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Highlights

- Integration of in-house proteome data on formalin fixated paraffine embedded
medulloblastoma (MB) and publicly available datasets enables large scale proteome
analysis of MB

- Six proteome MB subtypes can be assigned to two main molecular programs:
replication/ translation versus synapse/immune system

- Identification and validation of IHC compatible protein-biomarkers for high and low risk
MB subtypes, such as TNC and PALMD.

- Subtype specific correlation of the DNA methylome and the proteome reveals different
conserved molecular characteristics across MB subtypes.

- pGroup3-Myc subtype MBs are associated with high-risk features including high

abundances of vincristine resistance associated TriC/CCT member proteins
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- Proteome MB subtypes show differential N-glycosylation patterns, revealing complex-
bisecting glycans as potentially immunotargetable hallmarks of the high risk pGroup3-

Myc subtype.

Summary

Medulloblastomas (MBs) are malignant pediatric brain tumors that are molecularly and
clinically very heterogenous. To unravel phenotypically relevant MB subtypes, we
compiled a harmonized proteome dataset of 167 MBs and integrated findings with DNA
methylation and N-glycome data. Six proteome MB subtypes emerged, that could be
assigned to two main molecular programs: transcription/translation (pSHHt, pWNT and
pGroup3-Myc), and synapses/immunological processes (pSHHs, pGroup3 and
pGroup4). Multiomic analysis revealed different conservation levels of proteome features
across MB subtypes at the DNA-methylation level. Aggressive pGroup3-Myc MBs and
favorable pWNT MBs were most similar in cluster hierarchies concerning overall
proteome patterns but showed different protein abundances of the vincristine resistance
associated multiprotein complex TriC/CCT and of N-glycan turnover associated factors.
The N-glycome reflected proteome subtypes and complex-bisecting N-glycans
characterized pGroup3-Myc tumors. Our results shed light on new targetable alterations

in MB and set a foundation for potential immunotherapies targeting glycan structures.

Significance

Whereas the application of omics technologies has significantly improved MB tumor
classification and treatment stratification, it is still of debate, which features predict best
clinical outcome. Moreover, treatment options - especially for high-risk groups - are still
unsatisfactory. In contrast to nucleic acids, the proteome and their N-glycans may reflect
the phenotype of a tumor in a more direct way and thus hold the potential to discover
clinically relevant phenotypes and potentially targetable pathways. We show that these

analyses are feasible on formalin fixed and paraffine embedded tissue. Compiling a
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93 comprehensive MB dataset, we detected new biomarkers and characteristics for high-
94  and low-risk MB subtypes that were not reflected by other omic data modalities before.
95 Specifically, we identified subtype specific abundance differences in proteins of the
96 vincristine resistance associated multiprotein complex TriC/CCT and in proteins involved
97 in N-glycan turnover. Changes in the N-glycans are considered as potential hallmarks of
98 cancer and we show that N-glycan profiles can distinguish MB subtypes. These tumor-
99 specific N-glycan structures hold a strong potential as new biomarkers, as well as

100 immunotherapy targets.

101

102 Keywords:

103  Medulloblastoma subtypes, multiomics, proteome, mass spectrometry, DNA methylation,

104 850K, N-glycan, N-glycome, TriC/CCT, WNT, SHH, MYC, PALMD, TNC, HarmonizR

105

106 Introduction:

107 Medulloblastomas (MBs) are aggressive pediatric brain tumors, occurring in the posterior
108 fossa. Histomorphologically, molecularly and clinically, MBs are a heterogenous disease,
109  which is recognized by the current classification system (WHO)!. Four main consensus
110  subtypes have been described, WNT pathway activated MB (WNT MB), Sonic hedgehog
111 (SHH) pathway activated MB (SHH MB), and Group 3 (G3) and Group 4 (G4) MBZ.
112  Advances in molecular analyses, mainly using gene expression profiling, next generation
113 sequencing and DNA methylation analysis, led to the discovery of substantial intragroup
114  MB heterogeneity and many different subtypes of MBs with associations to distinct clinical
115 features were described?®®. Certain markers for poor survival have been identified among
116  MB subtypes, e.g. anaplastic histology, MYC amplification status, methylation subtype
117 1/l or TP53 mutations in WNT and SHHMB'-12, Conversely, extensive nodularity (MBEN
118 histology) and WNT activation (e.g. nuclear accumulation of B-CATENIN or CTNNB1
119 mutations) were associated with a favorable prognosis in MB patients 1214, Additionally,
120  methylation subtype VIl or a distinct whole chromosomal alteration signature in non-WNT/
121  non-SHH MB was described as a predictor for a favorable outcome!>1516, Whereas the

122  clinical association to certain methylation subtypes and chromosomal aberrations has
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123  been clearly described, the underlying molecular mechanisms remain to be resolved and
124  targeted treatment options are still lacking. In contrast to nucleic acids, the proteome and
125 post-translational modifications may reflect a tumor’s phenotype in a more direct way and
126  hold the potential to more precisely dissect clinically relevant phenotypes and targetable
127  functional alterations. Furthermore, diverse genomic or epigenomic alterations might
128  merge to similar proteomic patterns that could reveal common therapeutic targets among
129  MBs. Studies on small MB cohorts, using fresh frozen (FF) tumor material, have shown
130 that MBs also display heterogeneity at the proteome level ¥ Formalin fixed and
131 paraffine embedded (FFPE) material, enables the generation of larger datasets with
132  higher statistical power but provides challenges to mass spectrometric analysis due to
133 the incomplete reversion of methylene bridges and the induction of irreversible chemical

134  modifications®.

135 In addition to the general protein abundance distribution, post-translational modifications
136 (PTM) of proteins are important to understand cell physiology and disease related
137  signaling networks?!. Differential protein phosphorylations and acetylations have been
138 described in the brain tumor context!’'°. The most complex and common PTM, N-
139 glycosylation, has not been targeted in MB yet. Changes in the N-glycome are considered
140 potential hallmarks of cancer and N-glycan structures hold a strong potential as new

141  biomarkers, as well as immunotherapy targets?>-2.

142  Using a missing-value tolerant pipeline for integrating proteome data?’, we incorporated
143  publicly available, smaller MB proteome datasets'’° with data of 62 FFPE MB cases and
144  established a joint MB proteome dataset (n = 176). We comprehensively correlated
145 proteome data with DNA methylation data — a current gold standard for molecular brain
146  tumor classification®. Targeting N-glycosylation patterns across MB subtypes, we
147  additionally performed a global N-glycan analysis and correlated N-glycan information
148  with disclosed proteome subtypes. Taken together we present a large integrated study of
149 the MB proteome, DNA-methylome and N-glycome, revealing new insights into MB

150 phenotypes, potential new biomarkers and therapeutic targets.

