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Abstract  15 

One of the most famous examples of adaptive radiation is that of the Galápagos finches, 16 

where skull morphology, particularly the beak, varies with feeding ecology. Yet increasingly 17 

studies are questioning the strength of this correlation between feeding ecology and 18 

morphology in relation to the entire neornithine radiation, suggesting that other factors also 19 

significantly affect skull evolution. Here, we broaden this debate to assess the influence of a 20 

range of ecological and life history factors, specifically habitat density, migration, and 21 

developmental mode, in shaping avian skull evolution. Using 3D geometric morphometric 22 

data to robustly quantify skull shape for 354 extant species spanning avian diversity, we 23 
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fitted flexible phylogenetic regressions and estimated evolutionary rates for each of these 24 

factors across the full dataset. The results support a highly significant relationship between 25 

skull shape and both habitat density and migration, but not developmental mode. We 26 

further found heterogenous rates of evolution between different character states within 27 

habitat density, migration, and developmental mode, with rapid skull evolution in species 28 

which occupy dense habitats, are migratory, or are precocial. These patterns demonstrate 29 

that diverse factors impact the tempo and mode of avian phenotypic evolution, and that 30 

skull evolution in birds is not simply a reflection of feeding ecology.  31 

 32 

Impact summary 33 

Almost 200 years ago, Darwin found that the beaks of Galápagos finches were different 34 

shapes in birds with different diets. Nowadays, it is well established that phylogeny, 35 

allometry, and ecology can also be key factors in shaping skulls. Yet, the influence of specific 36 

aspects of ecology, as well as life history, on morphological evolution remain poorly 37 

constrained. Here, we examined whether three novel factors also influence the shape of bird 38 

skulls and rates of evolution: habitat density, migration, or developmental mode. To do so, 39 

we combine high resolution 3D quantification of skull shape with dense taxonomic sampling 40 

across living birds. Our analyses revealed that skull shape varies in birds based on the density 41 

of vegetation in their habitats and on the extent to which they migrate. However, how 42 

independent birds are when they are born does not appear to influence overall skull shape. 43 

Despite these differences in how much they influence the shape of the skull, habitat density, 44 

migration and life history all influence the rate at which bird skulls evolve. Birds evolved 45 

fastest if they live in densely vegetated habitats, migrate long distances, or are precocial. 46 
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These results add to the growing body of evidence that skull evolution in birds is impacted 47 

by a diverse range of factors, and suggests that habitat density, migration and life history 48 

should be considered in future analyses on drivers of phenotypic evolution. 49 

 50 

1. Background 51 

The Galápagos finches are a classic “textbook” example of avian adaptive radiations where 52 

beak morphology is considered an adaptation to diet (Grant and Grant 1989). In the last five 53 

years, there have been significant efforts to robustly quantify this interaction of cranial and 54 

beak shape and various ecological and developmental factors, particularly feeding ecology 55 

(Bright et al. 2016; Cooney et al. 2017; Felice and Goswami 2018; Felice et al. 2019; Navalón 56 

et al. 2019; Pigot et al. 2020, Natale and Slater 2022) which have demonstrated that this 57 

relationship is highly complex and differs across scales and across lineages. Diet has been 58 

found to strongly correlate with beak shape in waterfowl (Anseriformes; Olsen 2017), and 59 

corvids (Corvidae; Kulemeyer et al. 2009), as well as brain shape in kingfishers (Alcedinidae; 60 

Eliason et al. 2021) and skull shape in shorebirds and relatives (Charadriiformes; Natale and 61 

Slater 2022). Conversely, beak and braincase morphology are largely controlled by size in 62 

raptors (Bright et al. 2016), and diet only predicts 2.4% of skull shape variation in parrots and 63 

cockatoos (Psittaciformes; Bright et al.2019). Large-scale studies across Neornithes have also 64 

yielded variable results: diet can be predicted from linear measurements (Pigot et al. 2020) 65 

but there is only a weak correlation between diet and cranial morphology (Felice et al. 2019) 66 

or beak morphology (Navalón et al. 2019) when using geometric morphometrics. Recently, 67 

Crouch and Tobias (2022) found no association between bursts of morphological evolution 68 

and rates of dietary evolution at a global scale.  69 
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 70 

It is well established that diverse aspects of ecology can be key factors in determining both 71 

skull morphology (Dumont et al. 2016; Vidal-García and Scott Keogh 2017; da Silva et al. 72 

