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1 Abstract We encounter the same people, places, and objects in predictable sequences and

12 configurations. These regularities are learned efficiently by humans via statistical learning. Importantly,
13 statistical learning creates knowledge not only of specific regularities, but also of more abstract,

e generalizable regularities. However, prior evidence of such abstract learning comes from post-learning
15 behavioral tests, leaving open the question of whether abstraction occurs online during initial exposure.
1 We address this question by measuring neural entrainment during statistical learning with intracranial

1z recordings. Neurosurgical patients viewed a stream of scene photographs with regularities at one of two
18 levels: In the Exemplar-level Structured condition, the same photographs appeared repeatedly in pairs. In
10 the Category-level Structured condition, the photographs were trial-unique but their categories were

20 paired across repetitions. In a baseline Random condition, the same photographs repeated butin a

21 scrambled order. We measured entrainment at the frequency of individual photographs, which was

22 expected in all conditions, but critically also at half of that frequency — the rate at which to-be-learned

23 pairs appeared in the two structured conditions (but not the random condition). Neural entrainment to
2« both exemplar and category pairs emerged within minutes throughout visual cortex and in frontal and
2s temporal brain regions. Many electrode contacts were sensitive to only one level of structure, but a

26 significant number encoded both exemplar and category regularities. These findings suggest that

27 abstraction occurs spontaneously during statistical learning, providing insight into the brain’s

2s unsupervised mechanisms for building flexible and robust knowledge that generalizes across input

20 Vvariation and conceptual hierarchies.

30 keywords: temporal regularities; scene perception; intracranial EEG; frequency tagging

31

== Introduction

33 Everyday experience is highly structured and humans can learn this structure via a process known as statis-
32 tical learning (Sherman et al., 2020). This knowledge in turn lets us generate predictions and behave more
35 efficiently when we encounter familiar environments in the future. For example, after repeatedly traveling
3e through a local airport, you know where to park, how to check-in, which security lines are efficient, where
sz to stop for good food, and how the gates are arranged, all of which makes travel smoother than in a for-
s eign airport. At the same time, beyond the specifics of your local airport, many features of your experience


https://doi.org/10.1101/2023.01.11.523605
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.11.523605; this version posted January 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

30 reflect general properties of air travel that generalize to most or all other airports, including ground trans-
20 portation, security, boarding, baggage, etc., meaning that experienced travelers can still intuit what to do
a1 evenin anew airport.

a2 Prior behavioral studies have shown that statistical learning supports this kind of abstraction (Brady and
«3  Oliva, 2008; Otsuka et al., 2013; Emberson and Rubinstein, 2016; Jun and Chong, 2018; Luo and Zhao, 2018;
s Jung et al., 2021). A common design in such studies is to expose participants to a sequence of images with
«s regularities at the category level (e.g., images of beaches always followed by images of canyons); this differs
s from standard studies of statistical learning in which the regularities exist at the level of particular exemplar
+z images that repeat in pairs or triplets. Evidence for category-level statistical learning is assessed offline in
ss a behavioral test after sequence exposure, for example, by asking participants to rate the familiarity of a
a0 Ccategory pair to which they were exposed (e.g., beach -> canyon) vs. a foil (e.g., beach -> farm, where farm
so Was a category in another pair). The categories in these test items are often represented by novel exem-
s1  plars or category labels, such that they can only be discriminated if the participants abstracted categorical
s2 regularities that they can generalize to these novel stimuli.

53 These prior studies usefully demonstrated that statistical learning supports abstraction, but the use of
s« Offline tests limits insight into learning process itself. Specifically, it is unclear how and when participants
ss form these abstract representations, and critically whether this occurs during learning at all. Rather, it is
se possible that participants learn the specific regularities to which they were exposed and only at test do
sz they abstract these regularities to novel exemplars or labels through analogy or inference. For example,
ss If exposed to a pair of exemplars during learning (e.g., beach1 -> canyon1), participants may exhibit famil-
so iarity or discrimination for new exemplars of the same categories at test (e.g., beach2 -> canyon2) either
e0 (1) because they had already abstracted a general category relation online during exposure that is ready
e1 to be applied, or (2) because no abstraction occurred in advance and they instead retrieve specific learned
ez pairs and infer that the right answer will preserve the same category relation. This theoretical distinction
ez Of whether inference occurs during encoding or retrieval has been examined in other forms of learning
ea and memory (Preston and Eichenbaum, 2013; Zhou et al., 2021). A prior study from our lab provided some
es tentative behavioral evidence that abstraction might occur online during statistical learning (Sherman and
es Turk-Browne, 2020), which prompted us to conduct a targeted study to measure online abstraction during
e Statistical learning of category-level regularities more directly.

68 For this purpose, we adopted a technique known as neural entrainment (or frequency tagging) that has
ee found recent success in tracking statistical learning of auditory and visual regularities (Ding et al., 2016; Bat-
7o terink and Paller, 2017; Batterink, 2020; Choi et al., 2020; Henin et al., 2021). This electroencephalography
= (EEG) based method capitalizes on the fact that brain oscillations in sensory regions can exhibit phase lock-
72 ing, or entrainment, at the frequency of onset of rhythmic stimuli (Norcia et al., 2015; Bauer et al., 2020).
73 The presence of such entrainment can be used to detect whether and where in the brain the stimuli are
72 processed, including when multiple stimuli are presented at different frequencies (Nozaradan et al., 2011;
7s Stormer and Alvarez, 2014; Ding et al., 2016). Indeed, statistical learning studies have found neural en-
7e trainment not only at the frequency of individual stimuli, but also to the frequency of learned groupings of
7z multiple stimuli (Henin et al., 2021), despite no explicit segmentation cues indicating these groupings.

