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Abstract We encounter the same people, places, and objects in predictable sequences and11

configurations. These regularities are learned efficiently by humans via statistical learning. Importantly,12

statistical learning creates knowledge not only of specific regularities, but also of more abstract,13

generalizable regularities. However, prior evidence of such abstract learning comes from post-learning14

behavioral tests, leaving open the question of whether abstraction occurs online during initial exposure.15

We address this question by measuring neural entrainment during statistical learning with intracranial16

recordings. Neurosurgical patients viewed a stream of scene photographs with regularities at one of two17

levels: In the Exemplar-level Structured condition, the same photographs appeared repeatedly in pairs. In18

the Category-level Structured condition, the photographs were trial-unique but their categories were19

paired across repetitions. In a baseline Random condition, the same photographs repeated but in a20

scrambled order. We measured entrainment at the frequency of individual photographs, which was21

expected in all conditions, but critically also at half of that frequency — the rate at which to-be-learned22

pairs appeared in the two structured conditions (but not the random condition). Neural entrainment to23

both exemplar and category pairs emerged within minutes throughout visual cortex and in frontal and24

temporal brain regions. Many electrode contacts were sensitive to only one level of structure, but a25

significant number encoded both exemplar and category regularities. These findings suggest that26

abstraction occurs spontaneously during statistical learning, providing insight into the brain’s27

unsupervised mechanisms for building flexible and robust knowledge that generalizes across input28

variation and conceptual hierarchies.29

keywords: temporal regularities; scene perception; intracranial EEG; frequency tagging30

31

Introduction32

Everyday experience is highly structured and humans can learn this structure via a process known as statis-33

tical learning (Sherman et al., 2020). This knowledge in turn lets us generate predictions and behave more34

efficiently when we encounter familiar environments in the future. For example, after repeatedly traveling35

through a local airport, you know where to park, how to check-in, which security lines are efficient, where36

to stop for good food, and how the gates are arranged, all of which makes travel smoother than in a for-37

eign airport. At the same time, beyond the specifics of your local airport, many features of your experience38
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reflect general properties of air travel that generalize to most or all other airports, including ground trans-39

portation, security, boarding, baggage, etc., meaning that experienced travelers can still intuit what to do40

even in a new airport.41

Prior behavioral studies have shown that statistical learning supports this kind of abstraction (Brady and42

Oliva, 2008; Otsuka et al., 2013; Emberson and Rubinstein, 2016; Jun and Chong, 2018; Luo and Zhao, 2018;43

Jung et al., 2021). A common design in such studies is to expose participants to a sequence of images with44

regularities at the category level (e.g., images of beaches always followed by images of canyons); this differs45

from standard studies of statistical learning in which the regularities exist at the level of particular exemplar46

images that repeat in pairs or triplets. Evidence for category-level statistical learning is assessed offline in47

a behavioral test after sequence exposure, for example, by asking participants to rate the familiarity of a48

category pair to which they were exposed (e.g., beach -> canyon) vs. a foil (e.g., beach -> farm, where farm49

was a category in another pair). The categories in these test items are often represented by novel exem-50

plars or category labels, such that they can only be discriminated if the participants abstracted categorical51

regularities that they can generalize to these novel stimuli.52

These prior studies usefully demonstrated that statistical learning supports abstraction, but the use of53

offline tests limits insight into learning process itself. Specifically, it is unclear how and when participants54

form these abstract representations, and critically whether this occurs during learning at all. Rather, it is55

possible that participants learn the specific regularities to which they were exposed and only at test do56

they abstract these regularities to novel exemplars or labels through analogy or inference. For example,57

if exposed to a pair of exemplars during learning (e.g., beach1 -> canyon1), participants may exhibit famil-58

iarity or discrimination for new exemplars of the same categories at test (e.g., beach2 -> canyon2) either59

(1) because they had already abstracted a general category relation online during exposure that is ready60

to be applied, or (2) because no abstraction occurred in advance and they instead retrieve specific learned61

pairs and infer that the right answer will preserve the same category relation. This theoretical distinction62

of whether inference occurs during encoding or retrieval has been examined in other forms of learning63

and memory (Preston and Eichenbaum, 2013; Zhou et al., 2021). A prior study from our lab provided some64

tentative behavioral evidence that abstraction might occur online during statistical learning (Sherman and65

Turk-Browne, 2020), which prompted us to conduct a targeted study to measure online abstraction during66

statistical learning of category-level regularities more directly.67

For this purpose, we adopted a technique known as neural entrainment (or frequency tagging) that has68

found recent success in tracking statistical learning of auditory and visual regularities (Ding et al., 2016; Bat-69

terink and Paller, 2017; Batterink, 2020; Choi et al., 2020; Henin et al., 2021). This electroencephalography70

(EEG) based method capitalizes on the fact that brain oscillations in sensory regions can exhibit phase lock-71

ing, or entrainment, at the frequency of onset of rhythmic stimuli (Norcia et al., 2015; Bauer et al., 2020).72

The presence of such entrainment can be used to detect whether and where in the brain the stimuli are73

processed, including when multiple stimuli are presented at different frequencies (Nozaradan et al., 2011;74

Störmer and Alvarez, 2014; Ding et al., 2016). Indeed, statistical learning studies have found neural en-75

trainment not only at the frequency of individual stimuli, but also to the frequency of learned groupings of76

multiple stimuli (Henin et al., 2021), despite no explicit segmentation cues indicating these groupings.77

