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Abstract 8 

Most of the recent progress in our understanding of cancer relies in the systematic profiling 9 

of patient samples with high throughput techniques like transcriptomics. This approach has 10 

helped in finding gene signatures and networks underlying cancer aggressiveness and therapy 11 

resistance. However, -omics data alone is not sufficient to generate insights into the 12 

spatiotemporal aspects of tumor progression. Here, multi-level computational models are 13 

promising approaches, which would benefit from the possibility to integrate in their 14 

characterization the data and knowledge generated by the high throughput profiling of patient 15 

samples. 16 

We present a computational workflow to integrate transcriptomics data from tumor patients 17 

into hybrid, multi-scale models of cancer. In the method, we employ transcriptomics analysis 18 

to select key differentially regulated pathways in therapy responders and non-responders and 19 

link them to agent-based model parameters. We next utilize global and local sensitivity 20 

together with systematic model simulations to assess the relevance of variations in the 21 

selected parameters in triggering cancer progression and therapy resistance. We illustrate the 22 

methodology with a de novo generated agent-based model accounting for the interplay 23 

between tumor and immune cells in melanoma micrometastasis. Application of the workflow 24 

identifies three different scenarios of therapy resistance. 25 

1 Introduction 26 

In the last decade we have progressed remarkably in our understanding of cancer 27 

pathogenesis and metastasis, and this has had positive consequences in our ability to 28 

diagnose, stratify and treat metastatic tumors. In line with this, immune evasion is a hallmark 29 

of metastatic cancer (Hanahan and Weinberg 2011) and our deep understanding on its 30 

mechanisms of action has been vital to the development of therapies such as immune 31 

checkpoint inhibitors (ICI) for aggressive tumors like advanced melanoma (Wei et al. 2018), 32 

which greatly increased patient survival in metastatic melanoma patients (Larkin et al. 2015). 33 

A significant fraction of the progress in cancer research is due to the characterization of tissue 34 

samples from large cohorts of patients through genomics, transcriptomics, proteomics and/or 35 

epigenomics analysis. These techniques give access to quantitative data describing the 36 

activation and expression of (all) genes in cancer, thereby providing the information necessary 37 
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to investigate the genetic landscape of cancer progression (Akbani et al. 2015) and to 38 

reconstruct and dissect the gene regulatory networks underlying cancer pathogenesis and 39 

therapy response (Dreyer et al. 2018). However, -omics data alone cannot account for some 40 

relevant levels of (de)regulation happening in cancer, which are linked to spatiotemporal 41 

variations in the tumor’s molecular and cellular composition, as well as to the existence of 42 

nonlinear regulatory structures like feedback and feedforward loops (Lai et al. 2016). 43 

In this context, mathematical modeling and in particular multi-level spatial computational 44 

models are a viable method as they allow to investigate the dynamic behavior of the tumor 45 

microenvironment (TME) from hypothesized cell behavior and to evaluate therapeutic 46 

strategies (Metzcar et al. 2019). These models can describe and simulate the dynamics of 47 

cancer-deregulated intracellular gene circuits (Kirouac et al. 2017), but they can also be used 48 

to integrate genes and gene circuits activity into tissue-scale models of cell-to-cell interactions 49 

(Vera et al. 2013). 50 

In such agent-based models (ABM), cells act as discrete individuals according to their set of 51 

rules. ABMs of cancer immune environments have been recently reviewed by Norton et al. 52 

(2019). There are some challenges to devising these computational models in the context of 53 

cancer: First, there is a trade-off between detailed modeling of biological features with 54 

different scales occurring in cancer progression and keeping the model simple enough to allow 55 

interpretability and reasonable computing effort. Second, these model types include a large 56 

amount of model parameters that require diverse, quantitative data to be characterized. In the 57 

case of tissue modeling, many parameters can only be calibrated indirectly, as the 58 

experimental modalities to observe single cell behavior in vivo are missing. We also need 59 

domain knowledge to decide which parameters are relevant for model simulations and 60 

investigating hypotheses, allowing to propose or optimize therapies. 61 

In this paper, we propose to integrate transcriptomics analysis from cancer patient cohorts in 62 

the design and characterization of agent-based model simulations. To this end, we describe a 63 

method for analyzing transcriptomics data, ranking and selecting key gene sets underlying a 64 

condition of interest and linking these to selected agent-based model parameters. We utilize 65 

this information to prioritize parameters for investigation of the model behavior, as an analysis 66 

of the whole parameter space is computationally infeasible., The influence of these priorized 67 

parameters is investigated via global sensitivity analysis and massive, systematic model 68 

simulations. We exemplify the use of the method for a case study on melanoma metastasis 69 

and immunotherapy resistance. To this end, we built an agent-based model accounting for the 70 

interplay between tumor and immune cells in a micrometastasis. 71 

2 Materials and Methods 72 

In this work we followed a workflow sketched in Fig. 1. It contains several steps including 73 

model construction, exploration and calibration, linking enriched gene sets to parameters, 74 

and analysis. The steps we take are discussed in detail below. 75 
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2.1 Multi-level melanoma immunology model 76 

