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Abstract

The ability to individually predict disease course of major depressive disorder (MDD)
is essential for optimal treatment planning. Here, we use a data-driven machine
learning approach to assess the predictive value of different sets of biological data
(whole-blood proteomics, lipid-metabolomics, transcriptomics, genetics), both
separately and added to clinical baseline variables, for the longitudinal prediction of
2-year MDD chronicity (defined as presence of MDD diagnosis after 2 years) at the
individual subject level. Prediction models were trained and cross-validated in a
sample of 643 patients with current MDD (2-year chronicity n = 318) and
subsequently tested for performance in 161 MDD individuals (2-year chronicity n =
79). Proteomics data showed best unimodal data predictions (AUROC = 0.68).
Adding proteomic to clinical data at baseline significantly improved 2-year MDD
chronicity predictions (AUROC = 0.63 vs AUROC = 0.78, p = 0.013), while the
addition of other -omics data to clinical data did not yield significantly increased
model performance. SHAP and enrichment analysis revealed proteomic analytes
involved in inflammatory response and lipid metabolism, with fibrinogen levels
showing the highest variable importance, followed by symptom severity. Machine
learning models outperformed psychiatrists’ ability to predict two-year chronicity
(balanced accuracy = 71% vs 55%). This study showed the added predictive value of
combining proteomic, but not other -omic data, with clinical data. Adding other -omic
data to proteomics did not further improve predictions. Our results reveal a novel
multimodal signature of MDD chronicity that shows clinical potential for individual

MDD disease course predictions from baseline measurements.
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Introduction

Major Depressive Disorder (MDD) is a heterogenous disorder where both treatment
response and prognosis vastly differ between individuals. Around 20-25% of MDD
patients are at risk for chronic depression, independent of initial treatment type (1).
The ability to individually predict disease course early on is essential for optimal
treatment planning, as this could allow for early treatment intensification for patients
with a low long-term chance of remission, and potentially bypassing initial first-choice

treatments.

Previous studies have yielded insights in clinical, psychological and biological
markers for chronicity in depression. Chronicity in depression has been related to
longer symptom duration, increased symptom severity and earlier age of onset (1,2);
higher levels of neuroticism and lower levels of extraversion and conscientiousness
(3); and various inflammatory markers (4), low levels of vitamin D (5), metabolic
syndrome (6) and lower cortisol awakening response (7). Yet, statistically significant
differences on a group level will not always be useful for prediction of disease course
for the individual, either due to low effect sizes or redundancy with respect to other
more predictive variables. While multiple studies showed biological data can be used
to make accurate diagnostic predictions of MDD cases and healthy controls (8-10),
individual prediction of disease course in depression has proven to be a difficult task,
with a recent systematic review and meta-analysis showing an average accuracy of
60% for predicting remission or resistance after treatment in adequate-quality studies

(included studies used a follow-up time span of 8 to 24 weeks) (11).
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One challenge with predicting MDD outcomes is that its etiology and phenotype
differ widely between individuals, and large interindividual variation may exist with
regard to relevant predictors (12—15). Especially when only a limited set of predictor
variables are included for prediction modeling, chances of accurately capturing
complex multimodal system dynamics (i.e. the biopsychosocial model of depression)
with those variables further decrease. With the availability of novel machine learning
methods that can learn complex high-dimensional non-linear patterns in data, a
solution to this problem might be to incorporate multiple high-dimensional data

sources, each containing putative predictive factors.

