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Living cells can leverage correlations in environmental fluctuations to predict the future environ-
ment and mount a response ahead of time. To this end, cells need to encode the past signal into the
output of the intracellular network from which the future input is predicted. Yet, storing information
is costly while not all features of the past signal are equally informative on the future input signal.
Here, we show, for two classes of input signals, that cellular networks can reach the fundamental
bound on the predictive information as set by the information extracted from the past signal: push-
pull networks can reach this information bound for Markovian signals, while networks that take
a temporal derivative can reach the bound for predicting the future derivative of non-Markovian
signals. However, the bits of past information that are most informative about the future signal are
also prohibitively costly. As a result, the optimal system that maximizes the predictive information
for a given resource cost is, in general, not at the information bound. Applying our theory to the
chemotaxis network of Escherichia coli reveals that its adaptive kernel is optimal for predicting
future concentration changes over a broad range of background concentrations, and that the system
has been tailored to predicting these changes in shallow gradients.
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Single-celled organisms live in a highly dynamic envi-
ronment to which they continually have to respond and
adapt. To this end, they employ a range of response
strategies, tailored to the temporal structure of the envi-
ronmental variations. When these variations are highly
regular, such as the daily light variations, it becomes ben-
eficial to develop a clock from which the time and hence
the current and future environment can be inferred [1, 2].
In the other limit, when the fluctuations are entirely un-
predictable, cells have no choice but to resort to either
the strategy of detect-and-respond or the bet-hedging
strategy of stochastic switching between different phe-
notypes [3]. Yet arguably the most fascinating strategy
lies in between these two extremes. When the environ-
mental fluctuations happen with some regularity, then it
becomes feasible to predict the future environment and
initiate a response ahead of time. While it is commonly
believed that only higher organisms can predict the fu-
ture, experiments have vividly demonstrated that even
single-cell organisms can leverage temporal correlations
in environmental fluctuations in order to predict, e.g.,
future nutrient levels [4, 5].

The ability to predict future signals can provide a fit-
ness benefit [6]. The capacity to anticipate changes in
oxygen levels [4], or the arrival of sugars or stress signals
[5], can increase the growth rate of single-celled organ-
isms; modeling has revealed that prediction can enhance
bacterial chemotaxis [7]. Yet, a predict-and-anticipate
strategy is only advantageous if the cell can reliably pre-
dict the future on timescales that are longer than the
time it takes to mount a response. What fundamentally
limits the accuracy of cellular prediction remains, how-
ever, poorly understood.

∗ p.t.wolde@amolf.nl

While the cell needs to predict the future environ-
ment, it can only sense the present and remember the
past (Fig. 1A). Consequently, for a given amount of in-
formation the cell can store about the present and past
signal, there is a maximum amount of information it can
possibly have about the future [6, 8] (Fig. 1C-I). This in-
formation bound is determined by the temporal structure
of the environmental fluctuations [8, 9].
How close cells can come to this bound depends on

the design of the intracellular biochemical network that
senses and processes the environmental signals (Fig. 1B).
To maximize the predictive power the cell must use its
memory effectively: it should extract only those charac-
teristics from the present and past signal that are most
informative about the future [7]. Whether it can do so,
is determined by the topology of the signaling network.
Moreover, like any information processing device, bio-
chemical networks require resources to be built and run.
Molecular components are needed to construct the net-
work, space is required to accommodate the components,
time is needed to process the information, and energy is
required to synthesize the components and operate the
network [10]. These resources constrain the design and
performance of any biochemical network, and the ca-
pacity to sense and process information is no exception
(Fig. 1C-II).
Cellular signaling systems provide a unique opportu-

nity for revealing the resource requirements for predic-
tion. Cells live in a highly dynamic environment, with
temporal statistics that are expected to vary markedly.
Moreover, signaling networks have distinct topologies,
which are likely tailored to the temporal statistics of the
environment [7]. In addition, for cellular systems we can
actually quantify the information processing capacity as
a function of the resources that are necessary to build
and run them—protein copies, time, and energy [10, 11].
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Cellular systems are thus ideal for elucidating the rela-
tionships between future and past information, system
design (i.e. network topology) and resource constraints.
Here, we derive the bound on the prediction precision as
set by the information extracted from the past signal for
two types of input signals. We will determine how close
cellular networks can come to this bound, and how this
depends on the topology of the network and the resources
to build and run it.

We find that for the two classes of input signals stud-
ied, cellular networks exists that can reach the informa-
tion bound, yet reaching the bound is exceedingly costly.
The first class of input signals consists of Markovian sig-
nals. Using the Information Bottleneck Method (IBM)
[8, 12], we first show that the system that reaches the
information bound copies the most recent input signal
into the output from which the future input is predicted.
Push-pull networks consisting of chemical modification or
GTPase cycles, which are ubiquitous in prokaryotic and
eukaryotic cells [13, 14], should be able to reach the infor-
mation bound, because they are at heart copying devices
[10, 11]. Yet, copying the most recent input into the out-
put is extremely costly, because the operating cost, as set
by the chemical power to drive the cycle, diverges at high
copying speed. More surprisingly, our results show that
the predictive and past information can be raised simul-
taneously by moving away from the information bound,
even when the operating cost is negligible: the optimal
system that maximizes the predictive information for a
given protein synthesis cost is, in general, not at the in-
formation bound. The number of bits of past information
per protein cost can be raised by increasing the integra-
tion time. While this decreases the predictive power per
bit of past information, thereby moving the system away
from the information bound, it can increase the total pre-
dictive information per protein cost. Our analysis thus
highlights that not all bits of past information are equally
costly, nor predictive.