151
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152 Results:

153 Integration of in-house proteome data on FFPE MB and publicly available datasets
154  enables large scale proteome analysis of MB
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156 Figure 1: Harmonization and integration of proteome Medulloblastoma (MB) datasets

157 NIPALS principal component analyses (PCA) of measured FFPE samples (n=62) with assignment to (A)
158  the four main molecular MB subgroups?, (B) age of measured samples, (C) measured MT batch. (D)
159  Overview of datasets. NIPALS PCA of data before (E) and after (F) data harmonization using ComBat in
160 the HarmonizR framework (n=167). (G) Protein abundance of the SHH MB marker GAB1, the WNT and
161 SHH MB marker FILAMIN A and the WNT MB marker CTNNBL1 after harmonization. *: p<0.05, **p<0.01,
162  **p<0.001

163

164 We analyzed 62 FFPE MB tumors (53 primary cases and 9 recurrences), using high-
165 resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS). Of these, 53
166 cases were additionally profiled using DNA methylation analysis. Missing value tolerant,
167 nonlinear iterative partial least squares (NIPALS) principal component analysis (PCA)
168 revealed a distinguishability of the four main molecular subgroups of MB (SHH, WNT, G3,
169 G4)?, that was previously described for fresh frozen (FF) tissue!™® (Figure 1A,
170  Supplementary Figures 1A, 2A). The age of used paraffine material did not impact on
171  sample clustering (Figure 1B, Supplementary Figure 1A). Similar protein numbers and
172 abundance levels of housekeeping proteins® were obtained from FFPE material,
173  generated over a span of 50 years (Supplementary Figure 1B, 1C). In addition, proteins
174  detected in WNT and SHH MB, showed similar tendencies in FFPE- and FF-MB
175 datasets!®!® (Supplementary Figure 2B, C). We concluded that proteome analyses of
176  FFPE MB tissue shows protein abundance distributions that are comparable to FF tissue
177  derived analysis. To further increase the cohort size, we integrated protein abundances
178  with reanalyzed LC-MS/MS data of FF-MB from public repositories?8;!%;Y, Figure 1D-F).
179  Missing value tolerant data harmonization 2’ adjusted sample specific mean and CV
180 values across studies (Supplementary Figure 3A) and enabled a clear separation of MB
181 groups. (Figure 1E-F). Established protein biomarkers for molecular MB subtypes that
182 were present in MS data, showed expected subgroup specific abundance patterns
183 (GAB1, CTNNB1, FLNA®, Figure 1G). Abundance levels of the housekeeping proteins
184 were constant across integrated datasets (Supplementary Figure 3B). In total 16,279
185 proteins were quantified across 167 samples from the integrated dataset (19XWNT;
186 57xSHH; 53xG4; 36xG3; 2xno initial main subgroup stated), including 156 primary tumors
187 and 11 recurrences.
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188  Six proteomic MB subtypes can be assigned to two main molecular profiles
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191  Figure 2: MB segregate into six proteome subtypes

192 (A) Proportion of ambiguous clustering (PAC) scores for k=2-12 in consensus clustering, using different
193 cluster algorithms (nms = 167). (B) Optimal clustering of proteome data. Consensus scores shown in color
194  scale from white (samples never cluster together) to blue (samples always cluster together). Six proteome
195  subtypes, pWNT, pSHH-t, pSHH-s, pGroup3-Myc, pGroup3 and pGroup4, were defined. (C) Visualization
196 of the first three principal components from NIPALS PCA. (D) Clinical sample information. (E) Log-rank
197 (Mantel-Cox) test comparing the survival curves of proteome subtypes (p value < 0.001, overall x2-square
198 test). (F) Group specific mean log 2 protein intensity of protein subtype marker candidate proteins. (G)
199 Proteome cluster similarity hierarchy based on stepwise increasing k-means execution from k=2-6. (H)
200 Gene set description-based, gene set overlap dependent MCL clustering of enriched gene sets, comparing
201  pWNT, pG3myc, pSHHt (n=88) to pG3, pG4 and pSHHs (n=79), Gene set enrichment analysis (GSEA)
202  was based on REACTOME pathways for all analysis.

203

204  We next asked how many subtypes of MB are reflected at the proteome level. Consensus
205 clustering, using hierarchical-and k-medoids (PAM)-clustering with different measures
206 (Pearson, Spearman, Euclidean distance) identified 6 stable clusters, confirming
207 previously described results of a smaller MB cohort (Figure 2 A-D)!. Proteome clusters
208 partly overlapped with previously described subgroups, based on DNA methylation
209  (Figure 2D, Supplementary Table 1b)(
210  https://www.molecularneuropathology.org/mnp/)?8. The assignment reliability of a sample
211 to a respective proteome subtype was indicated by how many times a sample was
212  associated with a certain cluster (cluster certainty, Figure 2D).

213  Atthe proteome level, non-WNT/ non-SHH MBs divided into three groups (pG4, pG3myc
214 and pG3, p=proteome group), while SHH MBs separated into two proteome groups
215 (pSHHs, pSHHt, s=synaptic profile, t= transcriptional profile). WNT MB formed a
216  homogenous cluster (PWNT, Figure 2D). In general, a high cluster stability was given for
217  all proteome subtypes (median 6/6), with the lowest mean cluster certainty given for pG3
218 samples, as they showed high similarity to pG4 and pG3myc respectively (median pG3
219  5/6, Figure 2D).

220 Proteome MB subtypes were associated with DNA methylation subtypes®®3!

221  (https://www.molecularneuropathology.org/mnp/), Figure 2D, Supplementary Figure 4,

222  Supplementary Figure 5, details see below). Except for one case, corresponding

223 recurrent and primary tumors were assigned to the same proteome subtype (Figure 2D).
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224  The case that switched subtype in the recurrence situation (from pSHHs to pSHHt) had
225 alow cluster certainty in the primary sample (3/6, Figure 2D).

226  pG3myc patients showed a significantly reduced overall survival as expected for subtype
227 1/ MYC amplified samples (Figure 2E). pWNT patients, as expected, showed the best
228 overall survival rate (Figure 2E). To determine potential biomarkers for proteome
229  subtypes of MB, Students t-testing was performed. In total, 529 out of 3,996 proteins,
230 found in at least 30% of all samples for each proteome subtype, showed a significant
231 differential abundance in at least one subtype. For each group, the top 5 proteins with the
232 lowest p-value and highest mean difference were selected as potential biomarker
233  candidates (Figure 2F, Supplementary Table 2a). For high-risk non-WNT/non-SHH MBs
234  (pG3myc) PALMD, DIEXF, MCN1 and PYCR1 were identified as potential new
235 biomarkers, alongside with the previously described prognostic marker TPD528. Of note,
236  hedgehog-signaling induced proteins (MICAL1, GAB1, PDLIM3)%* showed a higher
237 abundance in both, pSHHt and pSHHs. Subtype assignments and biomarker profiles
238  were confirmed in an additional proteome MB dataset®, including 5 specimens, that were
239  previously analyzed in our integrated cohort'® (Supplementary Table 4j, k).

240 To determine the degree of similarity between proteome MB subtypes of the main
241 dataset, consensus clustering was performed with k = 2 to k = 6, analyzing at which
242  cluster number the above defined subtypes separate. The highest similarity was observed
243  between pWNT and pG3myc as well as pG4 and pSHHs (Figure 2G). The clearly distinct
244  clusters at k = 2 indicate that MB subtypes can be divided into 2 different molecular
245 profiles at a superordinate hierarchy level of proteome subtypes: profile 1, including
246  pWNT, pG3myc and pSHHt and profile 2, including pG3, pG4 and pSHHSs (Figure 2H, 1).
247  Gene set enrichment analysis (GSEA) revealed 133 enriched REACTOME pathways in
248  profile 2 (g-value <0.05, Supplementary table 2c). GSEA -based Markov Clustering
249 (MCL), identified mainly synaptic and immunological processes and phospholipid
250 signaling (Figure 2l). For profile 1, a replicative/transcriptional signature was observed
251 (92 enriched gene sets, Figure 2H, Supplementary Table 2b). Taken together, 6 MB
252  proteome subtypes of MB were detected in an integrated cohort, that could be assigned
253  to two main molecular programs.

