bioRxiv preprint doi: https://doi.org/10.1101/2023.01.09.523238; this version posted January 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Integration of transcriptomics data into agent-based models of solid

2 tumor metastasis
3 Jimmy Retzlaff" %3, Xin Lai"??3, Carola Berking" 3 and Julio Vera'?*?

pa—

4 1. Department of Dermatology, Universitatsklinikum Erlangen and Friedrich-Alexander-

Universitdt Erlangen-Nirnberg, Laboratory of Systems Tumor Immunology, Erlangen, DE
6 2. Deutsches Zentrum Immuntherapie, Erlangen, DE

7 3. Comprehensive Cancer Center Erlangen-EMN, Erlangen, Bayern, DE

8 Abstract

9  Most of the recent progress in our understanding of cancer relies in the systematic profiling
10  of patient samples with high throughput techniques like transcriptomics. This approach has
11 helped in finding gene signatures and networks underlying cancer aggressiveness and therapy
12  resistance. However, -omics data alone is not sufficient to generate insights into the
13 spatiotemporal aspects of tumor progression. Here, multi-level computational models are
14  promising approaches, which would benefit from the possibility to integrate in their
15  characterization the data and knowledge generated by the high throughput profiling of patient

16  samples.

17  We present a computational workflow to integrate transcriptomics data from tumor patients
18 into hybrid, multi-scale models of cancer. In the method, we employ transcriptomics analysis
19  to select key differentially regulated pathways in therapy responders and non-responders and
20 link them to agent-based model parameters. We next utilize global and local sensitivity
21 together with systematic model simulations to assess the relevance of variations in the
22  selected parameters in triggering cancer progression and therapy resistance. We illustrate the
23 methodology with a de novo generated agent-based model accounting for the interplay
24  between tumor and immune cells in melanoma micrometastasis. Application of the workflow

25 identifies three different scenarios of therapy resistance.

26 1 Introduction

27 In the last decade we have progressed remarkably in our understanding of cancer
28  pathogenesis and metastasis, and this has had positive consequences in our ability to
29 diagnose, stratify and treat metastatic tumors. In line with this, immune evasion is a hallmark
30 of metastatic cancer (Hanahan and Weinberg 2011) and our deep understanding on its
31 mechanisms of action has been vital to the development of therapies such as immune
32  checkpoint inhibitors (ICl) for aggressive tumors like advanced melanoma (Wei et al. 2018),
33  which greatly increased patient survival in metastatic melanoma patients (Larkin et al. 2015).
34  Asignificant fraction of the progress in cancer research is due to the characterization of tissue
35 samples from large cohorts of patients through genomics, transcriptomics, proteomics and/or
36 epigenomics analysis. These techniques give access to quantitative data describing the

37 activation and expression of (all) genes in cancer, thereby providing the information necessary
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38 to investigate the genetic landscape of cancer progression (Akbani et al. 2015) and to
39 reconstruct and dissect the gene regulatory networks underlying cancer pathogenesis and
40 therapy response (Dreyer et al. 2018). However, -omics data alone cannot account for some
41 relevant levels of (de)regulation happening in cancer, which are linked to spatiotemporal
42  variations in the tumor’s molecular and cellular composition, as well as to the existence of

43 nonlinear regulatory structures like feedback and feedforward loops (Lai et al. 2016).

44  In this context, mathematical modeling and in particular multi-level spatial computational
45 models are a viable method as they allow to investigate the dynamic behavior of the tumor
46 microenvironment (TME) from hypothesized cell behavior and to evaluate therapeutic
47  strategies (Metzcar et al. 2019). These models can describe and simulate the dynamics of
48  cancer-deregulated intracellular gene circuits (Kirouac et al. 2017), but they can also be used
49  tointegrate genes and gene circuits activity into tissue-scale models of cell-to-cell interactions
50 (Veraetal. 2013).

51 In such agent-based models (ABM), cells act as discrete individuals according to their set of
52 rules. ABMs of cancer immune environments have been recently reviewed by Norton et al.
53 (2019). There are some challenges to devising these computational models in the context of
54  cancer: First, there is a trade-off between detailed modeling of biological features with
55  different scales occurring in cancer progression and keeping the model simple enough to allow
56 interpretability and reasonable computing effort. Second, these model types include a large
57 amount of model parameters that require diverse, quantitative data to be characterized. In the
58 case of tissue modeling, many parameters can only be calibrated indirectly, as the
59  experimental modalities to observe single cell behavior in vivo are missing. We also need
60 domain knowledge to decide which parameters are relevant for model simulations and

61 investigating hypotheses, allowing to propose or optimize therapies.