Living cells that navigate their environment typically
experience signals with persistence as generated by their
own motion, which motivated us to study a simple class
of non-Markovian signals. Moreover, these cells can typ-
ically detect changes in the concentration over a range of
background concentrations that is orders of magnitude
larger than the change in the concentration over the ori-
entational correlation time of their movement. Our anal-
ysis reveals that in such a scenario the optimal kernel that
allows the system to reach the information bound on pre-
dicting the future input derivative is a perfectively adap-
tive, derivative-taking kernel, precisely as the bacterium
E. coli employs [15]. We again find, however, that reach-
ing the information bound is prohibitively costly. The
reason is that taking an instantaneous derivative, which
is the characteristic of the input that is most informative
about the future derivative, reduces the gain to zero be-
cause the system instantly adapts; the response becomes
thwarted by biochemical noise. The optimal system that
maximizes the predictive information under a resource

constraint thus emerges from a trade-off between taking a
derivative that is recent and one that is reliable. Finally,
our analysis reveals that the E. coli chemotaxis system
has been optimally designed to predict future concentra-
tion changes in shallow gradients.

RESULTS

We focus on cellular signaling systems that respond
linearly to changes in the input signal [11, 16–19]. These
systems not only allow for analytical results, but also
describe information transmission often remarkably well
[19–22]. The output of these systems can be written as

x(t) =

∫ t

−∞
dt′k(t− t′)ℓ(t′) + ηx(t), (1)

where k(t) is the linear response function, ℓ(t) the input
signal, and ηx(t) describes the noise in the output. We
will consider stationary signals with different temporal
correlations, obeying Gaussian statistics.
Any prediction about the future state of the environ-

ment must be based on information obtained from its
past (Fig. 1C-I). In particular, the cell needs to predict
the input ℓτ ≡ ℓ(t + τ) at a time τ into the future from
the current output x0 ≡ x(t), which itself depends on
the input signal in the past, Lp ≡ (ℓ(t), ℓ(t′), · · · ), with
t > t′ > · · · . The (qualitative) shape of the integration
kernel k(t), e.g. exponential, adaptive or oscillatory, is
determined by the topology of the signaling network [7].
The kernel shape describes how the past signal is mapped
onto the current output, and hence which characteristics
of the past signal the cell uses to predict the future signal.
To maximize the accuracy of prediction, the cell should
extract those features that are most informative about
the future signal. These depend on the statistics of the
input signal.
Deriving the upper bound on the predictive informa-

tion as set by the past information is an optimisation
problem, which can be solved using the IBM [8]. It en-
tails the maximization of an objective function L:

max
P (x0|Lp)

[L ≡ I(x0; ℓτ )− γI(x0;Lp)] . (2)

Here, Ipred ≡ I(x0; ℓτ ) is the predictive information,
which is the mutual information between the system’s
current output x0 and the future ligand concentration
ℓτ . The past information Ipast ≡ I(x0;Lp) is the mutual
information between x0 and the trajectory of past lig-
and concentrations Lp. The Lagrange multiplier γ sets
the relative cost of storing past over obtaining predic-
tive information. Given a value of γ, the objective func-
tion in Eq. 2 is maximized by optimizing the conditional
probability distribution of the output given the past in-
put trajectory, P (x0|Lp). For the linear systems consid-
ered here, this corresponds to optimizing the mapping
of the past input signal onto the current output via the
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FIG. 1. Cells use biochemical networks to remember the past and predict the future. (A) Cells compress the past
input into the dynamics of the signalling network from which the future input is then predicted. (B) The optimal topology
of the network for predicting the future signal depends on the temporal statistics of the input signal. Push-pull networks,
consisting of chemical modification cycles or GTPase cycles, can optimally predict the future value of Markovian signals, with
correlation time τℓ; derivative-taking networks, like the E. coli chemotaxis system, can optimally predict the future derivative
of non-Markovian signals, with correlation time τv. The push-pull network consists of a receptor that drives a downstream
phosphorylation cycle. The ligand binds the receptor with a correlation time τc. The push-pull network, driven by ATP
turnover, integrates the receptor with an integration time τr. The chemotaxis system is a push-pull network, yet augmented
with negative feedback on the receptor activity via methylation on a timescale τm, as indicated by the dashed grey line. The
total resource cost consists of a maintenance cost of receptor and readout synthesis at the growth rate λ, and an operating
cost of driving the cycle. (C) The predictive information on the future signal Ipred is fundamentally bounded by how much
information Ipast it has about the past signal (panel I), which in turn is limited by the resources necessary to build and operate
the biochemical network (panel II) [6].

integration kernel k(t). Since our model obeys Gaussian
statistics, we use the Gaussian IBM to derive the optimal
kernel kopt(t) and the information bound, defined to be
the maximum predictive information as set by the past
information [12] (see Appendix C).