254
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255 Group specific correlation of the DNA methylome and the proteome reveals
256 different conservation levels of molecular characteristics across proteomic MB
257
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259  Figure 3: Correlation between DNA methylome and proteome features

260 (A) Circus plot from mixOmics analyses based on selected features of the first five components from
261 proteome and methylome data. The plot illustrates features with correlation r > 0.7 represented on side
262 guadrants. Proteome group specific feature levels are shown in the outer circle. (B) Proteome subtype
263  specific Pearson correlation calculated between matched proteins and CpG methylation sites. The number
264  of proteins correlating with CpG site methylation of their own gene (r > 0.7) is shown in colour. The pie chart
265  shows the distribution of correlating CpG sites concerning the position in a gene. (C) Subtype independent
266 Pearson correlation between 3,990 proteins and 381,717 methylation probes focusing on subtype specific
267 biomarkers. Correlations > 0.7 are shown, CpG sites correlating with the corresponding gene are
268 highlighted in blue. Some biomarkers correlated with more than one CpG site of their own gene (GABL1: 7,
269  GNB3: 2, IGSF21: 3, MICAL1: 3, and PALMD: 2). (D) Scatterplot of the 10 biomarker proteins correlating
270  with the CpG site(s) of their own gene (correlation > 0.7, p < 0.001). The regression line was aligned for alll
271  correlating CpG site(s).

272

273 To get a better insight into the correlation of methylome and proteome data, multiblock
274  data integration using sparse variant partial least squares discriminant analysis (sPLS-
275 DA) was performed between DNA methylation data (115 samples, 10,000 differentially
276  methylated CpG sites between the MNP v12.5 defined subtypes , Supplementary Figure
277 5 C,D, Supplementary Table 1d) and proteome data (115 samples, 3,990 quantified
278  proteins present in 30% of samples)®*. Among the most discriminative features for the
279 defined groups, only a fraction, discriminating mainly the WNT subtype showed a
280 correlation of proteome and DNA-methylation data (Figure 3A, arrows, Supplementary
281  Figure 6, correlation cut-off > 0.7, Supplementary Table 3h). To refrain from any data
282 bias, (such as feature extraction as just described), we next performed a MB subtype
283  specific correlation between complete DNA methylome data (115 samples and 381,717
284  CpG sites) and proteome data (115 samples, 3,990 proteins, Figure 3B, C). While the
285 number of proteins correlating with any random CpG site was high and relatively similar
286 for all MB subtypes (pWNT: 3,980 proteins, pG3: 3,990 proteins, pG3myc: 3,990
287 proteins, pG4: 3,340 proteins, pSHHs: 3,977 proteins, pSHHt 3,926 proteins), a
288  significantly higher number of proteins of the pWNT subtype (38.14%, 1,552 proteins)
289 and pG3 subtype (45.41%, 1,812 proteins) correlated with at least one CpG site of their
290 own gene when compared to the other subtypes (pG4: 1.92%, 77 proteins, pG3myc:
291  6.49%, 259 proteins, pSHHt: 4.68%, 194 proteins and pSHHSs: 1.52%, 65 proteins, Figure
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292 3B, Supplementary Table 3b-g). Only 12.2 % - 18% of the correlating CpG sites among
293  subtypes were located at the transcriptional start site (TSS200, TSS1500, Exonl) of their
294  respective gene (Figure 3B). To test the correlation for subtype specific biomarkers
295 Dbetween protein and CpG site methylation, non-group specific correlation (Pearson
296  correlation cut-off > 0.7) was performed (Figure 3C, Supplementary Table 3a). Out of 31
297  potential protein biomarkers (Figure 2F), 10 correlated with CpG sites of their own gene
298 (Figure 3C, 3D). In summary, DNA-methylation changes assessed with the Illlumina
299 arrays were only partly reflected at the protein level, with highest conserved features
300 among pWNT and pG3 subtypes between the proteome and methylome level.

301

302

303 SHH MB comprise two proteome subtypes showing either a synaptic or DNA
304 transcription/translation signature

305

306 SHH MB splitted into two different proteome subtypes (pSHHt and pSHHs, Figure 4A).
307  pSHHt, and pSHHs did not significantly correlate with histology or patient age. However,
308 all pSHHs cases with high cluster certainty (6/6) occurred in patients below 3 years of
309 age. The DNA methylation subtypes SHH3 (8/29) and SHH4 (9/29) were exclusively
310 found in pSHHt MBs (Figure 4A). Methylation subtypes SHH1 and SHH2 were seen in
311 pSHHs and pSHHt without statistical difference (SHH1: p=0.43, SHH2: p=0.10, X2 - test).
312 SHH pathway alterations are regarded as driver events in SHH MBs®*®. PTCH1 mutations
313  were found exclusively but not mandatory in pSHHt tumors. SUFU and SMO mutations
314 as well as amplifications of MYCN or GLI2 did not distribute differentially (Figure 4A).
315 TP53 mutations are used for the stratification of high-risk SHH MB patients®. 9/10 TP53
316  mutations occurred in the pSHHt subtype, but no significant differential distribution among
317 pSHHt and pSHHs MBs could be verified (p= 0.43, X? - test). The proteome abundance
318 for each gene was mapped to chromosomal arms, which will be referred to as “proteome
319 copy number variation (CNV)” henceforth. Both pSHHt and pSHHSs groups showed a low
320 overall correlation between calculated CNVs using DNA methylation data and proteome
321 data (rpsHHs =0.01, rpsunt =0.20, Figure 4D, G, Supplementary Tables 4g-h).

322
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324  Figure 4: SHH MB comprise two proteome MB subtypes

325 (A) Histological, molecular, and clinical characteristics of the MB subtypes pSHHt (n=43) and pSHHs
326 (n=14). (B) Volcano plot showing differentially abundant proteins comparing pSHHs tumors to all other
327  proteome subtypes. (p-value<0.05; Foldchange difference > 1.5). (C) GSEA based Markov Cluster
328  Algorithm (MCL) clustering enriched gene sets in pSHHs MBs. (D) Copy number variations (CNV) plots of
329  pSHHs MB (n=6) calculated from either DNA methylation or proteome data with correlation between both
330 omic types (Pearson, r=0.01). (E) Volcano plot showing differentially abundant proteins when comparing
331 pSHHt tumors to all other proteome subtypes (p-value<0.05; Foldchange difference > 1.5). (F) Gene set
332  overlap dependent MCL clustering of enriched gene sets in pSHHt. (G) CNV plots for pSHHt MBs (n= 29)
333 calculated from either DNA methylation or proteome data with correlation between both omic types
334 (Pearson, r=0.2) (H) Heatmaps showing mean MB subtype protein abundance hallmark genesets
335  homology directed repair (NESpsHhi= 2.2, p= <0.0001), replication (NESpsHHi= 2.2, p= 0.01), CTA cycle and
336 respiratory electron transport (NESpshhs= 3.9, p = <0.0001) and transmission across chemical synapses
337 (NESpshrs= 3.2, p = <0.0001). (1) Overall survival of pSHHt MB (n= 23) and pSHHs MB (n=5) and overall
338  survival of pSHHt MB depended on TP53 mutation status. TP53 mutated cases displayed a significantly
339  worse survival (Mantel cox test p-value = 0.04). (J) Volcano plot, showing differentially abundant proteins
340  when comparing TP53 mutated cases to wildtype cases in pSHHt tumors (p-value<0.05; foldchange
341  difference > 1.5).