For example, in a visual stream in which certain scenes follow each other with high transition prob-78

ability constituting pairs, neural entrainment is expected at the frequency of individual scenes, reflecting79

visual-evoked responses, but also at half of that frequency, reflecting the rate of learned pairs. Critically, this80

provides ameasure of learning because the pairs only exist in theminds of participants who extracted them81

based on statistical regularities across repetitions (again, there is no explicit timing, instruction, or other cue82

in the stimuli about the existence of pairs). Because entrainment to learned regularities is measured inci-83

dentally while participants are passively exposed to the stream, this method provides a continuous online84

measure of statistical learning not readily available in behavior. Beyond being a sensitive onlinemeasure of85

learning, neural entrainment can also provide mechanistic insight into the learning process. For example, it86

can help elucidate the timecourse of statistical learning by quantifying how much exposure is required for87

entrainment to emerge. Moreover, with the higher spatial resolution and coverage of deep-brain structures88

provided by intracranial EEG, it is also possible to localize statistical learning effects in the brain.89
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Figure 1. Task design and experimental conditions. Participants viewed a rapid stream of scene images (left), withvarying levels of temporal structure (right). In the Category-level Structured condition (top), participants encountered aseries of trial-unique scene images, drawn from six scene categories. Scene categories were temporally paired (threepairs of two categories), such that an image from one category (e.g., beach) was always followed by an image fromanother category (e.g., canyon). In the Exemplar-level Structured condition (middle), participants encountered a total ofsix scene images that appeared in temporal pairs. In the Random control condition (bottom), participants againencountered six (novel) scene images but now in a random temporal order without pairs.

Prior studies of statistical learning with neural entrainment employed stimuli that were identical across90

repetitions, leaving open the question of whether abstraction occurs online during statistical learning. Thus,91

we combine, for the first time, the method of neural entrainment as an online measure with a task design92

optimized for evaluating categorical abstraction during statistical learning. This task builds on our recent93

intracranial EEG (iEEG) study that conflated regularities at the exemplar and category level (Sherman et al.,94

2022). Herewe evaluate these two levels of abstraction separately in distinct conditions (relative to a random95

baseline condition), allowing us to quantify neural entrainment online during exemplar-level and category-96

level statistical learning.97

Across task runs we manipulated the nature of regularities in a sequence of scene images (Figure 1): in98

Category-level Structured runs, each image appeared once such that regularities could exist only at the level99

of categories (e.g., category A -> category B); this differed from Exemplar-level Structured runs with repeat-100

ing images that contained regularities at the level of individual exemplars (e.g., scene A -> scene B); both101

of these Structured runs with regularities were compared to a Random run in which images repeated with-102

out any regularities in their temporal order. Patients were not informed about these different conditions or103

about the presence of regularities, and they learned them incidentally through passive exposure. By capital-104

izing on the spatial and temporal resolution of intracranial EEG, we tracked statistical learning of exemplar105

and category regularities across the brain, providing insight into how, when, and where abstraction occurs.106
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Methods107

Participants108

We tested 8 patients (1 female; age range: 21-61; mean age = 37.8) who had been surgically implanted109

with intracranial electrodes for localization of seizure onset zone (see Table 1 for patient demographics and110

details on implant). This sample size was chosen a priori based on Sherman et al. (2022). Two patients were111

tested a second time (two days later) because their first dataset was found to be unusable: one of these112

patients experienced severe eye irritation during the first testing session and there was a technical error113

with the triggers for the other patient. Electrode placement was determined solely by the clinical care team114

in order to localize seizure foci. Patients were recruited through the Yale Comprehensive Epilepsy Center115

and provided informed consent in a manner approved by the Yale University Human Subjects Committee.116

All data were collected at Yale New Haven Hospital.117

Patient Information
ID Age Sex nContacts Implant Type Hemisphere
1 28 M 217 Combined Primarily Right
2 21 M 119 Combined Left
3 33 M 191 Combined Primarily Right
4 34 M 116 Combined Right
5 58 M 182 Combined Primarily Left
6 44 M 168 Combined Left
7 61 F 155 Depth Bilateral
8 23 M 162 Depth Left

Table 1. Patient demographics and electrode placement. Implant type indicates whether the implanted electrodeswere only depth electrodes (Depth) or a combination of depth electrodes and grid/strip electrodes on the corticalsurface (Combined). Hemisphere indicates the cerebral hemisphere into which the electrodes were implanted (see alsoFigure 2).

iEEG recordings118

EEG data were recorded on a NATUS NeuroWorks EEG recording system. Data were collected at a sampling119

rate of 4096 Hz. Signals were referenced to an electrode chosen by the clinical team to minimize noise in120

the recording. To synchronize EEG signals with the experimental task, a custom-configured data acquisition121

system (DAQ) was used to convert signals from the research computer to 8-bit “triggers” that were inserted122

into a separate digital channel.123

iEEG preprocessing124

iEEG preprocessing was carried out in FieldTrip (Oostenveld et al., 2011). A notch filter was applied to125

remove 60-Hz line noise. No re-referencingwas applied. Data were downsampled to 256Hz and segmented126

into trials using the triggers.127

Electrode localization128

Electrode contact locations were identified using post-operative CT and MRI scans. Reconstructions were129

completed in BioImage Suite (Papademetris et al., 2006) and were subsequently registered to the patient’s130

pre-operative MRI scan, resulting in contact locations projected into the patient’s pre-operative space. The131

resulting files were converted from the Bioimagesuite format (.MGRID) into native space coordinates using132

FieldTrip functions. The coordinates were then used to create a mask in FSL (Jenkinson et al., 2012), with133

the coordinates of each contact occupying one voxel in the mask (Figure 2).134

Given prior evidence for entrainment in sensory regions, we were interested in measuring neural re-135

sponses in visual regions. We constructed a broad visual cortex region of interest (ROI), as in Sherman et al.136

(2022), on theMontreal Neurological Institute (MNI) T1 2mm standard brain by combining theOccipital Lobe137
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Figure 2. Electrode coverage for each patient. Each dot represents a single contact depicted on a standard glass brain.Contacts could be localized to the visual cortex ROI (purple shaded region) in 7 of the 8 patients, as indicated by darkerblack dots.