Markovian signals

Optimal prediction of Markovian signals: biochemical
copying

Arguably the most elementary type of signal, albeit
perhaps the hardest to predict, is a Markovian signal.
We consider a Markovian signal ℓ(t), of which the devia-
tions δℓ(t) = ℓ(t)− ℓ̄ from its mean ℓ̄ follow an Ornstein-
Uhlenbeck (OU) process:

δℓ̇ = −δℓ(t)/τℓ + ηℓ(t), (3)

where τℓ is the correlation time of the fluctuations, and
ηℓ(t) is Gaussian white noise, ⟨η(t)η(t′)⟩ = 2σ2

ℓ/τℓ δ(t −
t′), with σ2

ℓ the amplitude of the signal fluctuations. This
input signal obeys Gaussian statistics, characterized by
⟨δℓ(0)δℓ(t)⟩ = σ2

ℓ exp(−t/τℓ). The optimal mapping is
therefore a linear one. Utilizing the Gaussian IBM frame-
work [12], we find that the optimal integration kernel is
given by (see Appendix C2)

kopt(t− t′) = aδ(t− t′). (4)

This optimal integration kernel corresponds to a signaling
system that copies the current input into the output.
This is intuitive, since for a Markovian signal there is
no additional information in the past signal that is not
already contained in the present one. The prefactor a
determines the gain ∂x̄/∂ℓ̄, which together with the noise
strength σ2

ηx
(Eq. 1) and the signal amplitude σ2

ℓ set the
magnitude of the past and predictive information, Ipast
and Ipred, respectively (see Appendix C1).

Fig. 2-I shows the maximum predictive information as
set by the past information. This information bound ap-
plies to any linear system that needs to predict a Marko-
vian signal. How close can biochemical systems come to
this bound?

Push-pull network can be at the information bound, yet
increase the predictive and past information by moving away

from it

Although the upper bound on the accuracy of predic-
tion is determined by the signal statistics, how close cells
can come to this bound depends on the topology of the
cellular signaling system, and the resources devoted to
building and operating it. A network motif that could
reach the information bound for Markovian signals is the
push-pull network (Fig. 2), because it is at heart a copy-
ing device: it samples the input by copying the state of
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FIG. 2. The optimal push-pull network is not at the
information bound. Panel I: The black line is the informa-
tion bound that maximizes the predictive information Ipred =
I(x0; ℓτ ) for a given past information Ipast = I(x0;Lp). The
red curve shows Ipred against Ipast for systems in which Ipred
has been maximized for a given resource cost C = RT +XT.
The blue curve shows Ipred versus Ipast for systems where
Ipast has been maximized for a given C. Panel II shows Ipast
against C for the corresponding systems. The forecast in-
terval is τ = τℓ. The optimization parameters are the ratio
XT/RT, τr, p and f (see Appendix E). Parameter values:
(σℓ/ℓ̄)

2 = 10−2, τc/τℓ = 10−2.

the input, e.g. the ligand-binding state of a receptor or
the activation state of a kinase, into the activation state
of the output, e.g. phosphorylation state of the readout
[10, 11, 23].

We model the push-pull network in the linear-noise
approximation:

δṘL = bδℓ(t)− δRL(t)/τc + ηRL(t), (5)

˙δx∗ = γ δRL(t)− δx∗(t)/τr + ηx(t). (6)

Here, δRL represents the number of ligand-bound recep-
tors and δx∗ the number of modified readout molecules,
defined as deviations from their mean values; b and γ
are parameters that depend on the number of recep-
tor and readout molecules, RT and XT respectively, the
fraction of ligand-bound receptors p and active readout
molecules f ; ηRL and ηx are Gaussian white noise terms
(see Appendix E). Key parameters are the correlation
time of receptor-ligand binding, τc, and the relaxation
time of x∗, τr. The latter determines for how long x∗

carries information on the ligand-binding state of the re-
ceptor and thus sets the integration time. The readout-
modification dynamics yield an exponential integration
kernel k(t) ∝ exp(−t/τr), which in the limit τr → 0 re-
duces to a δ-function, hinting that the system may reach
the information bound.

How much information cells can extract from the past
signal depends on the resources devoted to building and

operating the network (Fig. 2-II). We define the total
resource cost to be:

C = λ(RT +XT) + c1XT∆µ/τr (7)

The first term expresses the fact that over the course
of the cell cycle all components need to be duplicated,
which means that they have to be synthesized at a speed
that is at least the growth rate λ. The second term de-
scribes the chemical power that is necessary to run the
push-pull network [10, 11]; it depends on the flux through
the network, XT/τr, and the free-energy drop ∆µ over a
cycle, e.g. the free energy of ATP hydrolysis in the case
of a phosphorylation cycle. The coefficient c1 describes
the relative energetic cost of synthesising the components
during the cell cycle versus that of running the system.
For simplicity, we first consider the scenario that the cost
is dominated by that of protein synthesis, setting c1 → 0.
While in this scenario RT + XT is constrained, XT/RT

and other system parameters are free for optimization.
The available resources put a hard bound on the in-

formation Ipast that can be extracted from the past sig-
nal, which in turn sets a hard limit on the predictive
information Ipred (Fig. 1C). To maximize the predictive
information, it therefore seems natural to maximize the
past information Ipast for a given resource cost C. The
blue line in Fig. 2-II shows the result for the push-pull
network. We then compute the corresponding predictive
information for the systems along this line, which is the
blue line in Fig. 2-I. Strikingly, the resulting information
curve lies far below the information bound, i.e. the upper
bound on the predictive information as set by the past
information (black line, Fig. 2-I). This shows that sys-
tems that maximize past information under a resource
constraint, do not in general also maximize predictive in-
formation. It implies that not all bits of past information
are equally predictive about the future.