78 For example, in a visual stream in which certain scenes follow each other with high transition prob-
7o ability constituting pairs, neural entrainment is expected at the frequency of individual scenes, reflecting
so Visual-evoked responses, but also at half of that frequency, reflecting the rate of learned pairs. Critically, this
e1 provides a measure of learning because the pairs only exist in the minds of participants who extracted them
sz based on statistical regularities across repetitions (again, there is no explicit timing, instruction, or other cue
sz in the stimuli about the existence of pairs). Because entrainment to learned regularities is measured inci-
sa dentally while participants are passively exposed to the stream, this method provides a continuous online
ss Mmeasure of statistical learning not readily available in behavior. Beyond being a sensitive online measure of
ss learning, neural entrainment can also provide mechanistic insight into the learning process. For example, it
sz can help elucidate the timecourse of statistical learning by quantifying how much exposure is required for
ss entrainmentto emerge. Moreover, with the higher spatial resolution and coverage of deep-brain structures
se provided by intracranial EEG, it is also possible to localize statistical learning effects in the brain.
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Figure 1. Task design and experimental conditions. Participants viewed a rapid stream of scene images (left), with
varying levels of temporal structure (right). In the Category-level Structured condition (top), participants encountered a
series of trial-unique scene images, drawn from six scene categories. Scene categories were temporally paired (three
pairs of two categories), such that an image from one category (e.g., beach) was always followed by an image from
another category (e.g., canyon). In the Exemplar-level Structured condition (middle), participants encountered a total of
six scene images that appeared in temporal pairs. In the Random control condition (bottom), participants again
encountered six (novel) scene images but now in a random temporal order without pairs.

90 Prior studies of statistical learning with neural entrainment employed stimuli that were identical across
o1 repetitions, leaving open the question of whether abstraction occurs online during statistical learning. Thus,
o2 we combine, for the first time, the method of neural entrainment as an online measure with a task design
o3 optimized for evaluating categorical abstraction during statistical learning. This task builds on our recent
oa intracranial EEG (iEEG) study that conflated regularities at the exemplar and category level (Sherman et al.,
os 2022). Here we evaluate these two levels of abstraction separately in distinct conditions (relative to arandom
9 baseline condition), allowing us to quantify neural entrainment online during exemplar-level and category-
o7 level statistical learning.

o8 Across task runs we manipulated the nature of regularities in a sequence of scene images (Figure 1): in
oo Category-level Structured runs, each image appeared once such that regularities could exist only at the level
w0 Of categories (e.g., category A -> category B); this differed from Exemplar-level Structured runs with repeat-
101 iNg images that contained regularities at the level of individual exemplars (e.g., scene A -> scene B); both
102 Of these Structured runs with regularities were compared to a Random run in which images repeated with-
103 outany regularities in their temporal order. Patients were not informed about these different conditions or
104 about the presence of regularities, and they learned them incidentally through passive exposure. By capital-
10 izing on the spatial and temporal resolution of intracranial EEG, we tracked statistical learning of exemplar
16 and category regularities across the brain, providing insight into how, when, and where abstraction occurs.
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10z Methods

10s Participants

100 We tested 8 patients (1 female; age range: 21-61; mean age = 37.8) who had been surgically implanted
10 With intracranial electrodes for localization of seizure onset zone (see Table 1 for patient demographics and
11 details on implant). This sample size was chosen a priori based on Sherman et al. (2022). Two patients were
112 tested a second time (two days later) because their first dataset was found to be unusable: one of these
13 patients experienced severe eye irritation during the first testing session and there was a technical error
1a  With the triggers for the other patient. Electrode placement was determined solely by the clinical care team
1s  in order to localize seizure foci. Patients were recruited through the Yale Comprehensive Epilepsy Center
116 and provided informed consent in a manner approved by the Yale University Human Subjects Committee.
17z All data were collected at Yale New Haven Hospital.

Patient Information
ID Age Sex nContacts | Implant Type | Hemisphere
1 28 M 217 Combined Primarily Right
2 21 M 119 Combined Left
3 33 M 191 Combined Primarily Right
4 34 M 116 Combined Right
5 58 M 182 Combined Primarily Left
6 44 M 168 Combined Left
7 61 F 155 Depth Bilateral
8 23 M 162 Depth Left

Table 1. Patient demographics and electrode placement. Implant type indicates whether the implanted electrodes
were only depth electrodes (Depth) or a combination of depth electrodes and grid/strip electrodes on the cortical
surface (Combined). Hemisphere indicates the cerebral hemisphere into which the electrodes were implanted (see also
Figure 2).

s IEEG recordings

110 EEG data were recorded on a NATUS NeuroWorks EEG recording system. Data were collected at a sampling
120 rate of 4096 Hz. Signals were referenced to an electrode chosen by the clinical team to minimize noise in
122 therecording. To synchronize EEG signals with the experimental task, a custom-configured data acquisition
122 system (DAQ) was used to convert signals from the research computer to 8-bit “triggers” that were inserted
123 into a separate digital channel.

124 IEEG preprocessing

125 IEEG preprocessing was carried out in FieldTrip (Oostenveld et al., 2011). A notch filter was applied to
126 remove 60-Hz line noise. No re-referencing was applied. Data were downsampled to 256 Hz and segmented
127 into trials using the triggers.

12z Electrode localization

120 Electrode contact locations were identified using post-operative CT and MRI scans. Reconstructions were
130 completed in Biolmage Suite (Papademetris et al., 2006) and were subsequently registered to the patient's
131 pre-operative MRI scan, resulting in contact locations projected into the patient’s pre-operative space. The
132 resulting files were converted from the Bioimagesuite format (.MGRID) into native space coordinates using
13z FieldTrip functions. The coordinates were then used to create a mask in FSL (Jenkinson et al., 2012), with
132 the coordinates of each contact occupying one voxel in the mask (Figure 2).

135 Given prior evidence for entrainment in sensory regions, we were interested in measuring neural re-
136 Sponses in visual regions. We constructed a broad visual cortex region of interest (ROI), as in Sherman et al.
137 (2022), on the Montreal Neurological Institute (MNI) T1 2mm standard brain by combining the Occipital Lobe
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Figure 2. Electrode coverage for each patient. Each dot represents a single contact depicted on a standard glass brain.
Contacts could be localized to the visual cortex ROI (purple shaded region) in 7 of the 8 patients, as indicated by darker
black dots.