ROI from the MNI Structural Atlas and the following ROIs from the Harvard-Oxford Cortical Structural Atlas:138

Inferior Temporal Gyrus (temporo-ocipital part), Lateral Occipital Cortex (superior division), Lateral Occipital139

Cortex (inferior division), Intracalcarine Cortex, Cuneal Cortex, Parahippocampal Gyrus (posterior division),140

Lingual Gyrus, Temporal Occipital Fusiform Cortex, Occipital Fusiform Gyrus, Supracalcarine Cortex, and141

Occipital Pole. Each ROI was thresholded at 10% and then concatenated to create a single mask of visual142

cortex.143

To localize contacts, we registered each patient’s pre-operative anatomical scan to the MNI T1 2mm144

standard brain template using linear registration (FSL FLIRT (Jenkinson and Smith, 2001; Jenkinson et al.,145

2002)) with 12 degrees of freedom. We then used this registration matrix to transform each electrode mask146

into standard space. We overlaid the electrode masks onto the visual cortex ROI and onto the Harvard-147

Oxford cortical and subcortical structural atlases (maximum probability, 0 threshold). All but one of the148

patients had contacts in the visual cortex ROI, resulting in a final sample size of 7 participants for analyses149

of visual cortex.150

Stimuli151

Task stimuli consisted of 720 unique scene images drawn from 18 distinct outdoor scene subcategories (am-152

phitheater, amusement park, beach, bridge, canyon, desert, farm, forest, garden, highway, lake, lighthouse,153

marsh, mountain, park, sports field, town square, and waterfall; 40 images per subcategory). Six subcat-154

egories were randomly assigned to each of the Exemplar-level Structured, Category-level Structured, and155
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Random conditions (see below). All images were collected from Google image searches and were cropped156

to a resolution of 600 x 800 pixels. Stimuli were presented using MATLAB with the Psychophysics toolbox157

(Brainard, 1997; Pelli, 1997).158

Procedure159

Participants completed the experiment on a laptop while seated in their hospital bed. The task consisted of160

at least one run of each of the three experimental conditions. During each run, participants passively viewed161

a rapid stream of scene images and were asked to pay attention to each image. To enable entrainment-162

based neural analyses, the stimulus-onset asynchrony (SOA) was fixed at 500ms; each scenewas presented163

for 250 ms, followed by a 250 ms inter-stimulus interval (ISI), during which a fixation cross appeared in the164

center of the screen. Each run sequence was 240 trials in length (2 mins of viewing time).165

The Category-level Structured runs were our key runs of interest, in which we probed online abstraction166

of categorical regularities during statistical learning. Participants viewed a sequence of trial-unique scene167

images drawn from six scene categories. Participants were told in advance that they would be viewing168

images of scene categories and were given the names of the six categories. Unbeknownst to them, the six169

categories were assigned to three statistical pairs, such that a scene from one category (category A) was170

always followed by a scene from its paired category (category B; Figure 1, top right). Critically, these pairs171

existed only at the category-level because exemplars never repeated, requiring that patients abstract across172

exemplars in order to learn the regularities. No pair was allowed to repeat back-to-back in the sequence.173

In total, participants viewed 40 exemplars from each scene category once (40 repetitions of each category174

pair).175

The Exemplar-level Structured runs served as a key comparison, enabling us to examine statistical learn-176

ing of stimulus regularities without need for abstraction, as in prior studies (Batterink and Paller, 2017;177

Henin et al., 2021). In this run, participants viewed a sequence containing multiple repetitions of six scene178

images, one each from six categories that did not overlap with the other conditions. Unbeknownst to them,179

the scenes were assigned to three statistical pairs (e.g., scene A -> scene B; Figure 1, middle right). No pair180

was allowed to repeat back-to-back in the sequence. Each exemplar/pair was repeated 40 times throughout181

the sequence.182

The Random control runs served as our baseline condition, in which we did not expect any learning-183

related neural entrainment. As in the Exemplar-level Structured runs, participants viewed a sequence con-184

taining 40 repetitions of six scene images from six non-overlapping categories. In contrast to the two Struc-185

tured conditions, the scenes were presented in a random order without reliable pairs that could be learned186

(Figure 1, bottom right). No individual scene was allowed to repeat within two images in the sequence.187

Priorwork has demonstrated that the order of statistical learning tasks can impact performance. Namely,188

learning is worse when one set of regularities is shown after another set or after randomness (Jungé et al.,189

2007; Gebhart et al., 2009). Thus, to maximize our chance of detecting category-level neural entrainment,190

should it exist, especially given unexpected complications and interruptions in working with hospitalized pa-191

tients, we tested the Category-level Structured condition first. We attempted to complete two of these runs192

back-to-back with the same sequence. When two runs were obtained (6/8 patients), we included data from193

both runs in all analyses. However, we also performed control analyses with only the first run, to equate194

the amount of data across conditions. After the Category-level Structured run(s), we completed one run195

of the Exemplar-level Structured and Random conditions next, counterbalancing order across participants.196

We decided on this semi-fixed condition order (Category-level Structured first) ahead of time, accepting that197

it could complicate comparison between conditions. However, note that each condition contains a positive198

control of neural entrainment to the individual image frequency, allowing us to assess data quality and199

ensure that conditions tested later in the session did not suffer from fatigue or inattention.200