342

343

344  pSHHs showed 167 differentially abundant proteins (Figure 4B, Supplementary table 4a).
345 GSEA revealed 80 enriched REACTOME pathways associated mainly with synaptic,
346  mitochondrial and immunological processes (g-value < 0.05, Figure 4C, Supplementary
347 table 4c-d). 131 differentially abundant proteins detected in pSHHt showed an enrichment
348  of post translational protein modification, transcription/translation, DNA repair and cell
349 cycle associated gene sets (Figure 4E, 4F, H, Supplementary Table 4b, e-f). Of note,
350 gene sets involved in “Signaling by RHO GTPases” and “Amino acid metabolism”, were
351 enriched in both proteome SHH MB subtypes. The synaptic signature of pSHHs
352 resembled the protein abundance distribution of “Transmission across chemical
353 synapses” related proteins in pG4 (Figure 4H, see also Figure 5B). In contrast, the high
354 abundance of mitochondrial proteins was exclusively found in pSHHs (Figure 4H). As
355 expected, TP53 mutations, assigned to the pSHHt group significantly correlated with bad
356 prognosis in SHH patients (Figure 41), while no significant survival difference was
357 identified between pSHHs and pSHHt (Figure 4l). Based on the highly abundant proteins
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358 used for detection of statistically valid biomarkers for each of six proteome subtypes,
359 TP53 mutations did not lead to the formation of a distinct proteome cluster. However,
360 when comparing TP53 mutated with TP53 wildtype MB within the pSHHt subtype, 134
361 proteins showed a statistically significant differential abundance between pSHHt-TP53
362  wildtype and pSHHs-TP53 mutated (Figure 4J, Supplementary Table 4i).

363

364 Figure 5

365  Focusing on non-WNT/ non-SHH MB, we found three different proteome subtypes, which
366 we termed pG3, pG3myc and pG4 (Figure 5A). pG4 exclusively included patients
367 assigned to the main molecular subgroup G4, whereas pG3myc was dominated by G3
368 patients. pG3 included fractions of both molecular subgroups (Figure 2D). Most pG3 and
369 pG4 patients showed a classic histology (CBM), while pG3myc was dominated by large
370 cell anaplastic (LCA) tumors. LCA histology and MYC amplification are used as markers
371  for high-risk tumor stratification in non-WNT/ non-SHH MBs®. MYC amplifications were
372  predominantly detected in pG3myc tumors, but not all pG3myc classified cases were
373 classified as MYC amplified. NMYC amplification was not restricted to the pG3myc
374  subtype. With respect to metastatic status, most pG3myc tumors were classified as M3,
375  while pG3 and pG4 were dominated by MO and M1 patients. In concordance with these
376  results, a broad fraction of pG3myc cases were assigned to the methylation subtype I
377  (16/20 cases, 80%)?%% or group G3 &° (13/20 cases, 65 %, Figure 5A). Conversely, 94.12
378 % of subtype Il cases fell into the pG3myc group. pG3 MBs were mainly composed of
379  methylation subtypes 1, 3 and 4 (10/11 cases, 90.90 %). Finally, pG4 tumors commonly
380 showed the methylation subtypes 5, 6, 7 and 8 (35/37 cases, 94.59 %). All groups showed
381 a low overall correlation between calculated proteome CNV and DNA methylation CNV
382 data (Figure 5D, G, J, Supplementary Table 5j-1). For pG4, we found 167 differentially
383 abundant proteins, including CHGB2, FBOX2, RPH3A, ISGF21 and PLXNA (Figure 5B,
384  Supplementary Table 5c). GSEA revealed an overrepresentation of immune system and
385 synapsis associated processes (FDR< 0.25; p-value <0.0001). Furthermore, a significant
386 overrepresentation (Benjamini Hochberg FDR < 0.01) of VEGF signaling, cell death
387 signaling by NRAGE, NRIF and NADE and phospholipid metabolism was detected
388 (Figure 5C; Supplementary Table 5h, i).
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390 Figure 5: pGroup3-Myc tumors display an enhanced MYC target protein profile and can be identified
391 by Palmdelphin (PALMD) staining

392 (A) Histological, molecular, and clinical characteristics of the MB subtypes pG3myc (n=26), pG3 (n=15) and
393 pG4 (n=40). (B) Volcano plot showing differentially abundant proteins when comparing pG4 tumors to all
394  other proteome subtypes (p-value<0.05; Foldchange difference > 1.5). (C) Gene set overlap dependent
395 MCL clustering of enriched gene sets, comparing pG4 to all other subtypes in GSEA. (D) CNV plots of pG4
396 MBs (n=40) calculated from either DNA methylation or proteome data with correlation between both omic
397  types (r=0.12). (E) Volcano plot showing significantly differentially abundant proteins when comparing pG3
398  tumors to all other proteome subtypes (p-value<0.05; Foldchange difference > 1.5). (F) Gene set overlap
399 dependent MCL clustering of enriched gene sets, comparing pG3 to all other subtypes in GSEA. (G) CNV
400 plots of pG3 MB (n=11) calculated from either DNA methylation or proteome data with correlation between
401 both omic types (r=0.11). (H) Volcano plot showing differentially abundant proteins when comparing
402 pG3myc MB to all other proteome subtypes. Palmdelphin (PALMD) was identified as significantly and highly
403  abundant in pG3myc tumors (p-value<0.05; Foldchange difference > 1.5). (1) Gene set overlap dependent
404 MCL clustering of enriched gene sets, comparing pG3myc to all other subtypes in GSEA. (J) CNV plots of
405 pG3myc MB (n=20) calculated from either DNA methylation or proteome data with correlation between both
406 omic types (r=0.06). (K) Heatmaps showing mean protein abundance in MB subtypes for hallmark gene
407  sets MYC Targets V1 and MYC Targets V2. (L) Scheme and representative images of digitally supported
408 immunostaining intensity quantification of PALMD immunostainings in MB. Quantified pixels of different
409 staining intensities were used to calculate a digital Histo-score (DHS), (M) Significantly enhanced digital
410  histoscore for PALMD in pG3myc MB (n=7) compared to all other MB subtypes (n=22, p<0.0001). (N)
411  Protein abundance for PALMD in pG3myc MB (n=21) compared to all other MB subtypes (n=84, p<0.0001).
412 (O) PALMD gene expression in pGroup3myc MBs (n=6) compared to all other MB subtypes (n=30,
413  p<0.0001, data extracted from Archer et al. 2018). (P) Average DNA methylation at CpG sites of the PALMD
414  gene (Mean M-values of n=6 CpG sites shown). pGroup3myc MBs show significant lower levels of
415 methylation (p<0.0001). (Q) Gene set enrichment analyses (GSEA) showing the top 10 up or
416 downregulated pathways comparing pG3myc MB to pG3/4 MB (p<0.01, FDR<0.25). NES=normalized

417  enrichment score.
418

419

420 For pG3, 92 differentially abundant proteins included PRDX1, GNB3, IMPDH1, CRAPBP2
421 and INF2BP3(Figure 5E, Supplementary Table 5b). GSEA identified an enrichment of
422  transcription/translation related processes and DNA repair associated terms (FDR< 0.25;
423 p-value <0.0001). Additionally, estrogen mediated signaling associated genes were
424  overrepresented in pG3 whereas TLR signaling was significantly underrepresented
425  (Figure 5F; Supplementary Table 5f, g).
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426 89 differential abundant proteins were detected inpG3myc MBs, including DIEXF, MDN1,
427 POSTN and PALMD. TPD52, previously proposed as a potential biomarker for high-risk
428 non-WNT/ non-SHH MB?, was three times higher abundant in pG3myc (Figure 5H;
429  Supplementary Table 5a). GSEA identified an enrichment for RNA processing and
430 SUMOylation and Ubiquitinoylation related proteins (FDR< 0.25; p-value <0.0001), along
431  with significant underrepresentation of proteins involved in synaptic processes, cell death
432  signaling, phospholipid metabolism and sensory processing (Figure 51; Supplementary
433 Table 5d, e). In addition, Hallmark gene set-based GSEA revealed a significant
434 enrichment of MYC target proteins in pG3myc (FDR< 0.25; p-value <0.0001, Figure 5K).
435 High abundance levels of Palmdelphin (PALMD) (fold change difference: 6.5, Figure 5
436  H), were confirmed in pG3myc MBs using digitally supported quantification of PALMD
437 immunostaining (Figure 5L, M). In addition, a significantly higher PALMD mRNA
438 expression was detected in reanalyzed data of pG3myc MBs compared to all other MB
439  subtypes (Figure 5N)8. CpG sites of the PALMD gene showed significant lower levels of
440 methylation in pG3myc MBs and high mRNA expression (Figure 5N). High mRNA
441  expression and low CpG site methylation were associated with poor survival in MB
442  (Figure 50, Supplementary Figure 7A-D). GSEA focusing on the signaling differences
443  between high-risk pG3myc and other non-WNT/ non-SHH MBs (FDR< 0.25; p-value
444  <0.0001) revealed an enrichment of signaling by ROBO receptors whereas and an
445  underrepresentation of proteins involved in MHCII class antigen presentation or COPI
446  independent Golgi to ER transport (Figure 5P, Supplementary Table 5m-n). In summary,
447  pGmyc MBs were characterized by an enrichment of MYC target proteins, predominantly