Precisely because not all bits of past information are
equally predictive about the future, it is paramount to
directly maximize the predictive information for a given
resource cost in order to obtain the most efficient pre-
diction device. This yields the red lines in panels I and
II in Fig. 2. It can be seen that the predictive infor-
mation is higher while the past information is lower, as
compared to the information curves of the systems opti-
mized for maximizing the past information under a re-
source constraint (blue lines). It reflects the idea that not
all bits are equally predictive. More surprisingly, while
the bound on the predictive information as set by the
resource cost (red line panel I) is close to the bound on
the predictive information as set by the past information
(black line), it does remain lower. This is surprising, be-
cause the push-pull network is a copying device [10, 23],
which can, as we will also show below, reach the latter
bound. These two observations together imply that not
all bits of past information are equally costly. If they
were, the cell would select under the two constraints the
same bits based on their predictive information content,
and the bound on the predictive information as set by
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the resource cost would overlap with that as set by the
past information.

We thus find that not all bits of past information are
equally predictive, nor equally costly. As we show next,
it implies that the optimal information processing system
faces a trade-off between using those bits of past infor-
mation that are most informative about the future and
those that are cheapest.

Trade-off between cost and predictive power per bit

To understand the connection between predictive and
past information, and resource cost, we map out the re-
gion in the information plane that can be reached given
a resource constraint C (Fig. 3A, green region). We im-
mediately make two observations. Firstly, the system
can indeed reach the information bound. Secondly, the
system can increase both the past and the predictive in-
formation by moving away from the bound. To elucidate
these two observations, we investigate the system along
the isocost line of C = 104, which together with the in-
formation bound envelopes the accessible region for the
maximum resource cost C ≤ 104.
Along the isocost line, the ratio of the number

of readout over receptor molecules is XT/RT =

2
√

p/(1− p)
√
1 + τr/τc (see Appendix E3). This can be

understood intuitively using the optimal resource alloca-
tion principle [10]. It states that in a sensing system that
employs its proteins optimally, the total number of inde-
pendent concentration measurements at the level of the
receptor during the integration time τr, RT(1 + τr/τc),
equals the number of readout molecules XT that store
these measurements, so that neither the receptors nor
the readout molecules are in excess. This design prin-
ciple specifies, for a given integration time τr, the ratio
XT/RT at which the readout molecules sample each re-
ceptor molecule roughly once every receptor correlation
time τc.

While the optimal allocation principle gives the opti-
mal ratio XT/RT of the number of readouts over recep-
tors for a given integration time τr, it does not prescribe
what the optimal integration time τr

opt, and hence (glob-

ally) optimal ratio Xopt
T /Ropt

T , is that maximizes Ipred for
a given resource constraint C = RT+XT. Fig. 3B shows
that as the distance θ along the isocost line is increased,
τr and hence XT/RT increase monotonically. Near the
information bound, corresponding to θ = 0, the integra-
tion time τr is zero and the number of readout molecules
equals the number of receptor molecules: XT = RT. In
this limit, the push-pull network is an instantaneous re-
sponder, with an integration kernel given by Eq. 4; only
the finite receptor correlation time τc prevents the sys-
tem from fully reaching the information bound. Yet, as
θ increases and the system moves away from the bound,
the predictive and past information first rise along the
contour, and thus with XT/RT and τr, before they even-
tually both fall.

To understand why the predictive and past informa-
tion first rise and then fall with XT/RT and τr, we note
that each readout molecule constitutes 1 physical bit and
that its binary state (phosphorylated or not) encodes at
most 1 bit of information on the ligand concentration.
The number of readout molecules XT thus sets a hard
upper bound on the sensing precision and hence the pre-
dictive information. To raise this bound, XT must be
increased. For a given resource constraint C = RT+XT,
XT can only be increased if the number of receptors RT

is simultaneously decreased. However, the cell infers the
concentration not from the readout molecules directly,
but via the receptor molecules: a readout molecule is a
sample of the receptor that provides at most 1 bit of in-
formation about the ligand-binding state of a receptor
molecule, which in turn provides at most 1 bit of infor-
mation about the input signal. To raise the lower bound
on the predictive information, the information on the in-
put must increase at both the receptor and the readout
level.
To elucidate how this can be achieved, we note that the

maximum number of independent receptor samples and
hence concentration measurements is given by Nmax

I =
min(XT, RT(1 + τr/τc)) [10]. For θ > 0, the system can
increase Nmax

I if, and only if, XT and RT(1 + τr/τc) can
be raised simultaneously. This can be achieved, while
obeying the constraint C = XT +RT, by decreasing RT

yet increasing τr (Fig. 3B). This is the mechanism of time
averaging, which makes it possible to increase the num-
ber of independent receptor samples [11], and explains
why both the predictive and the past information initially
increase (Fig. 3C). However, as τr is raised further, the
receptor samples become older: the readout molecules in-
creasingly reflect receptor states in the past that are less
informative about the future ligand concentration. The
collected bits of past information have become less pre-
dictive about the future (Fig. 3C). For a given resource
cost, the cell thus faces a trade-off between maximizing
the number of physical bits of past information (i.e. the
receptor samples XT) and the predictive information per
bit. This antagonism gives rise to an optimal integration
time τr

opt that maximizes the total predictive informa-
tion Ipred (Fig. 3C).
Interestingly, while Ipred decreases beyond τr

opt, the
past information Ipast first continues to rise because
Nmax

I still increases. However, when the integration time
becomes longer than the input signal correlation time,
the correlation between input and output will be lost
and Ipast will fall too.

