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Abstract

Genotype-phenotype association tests are typically adjusted for population stratification using principal
components that are estimated genome-wide. This lacks resolution when analysing populations with fine
structure and/or individuals with fine levels of admixture. This can affect power and precision, and is a
particularly relevant consideration when control individuals are recruited using geographic selection
criteria. Such is the case in France where we have recently created reference panels of individuals
anchored to different geographic regions. To make correct comparisons against case groups, who would
likely be gathered from large urban areas, new methods are needed.

We present SURFBAT (a SURrogate Family Based Association Test) which performs an approximation of
the transmission-disequilibrium test. Our method hinges on the application of genotype imputation
algorithms to match similar haplotypes between the case and control groups. This permits us to
approximate local ancestry informed posterior probabilities of un-transmitted parental alleles of each
case individual. SURFBAT provides an association test that is inherently robust to fine-scale population
stratification and opens up the possibility of efficiently using large imputation reference panels as control
groups for association testing. The method is suitable when the control panel spans the local ancestry
spectrum of the case-group population and each control has similar paternal and maternal ancestries.
This is the case for our reference panels where individuals have their four grand-parents born in the
same geographic area. In contrast to other methods for association testing that incorporate local-
ancestry inference, SURFBAT does not require a set of ancestry groups to be defined, nor for local
ancestry to be explicitly estimated.

We demonstrate the interest of our tool on simulated datasets created from the 1000 Genomes project
and the FranceGenRef project, as well as on a real-data example for a group of case individuals affected
by Brugada syndrome.

Keywords: Imputation, local ancestry, shared controls, TDT, reference panel, fine-structure, population
stratification
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Introduction

Genome-wide association studies (GWAS) have become the established approach for an agnostic search
of genes or genetic variants that may play a role in the development of complex multifactorial diseases
[1]. A widely accepted notion is that in a case-control design, adjustments should be made for population
stratification [2]. Confounding due to population stratification is avoided when using family-based
association tests [3] where case individuals and their unaffected close relatives are both recruited to the
study; hence each case individual will essentially have ancestry-matched controls. However, family-
based designs are currently not widely used in the study of complex trait genetics due to the difficulty of
recruiting large numbers of families. Indeed, due to the cost and infrastructure required for genome
sequencing, a prevalent approach is to recruit only cases and compare them to external panels of
controls or to set-up large cross-sectional studies (or biobanks) which allow for the study of many
different phenotypes. There are many examples of population-based panels that could allow for
association studies to be completed without the need to recruit further control individuals; e.g. the UK
biobank [4], the Estonian biobank [5], goNL in the Netherlands [6].

The huge sample sizes that can be achieved with case-control or biobank designs give such power for the
detection of new signals is the main reason that they have become far more prevalent that family based
designs; but at the cost of having to hence deal with population stratification. This is usually achieved by
adjusting for principal components calculated from a genotype correlation matrix or for fine-structure
cluster membership. Such adjustments are ‘global’ in the sense that the principal components added to
the association model use genome-wide calculations. It is possible to adjust locally, with the idea that
patterns of stratification may not be equal in all genomic regions. This approach has been shown to be of
interest [7,8], notably in the study of admixed populations [9,10].

Typically, such local adjustment requires local-ancestry inference to be first performed using either
hidden Markov modelling (e.g. HAPMIX [11], LAMP [12], or FLARE [13]) or recent methods that use
random forests (RFMix [14]), dynamic optimization (Loter [15]) , or even neural networks (LAI-net [16]).
Such methods essentially colour or paint [17] each study individual’s haplotypes based on the similarity
of haplotype segments with haplotypes in a reference set of individuals from different ancestral groups
(that have to be defined at some point). The local ancestry colouring can then be incorporated into
association testing, for example through logistic regression (Tractor [18]), mixed-modelling (asaMap
[19]), or through joint testing of genotype and ancestry associations [20]. Including such information has
been demonstrated to enhance association studies in terms of power for discovery [18,21], fine-mapping
[22,23], and even for studies of interaction effects [24]. A key problem in these methods is the pre-
defined choice of ancestry groups and estimation of local ancestry. For studies of recently admixed
populations, this may be practical [25-30] but in studies of populations with fine-scale population
structure it will not be clear how to define different ancestry groups. For example, the French population
harbours important fine-scale population structure [31] which should be taken into account during
association testing. Yet it would not be clear how to best divide reference individuals into different
groups, hence making local-ancestry inference problematic; a more fluid method is required.
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Here we present a new method providing the following key advantages: our method adjusts for local
patterns of population stratification, but unlike existing methods that do so, there is no constraint on
having to choose and define ancestry groups or explicitly map local ancestry. This is achieved by
approximating a family-based study design from case-control data using the idea of surrogate parents
[32] enabling huge panels of control individuals to be exploited efficiently. This is accomplished by using
Hidden Markov Models [33] (HMMs) that have been previously optimized in the domain of genotype
imputation [34]. We describe our method as a SURrogate Family-Based Association Test (SURFBAT).