While several studies have tried to predict MDD course from a range of different data
modalities (e.qg. clinical variables, metabolomics, imaging data, epigenetics) (16—20),
combining multiple data modalities for predicting MDD chronicity has been relatively
scarce. In one recent analysis of the Netherlands Study of Depression and Anxiety
(NESDA) cohort (21) that integrated clinical, psychological and biomarker data,
predictions of two-year chronicity in MDD reached a balanced accuracy of 62% using
a penalized linear model (22). Adding limited biological data showed no improvement
in prediction accuracy over the combination of clinical and psychological data (22).
Another NESDA analysis using a similar model with epigenetic data showed an AUC
(Area Under the Curve) of 0.571 for predicting the same two-year chronicity outcome
(20). Remission after 6 years was predicted more accurately, but the reported AUC
(0.724) was based on 10-fold cross-validation results, not on outheld test set results,
possibly leading to overoptimistic performance metrics (23,24). Interestingly, neither
adding genome wide SNP (single nucleotide polymorphism) data, nor adding 27

clinical, demographical and lifestyle variables improved predictions (20). This is an
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important finding as no other studies have integrated features from multiple high-
dimensional biological data (i.e., multiomic data) and clinical data to improve
predictions of MDD disease course. This contrasts with other fields of medicine,
where multimodal data integration has led to significant advancements in the field of

precision medicine (25), most notably in the field of precision oncology (26,27).

To further investigate the potential of multimodal data in the field of precision
psychiatry, the current study explores the potential of integrating multi-omic, clinical,
psychological and demographical data. To this end, we used high-dimensional
multimodal data collected in 804 NESDA subjects with MDD (21). In a subset of 643
individuals (80% of total sample), using combinations of lipid-metabolomic,
proteomic, transcriptomic, genetic, demographic, psychological and clinical data
measured at baseline (i.e. from the moment of MDD diagnosis), we used cross-
validated machine learning models to predict MDD remission after two years of
follow-up. To allow for non-linear pattern detection, and to assess the potential
benefit of non-linear models over linear models in multimodal pattern detection, we
employed several linear and non-linear machine learning algorithms (elastic net,
support vector machine, random forest, XGBoost, artificial neural network). The
validity of our models’ predictions was then tested in a separate outheld test group of

161 individuals (20% of total sample).

To embed our machine learning models’ performance metrics in the context of
clinical expertise (i.e. how good or bad are predictive performances from a clinicians’
point of view), we additionally let four clinical psychiatrists predict 2-year chronicity in

a subset of 200 individuals on the basis of extensive clinical information.
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Methods and Materials

Participants

In the current study we included data that was collected as part of a larger, multi-
center longitudinal study (NESDA, n = 2981, see Supplementary Methods) (21). We
included a subsample from the NESDA cohort consisting of 804 subjects with the
following inclusion criteria (identical to our previous study (22)): (i) presence of a
DSM-IV MDD or dysthymia diagnosis (or both) in the past 6 months at baseline,
established using the structured Composite International Diagnostic Interview (CIDI,
version 2.1) (28), (ii) confirmation of depressive symptoms in the month prior to
baseline either by the CIDI or the Life Chart Interview (LCI) (29); and (iii) availability
of 2-year follow-up data on DSM-IV diagnosis and depressive symptoms measures
with the CIDI. The ethical review boards approved the NESDA research protocol and

all participants signed written informed consent.

We defined two outcome groups: remission or no remission two years after follow-
up. We based the outcome on the presence or absence of a current unipolar
depression diagnosis (6-month recency MDD diagnosis or dysthymic disorder) at 2-
year follow-up, according to DSM-IV criteria. Table 1 lists sample characteristics and

statistics for both outcome groups of all 804 included subjects.

Clinical variables

We included a set of 10 relevant clinical, psychological and demographical predictor
variables (to which we will now refer to as ‘clinical variables’), including age, sex,
years of education, depressive symptom severity (IDS-SR questionnaire) (30) (both

as total score and severity category ranging from one to five) and five personality
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dimensions (neuroticism, extraversion, openness to experience, agreeableness and
conscientiousness), measured with the NEO five-factory inventory (31). Selection of
the included clinical variables was based on the results of our previous study in the
same NESDA subsample where depressive symptom severity and personality

dimensions proved to be most predictive (22).