The general modeling concept we used is to create a spatial agent-based model of the TME 77 

that interacts with a systemic compartment. This is a modeling approach that has been 78 

suggested in recent reviews (Norton et al. 2019; Metzcar et al. 2019) and was followed in other 79 

multiscale models as well (Santos and Vera 2020; Gong et al. 2017). We built our model based 80 

on knowledge of tumor immunology and signaling in cancer and melanoma (Abbas et al. 2014; 81 

Marzagalli et al. 2019). The model contains immune and tumor cells in the melanoma TME 82 

and their interactions, which can be either based on cell-cell contact or on intercellular 83 

communication through cytokines. 84 

The model accounts for parts of the innate and adaptive immunity to tumors including 85 

immunosurveillance without considering memory and long-term immunity. For the 86 

immunosurveillance we assumed that the tumor antigens are not yet detected by the adaptive 87 

immune system. A sketch of the model and in particular the considered cell interactions are 88 

shown in Fig. 2. Specifically, the immune cells accounted for are cytotoxic T lymphocytes 89 

(CTLs), T helper cells (Th), B cells, regulatory T cells (Tregs), dendritic cells (DCs), macrophages 90 

and myeloid-derived suppressor cells (MDSCs). 91 

We assumed that the communication between immune cells is mediated by cytokines and 92 

chemokines. The cell behavior is modeled as logical rules. Further, our model includes helper 93 

cells and suppressor cells as abstract cell types that account for immune cells that primarily 94 

have a regulatory role, such as CD4+ T cells, B cells and MDSCs. These cells influence the 95 

immune response via secreting cytokines.  96 

We labeled the involved cytokines based on whether they have a primarily immunoenhancing 97 

or immunosuppressive effect and modeled two abstract surrogate cytokines accordingly: 98 

immunoenhancing (ENH) and immunosuppressive cytokine (SUP). ENH accounts for cytokines 99 

that increase the effectiveness of cytotoxic mechanisms like IFN-γ, as well as for 100 

chemoattractants for cytotoxic cells such as CCL3, CCL4, CCL5, CXCL9 or CXCL10. Examples 101 

for molecular species that have immunosuppressive effects are IL-10, TGF-β and IDO. The 102 

surrogate cytokines keep the model simpler by assuming that the cytokines do not have 103 

pleiotropic effects, although it has been shown that some cytokines may trigger both 104 

immunosuppressive and immunoenhancing effects (Donia et al. 2016). For instance, IFN-γ, a 105 

key regulator of the adaptive immune response, can trigger both the expression of major 106 

histocompatibility complex I (MHC-I) and of PD-L1. The former increases the recognition of 107 

cancer cells by T cells, while the latter inhibits the effector mechanism of T cells. 108 

2.1.1 Cytokine diffusion 109 

Cytokines are modeled using a continuum model that tracks cytokine concentrations rather 110 

than discrete molecules. Their diffusion is described by Fick’s second law 111 

𝜕𝒄

𝜕𝑡
= 𝑫Δ𝒄 + 𝒇 112 
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with the compounds’ concentrations c, the diffusion constants D, and a term f accounting for 113 

secretion and degradation. Cytokine diffusion is solved using a finite difference method with 114 

the Euler forward method. 115 

2.1.2 In situ cell populations 116 

Cancer cells. A cancer cell population of 125 cells is seeded at the lattice center at the 117 

beginning of a simulation. As the tumor cells migrate and divide, they will spread over the 118 

tissue in the course of a simulation. 119 

Cell motility is implemented as a random walk, allowing a cell to move to neighboring lattice 120 

positions with a probability 𝑝୫୧୥୰ୟ୲୧୭୬. If the chosen position is already occupied by another cell, 121 

the cells either swap places or stay at their positions with equal probability. In general, it is 122 

assumed that cancer cells are less motile than immune cells. 123 

Cancer cells can die with a probability 𝑝ୢୣୟ୲୦, which leads to their removal from the lattice. 124 

Dead cancer cells will leave debris that can be collected by dendritic cells and facilitate an 125 

immune response. 126 

Cancer cells are considered to have uncontrolled replication potential and will attempt to 127 

divide after a fixed length of time 𝑡୮୰୭୪୧୤ୣ୰ୟ୲୧୭୬ has passed, which accounts for cell growth and 128 

cycle. Dividing cells are temporarily immobile for the time step where the cell division occurs. 129 