Chemical power prevents the system from reaching the
information bound

So far, we have only considered the cost of maintain-
ing the cellular system, the protein cost C = RT +XT.
Yet, running a push-pull network also requires energy.
As Eq. 7 shows, the running cost scales with the flux
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FIG. 3. The push-pull network maximizes the predictive power under a resource constraint by moving away
from the information bound. (A) The region of accessible predictive information Ipred = I(x0; ℓτ ) and past information
Ipast = I(x0;Lp) in the push-pull network under a resource constraint C ≤ (RT +XT), for the Markovian signals specified by
Eq. 3 (green). The black line is the information bound at which Ipred is maximized for a given Ipast. The push-pull network
can be at the information bound (black points), but maximizing Ipred for a resource constraint C moves the system away from
it. The red and blue lines connect, respectively, the points where Ipred and Ipast are maximized along the green isocost lines
(the contourlines of constant C); they correspond to the red and blue lines in Fig. 2, respectively. The accessible region of
Ipred and Ipast for a given C has been obtained by optimizing over τr, p, f , and XT/RT. The forecast interval is τ = τℓ.
(B) The integration time τr over the receptor correlation time τc, τr/τc, and the ratio of the number of readout and receptor
molecules, XT/RT, as a function of the distance θ along the isocost line corresponding to C = 104 in panel A; the red and
blue points denote where Ipred and Ipast are maximized along the contourline, respectively. For θ → 0, τr → 0: the system is
an instantaneous responder, which is essentially at the information boundary; as predicted by the optimal resource allocation
principle, XT = RT. The system can increase Ipred and Ipast by increasing τr and XT/RT. (C) While this decreases the
predictive information Ipred per physical bit of past information, Ipred/XT (dashed line), increasing XT/RT does increase the
number of physical bits per resource cost, XT/C (purple line). This trade-off gives rise to an optimal predictive information
per resource cost, Ipred/C (red dot on solid black line). Parameter values unless specified: (σℓ/ℓ̄)

2 = 10−2, τc/τℓ = 10−2.

around the phosphorylation cycle, which is proportional
to the inverse of the integration time, τr

−1. The power
thus diverges for τr → 0. Since the information bound is
reached precisely in this limit, it is clear that the chem-
ical power prevents the push-pull network from reaching
the bound (see Fig. 3 in the appendix).

Non-Markovian signals

Predicting the future change

The push-pull network can optimally predict Marko-
vian signals, yet not all signals are expected to be Marko-
vian. Especially organisms that navigate through an en-
vironment with directional persistence will sense a non-
Markovian signal, as generated by their own motion.
Moreover, when these organisms need to climb a con-
centration gradient, as E. coli during chemotaxis, then
knowing the change in the concentration is arguably more
useful than knowing the concentration itself. Indeed, it
is well known that the kernel of the E. coli chemotaxis
system detects the (relative) change in the ligand con-
centration by taking a temporal derivative of the concen-

tration [15]. However, as we will show here, the converse
statement is more subtle. If the system needs to predict
the (future) change in the signal, then the optimal ker-
nel is not necessarily one that is based on the derivative
only: in general, the optimal kernel uses a combination of
the signal value and its derivative. However, the E. coli
chemotaxis system can respond to concentrations that
vary between the dissociation constants of the inactive
and active state of the receptors, which differ by several
orders of magnitude [24]. This range of possible back-
ground concentrations is much larger than the typical
concentration change over the orientational correlation
time of the bacterium. As our analysis below reveals,
in this regime the optimal kernel is a perfectly adaptive,
derivative-taking kernel that is insensitive to the current
signal value, precisely like that of the E. coli chemotaxis
system [15, 25–28]. Our analysis thus predicts that this
system has an adaptive kernel, because this is the opti-
mal kernel for predicting concentration derivatives over
a broad range of background concentrations.

To reveal the signal characteristics that control the
shape of the optimal integration kernel, we will consider
the family of signals that are generated by a harmonic
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oscillator:

δℓ̇ = v(t), (8)

v̇ = −ω2
0δℓ(t)− v(t)/τv + ηv(t), (9)

where δℓ is the deviation of ligand concentration from its
mean ℓ̄, v its derivative, τv a relaxation time, ηv a Gaus-
sian white noise term, and the frequency ω2

0 = σ2
v/σ

2
ℓ

controls the variance σ2
ℓ of the concentration and that of

its derivative σ2
v .

Using the IBM framework it can be shown that the
optimal encoding that allows the system to reach the
information bound, is based on a linear combination of
the current concentration ℓ(t) and its derivative v(t), such
that the output x(t) is given by (Appendix C3):

x(t) = a
δℓ(t)

σℓ
+ b

v(t)

σv
+ ηx(t). (10)

This can be understood by noting that while the signal
of Eqs. 8 and 9 is non-Markovian in the space of ℓ, it is
Markovian in ℓ and v: all the information on the future
signal is thus contained in the current concentration and
its derivative. To maximize the predictive information
Ipred = I(x0; vτ ) between the current output x0 and the
future derivative of the input vτ for a given amount of
past information Ipast = I(x0;Lp), i.e to reach the infor-
mation bound for predicting the future signal derivative,
the coefficients must obey

aopt = G
⟨δℓ(0)δv(τ)⟩

σℓσv
≡ Gρℓ0vτ

, (11)

bopt = G
⟨δv(0)δv(τ)⟩

σ2
v

≡ Gρv0vτ
. (12)

Here, G is the gain, which together with the noise σ2
ηx

sets
the scale of Ipred and Ipast, ρℓ0vτ

is the cross-correlation
coefficient between the current concentration value ℓ0 and
the future concentration derivative vτ and ρv0vτ

that be-
tween the current and future derivative (Appendix C3).
These expressions can be understood intuitively: if the
future signal derivative that needs to be predicted is cor-
related with the current signal derivative, it is useful
to include in the prediction strategy the current signal
derivative, leading to a non-zero value of bopt. Perhaps
more surprisingly, if the future signal derivative is also
correlated with the current signal value, then the system
can enhance the prediction accuracy by also including the
current signal value, yielding a non-zero aopt. Clearly,
in general, to optimally predict the future signal change,
the system should base its prediction on both the current
signal value and its derivative.