13s ROl from the MNI Structural Atlas and the following ROIs from the Harvard-Oxford Cortical Structural Atlas:
130 Inferior Temporal Gyrus (temporo-ocipital part), Lateral Occipital Cortex (superior division), Lateral Occipital
10 Cortex (inferior division), Intracalcarine Cortex, Cuneal Cortex, Parahippocampal Gyrus (posterior division),
11 Lingual Gyrus, Temporal Occipital Fusiform Cortex, Occipital Fusiform Gyrus, Supracalcarine Cortex, and
12 Occipital Pole. Each ROl was thresholded at 10% and then concatenated to create a single mask of visual
143 Cortex.

142 To localize contacts, we registered each patient's pre-operative anatomical scan to the MNI T1 2mm
s Standard brain template using linear registration (FSL FLIRT (Jenkinson and Smith, 2001; Jenkinson et al.,
s 2002)) with 12 degrees of freedom. We then used this registration matrix to transform each electrode mask
17 iNnto standard space. We overlaid the electrode masks onto the visual cortex ROl and onto the Harvard-
s Oxford cortical and subcortical structural atlases (maximum probability, 0 threshold). All but one of the
140 patients had contacts in the visual cortex ROI, resulting in a final sample size of 7 participants for analyses
150 Of visual cortex.

12 Stimuli

152 Task stimuli consisted of 720 unique scene images drawn from 18 distinct outdoor scene subcategories (am-
13 phitheater, amusement park, beach, bridge, canyon, desert, farm, forest, garden, highway, lake, lighthouse,
152 Mmarsh, mountain, park, sports field, town square, and waterfall; 40 images per subcategory). Six subcat-
15 egories were randomly assigned to each of the Exemplar-level Structured, Category-level Structured, and
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156 Random conditions (see below). All images were collected from Google image searches and were cropped
157 to a resolution of 600 x 800 pixels. Stimuli were presented using MATLAB with the Psychophysics toolbox
1ss (Brainard, 1997, Pelli, 1997).

15 Procedure

160 Participants completed the experiment on a laptop while seated in their hospital bed. The task consisted of
11 atleastonerun of each of the three experimental conditions. During each run, participants passively viewed
162 A rapid stream of scene images and were asked to pay attention to each image. To enable entrainment-
16z based neural analyses, the stimulus-onset asynchrony (SOA) was fixed at 500 ms; each scene was presented
1ea  for 250 ms, followed by a 250 ms inter-stimulus interval (ISI), during which a fixation cross appeared in the
1es  center of the screen. Each run sequence was 240 trials in length (2 mins of viewing time).

166 The Category-level Structured runs were our key runs of interest, in which we probed online abstraction
17 Of categorical regularities during statistical learning. Participants viewed a sequence of trial-unique scene
16 images drawn from six scene categories. Participants were told in advance that they would be viewing
160 iMages of scene categories and were given the names of the six categories. Unbeknownst to them, the six
170 Categories were assigned to three statistical pairs, such that a scene from one category (category A) was
12 always followed by a scene from its paired category (category B; Figure 1, top right). Critically, these pairs
172 existed only at the category-level because exemplars never repeated, requiring that patients abstract across
1z exemplars in order to learn the regularities. No pair was allowed to repeat back-to-back in the sequence.
17a In total, participants viewed 40 exemplars from each scene category once (40 repetitions of each category
175 pair).

176 The Exemplar-level Structured runs served as a key comparison, enabling us to examine statistical learn-
177 ing of stimulus regularities without need for abstraction, as in prior studies (Batterink and Paller, 2017;
izs  Henin et al., 2021). In this run, participants viewed a sequence containing multiple repetitions of six scene
170 images, one each from six categories that did not overlap with the other conditions. Unbeknownst to them,
10 the scenes were assigned to three statistical pairs (e.g., scene A -> scene B; Figure 1, middle right). No pair
1;1 Was allowed to repeat back-to-back in the sequence. Each exemplar/pair was repeated 40 times throughout
12 the sequence.

183 The Random control runs served as our baseline condition, in which we did not expect any learning-
1sa  related neural entrainment. As in the Exemplar-level Structured runs, participants viewed a sequence con-
1ss  taining 40 repetitions of six scene images from six non-overlapping categories. In contrast to the two Struc-
186 tured conditions, the scenes were presented in a random order without reliable pairs that could be learned
1e7  (Figure 1, bottom right). No individual scene was allowed to repeat within two images in the sequence.

188 Prior work has demonstrated that the order of statistical learning tasks can impact performance. Namely,
180 learning is worse when one set of regularities is shown after another set or after randomness (Jungé et al.,
100 2007; Gebhart et al., 2009). Thus, to maximize our chance of detecting category-level neural entrainment,
101 should it exist, especially given unexpected complications and interruptions in working with hospitalized pa-
102 tients, we tested the Category-level Structured condition first. We attempted to complete two of these runs
103 back-to-back with the same sequence. When two runs were obtained (6/8 patients), we included data from
10 both runs in all analyses. However, we also performed control analyses with only the first run, to equate
105 the amount of data across conditions. After the Category-level Structured run(s), we completed one run
106 Of the Exemplar-level Structured and Random conditions next, counterbalancing order across participants.
107 We decided on this semi-fixed condition order (Category-level Structured first) ahead of time, accepting that
108 it could complicate comparison between conditions. However, note that each condition contains a positive
100 control of neural entrainment to the individual image frequency, allowing us to assess data quality and
200 ensure that conditions tested later in the session did not suffer from fatigue or inattention.

200 Neural entrainment analyses

202 We conducted a phase coherence analysis to identify which electrode contacts entrained to our task. We
203 examined entrainment at two frequencies: (1) the image frequency (2 Hz, corresponding to the 500-ms SOA
20a  between images), which reflects entrainment to the frequency of visual stimulation and should be present
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205 in all runs; and (2) the pair frequency (1 Hz, corresponding to the 1000-ms interval between pair onsets),
206 Which reflects entrainment to the statistical pairs and should only be present in the Structured runs (Henin
207 etal., 2021).

