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Abstract 

The ability to individually predict disease course of major depressive disorder (MDD) 

is essential for optimal treatment planning. Here, we use a data-driven machine 

learning approach to assess the predictive value of different sets of biological data 

(whole-blood proteomics, lipid-metabolomics, transcriptomics, genetics), both 

separately and added to clinical baseline variables, for the longitudinal prediction of 

2-year MDD chronicity (defined as presence of MDD diagnosis after 2 years) at the 

individual subject level. Prediction models were trained and cross-validated in a 

sample of 643 patients with current MDD (2-year chronicity n = 318) and 

subsequently tested for performance in 161 MDD individuals (2-year chronicity n = 

79). Proteomics data showed best unimodal data predictions (AUROC = 0.68). 

Adding proteomic to clinical data at baseline significantly improved 2-year MDD 

chronicity predictions (AUROC = 0.63 vs AUROC = 0.78, p = 0.013), while the 

addition of other -omics data to clinical data did not yield significantly increased 

model performance. SHAP and enrichment analysis revealed proteomic analytes 

involved in inflammatory response and lipid metabolism, with fibrinogen levels 

showing the highest variable importance, followed by symptom severity. Machine 

learning models outperformed psychiatrists’ ability to predict two-year chronicity 

(balanced accuracy = 71% vs 55%). This study showed the added predictive value of 

combining proteomic, but not other -omic data, with clinical data. Adding other -omic 

data to proteomics did not further improve predictions. Our results reveal a novel 

multimodal signature of MDD chronicity that shows clinical potential for individual 

MDD disease course predictions from baseline measurements.  
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Introduction 

Major Depressive Disorder (MDD) is a heterogenous disorder where both treatment 

response and prognosis vastly differ between individuals. Around 20–25% of MDD 

patients are at risk for chronic depression, independent of initial treatment type (1). 

The ability to individually predict disease course early on is essential for optimal 

treatment planning, as this could allow for early treatment intensification for patients 

with a low long-term chance of remission, and potentially bypassing initial first-choice 

treatments.  

 

Previous studies have yielded insights in clinical, psychological and biological 

markers for chronicity in depression. Chronicity in depression has been related to 

longer symptom duration, increased symptom severity and earlier age of onset (1,2); 

higher levels of neuroticism and lower levels of extraversion and conscientiousness 

(3); and various inflammatory markers (4), low levels of vitamin D (5), metabolic 

syndrome (6) and lower cortisol awakening response (7). Yet, statistically significant 

differences on a group level will not always be useful for prediction of disease course 

for the individual, either due to low effect sizes or redundancy with respect to other 

more predictive variables. While multiple studies showed biological data can be used 

to make accurate diagnostic predictions of MDD cases and healthy controls (8–10), 

individual prediction of disease course in depression has proven to be a difficult task, 

with a recent systematic review and meta-analysis showing an average accuracy of 

60% for predicting remission or resistance after treatment in adequate-quality studies 

(included studies used a follow-up time span of 8 to 24 weeks) (11). 
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One challenge with predicting MDD outcomes is that its etiology and phenotype 

differ widely between individuals, and large interindividual variation may exist with 

regard to relevant predictors (12–15). Especially when only a limited set of predictor 

variables are included for prediction modeling, chances of accurately capturing 

complex multimodal system dynamics (i.e. the biopsychosocial model of depression) 

with those variables further decrease. With the availability of novel machine learning 

methods that can learn complex high-dimensional non-linear patterns in data, a 

solution to this problem might be to incorporate multiple high-dimensional data 

sources, each containing putative predictive factors.  

 

While several studies have tried to predict MDD course from a range of different data 

modalities (e.g. clinical variables, metabolomics, imaging data, epigenetics) (16–20), 

combining multiple data modalities for predicting MDD chronicity has been relatively 

scarce. In one recent analysis of the Netherlands Study of Depression and Anxiety 

(NESDA) cohort (21) that integrated clinical, psychological and biomarker data, 

predictions of two-year chronicity in MDD reached a balanced accuracy of 62% using 

a penalized linear model (22). Adding limited biological data showed no improvement 

in prediction accuracy over the combination of clinical and psychological data (22). 