2018; Bardua et al. 2021) and rates of shape evolution (Millien 2006; Collar et al. 2010). 73 

Phenotypic convergence occurs when different lineages adapt to similar habitats (McGhee 74 

2011). A range of aspects of ecology have been associated with bursts in morphological 75 

evolution, such as transitions to a new ecological niche (Price et al. 2011; Sherratt et 76 

al.2017), ecological opportunity (Losos 2010), habitat stability (Crouch and Tobias 2022), and 77 

competition (Rosenzweig 1978). Given that diet, as currently measured, is an incomplete 78 

predictor of skull shape variation and evolutionary tempo across birds, alternative aspects of 79 

life history or ecology warrant investigation. Chira et al. (2018) found low support for an 80 

association between rates of beak evolution and generation length, temperature, UVB 81 

levels, range size, proportion living on islands or competition, but 80% of variation in 82 

species-level evolutionary rates remained unexplained. Across Neornithes, there are 83 

correlations between ecological traits and morphology, for instance, down feather 84 

morphology is adapted to habitats (Pap et al. 2020) and there is widespread convergence 85 

linking cranial and postcranial linear measurements to trophic niches (Pigot et al. 2020). 86 

Within passerines, there is evidence of correlations between body form and foraging mode 87 

(Fitzpatrick 1985); correlations between the lengths of the tarsus and midtoe and substrate 88 

utilisation (Miles and Ricklefs 1984); as well as a correspondence between tangers bill 89 

morphology and the filling of ecomorphospace (Vinciguerra and Burns 2021). So, there is 90 

evidently a robust correlation between ecology and avian morphology, but it is not clear 91 

which components of ecology are shaping avian skull evolution.  92 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 10, 2023. ; https://doi.org/10.1101/2023.01.09.523311doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.523311
http://creativecommons.org/licenses/by-nc-nd/4.0/


 93 

Additionally, phylogeny (Brusaferro and Insom 2009; Degrange and Picasso 2010), ontogeny 94 

(Navalón et al. 2021), allometry (Bright et al. 2016; Tokita et al. 2017; Yamasaki et al. 2018), 95 

phenotypic integration (Felice and Goswami 2018; Navalón et al. 2020; Shatkovska and 96 

Ghazali 2020), and encephalization (Marugán-Lobón et al. 2021) are all intrinsic factors 97 

which have been found to significantly influence skull morphology within various avian 98 

lineages, but most have not been assessed across the breadth of avian diversity. Collectively, 99 

this research calls into question the primacy of the relationship between diet and avian skull 100 

shape. 101 

 102 

Here, we interrogate the relationship between cranial morphology and three key 103 

ecological/life history traits: habitat density, migration behaviour, and developmental mode. 104 

We chose to investigate habitat density as one of our ecological traits due to evidence that 105 

habitat openness influences kingfisher brain shape evolution, with forest dwellers 106 

undergoing more rapid rates of brain shape evolution (Eliason et al. 2021). This study did not 107 

find any single brain shape associated with forest living and instead suggested that brain 108 

shape in the forest dwellers was diverging stochastically, possibly in response to genetic drift 109 

in fragmented habitats. Given that the skull roof tracks the brain in birds (Fabbri et al. 2017), 110 

factors which drive shifts in brain shape may also result in changes in skull shape. However, 111 

the impact of the density of habitats on the tempo and mode of avian phenotypic evolution 112 

on a broad macroevolutionary scale has not been investigated until now. 113 

 114 
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Migration is widespread in seasonal environments, with approximately 40% of all birds 115 

migrating (El-Sayed 2019), and it has well established adaptive value (Lack 1968; 116 

Hedenström 2008). It has been proposed that the genes for migratory behaviour are 117 

ancestral in all birds (Pulido 2007), and that seasonal migration is heritable and can rapidly 118 

change in response to selection (Berthold et al. 1992). Thus, transitions between migratory 119 

and sedentary behaviour does not require repeated innovation, but merely selection driving 120 

a pre-existing genetic programme (Zink 2002; Alerstam et al.  2003; Salewski and Bruderer 121 