208 For some runs of the task, there was a computer-based timing error such that the first trial's ISI period
200 Was shorter than expected. Because the phase coherence analysis depends on reliable timing across trials,
210 we excluded the first two trials from all analyses. The raw signals from the remaining 238 trials were seg-
211 mented into 17 blocks comprising of 14 trials. For patients with two runs in the Category-level Structured
212 condition, the raw signals were concatenated across runs, yielding 34 blocks.

213 We then converted the raw signals for each block into the frequency domain via fast Fourier transform
212 and computed the phase coherence across blocks for each contact using the formula R? = [% SNcosgp]* +
215 [% >Nsing]?, where N is the number of blocks and ¢ is the phase at a given frequency (Ding and Simon, 2013;
216 Henin et al., 2021). Phase coherence was computed separately for each contact in the brain. We computed
217 the peaks at the image and pair frequencies as the coherence at those frequencies relative to the coherence
218 at the two neighboring frequencies (+0.14 Hz).

210 To assess statistical reliability across participants, we used a non-parametric, random-effects bootstrap
220 resampling approach (Efron and Tibshirani, 1986). We first pooled the data across contacts and computed
221 the effect of interest (e.g., mean or correlation coefficient). For each of 10,000 iterations, we randomly
222 resampled the same sample size of participants with replacement (grabbing all of their electrodes) and re-
223 computed the effect of interest to populate a sampling distribution of the effect. This sampling distribution
224 Was used to obtain 95% confidence intervals and perform null hypothesis testing. We calculated the p-value
225 as the proportion of iterations in which the resampled effect had the opposite sign as the true effect; we
226 then multiplied these values by 2 to obtain a two-tailed p-value. This tests the null hypothesis that the true
227 effect is centered at zero and thus equally likely to be positive or negative by chance. A significant effect
228 indicates that it did not matter which patients were resampled on any given iteration, and thus that the
220 patients were interchangeable and the effect reliable across the sample. Across-participants resampling
230 was performed in R (version 4.1.3), and the random number seed was set to 12345 before each resampling
231 test.

232 To assess the reliability of a coherence peak within an individual electrode contact, we performed a
233 randomization test. We shuffled the phase time series for each block 1,000 times, and recomputed the
23 phase coherence across blocks of phase-shuffled data. We then computed the proportion of iterations that
235 the true peak (coherence at the frequency of interest minus the neighboring frequencies) was larger than
236 the null distribution of peaks to calculate the p-value. Given that we had a directional hypothesis (i.e., higher
237 cOherence than baseline), we did not multiply these p values by 2. Within-contact randomization testing was
238 performed in MATLAB, and the random number seed was set to 12345 for each contact.

23e  Phase coherence timecourse analysis

240 TO assess how neural entrainment to statistical pairs changed over the course of exposure, we performed a
221 phase coherence timecourse analysis (Henin et al., 2021; Sherman et al., 2022). We re-computed the coher-
242 €Nce over an increasing number of blocks (e.g., first computing the coherence only between the first and
223 second blocks, all the way up to all 17 blocks). For each cumulative block, we compared the coherence peak
240 relative to a phase-shuffled surrogate dataset (described above) in order to compute the within-contact re-
245 liability. This resulted in a timecourse of p-values, allowing us to determine how many blocks of exposure
226 Were required for reliable entrainment. We performed this analysis at both the image and pair frequencies.
22z We expected coherence at the image frequency to become reliable rapidly, as it reflects entrainment to sen-
228 SOry stimulation and does not require learning, providing a baseline for helping to interpret the timecourse
220 Of coherence at the (learned) pair frequency.

250 We computed p-value timecourses separately for the Category-level and Exemplar-level Structured con-
251 ditions, focusing on visual contacts that showed reliable entrainment by the final block. That is, within each
252 Structured condition, we averaged the timecourses of all contacts that exhibited reliable entrainment to the
253  pair frequency by block 17. To equate opportunity for learning across patients, we only considered the first
2sa  run of the Category-level Structured condition for patients with two of these runs.
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255 We again assessed statistical reliability using a random-effects bootstrap resampling approach. We
256  Sought to quantify time to a significant response (number of cumulative blocks when p first went <0.05).
257 10 do so, we calculated the non-parametric p-value for a given number of cumulative blocks as the propor-
258 tion of iterations in which the resampled p-value was less than 0.05. We then multiplied these values by 2
250  to Obtain a two-tailed p value. This resampling test was done in R (version 4.1.3), with a random number
200 Seed of 12345.

.2 Results

22 Evidence for category-level statistical learning in visual cortex

263 T0 assess whether the brain represents visual regularities online during learning, we capitalized on the fast,
262 periodic nature of visual stimulation in our task and measured neural entrainment to the frequency of both
265 individual images and statistical pairs (Figure 3A). Given prior work demonstrating neural entrainment in
266 Sensory regions (Henin et al., 2021; Sherman et al., 2022), we focused our analyses on visual cortex. Specif-
267 ically, we computed coherence within each contact localized to the visual cortex ROl (116 contacts) and
2¢s averaged the coherence across contacts, within each participant. As a validation of our paradigm, we ex-
260 pected strong phase coherence at the frequency of image presentation in all three conditions. We further
270 expected phase coherence at the frequency of pair presentation in the Exemplar-level Structured condition,
271 replicating prior work demonstrating that the brain entrains to the frequency of statistical regularities (Bat-
272 terink and Paller, 2017; Henin et al., 2021). Critically, if the brain abstracts over these stimuli to learn higher-
273 level, categorical regularities, we would expect phase coherence at the pair frequency in the Category-level
274 Structured condition.