Neural entrainment analyses201

We conducted a phase coherence analysis to identify which electrode contacts entrained to our task. We202

examined entrainment at two frequencies: (1) the image frequency (2 Hz, corresponding to the 500-ms SOA203

between images), which reflects entrainment to the frequency of visual stimulation and should be present204
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in all runs; and (2) the pair frequency (1 Hz, corresponding to the 1000-ms interval between pair onsets),205

which reflects entrainment to the statistical pairs and should only be present in the Structured runs (Henin206

et al., 2021).207

For some runs of the task, there was a computer-based timing error such that the first trial’s ISI period208

was shorter than expected. Because the phase coherence analysis depends on reliable timing across trials,209

we excluded the first two trials from all analyses. The raw signals from the remaining 238 trials were seg-210

mented into 17 blocks comprising of 14 trials. For patients with two runs in the Category-level Structured211

condition, the raw signals were concatenated across runs, yielding 34 blocks.212

We then converted the raw signals for each block into the frequency domain via fast Fourier transform213

and computed the phase coherence across blocks for each contact using the formula 𝑅2 = [ 1
𝑁

Σ𝑁𝑐𝑜𝑠𝜙]2 +214

[ 1
𝑁
Σ𝑁𝑠𝑖𝑛𝜙]2, where N is the number of blocks and 𝜙 is the phase at a given frequency (Ding and Simon, 2013;215

Henin et al., 2021). Phase coherence was computed separately for each contact in the brain. We computed216

the peaks at the image and pair frequencies as the coherence at those frequencies relative to the coherence217

at the two neighboring frequencies (±0.14 Hz).218

To assess statistical reliability across participants, we used a non-parametric, random-effects bootstrap219

resampling approach (Efron and Tibshirani, 1986). We first pooled the data across contacts and computed220

the effect of interest (e.g., mean or correlation coefficient). For each of 10,000 iterations, we randomly221

resampled the same sample size of participants with replacement (grabbing all of their electrodes) and re-222

computed the effect of interest to populate a sampling distribution of the effect. This sampling distribution223

was used to obtain 95% confidence intervals and perform null hypothesis testing. We calculated the p-value224

as the proportion of iterations in which the resampled effect had the opposite sign as the true effect; we225

then multiplied these values by 2 to obtain a two-tailed p-value. This tests the null hypothesis that the true226

effect is centered at zero and thus equally likely to be positive or negative by chance. A significant effect227

indicates that it did not matter which patients were resampled on any given iteration, and thus that the228

patients were interchangeable and the effect reliable across the sample. Across-participants resampling229

was performed in R (version 4.1.3), and the random number seed was set to 12345 before each resampling230

test.231

To assess the reliability of a coherence peak within an individual electrode contact, we performed a232

randomization test. We shuffled the phase time series for each block 1,000 times, and recomputed the233

phase coherence across blocks of phase-shuffled data. We then computed the proportion of iterations that234

the true peak (coherence at the frequency of interest minus the neighboring frequencies) was larger than235

the null distribution of peaks to calculate the p-value. Given that we had a directional hypothesis (i.e., higher236

coherence than baseline), we did notmultiply these p values by 2. Within-contact randomization testing was237

performed in MATLAB, and the random number seed was set to 12345 for each contact.238

Phase coherence timecourse analysis239

To assess how neural entrainment to statistical pairs changed over the course of exposure, we performed a240

phase coherence timecourse analysis (Henin et al., 2021; Sherman et al., 2022). We re-computed the coher-241

ence over an increasing number of blocks (e.g., first computing the coherence only between the first and242

second blocks, all the way up to all 17 blocks). For each cumulative block, we compared the coherence peak243

relative to a phase-shuffled surrogate dataset (described above) in order to compute the within-contact re-244

liability. This resulted in a timecourse of p-values, allowing us to determine how many blocks of exposure245

were required for reliable entrainment. We performed this analysis at both the image and pair frequencies.246

We expected coherence at the image frequency to become reliable rapidly, as it reflects entrainment to sen-247

sory stimulation and does not require learning, providing a baseline for helping to interpret the timecourse248

of coherence at the (learned) pair frequency.249

We computed p-value timecourses separately for the Category-level and Exemplar-level Structured con-250

ditions, focusing on visual contacts that showed reliable entrainment by the final block. That is, within each251

Structured condition, we averaged the timecourses of all contacts that exhibited reliable entrainment to the252

pair frequency by block 17. To equate opportunity for learning across patients, we only considered the first253

run of the Category-level Structured condition for patients with two of these runs.254
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We again assessed statistical reliability using a random-effects bootstrap resampling approach. We255

sought to quantify time to a significant response (number of cumulative blocks when p first went <0.05).256

To do so, we calculated the non-parametric p-value for a given number of cumulative blocks as the propor-257

tion of iterations in which the resampled p-value was less than 0.05. We then multiplied these values by 2258

to obtain a two-tailed p value. This resampling test was done in R (version 4.1.3), with a random number259

seed of 12345.260

Results261

Evidence for category-level statistical learning in visual cortex262

To assess whether the brain represents visual regularities online during learning, we capitalized on the fast,263

periodic nature of visual stimulation in our task andmeasured neural entrainment to the frequency of both264

individual images and statistical pairs (Figure 3A). Given prior work demonstrating neural entrainment in265

sensory regions (Henin et al., 2021; Sherman et al., 2022), we focused our analyses on visual cortex. Specif-266

ically, we computed coherence within each contact localized to the visual cortex ROI (116 contacts) and267

averaged the coherence across contacts, within each participant. As a validation of our paradigm, we ex-268

pected strong phase coherence at the frequency of image presentation in all three conditions. We further269

expected phase coherence at the frequency of pair presentation in the Exemplar-level Structured condition,270

replicating prior work demonstrating that the brain entrains to the frequency of statistical regularities (Bat-271

terink and Paller, 2017; Henin et al., 2021). Critically, if the brain abstracts over these stimuli to learn higher-272

level, categorical regularities, we would expect phase coherence at the pair frequency in the Category-level273

Structured condition.274

As shown in Figure 3B, we found reliable peaks in coherence at the image frequency in all three con-275

ditions (Exemplar-level Structured: mean difference, relative to neighboring frequencies = 0.53; 95% CI =276

[0.47, 0.57], p <0.001; Category-level Structured: mean difference = 0.54; 95% CI = [0.46, 0.60], p <0.001;277