Proteomic variables

For 611 of the included 804 subjects, a panel of 243 analytes involved in
endocrinological, immunological, metabolic and neurotrophic pathways was
assessed in serum at baseline. A full list of the 243 analytes and their inclusion in
predictive modelling with missing percentages per variable can be found in Table S1.
The Supplementary Methods provides further details on data collection and data

processing.

Lipid and metabolite variables

A lipid-focused metabolomics platform was used to measure 231 lipids, metabolites
and metabolite ratios in plasma at baseline for 790 of the included 804 subjects.
From now on, we refer to this data as ‘lipidomic data’. The Supplementary Methods

describes further lipidomic data details.

Transcriptomic variables
Transcriptome-wide expression levels were measured in whole blood for 669 of the
804 included individuals. For each subject, 44 241 microarray probes targeting

23 588 genes were available for analysis. See Supplementary Methods for details.
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Genotype data

Using the LDpred package in R (32), a total of 29 polygenic risk scores (PRSs) were
calculated for 701 of the 804 included subjects with available genotype data. Further
details about DNA extraction and PRS calculation can be found in the
Supplementary Methods. Table S3 lists all 29 phenotypes for which polygenic scores

were calculated (e.g. MDD, anxiety, neuroticism etc.).

Analysis
All analyses were performed using the programming languages R (version 4.0.3)
and Python (version 3.8.5). All R and Python code is made publicly available on

GitHub at https://github.com/pchabets/chronicity-prediction-depression.

Machine learning analysis

Full details about data preprocessing, train and test procedures and model
evaluation are described in the Supplementary Methods section. In short, first,
XGBoost models (33) were trained using each data modality separately to predict 2-
year chronicity. Second, to investigate possible prediction augmentation effects of
combining clinical and high-dimensional biological data, separate XGBoost models
were trained using the combination of clinical data added to each of the separate -
omics data sources to predict 2-year chronicity. Third, another XGBoost model was

trained using the combination of all data modalities together.

Based on the combination of data that proved to result in the best XGBoost model
predictions (i.e. proteomics + clinical data, see Results section), we additionally

investigated the nature of the multimodal predictive signature by running different
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linear and non-linear algorithms including elastic net, support vector machine (SVM),
random forest (RF) and a feed-forward densely connected artificial neural network
(ANN) using 1) only clinical features (i.e. severity scores, psychological and
demographical variables); 2) only proteomics data, and 3) the combination of both
data modalities. For each model prediction augmentation by adding proteomics data
to the clinical data was evaluated using the area under the receiver operating
characteristic (AUROC). All performance metrics reported are from validating the

trained models on outheld test data (see Supplementary Methods for details).

Feature importance analysis

Feature importance analysis was based on computing Shapley values for every
feature included in the best performing XGBoost model, using the SHAP
implementation for XGBoost (34,35). SHAP allows for calculating feature importance
levels per individual prediction, and deriving global feature rankings according to
those levels (35). Ranking features according to their overall importance is done by
using the mean of absolute Shapley values computed for all individual predictions
(35). Feature ranking and relation to measured variable values was plotted using the
SHAP and SHAPforxgboost packages (35). Protein-protein interaction and
enrichment analysis was performed using the metascape platform (36). Further

details are provided in the Supplementary Methods section.

Human predictions
Four human raters (trained and board-certified psychiatrists) independently predicted
2-year chronicity for 200 MDD subjects using clinical baseline data. Each rater was

given two sets of samples for prediction. In the first sample, raters had to predict 2-
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year chronicity status of subjects on the basis of the same 10 clinical baseline
predictor variables used by the machine learning models. In the second sample,
raters additionally had access to baseline data on 1) dysthymia diagnosis; 2) MDD
history; 3) anxiety diagnosis (lifetime); 4) one-month recency of anxiety disorder
symptoms; 5) alcohol diagnosis status (lifetime); 6) recency of alcohol abuse or
dependency; 7) total disease history (totaling 17 baseline predictor variables).
Further details about the human prediction process and interrater agreement

analysis are described in the Supplementary Methods section.