Genotype imputation methods are based on the Li-Stephens model [35] where given a large group of n
haplotypes in a population, an n + 1t"

from the pool of n. In isolated populations (such as Iceland), this works particularly well due to longer

haplotype can be modelled as a mosaic of small haplotype chunks

sharing of haplotype segments that are identical-by-descent (IBD) [36,37]. The concept of surrogate
parents suggests that for each given individual at a given point of the genome, even if the true parents of
the individual are not present in the sample, two groups of surrogate parents can be identified who
share a short haplotype that is at least very similar to the maternal or paternal haplotype of the given
individual. This was originally employed for the purposed of statistical phasing [38], genotype imputation
[39] and parent-of-origin analyses [40]. Similar ideas have recently resurfaced for the same themes [41—
43] now that biobank size data have become large enough that such approaches that were previously
only viable in the domain of isolated populations have become applicable also for non-isolated
populations.

SURFBAT takes a group of case individuals and identifies surrogate parents from within a large panel of
control individuals. Crucially, we interrogate the haplotypes of the surrogates that are not shared with
the case individuals in question. The non-shared haplotypes between case individuals and their
surrogates, we argue, represent a resource of ancestry matched haplotypes and in the surrogate-parent
interpretation represent an approximation of the un-transmitted alleles of the case individuals’ parents.
This effectively provides a rough imputation of parental genotypes and hence an approximation of a
Transmission-Disequilibrium Test (TDT) [44] can be made to test for association with a trait without
sequencing parental genomes. Another interpretation of the method is that for each case individual,
SURFBAT creates a pseudo-control matched on local-ancestry from within the control panel. SURFBAT
performs a TDT test based on the methods that incorporate genotype uncertainty (as we are using
imputed genotypes) given by Taub et al, [45]. SURFBAT locates and weights the contribution of
surrogates using the Li-Stephens model for genotype imputation that is used by leading software
IMPUTES [46]. A fuller description of the calculations of SURFBAT are given in the methods.

We demonstrate the properties of SURFBAT through simulation using the 1000 Genomes project [47]
(1000G) and data from 856 individuals with Whole Genome Sequencing (WGS) data from the
FranceGenRef project [48,49] (FGR). This is followed by a demonstration using true data from 346 case
individuals diagnosed with Brugada syndrome [50].
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Results

For both the simulation study and real-data example, we will first define a control group. In both
analyses our panel of control individuals involves 2504+856 individuals or 5008+1716 haplotypes
attained by merging the 2504 individuals from the 1000G project with 856 individuals with WGS data
from FGR. The steps used for construction of this panel are given in the Methods. The final dataset
involves 10,252,495 bi-allelic variants across the 22 autosomal chromosomes.