2007; Winger et al.2012), which may explain the dynamic fluctuations in migration across 122 

extant birds (Zink 2002; Piersma et al. 2005; Winger et al.2012). Despite the rate at which 123 

avian migration can evolve, the degree to which this affects evolutionary rates has not been 124 

assessed. Migratory birds have evolved a suite of adaptations to minimise weight, such as 125 

organs reducing size before migration (Battley et al. 2000) and hearts being relatively smaller 126 

in migrants (Vágási et al. 2016). Additionally, a negative correlation has been identified 127 

between migration distance and brain size (Sol et al. 2010; Vincze 2016). As there are strong 128 

correlations between the shapes and sizes of brains and endocasts in birds (Watanabe et al. 129 

2019), and differences in endocranial anatomy are correlated with cranio-facial differences 130 

in birds (Iwaniuk and Nelson 2002; Marugán-Lobón and Buscalioni 2009; Marugán-Lobón et 131 

al. 2021), it is possible that migratory birds have also evolved weight-saving adaptations to 132 

cranial anatomy.  133 

 134 

Finally, we integrate a fundamental aspect of life history that varies widely across birds: the 135 

altricial-precocial spectrum. Precocial developmental mode, where juveniles are relatively 136 

mature at birth or hatching, is more common than altricial development among vertebrates. 137 
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This strategy was proposed to be an adaptation to high rates of predation on juveniles 138 

(Wassersug and Sperry 1977; Arnold and Wassersug 1978). By contrast, altricial 139 

developmental mode is associated with more extensive parental care which promotes rapid 140 

growth rates that can average four times that of similarly sized precocial species (Case 1978; 141 

Ricklefs 1979), as well as poor locomotor performance, and short developmental periods. 142 

This variation in life history creates different selective pressures acting on juveniles which fall 143 

into different character states along the altricial-precocial spectrum, so it has been 144 

suggested that selection on the juvenile morphology could act more strongly than selection 145 

of adult morphology for precocial species (Carrier 1996; Dial and Carrier 2012).  146 

Further, there is a correlation between degree of precociality and smaller relative brain sizes 147 

across birds (Hardie & Cooney 2022; Griesser et al. 2023), providing evidence for the 148 

altricial-precocial spectrum driving morphological differences. However, the influence of 149 

developmental mode on avian cranial shape evolution has yet to be investigated across 150 

crown birds. 151 

 152 

We used 3D geometric morphometric data from 354 species across Neornithes and a 153 

phylogenetic comparative framework to address two key questions about the relationship 154 

between avian skull shape and ecological and life history traits. Firstly, we assessed whether 155 

avian skull shape covaries with size, habitat density, migration, and developmental mode. 156 

Secondly, we tested whether evolutionary rates differ between different character states 157 

within habitat density, migration, and developmental mode. 158 

 159 

Methods 160 
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Morphological data 161 

Our analyses use a previously published three-dimensional geometric morphometric dataset 162 

of 354 adult species, representing nearly all extant families of birds (Felice and Goswami 163 

2018). These were subjected to the previously published procedure of landmarking using 164 

IDAV Landmark (Wiley 2005; Felice and Goswami 2018) to place anatomical landmarks and 165 

curve semi-landmarks on digital three-dimensional skull models formed from CT and surface 166 

scans. We then used the R package ‘Morpho’ v2.5.1 (Schlager 2017) to project surface semi-167 

landmarks onto each specimen from a template. A total of 757 landmarks were used to 168 

quantify three-dimensional cranial morphology, divided into the rostrum, cranial vault, 169 

sphenoid region, palate, pterygoid/quadrate, naris, and occipital, as in Felice and Goswami 170 

(2018) (Fig. 1). The effects of size, position, and rotation were removed with a generalised 171 

Procrustes analysis using the R package ‘geomorph’ v3.0.6 (Adams and Otárola-Castillo 172 

2013). We extracted log centroid size of the cranium during the Procrustes superimposition 173 

and used this as a proxy for size in further analyses. Following the finding by Natale and 174 

Slater (2022) that some shorebirds followed different scaling patterns thus body mass was a 175 

more appropriate size measure for the skull, we assessed the correlation between log body 176 

mass and log centroid size of the cranium and found that they are highly correlated for our 177 

sample (r2 = 0.885, Supplementary Fig. S1). 178 

 179 

Phylogenetic hypothesis 180 

A previously published composite phylogenetic tree was utilised for the phylogenetic 181 

comparative analyses (Felice et al. 2019). This tree incorporates the backbone of 182 
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relationships among major clades from (Prum et al. 2015) with the fine-scale species 183 

relationships from a maximum clade credibility tree generated from (Jetz et al. 2012). 184 