Another NESDA analysis using a similar model with epigenetic data showed an AUC 

(Area Under the Curve) of 0.571 for predicting the same two-year chronicity outcome 

(20). Remission after 6 years was predicted more accurately, but the reported AUC 

(0.724) was based on 10-fold cross-validation results, not on outheld test set results, 

possibly leading to overoptimistic performance metrics (23,24). Interestingly, neither 

adding genome wide SNP (single nucleotide polymorphism) data, nor adding 27 

clinical, demographical and lifestyle variables improved predictions (20). This is an 
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important finding as no other studies have integrated features from multiple high-

dimensional biological data (i.e., multiomic data) and clinical data to improve 

predictions of MDD disease course. This contrasts with other fields of medicine, 

where multimodal data integration has led to significant advancements in the field of 

precision medicine (25), most notably in the field of precision oncology (26,27).  

 

To further investigate the potential of multimodal data in the field of precision 

psychiatry, the current study explores the potential of integrating multi-omic, clinical, 

psychological and demographical data. To this end, we used high-dimensional 

multimodal data collected in 804 NESDA subjects with MDD (21). In a subset of 643 

individuals (80% of total sample), using combinations of lipid-metabolomic, 

proteomic, transcriptomic, genetic, demographic, psychological and clinical data 

measured at baseline (i.e. from the moment of MDD diagnosis), we used cross-

validated machine learning models to predict MDD remission after two years of 

follow-up. To allow for non-linear pattern detection, and to assess the potential 

benefit of non-linear models over linear models in multimodal pattern detection, we 

employed several linear and non-linear machine learning algorithms (elastic net, 

support vector machine, random forest, XGBoost, artificial neural network). The 

validity of our models’ predictions was then tested in a separate outheld test group of 

161 individuals (20% of total sample).  

 

To embed our machine learning models’ performance metrics in the context of 

clinical expertise (i.e. how good or bad are predictive performances from a clinicians’ 

point of view), we additionally let four clinical psychiatrists predict 2-year chronicity in 

a subset of 200 individuals on the basis of extensive clinical information.  
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Methods and Materials 

Participants 

In the current study we included data that was collected as part of a larger, multi-

center longitudinal study (NESDA, n = 2981, see Supplementary Methods) (21). We 

included a subsample from the NESDA cohort consisting of 804 subjects with the 

following inclusion criteria (identical to our previous study (22)): (i) presence of a 

DSM-IV MDD or dysthymia diagnosis (or both) in the past 6 months at baseline, 

established using the structured Composite International Diagnostic Interview (CIDI, 

version 2.1) (28), (ii) confirmation of depressive symptoms in the month prior to 

baseline either by the CIDI or the Life Chart Interview (LCI) (29); and (iii) availability 

of 2-year follow-up data on DSM-IV diagnosis and depressive symptoms measures 

with the CIDI. The ethical review boards approved the NESDA research protocol and 

all participants signed written informed consent.  

 

We defined two outcome groups: remission or no remission two years after follow-

up. We based the outcome on the presence or absence of a current unipolar 

depression diagnosis (6-month recency MDD diagnosis or dysthymic disorder) at 2-

year follow-up, according to DSM-IV criteria. Table 1 lists sample characteristics and 

statistics for both outcome groups of all 804 included subjects. 

 

Clinical variables 

We included a set of 10 relevant clinical, psychological and demographical predictor 

variables (to which we will now refer to as ‘clinical variables’), including age, sex, 

years of education, depressive symptom severity (IDS-SR questionnaire)  (30) (both 

as total score and severity category ranging from one to five) and five personality 
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dimensions (neuroticism, extraversion, openness to experience, agreeableness and 

conscientiousness), measured with the NEO five-factory inventory (31). Selection of 

the included clinical variables was based on the results of our previous study in the 

same NESDA subsample where depressive symptom severity and personality 

dimensions proved to be most predictive (22).  

 

Proteomic variables 

For 611 of the included 804 subjects, a panel of 243 analytes involved in 

endocrinological, immunological, metabolic and neurotrophic pathways was 

assessed in serum at baseline. A full list of the 243 analytes and their inclusion in 

predictive modelling with missing percentages per variable can be found in Table S1. 