275 As shown in Figure 3B, we found reliable peaks in coherence at the image frequency in all three con-
276 ditions (Exemplar-level Structured: mean difference, relative to neighboring frequencies = 0.53; 95% Cl =
277 [0.47, 0.57], p <0.001; Category-level Structured: mean difference = 0.54; 95% Cl| = [0.46, 0.60], p <0.001;
27¢ Random: mean difference = 0.55; 95% Cl = [0.47, 0.62], p <0.001). Critically, the peak in coherence at the
270 pair frequency was reliable in both the Exemplar-level Structured condition (mean difference =0.16, 95% Cl
280 =[0.12,0.21], p=0.001) and the Category-level Structured condition (mean difference =0.10, 95% CI =[0.041,
2s1 0.20], p <0.001), but not in the Random condition (mean difference = -0.0027, 95% Cl = [-0.012, 0.0048], p =
22 0.50), providing online evidence for rapid statistical learning of exemplar pairs plus abstraction of category
283 Pairs.

284 To further understand these effects, we compared the peaks in coherence across conditions. We ex-
2ss  pected that there would be no condition differences in the peak at the image frequency, but that the peak
286 at the pair frequency would be higher in Exemplar- and Category-level Structured conditions, relative to
2s7  Random. Consistent with this hypothesis, there were no pairwise differences in the image frequency across
288 conditions (Exemplar-level Structured vs. Random: mean difference = -0.026, 95% Cl = [-0.066, 0.0094], p
280 = 0.15; Category-level Structured vs. Random: mean difference =-0.018, 95% Cl = [-0.047, 0.015], p = 0.28;
200 Exemplar-vs. Category-level Structured: mean difference =-0.0073, 95% Cl = [-0.042, 0.020], p = 0.61; Figure
201 3C, bottom). Importantly, the peak in coherence at the pair frequency was reliably higher for both Struc-
202 tured conditions than for the Random condition (Exemplar-level Structured vs. Random: mean difference
203 =0.17,95% Cl =[0.13, 0.21] p <0.001; Category-level Structured vs. Random: mean difference = 0.10, 95%
20« Cl =[0.043, 0.21], p <0.001; Figure 3C, top). Interestingly, the peak in coherence at the pair frequency was
20s marginally higher in Exemplar- vs. Category-level Structured condition (mean difference = 0.062, 95% Cl
206 = [-0.0085, 0.11], p = 0.075), suggesting that stimulus regularities may be represented more robustly than
207 abstract regularities in visual cortex, at least after a fixed and small amount of exposure.

208 The above analyses were performed on data concatenated across the two runs of the Category-level
200 Structured condition (for participants with two runs). To confirm that evidence for categorical learning was
300 Not dependent on including more data, we repeated the analysis only considering the first Category-level
so1 Structured run. Indeed, we found a comparable peak in coherence at the pair frequency (mean difference
302 =0.096, 95% Cl =[0.042, 0.19], p <0.001); the peak in coherence at the image frequency remained reliably
303 high as well (mean difference = 0.56, 95% Cl = [0.49, 0.62], p <0.001). Further, the peak in coherence at
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302 the pair frequency remained reliably higher than the Random condition (mean difference = 0.099, 95% Cl =
30 [0.044, 0.20], p <0.001) and marginally lower than that of the Exemplar-level condition (mean difference =
306 -0.067, 95% Cl =[-0.0028, 0.12], p = 0.061).

307 Together, these results demonstrate robust representation of statistical regularities in visual cortex,
308 across levels of abstraction. After only two minutes of exposure, the visual cortex entrained not only to regu-
300 larities at the exemplar-level (with the same exactimage pairs repeating), but also to regularities that existed
310 only at the category-level (requiring abstraction across exemplars in order to uncover the categorical struc-
s ture). Critically, these data demonstrate that category-level regularities can be learned and represented
;12 online during learning, extending prior behavioral work which relied on delayed, offline test measures to
s13 infer that abstraction occurred.

;1. Co-representation of exemplar and category regularities

s1s Above, we found evidence that visual cortex represents both exemplar- and category-level regularities. How-
316 ever, it is unclear whether these two effects are related. One possibility is that the more basic ability to
;17 extract regularities in sensory stimuli is a precursor for abstracting more complex regularities, in which
318 Case we might expect the same contacts to exhibit both effects and for the strength of these effects to
310 be related. Another possibility is that stimulus learning and hierarchical abstraction are fundamentally dis-
320 tinct processes that may be implemented in different neural populations, and thus may be represented in
321 different contacts and/or in the same contacts but in an unrelated manner.

322 To address this question, we first asked whether the strength of neural entrainment was correlated
323 between conditions. Across all electrode contacts in the visual cortex ROI, we computed the Pearson corre-
324 lation coefficient between the coherence peaks at the pair frequency. We found a reliable correlation in the
325 pair frequency peak for Category- and Exemplar-level Structured conditions (r = 0.33, 95% Cl =[0.019, 0.58],
326 p = 0.033; Figure 4A). In contrast, there was no reliable correlation between the Random condition and ei-
327 ther the Category-level Structured condition (r =-0.10, 95% Cl = [-0.24, 0.077], p = 0.22) or the Exemplar-level
328 Structured condition (r=-0.011, 95% Cl = [-0.14, 0.14], p = 0.82). The modest correlation between coherence
320 for exemplar pairs and category pairs suggests a degree of shared representation of regularities across lev-
330 els of abstraction. Importantly, given that we did not find such correlations with the Random condition,
;1 we can be confident that this correlation was not driven by generic across-contact factors such as baseline
32 coherence or data quality.

333 As a further control, we computed the pairwise correlations for the image frequency peaks. Unlike the
33a  pair frequency, we did not expect these correlations to differ between conditions. Indeed, we found high
335 correlations across the board (Category- and Exemplar-level Structured, Figure 4B: r = 0.83, 95% CI = [0.70,
s3e  0.92], p <0.001; Category-level Structured and Random: r = 0.88, 95% ClI = [0.81, 0.93], p <0.001; Exemplar-
337 level Structured and Random: r = 0.87, 95% Cl = [0.79, 0.93], p <0.001).