Random: mean difference = 0.55; 95% CI = [0.47, 0.62], p <0.001). Critically, the peak in coherence at the278

pair frequency was reliable in both the Exemplar-level Structured condition (mean difference = 0.16, 95% CI279

= [0.12,0.21], p = 0.001) and the Category-level Structured condition (mean difference = 0.10, 95% CI = [0.041,280

0.20], p <0.001), but not in the Random condition (mean difference = -0.0027, 95% CI = [-0.012, 0.0048], p =281

0.50), providing online evidence for rapid statistical learning of exemplar pairs plus abstraction of category282

pairs.283

To further understand these effects, we compared the peaks in coherence across conditions. We ex-284

pected that there would be no condition differences in the peak at the image frequency, but that the peak285

at the pair frequency would be higher in Exemplar- and Category-level Structured conditions, relative to286

Random. Consistent with this hypothesis, there were no pairwise differences in the image frequency across287

conditions (Exemplar-level Structured vs. Random: mean difference = -0.026, 95% CI = [-0.066, 0.0094], p288

= 0.15; Category-level Structured vs. Random: mean difference = -0.018, 95% CI = [-0.047, 0.015], p = 0.28;289

Exemplar- vs. Category-level Structured: mean difference = -0.0073, 95% CI = [-0.042, 0.020], p = 0.61; Figure290

3C, bottom). Importantly, the peak in coherence at the pair frequency was reliably higher for both Struc-291

tured conditions than for the Random condition (Exemplar-level Structured vs. Random: mean difference292

= 0.17, 95% CI = [0.13, 0.21] p <0.001; Category-level Structured vs. Random: mean difference = 0.10, 95%293

CI = [0.043, 0.21], p <0.001; Figure 3C, top). Interestingly, the peak in coherence at the pair frequency was294

marginally higher in Exemplar- vs. Category-level Structured condition (mean difference = 0.062, 95% CI295

= [-0.0085, 0.11], p = 0.075), suggesting that stimulus regularities may be represented more robustly than296

abstract regularities in visual cortex, at least after a fixed and small amount of exposure.297

The above analyses were performed on data concatenated across the two runs of the Category-level298

Structured condition (for participants with two runs). To confirm that evidence for categorical learning was299

not dependent on including more data, we repeated the analysis only considering the first Category-level300

Structured run. Indeed, we found a comparable peak in coherence at the pair frequency (mean difference301

= 0.096, 95% CI = [0.042, 0.19], p <0.001); the peak in coherence at the image frequency remained reliably302

high as well (mean difference = 0.56, 95% CI = [0.49, 0.62], p <0.001). Further, the peak in coherence at303
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the pair frequency remained reliably higher than the Random condition (mean difference = 0.099, 95% CI =304

[0.044, 0.20], p <0.001) and marginally lower than that of the Exemplar-level condition (mean difference =305

-0.067, 95% CI = [-0.0028, 0.12], p = 0.061).306

Together, these results demonstrate robust representation of statistical regularities in visual cortex,307

across levels of abstraction. After only twominutes of exposure, the visual cortex entrained not only to regu-308

larities at the exemplar-level (with the same exact image pairs repeating), but also to regularities that existed309

only at the category-level (requiring abstraction across exemplars in order to uncover the categorical struc-310

ture). Critically, these data demonstrate that category-level regularities can be learned and represented311

online during learning, extending prior behavioral work which relied on delayed, offline test measures to312

infer that abstraction occurred.313

Co-representation of exemplar and category regularities314

Above, we found evidence that visual cortex represents both exemplar- and category-level regularities. How-315

ever, it is unclear whether these two effects are related. One possibility is that the more basic ability to316

extract regularities in sensory stimuli is a precursor for abstracting more complex regularities, in which317

case we might expect the same contacts to exhibit both effects and for the strength of these effects to318

be related. Another possibility is that stimulus learning and hierarchical abstraction are fundamentally dis-319

tinct processes that may be implemented in different neural populations, and thus may be represented in320

different contacts and/or in the same contacts but in an unrelated manner.321

To address this question, we first asked whether the strength of neural entrainment was correlated322

between conditions. Across all electrode contacts in the visual cortex ROI, we computed the Pearson corre-323

lation coefficient between the coherence peaks at the pair frequency. We found a reliable correlation in the324

pair frequency peak for Category- and Exemplar-level Structured conditions (r = 0.33, 95% CI = [0.019, 0.58],325

p = 0.033; Figure 4A). In contrast, there was no reliable correlation between the Random condition and ei-326

ther the Category-level Structured condition (r = -0.10, 95% CI = [-0.24, 0.077], p = 0.22) or the Exemplar-level327

Structured condition (r = -0.011, 95% CI = [-0.14, 0.14], p = 0.82). Themodest correlation between coherence328

for exemplar pairs and category pairs suggests a degree of shared representation of regularities across lev-329

els of abstraction. Importantly, given that we did not find such correlations with the Random condition,330

we can be confident that this correlation was not driven by generic across-contact factors such as baseline331

coherence or data quality.332

As a further control, we computed the pairwise correlations for the image frequency peaks. Unlike the333

pair frequency, we did not expect these correlations to differ between conditions. Indeed, we found high334

correlations across the board (Category- and Exemplar-level Structured, Figure 4B: r = 0.83, 95% CI = [0.70,335

0.92], p <0.001; Category-level Structured and Random: r = 0.88, 95% CI = [0.81, 0.93], p <0.001; Exemplar-336

level Structured and Random: r = 0.87, 95% CI = [0.79, 0.93], p <0.001).337

To further address the relationship between exemplar and category regularities, we labeled individual338

contacts according to whether they exhibited a reliable coherence peak at the frequencies of interest in339

each condition. Of the 116 total electrode contacts in visual cortex, 67 exhibited entrainment to the pair340

frequency in one or both Structured conditions; 27 entrained to the pair frequency in the Exemplar-level341