The Supplementary Methods provides further details on data collection and data 

processing.  

 

Lipid and metabolite variables 

A lipid-focused metabolomics platform was used to measure 231 lipids, metabolites 

and metabolite ratios in plasma at baseline for 790 of the included 804 subjects. 

From now on, we refer to this data as ‘lipidomic data’. The Supplementary Methods 

describes further lipidomic data details. 

 

Transcriptomic variables 

Transcriptome-wide expression levels were measured in whole blood for 669 of the 

804 included individuals. For each subject, 44 241 microarray probes targeting 

23 588 genes were available for analysis. See Supplementary Methods for details.  
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Genotype data 

Using the LDpred package in R (32), a total of 29 polygenic risk scores (PRSs) were 

calculated for 701 of the 804 included subjects with available genotype data. Further 

details about DNA extraction and PRS calculation can be found in the 

Supplementary Methods. Table S3 lists all 29 phenotypes for which polygenic scores 

were calculated (e.g. MDD, anxiety, neuroticism etc.). 

 

Analysis 

All analyses were performed using the programming languages R (version 4.0.3) 

and Python (version 3.8.5). All R and Python code is made publicly available on 

GitHub at https://github.com/pchabets/chronicity-prediction-depression. 

 

Machine learning analysis 

Full details about data preprocessing, train and test procedures and model 

evaluation are described in the Supplementary Methods section. In short, first, 

XGBoost models (33) were trained using each data modality separately to predict 2-

year chronicity. Second, to investigate possible prediction augmentation effects of 

combining clinical and high-dimensional biological data, separate XGBoost models 

were trained using the combination of clinical data added to each of the separate -

omics data sources to predict 2-year chronicity. Third, another XGBoost model was 

trained using the combination of all data modalities together.  

 

Based on the combination of data that proved to result in the best XGBoost model 

predictions (i.e. proteomics + clinical data, see Results section), we additionally 

investigated the nature of the multimodal predictive signature by running different 
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linear and non-linear algorithms including elastic net, support vector machine (SVM), 

random forest (RF) and a feed-forward densely connected artificial neural network 

(ANN) using 1) only clinical features (i.e. severity scores, psychological and 

demographical variables); 2) only proteomics data, and 3) the combination of both 

data modalities. For each model prediction augmentation by adding proteomics data 

to the clinical data was evaluated using the area under the receiver operating 

characteristic (AUROC). All performance metrics reported are from validating the 

trained models on outheld test data (see Supplementary Methods for details).  

 

Feature importance analysis 

Feature importance analysis was based on computing Shapley values for every 

feature included in the best performing XGBoost model, using the SHAP 

implementation for XGBoost (34,35). SHAP allows for calculating feature importance 

levels per individual prediction, and deriving global feature rankings according to 

those levels (35). Ranking features according to their overall importance is done by 

using the mean of absolute Shapley values computed for all individual predictions 

(35). Feature ranking and relation to measured variable values was plotted using the 

SHAP and SHAPforxgboost packages (35). Protein-protein interaction and 

enrichment analysis was performed using the metascape platform (36). Further 

details are provided in the Supplementary Methods section.  

 

Human predictions 

Four human raters (trained and board-certified psychiatrists) independently predicted 

2-year chronicity for 200 MDD subjects using clinical baseline data. Each rater was 

given two sets of samples for prediction. In the first sample, raters had to predict 2-
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year chronicity status of subjects on the basis of the same 10 clinical baseline 

predictor variables used by the machine learning models. In the second sample, 

raters additionally had access to baseline data on 1) dysthymia diagnosis; 2) MDD 

history; 3) anxiety diagnosis (lifetime); 4) one-month recency of anxiety disorder 

symptoms; 5) alcohol diagnosis status (lifetime); 6) recency of alcohol abuse or 

dependency; 7) total disease history (totaling 17 baseline predictor variables). 

Further details about the human prediction process and interrater agreement 

analysis are described in the Supplementary Methods section.  

