder at 42.2°C, providing insights into trade-offs. D) summarizes by pathways, while E) provides the information by genotype.

758
759
760
761
762
763
764

Figure 4: Mutations that arose during Phase 2 evolution across populations. A) Number of mutations by type across all evolved populations. B-C) Types of mutations in Phase 2 Evolved Populations faceted by pathway (Phase 1 Ancestor/REL1206, *rho* or *rpoB*). B) All mutations at 5% frequency or higher and C) fixed mutations at 85% frequency. The x-axis shows mutation types, including mutations in pseudogenes and large deletions (deletions greater than 50 bp).

765
766 **Figure 5:** Measures of association between the evolved populations, their historical
767 backgrounds, and the mutations that arose during Phase 2 evolution. A) A neighbor-joining tree
768 built from presence-absence patterns of mutations that arose in Phase 2 evolved populations.
769 Populations descended from the Phase 1 Ancestor are colored in green, with *rho* derived
770 populations in blue, and *rpoB* derived populations in red. B) Dice's similarity coefficients
771 calculated from fixed mutation data, separated by the type of pairwise comparison. Pairwise
772 comparisons performed within a pathway are in gold and those between pathways in grey. C)
773 Average DSC values within and between historical pathways. The average between-pathway
774 values DSC is plotted along the edges in grey, and the average within-DSC are depicted in gold.