62 In this paper, we propose to integrate transcriptomics analysis from cancer patient cohorts in
63  the design and characterization of agent-based model simulations. To this end, we describe a
64  method for analyzing transcriptomics data, ranking and selecting key gene sets underlying a
65  condition of interest and linking these to selected agent-based model parameters. We utilize
66  this information to prioritize parameters for investigation of the model behavior, as an analysis
67  of the whole parameter space is computationally infeasible.; The influence of these priorized
68  parameters is investigated via global sensitivity analysis and massive, systematic model
69 simulations. We exemplify the use of the method for a case study on melanoma metastasis
70  and immunotherapy resistance. To this end, we built an agent-based model accounting for the

71 interplay between tumor and immune cells in a micrometastasis.

72 2 Materials and Methods
73 In this work we followed a workflow sketched in Fig. 1. It contains several steps including
74  model construction, exploration and calibration, linking enriched gene sets to parameters,
75 and analysis. The steps we take are discussed in detail below.
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76 2.1 Multi-level melanoma immunology model

77  The general modeling concept we used is to create a spatial agent-based model of the TME
78  that interacts with a systemic compartment. This is a modeling approach that has been
79  suggested in recent reviews (Norton et al. 2019; Metzcar et al. 2019) and was followed in other
80  multiscale models as well (Santos and Vera 2020; Gong et al. 2017). We built our model based
81 on knowledge of tumor immunology and signaling in cancer and melanoma (Abbas et al. 2014;
82  Marzagalli et al. 2019). The model contains immune and tumor cells in the melanoma TME
83 and their interactions, which can be either based on cell-cell contact or on intercellular

84  communication through cytokines.

85  The model accounts for parts of the innate and adaptive immunity to tumors including
86 immunosurveillance without considering memory and long-term immunity. For the
87  immunosurveillance we assumed that the tumor antigens are not yet detected by the adaptive
88 immune system. A sketch of the model and in particular the considered cell interactions are
89 shown in Fig. 2. Specifically, the immune cells accounted for are cytotoxic T lymphocytes
90 (CTLs), T helper cells (Th), B cells, regulatory T cells (Tregs), dendritic cells (DCs), macrophages
91 and myeloid-derived suppressor cells (MDSCs).

92  We assumed that the communication between immune cells is mediated by cytokines and
93  chemokines. The cell behavior is modeled as logical rules. Further, our model includes helper
94  cells and suppressor cells as abstract cell types that account for immune cells that primarily
95 have a regulatory role, such as CD4+ T cells, B cells and MDSCs. These cells influence the

96 immune response via secreting cytokines.

97  We labeled the involved cytokines based on whether they have a primarily immunoenhancing
98 or immunosuppressive effect and modeled two abstract surrogate cytokines accordingly:
99 immunoenhancing (ENH) and immunosuppressive cytokine (SUP). ENH accounts for cytokines
100 that increase the effectiveness of cytotoxic mechanisms like IFN-y, as well as for
101 chemoattractants for cytotoxic cells such as CCL3, CCL4, CCL5, CXCL9 or CXCL10. Examples
102 for molecular species that have immunosuppressive effects are IL-10, TGF-B and IDO. The
103 surrogate cytokines keep the model simpler by assuming that the cytokines do not have
104  pleiotropic effects, although it has been shown that some cytokines may trigger both
105 immunosuppressive and immunoenhancing effects (Donia et al. 2016). For instance, IFN-y, a
106  key regulator of the adaptive immune response, can trigger both the expression of major
107  histocompatibility complex | (MHC-I) and of PD-L1. The former increases the recognition of

108 cancer cells by T cells, while the latter inhibits the effector mechanism of T cells.

109 2.1.1 Cytokine diffusion

110  Cytokines are modeled using a continuum model that tracks cytokine concentrations rather

111 than discrete molecules. Their diffusion is described by Fick’s second law

112 % _ pac+
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3


https://doi.org/10.1101/2023.01.09.523238
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.09.523238; this version posted January 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

113 with the compounds’ concentrations c, the diffusion constants D, and a term faccounting for
114 secretion and degradation. Cytokine diffusion is solved using a finite difference method with
115  the Euler forward method.

116 2.1.2 In situ cell populations

117  Cancer cells. A cancer cell population of 125 cells is seeded at the lattice center at the
118  beginning of a simulation. As the tumor cells migrate and divide, they will spread over the

119 tissue in the course of a simulation.

120  Cell motility is implemented as a random walk, allowing a cell to move to neighboring lattice
121 positions with a probability pyigration- If the chosen position is already occupied by another cell,
122 the cells either swap places or stay at their positions with equal probability. In general, it is

123 assumed that cancer cells are less motile than immune cells.