 185 

Ecological and life history trait data  186 

Habitat density, migration, and developmental mode of birds were all classified using three 187 

character states (Fig. 1). Habitat density was categorised as “dense” (n = 120), “semi- 188 

open” (n = 91), or “open” (n = 143) following Tobias et al. (2016), sourced from Tobias et al. 189 

(2022). Dense habitats are those where species primarily occupy dense thickets, shrubland, 190 

or the low to middle storey of forest. Semi-open habitats include primarily living in open 191 

shrubland scattered bushes or deciduous forest. Open habitats are where species primarily 192 

live in desert, grassland, open water, seashores, cities, or the top of forest canopy. Migration 193 

was classed as “sedentary” (n = 218), “partially migratory” (n = 63), or “migratory” (n = 73) 194 

following Tobias and Pigot (2019; Tobias et al. 2022). Whereas the migratory class is 195 

comprised of species where most of the population embark on long-distance migration, 196 

partially migratory species are those in which most of the population undergoes short-197 

distance migration or a minority of the population migrates long distances, and sedentary 198 

birds do not migrate. Developmental mode was categorised as “precocial” (n = 60), “semi-199 

precocial” (n = 80), and “altricial” (n = 214) (Hoyo et al. 1992; Starck 1993; Cooney et al. 200 

2020). Where data was not available in an existing database (Cooney et al. 2020), we 201 

classified species using Hoyo et al. (1992) and Botelho et al. (2015). Where information was 202 

not available at species level, the developmental mode was inferred by information on other 203 

species within the genus or family, as previous studies have suggested there is little 204 

intrafamily variation in position on the altricial-precocial spectrum (Ducatez and Field 2021).  205 
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 206 

Data analyses 207 

We ran preliminary phylogenetic ANOVAs using the ‘procD.pgls’ function in the geomorph R 208 

package (Adams et al. 2022) to assess whether there are any interactions between our three 209 

traits (habitat density, migration, and life history) and the previously examined or potentially 210 

related traits of trophic niche, habitat and primary lifestyle, sourced from Tobias et al. 211 

(2022). We found no significant interactions between trophic niche, habitat, or primary 212 

lifestyle and our factors at the p<0.01 level except a marginally significant interaction 213 

between trophic niche and migration (Supplementary Table S2). We then used type II 214 

phylogenetic MANOVAs (phylogenetic regressions) to assess the significance of habitat 215 

density, migration, and developmental mode for avian skull shape. We fit these models 216 

using the full geometric morphometric dataset, with log centroid size, habitat density, 217 

migration, and developmental mode as predictors for the ‘mvgls’ and ‘manova.gls’ functions 218 

in the R package mvMORPH 1.1.4 (Clavel et al. 2015). We used the ‘mvgls’ function to fit 219 

multivariate phylogenetic linear models with Pagel’s lambda by penalised likelihood (Clavel 220 

et al. 2015). We employed the ‘manova.gls’ function to assess the significance of the four 221 

predictors via type II MANOVA tests with Pillai’s statistic over 1000 permutations (Clavel et 222 

al.2019). Principle component analysis was used to visualise the main axes of variation for 223 

the whole skull. Morphospaces were plotted in ggplot2 v.3.3.6 (Wickham 2016), with convex 224 

hulls plotted for the different character states of our three traits. The primary axes of shape 225 

variation are shown by extreme shapes along the first two PC axes. 226 

 227 
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We further estimated the evolutionary rates for each habitat density, migration and 228 

developmental mode character state following the protocol in Bardua et al. (2021). First, we 229 

utilised the ‘ace’ function in ape v5.3 (Paradis and Schliep 2019) to calculate the ancestral 230 

states for habitat density, migration, and developmental mode. We used the ‘make.simmap’ 231 

function in the ‘phytools’ package v.1.2-0 (Revell 2012) to reconstruct the evolutionary 232 

history of these factors by stochastic character mapping, which we then used to fit flexible 233 

BMM models. We conducted model fitting using the ‘mvgls’ function in mvMORPH with the 234 

‘error = TRUE’ setting. We additionally ran our evolutionary rates analyses using this 235 

protocol for each the seven anatomical modules of the bird skull (Felice and Goswami 2018). 236 