 

Results 

Proteomic data is most informative for predicting 2-year chronicity  

We first tested how well 2-year chronicity in MDD can be predicted for each data 

modality separately. For each of the available data modalities, the train, validation 

and test sets used for the classification models approximated balanced distributions 

of the two outcome classes (Table S4). For unimodal data predictions, the model 

using proteomic data showed highest performance (AUROC = 0.67, balanced 

accuracy = 0.68), followed by the models informed by clinical data (AUROC = 0.63, 

balanced accuracy = 0.62) and genetic data (AUROC = 0.61, balanced accuracy = 

0.60) (Figure 1, Table S4). All models reached accuracy levels significantly above 

chance level. For the model informed by PRSs, accuracy only reached a significant 

accuracy level when using a cutoff on the ROC curve that made the model 

significantly biased towards false negative classifications (McNemar’s test, p = 

1.86e-06) (Table S4). 

 

Combining clinical and proteomic data augments prediction performance 
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Models informed by both clinical and omics data outperformed models informed by 

unimodal omics data in every case, most robustly for combining proteomic and 

clinical data (figure 2). All combinations of clinical and omics data resulted in higher 

predictive performance than the model informed by clinical data only, except for 

combining clinical and transcriptomic data (Figure 2). Although a clear trend in 

augmented predictions by combining omics with clinical data was observed for all 

omics data (Figure 2), only the augmented performance of adding proteomic to 

clinical data reached statistical significance (AUROC = 0.78 versus AUROC = 0.63, 

p = 0.013).  

 

To further investigate the augmented prediction of MDD 2-year chronicity when 

adding proteomic to clinical data, we used several linear and non-linear machine 

learning models informed by clinical, proteomic, and the combination of both data 

(Table S4). Informing machine learning models by only proteomic data resulted in 

low predictive performance for linear models, compared to non-linear models (Figure 

S2). Augmented predictive performance by adding proteomic data to clinical data 

was not found for any linear model, but was observed for all non-linear models, most 

pronounced for XGBoost, and reached statistical significance only for the XGBoost 

model (p = 0.013, Figure S2). 

 

Variable importance analysis shows predictive pattern enrichment of analytes 

involved in inflammatory response and lipid metabolism 

SHAP-analysis was performed on the best performing unimodal and multimodal 

informed models (i.e. XGBoost informed by proteomic data and XGBoost informed 

by clinical and proteomic data). Both for the proteomics-only model, and the model 

informed by both clinical and proteomic data, blood fibrinogen levels showed highest 
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mean absolute SHAP values (Figure 3, Table S5). Symptom severity at baseline 

showed to be the most predictive clinical feature for 2-year chronicity in MDD (Figure 

3, Table S5). For the proteomics-only model, 109 analytes had an average absolute 

SHAP value > 0 (i.e. were informative for predictions). For the combined data model, 

42 features were informative for predicting 2-year chronicity in MDD model, including 

38 proteomic analytes. Age, years of education and sex were not attributed any 

SHAP values in the multimodal XGBoost model (Table S5).  

 

Proteomic analytes that were informative in the combined data model and in the 

proteomics-only model were analyzed separately for protein-protein interactions and 

pathway enrichments. Network analysis of protein-protein interactions revealed 

densely connected subnetworks associated with inflammatory response and lipid 

metabolism for both the unimodal and multimodal XGBoost model, with enrichment 

of Reactome -, GO - and WikiPathway terms related to interleukin-10 signaling, 

chemokine signaling pathway, cholesterol esterification and reverse cholesterol 

transport (see Figure 4).  

 

Human prediction of 2-year chronicity from clinical data 

Four clinical psychiatrists independently predicted 2-year chronicity retrospectively 

from baseline data for 200 subjects with balanced subjects’ outcome distribution (2-

year chronicity n = 100, remitted n = 100). Using the 10 clinical features that the 

clinical XGBoost model was informed by, human raters had an average accuracy of 

0.51 (min = 0.35, max = 0.63, Figure 5). When additional relevant clinical baseline 

data was available to the human raters, the raters’ average prediction accuracy 

increased to 0.55 (min = 0.33, max = 0.65, Figure 5). Interrater reliability between the 

four raters was low (Fleiss’ kappa = 0.32, p = 7.26e-7). Both the XGBoost model 
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trained on the same clinical data, and on combined clinical and proteomics data, 

outperformed all human predictions (Figure 5).  