124  Cancer cells can die with a probability pgeasn, Which leads to their removal from the lattice.
125 Dead cancer cells will leave debris that can be collected by dendritic cells and facilitate an

126 immune response.

127  Cancer cells are considered to have uncontrolled replication potential and will attempt to
128  divide after a fixed length of time t, . jiferation has passed, which accounts for cell growth and
129  cycle. Dividing cells are temporarily immobile for the time step where the cell division occurs.
130  Cell division can only take place if there is a vacant neighboring position that a daughter cell
131 can occupy. This rule implicitly models cell contact inhibition, a trait that cancerous cells
132 usually lose (Hanahan and Weinberg 2011). However, this assumption is in line with previous
133  studies that use lattice-based models (e.g. Wang et al. 2013). It simplifies the modeling of cell
134 mechanics, and evades calculations such as equilibria of forces between cells and the

135  consequential possibility of cells pushing each other away.

136  Cancer cells may present one or multiple tumor-specific antigens depending on their
137 mutations. We modeled only passenger mutations, meaning if a cancer cell mutates, it may
138  start to present another antigen. This can induce an adaptive immune response specific to
139  that antigen. Cancer cells mutate at each time step with a probability pyutation- The mutations
140  that are modeled are non-driver mutations, as they only affect the antigen pool that a particular
141 cancer cell presents, which influences its susceptibility towards clearance by CTLs: more
142 mutations lead to a larger antigen pool and recognition by different CTL clones. The mutations
143  are modeled as a finite allele model, with 32 possible mutations. This allows to track the
144  individual mutations, but has the disadvantage that it is not realistic compared to the near-
145 infinite mutations possible in a real human genome, potentially leading to artifacts, e.g.

146 through the possibility of reverse mutations.

147  Cytotoxic T lymphocytes. Cytotoxic T lymphocytes patrol the tumor site and are able to
148 induce apoptosis in cancer cells upon contact. A cell is considered to be in contact with another
149 if it is present in its Moore neighborhood (i.e. adjacent cell including diagonal adjacency). A

4


https://doi.org/10.1101/2023.01.09.523238
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.09.523238; this version posted January 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

150 CTL recognizes an antigen that is specific to its receptor and kills cancer cells presenting the
151 antigen. It probes its neighborhood for a recognizable cancer cell in random order. The
152 randomness is introduced to avoid a direction bias that might lead to simulation artifacts. If

153  the CTL recognizes a cancer cell, it kills it with a probability modeled as
154 Pkin = ((pbase + (1 - pbase) : (1 - e_TENH[ENH]) ) : e_TSUP[SUP])g

155  that depends on a base killing probability py,.., the local concentrations of SUP [SUP] and ENH
156 [ENH], respective rate constants tgyp and tgyy, and the influence of anti PD1 checkpoint
157  inhibitor therapy g. The probability is modeled in such a way that killing of tumor cells by CTLs
158  becomes more effective in the presence of ENH and less effective in the presence of SUP. Anti
159 PD1 therapy is modeled as a power law influence (Vera et al. 2007) and is set to 1 (no therapy)
160  and can be toggled to 0.1 during a simulation (application of therapy). At this abstraction level
161 of the model it is indifferent whether the drug targets PD1 which may be expressed by CTLs
162 or its ligand PDL1 which may be expressed by the cancer cells, as it only influences the killing
163 mechanism on contact. The killing has a duration ty;, in which the CTL becomes immobile

164  and unable to kill other neighboring cancer cells.

165  CTLs undergo apoptosis after a fixed life span tyecr. expires. Note that CTL expiration
166  accounts for different cell fates including exhaustion, apoptosis or leaving the TME. We do not
167  model CTL proliferation in the TME, although it has been reported in cases of combination
168  therapy (Spranger et al. 2014). Unlike cancer cells, a CTL follows its migration rule at every
169  time step unless it is in an immobile state. Therefore, its motility depends only on the cell
170  density in its vicinity. It is capable of performing both random walk and chemotactic migration,
171 following the ENH gradient. By default, CTLs perform random walk and they change to
172 chemotactic migration if the concentration of surrounding ENH cytokines exceeds a threshold.
173  We modeled this threshold to prevent the CTLs from being sensitive to very low ENH
174  concentrations. The CTLs moving in the chemotactic mode are in an activated state. The
175  activated CTLs secrete ENH cytokines with a fixed rate rgyy. ENH increase their cytotoxic
176  capabilities and attract other CTLs to their vicinity, allowing fast finding and clearance of

177 cancer cell colonies.