448 harbored MYC amplifications, and are detectable using PALMD immunohistochemistry.
449
450
451
452

453
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455  Figure 6: pWNT MB show alterations of the multiprotein complex TriC/CCT and can be identified by
456  Tenascin C (TNC) staining.

457 (A) Histological, molecular, and clinical characteristics of the pWNT MB subtype (n=19). (B) Volcano plot
458  showing differentially abundant proteins when comparing pWNT tumors to all other proteome subtypes (p-
459  value<0.05; Foldchange difference > 1.5). TNC was identified as highly abundant in p&WNT MB. (C)
460  Scheme and representative images of digital quantification of TNC immunostainings in MB. (D) Significantly
461 enhanced DHS for TNC in pWNT MB (n=12) compared to all other MB subtypes (n=27, p<0.0001). (E)
462 Protein abundance for TNC in pWWNT MBs (n=19) compared to all other MB subtypes (n=143, p=<0.0001).
463  (F) TNC gene expression in WNT MBs and other MB subtypes in a published dataset of MBS. (G) Average
464  DNA methylation at CpG sites of the TNC gene (mean value for n=8 CpG sites shown). (H) Gene set
465 overlap dependent MCL clustering of enriched gene sets, comparing pWNT to all other subtypes in GSEA
466 () Heatmaps showing mean protein abundance in MB subtypes for hallmark genesets specifically enriched
467  in pWNT MB (NESociycan=2.2, Pclycan=<0.001; NESemp=1.7, pemp=0.02). (J) Heatmap showing protein
468  abundancies for components of the tailless complex polypeptide 1 ring complex/ Chaperonin containing
469  tailless complex polypeptide 1 (TriC/CCT) in MB subtypes (left). DNA methylation at CpG sites of TriC/CCT
470 genes in proteome MB subtypes (M-values, middle). Gene expression of TriC/CCT components in WNT
471  MBs and other MB subtypes in a published dataset of MB5(right). (K) CNV plots of pNT MBs (n=13)

472  calculated from either DNA methylation or proteome data (Pearson, r=0.37).

473

474  WNT MB (Figure 6A) displayed 176 differentially abundant proteins including TNC,
475 P4HA2, PTBP3, CABP2 and PMG5 (Figure 6B). TNC showed the highest protein
476  foldchange difference (14.7 foldchange) and its mRNA has been described to be highly
477  expressed in WNT MB?®* (Figure 6B, Supplementary Table 6a). A significant higher
478 intensity of TNC in pWNT MB was confirmed using digitally supported immunostaining
479  quantification (Figure 6C, D). Using a publicly available dataset®, a higher expression of
480 TNC in WNT MB was confirmed at the transcriptome level (Figure 6E). CpG sites of the
481 TNC gene, measured with the lllumina 850K array, showed no significant difference of
482  methylation (pWNT versus other subtypes (Figure 6F, Supplementary Figure 7). In line
483  with this none of TNC’s CpG sites were identified as potential biomarkers for WNT MB
484  (Figure 3C). GSEA revealed, an enrichment of extracellular matrix proteins and N-glycan
485 biogenesis and transport (FDR< 0.25; p-value <0.0001, Figure 6G, H). Metabolic
486 processes, synaptic signaling and proteins of the TriC/CCT complex were
487  underrepresented (Figure 6G, Supplementary Table 6b, c). The TriC/CCT complex has
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488 previously been reported to be associated with vincristine resistance®. Typical
489 chemotherapy regimens for MB consist of cisplatin/carboplatin-vincristine-
490 cyclophosphamide combinations*:. Of note, pWNT MBs showed the lowest abundance
491 of TriC/CCt proteins, whereas pG3myc MBs displayed the highest amount. No such
492  correlation was observed at DNA-methylation or transcriptome level (Figure 6l,
493  Supplementary Table 6¢e). A high overall correlation between copy number plots extracted
494  from proteome and DNA methylation data was observed for p&WNT compared to all other
495 subtypes ( Figure 6J, Supplementary Table 6d), being in line with a general increased
496 overall correlation of proteome and DNA methylome data (Figure 3). Taken together,
497 compared to other subtypes, pWNT MB showed the highest correlation of proteome and
498 DNA methylome data and were characterized by low TriC/CCt proteins, as well as high
499  abundance of TNC.

500
501 Figure 7

502 The highest similarity of proteome profiles was observed for the pG3myc subtype,
503 associated with high-risk features and the pWNT subtype-associated with relatively good
504  overall survival (Figure 2G). Both subtypes showed a main “transcriptional/translational”
505 profile (Figure 2 G, H) and a high abundance of MYC target proteins (Figure 5K). We
506 therefore asked, what molecular changes could impact on such diverse clinical behavior.
507 In total, 188 proteins were differentially abundant between pG3myc and pWNTMBs
508 including TriC/CCt proteins (CCT2, TCP1, CCT4, CCT2, CCT5, CCT6, CCT8) and the
509 established WNT MB marker B-Catenin (CTNNB1)* (Figure 7A, Supplementary Table
510 7a). GSEA (FDR< 0.25; p-value <0.0001) revealed, that the top 10 enriched gene sets
511 for pG3myc were protein folding, translation, and metabolic processes (Supplementary
512 Table 7b-c). Additionally, asparagine linked N-glycosylation associated factors showed a
513 higher abundance in pWNT tumors compared to pG3myc MBs (Figure 7B). We further
514  focused on this PTM and found that proteins involved in all aspects of N-glycosylation
515 (synthesis, processing, transport and antigen presentation via MHC class IlI) were

516 overrepresented in pWNT tumors (Figure 7C).
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518 Figure 7: N-glycan analysis reveals significant differences across N-glycan profiles of proteomic
519 MB subtypes

520 (A) Volcano plot depicting differentially abundant proteins when comparing pWNT (n=19) to pG3myc (n=26)
521 MB (p-value<0.05; Foldchange difference > 1.5). (B) GSEA showing the top 10 up or downregulated
522 pathways comparing pG3myc MB to pWNT (p<0.05, FDR<0.25). (C) STRING network analyses of
523 significant differentially abundant proteins involved in N-linked glycosylation. (D) Scheme of N-glycan
524  analyses. (E) Schematic visualization of N-glycan types. (F) Identified glycans per proteome MB subtype
525 (Error bars represent mean values with standard deviation (SD). The number of commonly identified N-
526  glycans in all samples for each subtype is indicated). (G) NIPALS PCA, based on N-glycan abundances,
527 illustrating the separation of proteome MB subtypes at the N-glycan level. (H) 2D Structure visualization for
528 pG3myc-specific N-glycans. GIcNAc=N-Acetylglucosamine; Gal=Galactose; Fuc=Fucose; ManNAc=N-
529  Acetylmannosamine; NeuSAC=N-Acetylneuraminic acid. (I) Venn Diagram, comparing the identified hybrid-