 

DISCUSSION 

In this study we showed that longitudinal prediction of 2-year MDD chronicity 

substantially benefits from integrating multimodal data compared to relying on 

unimodal data. Specifically, model predictions significantly improved when combining 

proteomic and clinical data (Figure 2). Our model informed by only clinical data 

showed identical performance to the previously reported performance of a linear 

model using multiple data modalities, including those 10 clinical variables, in the 

same dataset (22). Performance of our model predictions significantly increased 

when adding proteomic data, but only for non-linear models, suggesting superior 

multimodal predictive pattern detection by non-linear models over linear models 

(Figure S2). Subsequent SHAP analysis revealed a multimodal predictive signature 

consisting of baseline symptom severity, personality traits and peripheral blood 

biomarkers related to the immune system and lipid metabolism.   

 

Interpretation of predictive features 

Findings of our SHAP analysis are consistent with a previous NESDA study that 

showed symptom severity to be predictive of MDD chronicity (22). Interestingly, while 

our proteomic results indicate a predictive inflammatory component, the same study 

previously found that including three inflammatory markers (CRP, IL6, TNF-alpha) 

did not improve predictions, indicating the need for higher proteomic resolution (22). 

Detection of a predictive inflammatory signature is particularly insightful given the 

established association between low-grade inflammation and MDD (37), and other 

studies reporting MDD phenotypes associated with inflammatory and metabolomic 
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markers (4,38). Higher levels of fibrinogen (an acute-phase protein) have been 

related to MDD (39), antidepressant intake (39,40), drug treatment response (41) 

and remitted MDD (42,43). SHAP analysis of our most predictive models now 

reveals that fibrinogen levels are part of a multimodal signature predictive of 2-year 

chronicity in depression, with a general tendency to push the model’s decision closer 

to the ‘not-remitted’ class when fibrinogen levels are lower (Figure 3). Yet, however 

tempting, given the nonlinear multimodal nature of the predictive signature, no valid 

conclusion can be drawn as to whether these results indicate high or low fibrinogen 

as a risk factor for 2-year chronicity (44). Moreover, considering a group of 

interacting analytes rather than one isolated analyte can improve biological-

mechanistic insights. For this reason, we used protein-protein interaction networks 

and enrichment analysis (Figure 4). In this light it also deserves mentioning that the 

other lipid-metabolic and immunomarkers together have considerably higher 

predictive value than fibrinogen levels alone (e.g. in the combined model, the added 

absolute mean SHAP values of predictive proteomic analytes excluding fibrinogen 

equals 1.75, versus 0.27 of fibrinogen alone). It is only the combination of variables 

that ultimately enables the model to predict with good performance (AUROC = 0.78) 

– illustrative for the idea that different data modalities provide complementary 

information (25). 

 

Although a signature of lipid metabolite levels has been associated with MDD (45),  

and a lipid-related signature was part of the multimodal signature found most 

predictive of 2-year chronicity, lipidomics as unimodal data source did not result in 

good 2-year chronicity predictions in MDD. Adding lipidomic measurements to 

clinical data did result in slight improvement in predictions, although not significant. 
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These results could indicate that the coverage of our lipidomics platform was not 

broad enough, or that other metabolites than lipids might be more relevant for 

prediction. Likewise, one transcriptomic study has shown differential gene 

expression associations with MDD on a group level (46), but our study showed that 

these findings did not translate to good individual predictions of 2-year chronicity in 

MDD. Moreover, adding transcriptomic to clinical data seemed to only add noise to 

the model, i.e. worsen model prediction performance, although this difference did not 

reach statistical significance. Although the model informed by all data modalities 

performed better than the clinical-only model (AUROC = 0.70 vs 0.63), integrating all 

-omics data with clinical data did not yield improved predictions over the combined 

proteomics and clinical model, indicating redundancy of the other -omic data in our 

NESDA sample considering 2-year MDD remission predictions (Figure 2A-B).  