Cell division can only take place if there is a vacant neighboring position that a daughter cell 130 

can occupy. This rule implicitly models cell contact inhibition, a trait that cancerous cells 131 

usually lose (Hanahan and Weinberg 2011). However, this assumption is in line with previous 132 

studies that use lattice-based models (e.g. Wang et al. 2013). It simplifies the modeling of cell 133 

mechanics, and evades calculations such as equilibria of forces between cells and the 134 

consequential possibility of cells pushing each other away. 135 

Cancer cells may present one or multiple tumor-specific antigens depending on their 136 

mutations. We modeled only passenger mutations, meaning if a cancer cell mutates, it may 137 

start to present another antigen. This can induce an adaptive immune response specific to 138 

that antigen. Cancer cells mutate at each time step with a probability 𝑝୫୳୲ୟ୲୧୭୬. The mutations 139 

that are modeled are non-driver mutations, as they only affect the antigen pool that a particular 140 

cancer cell presents, which influences its susceptibility towards clearance by CTLs: more 141 

mutations lead to a larger antigen pool and recognition by different CTL clones. The mutations 142 

are modeled as a finite allele model, with 32 possible mutations. This allows to track the 143 

individual mutations, but has the disadvantage that it is not realistic compared to the near-144 

infinite mutations possible in a real human genome, potentially leading to artifacts, e.g. 145 

through the possibility of reverse mutations. 146 

Cytotoxic T lymphocytes. Cytotoxic T lymphocytes patrol the tumor site and are able to 147 

induce apoptosis in cancer cells upon contact. A cell is considered to be in contact with another 148 

if it is present in its Moore neighborhood (i.e. adjacent cell including diagonal adjacency). A 149 
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CTL recognizes an antigen that is specific to its receptor and kills cancer cells presenting the 150 

antigen. It probes its neighborhood for a recognizable cancer cell in random order. The 151 

randomness is introduced to avoid a direction bias that might lead to simulation artifacts. If 152 

the CTL recognizes a cancer cell, it kills it with a probability modeled as 153 

𝑝୩୧୪୪ = (൫𝑝ୠୟୱୣ + (1 − 𝑝ୠୟୱୣ) ⋅ (1 − 𝑒ିఛుొౄ[୉୒ୌ]) ൯ ⋅ 𝑒ିఛ౏౑ౌ[ୗ୙୔])௚ 154 

that depends on a base killing probability 𝑝ୠୟୱୣ, the local concentrations of SUP [SUP] and ENH 155 

[ENH], respective rate constants 𝜏ୗ୙୔ and 𝜏୉୒ୌ, and the influence of anti PD1 checkpoint 156 

inhibitor therapy 𝑔. The probability is modeled in such a way that killing of tumor cells by CTLs 157 

becomes more effective in the presence of ENH and less effective in the presence of SUP. Anti 158 

PD1 therapy is modeled as a power law influence (Vera et al. 2007) and is set to 1 (no therapy) 159 

and can be toggled to 0.1 during a simulation (application of therapy). At this abstraction level 160 

of the model it is indifferent whether the drug targets PD1 which may be expressed by CTLs 161 

or its ligand PDL1 which may be expressed by the cancer cells, as it only influences the killing 162 

mechanism on contact. The killing has a duration 𝑡୩୧୪୪, in which the CTL becomes immobile 163 

and unable to kill other neighboring cancer cells. 164 

CTLs undergo apoptosis after a fixed life span 𝑡୪୧୤ୣ,େ୘୐ expires. Note that CTL expiration 165 

accounts for different cell fates including exhaustion, apoptosis or leaving the TME. We do not 166 

model CTL proliferation in the TME, although it has been reported in cases of combination 167 

therapy (Spranger et al. 2014). Unlike cancer cells, a CTL follows its migration rule at every 168 

time step unless it is in an immobile state. Therefore, its motility depends only on the cell 169 

density in its vicinity. It is capable of performing both random walk and chemotactic migration, 170 

following the ENH gradient. By default, CTLs perform random walk and they change to 171 

chemotactic migration if the concentration of surrounding ENH cytokines exceeds a threshold. 172 

We modeled this threshold to prevent the CTLs from being sensitive to very low ENH 173 

concentrations. The CTLs moving in the chemotactic mode are in an activated state. The 174 

activated CTLs secrete ENH cytokines with a fixed rate 𝑟୉୒ୌ. ENH increase their cytotoxic 175 

capabilities and attract other CTLs to their vicinity, allowing fast finding and clearance of 176 

cancer cell colonies. 177 

Dendritic cells. DCs are antigen-presenting cells to immune effector cells such as T cells. In 178 

the model, DCs function as probes for tumor cells, and they move inside the lattice at each 179 

simulation step if a vacant position in the vicinity is available. We did not consider apoptosis 180 

of DCs in the TME, as we assume that DCs are either tissue-resident or filtrated through the 181 

TME during their lifetime. A DC will collect all cancer cell debris it encounters. It then starts to 182 

present the antigens it processed. Furthermore, it becomes activated and leaves the tumor 183 

site. Once a DC has left the tumor site, it increases a signal that leads to a delayed recruitment 184 

of CTLs that are specific to the antigens it now presents. This way we implicitly modeled the 185 

homing of DCs to the tumor-draining lymph node. We assume homeostasis of the DC 186 
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population, and for every DC that leaves the tumor microenvironment, a new DC will be 187 

recruited. 188 

Helper and Suppressor cells. Helper cells account for CD4+ helper T cells as well as tumor 189 

infiltrating B cells. They constantly secrete ENH cytokines (𝑟୉୒ୌ). Suppressor cells primarily 190 

account for regulatory T cells (Treg) and myeloid derived suppressor cells (MDSCs). Analog to 191 

helper cells, they constantly secrete SUP cytokines. Both helper and suppressor cells perform 192 

a random walk during their lifetime, which is fixed to 𝑡୪୧୤ୣ,୦ୣ୪୮ୣ୰ and 𝑡୪୧୤ୣ,ୱ୳୮୮୰ୣୱୱ୭୰, respectively. 193 