Simulation Study

We compared SURFBAT against a traditional GWAS adjusted on six principal components (Figure 1) using
a simulation set-up devised to demonstrate the properties of our method. To this end, we constructed a
group of 450 case individuals as mosaics of the control group. Mosaic construction was performed with
R-package Mozza (https://github.com/genostats/Mozza) and is described in the Methods. For the
purposes of the simulation, we only simulated a short genome (chromosomes 10-22). The case
individuals have an admixed ancestry profile with 50% of their chromosome chunks coming from the AFR
populations of 1000G (African continent) and the other 50% from the French samples of FGR. We added
a signal of purely local ancestry on Chromosome 11 by simulating an excess of FGR haplotypes, and a
more specific signal on Chromosome 20, with an excess of FGR haplotypes carrying the alternative allele
for the variant rs197819 (chosen randomly).
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Figurel: (a) Manhattan and QQ-plots of association studies either carried out using a standard GWAS (logistic regression)
adjusted for six principal components (left plots), or with SURFBAT (right plots). Red lines indicate genome wide significance
(5e-8). (b) Principal components 1 and 2 estimated on the all simulated cases (red) and controls (blue) (individuals of the 1000
Genomes project and FranceGenRef). (c) LocusZoom [51] of the signal on chromosome 20 for the two methods.
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Here we observe the two key properties of SURFBAT, local ancestry is adjusted for and hence the strong
GWAS signal on Chromosome 11 disappears. The association signal on Chromosome 20 is detected and
is also noticeably more precise as we deliberately combined the association with rs197819 with an
association with local ancestry (see Methods). Indeed, with a direct GWAS, there are SNPs that surpass
genome-wide significance up to 0.5Mb away from rs197819; whereas SURFBAT only gives significant p-
values to variants close to rs197819 (Figure 1c).

Analysis on real data with cases affected by Brugada syndrome

We examined an example of real data using 346 cases with Brugada syndrome. These individuals were
recruited in France and comprise part of the case group involved in the largest GWAS to date for Brugada
syndrome [50]. Three different possible scenarios of an association study were tested. (i) We performed
a GWAS, adjusted on principal components (six to match the GWAS in Barc et al., [50]), against the
aforementioned control group of 1000G+FGR. (ii) We applied SURFBAT, using 1000G+FGR as the control
group and only array data for the 346 Brugada-case individuals. (iii) A GWAS of the 346 case individuals
against 569 French control from the FrEX cohort [52,53] (http://lysine.univ-brest.fr/FrExAC/). In this third
scenario, both the Brugada-case group and FrEx control group had only array data and were both
imputed using 1000G+FGR as an imputation panel. In Figure 2, the results of these three strategies are
shown, and in Supplementary Table 1 the p-values for leading SNPs from the GWAS of Barc et al., [50]
are given and compared against our results. As we have a far smaller sample size (Barc et al., [50]
analysed 2,820 cases and 10,001 controls compared to our 346 cases and 3360 controls), we did not
have the power to detect signals aside from the two most significant at SCN10A on chromosome 3 and
HEY2 on chromosome 6. As shown in Supplementary Table 1, the association analyses that we
performed, including SURFBAT, were however able to replicate (p<0.05) other GWAS hits from Barc et al,
[50]. Genomic control [54] was applied to all three association studies as SURFBAT’s test statistics (in
particular) were inflated in this analysis. Indeed, SURFBAT may sometimes require genomic control, a full
discussion of this is given in the Methods.

Discussion

Here we have presented a novel method, SURFBAT, for association testing for common genetic variants
with binary phenotypes. SURFBAT compares a group of case individuals against a large reference panel
of control individuals using the hidden Markov modelling that have been demonstrated to be highly
effective for genotype imputation. This is achieved by estimating allelic dosages for the un-transmitted
alleles of each case individual; hence with a test statistic derived from the literature of family based
studies. This allows SURFBAT to adjust for population stratification by design, and not just at a global
level but down to a local ancestry level and hence should be an interesting tool for the study of admixed
individuals. This is shown in the simulation study where a large GWAS peak (chromosome 11) coming
only from local ancestry completely disappears using SURFBAT whilst a ‘true’ peak (chromosome 20) is
maintained. Importantly, local ancestry in taken into account without having to specify a number of
ancestry groups or to map local ancestry. Furthermore, the signal on chromosome 20 was much cleaner
than in the GWAS suggesting that SURFBAT could aid in studies of fine-mapping.
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Figure 2: Association analyses of the Brugada dataset. Top: genome-wide association study (GWAS) comparing 346 Brugada-
case individuals with 3360 control individuals (FGR+1000G) adjusted for six principal components (PCs); both cases and
controls have whole-genome sequencing (WGS) data. Middle: SURFBAT, 346 Brugada-case individuals with only genotyping
array data are compared to the WGS data control group (FGR+1000G). Bottom: GWAS of 346 Brugada-case individuals and
569 FrEx-controls individuals; here both cases and control have genotyping array data only and both are imputed using WGS
data of the control group FGR+1000G; here we adjusted for six PCs calculated on the genotyping array data. All association
analyses results are given for the same set of 5,462,920 variants; having excluded variants with a minor-allele frequency
below 1% in the case group or with an imputation ‘info’ score below 0.4. Red lines indicate genome wide significance (5e-8).

