

1 Phosphorylation of PSD-95 at Serine 73 in dCA1

2 is required for extinction of contextual fear

3 Authors

4 Magdalena Ziółkowska^{8,1}, Małgorzata Borczyk^{8,1,2}, Anna Caly¹, Maria Nalberczak-Skóra¹, Agata Nowacka¹,
5 Małgorzata Alicja Śliwińska^{1,3}, Kacper Łukasiewicz¹, Edyta Skonieczna¹, Kamil F. Tomaszewski¹, Tomasz
6 Wójtowicz⁴, Jakub Włodarczyk⁴, Tytus Bernaś^{3,5}, Ahmad Salamian¹ and Kasia Radwanska^{1*}.

7

8 Affiliations

9 ¹Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of
10 Sciences.

11 ²Department Molecular Neuropharmacology, Maj Institute of Pharmacology of Polish Academy of Sciences,
12 Warsaw, Poland.

13 ³Laboratory of Imaging Tissue Structure and Function, The Nencki Institute of Experimental Biology of Polish
14 Academy of Sciences, Warsaw, Poland.

15 ⁴Laboratory of Cell Biophysics, the Nencki Institute of Experimental Biology of Polish Academy of Sciences.

16 ⁵Department of Anatomy and Neurology, VCU School of Medicine, 1101 East Marshall Street, Richmond, Virginia
17 23298.

18 ⁸equal contribution.

19 ***Corresponding author:** Kasia Radwanska, Ph.D., Laboratory of Molecular Basis of Behavior, Nencki Institute of
20 Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw 02-093, Poland; e-mail:
21 k.radwanska@nencki.edu.pl; tel: +48501736942.

22

23 **Key words:** PSD-95, fear extinction, dorsal CA1, synaptic plasticity, hippocampus, α CaMKII

24 **Running title:** Synaptic plasticity is required for fear extinction.

25 **Number of pages: 35**

26 **Number of figures, tables, multimedia and 3D models (separately)**

27 Figures (6), tables (0), multimedia and 3D models (0), supplementary figures (3)

28 **Number of words for Abstract, Introduction, and Discussion (separately)**

29 Abstract (113), Introduction (682), Discussion (1374)

30

31

32 **ABSTRACT**

33 The updating of contextual memories is essential for survival in a changing environment. Accumulating
34 data indicate that the dorsal CA1 area (dCA1) contributes to this process. However, the cellular and
35 molecular mechanisms of contextual fear memory updating remain poorly understood. Postsynaptic
36 density protein 95 (PSD-95) regulates the structure and function of glutamatergic synapses. Here,
37 using dCA1-targeted genetic manipulations *in vivo*, combined with *ex vivo* 3D electron microscopy and
38 electrophysiology, we identify a novel, synaptic mechanism that is induced during attenuation of
39 contextual fear memories and involves phosphorylation of PSD-95 at Serine 73 in dCA1. Our data
40 provide the proof that PSD-95-dependent synaptic plasticity in dCA1 is required for updating of
41 contextual fear memory.

42

43 **INTRODUCTION**

44 The ability to form, store, and update memories is essential for animal survival. In mammals,
45 the formation, recall and updating of memories involve the hippocampus (Frankland and Bontempi,
46 2005; Neves et al., 2008; Baldi and Bucherelli, 2015). In particular, formation of memories strengthens
47 the Schaffer collateral-to-dorsal CA1 area (dCA1) synapses through N-methyl-D-aspartate receptor
48 (NMDAR)-dependent forms of synaptic plasticity (Bliss and Collingridge, 1993; Morris et al., 2003;
49 Abraham et al., 2019) linked with growth and addition of new dendritic spines (harbouring
50 glutamatergic synapses) (Restivo et al., 2009; Radwanska et al., 2011; Mahmmod et al., 2015; Aziz
51 et al., 2019). Although some studies also found long-term depression of synaptic transmission during
52 hippocampal-dependent tasks (Kemp and Manahan-Vaughan, 2007; Goh and Manahan-Vaughan,
53 2013). Similarly, updating and extinction of memories induces functional, structural, and molecular
54 alterations of dCA1 synapses (Garin-Aguilar et al., 2012; Stansley et al., 2018; Schuette et al., 2020).
55 Accordingly, NMDAR-dependent plasticity of dCA1 synapses is commonly believed to be a primary
56 cellular learning mechanism. Surprisingly, the role of dCA1 synaptic plasticity in memory formation has
57 been recently questioned. Local genetic manipulations that impair synaptic function and plasticity
58 specifically in dCA1 affect spatial choice and incorporation of salience information into cognitive
59 representations, rather than formation of cognitive maps and memory engrams (Bannerman et al.,
60 2012, 2014; Hirsch et al., 2015; Caly et al., 2021; Kaganovsky et al., 2022). On the other hand, the

61 role of dCA1 synaptic plasticity in the updating and extinction of existing hippocampus-dependent
62 memories has not been tested yet. Understanding the molecular and cellular mechanisms that
63 underlie fear extinction memory is crucial to develop new therapeutic approaches to alleviate
64 persistent and unmalleable fear memories.

65 PSD-95 is the major scaffolding protein of glutamatergic synapses (Cheng et al., 2006). It
66 directly interacts with NMDARs and with AMPARs through an auxiliary protein, stargazin (Kornau et
67 al., 1995; Schnell et al., 2002). Interaction of PSD-95 with stargazin regulates the synaptic content of
68 AMPARs (Chetkovich et al., 2002; Schnell et al., 2002; Bats et al., 2007). Accordingly, PSD-95 affects
69 stability and maturation as well as functional and structural plasticity of glutamatergic synapses
70 (Migaud et al., 1998; Béïque and Andrade, 2003; Stein et al., 2003; Ehrlich and Malinow, 2004; Ehrlich
71 et al., 2007; Nikonenko et al., 2008; Steiner et al., 2008; Sturgill et al., 2009; Chen et al., 2011; Taft
72 and Turrigiano, 2014). Synaptic localisation of PSD-95 is controlled by a range of posttranslational
73 modifications with opposing effects on its synaptic retention as well as synaptic function and plasticity
74 (Vallejo et al., 2017). Here, in order to test the role of dCA1 excitatory synapses in extinction of fear
75 memories, we focused on phosphorylation of PSD-95 at Serine 73 (S73). Phosphorylation of PSD-
76 95(S73) enables PSD-95 dissociation from the complex with GluN2B, and its trafficking to terminate
77 synaptic growth after stimulation of NMDA receptors, and is necessary for PSD-95 protein
78 downregulation during NMDAR-dependent long-term depression of synaptic transmission (LTD)
79 (Steiner et al., 2008; Nowacka et al., 2020). PSD-95(S73) is phosphorylated by the calcium and
80 calmodulin-dependent kinase II (CaMKII) (Gardoni et al., 2006; Steiner et al., 2008). Importantly, both
81 authophosphorylation-deficient α CaMKII mutant mice (α CaMKII-T286A) (Giese et al., 1998) and the
82 loss-of-function PSD-95 mutants lacking the guanylate kinase domain of PSD-95 (Migaud et al., 1998)
83 show impaired extinction of contextual fear (Radwanska et al., 2011; Fitzgerald et al., 2015),
84 suggesting that α CaMKII and PSD-95 interact to regulate contextual fear extinction.

85 The present study tests the role of PSD-95(S73) phosphorylation in the dorsal hippocampus in
86 fear memory extinction by integrated analyses of PSD-95 protein expression and phosphorylation,
87 dCA1-targeted expression of phosphorylation-deficient PSD-95 protein (with serine 73 mutated to
88 alanine, S73A) as well as examination of dendritic spines morphology with nanoscale resolution
89 enabled by electron microscopy. We show that phosphorylation of PSD-95(S73) is necessary for
90 contextual fear extinction-induced PSD-95 protein regulation and remodelling of glutamatergic

91 synapses. Moreover, it is not necessary for fear memory formation but required for fear extinction even
92 after extensive fear extinction training. Overall, our data show for the first time that the dCA1 PSD-
93 95(S73) phosphorylation is required for extinction of the contextual fear memory.

94

95 **RESULTS**

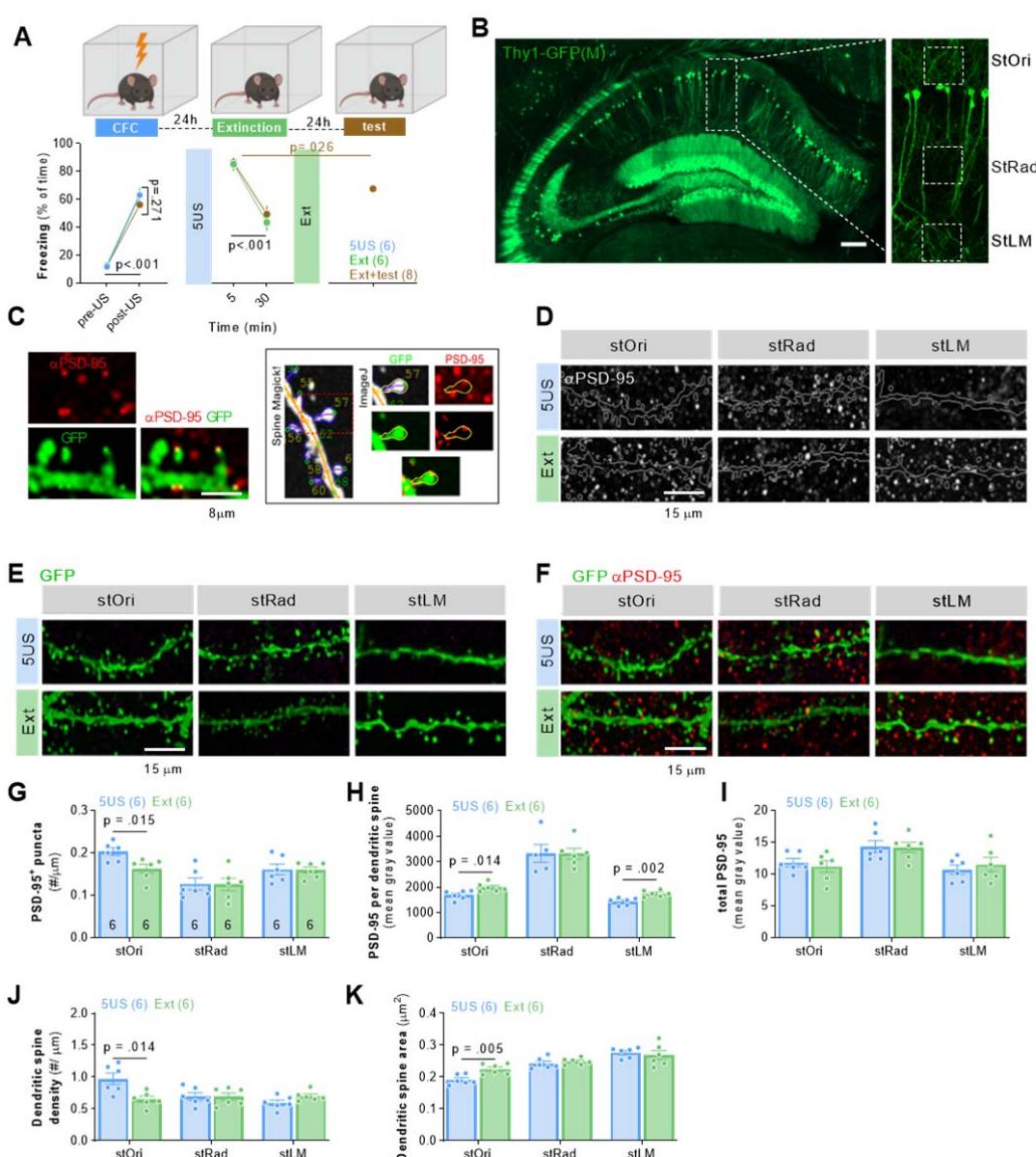
96 **The contextual fear extinction affects PSD-95 protein levels and morphology of dendritic
97 spines in dCA1.**

98 To investigate the role of dCA1 excitatory synapses in contextual fear memory extinction, we
99 trained Thy1-GFP(M) mice (that allow for visualisation of dendritic spines) (Feng et al., 2000) in
100 contextual fear conditioning (CFC). The animals showed low freezing levels in the novel context
101 before delivery of 5 electric shocks (US), after which the freezing levels increased during the rest of
102 the training session (**Figure 1A**). Twenty-four hours later, one group of mice was sacrificed (5US)
103 (mice were randomly assigned to the experimental groups), and the second group was re-exposed to
104 the training context for 30 minutes without presentation of US for extinction of contextual fear (Ext).
105 Freezing levels were high at the beginning of the session and decreased within the session indicating
106 formation of fear extinction memory ($t = 3.720$, $df = 6$, $P < 0.001$). Mice were sacrificed immediately
107 after the fear extinction session. Twenty-four hours later, the third group of mice was re-exposed to the
108 training context (without US) to test consolidation of fear extinction memory (test). Freezing levels
109 were lower during the test as compared to the beginning of the extinction, indicating that our protocol
110 resulted in efficient formation of long-term contextual fear extinction memory ($P = 0.026$). The mouse
111 brains were sliced, the brain sections immunostained to detect PSD-95 protein using specific
112 antibodies and imaged with a confocal microscope. The scans were analysed to assess PSD-95 protein
113 levels [linear density of PSD-95-positive puncta (PSD-95⁺) per 1 μ m of a dendrite and mean grey
114 value of PSD-95⁺ per dendritic spine] and dendritic spines linear density and area [enabled by Thy1-
115 GFP(M) transgene] (**Figure 1B-C**). As dendritic spines change in dCA1 after CFC in a dendrite-
116 specific manner (Restivo et al., 2009), the expression of PSD-95 protein, and its colocalization with
117 dendritic protrusions, were analysed in three domains of dCA1: stratum oriens (stOri), stratum
118 radiatum (stRad) and stratum lacunosum-moleculare (stLM) (**Figure 1D-F**).

119 The analysis of the confocal scans revealed that there were less PSD-95⁺ puncta after fear
120 extinction, as compared to the 5US group in stOri, but not in other dCA1 strata (**Figure 1G**). There
121 was also a significant effect of the training on PSD-95 protein levels per dendritic spine. In the stOri
122 and stLM, PSD-95 levels per dendritic spine increased after extinction, as compared to the 5US group
123 (**Figure 1H**). No difference in PSD-95 levels per dendritic spine was observed between the groups in
124 stRad. Interestingly, when total PSD-95 levels were analysed (as mean grey value of
125 microphotographs) we found no differences between the experimental groups in three strata of dCA1
126 (**Figure 1I**), indicating bidirectional PSD-95 changes (elimination of PSD-95⁺ puncta and increased
127 intensity of the remaining puncta).