 

Combining several PRSs resulted in prediction accuracy significantly above the 

chance level, even more so than lipidomic and transcriptomic data, and showed 

similar performance metrics to the model informed by clinical data only. However, 

adding this genetic data to clinical data did not substantially augment prediction 

performance (AUROC = 0.63 vs 0.64, p > 0.3). Although our results did not show 

any predictive benefit of combining PRS and clinical data, future PRS improvements, 

combined with more suited genetic dimensionality reduction techniques for machine 

learning based predictions, could result in the further improvement of multimodal 

predictions for complex traits.  

 

The observation that the model informed by all data modalities did underperform 

compared to the model informed by clinical and proteomic data (AUROC = 0.70 vs 
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0.78) – even though this observed difference was not significant (p = 0.234) – can be 

explained by 1) the fact that sample size for the multimodal informed model was 

considerably less whilst including more features (features = 254 vs features = 192), 

meaning that the model using all data modalities ideally needed more, but learned 

from less samples during training (n = 405 vs n = 490), and 2) because the inclusion 

of data modalities that were less predictive than the combination of clinical and 

proteomic data likely added noise to the model, resulting in suboptimal results.  

 

Ultimately, the only model significantly outperforming the model based on clinical 

data was the model informed by both clinical and proteomic data. Additionally, 

proteomics data was most informative for unimodal data predictions. Although 

proteomic data had a larger feature space than the clinical and PRS data, this was 

not the case compared to the lipidomic and transcriptomic data that showed to be 

less predictive. Consequently, the superiority of proteomics-informed predictions in 

our study cannot solely be explained by dimensionality. Illustratively, the previous 

NESDA analysis predicting 2-year chronicity in the same set of subjects used a 

substantial larger amount of clinical variables (55 variables), but showed no 

improvement in predictions compared to our model based on only 10 clinical 

variables (balanced accuracy 62% for both models) (22). Indeed, dimensionality 

does not equal informativeness. Provided that a recent NESDA analysis including 

high dimensional epigenetic data showed poor 2-year chronicity predictions (AUROC 

= 0.571) (20), our current study indicates that, considering multiple -omic data 

modalities, proteomic biomarkers might be most informative for MDD 2-year 

chronicity prediction – most notably when combined with clinical data. Given the 

currently limited sample sizes and robustness of neuroimaging studies predicting 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2023. ; https://doi.org/10.1101/2023.01.10.523383doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523383
http://creativecommons.org/licenses/by-nd/4.0/


 17 

clinically relevant MDD outcomes (47–49), and the difficulty of integrating imaging as 

a routine clinical practice, our results warrant consideration of (immune and lipid 

metabolism focused) proteomics as a feasible approach to chronicity predictions that 

show potential for clinical relevance.  

 

Prediction and models’ performance 

Applying machine learning models entails predicting at the individual subject level 

(n=1 predictions), which might ultimately pave the way for individual clinical 

application, i.e. enable personalized psychiatry (50). For personalized psychiatry, 

accuracy and other prediction performance metrics are arguably more valuable than 

traditional statistical measures because they 1) indicate how well a model works on 

the individual subject level and 2) are the result of the model being put to practice in 

separate ‘new’ individuals, not previously ‘seen’ by the model.  

 

One might regard a balanced accuracy of 71% (i.e. our best performing model) as 

too low for use in clinical practice. In line with previous findings (51), we however 

showed that the next best thing for patients – namely interpretive predictions by 

clinicians – did perform substantially worse. Moreover, we showed clinician’s 

predictions to show high interrater variability, resulting in low interrater reliability 

(kappa = 0.32) (52). One can argue that the retrospective data shown to the 

clinicians in our study does not approximate a live clinical impression. Previous 

studies have however shown that this added source of information for predictions 

results in even worse predictions by clinicians (53,54). This does not mean live 

clinical impressions are uninformative for future predictions per se. In the light of 

multimodal prediction, live clinical impressions might yet prove to hold 
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complementary information for augmented predictions. Future studies will have to 

clarify for what type of outcome predictions (e.g. therapy response, remission), and 

in combination with what type of data, clinical impressions add a complementary 

layer of predictive information. 