Structured condition only, 12 in the Category-level Structured condition only, and 28 in both Structured342

conditions. To assess whether this is more overlap than would be expected by chance, given the number of343

reliable contacts in each condition, we independently shuffled the correspondence between contacts and344

significance labels across conditions and recomputed the overlap. We found that the observed overlap was345

indeed reliable (mean null overlap = 19 contacts, 95% CI = [14, 24], p <0.001), indicating that some parts of346

visual cortex exhibit a dual representation both exemplar and category regularities.347

Tounderstandwhether these dual-coding contactswere responsible for the correlations observed above,348

we re-computed the correlations after removing these contacts. Indeed, this eliminated the correlation (88349

non-overlapping contacts: r = -0.086, 95% CI = [-0.18, 0.15], p = 0.31). However, there was also no reliable350

correlation when restricting the analysis to only the dual-coding contacts (28 overlapping contacts: r = 0.041,351

95% CI = [-0.36, 0.33], p = 0.41). This suggests that the original correlation benefitted from variance in coding352

properties across contacts and/or from the greater sensitivity provided by a larger sample size of contacts.353
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Figure 3. Phase coherence analysis. A) Schematic of analysis and hypothesized neural oscillations. We expectedentrainment of visual contacts at the frequency of image presentation in all conditions. In the two Structured conditions(Exemplar-level and Category-level), we also expected entrainment at the frequency of (learned) pairs. B) Thesehypotheses were confirmed: We observed reliable peaks in coherence at the image frequency in all three conditions,but only at the pair frequency for the Category-level and Exemplar-level Structured conditions. Error shading indicatesbootstrapped 95% confidence intervals. C) Coherence peaks at the pair frequency (top) and image frequency (bottom)for each participant across the three runs. Each circle/line represents one participant.
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Figure 4. Correlations across contacts. A) Correlation between the coherence peak at the pair frequency in theCategory-level Structured condition and the coherence peak at the pair frequency in the Exemplar-level Structuredcondition. B) Correlation between the coherence peak at the image frequency in the Category-level Structuredcondition and the coherence peak at the image frequency in the Exemplar-level Structured condition. Each circlerepresents an electrode contact. Error shading indicates bootstrapped 95% confidence intervals.

Examining the timecourse of learning in visual cortex354

Wehavepresented evidence that populations of electrode contacts in visual cortex entrain to both exemplar-355

and category-level regularities online during statistical learning. However, it is possible that statistical learn-356

ing of more abstract category regularities requiresmore exposure than learning of simpler, stimulus-driven357

exemplar regularities. To assess the evolution of entrainment over the course of learning and whether it358

differs across conditions, we performed a timecourse analysis. Specifically, we re-computed coherence359

over an increasing number of blocks (e.g., first computing the coherence only between the first and second360

blocks, then between the first, second and third blocks, all the way up to 17 blocks) to determine the block361

count at which contacts exhibited reliable entrainment. In other words, we asked how much exposure was362

required for contacts that exhibited reliable entrainment in the final block to reach a statistically reliable363

response. For the Category-level Structured condition, we only analyzed each patient’s first run in order to364

equate the opportunity for learning both across patients and conditions.365

In the Category-level Structured condition (Figure 5A, left), we found reliable entrainment only when366

computing coherence across 16 or more blocks (16 blocks: mean p = 0.023, 95% CI = [0.0033, 0.044], p =367

0.0056; 17 blocks: mean p = 0.0097, 95% CI = [0.0023, 0.018], p <0.001). In the Exemplar-level Structured368

condition (Figure 5A, right), entrainment appeared marginally after 14 blocks (mean p = 0.029, 95% CI =369

[0.011, 0.052], p = 0.057) and reliably for 15 or more blocks (ps <0.001). These data suggest that exemplar370

and category regularities were learned at a similar timescale, with slightly faster acquisition for exemplar371

regularities.372

To establish a floor of how quickly we might theoretically expect to see a reliable entrainment effect,373

we performed this same analysis for the image frequency (again, only considering contacts that exhibited374

reliable entrainment to the image frequency in the final block). Because entrainment to the images was375

given by the sensory input and not from statistical learning, we did not expect meaningful differences be-376

tween conditions. In the Category-level Structured condition (Figure 5B, left), there was reliable coherence377

at the image frequency by block 9 (mean p = 0.028, 95% CI = [0.0072, 0.049], p = 0.037; all subsequent block378

counts, ps <0.001). The Exemplar-level Structured condition (Figure 5B, right) followed a similar pattern,379

with reliable entrainment by block 8 (mean p = 0.026, 95% CI = [0.009, 0.041], p = 0.0018; all subsequent380

block counts, ps <0.001). Finally, we also computed the timecourse of the image frequency effect in the381

Random condition and found a similar pattern, with reliable entrainment by block 9 (mean p = 0.033; 95%382

CI = [0.016, 0.048], p = 0.024; block 10: mean p = 0.034, 95% CI = [0.016, 0.049], p = 0.036; all subsequent383

block counts, ps <0.001).384
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Figure 5. Timecourse analysis. A) Emergence of a reliable phase coherence peak at the pair frequency across blocks inthe Category-level Structured (left) and Exemplar-level Structured (right) conditions. For each cumulative block count N,we computed the proportion of iterations that the coherence peak across N blocks was greater than the peak across Nblocks of phase-shuffled data to obtain a p-value; we then determined the first block at which the permuted p-valueacross contacts was reliably less than 0.05 (dashed line). B) Emergence of a significant response at the image frequencyacross blocks in the Category-level Structured (left) and Exemplar-level Structured (right) conditions. Error shadingindicates bootstrapped 95% confidence intervals.