128 Next, we checked whether the changes in PSD-95 protein levels were associated with
129 dendritic spine remodelling. In stOri, dendritic spine density decreased after extinction as compared to
130 the 5US mice (**Figure 1J**). No changes in dendritic spine density were observed in the stRad and
131 stLM. Moreover, the median dendritic spine area was increased in stOri after extinction, compared to
132 the 5US group, resembling the changes of PSD-95 protein levels. No changes in the median dendritic
133 spine area were observed in the stRad and stLM (**Figure 1K**). In a separate experiment we found that
134 these dendritic spine changes were transient, as they were not observed 60 minutes after contextual
135 fear extinction session, and they were specific for fear extinction, as we did not find such changes in
136 the animals exposed to a neutral novel context (not associated with US) as compared to 5US group
137 (**Supplementary Figure 1**).

138 Overall, our data indicate that contextual fear extinction involves transient remodelling of the
139 stOri neuronal circuit characterised by decreased density of dendritic spines with PSD-95 and
140 upregulation of PSD-95 protein levels in the remaining dendritic spines. No significant synaptic
141 changes were found in stRad, and only changes of PSD-95 in stLM.

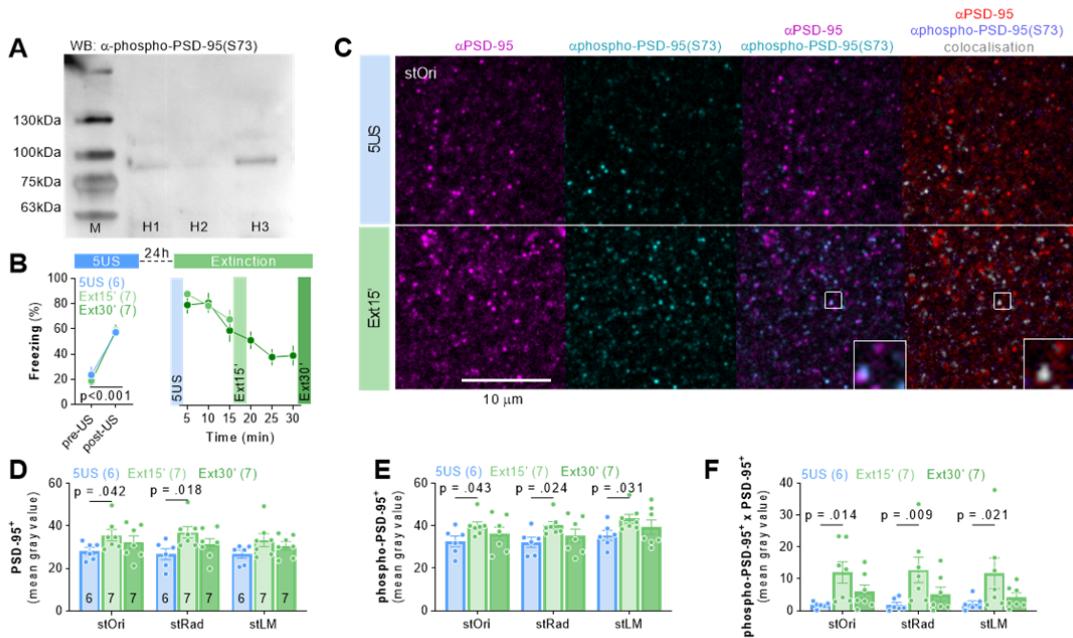

142

143 **Synaptic changes in dCA1 during contextual fear extinction are homeostatic.**

144 Since we observed significant changes of dendritic spines and PSD-95 protein levels in dCA1
145 after fear extinction, in the following experiment we tested whether contextual fear extinction affected
146 synaptic strength in dCA1 strata. To this end, field excitatory postsynaptic potentials (fEPSPs) were
147 measured in acute hippocampal slices when the Shaffer collateral was stimulated by monotonically

148 increasing stimuli (**Supplementary Figure 2**). The input-output curves showed no significant
 149 differences in the amplitude of fEPSP and fibre volley in stOri, stRad and stLM between the mice
 150 sacrificed immediately before or after fear extinction session (**Supplementary Figure 2**), indicating no
 151 global changes in synaptic strength. Thus our data indicate that extinction-induced remodelling of
 152 dendritic spines was homeostatic.

153


154
 155 **Figure 1. Extinction of contextual fear memory regulates PSD-95 protein levels and remodelling**
 156 **of dendritic spines in dCA1. (A)** Experimental timeline and freezing levels during training. Mice
 157 under underwent CFC and were sacrificed 24 hours later (5US, n = 6) or after re-exposure to the training
 158 context without electric shocks (Ext, n = 6) (two-way repeated-measures ANOVA, effect of training:

159 F(1, 10) = 77.86, P < 0.0001). **(B-C)** Dendritic spines and PSD-95 expression were analysed in three
160 domains of the dendritic tree of dCA1 pyramidal neurons (stOri, stRad and stLM) in Thy1-GFP(M)
161 male mice. **(B)** Microphotography of dCA1 and dendritic tree domains. **(C)** High magnification of
162 confocal scans showing colocalization of PSD-95 immunostaining and dendritic spines, and the
163 analysis in SpineMagick! and ImageJ. **(D-F)** Representative confocal images (maximum projections of
164 z-stacks composed of 20 scans) of PSD-95 immunostaining, GFP and their colocalization are shown
165 for three domains of dCA1. Scale bar, 15 μ m. **(G-I)** Summary of data showing density of PSD-95⁺
166 puncta (two-way repeated-measures ANOVA with Tukey's multiple comparisons test (marked on the
167 graphs), effect of training: F(2, 13) = 1.30, P = 0.305), PSD-95 expression per dendritic spine (effect of
168 training: F(2, 15) = 5.653, P = 0.015) and total PSD-95 expression (effect of training: F(2, 14) = 1.126,
169 P = 0.3521). **(J-K)** Summary of data showing dendritic spine density (effect of training: F(2, 44) =
170 2.851, P = 0.069; a region effect: F(1.983, 43.63) = 6.293, P = 0.004; training \times region interaction: F(4,
171 44) = 5.389, P = 0.001) and average dendritic spine area (two-way repeated-measures ANOVA with
172 Tukey's multiple comparisons test; effect of training: F(2, 42) = 1.630, P = 0.208; a region effect: F(2,
173 42) = 46.49, P < 0.001; training \times region interaction: F(4, 42) = 2.121, P = 0.095). The analyses were
174 conducted in stOri (mouse/dendrite/spine: 5US = 6/25/650; Ext = 6/37/925). For G-I, each dot
175 represents one mouse. For G-J, M means \pm SEM are shown. For K, medians \pm IQR are shown.

176

177 **Contextual fear extinction induces phosphorylation of PSD-95(S73) in dCA1**

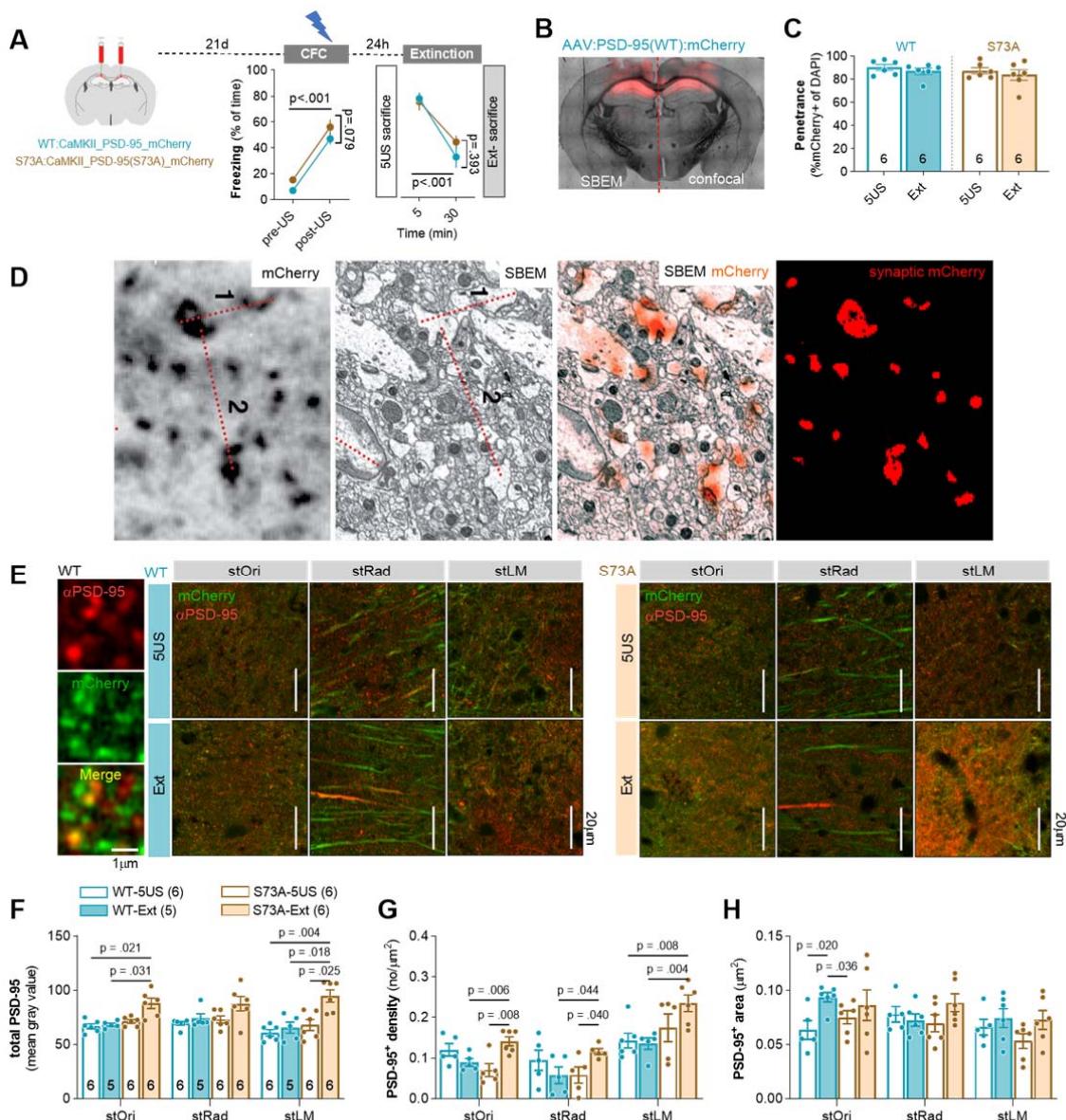
178 Phosphorylation of PSD-95(S73) has been associated with various forms of synaptic plasticity
179 (Gardoni et al., 2006; Nowacka et al., 2020). To test whether contextual fear extinction induces
180 phosphorylation of PSD-95(S73) in dCA1, we generated an antibody directed against this
181 phosphorylation site (**Figure 2A**) (Gardoni et al., 2006). Mice underwent CFC and were sacrificed 24
182 hours later (5US), or after 15 or 30 minutes of the contextual fear extinction session (Ext15' or Ext30')
183 (**Figure 2B**). The levels of PSD-95, phosphorylated PSD-95(S73) [phospho-PSD-95(S73)] and their
184 colocalization were tested on the brain sections (**Figure 2C**). Total PSD-95, phospho-PSD-95(S73)
185 and their colocalization levels were higher in the Ext15', but not Ext30', group as compared to the 5US
186 animals (**Figure D-F**). Thus our data indicate that the alteration of PSD-95 protein levels during
187 contextual fear extinction was accompanied by transiently increased phosphorylation of PSD-95(S73).

188

189 **Figure 2. Contextual fear extinction induces transient phosphorylation of PSD-95(S73) in dCA1.**

190 **(A)** Western blot stained with phospho-PSD-95(S73)-specific antibody detects in the hippocampus
191 homogenates (H1-3) proteins with approx. 95 kDa molecular weight. M, molecular weight marker. **(B)**
192 Experimental timeline and freezing levels during training. Mice underwent CFC and were sacrificed 24
193 hours later (5US, n = 6) or after 15 or 30 minutes of a fear extinction session (Ext15', n = 7; Ext30', n =
194 7). **(C)** Representative confocal scans of the brain slices (stOri) immunostained with antibodies
195 specific for PSD-95, phosphorylated PSD-95(S73) and their colocalization. **(D-F)** Quantification of the
196 PSD-95 (two-way ANOVA, effect of training: $F(2, 17) = 2.69, P = 0.097$; effect of stratum: $F(1, 96, 33, 3)$
197 = 3.83, $P = 0.033$), phospho-PSD-95(S73) (two-way ANOVA, effect of training: $F(2, 17) = 2.20, P =$
198 0.141; effect of stratum: $F(1, 24, 21, 0) = 24.9, P < 0.001$) and their colocalization levels (two-way
199 ANOVA, effect of training: $F(2, 17) = 4.08, P = 0.036$; effect of stratum: $F(2, 34) = 0.169, P = 0.845$).
200 Each dot represents one mouse. Means \pm SEM are shown.

201


202 **PSD-95(S73) phosphorylation regulates PSD-95 protein levels during contextual fear extinction.**

203 To test whether phosphorylation of PSD-95(S73) regulates PSD-95 protein levels in dCA1
204 during fear extinction we used dCA1-targeted expression of phosphorylation-deficient PSD-95 with
205 S73 mutated to alanine (S73A). We designed and produced adeno-associated viral vectors (AAV1/2)
206 encoding wild-type PSD-95 protein under *Camk2a* promoter fused with mCherry
207 (AAV1/2:CaMKII_PSD-95(WT):mCherry) (WT) or PSD-95(S73A) fused with mCherry
208 (AAV1/2:CaMKII_PSD-95(S73A):mCherry) (S73A) (Nowacka et al., 2020) (**Supplementary Figure 3**).
209 Mice underwent CFC (**Figure 3A**). The animals in all experimental groups showed increased freezing
210 levels at the end of the training. Half of the mice were sacrificed 24 hours after CFC (5US). The
211 remaining half were sacrificed after the 30-minut contextual fear extinction session (Ext). All animals

212 showed high freezing levels at the beginning of the session, which decreased during the session. No
213 effect of the virus was found (**Figure 3A**).