The degree to which the systems bases its prediction on
the current value versus the current derivative depends
on the relative magnitudes of aopt and bopt, respectively.
In Appendix B2, we show that when the concentration
change over the timescale τv, σvτv, is much smaller than
the range of possible concentrations σℓ that the bac-
terium can experience, i.e. when σvτv ≪ σℓ such that

ω0 ≪ τ−1
v , the cross-correlation coefficient ρℓ0vτ

vanishes,
such that aopt becomes zero (see Eq. 11). The optimal
kernel has become a perfectly adaptive, derivative-taking
kernel. We emphasize that while we have derived this re-
sult for the class of signals defined by Eqs. 8 and 9, the
idea is far more generic. In particular, while we do not
know the temporal structure of the ligand statistics that
E. coli experiences, we do know that it can detect con-
centration changes over a range of background concentra-
tions that is much wider that the typical concentration
change over a run, such that the correlation between the
concentration value and its future change is likely to be
very small. As our analysis shows, a perfectively adap-
tive kernel then emerges naturally from the requirement
to predict the future concentration change.
While the class of signals specified by Eqs. 8 and 9 is

arguably limited, it does describe the biologically impor-
tant regime of chemotaxis in shallow gradients. In the
limit that ω0 ≪ τv

−1, Eq. 9 reduces to v̇ = −v/τv + ηv.
In shallow gradients, the stimulus only weakly affects
the swimming behavior, such that the perceived signal
is mostly determined by the intrinsic orientational dy-
namics of the bacterium in the absence of a gradient. In
this regime, the temporal statistics of the concentration
derivative v is completely determined by the steepness of
the concentration gradient g and the swimming statistics
of the bacterium in the absence of a gradient:

⟨δv(0)δv(τ)⟩ = g2ℓ̄2⟨δvx(0)δvx(τ)⟩ ≃ σ2
vx
e−τ/τvx , (13)

where the latter is the autocorrelation function of the
(positional) velocity of the bacterium in the absence of a
gradient. It is a characteristic of the bacterium, not of
the environment, and has been measured to decay expo-
nentially with a correlation time τvx

[18], precisely as our
model, with τv = τvx

, predicts. This correlation time is
on the order of the typical run time of the bacterium in
the absence of a gradient, τv ∼ 0.9s [18].

Finite resources prevent the chemotaxis system from taking
an instantaneous derivative and reaching the information

bound

The above analysis indicates that the chemotaxis sys-
tem seems ideally designed to predict the future concen-
tration change, because its integration kernel is nearly
perfectly adaptive [15, 25–28]. But how close can this
system come to the information bound for the non-
Markovian signals specified by Eqs. 8 and 9?

To address this, we consider a molecular model that
can accurately describe the response of the chemotaxis
system to a wide range of time-varying signals [29–32].
In this model, the receptors are partitioned into clusters.
Each cluster is described via a Monod-Wyman-Changeux
model [33]. While each receptor can switch between an
active and an inactive conformational state, the energetic
cost of having different conformations in the same cluster
is prohibitively large. Each cluster is thus either active or
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inactive. Ligand binding favors the inactive state while
methylation does the opposite. Lastly, active receptor
clusters can via the associated kinase CheA phosphory-
late the downstream messenger protein CheY.

Linearizing around the steady state, we obtain:

δai(t) = αδmi(t)− βδℓ(t), (14)

δṁi = −δai(t)/(ατm) + ηmi
(t), (15)

δẋ∗ = γ

RT∑
i=1

δai(t)− δx∗(t)/τr + ηx(t). (16)

Here, δai(t) and δmi(t) are the deviations of the activ-
ity and methylation level of receptor cluster i from their
steady-state values, and RT is the total number of recep-
tor clusters; δℓ(t) and δx∗(t) are, respectively, the devi-
ations of the ligand and CheYp concentration from their
steady-state values; τm and τr are the timescales of re-
ceptor methylation and CheYp dephosphorylation; ηmi

and ηx are independent Gaussian white noise sources. In
Eq. 14, we have assumed that ligand binding is much
faster than the other timescales in the system, so that
it can be integrated out. There is therefore no need to
time average receptor-ligand binding noise, which means
that, in the absence of running costs, the optimal re-
ceptor integration time τr is zero. In what follows, we
set τr to the value measured experimentally, τr ≈ 100ms
[10, 34]. We consider the non-Markovian signals speci-
fied by Eqs. 8 and 9 in the physiologically relevant limit
ω0 → 0, such that the optimal kernel is perfectly adap-
tive, like that of E. coli. For these signals, we determine
the accessible region of Ipast and Ipred under a resource
constraint C = RT +XT (see Fig. 4) by optimizing over
the methylation time τm and the ratio of readout over
receptor molecules XT/RT. The forecast interval τ is
set to τv, but we emphasize that the optimal design is
independent of the value of τ (see Appendix F4).
Fig. 4A shows that the chemotaxis system is, in gen-