178 Dendritic cells. DCs are antigen-presenting cells to immune effector cells such as T cells. In
179  the model, DCs function as probes for tumor cells, and they move inside the lattice at each
180 simulation step if a vacant position in the vicinity is available. We did not consider apoptosis
181 of DCs in the TME, as we assume that DCs are either tissue-resident or filtrated through the
182  TME during their lifetime. A DC will collect all cancer cell debris it encounters. It then starts to
183  present the antigens it processed. Furthermore, it becomes activated and leaves the tumor
184 site. Once a DC has left the tumor site, it increases a signal that leads to a delayed recruitment
185 of CTLs that are specific to the antigens it now presents. This way we implicitly modeled the

186  homing of DCs to the tumor-draining lymph node. We assume homeostasis of the DC
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187  population, and for every DC that leaves the tumor microenvironment, a new DC will be
188 recruited.

189 Helper and Suppressor cells. Helper cells account for CD4+ helper T cells as well as tumor
190 infiltrating B cells. They constantly secrete ENH cytokines (rgnyg). Suppressor cells primarily
191 account for regulatory T cells (Treg) and myeloid derived suppressor cells (MDSCs). Analog to
192 helper cells, they constantly secrete SUP cytokines. Both helper and suppressor cells perform

193 arandom walk during their lifetime, which is fixed to tje neiper @Nd tiife suppressors Fespectively.

194 Macrophages. Macrophages have cytotoxic capabilities, and can secrete both ENH and SUP
195  cytokines. Similar to CTLs, their cytotoxicity is influenced by cytokines. Their cytokine

196  secretion rates depend on the ratio of the concentrations of local SUP and ENH cytokines:

[SUP]
197 TSUP = TSUP] 4 [ENH] <tokine
198 and

[ENH]
199 TENH = TSUP] 4 [ENH] | <Vtokine:

200 The equations result in positive feedback loops, making the secretion rates of SUP and ENH by
201 macrophages positively correlate with their own concentrations. The feedback loops imitate
202 an environment-dependent phenotype plasticity that resembles M1 and M2 phenotype

203 activation described in the literature (Kim and Bae 2016).

204 2.1.3 Cell recruitment

205 Newly recruited cells appear on a free position at the border of the TME lattice based on the
206  assumption that recruited cells enter from nearby blood vessels. The cell types recruited to

207  the TME are CTLs, DCs, macrophages, helper and suppressor cells.

208  The recruitment of CTLs is preceded by DC-induced clonal expansion and differentiation in
209  the lymphatic tissues, which introduces a delayed response. Therefore, CTLs are recruited to

210  the TME with an antigen specific rate r.r., that depends on delayed tumor detection of DCs.

211 The delay is modeled as a queue with a fixed size tg,, for each antigen. At each simulation
212 step, the oldest value will be dequeued and leads to recruitment of CTLs, while a new value
213  will be enqueued and initialized to zero. Every DC presenting the respective antigen that leaves
214 the tumor site at the simulation step will add a number to the new value in the queue, leading
215 to immune cell recruitment in the future. Helper cells are recruited alongside CTLs with a fixed

216 ratio of 1:1, which approximates reported data (Hernberg 1996).

217 Recruitment of suppressor cells and macrophages depend on CTL recruitment with fixed

218 ratios q<cel type> €-9-

219 Tmacrophage = Qmacrophage *TCTL
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220 2.2 Model environment, simulation and parameterization

221 The lattice is modeled with cubic cells with a side length of 10um, with 100 x 100 x 100 cells,
222 representing a volume of 1mm3. We set At = 10 min for the duration of a simulation step,
223  which is taken from a similar model by Gong et al. (2017). The fastest action a cell undertakes
224  andthatis affected by the step size is cell movement. The time step and cell length correspond
225  with a maximum cell speed of v/3 um min~'. The maximum cell speed is therefore about 10
226  times slower than the speed of neutrophils performing chemotaxis in a microfluidic device
227  and about 5 times faster than H69 small cell lung cancer cells (Milo et al. 2010). We assume
228  this depicts cell motion with an adequate speed assuming that leukocytes move more slowly
229 in tissue than in a microfluidic device. Simulations start with a small homogeneous population
230  of 125 cancer cells at the center of the lattice and random uniformly distributed populations
231 of DCs and macrophages. We run simulations for a period of 100 days or 8401 steps,
232 respectively. This period is chosen on the assumption that a successful immune response will
233 clear the metastasis within 50 days, as is indicated for adaptive immune responses (Abbas et
234  al. 2014). We doubled the simulation time to investigate the model progression of small
235 residual cancer cell populations that many simulations showed at day 50. Further, a simulation
236  will abort earlier if the cancer cell population grows larger than 800,000. This abortion
237  condition is chosen to limit the computational effort of the simulations. We consider it justified
238 as 80% of the lattice spaces will be occupied by cancer cells, effectively simulating a tumor

239  expansion beyond the model space.