Categorical abstraction during statistical learning across the brain385

We initially focused on how visual cortex represents visual regularities given our prior work (Sherman et al.,386

2022), but a wide range of brain regions have been implicated in statistical learning (Batterink et al., 2019;387

Henin et al., 2021). To examine online abstraction during statistical learning more broadly, we measured388

neural entrainment to exemplar and category regularities in an exploratory brain-wide analysis.389

First, as in the analysis restricted to visual cortex, we identified which contacts represented exemplar390

and/or category regularities by testing for reliable phase coherence at the pair frequency relative to neigh-391

boring frequencies. Of a total of 1,310 contacts across all patients, we found reliable entrainment at the pair392

frequency in 175 contacts for the Exemplar-level Structured condition and in 177 contacts for the Category-393

level Structured condition; 41 of these contacts overlapped. This amount of overlap was reliably greater394

than expected by chance (Figure 6A; mean null overlap = 24 contacts, 95% CI = [16, 32], p <0.001). Because395

this brain-wide analysis included visual cortex, it is possible that the reliable overlap was driven by visual396

contacts, which we earlier showed exhibited reliable overlap. We therefore repeated the brain-wide analy-397

sis after excluding contacts in the visual cortex ROI. Of the remaining 1,194 contacts across all patients, we398

found reliable entrainment at the pair frequency in 120 contacts for the Exemplar-level Structured condition399

and 137 contacts for the Category-level Structured condition; 13 of these contacts overlapped. However,400

this amount of overlap was not reliably greater than what would be expected by chance (mean null over-401

lap = 14 contacts, 95% CI = [8, 20], p = 0.52), suggesting that dual coding of exemplar- and category-level402

regularities in individual contacts was restricted to visual cortex.403

Wenext sought to localize these structure-sensitive contacts throughout the brain (Figure 6B).Wemapped404

the contacts onto the Harvard-Oxford cortical and subcortical atlases and quantified howmany contacts ex-405

hibited effects within each gray-matter atlas ROI. Table 2 summarizes the results by listing atlas ROIs that406

contained at least 5 contacts that entrained at an uncorrected level to the pair frequency in at least one407

of the Structured conditions. Consistent with our planned visual ROI, many of these contacts were located408

in visual cortex (e.g., lateral occipital cortex, lingual gyrus, occipital pole). However, we also observed en-409

trainment to learned regularities in frontal and anterior temporal regions, some showing a preference for410

regularities available directly in the exemplar stimuli (e.g., temporal pole) and others for regularities that411

required categorical abstraction (e.g., frontal pole and precentral gyrus). Importantly, claims about localiza-412

tion in the brain are limited by the fact that we did not have full coverage of all brain regions, given that413

electrode placement was determined clinically.414
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Figure 6. Exploratory brain-wide analyses. A) Histogram: distribution of how many contacts would be expected toentrain to the pair frequency in both the Exemplar- and Category-level Structured conditions by chance; red lineindicates the observed overlap, indication that many more contacts coded for both exemplar and category regularitiesthan would be expected by chance. Inset: Venn diagram illustrating the total number of contacts that entrained to thepair frequency in both conditions and their overlap. B) Map of contacts (across all patients) that entrained to the pairfrequency in one or both conditions on a standard glass brain.
Localization of task-sensitive contacts

ROI Total Category Exemplar Overlap Image
Frontal Pole 176 19 7 0 69
Insular Cortex 59 5 14 0 28
Middle Frontal Gyrus 65 7 5 1 36
Precentral Gyrus 52 10 5 0 24
Temporal Pole 51 0 7 0 18
Middle Temporal Gyrus, post 45 3 6 0 8
Postcentral Gyrus 47 9 6 0 25
Lateral Occipital Cortex, sup 36 2 10 4 26
Lingual Gyrus 13 1 5 4 13
Occipital Pole 21 5 5 9 21

Table 2. Gray-matter ROIs in the Harvard-Oxford cortical and subcortical atlases that contained at least 5 contacts withreliable entrainment at the pair frequency in the Category- and/or Exemplar-level Structured conditions. We alsoincluded the total number of contacts in each ROI (Total) and the number of contacts that entrained at the imagefrequency in the Category- and/or Exemplar-level Structured conditions (Image).

Discussion415

In the current study, we capitalized on the high spatial and temporal precision of intracranial EEG to explore416

how the brain learns and represents statistical regularities across varying levels of abstraction. Specifically,417

we contrasted the learning of exemplar-level regularities (defined by the transition probabilities between418

individual images) with the learning of category-level regularities (defined by the transition probabilities419

between image categories, thus requiring abstraction across individual images). We found robust repre-420

sentation of both kinds of regularities in visual cortex and throughout the brain during statistical learning.421

These findings speak to several issues in the statistical learning literature and raise questions for future422

research.423

Online evidence for category-level statistical learning424

In measuring neural entrainment to the frequency of regularities, we employed a covert, online measure of425

statistical learning. This builds on a body of work that measured category-level statistical learning with of-426

fline behavioral tests, such as asking participants to judge their familiarity with pairs of images or categories427