 237 

Results 238 

Principal component (PC) axis 1 explains 45.3% of the total variance and mainly describes 239 

skull elongation (Fig. 2). PC axis 2 explains 10.2% of variance and represents the dorsoventral 240 

beak curvature as well as the mediolateral expansion of the palatine bones. Both migration 241 

and habitat density states have overlapping convex hulls with broad morphospace 242 

occupation, indicating that there are a number of viable phenotypes within each ecological 243 

trait state. Sedentary birds occupy a region of morphospace with higher PC 2 values, 244 

associated with high beak curvature in a convex direction compared to migratory birds 245 

which occupy a region of morphospace with lower PC 2 scores. Semi-migratory birds overlap 246 

with migratory and sedentary species, but also exhibit both the highest and lowest PC 2 247 

scores of our sample. Birds in dense habitats explore a region of morphospace defined by 248 

high PC 1 scores and associated with slightly more elongate and mediolaterally wide skulls. 249 
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Birds occupying open habitats occupy a region of morphospace with low PC 2 scores and 250 

slightly more concave curvature in the beak.  251 

 252 

Significant relationships were observed between shape and size, habitat density, and 253 

migration categories (P < 0.01), but there was not a statistically significant relationship 254 

between shape and developmental mode (P = 0.096) (Table 1). Additionally, there are 255 

significant interactions between size and habitat density (P = 0.001), among size, habitat 256 

density, and developmental mode (P = 0.001), and size and developmental mode (P = 0.002). 257 

There are also significant interactions between size, habitat, and migration (P = 0.037).  258 

 259 

We further identified significant differences in evolutionary rates (σmult) among the character 260 

states of the three traits (Fig. 3). Birds living in dense or semi-open habitats evolve ~3 times 261 

more rapidly (1.97 x 10-7 and 1.50 x 10-7 respectively) than those in open habitats (5.85 x 10-262 

8). Migratory birds have a faster rate of skull evolution (1.64 x 10-7) than sedentary or 263 

partially migratory birds (7.07 x 10-8 and 1.06 x 10-7 respectively). Precocial birds have a rate 264 

of cranial evolution ~3 times faster (3.03 x 10-7) than semi-precocial birds (9.63 x 10-8) and ~4 265 

times faster than altricial birds (7.48 x 10-8).  266 

 267 

Discussion and conclusion 268 

Our analyses demonstrate two additional factors, habitat density and migration, are 269 

significantly associated with avian skull shape. Further, both ecological and life history traits 270 

affect rates of cranial shape evolution across a globally distributed and speciose sample of 271 
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birds. These results add to the growing body of research suggesting that there is a complex 272 

interplay of intrinsic (Bright et al. 2016; Navalón et al. 2020; Marugán-Lobón et al. 2021) and 273 

extrinsic factors (Pigot et al. 2020; Natale and Slater 2022) contributing to avian skull shape 274 

evolution. 275 

 276 

Our discovery of a significant relationship between skull shape and migration is consistent 277 

with previous studies reporting smaller brain sizes in migratory birds (Vincze 2016), as well 278 

as smaller forebrains of migratory “warblers” compared to sedentary species (Burish et al. 279 

2004). These patterns may be explained by skull size being under strong selection to be 280 

lightweight for aerodynamics, driving weight reducing adaptations in cranial anatomy. 281 

Furthermore, brain size may be developmentally or energetically constrained in migrants 282 

because of the metabolic costs of migration (Winkler et al. 2004; McGuire and Ratcliffe 283 

2011) and high energy use of the brain (Isler and van Schaik 2009). Alternately, birds with 284 

small brains may migrate to compensate for low behavioural flexibility (Winkler et al.2004). 285 

Additionally, the majority of brain size variation is often found superficially in the 286 

nidopallium and hyperstriatum regions of the forebrain (Rehkämper at al.1991; Nicolakakis 287 

et al.2003; Winkler et al.2004). It is therefore possible that this forebrain region is also 288 

responsible for the skull shape covariation with migration which we uncovered.  289 

 290 

Analysis of evolutionary rates across character states demonstrated that migrants’ skulls 291 

evolve faster than those of sedentary birds. We found that migratory birds evolved faster 292 

than partially migratory birds which, in turn, evolved faster than sedentary birds. Similarly, 293 

Winkler et al. (2004) also found the effect of migration on brain size was stronger in long 294 
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distance migrants. We propose that these rapid rates of evolution are associated with 295 

migratory syndrome, i.e., the adaptations of behaviour and morphology for migration (e.g. 296 