Macrophages. Macrophages have cytotoxic capabilities, and can secrete both ENH and SUP 194 

cytokines. Similar to CTLs, their cytotoxicity is influenced by cytokines. Their cytokine 195 

secretion rates depend on the ratio of the concentrations of local SUP and ENH cytokines: 196 

𝑟ୗ୙୔ =  
[SUP]

[SUP] + [ENH]
 ⋅ 𝑟ୡ୷୲୭୩୧୬ୣ 197 

and 198 

𝑟୉୒ୌ =  
[ENH]

[SUP] + [ENH]
 ⋅ 𝑟ୡ୷୲୭୩୧୬ୣ. 199 

The equations result in positive feedback loops, making the secretion rates of SUP and ENH by 200 

macrophages positively correlate with their own concentrations. The feedback loops imitate 201 

an environment-dependent phenotype plasticity that resembles M1 and M2 phenotype 202 

activation described in the literature (Kim and Bae 2016). 203 

2.1.3 Cell recruitment 204 

Newly recruited cells appear on a free position at the border of the TME lattice based on the 205 

assumption that recruited cells enter from nearby blood vessels. The cell types recruited to 206 

the TME are CTLs, DCs, macrophages, helper and suppressor cells. 207 

The recruitment of CTLs is preceded by DC-induced clonal expansion and differentiation in 208 

the lymphatic tissues, which introduces a delayed response. Therefore, CTLs are recruited to 209 

the TME with an antigen specific rate 𝑟େ୘୐ that depends on delayed tumor detection of DCs. 210 

The delay is modeled as a queue with a fixed size 𝑡ୢୣ୪ୟ୷ for each antigen. At each simulation 211 

step, the oldest value will be dequeued and leads to recruitment of CTLs, while a new value 212 

will be enqueued and initialized to zero. Every DC presenting the respective antigen that leaves 213 

the tumor site at the simulation step will add a number to the new value in the queue, leading 214 

to immune cell recruitment in the future. Helper cells are recruited alongside CTLs with a fixed 215 

ratio of 1:1, which approximates reported data (Hernberg 1996). 216 

Recruitment of suppressor cells and macrophages depend on CTL recruitment with fixed 217 

ratios 𝑞ழୡୣ୪୪ ୲୷୮ୣவ e.g. 218 

𝑟୫ୟୡ୰୭୮୦ୟ୥ୣ = 𝑞୫ୟୡ୰୭୮୦ୟ୥ୣ  ⋅ 𝑟େ୘୐. 219 
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2.2 Model environment, simulation and parameterization 220 

The lattice is modeled with cubic cells with a side length of 10μm, with 100 × 100 × 100 cells, 221 

representing a volume of 1mmଷ. We set 𝛥𝑡 =  10 min for the duration of a simulation step, 222 

which is taken from a similar model by Gong et al. (2017). The fastest action a cell undertakes 223 

and that is affected by the step size is cell movement. The time step and cell length correspond 224 

with a maximum cell speed of √3 μm minିଵ. The maximum cell speed is therefore about 10 225 

times slower than the speed of neutrophils performing chemotaxis in a microfluidic device 226 

and about 5 times faster than H69 small cell lung cancer cells (Milo et al. 2010). We assume 227 

this depicts cell motion with an adequate speed assuming that leukocytes move more slowly 228 

in tissue than in a microfluidic device. Simulations start with a small homogeneous population 229 

of 125 cancer cells at the center of the lattice and random uniformly distributed populations 230 

of DCs and macrophages. We run simulations for a period of 100 days or 8401 steps, 231 

respectively. This period is chosen on the assumption that a successful immune response will 232 

clear the metastasis within 50 days, as is indicated for adaptive immune responses (Abbas et 233 

al. 2014). We doubled the simulation time to investigate the model progression of small 234 

residual cancer cell populations that many simulations showed at day 50. Further, a simulation 235 

will abort earlier if the cancer cell population grows larger than 800,000. This abortion 236 

condition is chosen to limit the computational effort of the simulations. We consider it justified 237 

as 80% of the lattice spaces will be occupied by cancer cells, effectively simulating a tumor 238 

expansion beyond the model space. 239 

We used published experimental data to calibrate as many parameters as possible, whose 240 

annotation and nominal values are listed in supplementary Table S1. To determine the 241 

maximum recruitment rates, we use ratios of cell types that are described in literature, leaving 242 

but one recruitment rate uncharacterized. With this modeling choice we achieve that the 243 

simulated immune infiltrate resembles an infiltrate found in experiments over the course of a 244 

simulation. 245 

Running a single simulation took about 1 hour and 20 minutes on our hardware (4 Intel Xeon 246 