(Brady and Oliva, 2008; Otsuka et al., 2013; Emberson and Rubinstein, 2016; Jung et al., 2021). However, it428
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is unclear whether above-chance performance on these tests reflects abstraction of category relationships429

during the learning process itself or the formation of specific stimulus associations during learning that430

enabled successful inferences about test items from the same categories. It is also possible that these be-431

havioral studies engendered both abstraction during learning and inferences at test, yet it remains unclear432

which effect (or both) drove test performance. Further complicating the interpretation of offline behavioral433

performance as evidence of online abstraction, online and offline measures of statistical learning are not434

always correlated (Kiai and Melloni, 2021). The current study sought to skirt these interpretational chal-435

lenges by measuring neural entrainment as an online neural index of statistical learning. The observed436

entrainment to category pairs provides novel evidence for rapid statistical learning between abstractions437

over individual exemplars.438

One limitation of our study is that it is unclear how the neural entrainment measure of statistical learn-439

ing and abstraction relates to more canonical behavioral measures. Given our short testing time with each440

patient, their limited energy and attention span, and the small number of patients, we optimized our task441

design and testing time for neural rather than behavioral measures of learning. Future studies could per-442

haps use scalp EEG in a well-powered normative sample to help link neural and behavioral measures of443

category-level statistical learning. Future studies could further consider how neural entrainment during444

learning relates to both online (e.g., response time) and offline (e.g., familiarity) behavioral measures; that445

said, it may be difficult to develop online behavioral measures during a task designed for neural entrain-446

ment, given the fast presentation rates that such tasks require. Prior studies have demonstrated that neural447

evidence of statistical learning can appear earlier and even in the absence of behavioral evidence of learn-448

ing (Turk-Browne et al., 2009); thus, it is possible that our current results reflect a rapid sensitivity of the449

brain to category regularities.450

Additional limitations apply in how to interpret the timecourse results. Although these results provide ev-451

idence that learning occurs quite quickly (less than two minutes) in both Structured conditions, it is unclear452

how this maps onto the underlying trajectory of learning. We found reliable evidence of statistical learning453

for exemplar regularities two blocks earlier than for category regularities. Does this small difference in the454

amount of required exposure mean that specific stimulus associations must be learned before more ab-455

stract associations? Or perhaps the individual images were represented both as exemplars and categories456

during perception and associations were learned at both levels in parallel? In this case, learning of category457

regularities may be slower because of the added complexity in dealing with greater input variability (e.g.,458

in the extent to which a given exemplar was a prototype of a category). Note also that the “time to sig-459

nificant response” measure we used based on prior work (Henin et al., 2021) is relatively conservative and460

constrained (measuring the reliability of responses within each contact) and does not necessarily reflect the461

veridical overall timecourse of learning across the brain or in behavior. Further, we computed this metric462

by averaging across contacts that were reliable in the final block, which may have obscured heterogeneous463

timecourses for different aspects or stages of learning across the brain.464

Finally, different aspects of learned structure can be measured. For example, memory for the temporal465

order of items within a statistical unit (e.g., triplet) can be dissociated from memory for the item groupings466

(Park et al., 2018; Forest et al., 2022), and these distinct types of memory may be supported by differ-467

ent underlying neural representations (Davachi and DuBrow, 2015; Henin et al., 2021). Although providing468

evidence of learning overall, the current study, and the basic neural entrainment design it employed, is in-469

sensitive to these differing underlying representations. Future studies could employ other neuralmeasures,470

such as pre- and post-learning templates (Schapiro et al., 2012), to assess changes in the representations of471

the individual paired items. Such measures could be used to test hypotheses about how these constituent472

items are represented at different levels of abstraction as a function of statistical learning.473

Local and distributed representations of visual regularities across the brain474

We focused our main analyses on visual cortex, which we hypothesized would show neural entrainment475

to visual regularities between visual images (Henin et al., 2021; Sherman et al., 2022). However, we also476

performed an exploratory brain-wide analysis to uncover where category and exemplar regularities were477

represented throughout the brain. This analysis largely confirmed our a priori choice to focus on visual478
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cortex, but also revealed a distributed representation of structure, with many frontal (e.g., frontal pole,479

insula, middle frontal gyrus, and precentral gyrus) and temporal (e.g., temporal pole, middle temporal gyrus)480

regions also exhibiting entrainment to visual regularities. These findings are largely consistent with prior481

fMRI studies demonstrating sensitivity to structure in these regions (Turk-Browne et al., 2009, 2010; Karuza482

et al., 2013, 2017).483

This analysis revealed relatively little evidence that entire brain regions specialize at a particular level of484

abstraction. Although some regions exhibited a bias towards one level (e.g., more contacts in the frontal485

pole entrained only to category regularities, and more contacts in the insula entrained only to exemplar486

regularities), very few regions solely represented one level. The only exception was the temporal pole,487

which only exhibited entrainment to exemplar-level regularities. Similarly, most contacts did not show a488

general sensitivity to structure regardless of abstraction. The small (but reliable) number of such contacts489

representing both category and exemplar regularities were restricted to visual cortex (e.g., occipital pole).490

Still, themajority of visual contacts entrained to one level of structure or the other, but not both. At the level491

of entire brain regions, some regions contained distinct contacts that entrained selectively to category and492

exemplar regularities, yet no contacts that entrained to both. This raises the possibility that there may be493

distinct neural populations and cognitive processes evenwithin the same brain region for statistical learning494

at varying levels of abstraction.495

An important limitation to these exploratory brain-wide analyses is that they only had access to partial496

coverage of the brain. Although we had relatively broad coverage of cortical regions for an intracranial EEG497

study, the electrode locations were chosen entirely for clinical purposes and were thus not always compre-498

hensive or standardized across patients. However, this is an expected limitation for any iEEG based study.499

Further, we had insufficient coverage of the hippocampus in this sample (only 5 contacts across all patients),500

a region that has been consistently implicated in rapid statistical learning (Turk-Browne et al., 2009; Schapiro501

et al., 2012; Covington et al., 2018; Sherman and Turk-Browne, 2020; Henin et al., 2021; Graves et al., 2022).502

Future studies could recruit a more targeted sample of intracranial EEG patients (e.g., with hippocampal503

depth electrodes) or use fMRI for high-resolution hippocampal coverage potentially across a larger sample504

of individuals.505

Conclusions506

Together, our results provide evidence for rapid and robust online abstraction of categorical regularities507

during statistical learning. This occurred heavily within visual cortex, suggesting a remarkable capability for508

the brain to aggregate across noisy, idiosyncratic instances to extract stable properties of the environment509

that can generalize to new situations.510
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