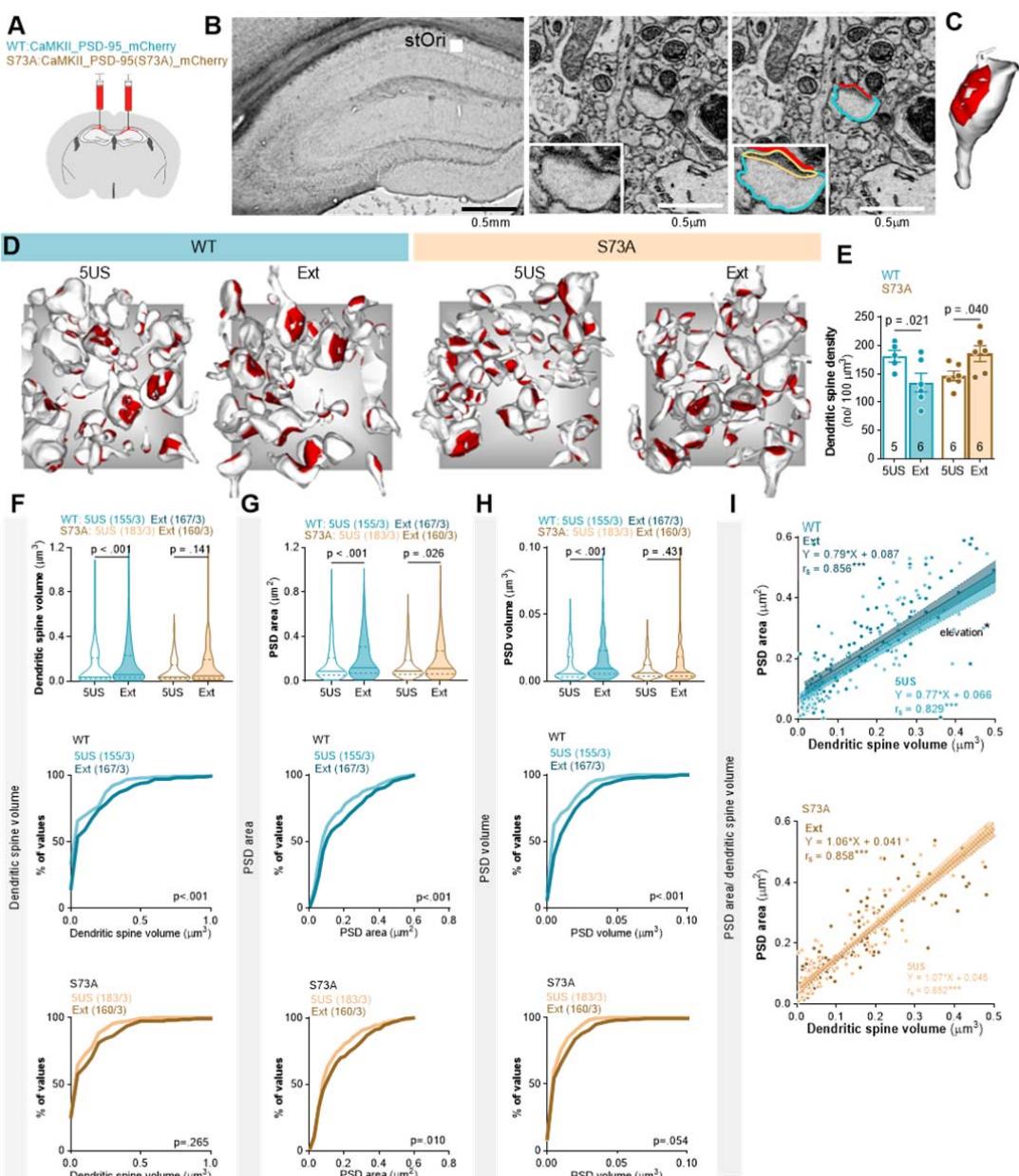
214 For each animal, half of the brain was chosen at random for confocal analysis of the PSD-95
215 protein levels, and the other half was processed for Serial Block-face Scanning Electron Microscopy
216 (SBEM) (**Figure 3B**). The AAVs penetrance did not differ between the experimental groups (5US vs
217 Ext) and reached over 80% of the cells in the analysed sections of dCA1 (**Figure 3C**). Correlative light
218 and electron microscopy confirmed that the exogenous PSD-95 co-localised with postsynaptic
219 densities (PSDs) representing a postsynaptic part of excitatory synapses, and only weak signal was
220 present in dendrites (**Figure 3D**). We did not observe significant differences in total PSD-95 protein
221 levels between the WT and S73A mice sacrificed before the fear extinction session. The total PSD-95
222 protein levels were not changed after fear extinction in the WT group, as compared to the WT mice
223 sacrificed before the fear extinction session. However, PSD-95 levels were upregulated in all strata
224 after the extinction session in the S73A mice, as compared to the WT Ext animals and the S73A 5US
225 group (**Figure 3F**). As no significant differences in the mean PSD-95⁺ area were observed between
226 the WT Ext and S73A Ext mice (**Figure 3G**), the differences in total PSD-95 levels likely resulted from
227 higher density of PSD-95⁺ puncta in the S73A Ext group as compared to the S73A 5US and WT Ext
228 animals (**Figure 3F**). Hence, exogenous PSD-95(S73A) protein impaired regulation of PSD-95⁺
229 density, indicating that phosphorylation of PSD-95(S73) controls PSD-95 levels during fear extinction.

230

231

232

Figure 3. PSD-95(S73) is phosphorylated during fear extinction and this process is required for regulation of PSD-95 protein levels. (A) Experimental timeline and freezing during training. C57BL/6J male mice were stereotactically injected in the dCA1 with AAV1/2 encoding PSD-95(WT) (WT, n = 12) or PSD-95(S73A) (S73A, n = 12). Twenty one days later they underwent CFC (two-way repeated-measures ANOVA, effect of training: $F(1, 30) = 269.4$, $P < 0.001$, effect of virus: $F(2, 30) = 2.815$, $P = 0.076$) and were sacrificed 1 day after training (5US) or they were re-exposed to the training context without footshock and sacrificed (Ext) (two-way repeated-measures ANOVA, effect of training: $F(1, 15) = 65.68$, $P < 0.001$; effect of virus: $F(2, 15) = 0.993$, $P = 0.393$). **(B)** Microphotography of a brain with dCA1 PSD-95(WT):mCherry expression with illustration of the brain processing scheme. **(C)** Summary of data showing the viruses penetrance in dCA1 (sections used for confocal and SBEM analysis) (mice: 5US/Ext, WT = 6/6; S73A = 6/6). **(D)** Correlative confocal-electron microscopy analysis showing that exogenous PSD-95(WT) co-localises with PSDs. Single confocal scan of an exogenous PSD-95(WT) in dCA1, SBEM scan of the same area, superposition of confocal (orange) and SBEM images based on measured distances between large synapses (1 & 2), and thresholded synaptic PSD-95(WT) signal. Measurements: (confocal image) 1: 3.12 μm , 2: 4.97


247 μm ; (SBEM image) 1: 2.98 μm , 2: 4.97 μm . **(E-H)** Analysis of PSD-95 expression after fear extinction
248 training. **(E)** Representative confocal scans of the PSD-95 immunostaining. Means \pm SEM are shown.

249

250 **Phosphorylation of PSD-95(S73) regulates stOri synapses during fear extinction.**

251 To test whether phosphorylation of PSD-95(S73) regulates structural plasticity of excitatory
252 synapses during contextual fear extinction we used SBEM. We reconstructed dendritic spines and
253 PSDs in the stOri and determined dendritic spine density and volume as well as PSDs surface area
254 [as a proxy of synaptic strength (Nusser et al., 1998; Noguchi et al., 2005; Katz et al., 2009)] and
255 volume [as a proxy of the accumulated synaptic proteins (Borczyk et al., 2019)] (**Figure 4A-D**). In total,
256 we reconstructed 159 spines from the brains of the WT mice sacrificed 24 hours after CFC (5US)
257 (n=3), and 178 spines from the mice sacrificed after fear extinction (Ext) (n=3). For mice expressing
258 S73A, 183 spines were reconstructed in the 5US group (n=3) and 160 Ext (n=3). Figure 4D shows
259 reconstructions of dendritic spines from representative SBEM brick scans for each experimental
260 group.

261 Dendritic spine density was lower in the WT Ext group, as compared to the WT 5US mice
262 (**Figure 4E**). Furthermore, the median values of dendritic spine volume, PSD surface area and PSD
263 volume were higher after the extinction training in the WT group, as compared to the WT 5US mice.
264 These changes were also indicated as shifts in the frequency distributions toward bigger values
265 (**Figure 4F-H**, middle panels). We also observed the upward shift of the regression line describing the
266 correlation between dendritic spine volume and PSD surface area in the WT Ext group, as compared
267 to the WT 5US group (**Figure 4I**). Thus, in the WT group dendritic spines had relatively bigger PSDs
268 after fear extinction than the dendritic spines of the same size in the 5US groups. Overall, the pattern
269 of synaptic changes observed in the WT mice resembled the changes found in Thy1-GFP(M) animals
270 after contextual fear extinction (**Figure 1**). The S73A mutation impaired fear extinction-induced
271 downregulation of dendritic spine density as well as dendritic spine and PSD growth (**Figure 4E-I**).
272 Altogether, our data indicate that PSD-95(S73) phosphorylation regulates both density and size of the
273 excitatory synapses during contextual fear extinction.

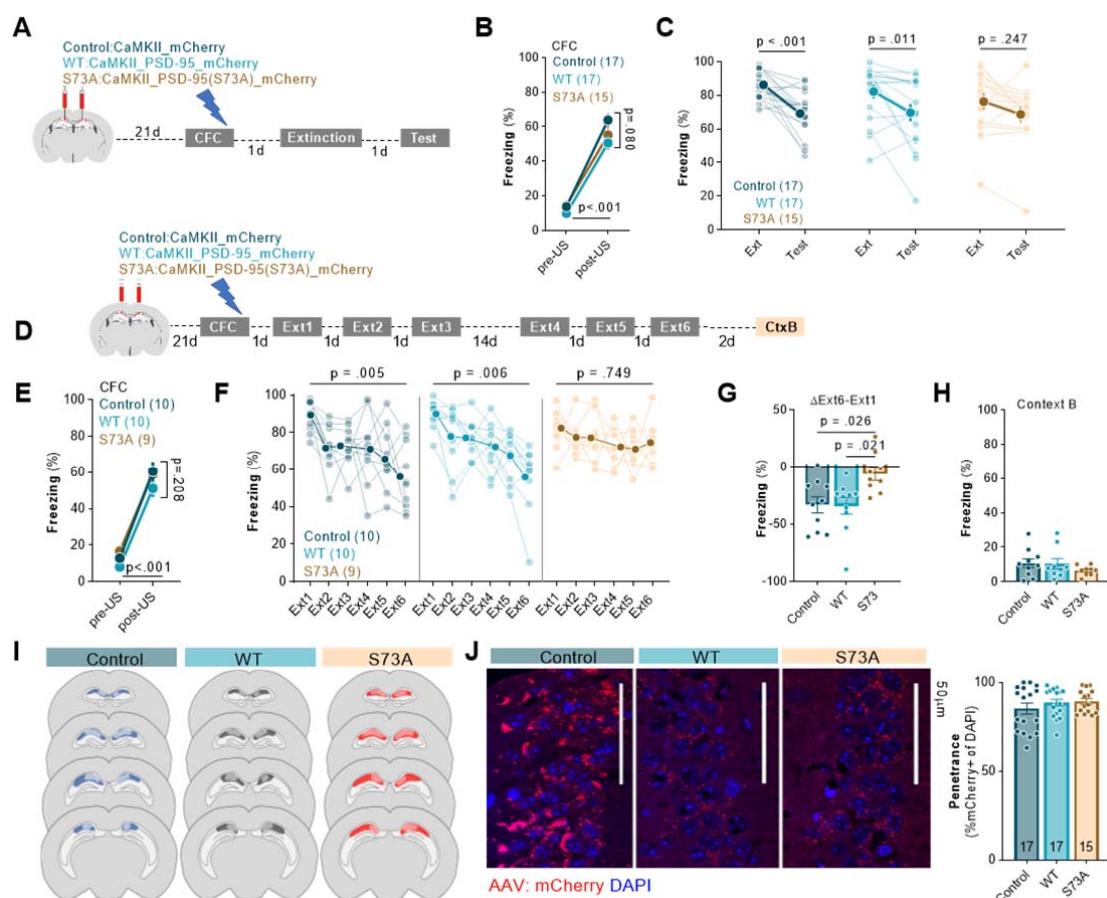
274
275

Figure 4. Phosphorylation of PSD-95(S73) regulates excitatory synapses during fear extinction.

276 **(A)** Male mice were stereotactically injected in the dCA1 with AAV1/2 encoding PSD-95(WT) (WT, n = 277 12) or PSD-95(S73A) (S73A, n = 12). Twenty one days later they underwent CFC and were sacrificed 278 1 day after training (5US) or they were re-exposed to the training context for fear extinction (Ext). **(B-** 279 **C)** The principles for SBEM analysis of the ultrastructure of dendritic spines and PSDs. **(B, left)** 280 Microphotography of a dorsal hippocampus with the region of interest for analysis and tracing of a 281 dendritic spine and PSD in stOri. **(B, right)** A representative trace of a dendritic spine (blue), PSD 282 surface area (red) and volume (yellow), and **(C)** reconstruction of this dendritic spine.

283 **(D)** Exemplary reconstructions of dendritic spines and their PSDs from SBEM scans in stOri. The grey 284 background rectangles are x = 3 × y = 3 μm. Dendritic spines and PSDs were reconstructed and 285 analysed in tissue bricks.

286 (E-I) Summary of data showing: (E) mean density of dendritic spines (two-way ANOVA with LSD *post*
287 *hoc* tests for planned comparisons, effect of training: $F(1, 45) = 8.01, P = 0.007$); (F) median dendritic
288 spine volume (Mann-Whitney test, WT: $U = 9766, P < 0.001$; S73A: $U = 13217, P = 0.141$) and
289 distributions of dendritic spine volumes (numbers of the analysed dendritic spines/mice are indicated)
290 (Kolmogorov-Smirnov test, WT: $D = 0.239, P < 0.001$; S73A: $D = 0.109, P = 0.265$); (G) median PSD
291 surface area (Mann-Whitney test, WT: $U = 9948, P < 0.001$; S73A: $U = 46678, P = 0.024$) and
292 distributions of PSD surface areas (numbers of the analysed dendritic spines/mice are indicated)
293 (Kolmogorov-Smirnov test, WT: $D = 0.157, P < 0.001$; S73A: $D = 0.128, P = 0.010$); (H) median PSD
294 volume (Mann-Whitney test, WT: $U = 9462, P < 0.001$; S73A: $U = 13621, P = 0.431$) and distributions
295 of PSD volumes (numbers of the analysed dendritic spines/mice are indicated) (Kolmogorov-Smirnov
296 test, WT: $D = 0.278, P < 0.001$; S73A: $D = 0.145, P = 0.054$); (I) correlation of dendritic spine volume
297 and PSD surface area (ANCOVA, WT: elevation, $F(1, 319) = 4.256, P = 0.039$; S73A: elevation, $F(1,$
298 $340) = 0.603, P = 0.438$; linear regression equations and Spearman correlation R are given for raw
299 data). For E, each dot represents one tissue brick and means \pm SEM are shown; for F, G, H (top)
300 medians \pm IQR are shown; for I, each dot represents an individual dendritic spine and regression lines
301 \pm 95% confidence intervals are shown.