eral, not at the information bound that maximizes the
predictive information Ipred = I(x0; vτ ) for a given past
information Ipast = I(x0;Lp). The optimal systems that
maximize Ipred under a resource constraint C, marked by
the red dots, are indeed markedly away from the infor-
mation bound. Yet, as the resource constraint is relaxed
and C is increased, the optimal system moves towards
the bound. Panel B shows that the methylation time
τm rises along the three respective isocost lines of panel
A. It highlights that there exists an optimal methyla-
tion time τoptm that maximizes the predictive information
Ipred. Moreover, τoptm decreases as the resource constraint
is relaxed. Along the respective isocost lines, XT/RT

varies only mildly (see Fig. 5 in the appendix).
These observations can be understood by noting that

the system faces a trade-off between taking a derivative
that is recent versus one that is robust. All the infor-
mation on the future derivative, which the cell aims to
predict, is contained in the current derivative of the sig-
nal; measuring the current derivative would allow the

system to reach the information bound. However, com-
puting the recent derivative is extremely costly. The cell
takes the temporal derivative of the ligand concentration
at the level of the receptor via two antagonistic reac-
tions that occur on two distinct timescales: ligand bind-
ing rapidly deactivates the receptor, while methylation
slowly reactivates it [30]. The receptor ligand-occupancy
thus encodes the current concentration, the methylation
level stores the average concentration over the past τm,
and the receptor activity reflects the difference between
the two—the temporal derivative of the signal over the
timescale τm. To obtain an instantaneous derivative, τm
must go to zero. However, this dramatically reduces the
gain; in fact, in this limit, the gain is zero, because the
receptor activity instantly adapts to the change in the
ligand concentration. Since the push-pull network down-
stream of the receptor is a device that samples the re-
ceptor stochastically [10, 36], the gain, i.e. the change in
the receptor activity due to the signal, must be raised to
lift the signal above the sampling noise. This requires a
finite methylation time τm: as we show in Appendix F3,
the gain increases monotonically with τm. The trade-off
between a recent derivative and a reliable one gives rise
to an optimal methylation time τoptm that maximizes the
predictive information for a given resource cost.
The same analysis also explains why the optimal

methylation time τoptm decreases and the predictive infor-
mation increases when the resource constraint is relaxed.
The sampling noise in estimating the average receptor
activity decreases as the number of readout molecules
increases [10, 36]. A smaller gain is thus required to lift
the signal above the sampling noise. In addition, a larger
number of receptors decreases the noise in the methyla-
tion level, which also allows for a smaller gain, and hence
a smaller methylation time. These two effects together
explain why τoptm decreases and Ipred increases with C.
Fig. 4A also shows that the past information Ipast =

I(x0;Lp) does not return to zero along the contourline of
constant resource cost. Along the contourline, the methy-
lation time τm rises (Fig. 4B). While the predictive infor-
mation Ipred exhibits an optimal methylation time τm

opt,
the past information Ipast continues to rise with τm be-
cause the system increasingly becomes a copying device,
rather than one that takes a temporal derivative.

Comparison with experiment

To test our theory, we study the predictive power of
the E. coli chemotaxis system as a function of the steep-
ness of the ligand concentration gradient, keeping the
resource constraint at the biologically relevant value of
C = RT +XT = 104 [35]. Panel C of Fig. 4 shows Ipred
and Ipast for cells swimming in an exponential concen-
tration gradient ℓ(x) = ℓ0e

gx, for different values of the
gradient steepness g; along the green iso-steepness lines
τm is varied and XT/RT is optimized to maximize Ipred
and Ipast, with the red dots marking τoptm , while along
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A

B

C

FIG. 4. Finite resources prevent chemotaxis system from reaching the information bound. (A) The region of
accessible predictive information Ipred = I(x0; vτ ) and past information Ipast = I(x;Lp) for the chemotaxis system under a
resource constraint C = RT +XT, for the non-Markovian signals specified by Eqs. 8 and 9 (green). The black line shows the
information bound at which Ipred is maximized for a given Ipast. The chemotaxis system is not at the information bound, but
it does move towards it as C is increased. The red line connects the red points where Ipred is maximized for a given resource
cost C. The accessible region of Ipred and Ipast under a given resource constraint C = RT +XT is obtained by optimizing over
the methylation time τm and the ratio of readout over receptor molecules XT/RT. The forecast interval is τ = τv. (B) The
methylation time τm over the input correlation time τv as a function of the distance θ along the three respective isocost lines
shown in panel A. The methylation time τm increases along the isocost line, but there exists an optimal τm that maximizes
the predictive information, marked by the red points; θ → 0 corresponds to the origin of panel A, (Ipred, Ipast) = (0, 0); the
points where θ = 0.2 along the isocost lines of panel A are marked with a bar. As the resource constraint is relaxed (higher
C), the optimal τm decreases: the system moves towards the information bound, where it takes an instantaneous derivative,
corresponding to τr, τm → 0. (C) The contourlines of Ipred and Ipast for increasing values of the steepness g of an exponential
ligand concentration gradient ℓ(x) = ℓ0e

gx, keeping the total resource cost fixed at C = RT + XT = 104; τm and XT/RT

have been optimized. It is seen that the maximal predictive information Ipred under the resource constraint C (marked by
the red points) increases with the gradient steepness. The blue line shows Ipred and Ipast for the E. coli chemotaxis system
with τm = 10s and XT = RT = 5000 fixed at their measured values [35]. Our analysis predicts that this system has been
optimized to detect shallow gradients. Parameter values unless specified: τr = 100ms [10, 34]; τv = 0.9s and σ2

v = g2ℓ̄2σ2
vx ,

with ℓ̄ = 100µM and σ2
vx = 157.1µm2s−2 [18]; ω0 → 0; g is given in units of mm−1; in A, g = 4/mm.

the blue line τm and XT and RT are fixed at their exper-
imentally measured values [29, 30, 35]. Clearly, both the
predictive and the past information rise as the gradient
steepness g increases—a steeper concentration gradient
yields a larger change in the concentration, and thus a
stronger signal.