Results

Proteomic data is most informative for predicting 2-year chronicity

We first tested how well 2-year chronicity in MDD can be predicted for each data
modality separately. For each of the available data modalities, the train, validation
and test sets used for the classification models approximated balanced distributions
of the two outcome classes (Table S4). For unimodal data predictions, the model
using proteomic data showed highest performance (AUROC = 0.67, balanced
accuracy = 0.68), followed by the models informed by clinical data (AUROC = 0.63,
balanced accuracy = 0.62) and genetic data (AUROC = 0.61, balanced accuracy =
0.60) (Figure 1, Table S4). All models reached accuracy levels significantly above
chance level. For the model informed by PRSs, accuracy only reached a significant
accuracy level when using a cutoff on the ROC curve that made the model
significantly biased towards false negative classifications (McNemar’s test, p =

1.86e-06) (Table S4).

Combining clinical and proteomic data augments prediction performance

10
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Models informed by both clinical and omics data outperformed models informed by
unimodal omics data in every case, most robustly for combining proteomic and
clinical data (figure 2). All combinations of clinical and omics data resulted in higher
predictive performance than the model informed by clinical data only, except for
combining clinical and transcriptomic data (Figure 2). Although a clear trend in
augmented predictions by combining omics with clinical data was observed for all
omics data (Figure 2), only the augmented performance of adding proteomic to
clinical data reached statistical significance (AUROC = 0.78 versus AUROC = 0.63,

p = 0.013).

To further investigate the augmented prediction of MDD 2-year chronicity when
adding proteomic to clinical data, we used several linear and non-linear machine
learning models informed by clinical, proteomic, and the combination of both data
(Table S4). Informing machine learning models by only proteomic data resulted in
low predictive performance for linear models, compared to non-linear models (Figure
S2). Augmented predictive performance by adding proteomic data to clinical data
was not found for any linear model, but was observed for all non-linear models, most
pronounced for XGBoost, and reached statistical significance only for the XGBoost

model (p = 0.013, Figure S2).

Variable importance analysis shows predictive pattern enrichment of analytes
involved in inflammatory response and lipid metabolism

SHAP-analysis was performed on the best performing unimodal and multimodal
informed models (i.e. XGBoost informed by proteomic data and XGBoost informed
by clinical and proteomic data). Both for the proteomics-only model, and the model

informed by both clinical and proteomic data, blood fibrinogen levels showed highest

11


https://doi.org/10.1101/2023.01.10.523383
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.10.523383; this version posted January 11, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

mean absolute SHAP values (Figure 3, Table S5). Symptom severity at baseline
showed to be the most predictive clinical feature for 2-year chronicity in MDD (Figure
3, Table S5). For the proteomics-only model, 109 analytes had an average absolute
SHAP value > 0 (i.e. were informative for predictions). For the combined data model,
42 features were informative for predicting 2-year chronicity in MDD model, including
38 proteomic analytes. Age, years of education and sex were not attributed any

SHAP values in the multimodal XGBoost model (Table S5).

Proteomic analytes that were informative in the combined data model and in the
proteomics-only model were analyzed separately for protein-protein interactions and
pathway enrichments. Network analysis of protein-protein interactions revealed
densely connected subnetworks associated with inflammatory response and lipid
metabolism for both the unimodal and multimodal XGBoost model, with enrichment
of Reactome -, GO - and WikiPathway terms related to interleukin-10 signaling,
chemokine signaling pathway, cholesterol esterification and reverse cholesterol

transport (see Figure 4).

Human prediction of 2-year chronicity from clinical data

Four clinical psychiatrists independently predicted 2-year chronicity retrospectively
from baseline data for 200 subjects with balanced subjects’ outcome distribution (2-
year chronicity n = 100, remitted n = 100). Using the 10 clinical features that the
clinical XGBoost model was informed by, human raters had an average accuracy of
0.51 (min = 0.35, max = 0.63, Figure 5). When additional relevant clinical baseline
data was available to the human raters, the raters’ average prediction accuracy
increased to 0.55 (min = 0.33, max = 0.65, Figure 5). Interrater reliability between the

four raters was low (Fleiss’ kappa = 0.32, p = 7.26e-7). Both the XGBoost model
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trained on the same clinical data, and on combined clinical and proteomics data,

outperformed all human predictions (Figure 5).