302

303 **PSD-95(S73) phosphorylation in dCA1 is required for consolidation of contextual fear**
304 **extinction memory.**

305 To test whether phosphorylation of PSD-95(S73) is necessary for consolidation of fear
306 extinction memory, we used dCA1-targeted expression of S73A, WT or control AAV1/2 encoding
307 mCherry under *Camk2a* promoter (Control). Two cohorts of mice with dCA1-targeted expression of the
308 Control virus, WT or S73A, underwent CFC and fear extinction training. The first cohort underwent a
309 short extinction training with one 30-minute extinction session (Ext) and 5-minute test of fear extinction
310 memory (Test) (Figure 5A), while the second underwent an extensive fear extinction training with
311 three 30-minute contextual fear extinction sessions on the days 2, 3, 4 (Ext1-3), followed by
312 spontaneous fear recovery/ remote fear memory test on day 18, and further three extinction sessions
313 on the days 18-20 (Ext4-6). Next, fear generalisation was tested in a context B (CtxB, day 22) (Figure
314 5D). The post-training analysis showed that the viruses were expressed in dCA1 (Figure 5I-J). The
315 control virus was expressed in 85% of the dCA1 cells, WT in 88% and S73A in 87% (Figure 5J).

316 The analysis of the short extinction training (data pooled from two cohorts) showed that in all
317 experimental groups freezing levels were low at the beginning of the training and increased after 5US
318 delivery (Figure 5B). Furthermore, mice in all groups showed high freezing levels at the beginning of
319 the Ext indicating similar levels of contextual fear memory acquisition. However, freezing measured
320 during the Test was significantly decreased, as compared to the beginning of Ext, only in the Control
321 and WT groups, not in the S73A animals (Figure 5C).

322 The analysis of freezing levels during the extensive fear extinction training showed high levels
 323 of freezing at the end of training and beginning of Ext1 for all experimental groups (**Figure 5E-F**). In
 324 the Control and WT groups, the freezing levels decreased over consecutive extinction sessions (Ext2-
 325 6) and were significantly lower as compared to Ext1, indicating formation of long-term fear extinction
 326 memory. We also found no spontaneous fear recovery after 14-day delay (Ext4 vs Ext3; Control, $P =$
 327 0.806; WT, $P = 0.248$). In the S73A group, the extensive contextual fear extinction protocol did not
 328 reduce freezing levels measured at the beginning of Ext6 sessions, as compared to Ext1, indicating no
 329 fear extinction (**Figure 5F**). Accordingly we found significantly larger reduction of freezing after fear
 330 extinction training (Δ Ext6-Ext1) in the controls and WT animals, as compared to the S73A group
 331 (**Figure 5G**). The freezing reaction was specific for the training context, as it was very low and similar
 332 for all experimental groups in the context B (**Figure 5H**). Thus, our data indicate that expression of the
 333 S73A in dCA1 does not affect fear memory formation, recall or generalisation but prevents contextual
 334 fear extinction even after extensive fear extinction training.

335
 336 **Figure 5. Phosphorylation of PSD-95(S73) in dCA1 is required for contextual fear extinction. (A)**

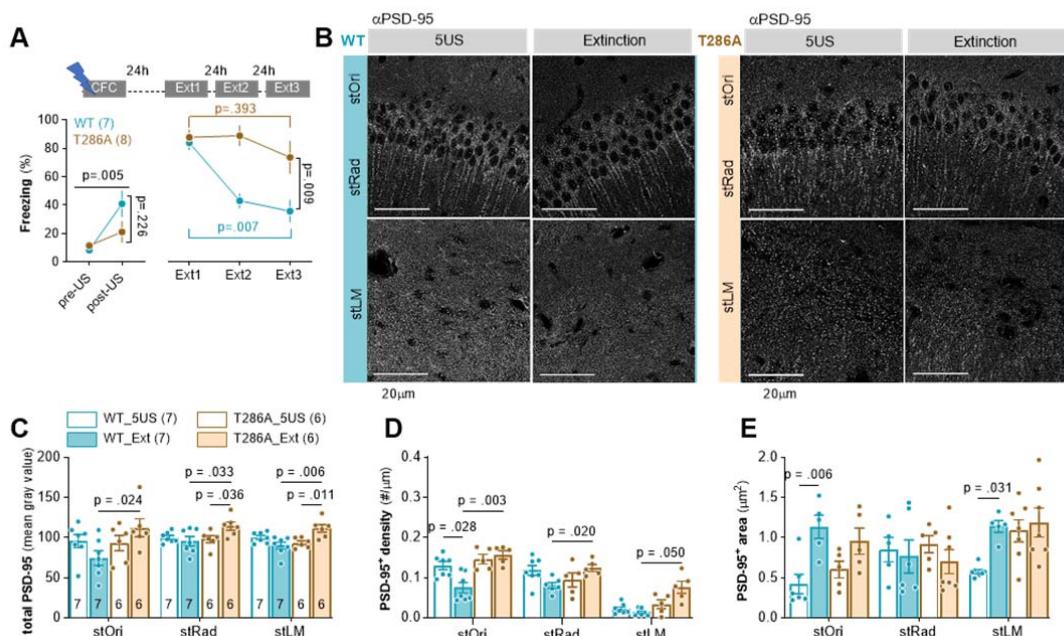
337 Experimental timeline of the short fear extinction training. C57BL/6J male mice were stereotactically
338 injected in the dCA1 with AAV1/2 encoding mCherry (Control, n = 17), PSD-95(WT) (WT, n = 17) or
339 PSD-95(S73A) (S73A, n = 15). Twenty one days after surgery mice underwent CFC. One day after
340 CFC they were re-exposed to the training context in the absence of foot shock (Extinction).
341 Consolidation of fear extinction memory was tested one day later in the same context (Test).

342 **(B-C)** Summary of data showing percentage of freezing during **(B)** CFC, **(C)** Extinction and Test of the
343 mice with dCA1-targeted expression of Control, WT or S73A (two-way repeated-measures ANOVA
344 with Šídák's multiple comparisons test, effect of time: $F(1, 46) = 26.13, P < 0.001$, genotype: $F(2, 46) =$
345 $0.540, P = 0.586$; time x genotype: $F(2, 46) = 1.25, P = 0.296$).

346 **(D)** Experimental timeline of the extensive fear extinction training. Mice with dCA1-targeted expression
347 of Control (n=10), WT (n=10) or S73A (n=9) underwent CFC, followed by six 30-min fear extinction
348 sessions (Ext1-6) and one exposure to novel context without footshock (CtxB).

349 **(E-H)** Summary of data showing freezing levels **(E)** during CFC, **(F)** after extensive fear extinction
350 training (two-way repeated-measures ANOVA with Dunnett's multiple comparisons test, effect of time:
351 $F(3.681, 95.70) = 13.01, P < 0.001$; genotype: $F(2, 26) = 1.23, P = 0.306$; time x genotype: $F(10, 130)$
352 = 1.49, P = 0.147), **(G)** the difference in freezing between Ext1 and Ext6 (one-way ANOVA with
353 Tukey's multiple comparisons test, $F(2, 24.94) = 4.98, P = 0.016$), and **(H)** during the test in the
354 context B (Brown-Forsythe ANOVA test, $F(2, 17.56) = 0.902, P = 0.428$).

355 **(I)** The extent of viral infection. **(J)** Single confocal scans of the stratum pyramidale of dCA1 of the
356 mice expressing Control, WT and S73A and penetrance of the viruses. Means \pm SEM are shown.


357

358 ***αCaMKII autophosphorylation regulates contextual fear extinction and PSD-95 protein levels***
359 ***during contextual fear extinction.***

360 *PSD-95(S73)* is phosphorylated by *αCaMKII* (Gardoni et al., 2006; Steiner et al., 2008). To
361 test the role of *αCaMKII* in PSD-95 protein regulation during fear extinction, autophosphorylation-
362 deficient *αCaMKII* mutant mice (T286A) (Giese et al., 1998) and their wild-type (WT) littermates
363 (males and females, in sex-balanced groups) were trained in CFC. They had similar and low levels of
364 freezing in the novel context and freezing increased after 5US delivery (**Figure 6A**). Mice of both
365 genotypes also showed high levels of freezing in the training context on the next day (Ext1), indicating
366 contextual fear memory formation. However, when the mice were re-exposed to the training context
367 for fear extinction (Ext2-3), the freezing levels of WT mice were significantly lower, as compared to
368 Ext1, while the T286A mutants showed still high freezing. Thus, we confirmed that *αCaMKII*
369 autophosphorylation is required for contextual fear memory extinction.

370 Next, a second cohort of WT and T286A mice was trained and the animals were sacrificed 24
371 hours after training (5US) or after fear extinction session (Ext). The total levels of PSD-95 were not
372 affected by the fear extinction session in WT mice (**Figure 6C**). However, PSD-95 levels were higher
373 in all strata of dCA1 in the T286A Extinction group, as compared to WT animals sacrificed after

374 extinction, and T286A mutants sacrificed before extinction . The density of PSD-95⁺ puncta was
 375 decreased, while mean area of the puncta increased in stOri in the WT Ext animals as compared to
 376 the WT 5US mice (Figure 6D-E). Moreover, in the T286A Ext group the density of PSD-95⁺ puncta
 377 was higher in all strata of dCA1, as compared to the WT Ext animals (Figure 6D). Thus, this
 378 experiment supports the hypothesis that α CaMKII autophosphorylation is required for extinction-
 379 induced regulation of PSD-95⁺ density.

380

381 **Figure 6. Autophosphorylation of α CaMKII is required for extinction of contextual fear and**
 382 **regulation of PSD-95 levels during fear extinction training.**

383 **(A)** Experimental timeline [WT and T286A underwent CTC and three fear extinction sessions (Ext1-3)]
 384 and percentage of freezing during CFC (two-way repeated-measures ANOVA, effect of time: $F(1, 10)$
 385 = 13.06, $P = 0.005$; effect of genotype: $F(1, 10) = 1.66$, $P = 0.226$) and Ext1-3 (WT/T286A = 7/8; sex-
 386 balanced groups) (two-way repeated-measures ANOVA with Šídák's multiple comparisons test, effect
 387 of training: $F(1,430, 18,59) = 14.96$, $P < 0.001$; effect of genotype: $F(1, 13) = 9.30$, $P = 0.009$). **(B-E)**
 388 Analysis of PSD-95 expression in T286A mice.

389 **(B)** Representative confocal scans of the brain slices immunostained for PSD-95. **(C-E)** Quantification
 390 of the PSD-95 protein levels: **(C)** total PSD-95 levels (three-way repeated-measures ANOVA with
 391 Tukey's *post hoc* test, effect of genotype x training: $F(1, 22) = 15.03$, $P < 0.001$); **(D)** density of PSD-
 392 95⁺ puncta (three-way repeated-measures ANOVA with Tukey's *post hoc* test, effect of genotype x
 393 training: $F(1, 59) = 23.43$, $P < 0.001$); **(E)** area of PSD-95⁺ puncta (three-way repeated-measures
 394 ANOVA with Tukey's *post hoc* test, effect of region x training: $F(2, 35) = 6.858$, $P = 0.003$). Mice:
 395 5US/Ext, WT = 7/7; T286A = 6/6. Means \pm SEM are shown.

396

397 **DISCUSSION**

398 We have investigated the role of dCA1 PSD-95(S73) phosphorylation in contextual fear
399 extinction. Our study showed that: (1) contextual fear extinction induces transient changes of dCA1
400 PSD-95 protein levels and dendritic spines in a stratum-specific manner. The most pronounced
401 changes are observed in stOri; (2) contextual fear extinction induces phosphorylation of PSD-95(S73)
402 in all dCA1 strata; (3) Expression of the exogenous, phosphorylation-deficient PSD-95(S73A) in dCA1
403 deregulates PSD-95 protein levels and synaptic remodelling induced by extinction of fear memories;
404 (4) dCA1 PSD-95(S73A) impairs long-term, contextual fear extinction memory, but not for fear
405 memory formation or recall; (5) Phosphorylation-deficient α CaMKII(T286A) impairs contextual fear
406 extinction and regulation of dCA1 PSD-95 protein levels during fear extinction.

407 Here, we demonstrate that contextual fear extinction transiently increases phospho-PSD-
408 95(S73) levels and induces rapid downregulation of the synapses with PSD-95 as well as growth of
409 the remaining synapses in stOri. These synaptic processes are homeostatic - without the changes of
410 total PSD-95 levels and synaptic strength. Such synaptic plasticity alludes to the Hebbian
411 strengthening of activated synapses and heterosynaptic weakening of adjacent synapses (Royer and
412 Paré, 2003; El-Boustani et al., 2018). Our study is the first demonstration of the homeostatic plasticity
413 of dendritic spines during attenuation of fear memories. We also show that extinction-induced
414 downregulation of stOri synapses, as well as regulation of PSD-95 protein levels, are impaired by the
415 expression of phosphorylation-deficient PSD-95(S73A). These observations indicate that
416 phosphorylation of PSD-95(S73) is a key step in the regulation of the dCA1 circuit during fear
417 extinction. There are several important limitations of our study. Firstly, using phospho-S73 antibody we
418 cannot exclude that other MAGUKs are detected (due to the similar LERGNSGLGFS sequence).
419 However, the role of phospho-PSD-95(S73) in contextual fear extinction is supported by the fact that
420 there is increased colocalization of PSD-95 and phospho-S73 during extinction. Moreover, using ex
421 vivo analyses we cannot unequivocally indicate whether PSD-95(S73A) prevents elimination of
422 dendritic spines and PSD-95 proteins, or changes the balance of the synapses by enhancing
423 synaptogenesis and protein synthesis. We believe, however, that the first scenario is more likely and
424 this conclusion is supported by several observations. Firstly, PSD-95(S73A) does not affect synaptic
425 strengthening (Steiner et al., 2008), but PSD-95(S73) phosphorylation allows for dissociation of PSD-
426 95 from the complex with GluN2A, destabilisation of PSD and termination of synaptic growth after
427 NMDAR stimulation (Gardoni et al., 2006; Steiner et al., 2008) as well as downregulation of PSD-95

428 levels during NMDAR-LTD (Nowacka et al., 2020). Secondly, both dCA1 phosphorylation of PSD-
429 95(S73) and protein degradation, but not protein synthesis, are necessary for contextual fear
430 extinction (Fischer, 2004; Lee et al., 2008).