SURFBAT takes advantage of the highly efficient software IMPUTES, hence this could allow for huge
imputation reference panels (such as the HRC or even TOPMED) to be used as control panels for GWAS.
As IMPUTES will search out the most appropriate haplotypes in the reference panel for each target
haplotype; the presence of haplotypes in the reference panel that are not highly relevant to the
imputation of a given target haplotype is not problematic. In this aspect, SURFBAT therefore resembles
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the UNICORN method proposed by Bodea et al, [55] where case individuals are compared to a large
ensemble of reference individuals. In both the simulation study and real data example presented here,
performing a traditional GWAS adjusted for principal components was in fact more powerful than
SURFBAT. However, in many cases such a strategy of directly performing a GWAS would not be possible
and/or tractable as individual-level data for the largest imputation panels are not publically available.
However, SURFBAT could easily be performed at the same time as imputation opening up the possibility
for online imputation servers such as the one in Michigan [56] to also facilitate GWAS without having to
share their data. This is demonstrated in the analysis of the Brugada dataset where SURFBAT is able to
achieve similar results to a direct GWAS against the control group of 1000G+FGR but without the
requirement of jointly manipulating the case and control data together in order to calculate PCs and to
perform the association testing. Even if individual-level data are available, for a huge control panel,
merging the data with the case group, calculating PCs, and performing the GWAS can all be highly time
consuming.

Another key advantage of SURFBAT is that it only requires genotyping array data for case individuals,
hence allowing for a very simple case-only designs where instead of having to spread a sequencing
budget across cases and controls, one could simply genotype a large number of case individuals and
compare them to an appropriate existing imputation reference panel using SURFBAT. This could also
prove advantageous when grouping case individuals together from many different cohorts. Indeed,
when comparing SURFBAT to the FrEx GWAS study design, where both cases (Brugada) and controls
(FrEx) are imputed, SURFBAT achieved genome-wide significance for the signal on HEY2/NCOA7 whereas
the FrEx GWAS did not.

A further potential application would be that SURFBAT could also be used to ‘complete’ families, as in
[57,58] where methods were presented for including singleton cases in family-based designs using
simple imputation methods. SURFBAT could essentially be used for the same approach but with a more
elaborate method for estimating both transmitted and un-transmitted allelic dosages.

SURFBAT therefore provides an interesting counterpoint to GWAS and is very practical to put in place as
we have constructed the test so that it can be achieved simultaneously to the imputation of genotypes.
As imputation reference panels have become incredibly large, SURFBAT provides a methodology to
harness such panels for association testing efficiently. There are however, certain limitations to
SURFBAT. As noted, SURFBAT was less powerful than GWAS in both the simulation and real data
example. This diminished power results from the fact that we are essentially comparing K cases with K
pseudo-controls but also because we are performing a paired test. A gain in power was however
observed if we perform a simple unpaired test (see Methods and Supplementary Figure 1) and SURFBAT
is equipped with optional functionality to perform this unpaired test. Furthermore, here we have
developed a test for binary traits under an additive genetic model for common genetic variants. Though,
it would be straight forward to extend the method for quantitative traits, other genetic models,
adjusting for covariates, and even to perform burden tests for association with rare variants. It must also
be mentioned that the performance of SURFBAT depends entirely on the availability of an appropriate
imputation reference panel for one’s set of case individuals. The composition of the imputation
reference panel is a very important consideration for genotype imputation [59] and will therefore also be
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important for SURFBAT. Finally, we saw in the real data example that SURFBAT could return inflated test
statistics; this was dealt with using genomic control. This inflation was however not apparent on the
simulated dataset; certainly because in this instance the case individuals were simulated as mosaics of
the control individuals and hence the surrogate parent model was very effective. As imputation
reference panels increase in size, surrogate parents should be more readily found and hence SURFBAT
should not suffer from inflation.