DISCUSSION

In this study we showed that longitudinal prediction of 2-year MDD chronicity
substantially benefits from integrating multimodal data compared to relying on
unimodal data. Specifically, model predictions significantly improved when combining
proteomic and clinical data (Figure 2). Our model informed by only clinical data
showed identical performance to the previously reported performance of a linear
model using multiple data modalities, including those 10 clinical variables, in the
same dataset (22). Performance of our model predictions significantly increased
when adding proteomic data, but only for non-linear models, suggesting superior
multimodal predictive pattern detection by non-linear models over linear models
(Figure S2). Subsequent SHAP analysis revealed a multimodal predictive signature
consisting of baseline symptom severity, personality traits and peripheral blood

biomarkers related to the immune system and lipid metabolism.

Interpretation of predictive features

Findings of our SHAP analysis are consistent with a previous NESDA study that
showed symptom severity to be predictive of MDD chronicity (22). Interestingly, while
our proteomic results indicate a predictive inflammatory component, the same study
previously found that including three inflammatory markers (CRP, IL6, TNF-alpha)
did not improve predictions, indicating the need for higher proteomic resolution (22).
Detection of a predictive inflammatory signature is particularly insightful given the
established association between low-grade inflammation and MDD (37), and other

studies reporting MDD phenotypes associated with inflammatory and metabolomic
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markers (4,38). Higher levels of fibrinogen (an acute-phase protein) have been
related to MDD (39), antidepressant intake (39,40), drug treatment response (41)
and remitted MDD (42,43). SHAP analysis of our most predictive models now
reveals that fibrinogen levels are part of a multimodal signature predictive of 2-year
chronicity in depression, with a general tendency to push the model’s decision closer
to the ‘not-remitted’ class when fibrinogen levels are lower (Figure 3). Yet, however
tempting, given the nonlinear multimodal nature of the predictive signature, no valid
conclusion can be drawn as to whether these results indicate high or low fibrinogen
as a risk factor for 2-year chronicity (44). Moreover, considering a group of
interacting analytes rather than one isolated analyte can improve biological-
mechanistic insights. For this reason, we used protein-protein interaction networks
and enrichment analysis (Figure 4). In this light it also deserves mentioning that the
other lipid-metabolic and immunomarkers together have considerably higher
predictive value than fibrinogen levels alone (e.g. in the combined model, the added
absolute mean SHAP values of predictive proteomic analytes excluding fibrinogen
equals 1.75, versus 0.27 of fibrinogen alone). It is only the combination of variables
that ultimately enables the model to predict with good performance (AUROC = 0.78)
— illustrative for the idea that different data modalities provide complementary

information (25).

Although a signature of lipid metabolite levels has been associated with MDD (45),
and a lipid-related signature was part of the multimodal signature found most
predictive of 2-year chronicity, lipidomics as unimodal data source did not result in
good 2-year chronicity predictions in MDD. Adding lipidomic measurements to

clinical data did result in slight improvement in predictions, although not significant.
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These results could indicate that the coverage of our lipidomics platform was not
broad enough, or that other metabolites than lipids might be more relevant for
prediction. Likewise, one transcriptomic study has shown differential gene
expression associations with MDD on a group level (46), but our study showed that
these findings did not translate to good individual predictions of 2-year chronicity in
MDD. Moreover, adding transcriptomic to clinical data seemed to only add noise to
the model, i.e. worsen model prediction performance, although this difference did not
reach statistical significance. Although the model informed by all data modalities
performed better than the clinical-only model (AUROC = 0.70 vs 0.63), integrating all
-omics data with clinical data did not yield improved predictions over the combined
proteomics and clinical model, indicating redundancy of the other -omic data in our

NESDA sample considering 2-year MDD remission predictions (Figure 2A-B).