530  Type and complex N-glycans between proteome subtypes.

531

532 A differential, quantitative analysis of N-glycans revealed differential N-glycosylation
533 patterns across proteomic MB subtypes (Figure 7D-I). In total 302 different N-Glycan
534  species were identified (high mannose: n = 11; complex-bisecting: n=51, complex-bi-
535 antennary: n = 46, complex-tri-antennary: n = 64, complex-tetra-antennary: n=99, hybrid:
536 n=31, Figure 7 E-I; Supplementary Table 7d). For non-WNT/ non-SHH MB a significantly
537  higher number of N-glycans were identified in comparison to pWNT, pSHHs and pSHHt
538 (Figure 7F, Supplementary Table 7d). At the quantitative level, proteome MB subtypes
539 were also reflected based on their N-glycan profiles, with SHH subtypes being most
540 similar to each other (Figure 7G, Supplementary Figure 8A). 92 N-glycans were
541 differentially abundant between the proteome MB types (Supplementary Figure 8B,
542  Supplementary Table 7e). Comparing identified N-glycan types between proteome MB
543  subtypes, we identified the highest number of exclusive N-glycans for the subtypes
544  pG3myc and pG4 (Npc3nyc = 22, npca = 12). In the pG3myc subtype, several complex-
545  bisecting N-glycans were exclusively identified (Figure 7H, 1). In pG4, different complex-
546  bisecting or complex-tetra-antennary N-glycans were found exclusively (Figure 71).
547  Frequently described key factors in tumors are the upregulation of cancer associated
548 sialynated N-glycans as well as aberrant fucosylation*?. Focusing on these aspects

549  across MB groups, a significantly higher proportion of sialynated N-glycans was found in
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550 non-WNT/ non-SHH tumors (pWNT (51.9% (n = 84)), pSHHs (50.1% (n = 71)), pSHHt
551  (49.5% (n = 55)), pG3myc (59.7% (n = 139)), pG4 (62% (n = 144)), pG3 (60.7% (n =
552 116))). A significantly lower proportion of fucosylated N-glycans was detected in pSHHt,
553 compared to all other subtypes (66.7 % (n = 74)) versus 72.1 - 80% (n = 101-174, range
554  of the other MB subtypes). In summary, the N-glycome was significantly different among
555 proteome subtypes, forming a basis for new biomarker discovery, based on N-glycan

556  profiles of brain cancers.

557

558 Discussion

559 DNA methylome and transcriptome analysis, are used for diagnostics in neuro-oncology
560 for the classification of brain tumor types®. In contrast to these omics-types, the proteome,
561 and its modifications better reflect the pharmacologically addressable phenotype and may
562 disclose phenotypically relevant processes, potential biomarkers, and therapeutic targets.
563

564 In this study, we show the proteome analysis of MB from FFPE material, that maintains
565 chemical rigidity under cheap storage conditions 3. We found that FFPE material is
566 suitable for the differential proteome analysis of MB, enabling a clear differentiation
567 between the 4 main molecular subtypes, that was previously described for smaller cohorts
568  of FF tissue'®®. In line with previous results*, we found that the sample age (spanning a
569 period of 50 years) did not impact on the data quality, making FFPE tissue highly suitable
570 for large-scale analysis of rare diseases.

571 Using the HarmonizR strategy for the integration of independently generated proteome
572 datasets?’, we established an integrated dataset of 167 MBs. We identified six different
573 proteome MB subtypes, in line with previously published results, obtained from smaller
574  fractions of the analyzed cases!®. WNT tumors formed a common cluster. For hedgehog
575 driven MB cases two independent clusters were formed (pSHHt, pSHHs), while non-
576  WNT/ non-SHH tumors diverged into three subtypes (pG3, pG4, pG3myc). Interestingly,
577  two overriding molecular patterns were observed across MB subtypes, indicating that MB
578 either follow a transcriptional/replicative (pWNT, pSHHt, pG3myc) or synaptic/
579  immunological (pG4, pSHHSs, pG3) profile.
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580

581 Integration of proteome and DNA methylation data

582 Proteome subtypes partly overlapped with previously defined DNA methylation
583  subtypes*®3.28  Specifically, pG3myc tumors were mainly composed of methylation
584  subtype Il. pG3 tumors comprised mainly methylation subtypes 1, 3 and 4 and pG4
585 tumors showed methylation subtypes 5, 6, 7 and 8. Finally, the DNA methylation subtypes
586 SHH3 and SHH4 were exclusively found in pSHHt MBs. Only 30% of marker proteins
587 showed a significant correlation with their respective gene’s CpG sites. In general, a low
588 correlation between proteome and methylome was found in MB, in line with results of
589 previous studies on other tumor entities*>#¢. Poor correlations might also be attributed to
590 the 850K array design, since it mostly assesses promoter methylation sites whereas CpG
591 sites correlating well with gene expression may locate further away from transcriptional
592 start sites*’. Of note, correlation levels of data modalities were not evenly distributed
593 among subtypes. Especially proteins detected in pWNT tumors, showed a high
594  correlation with their respective gene’s CpG sites (38.9% of proteins). In addition, the
595 commonly detected loss of chromosome 64 was also reflected in proteome data when
596 mapping protein abundances to chromosomal arms. This indicates that molecular
597 alterations may be more conserved for WNT MBs, whereas DNA-based methylation
598 differences do not always result in an effective change in protein abundance, highlighting
599 the importance of proteome analysis.

600

601

602 Proteome subtypes of SHH-MB

603 SHH MBs divided into two proteome subtypes namely, pSHHs and pSHHt, confirming
604 previous results from a smaller MB dataset!®. The pSHHs tumors reflect the SHHb
605 subgroup defined by Archer et al showing an enrichment of synaptic pathways*®. We
606 found that these tumors are characterized by high representation of the citric acid (CTA)
607 cycle and respiratory electron transport, pointing at a distinct metabolic profile of pSHHs
608 MB. TP53-mutated SHH are stratified as high-risk SHH MB3%. Based on the proteins
609 considered here, TP53-mutated cases did not form a distinguishable cluster. However,
610 among others CHD6, DNAJB2 and NNMT, known to be associated with aberrant TP53
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611 expression and high tumor progression 45 showed a differential abundance
612 comparing TP53-mutated to TP53-wildtype cases. Further, CHD6 is suggested as a
613 potential anti-cancer target for tumors with DNA-damage repair associated processes®°.
614  Mutations within the largest subunit of the elongator complex (ELP1) have lately been
615 described in SHH MB*. These mutations were found mutually exclusive with TP53
616 mutations and ELP1 mutated SHH MBs were characterized by translational deregulation
617  with upregulation of factors involved in transcription and translation®3. A reanalysis of
618 published proteome data from ELP1 mutated SHH MB cases indeed revealed that all
619 cases were attributed to the pSHHt MB subtype (Supplementary Table 4k)*® . As a
620 limitation, the ELP1 status of the SHH MB cases in our cohort was only known for n = 3
621 pSHHs and n = 10 pSHHt tumors (all wildtype). However, all SHH MBs with methylation
622  subtype 3 - associated with ELP1 mutations - fell into pSHHt 283,