Methods
The SURFBAT approach

In standard genotype imputation, each haplotype (h;) of the target group is modelled as an imperfect
mosaic of the 2N haplotypes (Hg, k =1,...,2N) of the reference panel. This is achieved using an
HMM, with states at each genomic position where a variant is observed in both the reference panel and
the target group; so typically the list of positions for which the target group have been genotyped. The
hidden states of the model at positionj indicate which haplotype (or cluster of haplotypes) in the
reference panel is providing the mosaic tile for haplotype h; at position j; often referred to as the
copying state as the target haplotype will probabilistically ‘copy’ from these reference haplotypes to
achieve the missing genotype imputation. The observed states are the allelic values of haplotype i. The
implementation of the HMM and the transmission and emission probabilities can slightly vary between
software; globally the transition probabilities are calculated based on the size of the reference panel and
an estimated recombination rate between the genetic locations of adjacent states; and the emission
probabilities allow for the mosaic to be imperfect in the sense that the target haplotype and the
haplotypes in the reference panel can differ due to either recent mutations or genotyping error.

We denote the hidden states of haplotype h; as s; which take valuesin 1, ...,2N where N is the number
of diploid individuals in the reference panel. The observed states (allelic values coming from genotyping
data) of haplotype h; are denoted as 0;. The HMM provides the posterior probabilities of the hidden
states at each position j using the forward-backward algorithm [33,60]: P(sij =k| oi). These
probabilities are then extended to markers, noted as j', that are not shared between the target and
reference panel through linear interpolation.

The missing alleles for marker j' in haplotype i are then imputed with the following dosage:

2N

ol = ) P(s! = ko),

k=1
Where the quantity H{Hj,_l} is equal to 0 or 1 if the reference haplotype H,, carries a major or minor
J'=

allele at marker j', respectively. The final imputed dosage for individuals in the target group is simply the
sum of the dosage of their two haplotypes. This dosage will take a value between 0 and 2 and represents
the individual’s expected count of minor alleles for marker j'. However, here we are interested in the
haplotype dosages. SURFBAT will keep each individual’'s two haplotype dosages separate and
furthermore will calculate what we will term the un-transmitted dosages which are simply as follows:
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2N
.j':EP.’":k )
" k=1 (Sl lOl) {Hi(k)zl}

Assuming that the haplotypes in the reference panel are stored in groups of two for each reference
panel individuals (reference haplotypes 1 and 2 correspond to the first individual, haplotypes 3 and 4 to
the second individual etc.), (k) is a simple function that gives the index of the partner haplotype to
haplotype k. Explicitly, r(k) =k + 1 if k is odd and r(k) = k — 1 if k is even. We implemented the

calculation of both pij' and nij' within the existing imputation algorithm IMPUTES, for both positions that
are not genotyped (e.g. j') and that are genotypes (e.g. j), alike.

Note that there is an implicit assumption that the two haplotypes within an individual on the control
panel share a relatively similar ancestry - in the context of our study, this is reasonable for the 1000G
individuals and is also respected by the FranceGenRef panel by design [47-49]. This is because the
individuals of FranceGenRef were recruited based on grand-parent birthplace data taking individuals
with all four grand-parents born within a small locality hence approximately insuring that such
individuals have both maternal and paternal haplotypes from a similar region. Indeed, such a
recruitment strategy has often been used for the construction of other reference panels [61-63].
Therefore, when the reference panel has such a construction, haplotype H,y will be approximately
matched (in terms of ancestry) to haplotype Hy.