Combining several PRSs resulted in prediction accuracy significantly above the
chance level, even more so than lipidomic and transcriptomic data, and showed
similar performance metrics to the model informed by clinical data only. However,
adding this genetic data to clinical data did not substantially augment prediction
performance (AUROC = 0.63 vs 0.64, p > 0.3). Although our results did not show
any predictive benefit of combining PRS and clinical data, future PRS improvements,
combined with more suited genetic dimensionality reduction technigues for machine
learning based predictions, could result in the further improvement of multimodal

predictions for complex traits.

The observation that the model informed by all data modalities did underperform

compared to the model informed by clinical and proteomic data (AUROC = 0.70 vs

15
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0.78) — even though this observed difference was not significant (p = 0.234) — can be
explained by 1) the fact that sample size for the multimodal informed model was
considerably less whilst including more features (features = 254 vs features = 192),
meaning that the model using all data modalities ideally needed more, but learned
from less samples during training (n = 405 vs n = 490), and 2) because the inclusion
of data modalities that were less predictive than the combination of clinical and

proteomic data likely added noise to the model, resulting in suboptimal results.

Ultimately, the only model significantly outperforming the model based on clinical
data was the model informed by both clinical and proteomic data. Additionally,
proteomics data was most informative for unimodal data predictions. Although
proteomic data had a larger feature space than the clinical and PRS data, this was
not the case compared to the lipidomic and transcriptomic data that showed to be
less predictive. Consequently, the superiority of proteomics-informed predictions in
our study cannot solely be explained by dimensionality. lllustratively, the previous
NESDA analysis predicting 2-year chronicity in the same set of subjects used a
substantial larger amount of clinical variables (55 variables), but showed no
improvement in predictions compared to our model based on only 10 clinical
variables (balanced accuracy 62% for both models) (22). Indeed, dimensionality
does not equal informativeness. Provided that a recent NESDA analysis including
high dimensional epigenetic data showed poor 2-year chronicity predictions (AUROC
= 0.571) (20), our current study indicates that, considering multiple -omic data
modalities, proteomic biomarkers might be most informative for MDD 2-year
chronicity prediction — most notably when combined with clinical data. Given the

currently limited sample sizes and robustness of neuroimaging studies predicting
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clinically relevant MDD outcomes (47-49), and the difficulty of integrating imaging as
a routine clinical practice, our results warrant consideration of (immune and lipid
metabolism focused) proteomics as a feasible approach to chronicity predictions that

show potential for clinical relevance.

Prediction and models’ performance

Applying machine learning models entails predicting at the individual subject level
(n=1 predictions), which might ultimately pave the way for individual clinical
application, i.e. enable personalized psychiatry (50). For personalized psychiatry,
accuracy and other prediction performance metrics are arguably more valuable than
traditional statistical measures because they 1) indicate how well a model works on
the individual subject level and 2) are the result of the model being put to practice in

separate ‘new’ individuals, not previously ‘seen’ by the model.

One might regard a balanced accuracy of 71% (i.e. our best performing model) as
too low for use in clinical practice. In line with previous findings (51), we however
showed that the next best thing for patients — namely interpretive predictions by
clinicians — did perform substantially worse. Moreover, we showed clinician’s
predictions to show high interrater variability, resulting in low interrater reliability
(kappa = 0.32) (52). One can argue that the retrospective data shown to the
clinicians in our study does not approximate a live clinical impression. Previous
studies have however shown that this added source of information for predictions
results in even worse predictions by clinicians (53,54). This does not mean live
clinical impressions are uninformative for future predictions per se. In the light of

multimodal prediction, live clinical impressions might yet prove to hold
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complementary information for augmented predictions. Future studies will have to
clarify for what type of outcome predictions (e.g. therapy response, remission), and
in combination with what type of data, clinical impressions add a complementary

layer of predictive information.