431 Our experiments are the first to show that phosphorylation of PSD-95(S73) in dCA1 is
432 required for extinction of contextual fear memories. Strikingly, the contextual fear memory cannot be
433 updated even when the animals with dCA1 PSD-95(S73A) mutation undergo six 30-minute extinction
434 sessions. We also show that dCA1 PSD-95(S73A) does not affect mice activity, long-term fear
435 memory formation and recall, context-independent fear generalisation or fear recovery after 14-day
436 delay, pointing towards engagement of PSD-95(S73) phosphorylation only during extinction of
437 contextual fear. This conclusion seemingly contradicts the study demonstrating that ligand binding-
438 deficient PSD-95 knockin mice have enhanced contextual fear memory formation and impaired long-
439 term memory retention (Nagura et al., 2012; Fitzgerald et al., 2015). However, even though the
440 behavioural phenotype of PSD-95 KI mice was supported by LTP analysis in dCA1 (Nagura et al.,
441 2012; Fitzgerald et al., 2015), it is unknown whether the mouse phenotype relies on the CA1 plasticity
442 as the mutation was global. Furthermore, it is possible that PSD-95 KI and PSD-95(S73A) impact
443 different stages of contextual fear memory. In agreement with our findings, the signalling pathways
444 downstream of NMDAR-PSD-95 complex in the dorsal CA3 and DG regulate contextual fear extinction
445 (Li et al., 2017; Cai et al., 2018). In particular, translocation of PSD-95 from NMDAR to TrkB, and
446 increased PSD-95-TrkB interactions, promote extinction, while competing NMDAR-PSD-95-nNOS
447 interactions hinder contextual fear extinction (Cai et al., 2018). Since PSD-95(S73A) mutation prolongs
448 NMDAR-PSD-95 interactions (Gardoni et al., 2006) it may limit interactions of PSD-95 with TrkB and
449 fear extinction. To support this hypothesis we also show that autophosphorylation of α CaMKII, the key
450 enzyme activated by NMDAR, is required for extinction-induced regulation of PSD-95 levels and fear
451 extinction.

452 Our data show that the extinction of contextual fear affects PSD-95 protein levels and dendritic
453 spines predominantly in the stOri. This indicates that the extinction-induced synaptic remodelling is
454 strikingly different from the changes observed immediately after contextual fear memory encoding
455 where transient synaptogenesis is observed in the stRad (Radwanska et al., 2011). These
456 observations support the idea that different CA1 inputs are involved in memory formation and
457 extinction. CA3 neurons project to the stRad and stOri regions of CA1 pyramidal neurons, the nucleus

458 reuniens (Re) projects to the stOri and stLM, and the entorhinal cortex (EC) projects to the stLM
459 (Ishizuka et al., 1990; Kajiwara et al., 2008; Hoover and Vertes, 2012; Vertes et al., 2015). Thus, the
460 pattern of synaptic changes induced by contextual fear extinction co-localises with the domains
461 innervated by the Re and EC, suggesting that these inputs are regulated during contextual fear
462 extinction. In agreement with our observations, previous data showed that the EC is activated during
463 and required for contextual fear extinction in animal models (Bevilaqua et al., 2006; Baldi and
464 Bucherelli, 2015). Human studies also showed that EC-CA1 projections are activated by cognitive
465 prediction error (that may drive memory extinction), while CA3-CA1 projections are activated by
466 memory recall without prediction errors (Bein et al., 2020). The role of the Re in fear memory
467 encoding, retrieval, extinction and generalisation has been demonstrated (Xu and Sudhof, 2013;
468 Ramanathan et al., 2018; Troyner and Bertoglio, 2021). Still, it has to be established whether the
469 plasticity of dCA1 synapses is specific to Re and/or EC projections.

470 Our findings add up to the previous studies investigating the molecular processes in dCA1 that
471 are specific and required for contextual fear extinction, but not for fear memory consolidation, including
472 regulation of ERK, CB1, and CBEP (Berger-Sweeney et al., 2006; Bitencourt et al., 2008; de Oliveira
473 Alvares et al., 2008; Pamplona et al., 2008; Tronson et al., 2009; Radulovic and Tronson, 2010).
474 Interestingly, other processes, such as protein synthesis and c-Fos expression, are necessary for
475 contextual fear consolidation and reconsolidation, but not extinction (Fischer, 2004; Lattal and Abel,
476 2004; Mamiya et al., 2009; Tronson et al., 2009). Thus, although it is not surprising that distinct
477 molecular cascades and cell circuits contribute to fear memory formation/recall and extinction
478 (Tronson et al., 2009; Lacagnina et al., 2019), it remains puzzling how synaptic plasticity, without
479 concomitant translation, contributes to contextual fear extinction. This observation points towards the
480 role of protein synthesis-independent short-term plasticity, or protein degradation (Lee et al., 2008), in
481 contextual fear extinction memory. The role of short-term plasticity in contextual fear extinction is
482 supported by the observations that PSD-95(S73) phosphorylation and synaptic remodelling induced
483 by fear extinction are transient. Similar short plasticity was observed by other groups upon recall of
484 drug-paired memories (Gipson et al., 2013a, 2013b). Still it has to be clarified in the future studies how
485 short-term dCA1 plasticity can support long-term fear extinction memory.

486 **Conclusions**

487 Our study demonstrates that extinction of contextual fear memories relies on rapid and
488 transient synaptic plasticity in dCA1 that requires PSD-95(S73) phosphorylation. Thus our study
489 supports the hypothesis that NMDAR-dependent plasticity in dCA1 is required to detect and resolve
490 contradictory or ambiguous memories when spatial information is involved (Bannerman et al., 2014),
491 the comparator view of hippocampal function (Gray, 1982; Grossberg and Merrill, 1992) as well as the
492 observations that the hippocampus processes surprising events and prediction errors (Ploghaus et al.,
493 2000; Kumaran and Maguire, 2006; Huh et al., 2009; Bein et al., 2020). Since new or long-lasting
494 memories may be repeatedly reorganised upon recall (Nader et al., 2000; Schafe et al., 2001), the
495 molecular and cellular mechanisms involved in extinction of the existing fearful memories provide
496 excellent targets for fear memory impairment therapies. In particular, understanding the mechanisms
497 that underlie contextual fear extinction may be relevant for post-traumatic stress disorder treatment.

498

499 **Acknowledgments, Funding and Disclosure**

500 This work was supported by a National Science Centre (Poland) Grant No. 2015/19/B/NZ4/02996 and
501 2020/38/A/NZ4/00483 to KR. PRELUDIUM Grant No. 2016/21/N/NZ4/03304 to MZ and PRELUDIUM
502 Grant No. 2015/19/N/NZ4/03611 to KŁ. TW was supported by the National Science Centre (Poland)
503 (Grant No. 2017/26/E/NZ4/00637). The project was carried out using CePT infrastructure financed by
504 the European Union - The European Regional Development Fund within the Operational Program
505 "Innovative economy" for 2007-2013.

506

507 MZ, MB, KFT and KR designed the experiments; MZ, MB, AC, MNS, AN, MŚ, KŁ, KFT, TW and AS
508 performed the experiments; MZ, MB, MŚ, KŁ, ES, KFT, JW, TB and KR analysed data. MZ, MB and
509 KR drafted the manuscript. All authors had critical input to the final version of the manuscript. Authors
510 report no financial interests or conflicts of interest. Light and electron microscopy experiments were
511 performed at the Laboratory of Imaging Tissue Structure and Functions, Nencki Institute.

512

513

514

515 **MATERIALS AND METHODS**

516 *Animals.* C57BL/6J male mice were purchased from Białystok University, Poland. Thy1-GFP(M) (The
517 Jackson Laboratory, JAX:007788, RRID:IMSR_JAX:007788) mutant mice were bred as heterozygotes
518 at Nencki Institute, and PCR genotyped as previously described (Feng et al., 2000). α CaMKII-T286A
519 mutant mice were bred as heterozygotes at Nencki Institute, and PCR genotyped as previously
520 described (Giese et al., 1998). All mice in the experiments were 10-week old at the beginning of the
521 experiments. The mice were housed in groups of two to six and maintained on a 12 h light/dark cycle
522 with food and water *ad libitum*. All experiments with transgenic mice used approximately equal
523 numbers of males and females. The experiments were undertaken according to the Animal Protection
524 Act of Poland and approved by the I Local Ethics Committee (261/2012 and 829/2019 Warsaw,
525 Poland).

526 *Contextual fear conditioning (CFC).* The animals were trained in a conditioning chamber (Med
527 Associates Inc, St Albans, USA) in a soundproof box. The chamber floor had a stainless steel grid for
528 shock delivery. Before training, the chamber was cleaned with 70% ethanol, and a paper towel soaked
529 in ethanol was placed under the grid floor. To camouflage background noise in the behavioural room,
530 a white noise generator was placed inside the soundproof box.

531 On the conditioning day, the mice were brought from the housing room into a holding room to
532 acclimatise for 30 min before training. Next, mice were placed in the training chamber, and after a 148
533 s introductory period, a foot shock (2 s, 0.7 mA) was presented. The shock was repeated 5 times, at
534 90 s inter-trial intervals. Thirty seconds after the last shock, the mouse was returned to its home cage.
535 Contextual fear memory was tested and extinguished 24 h after training by re-exposing mice to the
536 conditioning chamber for 30 minutes without US presentation, followed by the second 5-minute test
537 session on the following day. During extensive contextual fear extinction, 30-minute fear extinction
538 sessions were repeated on days 2, 3, 14, 15, and 16. Moreover mice activity and freezing were tested
539 in context B (Ctx B) on day 17. A video camera was fixed inside the door of the sound attenuating box
540 for the behavior to be recorded and scored. Freezing behavior (defined as complete lack of
541 movement, except respiration) and locomotor activity of mice were automatically scored. The
542 experimenters were blind to the experimental groups.

543 *Stereotactic surgery.* Mice were fixed in a stereotactic frame (51503, Stoelting, Wood Dale, IL, USA)
544 and kept under isoflurane anesthesia (5% for induction, 1.5-2.0% during surgery). Adeno-associated
545 viruses, serotype 1 and 2, (AAV1/2), solutions were injected into the dorsal CA1 area (Paxinos &
546 Franklin 2001) at coordinates in relation to Bregma (AP, -2.1mm; ML, ±1.1 mm; DV, -1.3mm). 450 nl of
547 AAV solutions were injected into the CA1 through a beveled 26 gauge metal needle, and 10 μ l
548 microsyringe (SGE010RNS, WPI, USA) connected to a pump (UMP3, WPI, Sarasota, USA), and its
549 controller (Micro4, WPI, Sarasota, USA) at a rate 50 nl/ min. The needle was then left in place for 5
550 min, retracted +100 nm DV, and left for an additional 5 min to prevent unwanted spread of the AAV
551 solution. Titers of AAV1/2 were: α CaMKII_PSD-95(WT):mCherry (PSD-95(WT)): $1.35 \times 10^9/\mu$ l,
552 α CaMKII_PSD-95(S73A):mCherry (PSD-95(S73A)): $9.12 \times 10^9/\mu$ l, α CaMKII_mCherry (mCherry): viral
553 titer $7.5 \times 10^7/\mu$ l (obtained from Karl Deisseroth's Lab). Mice were allowed to recover from anaesthesia
554 for 2-3 h on a heating pad and then transferred to individual cages where they stayed until complete
555 skin healing, and next, they were returned to the home cages. The viruses were prepared at the
556 Nencki Institute core facility, Laboratory of Animal Models. After training, the animals were perfused
557 with 4% PFA in PBS and bain sections from the dorsal hippocampus were immunostained for PSD-95
558 and imaged with Zeiss Spinning Disc confocal microscope (magnification: 10x) to assess the extent of
559 the viral expression and PSD-95 expression.

560 *Immunostaining.* Mice were anaesthetised and perfused with cold phosphate buffer pH 7.4, followed
561 by 0.5% 4% PFA in phosphate buffer. Brains were removed and postfixed o/n in 4°C. Brains were kept
562 in 30% sucrose in PBS for 72h. Coronal brain sections were prepared using cryosectioning (40 μ m
563 thick, Cryostat CM1950, Leica Biosystems Nussloch GmbH, Wetzlar, Germany) and stored in a
564 cryoprotecting solution in -20°C (PBS, 15% sucrose (Sigma-Aldrich), 30% ethylene glycol (Sigma-
565 Aldrich), and 0.05% NaN₃ (SigmaAldrich). Before staining, sections were washed 3 \times PBS and
566 blocked for 1 hour at room temperature (RT) in 5% NDS with 0.3% Triton X-100 in PBS and then
567 incubated o/n, 4°C with PSD-95 primary antibodies (1:500, Millipore, MAB1598, RRID:AB_11212185)
568 and/or rabbit anti-mCherry primary antibodies (1:500, Abcam, ab167453, RRID:AB_2571870) and/or
569 rabbit P-Ser73_PSD-95 primary antibodies (1:12, Davids Biotechnology, A061). On the second day
570 slices were washed 3 \times PBS with 0,3% Triton X-100 and incubated for 90 minutes with secondary
571 antibodies conjugated with anti-mouse AlexaFluor 555 (1:500, Invitrogen, A31570,
572 RRID:AB_2536180) and/or anti-rabbit AlexaFluor 555 (1:500, Invitrogen, A31572, RRID:AB_162543)

573 and/or anti-rabbit Alexa Fluor 647 (1:500, Invitrogen, A31573, RRID:AB_2536183). Slices were then
574 mounted on microscope slides (Thermo Fisher Scientific) and covered with coverslips in Fluoromount-
575 G medium with DAPI (00-4959-52, Invitrogen).

576 *Phospho-PSD-95(S73)-specific antibody.* Phospho-epitope-specific serum against phosphorylated
577 PSD-95(S73) was raised in a rabbit using the synthetic phosphopeptide LERGN(Sp)GLGFS. The
578 antibody was prepared and affinity-purified by Davids Biotechnologie (Regensburg, Germany).

579 *Confocal microscopy and image quantification.* The microphotographs of dendritic spines in the Thy1-
580 GFP(M) mice, fluorescent PSD-95 and phospho-PSD-95(S73) immunostaining were taken on a
581 Spinning Disc confocal microscope (63 × oil objective, NA 1.4, pixel size 0.13 µm × 0.13 µm) (Zeiss,
582 Göttingen, Germany). We took microphotographs (16 bit, z-stacks of 12-48 scans; 260 nm z-steps) of
583 6 dendrites per region per animal from stratum oriens (stOri), stratum radiatum (stRad) and stratum
584 lacunosum-moleculare (stLM) (in the middle of the strata) of dCA1 pyramidal neurons (AP, Bregma
585 from -1.7 to 2.06). The PSD-95 fluorescent immunostaining after AAV overexpression was analysed
586 with Zeiss LSM 800 microscope equipped with Airy-Scan detection (63× oil objective and NA 1.4, pixel
587 size 0.13 µm × 0.13 µm, 8 bit) (Zeiss, Göttingen, Germany). A series of 18 continuous optical sections
588 (67.72 µm × 67.72 µm), at 0.26 µm intervals, were scanned along the z-axis of the tissue section. Six
589 to eight z-stacks of microphotographs were taken per animal per region, from every sixth section
590 through dCA1. Each dendritic spine was manually outlined, and the spine area was measured with
591 ImageJ 1.52n software measure tool. Custom-written Python scripts were used to analyse the mean
592 grey value of PSD-95⁺ puncta per dendritic spine, total PSD-95 levels (as an image mean gray value),
593 and PSD-95⁺ puncta density and size.