When using IMPUTE5S with the specifically designed option ‘--surfbat’, then at marker j' for target

individual i (with haplotypes i; and i,), the four dosages pijl', pl.jz', nljl'

‘surrogate family’ interpretation of the four dosages, individual i has received two alleles with expected

jr
and n{z are calculated. In the

values pijl', and p{z' from their parents and the corresponding un-transmitted alleles from the parents

have expected values nljl' and n{z' Then using similar notation to Taub et al, [45] we form the following

test statistic for equilibrium of transmission at marker j':

First, the quantities NUM and DEN are calculated:
_ j' j' i’ i’
NUM _Z‘Dl& (1_ni1) + o, (1_ni2)
i
DEN = NUM +Zn{1 (1-p)+nl (1-pl)
i

s A A
Then we calculate: X = —— , where ,8=logit( ),and var(ﬂ)=$ X will

var(B) NUM(DEN-NUM)'
asymptotically follow a chi-squared distribution with 1 degree of freedom under the null hypothesis of

NUM
DEN

equilibrium of transmission. This corresponds to an exact-form test statistic for conditional likelihood
regression [64].

We also provide an alternative test where the cases and pseudo-controls are not paired; a simple test of
marginal homogeneity [65] from a contingency table of the expected allelic values of the haplotypes of
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the case individuals and of the pseudo controls. The test is constructed from a contingency table as

follows:
A |C ny.
B D n,.
nq, 2

Wheren;, =A+C, n, =B+D,n;=A4A+B,n,=C+Dand

=

a=3i(1-pf) (1=l )(1-pf) (1 =7]).B =2 (1= o] )l +(1 = ol )l
c=3ipl (1-n] ol (1-nl),and D = 5p) ] +pl ]

_ 2
Then X = Zmzl,z% will again asymptotically follow a chi-squared distribution with 1 degree of
m. m

freedom under the null hypothesis of marginal homogeneity. A comparison of the two tests are given in
Supplementary Figure 1 for the Brugada dataset example; the unpaired test attributed smaller p-values
to the SNPs that are likely not following the null hypothesis near SCN10A on chromosome 3 and HEY2 on
chromosome 6.

In order to perform SURFBAT, only genotyping array data for the case individuals are required and WGS
data for the controls individuals who must be formed into to a phased imputation reference panel. The

‘

cases are imputed against the controls using IMPUTES and the ‘--surfbat’ flag activated, which also

calculates the per-SNP test-statistics and corresponding p-value.

There is the possibility to place thresholds on the minor allele frequency (MAF) and the imputation
quality (INFO score), with default settings placed at 0.01 and 0.4 respectively. This is due to the fact that
for rare variants and poorly imputed variants the test will not be appropriate; as is the case for a
traditional GWAS using imputed data. We observed in the real data application presented in this work,
an inflation of the SURFBAT p-values across the genome; similar to as observed in Taub et al, [45]. A
demonstration of this is given in Supplementary Materials where the imputed dosage data from
chromosome 3 for the 346 Brugada-case are compared against the dosages of their pseudo-controls
(estimated by SURFBAT) using a principal component analyses (Supplementary Figure 2a). This inflation
is likely due to the difference in the precision of imputation of the transmitted alleles (p;,, and p;,) and
the un-transmitted alleles (m; , and ;). With a large enough reference panel, IMPUTES should be able
to find a more precise mosaic of surrogate parents based on longer shared-haplotypes [42] and hence
this difference in the precision demonstrated in Supplementary Figure 2a should be far less evident. The
inflation can nonetheless be effectively adjusted for using genomic control [54] (Supplementary Figure
2b) and indeed was not observed in our simulation study.
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Creating a control panel

We took the haplotypes from the 1000G (Phase 3) from all populations, as were made available by
imputation software IMPUTE2 [66]. This dataset was merged with the whole genome sequencing
positions of FGR. In order to prepare the FGR data, we used the sequencing data quality control pipeline
RAVAQ [67], and phased the data using SHAPEIT4 [68]. Merging and manipulation of the data file was
achieved using the R-package gaston [69], plink v1.9 [70], and pbwt [71]; variants with a difference in
minor allele frequency greater than 0.1 between FGR and the non-Finnish European 1000G individuals
were removed from the control panel as these were deemed to likely represent a batch effect between
the sequencing data of FGR and the public 1000G data. This panel can then be used either directly as a
control group, or as an imputation reference panel for the purpose of SURFBAT. This was the control
group/imputation panel for both our simulation study and real data example.