338 To further address the relationship between exemplar and category regularities, we labeled individual
330 contacts according to whether they exhibited a reliable coherence peak at the frequencies of interest in
a0 each condition. Of the 116 total electrode contacts in visual cortex, 67 exhibited entrainment to the pair
a1 frequency in one or both Structured conditions; 27 entrained to the pair frequency in the Exemplar-level
a2 Structured condition only, 12 in the Category-level Structured condition only, and 28 in both Structured
a3 conditions. To assess whether this is more overlap than would be expected by chance, given the number of
saa  reliable contacts in each condition, we independently shuffled the correspondence between contacts and
a5 significance labels across conditions and recomputed the overlap. We found that the observed overlap was
a6 indeed reliable (mean null overlap = 19 contacts, 95% Cl = [14, 24], p <0.001), indicating that some parts of
a7 visual cortex exhibit a dual representation both exemplar and category regularities.

348 To understand whether these dual-coding contacts were responsible for the correlations observed above,
a0 We re-computed the correlations after removing these contacts. Indeed, this eliminated the correlation (88
30 Non-overlapping contacts: r = -0.086, 95% Cl = [-0.18, 0.15], p = 0.31). However, there was also no reliable
;1 correlation when restricting the analysis to only the dual-coding contacts (28 overlapping contacts: r = 0.041,
2 95% Cl =[-0.36, 0.33], p = 0.41). This suggests that the original correlation benefitted from variance in coding
33 properties across contacts and/or from the greater sensitivity provided by a larger sample size of contacts.
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Figure 3. Phase coherence analysis. A) Schematic of analysis and hypothesized neural oscillations. We expected
entrainment of visual contacts at the frequency of image presentation in all conditions. In the two Structured conditions
(Exemplar-level and Category-level), we also expected entrainment at the frequency of (learned) pairs. B) These
hypotheses were confirmed: We observed reliable peaks in coherence at the image frequency in all three conditions,
but only at the pair frequency for the Category-level and Exemplar-level Structured conditions. Error shading indicates
bootstrapped 95% confidence intervals. C) Coherence peaks at the pair frequency (top) and image frequency (bottom)
for each participant across the three runs. Each circle/line represents one participant.
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Figure 4. Correlations across contacts. A) Correlation between the coherence peak at the pair frequency in the
Category-level Structured condition and the coherence peak at the pair frequency in the Exemplar-level Structured
condition. B) Correlation between the coherence peak at the image frequency in the Category-level Structured
condition and the coherence peak at the image frequency in the Exemplar-level Structured condition. Each circle
represents an electrode contact. Error shading indicates bootstrapped 95% confidence intervals.

s« Examining the timecourse of learning in visual cortex

355 We have presented evidence that populations of electrode contacts in visual cortex entrain to both exemplar-
sse and category-level regularities online during statistical learning. However, it is possible that statistical learn-
sz ing of more abstract category regularities requires more exposure than learning of simpler, stimulus-driven
ss  exemplar regularities. To assess the evolution of entrainment over the course of learning and whether it
30 differs across conditions, we performed a timecourse analysis. Specifically, we re-computed coherence
30 Over an increasing number of blocks (e.g., first computing the coherence only between the first and second
se1  blocks, then between the first, second and third blocks, all the way up to 17 blocks) to determine the block
32 count at which contacts exhibited reliable entrainment. In other words, we asked how much exposure was
se3  required for contacts that exhibited reliable entrainment in the final block to reach a statistically reliable
s response. For the Category-level Structured condition, we only analyzed each patient’s first run in order to
3es equate the opportunity for learning both across patients and conditions.

366 In the Category-level Structured condition (Figure 5A, left), we found reliable entrainment only when
ez computing coherence across 16 or more blocks (16 blocks: mean p = 0.023, 95% Cl = [0.0033, 0.044], p =
ses  0.0056; 17 blocks: mean p = 0.0097, 95% Cl = [0.0023, 0.018], p <0.001). In the Exemplar-level Structured
3e0 condition (Figure 5A, right), entrainment appeared marginally after 14 blocks (mean p = 0.029, 95% Cl =
370 [0.011, 0.052], p = 0.057) and reliably for 15 or more blocks (ps <0.001). These data suggest that exemplar
s;n and category regularities were learned at a similar timescale, with slightly faster acquisition for exemplar
72 regularities.

373 To establish a floor of how quickly we might theoretically expect to see a reliable entrainment effect,
37 we performed this same analysis for the image frequency (again, only considering contacts that exhibited
375 reliable entrainment to the image frequency in the final block). Because entrainment to the images was
76 given by the sensory input and not from statistical learning, we did not expect meaningful differences be-
377 tween conditions. In the Category-level Structured condition (Figure 5B, left), there was reliable coherence
37 at the image frequency by block 9 (mean p = 0.028, 95% Cl =[0.0072, 0.049], p = 0.037; all subsequent block
370 counts, ps <0.001). The Exemplar-level Structured condition (Figure 5B, right) followed a similar pattern,
ss0  With reliable entrainment by block 8 (mean p = 0.026, 95% Cl = [0.009, 0.041], p = 0.0018; all subsequent
ss1 block counts, ps <0.001). Finally, we also computed the timecourse of the image frequency effect in the
ss2  Random condition and found a similar pattern, with reliable entrainment by block 9 (mean p = 0.033; 95%
sz Cl =[0.016, 0.048], p = 0.024; block 10: mean p = 0.034, 95% Cl =[0.016, 0.049], p = 0.036; all subsequent
ssa  block counts, ps <0.001).
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Figure 5. Timecourse analysis. A) Emergence of a reliable phase coherence peak at the pair frequency across blocks in
the Category-level Structured (left) and Exemplar-level Structured (right) conditions. For each cumulative block count N,
we computed the proportion of iterations that the coherence peak across N blocks was greater than the peak across N
blocks of phase-shuffled data to obtain a p-value; we then determined the first block at which the permuted p-value
across contacts was reliably less than 0.05 (dashed line). B) Emergence of a significant response at the image frequency
across blocks in the Category-level Structured (left) and Exemplar-level Structured (right) conditions. Error shading
indicates bootstrapped 95% confidence intervals.