240  We used published experimental data to calibrate as many parameters as possible, whose
241 annotation and nominal values are listed in supplementary Table S1. To determine the
242 maximum recruitment rates, we use ratios of cell types that are described in literature, leaving
243  but one recruitment rate uncharacterized. With this modeling choice we achieve that the
244  simulated immune infiltrate resembles an infiltrate found in experiments over the course of a

245 simulation.

246  Running a single simulation took about 1 hour and 20 minutes on our hardware (4 Intel Xeon
247  E5-4660, 256GB RAM), requiring about 10 MB RAM. For the sensitivity analyses, we ran up to
248 64 simulations in parallel. We implemented our model in c++17, using HDF5 and json data
249  formats for I/0O. To account for the stochasticity in the model, we repeated each simulation
250  multiple times with different seeds for the random number generator. To decide on a number
251 of replicas to make for each simulation, we ran simulations with the nominal parameter
252 configuration both with and without application of ICI therapy and compared the 95%
253 confidence intervals of the expected cancer cell populations after 3 and 100 replications, and
254  found that using a low number of replications is acceptable for our analysis (supplementary
255 Fig. S1). For the local sensitivity we repeated each simulation 10 times, and for the global

256  sensitivity analysis 3 times.
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257 2.3 Linking differential regulation to model parameters

258 For computationally expensive model simulations, global sensitivity analysis is only feasible
259  for a small subset of model parameters. Here we propose to base the selection on parameters
260 linked to biologically relevant gene sets using a workflow as depicted in Fig 3. We performed
261 a gene set enrichment analysis to identify and characterize a subset of them that is related to
262 response to anti-PD1 treatment. First, we downloaded and processed the transcriptome data
263 (GSE78220) of pre-treatment melanomas undergoing anti-PD1 checkpoint inhibition therapy.
264  Second, we identified differentially expressed genes between responders and non-responders.
265  Third, we performed a gene set enrichment analysis using the differentially expressed genes
266 and identified gene sets in which the genes are involved. We assumed that the identified
267  enriched gene sets are crucial for the pathogenesis and progression of melanoma, and

268  therefore we manually annotated them with corresponding model parameters.

269 For the gene set enrichment analysis, we used the R package fgsea (Sergushichev 2016) that
270  tested the enrichment of the identified differentially expressed genes using the MSigDB
271 hallmark gene set collection (Liberzon et al. 2015) and cancer hallmark genes (CHG, Zhang et
272  al. 2020). The fgsea algorithm searches for gene sets where highly ranked genes are enriched.
273 It is given a ranked list of genes and a list of gene sets. We calculated gene ranks based on

274  differential expression as
275 si = sign(logFC;) - (—logyo p)

276  with the binary logarithmic fold change logFC; and the p-Value p;. To explore the enrichment,
277  we examine the Benjamini-Hochberg adjusted p-value and list the significantly regulated gene
278  set. These were manually annotated with model parameters they relate to, excluding those
279 that could not be related (e.g. because of their generality or association to processes that are
280  not modeled).

281 Next, we selected parameters for global sensitivity analysis based on the gene set enrichment
282 and the local sensitivity analysis. In our case, we could afford to run a global sensitivity analysis
283  for 5 parameters, while 6 parameters were identified with the gene set enrichment. To exclude
284  one parameter from this selection, we performed a local sensitivity analysis (i.e. one at a time

285 perturbation) and exluded the least influential parameter

286 2.4 Sensitivity analysis and decision tree based phenotype grouping

287  We selected five model parameters of interest for sensitivity analysis, which we set up in a
288 quasi Monte Carlo fashion where we sample the selected parameter space using the Sobol’
289 sampling sequence implementation of chaospy (Feinberg and Langtangen 2015). As
290 boundaries for the parameter space we set (0, 2) times the nominal value. Assuming that about
291 five simulations per parameter are needed to sufficiently cover the parameter space, we

292 sample 5% = 3125 parameter sets. As the model includes stochastic processes such as killing
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293 or moving probabilities, we repeat each simulation 3 times, leading to a total number of 9,375

294  simulations for the sensitivity analysis.