 

A next much needed step for personalized psychiatry is to implement and test 

machine learning based clinical decision making in clinical trials. Clinical 

implementation of machine learning models showed promise in preliminary studies 

(55,56). Importantly, recent clinical trials successfully showed the superiority of 

machine learning-based clinical decision making compared to conventional clinical 

decision making for medical fields outside of psychiatry (57,58). To facilitate in future 

prospects of personalized, machine learning-aided decision making in psychiatry, we 

view our study as an important clue for the type of data that can be informative for 

prediction models put into practice, specifically with the aim of predicting an 

individual’s naturalistic course of MDD from baseline data. Such predictions may 

ultimately benefit patients’ outcomes by providing clinically actionable information. 

For example, in cases predicted to show a chronic disease progression, intensifying 

therapy early on might improve disease course.  

 

Strengths and limitations 

We were able to train, (cross-)validate and test our models on subject data collected 

as part of the longitudinal NESDA study. Likewise, human prediction evaluation was 

solely based on data of subjects included in the NESDA database. Unfortunately, 

without any validation of our model on data external to the NESDA dataset, robust 

assessment of the generalizability of our model’s performance is currently lacking. 
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Given that we carefully prevented any data leakage from final test set to the train set 

in all our imputation, preprocessing and feature selection procedures (i.e. prevented 

‘double dipping’) (23,59,60), used balanced train and test sets (61), used separate 

repeated 10-fold cross-validation procedures in the train sample independent of the 

final test set (23,24), used a sample size for prediction analysis of several hundreds 

(23), and tested final model performance on an outheld test sample (23,47,60), we 

however believe that, at the least, the multimodal features that were found to be 

most predictive represent robust findings.  

 

We therefore argue that the importance of this work primarily lies in the observations 

that 1) there are blood-based variables that can be individually predictive for the 

naturalistic course of MDD; 2) individual predictions become more accurate when 

using multi-modal data; 3) high-dimensional predictive signatures might not be 

detected using conventional linear machine learning models. Secondary, zooming in 

on the multimodal predictive signature that resulted in the best predictions, this 

signature was found to consist of baseline symptom severity, personality traits and 

peripheral blood biomarkers related to the immune system and lipid metabolism. 

These results are useful in guiding variable inclusion decisions in future MDD 

chronicity prediction studies. 

 

We chose 2-year chronicity instead of a longer period of enduring depression 

because i) Persistent Depressive Disorder is defined as depression lasting for at 

least 2 years in DSM-5 300.4 (F34.1) (62), and ii) sufficient sample size was 

available only for the 2-year time period (although still suboptimal for the model 

informed by all modalities). Inherently, our ‘chronicity’ label is based on a somewhat 
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arbitrary cutoff, both by time span and diagnostic criteria, that might condense truly 

chronic phenotypes from delayed remission cases in the same group. This could be 

an explanation for prediction performance that is mediocre at best when using 

unimodal -omics data, and below excellent when using multimodal data.   

 

Conclusion 

To our knowledge, this is the first study to show that the combination of multimodal 

biological and clinical data significantly improves the accuracy of individual 

predictions of 2-year chronicity in MDD in a relatively large sample (total n = 804). 

Moreover, this study shows that what is predictive of remission of MDD within 2 

years is a combined signature of symptom severity, personality traits and immune 

and lipid metabolism related proteins at baseline. We argue that future studies that 

investigate the potential of clinical application of MDD course prediction models are 

much needed, and should consider including both clinical and proteomic data 

focused on immune and lipid metabolism markers in their data.   
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Table 1. Sample characteristics - The table shows characteristics of the total sample 
divided by the presence or absence of a unipolar depression diagnosis (major depressive 
disorder or dysthymia) 2 years after baseline measurement. Data are given as mean 
(standard deviation) or N (%). MDD: major depressive disorder; Dysth: dysthymia; DD double 
depression (both MDD and Dysth diagnosis).  
 