594 *Serial Face-block Scanning Electron Microscopy (SBEM).* Mice were transcardially perfused with cold
595 phosphate buffer pH 7.4, followed by 0.5% EM-grade glutaraldehyde (G5882 Sigma-Aldrich) with 2%
596 PFA in phosphate buffer pH 7.4 and postfixed overnight in the same solution. Brains were then taken
597 out of the fixative and cut on a vibratome (Leica VT 1200) into 100 µm slices. Slices were kept in
598 phosphate buffer pH 7.4, with 0.1% sodium azide in 4°C. For AAV-injected animals, the fluorescence
599 of exogenous proteins was confirmed in all slices by fluorescent imaging. Then, slices were washed 3
600 times in cold phosphate buffer and postfixed with a solution of 2% osmium tetroxide (#75632 Sigma-
601 Aldrich) and 1.5 % potassium ferrocyanide (P3289 Sigma-Aldrich) in 0.1 M phosphate buffer pH 7.4

602 for 60 min on ice. Next, samples were rinsed 5 × 3 min with double distilled water (ddH₂O) and
603 subsequently exposed to 1% aqueous thiocarbohydrazide (TCH) (#88535 Sigma) solution for 20 min.
604 Samples were then washed 5 × 3 min with ddH₂O and stained with osmium tetroxide (1% osmium
605 tetroxide in ddH₂O, without ferrocyanide) for 30 min in RT. Afterward, slices were rinsed 5 × 3 min with
606 ddH₂O and incubated in 1% aqueous solution of uranium acetate overnight in 4°C. The next day,
607 slices were rinsed 5 × 3 min with ddH₂O, incubated with lead aspartate solution (prepared by
608 dissolving lead nitrate in L-aspartic acid as previously described (Deerinck et al., 2010)) for 30 min in
609 60°C and then washed 5 × 3 min with ddH₂O and dehydration was performed using graded dilutions of
610 ice-cold ethanol (30%, 50%, 70%, 80%, 90%, and 2 × 100% ethanol, 5 min each). Then slices were
611 infiltrated with Durcupan resin. A(17 g), B(17 g) and D(0,51 g) components of Durcupan (#44610
612 Sigma-Aldrich) were first mixed on a magnetic stirrer for 30 min and then 8 drops of DMP-30
613 accelerator (#45348 Sigma) were added (Knott et al., 2009). Part of the resin was then mixed 1:1 (v/v)
614 with 100% ethanol and slices were incubated in this 50% resin on a clock-like stirrer for 30 min in RT.
615 The resin was then replaced with 100% Durcupan for 1 hour in RT and then 100% Durcupan
616 infiltration was performed o/n with constant slow mixing. The next day, samples were infiltrated with
617 freshly prepared resin (as described above) for another 2 hours in RT, and then embedded between
618 flat Aclar sheets (Ted Pella #10501-10). Samples were put in a laboratory oven for at least 48 hours at
619 65°C for the resin to polymerize. After the resin hardened, the Aclar layers were separated from the
620 resin embedded samples, dCA1 region was cut out with a razorblade. Caution was taken for the piece
621 to contain minimal resin. Squares of approximately 1 × 1 × 1 mm were attached to aluminium pins
622 (Gatan metal rivets, Oxford instruments) with very little amount of cyanacrylamide glue. After the glue
623 dried, samples were mounted to the ultramicrotome to cut 1 μm thick slices. Slices were transferred on
624 a microscope slide, briefly stained with 1% toluidine blue in 5% borate and observed under a light
625 microscope to confirm the region of interest (ROI). Next, samples were grounded with silver paint (Ted
626 Pella, 16062-15) and pinned for drying for 4 – 12 hours, before the specimens were mounted into the
627 3View2 chamber.

628 *SBEM imaging and 3D reconstructions.* Samples were imaged with Zeiss SigmaVP (Zeiss,
629 Oberkochen, Germany) scanning electron microscope equipped with 3View2 chamber using a
630 backscatter electron detector. Scans were taken in the middle portion of dCA1 stOri. From each
631 sample, 200 sections were collected (thickness 60 nm). Imaging settings: high vacuum with EHT 2.9-

632 3.8 kV, aperture: 20 μ m, pixel dwell time: 3 μ s, pixel size: 5 – 6.2 nm. Scans were aligned using the
633 ImageJ software (ImageJ -> Plugins -> Registration -> StackReg) and saved as .tiff image sequence.
634 Next, aligned scans were imported to Reconstruct software (Fiala 2005), available at
635 <http://synapses.clm.utexas.edu/tools/reconstruct/reconstruct.stm> (Synapse Web Reconstruct,
636 RRID:SCR_002716). Dendritic spine density was analysed from 3 bricks per animal with the unbiased
637 brick method (Fiala and Harris 2001) per tissue volume. Brick dimensions 3 \times 3 \times 3 μ m were chosen
638 to exceed the length of the largest profiles in the data sets at least twice. To calculate the density of
639 dendritic spines, the total volume of large tissue discontinuities was subtracted from the volume of the
640 brick. The density of dendritic spines was normalised to AAV1/2 penetrance.

641 A structure was considered to be a dendritic spine when it was a definite protrusion from the
642 dendrite, with electron-dense material (representing postsynaptic part of the synapse, PSD) on the
643 part of the membrane that opposed an axonal bouton with at least 3 vesicles within a 50-nm distance
644 from the cellular membrane facing the spine. For 3D reconstructions, PSDs and dendritic spines in
645 one brick were reconstructed for each sample. PSDs were first reconstructed and second, their
646 dendritic spines were outlined. To separate dendritic spine necks from the dendrites, a cut-off plane
647 was used approximating where the dendritic surface would be without the dendritic spine. PSD volume
648 was measured by outlining dark, electron-dense area on each PSD containing section (Borczyk et al.,
649 2019). The PSD area was measured manually according to the Reconstruct manual. All non-synaptic
650 protrusions were omitted in this analysis. For multi-synaptic spines, the PSD areas and volumes were
651 summed.

652 *Correlative light-electron microscopy (CLEM)*. CLEM workflow was based on a previously established
653 protocol with some modifications (Bishop et al., 2011). Mice infused with PSD-95(WT) in the CA1 were
654 perfused as described above. Brains were then removed and postfixed o/n in 4°C. 100 μ m thick brain
655 slices were cut on a vibratome and embedded in low melting point agarose in phosphate buffer and
656 mounted into imaging chambers. mCherry fluorescence in the stRad was photographed using Zeiss
657 LSM800, z-stacks of 60 images (60 μ m thick) at 63 \times magnification. Next, the slice was transferred
658 under the 2P microscope (Zeiss MP PA Setup), where a Chameleon laser was used to brand mark the
659 ROI (laser length 870 nm, laser power 85%, 250 scans of each line). Then, SBEM staining was
660 performed as described above. The resin-embedded hippocampus was then divided into 4 rectangles
661 and each was mounted onto metal pins to locate the laser-induced marks. SBEM scanned within the

662 laser marked frame. The fluorescent image was overlaid onto the SBEM image using dendrites and
663 cell nuclei as landmarks using ImageJ 1.48k software (RRID:SCR_003070).

664 *Electrophysiology.* Mice were deeply anaesthetised with Isoflurane, decapitated and the brains were
665 rapidly dissected and transferred into ice-cold cutting artificial cerebrospinal fluid (ACSF) consisting of
666 (in mM): 87 NaCl, 2.5 KCl, 1.25 NaH₂PO₄, 25 NaHCO₃, 0.5 CaCl₂, 7 MgSO₄, 20 D-glucose, 75
667 sacharose equilibrated with carbogen (5% CO₂/95% O₂). The brain was cut to two hemispheres and
668 350 µm thick coronal brain slices were cut in ice-cold cutting ACSF with Leica VT1000S vibratome.
669 Slices were then incubated for 15 min in cutting ACSF at 32°C. Next the slices were transferred to
670 recording ACSF containing (in mM): 125 NaCl, 2.5 KCl, 1.25 NaH₂PO₄, 25 NaHCO₃, 2.5 CaCl₂, 1.5
671 MgSO₄, 20 D-glucose equilibrated with carbogen and incubated for minimum 1 hour at room
672 temperature (RT).

673 Extracellular field potential recordings were recorded in a submerged chamber perfused with
674 recording ACSF in RT. The synaptic potentials were evoked with a Stimulus Isolator (A.M.P.I Isoflex)
675 with a concentric bipolar electrode (FHC, CBARC75) placed in the stOri of CA2 on the experiment.
676 The stimulating pulses were delivered at 0.1 Hz and the pulse duration was 0.3 ms. Recording
677 electrodes (resistance 1-4 MΩ) were pulled from borosilicate glass (WPI, 1B120F-4) with a
678 micropipette puller (Sutter Instruments, P-1000) and filled with recording ACSF. The recording
679 electrodes were placed in stOri of dCA1. Simultaneously, a second recording electrode was placed in
680 the stratum pyramidale to measure population spikes. For each slice, the recordings were done in
681 stOri. Recordings were acquired with MultiClamp 700B amplifier (Molecular Devices, California, USA),
682 digitised with Digidata 1550B (Molecular Devices, California, USA) and pClamp 10.7 Clampex 10.0
683 software (Molecular Devices, California, USA). Input/output curves were obtained by increasing
684 stimulation intensity by 25 µA in the range of 0-300 µA. All electrophysiological data were analysed
685 with Axograph 1.7.4 software (Axon Instruments, U.S.A). The amplitude of fEPSP, relative amplitude
686 of population spikes and fibre volley were measured.

687 *Statistics.* Data are presented as mean ± standard error of the mean (SEM) for populations with
688 normal distribution or as median ± interquartile range (IQR) for populations with non-normal
689 distribution. An animal was used as a biological replication in all experiments except for the dendritic
690 spine size distribution analysis. When the data met the assumptions of parametric statistical tests,

691 results were analysed by one- or repeated measures two-way ANOVA, followed by Tukey's or Fisher's
692 *post hoc* tests, where applicable. Data were tested for normality by using the Shapiro-Wilk test of
693 normality and for homogeneity of variances by using the Levene's test. For repeated-measure data
694 with missing observation, a linear mixed model was used to analyse the results, followed by pairwise
695 comparisons with Sidak adjustment for multiple comparisons. Areas of dendritic spines and PSDs did
696 not follow normal distributions and were analysed with the Kruskal-Wallis test. Frequency distributions
697 of PSD area to the spine volume ratio were compared with the Kolmogorov-Smirnov test. Correlations
698 were analysed using Spearman correlation (Spearman r (s_r) is shown), and the difference between
699 slopes or elevation between linear regression lines was calculated with ANCOVA. Differences
700 between the experimental groups were considered statistically significant if $P < 0.05$. Analyses were
701 performed using the Graphpad Prism 9. Mice were excluded from the analysis only if they did not
702 express the tested virus in the target region.

703

Key Resources Table				
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
strain, strain background (<i>Mus musculus</i> , male)	Thy1-GFP(M)	PMID: 11086982		
strain, strain background (<i>Mus musculus</i> , male)	C57BL/6J	Białystok University, Poland	IMSR_JAX:007788	
antibody	mouse PSD-95 primary antibody	Millipore MAB1598	RRID:AB_11212185	1:500
antibody	rabbit P-Ser73_PSD-95 primary antibody	Davids Biotechnologie	A061	1:12
antibody	Donkey anti-Mouse IgG alexa fluor 555	Invitrogen A31570	RRID:AB_2536180	1:500

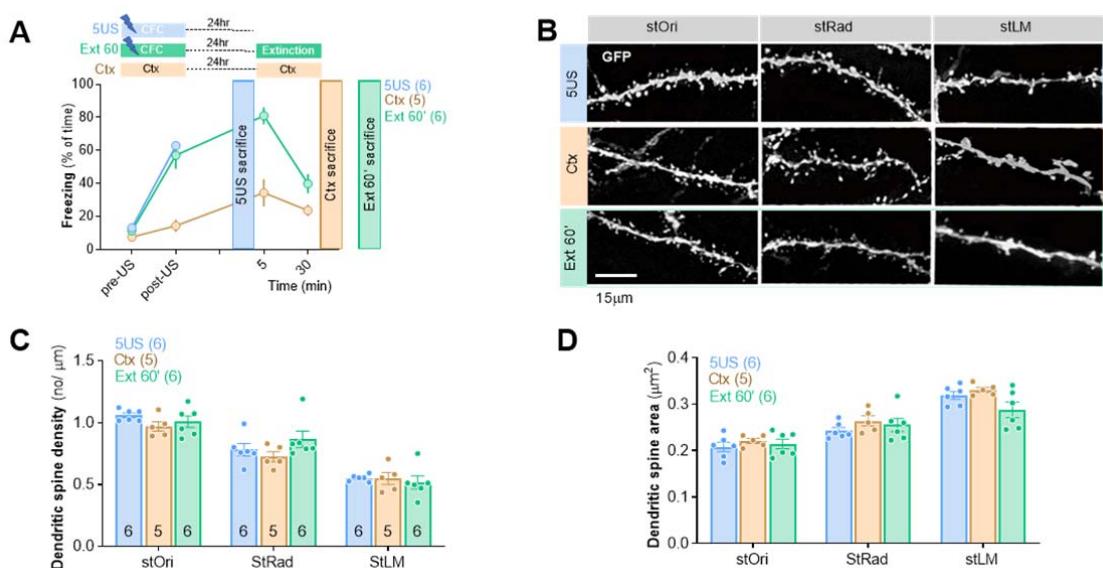
Key Resources Table				
antibody	Rabbit anti-mCherry	Abcam, ab167453	RRID:AB_257 1870	1:500
antibody	Donkey anti-rabbit Alexa Fluor 555	Invitrogen,A- 31572	RRID:AB_162 543	1:500
antibody	Donkey anti-rabbit Alexa Fluor 647	Invitrogen, A31573	RRID:AB_253 6183	1:500
recombinant DNA reagent	AAV1/2, <i>Camk2a</i> _PSD- 95(WT):mCherry (PSD-95(WT))	PMID: 32029829		<i>Dlg4</i> cloned into Addgene plasmid # 114469
recombinant DNA reagent	AAV1/2, <i>Camk2a</i> _PSD- 95(S73A):mCherry (PSD-95(S73A))	PMID: 32029829		<i>Dlg4_S73A</i> cloned into Addgene plasmid # 114469
recombinant DNA reagent	AAV1/2, <i>Camk2a</i> _mCherry (mCherry)	Addgene plasmid # 114469	RRID:Addgen e_114469	
software, algorithm	ImageJ (Fiji)	PMID: 22743772	RRID:SCR_00 2285	
software, algorithm	Med-PC V Software Suite	Med Associate Inc.	SOF-736	fear conditioning software
software, algorithm	Reconstruct	PMID: 15817063	RRID:SCR_00 2716	