A next much needed step for personalized psychiatry is to implement and test
machine learning based clinical decision making in clinical trials. Clinical
implementation of machine learning models showed promise in preliminary studies
(55,56). Importantly, recent clinical trials successfully showed the superiority of
machine learning-based clinical decision making compared to conventional clinical
decision making for medical fields outside of psychiatry (57,58). To facilitate in future
prospects of personalized, machine learning-aided decision making in psychiatry, we
view our study as an important clue for the type of data that can be informative for
prediction models put into practice, specifically with the aim of predicting an
individual’s naturalistic course of MDD from baseline data. Such predictions may
ultimately benefit patients’ outcomes by providing clinically actionable information.
For example, in cases predicted to show a chronic disease progression, intensifying

therapy early on might improve disease course.

Strengths and limitations

We were able to train, (cross-)validate and test our models on subject data collected
as part of the longitudinal NESDA study. Likewise, human prediction evaluation was
solely based on data of subjects included in the NESDA database. Unfortunately,
without any validation of our model on data external to the NESDA dataset, robust

assessment of the generalizability of our model’s performance is currently lacking.
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Given that we carefully prevented any data leakage from final test set to the train set
in all our imputation, preprocessing and feature selection procedures (i.e. prevented
‘double dipping’) (23,59,60), used balanced train and test sets (61), used separate
repeated 10-fold cross-validation procedures in the train sample independent of the
final test set (23,24), used a sample size for prediction analysis of several hundreds
(23), and tested final model performance on an outheld test sample (23,47,60), we
however believe that, at the least, the multimodal features that were found to be

most predictive represent robust findings.

We therefore argue that the importance of this work primarily lies in the observations
that 1) there are blood-based variables that can be individually predictive for the
naturalistic course of MDD; 2) individual predictions become more accurate when
using multi-modal data; 3) high-dimensional predictive signatures might not be
detected using conventional linear machine learning models. Secondary, zooming in
on the multimodal predictive signature that resulted in the best predictions, this
signature was found to consist of baseline symptom severity, personality traits and
peripheral blood biomarkers related to the immune system and lipid metabolism.
These results are useful in guiding variable inclusion decisions in future MDD

chronicity prediction studies.

We chose 2-year chronicity instead of a longer period of enduring depression
because i) Persistent Depressive Disorder is defined as depression lasting for at
least 2 years in DSM-5 300.4 (F34.1) (62), and ii) sufficient sample size was
available only for the 2-year time period (although still suboptimal for the model

informed by all modalities). Inherently, our ‘chronicity’ label is based on a somewhat
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arbitrary cutoff, both by time span and diagnostic criteria, that might condense truly
chronic phenotypes from delayed remission cases in the same group. This could be
an explanation for prediction performance that is mediocre at best when using

unimodal -omics data, and below excellent when using multimodal data.

Conclusion

To our knowledge, this is the first study to show that the combination of multimodal
biological and clinical data significantly improves the accuracy of individual
predictions of 2-year chronicity in MDD in a relatively large sample (total n = 804).
Moreover, this study shows that what is predictive of remission of MDD within 2
years is a combined signature of symptom severity, personality traits and immune
and lipid metabolism related proteins at baseline. We argue that future studies that
investigate the potential of clinical application of MDD course prediction models are
much needed, and should consider including both clinical and proteomic data

focused on immune and lipid metabolism markers in their data.
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Presence of unipolar depression No Yes Statistics p-value p-value

at follow-up (Bonferroni
corrected)

Sample size N 407 (51%) 397 (49%)

Age 41.07 (12.55) 42.89 (11.83) F=4.49 0.03 0.28

Male 133 (33%) 145 (37%) x> =1.15 0.28 1

Years of education 11.60 (3.17) 11.51 (3.37) F=0.14 0.71 1

BMI 26.06 (5.43) 26.10 (5.54) F =0.0086 0.93 1

Recruitment type (primary 162/209/36 143/229/25 X>=3.96 0.14 1

care/specialized care/general

population)