;s Categorical abstraction during statistical learning across the brain

sss  We initially focused on how visual cortex represents visual regularities given our prior work (Sherman et al.,
sz 2022), but a wide range of brain regions have been implicated in statistical learning (Batterink et al., 2019;
sss  Henin et al., 2021). To examine online abstraction during statistical learning more broadly, we measured
ss0  Neural entrainment to exemplar and category regularities in an exploratory brain-wide analysis.

300 First, as in the analysis restricted to visual cortex, we identified which contacts represented exemplar
se1  and/or category regularities by testing for reliable phase coherence at the pair frequency relative to neigh-
302 boring frequencies. Of a total of 1,310 contacts across all patients, we found reliable entrainment at the pair
33 frequency in 175 contacts for the Exemplar-level Structured condition and in 177 contacts for the Category-
302 level Structured condition; 41 of these contacts overlapped. This amount of overlap was reliably greater
3es  than expected by chance (Figure 6A; mean null overlap = 24 contacts, 95% Cl = [16, 32], p <0.001). Because
306 this brain-wide analysis included visual cortex, it is possible that the reliable overlap was driven by visual
o7 contacts, which we earlier showed exhibited reliable overlap. We therefore repeated the brain-wide analy-
38 Sis after excluding contacts in the visual cortex ROI. Of the remaining 1,194 contacts across all patients, we
390 foundreliable entrainment at the pair frequency in 120 contacts for the Exemplar-level Structured condition
200 and 137 contacts for the Category-level Structured condition; 13 of these contacts overlapped. However,
201 this amount of overlap was not reliably greater than what would be expected by chance (mean null over-
202 lap = 14 contacts, 95% Cl = [8, 20], p = 0.52), suggesting that dual coding of exemplar- and category-level
203 regularities in individual contacts was restricted to visual cortex.

404 We next sought to localize these structure-sensitive contacts throughout the brain (Figure 6B). We mapped
205 the contacts onto the Harvard-Oxford cortical and subcortical atlases and quantified how many contacts ex-
s hibited effects within each gray-matter atlas ROI. Table 2 summarizes the results by listing atlas ROIs that
207 contained at least 5 contacts that entrained at an uncorrected level to the pair frequency in at least one
208 Of the Structured conditions. Consistent with our planned visual ROI, many of these contacts were located
200 in visual cortex (e.g., lateral occipital cortex, lingual gyrus, occipital pole). However, we also observed en-
a0 trainment to learned regularities in frontal and anterior temporal regions, some showing a preference for
.11 regularities available directly in the exemplar stimuli (e.g., temporal pole) and others for regularities that
s12  required categorical abstraction (e.g., frontal pole and precentral gyrus). Importantly, claims about localiza-
a1z tion in the brain are limited by the fact that we did not have full coverage of all brain regions, given that
a1a  electrode placement was determined clinically.
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Figure 6. Exploratory brain-wide analyses. A) Histogram: distribution of how many contacts would be expected to
entrain to the pair frequency in both the Exemplar- and Category-level Structured conditions by chance; red line
indicates the observed overlap, indication that many more contacts coded for both exemplar and category regularities
than would be expected by chance. Inset: Venn diagram illustrating the total number of contacts that entrained to the
pair frequency in both conditions and their overlap. B) Map of contacts (across all patients) that entrained to the pair
frequency in one or both conditions on a standard glass brain.

Localization of task-sensitive contacts

ROI Total Category Exemplar | Overlap Image
Frontal Pole 176 19 7 0 69
Insular Cortex 59 5 14 0 28
Middle Frontal Gyrus 65 7 5 1 36
Precentral Gyrus 52 10 5 0 24
Temporal Pole 51 0 7 0 18
Middle Temporal Gyrus, post | 45 3 6 0 8
Postcentral Gyrus 47 9 6 0 25
Lateral Occipital Cortex, sup | 36 2 10 4 26
Lingual Gyrus 13 1 5 4 13
Occipital Pole 21 5 5 9 21

Table 2. Gray-matter ROIs in the Harvard-Oxford cortical and subcortical atlases that contained at least 5 contacts with
reliable entrainment at the pair frequency in the Category- and/or Exemplar-level Structured conditions. We also
included the total number of contacts in each ROI (Total) and the number of contacts that entrained at the image
frequency in the Category- and/or Exemplar-level Structured conditions (Image).

«s  Discussion

216 Inthe current study, we capitalized on the high spatial and temporal precision of intracranial EEG to explore
a1z how the brain learns and represents statistical regularities across varying levels of abstraction. Specifically,
a1 We contrasted the learning of exemplar-level regularities (defined by the transition probabilities between
a10 individual images) with the learning of category-level regularities (defined by the transition probabilities
20 between image categories, thus requiring abstraction across individual images). We found robust repre-
421 sentation of both kinds of regularities in visual cortex and throughout the brain during statistical learning.
a2 These findings speak to several issues in the statistical learning literature and raise questions for future
a23  research.

24 Online evidence for category-level statistical learning

«2s In measuring neural entrainment to the frequency of regularities, we employed a covert, online measure of
426 Statistical learning. This builds on a body of work that measured category-level statistical learning with of-
a2z fline behavioral tests, such as asking participants to judge their familiarity with pairs of images or categories
«2s (Brady and Oliva, 2008; Otsuka et al., 2013; Emberson and Rubinstein, 2016; Jung et al., 2021). However, it
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420 is unclear whether above-chance performance on these tests reflects abstraction of category relationships
a0 during the learning process itself or the formation of specific stimulus associations during learning that
«n1  enabled successful inferences about test items from the same categories. It is also possible that these be-
432 havioral studies engendered both abstraction during learning and inferences at test, yet it remains unclear
a3 which effect (or both) drove test performance. Further complicating the interpretation of offline behavioral
asa  performance as evidence of online abstraction, online and offline measures of statistical learning are not
a5 always correlated (Kiai and Melloni, 2021). The current study sought to skirt these interpretational chal-
436 lenges by measuring neural entrainment as an online neural index of statistical learning. The observed
a7 entrainment to category pairs provides novel evidence for rapid statistical learning between abstractions
a3s over individual exemplars.