704

705

706 REFERENCES

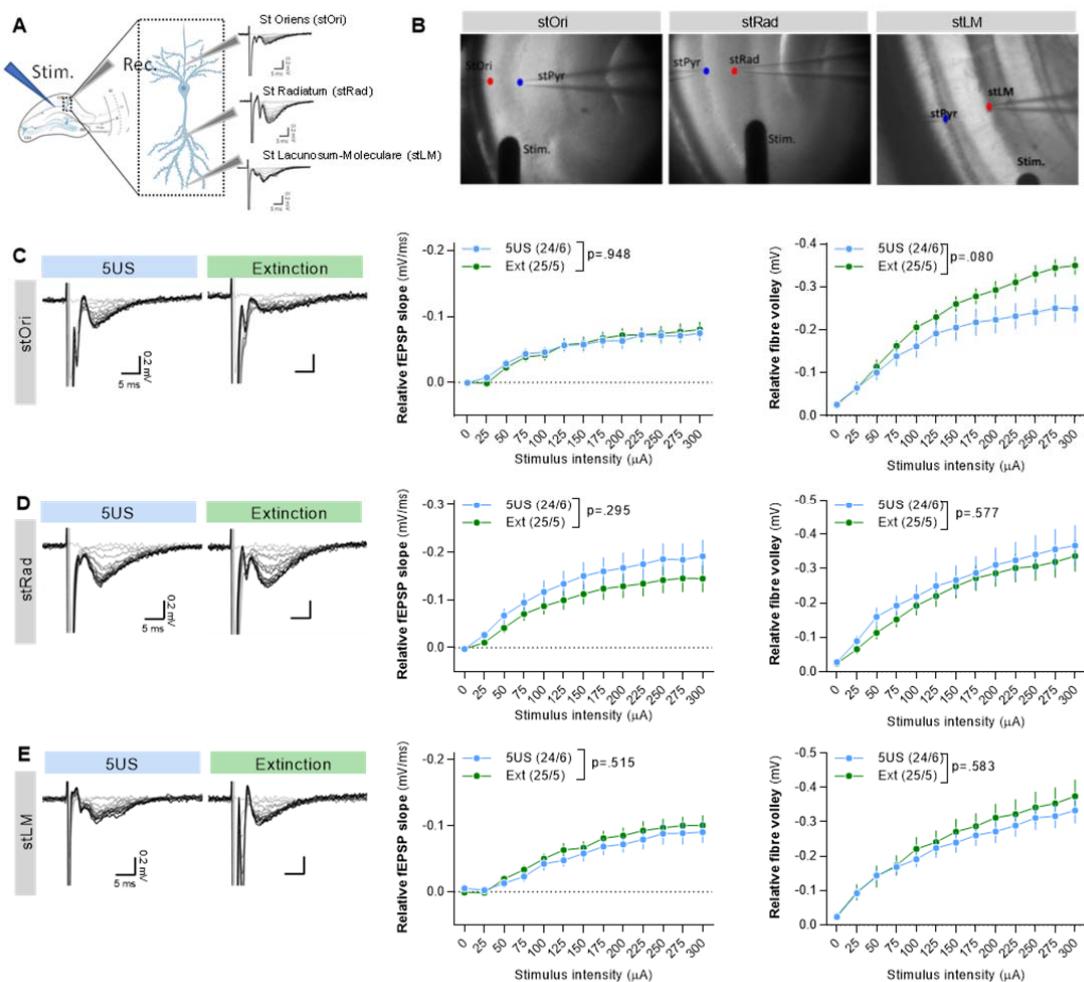
- 707 Abraham WC, Jones OD, Glanzman DL (2019) Is plasticity of synapses the mechanism of long-term
708 memory storage? *Npj Sci Learn* 4:9 Available at: <http://www.nature.com/articles/s41539-019-0048-y> [Accessed November 4, 2020].
- 709 Aziz W, Kraev I, Mizuno K, Kirby A, Fang T, Rupawala H, Kasbi K, Rothe S, Jozsa F, Rosenblum K,
710 Stewart MG, Giese KP (2019) Multi-input Synapses, but Not LTP-Strengthened Synapses,
711 Correlate with Hippocampal Memory Storage in Aged Mice. *Curr Biol* 29:3600-3610.e4
712 Available at: <https://linkinghub.elsevier.com/retrieve/pii/S0960982219311145> [Accessed
713 November 3, 2020].
- 714 Baldi E, Bucherelli C (2015) Brain sites involved in fear memory reconsolidation and extinction of
715 rodents. *Neurosci Biobehav Rev* 53:160–190 Available at:
716 <https://linkinghub.elsevier.com/retrieve/pii/S0149763415000998> [Accessed November 3,
717 2020].
- 718 Bannerman DM, Bus T, Taylor A, Sanderson DJ, Schwarz I, Jensen V, Hvalby Ø, Rawlins JNP,
719 Seeburg PH, Sprengel R (2012) Dissecting spatial knowledge from spatial choice by
720 hippocampal NMDA receptor deletion. *Nat Neurosci* 15:1153–1159 Available at:
721 <http://www.nature.com/articles/nn.3166> [Accessed November 3, 2020].
- 722 Bannerman DM, Sprengel R, Sanderson DJ, McHugh SB, Rawlins JNP, Monyer H, Seeburg PH
723 (2014) Hippocampal synaptic plasticity, spatial memory and anxiety. *Nat Rev Neurosci*
724 15:181–192 Available at: <https://www.nature.com/articles/hrn3677> [Accessed January 25,
725 2021].
- 726 Bats C, Groc L, Choquet D (2007) The Interaction between Stargazin and PSD-95 Regulates AMPA
727 Receptor Surface Trafficking. *Neuron* 53:719–734 Available at:
728 <https://www.sciencedirect.com/science/article/pii/S0896627307000712> [Accessed April 15,
729 2021].
- 730 Bein O, Duncan K, Davachi L (2020) Mnemonic prediction errors bias hippocampal states. *Nat
731 Commun* 11:3451 Available at: <http://www.nature.com/articles/s41467-020-17287-1>
732 [Accessed November 4, 2020].
- 733 Béïque J, Andrade R (2003) PSD-95 regulates synaptic transmission and plasticity in rat cerebral
734 cortex. *J Physiol* 546:859–867 Available at:
735 <https://onlinelibrary.wiley.com/doi/10.1111/jphysiol.2002.031369> [Accessed November 3,
736 2020].
- 737 Berger-Sweeney J, Zearfoss NR, Richter JD (2006) Reduced extinction of hippocampal-dependent
738 memories in CPEB knockout mice. *Learn Mem Cold Spring Harb N* 13:4–7.
- 739 Bevilaqua L, Bonini J, Rossato J, Izquierdo L, Cammarota M, Izquierdo I (2006) The entorhinal cortex
740 plays a role in extinction. *Neurobiol Learn Mem* 85:192–197 Available at:
741 <https://linkinghub.elsevier.com/retrieve/pii/S1074742705001073> [Accessed November 4,
742 2020].
- 743 Bitencourt RM, Pamplona FA, Takahashi RN (2008) Facilitation of contextual fear memory extinction
744 and anti-anxiogenic effects of AM404 and cannabidiol in conditioned rats. *Eur
745 Neuropsychopharmacol J Eur Coll Neuropsychopharmacol* 18:849–859.
- 746 Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the
747 hippocampus. *Nature* 361:31–39 Available at: <https://www.nature.com/articles/361031a0>
748 [Accessed July 29, 2021].
- 749 Borczyk M, Śliwińska MA, Caly A, Bernas T, Radwanska K (2019) Neuronal plasticity affects
750 correlation between the size of dendritic spine and its postsynaptic density. *Sci Rep* 9:1693
751 Available at: <http://www.nature.com/articles/s41598-018-38412-7> [Accessed November 3,
752 2020].
- 753 Cai C-Y, Chen C, Zhou Y, Han Z, Qin C, Cao B, Tao Y, Bian X-L, Lin Y-H, Chang L, Wu H-Y, Luo C-X,
754 Zhu D-Y (2018) PSD-95-nNOS Coupling Regulates Contextual Fear Extinction in the Dorsal
755 CA3. *Sci Rep* 8:12775 Available at: <https://www.nature.com/articles/s41598-018-30899-4>
756 [Accessed January 22, 2021].
- 757 Cały A, Śliwińska MA, Ziółkowska M, Łukasiewicz K, Pagano R, Dzik JM, Kalita K, Bernaś T, Stewart
758 MG, Giese KP, Radwanska K (2021) PSD-95 in CA1 area regulates spatial choice depending
759 on age. *J Neurosci* Available at:
760 <https://www.jneurosci.org/content/early/2021/01/14/JNEUROSCI.1996-20.2020> [Accessed
761 January 26, 2021].
- 762 Chen X, Nelson CD, Li X, Winters CA, Azzam R, Sousa AA, Leapman RD, Gainer H, Sheng M, Reese
763 TS (2011) PSD-95 Is Required to Sustain the Molecular Organization of the Postsynaptic
764


- 765 Density. J Neurosci 31:6329–6338 Available at:
766 <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5968-10.2011> [Accessed November 4,
767 2020].
- 768 Cheng D, Hoogenraad CC, Rush J, Ramm E, Schlager MA, Duong DM, Xu P, Wijayawardana SR,
769 Hanfelt J, Nakagawa T, Sheng M, Peng J (2006) Relative and absolute quantification of
770 postsynaptic density proteome isolated from rat forebrain and cerebellum. *Mol Cell Proteomics*
771 MCP 5:1158–1170.
- 772 Chetkovich DM, Bunn RC, Kuo S-H, Kawasaki Y, Kohwi M, Bredt DS (2002) Postsynaptic targeting of
773 alternative postsynaptic density-95 isoforms by distinct mechanisms. *J Neurosci Off J Soc*
774 *Neurosci* 22:6415–6425.
- 775 de Oliveira Alvares L, Pasqualini Genro B, Diehl F, Molina VA, Quillfeldt JA (2008) Opposite action of
776 hippocampal CB1 receptors in memory reconsolidation and extinction. *Neuroscience*
777 154:1648–1655.
- 778 Ehrlich I, Klein M, Rumpel S, Malinow R (2007) PSD-95 is required for activity-driven synapse
779 stabilization. *Proc Natl Acad Sci* 104:4176–4181 Available at:
780 <http://www.pnas.org/cgi/doi/10.1073/pnas.0609307104> [Accessed November 4, 2020].
- 781 Ehrlich I, Malinow R (2004) Postsynaptic Density 95 controls AMPA Receptor Incorporation during
782 Long-Term Potentiation and Experience-Driven Synaptic Plasticity. *J Neurosci* 24:916–927.
- 783 El-Boustani S, Ip JPK, Breton-Provencher V, Knott GW, Okuno H, Bito H, Sur M (2018) Locally
784 coordinated synaptic plasticity of visual cortex neurons in vivo. *Science* 360:1349–1354
785 Available at: <https://www.sciencemag.org/lookup/doi/10.1126/science.aoa0862> [Accessed
786 November 3, 2020].
- 787 Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW,
788 Sanes JR (2000) Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral
789 Variants of GFP. *Neuron* 28:41–51 Available at:
790 <https://linkinghub.elsevier.com/retrieve/pii/S0896627300000842> [Accessed November 3,
791 2020].
- 792 Fischer A (2004) Distinct Roles of Hippocampal De Novo Protein Synthesis and Actin Rearrangement
793 in Extinction of Contextual Fear. *J Neurosci* 24:1962–1966 Available at:
794 <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5112-03.2004> [Accessed November 4,
795 2020].
- 796 Fitzgerald PJ, Pinard CR, Camp MC, Feyder M, Sah A, Bergstrom HC, Graybeal C, Liu Y, Schlueter
797 OM, Grant SG, Singewald N, Xu W, Holmes A (2015) Durable fear memories require PSD-95.
798 *Mol Psychiatry* 20:901–912 Available at: <http://www.nature.com/articles/mp2014161>
799 [Accessed November 3, 2020].
- 800 Frankland PW, Bontempi B (2005) The organization of recent and remote memories. *Nat Rev
801 Neurosci* 6:119–130 Available at: <http://www.nature.com/articles/nrn1607> [Accessed
802 November 4, 2020].
- 803 Gardoni F, Polli F, Cattabeni F, Di Luca M (2006) Calcium-calmodulin-dependent protein kinase II
804 phosphorylation modulates PSD-95 binding to NMDA receptors. *Eur J Neurosci* 24:2694–
805 2704 Available at: <http://doi.wiley.com/10.1111/j.1460-9568.2006.05140.x> [Accessed
806 November 4, 2020].
- 807 Garín-Aguilar ME, Díaz-Cintra S, Quirarte GL, Aguilar-Vázquez A, Medina AC, Prado-Alcalá RA
808 (2012) Extinction procedure induces pruning of dendritic spines in CA1 hippocampal field
809 depending on strength of training in rats. *Front Behav Neurosci* 6 Available at:
810 <http://journal.frontiersin.org/article/10.3389/fnbeh.2012.00012/abstract> [Accessed November
811 3, 2020].
- 812 Giese KP, Fedorov NB, Filipkowski RK, Silva AJ (1998) Autophosphorylation at Thr286 of the alpha
813 calcium-calmodulin kinase II in LTP and learning. *Science* 279:870–873.
- 814 Gipson CD, Kupchik YM, Shen H, Reissner KJ, Thomas CA, Kalivas PW (2013a) Relapse induced by
815 cues predicting cocaine depends on rapid, transient synaptic potentiation. *Neuron* 77:867–
816 872.
- 817 Gipson CD, Reissner KJ, Kupchik YM, Smith ACW, Stankeviciute N, Hensley-Simon ME, Kalivas PW
818 (2013b) Reinstatement of nicotine seeking is mediated by glutamatergic plasticity. *Proc Natl
819 Acad Sci U S A* 110:9124–9129.
- 820 Goh JJ, Manahan-Vaughan D (2013) Spatial Object Recognition Enables Endogenous LTD that
821 Curtails LTP in the Mouse Hippocampus. *Cereb Cortex* 23:1118–1125 Available at:
822 <https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhs089> [Accessed
823 November 4, 2020].
- 824 Gray JA (1982) The neuropsychology of anxiety: An enquiry into the functions of the septo-