E5-4660, 256GB RAM), requiring about 10 MB RAM. For the sensitivity analyses, we ran up to 247 

64 simulations in parallel. We implemented our model in c++17, using HDF5 and json data 248 

formats for I/O. To account for the stochasticity in the model, we repeated each simulation 249 

multiple times with different seeds for the random number generator. To decide on a number 250 

of replicas to make for each simulation, we ran simulations with the nominal parameter 251 

configuration both with and without application of ICI therapy and compared the 95% 252 

confidence intervals of the expected cancer cell populations after 3 and 100 replications, and 253 

found that using a low number of replications is acceptable for our analysis (supplementary 254 

Fig. S1). For the local sensitivity we repeated each simulation 10 times, and for the global 255 

sensitivity analysis 3 times. 256 
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2.3 Linking differential regulation to model parameters 257 

For computationally expensive model simulations, global sensitivity analysis is only feasible 258 

for a small subset of model parameters. Here we propose to base the selection on parameters 259 

linked to biologically relevant gene sets using a workflow as depicted in Fig 3. We performed 260 

a gene set enrichment analysis to identify and characterize a subset of them that is related to 261 

response to anti-PD1 treatment. First, we downloaded and processed the transcriptome data 262 

(GSE78220) of pre-treatment melanomas undergoing anti-PD1 checkpoint inhibition therapy. 263 

Second, we identified differentially expressed genes between responders and non-responders. 264 

Third, we performed a gene set enrichment analysis using the differentially expressed genes 265 

and identified gene sets in which the genes are involved. We assumed that the identified 266 

enriched gene sets are crucial for the pathogenesis and progression of melanoma, and 267 

therefore we manually annotated them with corresponding model parameters. 268 

For the gene set enrichment analysis, we used the R package fgsea (Sergushichev 2016) that 269 

tested the enrichment of the identified differentially expressed genes using the MSigDB 270 

hallmark gene set collection (Liberzon et al. 2015) and cancer hallmark genes (CHG, Zhang et 271 

al. 2020). The fgsea algorithm searches for gene sets where highly ranked genes are enriched. 272 

It is given a ranked list of genes and a list of gene sets. We calculated gene ranks based on 273 

differential expression as 274 

𝑠௜ = sign(logFC௜) ⋅ (− logଵ଴ 𝑝௜) 275 

with the binary logarithmic fold change logFC௜ and the p-Value 𝑝௜. To explore the enrichment, 276 

we examine the Benjamini-Hochberg adjusted p-value and list the significantly regulated gene 277 

set. These were manually annotated with model parameters they relate to, excluding those 278 

that could not be related (e.g. because of their generality or association to processes that are 279 

not modeled). 280 

Next, we selected parameters for global sensitivity analysis based on the gene set enrichment 281 

and the local sensitivity analysis. In our case, we could afford to run a global sensitivity analysis 282 

for 5 parameters, while 6 parameters were identified with the gene set enrichment. To exclude 283 

one parameter from this selection, we performed a local sensitivity analysis (i.e. one at a time 284 

perturbation) and exluded the least influential parameter  285 

2.4 Sensitivity analysis and decision tree based phenotype grouping 286 

We selected five model parameters of interest for sensitivity analysis, which we set up in a 287 

quasi Monte Carlo fashion where we sample the selected parameter space using the Sobol’ 288 

sampling sequence implementation of chaospy (Feinberg and Langtangen 2015). As 289 

boundaries for the parameter space we set (0, 2) times the nominal value. Assuming that about 290 

five simulations per parameter are needed to sufficiently cover the parameter space, we 291 

sample 5ହ = 3125 parameter sets. As the model includes stochastic processes such as killing 292 
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or moving probabilities, we repeat each simulation 3 times, leading to a total number of 9,375 293 

simulations for the sensitivity analysis. 294 

To analyze the sensitivity of our parameter selection, we trained a decision tree as a meta-295 

model, with the aim to find sensitive parameter subspaces and the parameter sensitivities on 296 

the simulation outcome (Hastie et al. 2009; Saltelli et al. 2008), a similar approach has been 297 

followed in an earlier work (Santos et al. 2018). To quantify the parameter sensitivities, we 298 

used partial rank correlation (Marino et al. 2008) and feature importances derived from the 299 

decision tree. As target variable we chose the cancer cell population at the end of the 300 

simulation, labeling the simulation results either as emerging metastasis (>700,000), 301 

complete remission (0) or else residual disease. This gives an indication of how good the 302 

immune response is in eliminating the emerging metastasis. There are some limitations 303 

though, as we can generally not assume that a simulation will reach a steady-state by its end. 304 