295  To analyze the sensitivity of our parameter selection, we trained a decision tree as a meta-
296 model, with the aim to find sensitive parameter subspaces and the parameter sensitivities on
297  the simulation outcome (Hastie et al. 2009; Saltelli et al. 2008), a similar approach has been
298 followed in an earlier work (Santos et al. 2018). To quantify the parameter sensitivities, we
299 used partial rank correlation (Marino et al. 2008) and feature importances derived from the
300 decision tree. As target variable we chose the cancer cell population at the end of the
301 simulation, labeling the simulation results either as emerging metastasis (>700,000),
302 complete remission (0) or else residual disease. This gives an indication of how good the
303 immune response is in eliminating the emerging metastasis. There are some limitations

304 though, as we can generally not assume that a simulation will reach a steady-state by its end.

305 Decision trees have the advantage that they can reproduce nonlinear and non-monotonous
306 behavior, which is useful as we cannot assume a linear model behavior a priori. We use the
307 scikit-learn implementation, which also calculates normalized parameter importances on the
308 regression splits (Pedregosa et al. 2011). As an optimization criterion we chose the Gini
309  impurity. The simulations were randomly split into a training and test data set (80:20) and 5-
310 fold cross-validation was carried out on the training set yielding a mean accuracy of 0.9 and a
311 standard deviation of 0.004. To avoid overfitting and to keep the decision tree easily human-

312 interpretable we constrain it to a depth of 5 and a minimum split size of 3.3%.

313 3 Results

314  We developed a model of the immune reaction to melanoma that aims to account for the core
315 cellular mechanisms influenced by the cytokine milieu. The TME is set up to simulate a newly
316  seeded micrometastasis, where a cancer cell colony grows, is detected by immunosurveillance
317 and challenged by both innate and adaptive immune responses, where CTLs are the cytotoxic

318 actors.

319 3.1 Selection of the nominal model configuration

320  We calibrated most model parameters to data estimates from the literature (supplementary
321 Table S1). To find values for the three parameters to which no data was found, we explored
322 their parameter space to find a sensitive parameter set that we fixed as nominal values

323  (supplementary Fig. S2).

324  InFig. 4 we show simulations of the nominal parameter configuration and a configuration with
325 reduced recruitment of immune cells with and without ICI treatment. This is motivated by
326  findings that immune cell infiltration or CTL infiltration in particular is correlated with ICI
327 treatment outcome (Li et al. 2021, Kiimpers et al. 2019, Du et al. 2021, Nie et al. 2019), which
328  we tested if our model would replicate. Model parameters have been randomly perturbed

329  within the range of +/- 25% to account for patient diversity. It can be seen that for the nominal
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330 parameter configuration, simulations without ICl lead to emerging metastases in almost any
331 case. Simulations with low CTL infiltration and application of ICl lead to remission in 76/100
332  andtoresidual disease in 24/100 simulations. Simulations with ICl and the nominal (high) CTL
333 infiltration lead to complete removal of cancer cells in 99/100 simulated cases and residual
334  disease in one case. Taken together, the selection of parameter values for the nominal model
335 configuration renders results that qualitatively match clinical evidence of patient response with
336 high and low CD8 cell infiltration (Li et al. 2021, comp. Fig. 4C).

337 3.2 Transcriptomics data-driven selection of therapy-response related gene

338 sets and their connection to model parameters

339  Gene set enrichment analysis using differential gene expression (anti-PD1 responders vs. non-
340 responders) resulted in 24 significantly differentially regulated gene sets (Benjamini-Hochberg
341 adjusted p-value <= 0.05). Fig. 5 demonstrates how we used this data to identify model
342 parameters that are of particular interest, which we selected for the computationally expensive
343  global analysis. For the parameter selection we considered the significantly differentially
344 regulated gene sets. We annotated and mapped them to the corresponding model parameters.
345  We excluded 14 gene sets that could not be linked to any model parameter either because

346  they are generic, disease-specific, or not directly related to any modeled mechanism.

347  We link one gene set, “genome instability and mutation”, to the mutation probability p,utation-
348  Another, “epithelial-mesenchymal transition”, can be linked to cancer cell motility py;gration- We
349  further link three gene sets to the cell cycle time t, gjiferation and one to the influence of SUP
350  tgyp. Another two we link to the CTL recruitment rate rcq... and yet another two to the influence
351 of ENH Tgyy -