- 825 hippocampal system. *Behav Brain Sci* 5:469–484 Available at: 826 https://www.cambridge.org/core/product/identifier/S0140525X00013066/type/journal_article 827 [Accessed November 3, 2020].
- 828 Grossberg S, Merrill JW (1992) A neural network model of adaptively timed reinforcement learning and 829 hippocampal dynamics. *Brain Res Cogn Brain Res* 1:3–38.
- 830 Hirsch SJ, Regmi NL, Birnbaum SG, Greene RW (2015) CA1-specific deletion of NMDA receptors 831 induces abnormal renewal of a learned fear response. *Hippocampus* 25:1374–1379.
- 832 Hoover WB, Vertes RP (2012) Collateral projections from nucleus reuniens of thalamus to 833 hippocampus and medial prefrontal cortex in the rat: a single and double retrograde 834 fluorescent labeling study. *Brain Struct Funct* 217:191–209 Available at: 835 <http://link.springer.com/10.1007/s00429-011-0345-6> [Accessed November 4, 2020].
- 836 Huh KH, Guzman YF, Tronson NC, Guedea AL, Gao C, Radulovic J (2009) Hippocampal Erk 837 mechanisms linking prediction error to fear extinction: Roles of shock expectancy and 838 contextual aversive valence. *Learn Mem* 16:273–278 Available at: 839 <http://learnmem.cshlp.org/cgi/doi/10.1101/lm.1240109> [Accessed November 4, 2020].
- 840 Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections originating from 841 CA3 pyramidal cells in the rat. *J Comp Neurol* 295:580–623 Available at: 842 <http://doi.wiley.com/10.1002/cne.902950407> [Accessed November 3, 2020].
- 843 Kaganovsky K, Plitt MH, Yang R, Sando R, Giocomo LM, Ding JB, Südhof TC (2022) Dissociating 844 encoding of memory and salience by manipulating long-term synaptic potentiation. 845 :2022.01.04.474865 Available at: <https://www.biorxiv.org/content/10.1101/2022.01.04.474865v1> [Accessed April 13, 2022].
- 846 Kajiwara R, Wouterlood FG, Sah A, Boekel AJ, Baks-te Bulte LTG, Witter MP (2008) Convergence of 847 entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area 848 CA1—An anatomical study in the rat. *Hippocampus* 18:266–280 Available at: 849 <http://doi.wiley.com/10.1002/hipo.20385> [Accessed November 4, 2020].
- 850 Katz Y, Menon V, Nicholson DA, Geinisman Y, Kath WL, Spruston N (2009) Synapse Distribution 851 Suggests a Two-Stage Model of Dendritic Integration in CA1 Pyramidal Neurons. *Neuron* 852 63:171–177 Available at: <https://linkinghub.elsevier.com/retrieve/pii/S0896627309005108> 853 [Accessed November 3, 2020].
- 854 Kemp A, Manahan-Vaughan D (2007) Hippocampal long-term depression: master or minion in 855 declarative memory processes? *Trends Neurosci* 30:111–118 Available at: 856 <https://linkinghub.elsevier.com/retrieve/pii/S0166223607000033> [Accessed December 21, 857 2020].
- 858 Kornau HC, Schenker LT, Kennedy MB, Seuberg PH (1995) Domain interaction between NMDA 859 receptor subunits and the postsynaptic density protein PSD-95. *Science* 269:1737–1740.
- 860 Kumaran D, Maguire EA (2006) An unexpected sequence of events: mismatch detection in the human 861 hippocampus. *PLoS Biol* 4:e424.
- 862 Lacagnina AF, Brockway ET, Crovetti CR, Shue F, McCarty MJ, Sattler KP, Lim SC, Santos SL, 863 Denny CA, Drew MR (2019) Distinct hippocampal engrams control extinction and relapse of 864 fear memory. *Nat Neurosci* 22:753–761 Available at: <http://www.nature.com/articles/s41593-019-0361-z> [Accessed November 3, 2020].
- 865 Lattal KM, Abel T (2004) Behavioral impairments caused by injections of the protein synthesis inhibitor 866 anisomycin after contextual retrieval reverse with time. *Proc Natl Acad Sci U S A* 101:4667–4672.
- 867 Lee S-H, Choi J-H, Lee N, Lee H-R, Kim J-I, Yu N-K, Choi S-L, Lee S-H, Kim H, Kaang B-K (2008) 868 Synaptic Protein Degradation Underlies Destabilization of Retrieved Fear Memory. *Science* 869 319:1253–1256 Available at: <https://www.sciencemag.org/lookup/doi/10.1126/science.1150541> [Accessed November 4, 870 2020].
- 871 Li J, Han Z, Cao B, Cai C-Y, Lin Y-H, Li F, Wu H-Y, Chang L, Luo C-X, Zhu D-Y (2017) Disrupting 872 nNOS-PSD-95 coupling in the hippocampal dentate gyrus promotes extinction memory 873 retrieval. *Biochem Biophys Res Commun* 493:862–868 Available at: 874 <https://linkinghub.elsevier.com/retrieve/pii/S0006291X17317618> [Accessed November 3, 2020].
- 875 Mahmood RR, Sase S, Aher YD, Sase A, Gröger M, Mokhtar M, Höger H, Lubec G (2015) Spatial 876 and Working Memory Is Linked to Spine Density and Mushroom Spines Chapouthier G, ed. 877 *PLOS ONE* 10:e0139739 Available at: <https://dx.plos.org/10.1371/journal.pone.0139739> 878 [Accessed November 4, 2020].
- 879 Mamiya N, Fukushima H, Suzuki A, Matsuyama Z, Homma S, Frankland PW, Kida S (2009) Brain 880

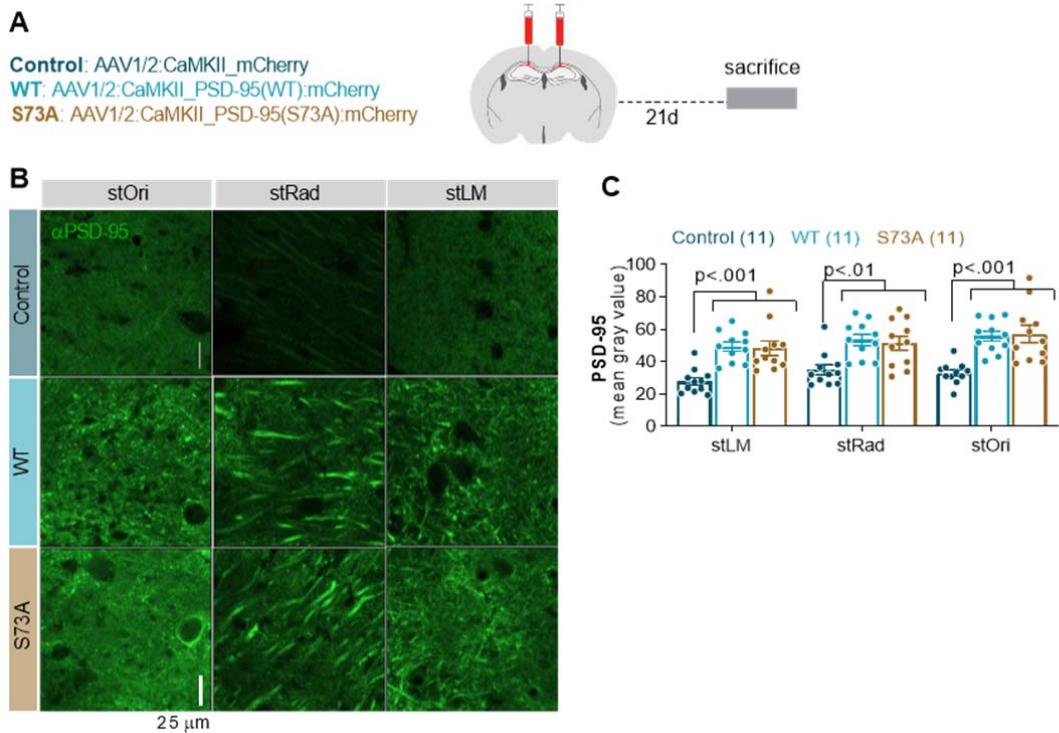
- 945 Hippocampus and Anterior Cingulate Cortex. *J Neurosci* 29:8206–8214 Available at:
946 <https://www.jneurosci.org/content/29/25/8206> [Accessed July 29, 2021].
- 947 Royer S, Paré D (2003) Conservation of total synaptic weight through balanced synaptic depression
948 and potentiation. *Nature* 422:518–522 Available at:
949 <http://www.nature.com/articles/nature01530> [Accessed November 3, 2020].
- 950 Schafe GE, Nader K, Blair HT, LeDoux JE (2001) Memory consolidation of Pavlovian fear
951 conditioning: a cellular and molecular perspective. *Trends Neurosci* 24:540–546 Available at:
952 <https://linkinghub.elsevier.com/retrieve/pii/S016622360001969X> [Accessed November 4,
953 2020].
- 954 Schnell E, Sizemore M, Karimzadegan S, Chen L, Bredt DS, Nicoll RA (2002) Direct interactions
955 between PSD-95 and stargazin control synaptic AMPA receptor number. *Proc Natl Acad Sci U*
956 *S A* 99:13902–13907.
- 957 Schuette PJ, Reis FMCV, Maesta-Pereira S, Chakerian M, Torossian A, Blair GJ, Wang W, Blair HT,
958 Fanselow MS, Kao JC, Adhikari A (2020) Long-Term Characterization of Hippocampal
959 Remapping during Contextual Fear Acquisition and Extinction. *J Neurosci* 40:8329–8342
960 Available at: <http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1022-20.2020>
961 [Accessed November 3, 2020].
- 962 Stansley BJ, Fisher NM, Gogliotti RG, Lindsley CW, Conn PJ, Niswender CM (2018) Contextual Fear
963 Extinction Induces Hippocampal Metaplasticity Mediated by Metabotropic Glutamate Receptor
964 5. *Cereb Cortex* 28:4291–4304 Available at:
965 <https://academic.oup.com/cercor/article/28/12/4291/4608047> [Accessed November 3, 2020].
- 966 Stein V, House DRC, Bredt DS, Nicoll RA (2003) Postsynaptic Density-95 Mimics and Occludes
967 Hippocampal Long-Term Potentiation and Enhances Long-Term Depression. *J Neurosci*
968 23:5503–5506 Available at: <https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.23-13-05503.2003> [Accessed May 4, 2021].
- 969 Steiner P, Higley MJ, Xu W, Czervionke BL, Malenka RC, Sabatini BL (2008) Destabilization of the
970 Postsynaptic Density by PSD-95 Serine 73 Phosphorylation Inhibits Spine Growth and
971 Synaptic Plasticity. *Neuron* 60:788–802 Available at:
972 <https://linkinghub.elsevier.com/retrieve/pii/S0896627308008878> [Accessed November 4,
973 2020].
- 974 Sturgill JF, Steiner P, Czervionke BL, Sabatini BL (2009) Distinct Domains within PSD-95 Mediate
975 Synaptic Incorporation, Stabilization, and Activity-Dependent Trafficking. *J Neurosci*
976 29:12845–12854 Available at: <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1841-09.2009> [Accessed November 3, 2020].
- 977 Taft CE, Turrigiano GG (2014) PSD-95 promotes the stabilization of young synaptic contacts. *Philos
978 Trans R Soc B Biol Sci* 369:20130134 Available at:
979 <https://royalsocietypublishing.org/doi/10.1098/rstb.2013.0134> [Accessed November 3, 2020].
- 980 Tronson NC, Schrick C, Guzman YF, Huh KH, Srivastava DP, Penzes P, Guedea AL, Gao C,
981 Radulovic J (2009) Segregated Populations of Hippocampal Principal CA1 Neurons Mediating
982 Conditioning and Extinction of Contextual Fear. *J Neurosci* 29:3387–3394 Available at:
983 <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5619-08.2009> [Accessed November 4,
984 2020].
- 985 Troyner F, Bertoglio LJ (2021) Nucleus reuniens of the thalamus controls fear memory
986 reconsolidation. *Neurobiol Learn Mem* 177:107343 Available at:
987 <https://www.sciencedirect.com/science/article/pii/S1074742720301878> [Accessed July 29,
988 2021].
- 989 Vallejo D, Codocedo JF, Inestrosa NC (2017) Posttranslational Modifications Regulate the
990 Postsynaptic Localization of PSD-95. *Mol Neurobiol* 54:1759–1776 Available at:
991 <http://link.springer.com/10.1007/s12035-016-9745-1> [Accessed November 4, 2020].
- 992 Vertes RP, Linley SB, Hoover WB (2015) Limbic circuitry of the midline thalamus. *Neurosci Biobehav
993 Rev* 54:89–107 Available at: <https://linkinghub.elsevier.com/retrieve/pii/S0149763415000160>
994 [Accessed November 4, 2020].
- 995 Xu W, Sudhof TC (2013) A Neural Circuit for Memory Specificity and Generalization. *Science*
996 339:1290–1295 Available at:
997 <https://www.sciencemag.org/lookup/doi/10.1126/science.1229534> [Accessed November 3,
998 2020].
- 999 1000 1001

1002 **SUPPLEMENTARY FIGURES**



1003
1004 **Supplementary Figure 1. Synaptic plasticity induced by exposure to neutral context.** Dendritic
1005 spines were analysed in three domains of dendritic tree of dCA1 area in Thy1-GFP(M) male mice:
1006 stOri, stRad and stLM. **(A)** Experimental timeline and freezing levels of mice from three experimental
1007 groups: 5US (mice sacrificed 1 day after CFC; n = 6), Ctx (mice sacrificed immediately after the
1008 second exposure to novel context, no foot shocks were delivered, n = 5) and Ext 60' (mice sacrificed
1009 60 minutes after contextual fear extinction session, n = 6). **(B)** Representative confocal images of
1010 dendrites (GFP) (maximum projections of z-stacks composed of 20 scans) are shown for three
1011 domains of the dendritic tree. **(C)** Summary of data showing dendritic spine density (repeated-
1012 measures ANOVA, effect of training: $F(2, 14) = 1.620, P = 0.233$). **(D)** Summary of data showing
1013 average dendritic spine area (repeated-measures ANOVA, effect of training: $F(2, 14) = 3.162, P =$
1014 0.074). For C, D, each dot represents one mouse. For C means \pm SEM are shown. For D, medians \pm
1015 IQR are shown.

1016


1017

1018

1019
1020 **Supplementary Figure 2. Synaptic plasticity induced in dCA1 during contextual fear extinction**
1021 **training is compensatory.** (A) Experimental design. (B) Microphotographs of recording setups. Stim-
1022 stimulation electrodes (Stim.) and two recording electrodes were placed in stPyr (blue dot) and stOri,
1023 stRad or stLM (red dots). (C-E) (left) Representative fEPSPs evoked by stimuli of different intensities,
1024 (middle) input-output functions for stimulus intensity (repeated-measures ANOVA, effect of virus:
1025 stOri, $F(1, 37) = 0.001$, $P = 0.971$; stRad: $F(1, 56) = 1.120$, $P = 0.294$; stLM: $F(1, 47) = 0.429$, $P =$
1026 0.515) and (left) fibre volley recorded in response to increasing intensities of stimulation (repeated-
1027 measures ANOVA, effect of virus: stOri, $F(1, 43) = 3.198$, $P = 0.080$; stRad: $F(1, 47) = 0.314$, $P =$
1028 0.577 ; stLM: $F(1, 44) = 0.305$, $P = 0.583$). The numbers of the analysed sections/mice per
1029 experimental group are indicated in the legends. Means \pm SEM are shown on the graphs.

1030

1031

1032 **Supplementary Figure 3. Validation of the viral vectors encoding PSD-95(WT) and PSD-95(S73A).** (A) Experimental timeline. C57BL/6J male mice were stereotactically injected in the dCA1
1033 with AAV1/2 encoding mCherry (Control, n=11) PSD-95(WT) (WT, n = 11) or PSD-95(S73A) (S73A, n
1034 = 11). Twenty one days later they were sacrificed. (B) Representative confocal scans of the PSD-95
1035 immunostaining in dCA1 strata and (C) summary of data showing PSD-95 levels (two-way ANOVA
1036 with Tukey's *post hoc* test, effect of virus: $F(2, 30) = 13.1$, $P < 0.001$).
1037