623

624 pWNT

625 The current standard treatment for MB is surgical removal of the tumor followed by
626 craniospinal irradiation and combinational chemotherapy. These approaches cause
627 severe late effects, mostly neuro-cognitive and neuroendocrine sequelae. Due to their
628 high responsiveness to therapy, WNT-type MBs are currently being evaluated for therapy
629 de-escalation, making their clear identification indespensable®?. On a molecular level the
630 identification of CTNNB1 mutations, or chromosome 6 deletion (monosomy 6) are
631 common markers for the identification of WNT-type MB. Immunohistochemistry is used
632 to detect nuclear 3-Catenin staining in tumor cells. However, nuclear staining can be
633 weak and only a subset of cell nuclei is usually stained®*>4. Here, Tenascin C (TNC) was
634 found elevated in pWWNT MBs from proteome and mRNA data, whereas no significantly
635 altered DNA methylation at CpG sites of TNC was seen.. TNC is a highly glycosylated
636 extracellular matrix (ECM) protein, promoting or inhibiting proliferation and migration in
637 cancer, depending on the present splice variant®®, which will be a field of further study.
638 Besides TNC, a general enrichment of ECM proteins was detected in pWNT MBs. While
639 the ECM has not been investigated in-depth in WNT MB, ECM components have been
640 described to predict patient outcomes in MB%. ECM degradation was found as a hallmark

641  of tumor invasion, metastasis development and overall bad prognosis®’. WNT pathway
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642 activation dependent disruption of the blood-brain barrier (BBB)®>’, was described to
643 permit accumulation of high levels of intra-tumoral chemotherapy in WNT tumors,
644  resulting in a robust therapeutic response. TNC could be another contributor to this
645 phenotype, as high TNC levels contribute to BBB disruption®”% . Furthermore, other BBB
646  contributors, such as EPLIN1, DSP and S100A4 were found differential in pWNT
647 (Supplementary Table 7a).

648

649 Non-WNT/ non-SHH MB

650 In line with previous results, we found three proteome subtypes of non-WNT/ non-SHH
651 MBs!. pG4 (predominantly consistent of main molecular subtype G4 tumors), followed
652 the synaptic program. These findings go in line with the literature, as synaptic signatures
653 for G4 tumors, have been previously described®*®. In pG4 MBs, we also detected a higher
654 abundance of VEGF signaling-related proteins, previously described in the context of
655 tumor angiogenesis. VEGF signaling can be targeted in MB using Bevacicumab or
656 Mebendazole % and hence might be especially be beneficial for pG4 patients.

657 pG3 MBs (composed of both G3 and G4 tumors) showed the lowest cluster certainty and
658 inherited the characteristics of both pG3myc and pG4 tumors.

659 pG3myc tumors, showed a reduced survival rate and high-risk features, such as LCA
660 histology and solid metastasis. Group 3 MB with MYC amplification have been shown to
661 be highly aggressive and exhibit a bad prognosis®'%2, In our cohort, more than half of the
662 patients showed a CMYC amplification, while all samples showed an upregulation
663 of CMYC target genes, supporting the hypothesis that besides CMYC amplification,
664 changes in its phosphorylation status result in a CMYC-driven high-risk proteome G3
665 subtype!®. For this group, we identified, a significant enrichment of signaling by ROBO
666 receptors, amino acid metabolism, RNA metabolism, and nonsense-mediated RNA
667 decay and translation. As potential protein biomarkers DIEXF, MDN1, POSTN,
668 TPD52 and PALMD showed a higher abundance in pG3myc tumors. TPD52 has recently
669 been suggested as an immunohistochemistry (IHC) marker for high-risk non-WNT/ non-
670 SHH patients®. PALMD showed the highest elevation in pG3myc MB in our cohort and

671 was established as a suitable IHC marker for the identification of pG3myc MB. However,
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672  for biomarker validation further prospective trials are needed to evaluate its significance
673 for stratification of high-risk non-WNT/ non-SHH patients.

674

675

676 pG3myc and WNT:

677  High-risk pG3myc MBs showed a high resemblance to pWNT tumors, that are associated
678 with a favorable outcome. Comparing both groups, proteins associated with Tric/CCT
679 complex were elevated in pG3myc MBs. A high abundance of CCT complex proteins has
680 previously been linked to worse prognosis in cancer and was identified as a predominate
681 driver of Vincaalcaloid resistance, including Vincristine, which is among the most
682 frequently used drugs for all MB subtypes®.The general low abundance of CCT/TriC
683  proteins in pWNT MB could therefore be a BBB-phenotype independent explanation for
684 the relatively high response to chemotherapy®. The usage of CT20p, an amphipathic
685 CCT inhibitor peptide, was recently described as a promising strategy for the treatment
686  of high-risk tumors with high CCT abundance®%. Based on our data, the approach should
687  be further investigated as a potential strategy to enhance Vincristine-mediated cytotoxicity
688 in high-risk non-WNT/ non-SHH MBs.

689

690 We further identified increased Asparagine-linked-N-glycosylation as a hallmark of WNT
691 Medulloblastoma. While aberrant N-glycosylation patterns have been described for brain
692 cancer, especially focusing on sialylation and fucosylation®’, a global analysis of N-
693 glycans has not been performed yet. It is reasonable that certain glycosylation patterns
694 can be used as biomarkers for the progression of diseases?. In addition, aberrant N-
695 glycan structures in cancer could be targeted by immunotherapy and provide new
696 therapeutic strategies, especially for high-risk tumors that are not sensitive to classical
697 treatment®®® . As an example, chimeric-antigen-rceptor (CAR)-modified T cells, that can
698 be specifically directed against tumor-associated carbohydrate antigens (TACAS) are
699 rapidly evolving. Differential, quantitative N-glycan analysis, identified a total of 303 N-
700 glycans in MB. Based on the quantitative distribution of commonly found N-glycans in all
701 samples, the proteome subgroups were reflected. pSHHt and pSHHs MBs were most

702  similar. This could be related to the dominant SHH activation in these groups, knowingly
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703  having a severe impact on N-glycosylation’. 12 structures were identified only in high-
704  risk pG3myc patients. Most of these structures are complex bisecting N-glycans, that are
705 known to be associated with cell growth control and tumor progression?>* and might be
706 related to the unfavorable outcome for pG3myc patients. pG3myc-specific N-glycans do
707  not appear healthy brain cells, whose N-glycome is characterized by dismissed N-glycan
708 complexity, lack of complex N-glycans and truncated structures’® and might serve as
709  suitable immunotherapy targets for high-risk patients.

710 For pG4 patients, the highest amount of salivated N-Glycans was found, further
711  supporting the immunological profile of pG4 MBS, observed at the proteome level”.

712 Taken together, the integration of MB proteome, DNA-methylome and N-glycome
713  revealed new insights into MB phenotypes, potential new biomarkers and therapeutic
714  targets for MB such as the usage of TriC/CCT-inhibitors and chimeric-antigen-receptor-
715 modified T-cells to target tumor-specific carbohydrates for high-risk MB patients.
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734 Inclusion and Diversity

735  We support inclusive, diverse, and equitable conduct of research.
736
737  Methods:

738 Subject Details:

739 In house patient samples:

740 FFPE Medulloblastoma samples of tumors within the years 1976-2021 were obtained
741  from tissue archives from various neuropathology units in Germany including cases that
742  had been collected within the HIT-MED study cohort. All investigations were performed
743 in accordance with local and national ethical rules of patient's material and have,
744  therefore, been performed in accordance with the ethical standards laid down in an
745 appropriate version of the 1964 Declaration of Helsinki. All samples underwent
746  anonymization. Tumor samples were fixed in 4 % paraformaldehyde, dehydrated,
747 embedded in paraffin, and sectioned at 10 pum for microdissection using standard
748 laboratory protocols. For further information on clinical details of samples, please refer to
749  Supplementary Table 1c.