Dingle 1996; Piersma et al. 2005). In this case, the rapid rates of skull evolution in migrants 297 

may be associated with smaller forebrains and dorsoventrally lower skull vault relative to 298 

sedentary species. Focusing on skull regions, the vault in particular, and to a lesser extent 299 

the rostrum, evolves faster in migratory birds compared to sedentary species (Table 2). This 300 

result lends further support to the notion that the rapid rates of evolution in migrants is 301 

associated with migratory syndrome. Taken as a whole, our results suggest migration exerts 302 

a significant selective pressure on brain development, which results in the rapid evolution of 303 

different vault morphologies. 304 

 305 

Beyond migration, habitat density also impacts both avian skull shape and rates of skull 306 

evolution across birds. Habitat density covaries with overall skull shape, corroborating work 307 

by Kennedy et al. (2020) which found that habitat and strata differentiate corvoid passerine 308 

morphology. We discovered heterogenous rates of evolution among birds inhabiting more 309 

or less dense habitats, with birds in dense habitats evolving most rapidly.  Birds in semi-open 310 

habitats evolve more rapidly than those in open habitats which corroborates one of the 311 

findings of Eliason et al. (2021) that kingfishers living in forests experience faster brain shape 312 

evolution than those in more open habitats. Faster evolutionary rates in dense habitats may 313 

be explained by birds in forest habitats adapting to microhabitats which are not captured by 314 

our broad habitat density categories. In addition, birds in open habitats must be highly 315 

adapted to extreme environments which may act as a constraint on cranial morphological 316 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 10, 2023. ; https://doi.org/10.1101/2023.01.09.523311doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.523311
http://creativecommons.org/licenses/by-nc-nd/4.0/


evolution; for instance, penguins are adapted to extreme Antarctic conditions and have the 317 

slowest evolutionary rates detected in birds (Cole et al. 2022). 318 

 319 

In contrast to the results for the ecological traits, developmental mode is not significantly 320 

associated with cranial shape variation. The difference in association between ecological and 321 

developmental traits may reflect the fact that the two ecological traits are associated with 322 

lifelong resource acquisition (Winkler and Leisler 1985; Ricklefs 2005; Pigot et al. 2016), 323 

while developmental mode may not affect selective pressures experienced by adult birds. 324 

Whereas this sample was comprised of adult specimens, an avenue for future research may 325 

be investigating whether juvenile bird skull shape or ontogenetic trajectory covary with 326 

developmental mode.  327 

 328 

Nonetheless, precocial birds have a significantly higher rate of evolution than semi-precocial 329 

or altricial species, similar to patterns observed in placental mammals (Goswami et al. 2022). 330 

Rates of evolution are fastest in the vault module, particularly for precocial birds (Table 2). 331 

We hypothesise that these differences are due to precocial hatchlings independently living 332 

and interacting with their environment at an earlier age than do altricial hatchlings, including 333 

all passerines, which are fed by parents. This earlier independence also drives more rapid 334 

neurocranial morphological evolution in precocial birds than in semi-precocial birds such as 335 

gulls, which are fed by parents despite being capable of leaving the nest soon after hatching. 336 

 337 

This study aimed to comprehensively investigate the role of ecological and life history traits 338 

in the accumulation of phenotypic diversity in a major global radiation. Our results 339 
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demonstrate that whereas developmental mode only influences evolutionary rates, habitat 340 

density and migration shape both the tempo and mode of avian phenotypic evolution. This 341 

highlights the importance of investigating a range of factors which may influence evolution, 342 

as opposed to presuming a form-function relationship focused on solely one function, 343 

particularly for complex, multi-functional structures such as the skull. Skull evolution in birds 344 

is not simply a reflection of feeding ecology, but also a product of complex interactions 345 

between morphology, life history, and ecological traits. 346 
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Tables and Figures 576 

 577 

Table 1: Type II phylogenetic non-parametric MANOVA and effect size (SES) for skull shape 578 

against whole skull centroid size, Habitat density, Migration, and Developmental mode. 579 

Additionally, the MANOVAs and effect sizes for interactions between our three traits and size 580 

are listed with a colon denoting an interaction between the listed traits. Significances of 581 