DD/Dysth/MDD diagnosis at 75/16/316 122/18/257 x>=17.28 <0.0002 <0.002*

baseline

Antidepressant use at baseline 166 (41%) 189 (48%) x> =3.52 0.06 0.49

Antidepressant use at 2-yr 127 (31%) 175 (44%) x>=13.66  0.0002 <0.002*

follow-up

Psychopharmaca use (any type) 173 (43%) 194 (49%) x*>=3.03 0.08 0.66

past 3 years at baseline

Table 1. Sample characteristics - The table shows characteristics of the total sample
divided by the presence or absence of a unipolar depression diagnosis (major depressive
disorder or dysthymia) 2 years after baseline measurement. Data are given as mean
(standard deviation) or N (%). MDD: major depressive disorder; Dysth: dysthymia; DD double
depression (both MDD and Dysth diagnosis).
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Figure 1. Predictive performance of XGBoost models informed by either proteomic data (left),
clinical data (middle), or PRS (genetic) data (right). ROC curves are plotted separately, with
the reported area under the ROC curve (AUROC) and the maximum balanced accuracy shown
for the optimal class probability cutoff. For each model a confusion matrix is shown with
additional performance metrics.
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Figure 2. A — Predictive performance of XGBoost models trained on several single data
modalities. The y-axis shows the data modality used for training and testing the model. The x-
axis shows the AUROC score of each model tested on the outheld test set. B— The same as A,
but results for multimodal data are shown. C-D — ROC-curve plotted with AUROC for the
XGBoost model informed by both clinical and proteomic data. The maximum balanced



accuracy is shown on the ROC curve, showing the optimal probability cutoff for highest
classification accuracy. On the right, the confusion matrix with additional performance
metrics is shown for this model. E — Performance metrics (AUROC) of the XGBoost models
informed by only clinical, only proteomic, or the combination of both are shown, with the
95% confidence interval of the AUROC indicated by the whiskers. A significant difference in
AUROC values between model’s is indicated by an asterisk.
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Figure 3. A — SHAP analysis results visualized for the XGBoost model informed by both clinical
and proteomic data. On the y-axis, the top 10 most important features (ranked by absolute
average SHAP value, i.e. global SHAP value) are shown with their respective global SHAP
value. Each dot in the graph indicates a single prediction (i.e. one subject). The position of the
dots on the x-axis shows the impact that the feature value had for that individual prediction,
with a negative SHAP value meaning that the model’s decision was pushed towards a ‘not
remitted’ classification, and a positive SHAP value meaning that the feature’s value pushed
the model’s decision towards predicting the ‘remitted’ class. Colors indicate the relative
feature value measured in a subject (relative to the mean of all subjects), with yellow
indicating a relatively low value, and purple a relatively high value. Note that most dots are
stacked on each other due to the fact that a range of feature values for several individuals
can result in similar SHAP values (i.e., different feature values can influence the model’s
decision by the same magnitude and direction). B — Similar to A, but here SHAP results of the
XGBoost model informed by proteomic data only is shown. Proteomic abbreviations shown
on the y-axis are listed by full name in Supplementary Table 1. IDS: Symptom Severity
(continuous measure); IDSSEV: Symptom Severity (categorical measure).
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Figure 4. A — densely connected protein-protein subnetworks and subsequent enrichment
analysis results for the informative proteomic analytes in the combined clinical and proteomic
data model. B — similar to A, but results of the informative analytes of the proteomics-only
model are shown. GO: gene ontology database; WP: WikiPathways database; RHS-A:

Reactome pathway database.
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Figure 5. Results of clinical psychiatrist’s predictions of 2-year MDD chronicity, compared to
the XGBoost model’s performance. The x-axis shows the balanced accuracy of predictions.
The dots represent a psychiatrist’s or model’s predictive performance, with the color
indicating on the basis of what information predictions were based.