Decision trees have the advantage that they can reproduce nonlinear and non-monotonous 305 

behavior, which is useful as we cannot assume a linear model behavior a priori. We use the 306 

scikit-learn implementation, which also calculates normalized parameter importances on the 307 

regression splits (Pedregosa et al. 2011). As an optimization criterion we chose the Gini 308 

impurity. The simulations were randomly split into a training and test data set (80:20) and 5-309 

fold cross-validation was carried out on the training set yielding a mean accuracy of 0.9 and a 310 

standard deviation of 0.004. To avoid overfitting and to keep the decision tree easily human-311 

interpretable we constrain it to a depth of 5 and a minimum split size of 3.3%. 312 

3 Results 313 

We developed a model of the immune reaction to melanoma that aims to account for the core 314 

cellular mechanisms influenced by the cytokine milieu. The TME is set up to simulate a newly 315 

seeded micrometastasis, where a cancer cell colony grows, is detected by immunosurveillance 316 

and challenged by both innate and adaptive immune responses, where CTLs are the cytotoxic 317 

actors. 318 

3.1 Selection of the nominal model configuration 319 

We calibrated most model parameters to data estimates from the literature (supplementary 320 

Table S1). To find values for the three parameters to which no data was found, we explored 321 

their parameter space to find a sensitive parameter set that we fixed as nominal values 322 

(supplementary Fig. S2). 323 

In Fig. 4 we show simulations of the nominal parameter configuration and a configuration with 324 

reduced recruitment of immune cells with and without ICI treatment. This is motivated by 325 

findings that immune cell infiltration or CTL infiltration in particular is correlated with ICI 326 

treatment outcome (Li et al. 2021, Kümpers et al. 2019, Du et al. 2021, Nie et al. 2019), which 327 

we tested if our model would replicate. Model parameters have been randomly perturbed 328 

within the range of +/- 25% to account for patient diversity. It can be seen that for the nominal 329 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2023. ; https://doi.org/10.1101/2023.01.09.523238doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.523238
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

parameter configuration, simulations without ICI lead to emerging metastases in almost any 330 

case. Simulations with low CTL infiltration and application of ICI lead to remission in 76/100 331 

and to residual disease in 24/100 simulations. Simulations with ICI and the nominal (high) CTL 332 

infiltration lead to complete removal of cancer cells in 99/100 simulated cases and residual 333 

disease in one case. Taken together, the selection of parameter values for the nominal model 334 

configuration renders results that qualitatively match clinical evidence of patient response with 335 

high and low CD8 cell infiltration (Li et al. 2021, comp. Fig. 4C). 336 

3.2 Transcriptomics data-driven selection of therapy-response related gene 337 

sets and their connection to model parameters 338 

Gene set enrichment analysis using differential gene expression (anti-PD1 responders vs. non-339 

responders) resulted in 24 significantly differentially regulated gene sets (Benjamini-Hochberg 340 

adjusted p-value <= 0.05). Fig. 5 demonstrates how we used this data to identify model 341 

parameters that are of particular interest, which we selected for the computationally expensive 342 

global analysis. For the parameter selection we considered the significantly differentially 343 

regulated gene sets. We annotated and mapped them to the corresponding model parameters. 344 

We excluded 14 gene sets that could not be linked to any model parameter either because 345 

they are generic, disease-specific, or not directly related to any modeled mechanism. 346 

We link one gene set, “genome instability and mutation”, to the mutation probability 𝑝୫୳୲ୟ୲୧୭୬. 347 

Another, “epithelial-mesenchymal transition”, can be linked to cancer cell motility 𝑝୫୧୥୰ୟ୲୧୭୬. We 348 

further link three gene sets to the cell cycle time 𝑡୮୰୭୪୧୤ୣ୰ୟ୲୧୭୬ and one to the influence of SUP 349 

𝜏ୗ୙୔. Another two we link to the CTL recruitment rate 𝑟େ୘୐. and yet another two to the influence 350 

of ENH 𝜏୉୒ୌ . 351 

3.3 Parameter sensitivity analysis indicates multiple mechanisms of therapy 352 

resistance 353 

To consider conditions of limited computational power in our analysis that would be found in 354 

the analysis of any large-scale ABM, we constrained the global sensitivity analysis to five 355 

parameters, excluding the enriched parameter 𝑝୫୳୲ୟ୲୧୭୬, which is the least influential of the 356 

selected parameters in the local sensitivity analysis (cf. supplementary Fig. S3). Global 357 

sensitivity analysis showed that a large proportion of simulations ended either with an 358 

emerging metastasis or complete remission (Fig. 6A). We therefore categorized the labels in 359 

emerging metastasis, residual disease and complete remission. The influence of the 360 

parameters, either described as partial rank correlation coefficients (prccs) or parameter 361 

importance of the trained decision tree is shown in Fig. 6.B/C. Both metrics agree that cancer 362 

cell cycle time and motility are more influential than the immune response-related CTL 363 

recruitment rate and the cytokine influences. The signs of the prccs follow the intuitive 364 

interpretation: long cell cycle times, high CTL recruitment rates and higher influence of ENH 365 

tend to lead to better removal of cancer cells, while higher cancer cell motility and higher 366 

influence of SUP lead to worse removal. 367 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2023. ; https://doi.org/10.1101/2023.01.09.523238doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.523238
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