Pillai’s Test Statistics are based on permutations (n = 1000) with p values significant at the 582 

following alpha levels: *≤0.05, **≤0.01.  583 

 584 
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Pillai's Test 

Statistics 
SES (effect 

sizes) 
p values 

Size 0.977 7.48 0.001** 

Habitat density 1.77 3.35 0.001** 

Migration 1.79 3.82 0.001** 

Developmental mode 1.73 1.23 0.096 

Size:Habitat density 1.82 3.67 0.001** 

Size:Migration 1.74 0.749 0.248 

Habitat density:Migration 3.49 1.07 0.151 

Size:Developmental mode 1.79 2.55 0.002** 

Habitat density:Developmental mode 3.50 1.13 0.127 

Migration:Developmental mode 3.44 -0.181 0.585 

Size:Habitat density:Migration 3.57 1.69 0.037* 

Size:Habitat density:Developmental mode 3.64 2.77 0.001** 

Size:Migration:Developmental mode 3.50 0.224 0.451 

Habitat density:Migration:Developmental 
mode 

4.36 -0.256 0.637 

Size:Habitat 
density:Migration:Developmental mode 

2.58 -0.671 0.766 

 585 

 586 

 587 

 588 

 589 

 590 

 591 

Figure 1: A, The ecological and life history trait states of every species in our sample mapped 592 

onto our phylogeny. B, The landmarking scheme used in our analyses, presented in lateral 593 

view. The landmarks are coloured as follows: golden, rostrum; pale blue, cranial vault; green, 594 

sphenoid region; yellow, palate; navy, pterygoid/quadrate; orange, naris; and pink, occipital 595 

(Felice and Goswami, 2018).  596 
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Figure 2: Principal component analyses of the whole skull shape. PC 1 describes 45.3% and PC 597 

2 represents 10.2% of the overall shape variation, as illustrated by the landmark 598 

configurations along the PC axes. The convex hulls represent the following ecological and life 599 

history traits: A, Habitat density; B, Migration; C, Developmental mode.600 
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Figure 3: Evolutionary rates (σmult) were calculated for the three different character states of 601 

habitat density, migration, and developmental mode. 602 

 603 

Table 2: Table of evolutionary rates (σmult) by module. 604 

Module Trait state Evolutionary rate 

Rostrum Sedentary (1) 6.33E-08  
Semi-migratory 3.42E-08  
Migratory (3) 1.89E-07 

Vault Sedentary 5.08E-08  
Semi-migratory 1.77E-07  
Migratory 2.80E-07 

Sphenoid Sedentary 8.55E-08  
Semi-migratory 3.14E-08  
Migratory 6.94E-08 

Palate Sedentary 8.52E-08  
Semi-migratory 8.49E-08  
Migratory 5.84E-08 

(Pterygoid-quadrate) Joint Sedentary 5.04E-08  
Semi-migratory 3.24E-09  
Migratory 2.58E-09 

Naris Sedentary 2.06E-07  
Semi-migratory 6.44E-08  
Migratory 5.71E-09 

Occipital Sedentary 3.26E-08  
Semi-migratory 3.49E-10  
Migratory 2.46E-08 
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Rostrum Dense (1) 6.36E-09  
Semi-open 6.07E-08  
Open (3) 8.62E-08 

Vault Dense 7.74E-08  
Semi-open 4.87E-08  
Open 2.15E-07 

Sphenoid Dense 6.25E-08  
Semi-open 6.88E-08  
Open 5.84E-08 

Palate Dense 1.22E-08  
Semi-open 1.08E-07  
Open 9.26E-08 

Joint Dense 2.14E-08  
Semi-open 8.57E-09  
Open 1.86E-08 

Naris Dense 3.95E-07  
Semi-open 1.28E-10  
Open 6.50E-08 

Occipital Dense 3.10E-09  
Semi-open 3.92E-08  
Open 1.01E-08 

Rostrum Precocial 2.29E-08  
Semi-precocial 7.76E-08  
Altricial 4.88E-08 

Vault Precocial 4.48E-07  
Semi-precocial 2.37E-07  
Altricial 1.38E-07 

Sphenoid Precocial 4.65E-08  
Semi-precocial 4.44E-08  
Altricial 7.62E-08 

Palate Precocial 1.12E-08  
Semi-precocial 1.78E-07  
Altricial 2.78E-08 

Joint Precocial 1.8E-08  
Semi-precocial 2.43E-08  
Altricial 3.63E-09 

Naris Precocial 1.45E-07  
Semi-precocial 1.72E-10  
Altricial 1.87E-08 

Occipital Precocial 1.04E-08  
Semi-precocial 5.02E-09  
Altricial 1.45E-08 

 605 
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