352 3.3 Parameter sensitivity analysis indicates multiple mechanisms of therapy

353  resistance

354  To consider conditions of limited computational power in our analysis that would be found in
355 the analysis of any large-scale ABM, we constrained the global sensitivity analysis to five
356  parameters, excluding the enriched parameter pyutations Which is the least influential of the
357 selected parameters in the local sensitivity analysis (cf. supplementary Fig. S3). Global
358  sensitivity analysis showed that a large proportion of simulations ended either with an
359 emerging metastasis or complete remission (Fig. 6A). We therefore categorized the labels in
360 emerging metastasis, residual disease and complete remission. The influence of the
361 parameters, either described as partial rank correlation coefficients (prccs) or parameter
362 importance of the trained decision tree is shown in Fig. 6.B/C. Both metrics agree that cancer
363 cell cycle time and motility are more influential than the immune response-related CTL
364 recruitment rate and the cytokine influences. The signs of the prccs follow the intuitive
365 interpretation: long cell cycle times, high CTL recruitment rates and higher influence of ENH
366 tend to lead to better removal of cancer cells, while higher cancer cell motility and higher
367 influence of SUP lead to worse removal.
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368 The decision tree (Fig. 6.D, supplementary Fig. 4) indicates that, on the one hand the simulated
369 ICl is effective in multiple conditions of the TME, while on the other hand there are different
370 mechanisms of therapy resistance. For the ICI resistant regions, the mechanisms affected by
371 their decision paths are shown colored in the model draft. The tumor tends to be ICI resistant
372 in the following cases: aggressive tumors with short replication time and at least moderate
373 motility, tumors with longer replication time but high motility with smaller CTL recruitment
374  and a case with higher CTL recruitment and longer cell replication time but high influence of
375  SUP and high cancer cell motility. These findings show why it is so difficult to predict ICI
376 response (Morrison et al. 2018), as they indicate that there is a spectrum of different counter-

377  balancing mechanisms that influence its effectiveness.

378 4 Discussion

379 The aim of this paper is to develop an approach to integrate transcriptomic data into
380 computational models of cell-to-cell interactions in cancer. There is abundant published
381 material about integrating these types of data into unsupervised and supervised machine
382 learning models for the classification and prediction of cancer patient samples. However, to
383 date little has been done regarding merging these data with tissue-level mechanistic
384  computational models, allowing for computer model-supported interpretation of patient data.
385 To this end, we implemented a hybrid, agent-based model describing the interplay between
386  cancer and immune cells in melanoma micrometastasis. To build and characterize the model,
387 we used knowledge of melanoma immunology and publicly available quantitative data

388  describing the behavior of the melanoma cells and different immune cells infiltrating the TME.

389  There are similar cancer models proposed in the literature. Wang et al. (2013) developed an
390 agent-based melanoma model accounting for cytokine mediated angiogenesis. Hatzikirou et
391 al. (2012) modeled tumor invasion with a lattice gas cellular automaton. Gong et al. (2017)
392 modeled the tumor immune response to PD-1/PD-L1 inhibition. They identified tumor
393  mutational burden and antigen strength as key factors that influence the recruitment of
394 immune cells. They simulate therapy with checkpoint inhibition by changing a model
395 parameter (probability of T cell suppression) at a set time point during a simulation, the same
396  approach we use to model therapy. Compared to the model proposed in this work we do not
397 model CTL proliferation at the TME (cf 2.1.2). Instead, our model considered a greater extend
398  of cell types, including DCs, helper and suppressor cells, and variability in tumor antigens.
399  While this increases the complexity of the model, it hypothetically allows for a more detailed
400 projection of the differential regulation data into the model. The model has some limitations
401 though, which arise from abstractions and simplification, as well as from incomplete
402 knowledge on the cellular mechanisms. For instance, the finite allele mutation model does not

403  replicate the significance of mutational burden on the prognosis of ICI (Morrison et al. 201 8).

404  Here we combined gene set enrichment analysis of cancer immunotherapy response data and

405 global sensitivity analysis of systematic model simulations as a method to constrain the
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406  analysis to select model parameters (and connected biological processes) in computational
407 models with large parameter spaces, which cannot be analyzed as a whole due to limitations
408 in available computational power. In our case, a systematic exploration of the entire parameter
409  space would require about 528 simulations, while the application of the method allowed us to
410 reduce the effort to 9,375 simulations and about 175 hours of computation. In contrast to
411 previous approaches to analyze such models, where parameter selection is performed solely
412 hypothesis driven or by requirement as calibration data is missing, our approach offers to
413 perform this in a data driven fashion. Based on our analysis, we hypothesize a causal
414  relationship between given differentially regulated gene sets and cell functions and
415 phenotypes associated with selected cell types in the micrometastasis. In the case of our
416 model, investigation of the model behavior restricted to the selected parameters displayed 3
417  different mechanistic scenarios of ICl treatment resistance. Key players to these mechanisms
418  are cancer cell motility, which has been previously shown (Dreyer et al. 2018), CTL infiltration,
419  which corresponds to the “warm” vs “cold” tumor hypothesis (Maleki Vareki 2018), and
420  suppressive signaling (TGFB: Zhao et al. 2018, IDO for non-small-lung-cancer: Botticelli et al.
421 2018). A limitation of the method is that the linkage between parameters and gene sets
422 remains a manual curation step and depends on the vast expert knowledge of the modelers.
423 Further, it is possible that the enrichment analysis renders gene sets as relevant that are not
424 linked to any parameter in the current instance of the model. In this regard, one can utilize
425 the approach as a method for data-driven, systematic model expansion. For instance, in our
426  analysis three metabolism related genes set are enriched between responders and non-
427  responders, which might encourage to model more details on the cells metabolism and
428 expanding the model with nutrients. This would give the possibility to capture the interplay

429 between immune and metabolic processes.