Simulation study

Our simulated study involved simulating a group of 450 individuals who were constructed as mosaics of
the control group using the R-package Mozza (https://github.com/genostats/Mozza) which leveraged
the Li-Stephens Markov process of forming new mosaic haplotypes. To keep calculation time short, we
only simulated chromosomes 10-22 and each chromosome was simulated separately. At each instance
when a mosaic tile was drawn for a new case individual, we assigned a 50% chance to copy from a
haplotype from the African continent super population from 1000G (AFR) and 50% from FGR. A tile
length of 10cM was used for the simulation. We simulated a pool of 20,000 haplotypes; our 450
simulated case individuals’ 900 haplotypes were sampled from this pool in order to create two
association signals on chromosomes 11 and 20. On chromosome 11, we sampled an excess of haplotypes
with tiles copied from FGR haplotypes overlapping base-pair position 66602100 (near the middle of the
chromosome). On chromosome 20, we sampled an excess of FGR haplotypes that carry an alternative
allele for the common variant rs197819. This variant was chosen at random among a set of candidate
variants with at least a MAF of 0.2 in both AFR and FGR. Genotyping data for the case group was
simulated by extracting positions from the UK biobank SNP-array (details here:
https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=149601).

Brugada study

We took 346 individuals with whole-sequencing data affected with Brugada syndrome as a real-data
example. These individuals were recruited in the West of France and so we can assume that they can be
accurately imputed using a reference panel built of FGR and 1000G [48]. To perform GWAS, we analysed
all common bi-allelic variants (minor allele frequency above 0.01) that were present in our control panel
(1000G+FGR). GWAS was carried out in the R-package gaston, using logistic regression adjusted for six
principal components (PCs); PCs were calculated from pruned data and this was also achieved using
gaston. To apply SURFBAT to the Brugada case individuals, we require only genotyping data for these
individuals. We simulated this scenario by extracting positions from the UK BioBank SNP-array from the
WGS data for the 346 individuals; this array was designed to facilitate genotype imputation and hence
would be a logical choice for future applications of SURFBAT. The data from the extracted array positions
were phased with SHAPEIT4 and then supplied to IMPUTES with the required option (--surfbat) in order
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to calculate genome-wide SURFBAT p-values. Finally, to demonstrate the interest of the concept of using
an imputation reference panel as a control panel, we simulated a scenario where we have both case and
control individuals with genotyping array data. In this circumstance, both cases and controls were
imputed and a GWAS was performed on the imputed dosages. For this we took control individuals from
569 individuals of the FrEx database who have genotyping data (lllumina OmniExpressExome array).
Positions corresponding to this array were extracted from the 346 case individuals and we then phased
(SHAPEIT4) and imputed (IMPUTES) the 346 case and 569 control individuals together using 1000G+FGR
as a reference panel. GWAS was then performed on the imputed dosages using SNPTEST [72,73]; again
using logistic regression adjusted for six PCs. All three association studies were corrected for inflation
using genomic control [54] as we observed values of A above 1 (Supplementary Figure 3); particularly for
SURFBAT (see also Supplementary Figure 2a-b).

Software Availability

SURFBAT will be made available as a new functionality in the existing software IMPUTES
(https://jmarchini.org/software/) at the moment that the next software update is released in early 2023.

Data Availability

Data from the FranceGenRef panel will be submitted to the French Centralized Data Center of the France
Medicine Genomic Plan that is under construction. Enquiries for the use of this data can be addressed to
GENMED LABEX (http://www.genmed.fr/index.php/en/contact). Those wishing to access the Brugada
data on a collaborative basis should contact Richard Redon and Christian Dina (richard.redon@inserm.fr
andchristian.dina@univ-nantes.fr). Summary information for the FrEx dataset is available at
http://lysine.univ-brest.fr/FrEXAC/, those wishing to access the data on a collaborative basis should
contact Emmanuelle Génin (emmanuelle.genin@inserm.fr).
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