430 One limitation of our study is that it is unclear how the neural entrainment measure of statistical learn-
a0 ing and abstraction relates to more canonical behavioral measures. Given our short testing time with each
a1 patient, their limited energy and attention span, and the small number of patients, we optimized our task
222 design and testing time for neural rather than behavioral measures of learning. Future studies could per-
a3 haps use scalp EEG in a well-powered normative sample to help link neural and behavioral measures of
waa  Category-level statistical learning. Future studies could further consider how neural entrainment during
a5 learning relates to both online (e.g., response time) and offline (e.g., familiarity) behavioral measures; that
a6 Said, it may be difficult to develop online behavioral measures during a task designed for neural entrain-
sa7  ment, given the fast presentation rates that such tasks require. Prior studies have demonstrated that neural
a8 evidence of statistical learning can appear earlier and even in the absence of behavioral evidence of learn-
a0 ing (Turk-Browne et al., 2009); thus, it is possible that our current results reflect a rapid sensitivity of the
a0 brain to category regularities.

a51 Additional limitations apply in how to interpret the timecourse results. Although these results provide ev-
ss2  idence that learning occurs quite quickly (less than two minutes) in both Structured conditions, it is unclear
«s3 how this maps onto the underlying trajectory of learning. We found reliable evidence of statistical learning
asa  for exemplar regularities two blocks earlier than for category regularities. Does this small difference in the
«ss  amount of required exposure mean that specific stimulus associations must be learned before more ab-
a6 Stract associations? Or perhaps the individual images were represented both as exemplars and categories
«s7  during perception and associations were learned at both levels in parallel? In this case, learning of category
sss  regularities may be slower because of the added complexity in dealing with greater input variability (e.g.,
a0 in the extent to which a given exemplar was a prototype of a category). Note also that the “time to sig-
a0 hificant response” measure we used based on prior work (Henin et al., 2021) is relatively conservative and
a1 constrained (measuring the reliability of responses within each contact) and does not necessarily reflect the
sz veridical overall timecourse of learning across the brain or in behavior. Further, we computed this metric
a3 Dy averaging across contacts that were reliable in the final block, which may have obscured heterogeneous
ss2 timecourses for different aspects or stages of learning across the brain.

465 Finally, different aspects of learned structure can be measured. For example, memory for the temporal
ss Order of items within a statistical unit (e.g., triplet) can be dissociated from memory for the item groupings
a7 (Park et al., 2018; Forest et al., 2022), and these distinct types of memory may be supported by differ-
ss entunderlying neural representations (Davachi and DuBrow, 2015; Henin et al., 2021). Although providing
a0 evidence of learning overall, the current study, and the basic neural entrainment design it employed, is in-
470 sensitive to these differing underlying representations. Future studies could employ other neural measures,
a11 such as pre- and post-learning templates (Schapiro et al., 2012), to assess changes in the representations of
a2 the individual paired items. Such measures could be used to test hypotheses about how these constituent
473 items are represented at different levels of abstraction as a function of statistical learning.

«za  Local and distributed representations of visual regularities across the brain

a5 We focused our main analyses on visual cortex, which we hypothesized would show neural entrainment
476 to visual regularities between visual images (Henin et al., 2021; Sherman et al., 2022). However, we also
«77  performed an exploratory brain-wide analysis to uncover where category and exemplar regularities were
a8 represented throughout the brain. This analysis largely confirmed our a priori choice to focus on visual
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a0 cCoOrtex, but also revealed a distributed representation of structure, with many frontal (e.g., frontal pole,
a0 insula, middle frontal gyrus, and precentral gyrus) and temporal (e.g., temporal pole, middle temporal gyrus)
w1 regions also exhibiting entrainment to visual regularities. These findings are largely consistent with prior
a2 fMRI studies demonstrating sensitivity to structure in these regions (Turk-Browne et al., 2009, 2010; Karuza
w3 etal., 2013, 2017).

asa This analysis revealed relatively little evidence that entire brain regions specialize at a particular level of
«ss  abstraction. Although some regions exhibited a bias towards one level (e.g., more contacts in the frontal
sss  pole entrained only to category regularities, and more contacts in the insula entrained only to exemplar
«s7 regularities), very few regions solely represented one level. The only exception was the temporal pole,
ass  Which only exhibited entrainment to exemplar-level regularities. Similarly, most contacts did not show a
as0  general sensitivity to structure regardless of abstraction. The small (but reliable) number of such contacts
w00 representing both category and exemplar regularities were restricted to visual cortex (e.g., occipital pole).
a1 Still, the majority of visual contacts entrained to one level of structure or the other, but not both. At the level
202 Of entire brain regions, some regions contained distinct contacts that entrained selectively to category and
a3 exemplar regularities, yet no contacts that entrained to both. This raises the possibility that there may be
202 distinct neural populations and cognitive processes even within the same brain region for statistical learning
s0s atvarying levels of abstraction.

206 An important limitation to these exploratory brain-wide analyses is that they only had access to partial
a7 coverage of the brain. Although we had relatively broad coverage of cortical regions for an intracranial EEG
«0s  study, the electrode locations were chosen entirely for clinical purposes and were thus not always compre-
200 hensive or standardized across patients. However, this is an expected limitation for any iEEG based study.
soo Further, we had insufficient coverage of the hippocampus in this sample (only 5 contacts across all patients),
so1  aregionthat has been consistently implicated in rapid statistical learning (Turk-Browne et al., 2009; Schapiro
so2 etal.,, 2012; Covington et al., 2018; Sherman and Turk-Browne, 2020; Henin et al., 2021; Graves et al., 2022).
sos Future studies could recruit a more targeted sample of intracranial EEG patients (e.g., with hippocampal
soa depth electrodes) or use fMRI for high-resolution hippocampal coverage potentially across a larger sample
sos  Of individuals.

sos Conclusions

soz Together, our results provide evidence for rapid and robust online abstraction of categorical regularities
sos  during statistical learning. This occurred heavily within visual cortex, suggesting a remarkable capability for
so0 the brain to aggregate across noisy, idiosyncratic instances to extract stable properties of the environment
s10  that can generalize to new situations.
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