The decision tree (Fig. 6.D, supplementary Fig. 4) indicates that, on the one hand the simulated 368 

ICI is effective in multiple conditions of the TME, while on the other hand there are different 369 

mechanisms of therapy resistance. For the ICI resistant regions, the mechanisms affected by 370 

their decision paths are shown colored in the model draft. The tumor tends to be ICI resistant 371 

in the following cases: aggressive tumors with short replication time and at least moderate 372 

motility, tumors with longer replication time but high motility with smaller CTL recruitment 373 

and a case with higher CTL recruitment and longer cell replication time but high influence of 374 

SUP and high cancer cell motility. These findings show why it is so difficult to predict ICI 375 

response (Morrison et al. 2018), as they indicate that there is a spectrum of different counter-376 

balancing mechanisms that influence its effectiveness. 377 

4 Discussion 378 

The aim of this paper is to develop an approach to integrate transcriptomic data into 379 

computational models of cell-to-cell interactions in cancer. There is abundant published 380 

material about integrating these types of data into unsupervised and supervised machine 381 

learning models for the classification and prediction of cancer patient samples. However, to 382 

date little has been done regarding merging these data with tissue-level mechanistic 383 

computational models, allowing for computer model-supported interpretation of patient data. 384 

To this end, we implemented a hybrid, agent-based model describing the interplay between 385 

cancer and immune cells in melanoma micrometastasis. To build and characterize the model, 386 

we used knowledge of melanoma immunology and publicly available quantitative data 387 

describing the behavior of the melanoma cells and different immune cells infiltrating the TME. 388 

There are similar cancer models proposed in the literature. Wang et al. (2013) developed an 389 

agent-based melanoma model accounting for cytokine mediated angiogenesis. Hatzikirou et 390 

al. (2012) modeled tumor invasion with a lattice gas cellular automaton. Gong et al. (2017) 391 

modeled the tumor immune response to PD-1/PD-L1 inhibition. They identified tumor 392 

mutational burden and antigen strength as key factors that influence the recruitment of 393 

immune cells. They simulate therapy with checkpoint inhibition by changing a model 394 

parameter (probability of T cell suppression) at a set time point during a simulation, the same 395 

approach we use to model therapy. Compared to the model proposed in this work we do not 396 

model CTL proliferation at the TME (cf 2.1.2). Instead, our model considered a greater extend 397 

of cell types, including DCs, helper and suppressor cells, and variability in tumor antigens. 398 

While this increases the complexity of the model, it hypothetically allows for a more detailed 399 

projection of the differential regulation data into the model. The model has some limitations 400 

though, which arise from abstractions and simplification, as well as from incomplete 401 

knowledge on the cellular mechanisms. For instance, the finite allele mutation model does not 402 

replicate the significance of mutational burden on the prognosis of ICI (Morrison et al. 2018). 403 

Here we combined gene set enrichment analysis of cancer immunotherapy response data and 404 

global sensitivity analysis of systematic model simulations as a method to constrain the 405 
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analysis to select model parameters (and connected biological processes) in computational 406 

models with large parameter spaces, which cannot be analyzed as a whole due to limitations 407 

in available computational power. In our case, a systematic exploration of the entire parameter 408 

space would require about 5ଶ଼ simulations, while the application of the method allowed us to 409 

reduce the effort to 9,375 simulations and about 175 hours of computation. In contrast to 410 

previous approaches to analyze such models, where parameter selection is performed solely 411 

hypothesis driven or by requirement as calibration data is missing, our approach offers to 412 

perform this in a data driven fashion. Based on our analysis, we hypothesize a causal 413 

relationship between given differentially regulated gene sets and cell functions and 414 

phenotypes associated with selected cell types in the micrometastasis. In the case of our 415 

model, investigation of the model behavior restricted to the selected parameters displayed 3 416 

different mechanistic scenarios of ICI treatment resistance. Key players to these mechanisms 417 

are cancer cell motility, which has been previously shown (Dreyer et al. 2018), CTL infiltration, 418 

which corresponds to the “warm” vs “cold” tumor hypothesis (Maleki Vareki 2018), and 419 

suppressive signaling (TGFβ: Zhao et al. 2018, IDO for non-small-lung-cancer: Botticelli et al. 420 

2018). A limitation of the method is that the linkage between parameters and gene sets 421 

remains a manual curation step and depends on the vast expert knowledge of the modelers. 422 