430  Furthermore, the linkage as described here is based solely on gene set enrichment analysis
431 and remains a qualitative step, yielding only categorical classification of parameters rather
432 than quantitative differentiation. The latter would enable to deduce parameter perturbations
433  from the data directly, while here we just narrow a selection of parameters, which is
434  subsequently investigated in further detail in a global sensitivity analysis. In this regard, we
435  think that the method can be expanded to generate a quantitative link of transcriptomic data
436  to parameters by calculating a magnitude of the differential regulation and mapping it as a
437 perturbation level to the respective parameters relative to their nominal calibration. This
438 however requires annotation of all parameters with associated gene sets, which poses

439 intensive manual work, but could be supported by automated methods such as text mining.

440  We think that the combination of enrichment analysis of transcriptomics data and global
441 sensitivity analysis can be applied generally to agent-based or ODE models reflecting cell-to-
442  cell and tissue interactions in cancer and other pathologies (cf. Fig. 3). To this end, it is
443  necessary to have a significant amount of annotated transcriptomics data reflecting the

444  investigated conditions or progression of the disease. When selecting the number of
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445 parameters to be explored, one has to consider a trade-off between sufficient sampling of the

446  chosen sub-parameter space and keeping the required computational load in control.
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18


https://doi.org/10.1101/2023.01.09.523238
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.09.523238; this version posted January 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

585 cells. Cancer cell debris is detected by DCs which will attract CTLs, suppressors and helpers
586  after a delay. CTLs that contact cancer cells switch to an activated state and can kill the cancer
587 cell. The killing probability is influenced by cytokines and applied anti-PD1 therapy.
588  Abbreviations: ENH: immunoenhancing cytokine, SUP: immunosuppressive cytokine, DC:

589  dendritic cell, M®: macrophage, CTL: cytotoxic T lymphocyte.

590
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592  Fig. 3. Method of linking expression data to model parameters. Besides performing a local
593 sensitivity analysis to preselect a set of parameters for global analysis, we propose to enrich
594  expression data of different conditions to link them to parameters of potential biological
595 relevance.
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599 comparison of the cell lattices over the course of a simulation. Only cancer cells (blue) and

600 CTLs (orange) are shown for clarity B. Cancer cell populations of 100 simulations per condition
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601 with randomly perturbed model parameters (+/- 25%). High immune infiltration marks the
602 nominal configuration, low immune infiltration simulations have a 3-fold reduced immune cell
603 recruitment rate. The simulations with ICI are designated “responders” or “non-responders”
604 depending on their final cancer cell population. C. Qualitative comparison of the conditions
605  with fractions of anti-PD1 responders and non-responders with high and low CD8 infiltrates
606 respectively.

607
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609  Fig. 5. Central step of the proposed method to select model parameters that are related to
610 differential regulation in benign vs. malignant tissue. Top: Significantly differentially regulated
611 gene sets in melanoma sample of different ICl treatment response that could be linked to
612  model parameters. See full list in supplementary Table 2. Bottom left: List of the identified
613 parameters connected to the selected gene sets. Bottom right: volcano plot of the adjusted p
614  value against the normalized enrichment score. Gene sets accounting for parameters are

615  marked with corresponding colors.

616
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618  Fig. 6. A: Distribution of final cancer cell populations. B: Partial rank correlation coefficients.
619 C: Parameter importances of the decision tree. D: Decision tree for the final cancer cell
620 population. Each node predicts a simulation outcome for a region of the sampled parameter
621 space. At a branch parent node, the parameter space is split along a threshold for a split
622 parameter. The numbers in the parents refer to split parameters: 0: cell cycle time of cancer
623  cells tproliferations 1: influence of immunosuppressive cytokines tgyp, 3: CTL recruitment rate
624  rcr, 4 migration probability of cancer cells pyigration- The color saturation indicates node

625 impurity. Model drafts are shown for highlighted ICI resistant parameter subspaces with color
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626 indicating model components influenced by parameter deviations from the nominal

627 configuration (blue: lower/ red: higher values).
628

629
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