More interestingly, in the optimal system Ipred rises
much faster with Ipast (red line) than in the E. coli system
(blue line). A steeper gradient g yields a stronger input
signal, which raises the signal above the sampling noise
more. This allows the optimal system to take a more re-
cent derivative, with a smaller τm, which is more informa-
tive about the future. In contrast, the methylation time
τm of the E. coli chemotaxis system is fixed. As Fig. 4C
shows, this value is beneficial for detecting shallow gra-
dients, g ≲ 0.2mm−1. Moreover, in this regime, not only
Ipred but also Ipast are close to the respective values for
the optimal system. For steeper gradients Ipast becomes
much higher in the E. coli system than in the optimal
one, even though Ipred remains lower. The bacterium
increasingly collects information that is less informative
about the future. Taken together, these results strongly

suggest that the system has been optimized to predict
future concentration changes in shallow gradients, which
necessitate a relatively long methylation time.

DISCUSSION

Cellular systems need to predict the future signal by
capitalizing on information that is contained in the past
signal. To this end, they need to encode the past sig-
nal into the dynamics of the intracellular biochemical
network from which the future input is inferred. To
maximize the predictive information for a given amount
of information that is extracted, the cell should store
those signal characteristics that are most informative
about the future signal. For a Markovian signal obeying
an Ornstein-Uhlenbeck process this is the current signal
value, while for the non-Markovian signal corresponding
to an underdamped particle in a harmonic well, this is
the current signal value and its derivative. As we have
seen here, cellular systems are able to extract these sig-
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nal characteristics: the push-pull network can copy the
current input into the output, while the chemotaxis net-
work can take an instantaneous derivative. We have thus
demonstrated that at least for two classes of signals, cel-
lular systems are in principle able to extract the most
predictive information, allowing them to reach the infor-
mation bound.

Yet, our analysis also shows that extracting the most
relevant information can be exceedingly costly. To copy
the most recent input signal into the output, the integra-
tion time of the push-pull network needs to go to zero,
which means that the chemical power diverges. More-
over, taking an instantaneous derivative reduces the gain
to zero, such that the signal is no longer lifted above
the inevitable intrinsic biochemical noise of the signalling
system. In fact, taking the chemical power cost to drive
the adaptation cycle into account [27, 37] would push the
system away from the information bound even more.

While information is a resource—the cell cannot pre-
dict the future without extracting information from the
past signal—the principal resources that have a direct
cost are time, building blocks and energy. The predic-
tive information per protein and energy cost is therefore
most likely a more relevant fitness measure than the pre-
dictive information per past information. Our analysis
reveals that, in general, it is not optimal to operate at
the information bound: cells can increase the predictive
information for a given resource constraint by moving
away from the bound. Increasing the integration time in
the push-pull network reduces the chemical power and
makes it possible to take more concentration measure-
ments per protein copy. And increasing the methylation
time in the chemotaxis system increases the gain. Both
enable the system to extract more information from the
past signal. Yet, increasing the integration time or the
methylation time also means that the information that
has been collected, is less informative about the future
signal. This interplay gives rise to an optimal integration
and methylation time, which maximize the predictive in-
formation for a given resource constraint. This argument
also explains why the respective systems move towards
the information bound when the resource constraint is
relaxed: Increasing the number of receptor and readout
molecules allows the system to take more instantaneous
concentration measurements, which makes time averag-
ing less important, thus reducing the integration time.

Increasing the number of readout molecules also reduces
the error in sampling the receptor state. This makes it
easier to detect a change in the receptor activity result-
ing from the signal, thus allowing for a smaller dynamical
gain and a shorter methylation time.
Information theory shows that the amount of transmit-

ted information depends not only on the characteristics
of the information processing system, but also on the
statistics of the input signal. While much progress has
been made in characterizing cellular signalling systems,
the statistics of the input signal is typically not known,
with a few notable exceptions [38]. Here, we have fo-
cussed on two classes of input signals, but it seems likely
that the signals encountered by natural systems are much
more diverse. It will be interesting to extend our analy-
sis to signals with a richer temporal structure [9], and see
whether cellular systems exist that can optimally encode
these signals for prediction.
Finally, while we have analyzed the design of cellular

signaling networks to optimally predict future signals, we
have not addressed the utility of information for function
or behavior. It is clear that many functional or behavioral
tasks, like chemotaxis [18], require information, but what
the relevant bits of information are is poorly understood
[7]. Moreover, cells ultimately employ their resources—
protein copies, time, and energy—for function or behav-
ior, not for processing information per se. Here, we have
shown that maximizing predictive information under a
resource constraint, C → Ipast → Ipred, does not nec-
essarily imply maximizing past information. This hints
that optimizing a functional or behavioral task under a
resource constraint, C → Ipred → function, may not im-
ply maximizing the predictive information necessary to
carry out this task.
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