Further, it is possible that the enrichment analysis renders gene sets as relevant that are not 423 

linked to any parameter in the current instance of the model. In this regard, one can utilize 424 

the approach as a method for data-driven, systematic model expansion. For instance, in our 425 

analysis three metabolism related genes set are enriched between responders and non-426 

responders, which might encourage to model more details on the cells metabolism and 427 

expanding the model with nutrients. This would give the possibility to capture the interplay 428 

between immune and metabolic processes. 429 

Furthermore, the linkage as described here is based solely on gene set enrichment analysis 430 

and remains a qualitative step, yielding only categorical classification of parameters rather 431 

than quantitative differentiation. The latter would enable to deduce parameter perturbations 432 

from the data directly, while here we just narrow a selection of parameters, which is 433 

subsequently investigated in further detail in a global sensitivity analysis. In this regard, we 434 

think that the method can be expanded to generate a quantitative link of transcriptomic data 435 

to parameters by calculating a magnitude of the differential regulation and mapping it as a 436 

perturbation level to the respective parameters relative to their nominal calibration. This 437 

however requires annotation of all parameters with associated gene sets, which poses 438 

intensive manual work, but could be supported by automated methods such as text mining. 439 

We think that the combination of enrichment analysis of transcriptomics data and global 440 

sensitivity analysis can be applied generally to agent-based or ODE models reflecting cell-to-441 

cell and tissue interactions in cancer and other pathologies (cf. Fig. 3). To this end, it is 442 

necessary to have a significant amount of annotated transcriptomics data reflecting the 443 

investigated conditions or progression of the disease. When selecting the number of 444 
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parameters to be explored, one has to consider a trade-off between sufficient sampling of the 445 

chosen sub-parameter space and keeping the required computational load in control.  446 
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Figures 574 

 575 

Fig. 1. Workflow of the study. On the left are labels of the four overarching steps, on the right 576 

is a brief list of the central materials and methods used in each step. We first created the model 577 

and set a nominal parameter configuration. Then we linked expression data to model 578 

parameters to narrow a selection of parameters whose influence we analyzed in more depth. 579 

  580 
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 581 

Fig. 2: Concept of the model. On the cellular level, an agent-based model is used, where cell 582 

physiology is described as cell type specific rules. This is coupled on the level of the tumor-583 

microenvironment with the cytokine diffusion solver and the recruitment model of immune 584 
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cells. Cancer cell debris is detected by DCs which will attract CTLs, suppressors and helpers 585 

after a delay. CTLs that contact cancer cells switch to an activated state and can kill the cancer 586 

cell. The killing probability is influenced by cytokines and applied anti-PD1 therapy. 587 

Abbreviations: ENH: immunoenhancing cytokine, SUP: immunosuppressive cytokine, DC: 588 

dendritic cell, MΦ: macrophage, CTL: cytotoxic T lymphocyte. 589 
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 591 

Fig. 3. Method of linking expression data to model parameters. Besides performing a local 592 

sensitivity analysis to preselect a set of parameters for global analysis, we propose to enrich 593 

expression data of different conditions to link them to parameters of potential biological 594 

relevance. 595 
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 597 

Fig. 4. Simulations of the nominal parameter configuration with and without ICI therapy. A: 598 

comparison of the cell lattices over the course of a simulation. Only cancer cells (blue) and 599 

CTLs (orange) are shown for clarity B. Cancer cell populations of 100 simulations per condition 600 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2023. ; https://doi.org/10.1101/2023.01.09.523238doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.523238
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

with randomly perturbed model parameters (+/- 25%). High immune infiltration marks the 601 

nominal configuration, low immune infiltration simulations have a 3-fold reduced immune cell 602 

recruitment rate. The simulations with ICI are designated “responders” or “non-responders” 603 

depending on their final cancer cell population. C. Qualitative comparison of the conditions 604 

with fractions of anti-PD1 responders and non-responders with high and low CD8 infiltrates 605 

respectively. 606 
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 608 

Fig. 5. Central step of the proposed method to select model parameters that are related to 609 

differential regulation in benign vs. malignant tissue. Top: Significantly differentially regulated 610 

gene sets in melanoma sample of different ICI treatment response that could be linked to 611 

model parameters. See full list in supplementary Table 2. Bottom left: List of the identified 612 

parameters connected to the selected gene sets. Bottom right: volcano plot of the adjusted p 613 

value against the normalized enrichment score. Gene sets accounting for parameters are 614 

marked with corresponding colors. 615 
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 617 

Fig. 6. A: Distribution of final cancer cell populations. B: Partial rank correlation coefficients. 618 

C: Parameter importances of the decision tree. D: Decision tree for the final cancer cell 619 

population. Each node predicts a simulation outcome for a region of the sampled parameter 620 

space. At a branch parent node, the parameter space is split along a threshold for a split 621 

parameter. The numbers in the parents refer to split parameters: 0: cell cycle time of cancer 622 

cells 𝑡୮୰୭୪୧୤ୣ୰ୟ୲୧୭୬, 1: influence of immunosuppressive cytokines 𝜏ୗ୙୔, 3: CTL recruitment rate 623 

𝑟େ୘୐, 4: migration probability of cancer cells 𝑝୫୧୥୰ୟ୲୧୭୬. The color saturation indicates node 624 

impurity. Model drafts are shown for highlighted ICI resistant parameter subspaces with color 625 
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indicating model components influenced by parameter deviations from the nominal 626 

configuration (blue: lower/ red: higher values). 627 
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