 
 
 
 
 
 

Presence of unipolar depression 
at follow-up 

No Yes Statistics p-value p-value 
(Bonferroni 
corrected) 

Sample size N 407 (51%) 397 (49%)    

Age 41.07 (12.55) 42.89 (11.83) F = 4.49 0.03 0.28 

Male 133 (33%) 145 (37%) χ2 = 1.15 0.28 1 

Years of education 11.60 (3.17) 11.51 (3.37) F = 0.14 0.71 1 

BMI 26.06 (5.43) 26.10 (5.54) F = 0.0086 0.93 1 

Recruitment type (primary 
care/specialized care/general 
population) 

162/209/36 143/229/25 χ2 = 3.96 0.14 1 

DD/Dysth/MDD diagnosis at 
baseline 

75/16/316 122/18/257 χ2 = 17.28 <0.0002 <0.002* 

Antidepressant use at baseline 166 (41%) 189 (48%) χ2 = 3.52 0.06 0.49 

Antidepressant use at 2-yr 
follow-up 

127 (31%) 175 (44%) χ2 = 13.66 0.0002 <0.002* 

Psychopharmaca use (any type) 
past 3 years at baseline 

173 (43%) 194 (49%) χ2 = 3.03 0.08 0.66 
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Figure 1. Predictive performance of XGBoost models informed by either proteomic data (left), 
clinical data (middle), or PRS (genetic) data (right). ROC curves are plotted separately, with 
the reported area under the ROC curve (AUROC) and the maximum balanced accuracy shown 
for the optimal class probability cutoff. For each model a confusion matrix is shown with 
additional performance metrics.  
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Figure 2. A – Predictive performance of XGBoost models trained on several single data 
modalities. The y-axis shows the data modality used for training and testing the model. The x-
axis shows the AUROC score of each model tested on the outheld test set. B – The same as A, 
but results for multimodal data are shown. C-D – ROC-curve plotted with AUROC for the 
XGBoost model informed by both clinical and proteomic data. The maximum balanced 
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accuracy is shown on the ROC curve, showing the optimal probability cutoff for highest 
classification accuracy. On the right, the confusion matrix with additional performance 
metrics is shown for this model. E – Performance metrics (AUROC) of the XGBoost models 
informed by only clinical, only proteomic, or the combination of both are shown, with the 
95% confidence interval of the AUROC indicated by the whiskers. A significant difference in 
AUROC values between model’s is indicated by an asterisk.  
 
 

 
Figure 3. A – SHAP analysis results visualized for the XGBoost model informed by both clinical 
and proteomic data. On the y-axis, the top 10 most important features (ranked by absolute 
average SHAP value, i.e. global SHAP value) are shown with their respective global SHAP 
value. Each dot in the graph indicates a single prediction (i.e. one subject). The position of the 
dots on the x-axis shows the impact that the feature value had for that individual prediction, 
with a negative SHAP value meaning that the model’s decision was pushed towards a ‘not 
remitted’ classification, and a positive SHAP value meaning that the feature’s value pushed 
the model’s decision towards predicting the ‘remitted’ class. Colors indicate the relative 
feature value measured in a subject (relative to the mean of all subjects), with yellow 
indicating a relatively low value, and purple a relatively high value. Note that most dots are 
stacked on each other due to the fact that a range of feature values for several individuals 
can result in similar SHAP values (i.e., different feature values can influence the model’s 
decision by the same magnitude and direction). B – Similar to A, but here SHAP results of the 
XGBoost model informed by proteomic data only is shown. Proteomic abbreviations shown 
on the y-axis are listed by full name in Supplementary Table 1. IDS: Symptom Severity 
(continuous measure); IDSSEV: Symptom Severity (categorical measure).  
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Figure 4. A – densely connected protein-protein subnetworks and subsequent enrichment 

analysis results for the informative proteomic analytes in the combined clinical and proteomic 

data model. B – similar to A, but results of the informative analytes of the proteomics-only 

model are shown. GO: gene ontology database; WP: WikiPathways database; RHS-A: 

Reactome pathway database.  
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Figure 5. Results of clinical psychiatrist’s predictions of 2-year MDD chronicity, compared to 
the XGBoost model’s performance. The x-axis shows the balanced accuracy of predictions. 
The dots represent a psychiatrist’s or model’s predictive performance, with the color 
indicating on the basis of what information predictions were based.  
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