750

751

752  Medulloblastoma cell lines:

753 The human Medulloblastoma cell lines DAOY (Ca#HTB-186) and D283med (Ca#HTB-
754  185) were obtained from ATCC, Manassas, VA, USA. UW473 was kindly provided by
755  Michael Bobola. All lines were used as Standards for TMT batches. Cells were cultivated
756 in DMEM (Dulbecco’s Modified Eagle Medium, PAN-Biontech) supplemented with 10 %
757 FCS at37°C,5 % CO2.

758 Publicly available datasets:

759 For the data integration and harmonization of in-house and publicly available DNA
760 Methylation data the following datasets were used: Archer et al. (2018)%: 42 FF MB
761 samples, accessible as a subset of European Genome-phenome Archive ID:
762 EGAS00001001953. Forget et al. (2018)¥°: 38 FF MB samples, accessible via Gene
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763  Expression Omnibus (GSE104728). For the analysis of RNA Expression data, processed
764 and normalized data from the following datasets were used: Cavalli et al. (2017)*8: 763
765 MB samples, accessible via Gene Expression Omnibus (GPL22286)°. For the data
766 integration and harmonization of in-house and publicly available proteome data, the
767  following datasets were included: Archer et al. (2018)%8: 45 FF MB samples, available via
768 the MassIVE online repository (MSV000082644, Tandem Mass Tag- (TMT) label-based
769  protein quantification); Forget et al. (2018)%: 39 FF MB samples, , available via the PRIDE
770 archive (PXD006607, stable isotope labling by amino acids in cell culture- (SILAC) label-
771 based protein quantification); Petralia et al. (2021)Y', 23 FF MB samples, , available
772  through the Clinical Proteomic Tumor Analysis Consortium Data Portal (https://cptac-
773 data-portal.georgetown.edu/cptacPublic/) and the Proteomics Data Commons
774  (https://pdc.cancer.gov/pdc/, Tandem Mass Tag- (TMT) Ilabel-based protein
775 quantification). For validation of determined proteome subtypes, as well as the
776 investigation of the proteome profile of ELP1 mutated SHH MB, a dataset published by
777  Waszak et al. (2020)*® was used (23 FF MB samples, available via the PRIDE archive
778 (PXD016832, Data independent acquisition label free protein quantification).

779

780 Sample preparation and data acquisition:

781
782  DNA methylation profiling:

783« DNA methylation data was generated from FFPE tissue samples. DNA was isolated using
784  the ReliaPrep™ FFPE gDNA Miniprep system (Promega) following the manufacturer’s
785 instructions. 100-500 ng DNA was used for bisulfite conversation using the EZ DNA
786  Methylation Kit (Zymo Research). Then the DNA Clean & Concentrator-5 (Zymo
787 Research) and the Infinium HD FFPE DNA Restore Kit (lllumina) were applied. Infinium
788 BeadChip array (EPIC) using manufacturer’s instructions were then used to quantify the
789  methylation status of CpG sites on an iScan (lllumina, San Diego, USA). Additionally,
790  previously published data measured on Infinium Human Methylation 450 BeadChip array
791  (450K) were included from EGAS000100195374, from GSE104728%°, and GSE1300517.
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792

793 Proteome profiling:

794 FFPE MB tissue sections were deparaffinized with N-heptane for 10 minutes and
795 centrifuged for 10 minutes at 14,000 g. The supernatant was discarded. Proteins were
796 extracted in 0.1 M triethyl ammonium bicarbonate buffer (TEAB) with 1% sodium
797  deoxycholate. (SDC) at 99°C for 1hour. Sonification was performed for 10 pulses at 30%
798 power, to degrade DNA, using a PowerPac™ HC High-Current power supply (Biorad
799 Laboratories, Hercules, USA)) probe sonicator. For cell lines, proteins were extracted in
800  0.1M triethyl ammonium bicarbonate buffer (TEAB) with 1% sodium deoxycholate. (SDC)
801 at99 °C for 5 minutes. Sonification was performed for 6 pulses.

802 The protein concentration of denatured proteins was determined by the Pierce BCA
803  Protein assay kit (Thermo Fischer Scientific, Waltham, USA), following the manufacturer’s
804 instructions. 60 ug of protein for each tissue lysate and 30 ug protein for each cell lysate
805 were used for tryptic digestion. Disulfide bonds were reduced, using 10mM dithiothreitol
806 (DTT) for 30 minutes at 60 °C. Alkylation was achieved with 20 mM iodoacetamide (I1AA)
807  for 30 minutes at 37 °C in the dark. Tryptic digestion was performed at a trypsin: protein
808 ratio of 1: 100 overnight at 37 °C and stopped by adding 1% formic acid (FA).
809 Centrifugation was performed for 10 minutes at 14000g to pellet precipitated SDC. The
810 supernatant was dried in a vacuum concentrator (SpeedVac SC110 Savant, (Thermo
811 Fisher Scientific, Bremen, Germany)) and stored at -80°C until further analysis.

812 For the main cohort, 50 ug sample per patient and internal reference, TMT-10 plex
813 labeling (Thermo Fischer Scientific, Waltham, USA), was performed, following the
814 manufacturer’s instruction. All 70 patients were run in 8 total TMT 10-plexes. Samples
815 assignment to batches was performed in a semi-randomized manner, according to the
816 four main molecular subtypes. In each batch, 1-2 internal reference samples were
817 included, composed of equal amounts of peptide material from all 70 samples and cell
818 lines. Isobarically labeled peptides were combined and fractionated, using high pH
819 reversed phase chromatography ( ProSwiftTM RP-4H, Thermo Fischer Scientific Bremen,
820 Germany) on a HPLC system (Aglient 12000 series, Aglient Technologies, Santa Crara,
821 USA). Separation was performed using buffer A (10 mM ammonium hydrogen carbonate
822 (NH4HCOs3) in in H20) and buffer B (10mM NH4HCOs in ACN) within a 25-minute
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823 gradient, linearly increasing from 3-35% buffer B at a flow rate of 200 nl/min. In total, 13
824  fractions were collected for each batch, dried in a vacuum concentrator (SpeedVac
825 SC110 Savant, (Thermo Fisher Scientific, Bremen, Germany)), resuspended in 0.1 % FA
826 to a final concentration of 1mg/ml and subjected to high pH liquid chromatography
827 coupled mass spectrometry (LC-MS). All LC-MS measurements were performed on a
828 UPLC system (Dionex Ultimate 3000, Thermo Fisher Scientific, Bremen, Germany,
829 trapping column: Acclaim PepMap 100 C18 trap ((100 ym x 2 cm, 100 A pore size,5 pm
830 particle size); Thermo Fisher Scientific, Bremen, Germany), analytical column: Acclaim
831 PepMap 100 C18 analytical column ((75 pm x 50 cm, 100 A pore size, 2 ym particle size)
832 ; Thermo Fisher Scientific, Bremen, Germany)), coupled to an quadrupole-orbitrap-
833 iontrap mass spectrometer (Orbitrap Fusion, Thermo Fisher Scientific, Bremen,
834 Germany). Separation was performed using buffer A (0.1% FA in H20) and buffer B (0.1%
835 FAin H20) within a 60-minute gradient, linearly increasing from 2-30% buffer B at a flow
836 rate of 300nl/min. Eluting peptides were analyzed, using a DDA based MS3 method with
837 synchronous precursor selection (SPS), as described by McAlister et al.’®. For further
838 details on protein extraction, tryptic digestion, and LC-MS/MS setups, please refer to the
839 PRIDE archive (PXD039319).

840

841

842 N-Glycan profiling:

843 100 ug of protein for 18 samples was denatured, reduced, and alkylated as described
844  above. Samples was concentrated by 3 kDa Amicon Ultra centrifugal filters (Merck
845  Millipore, RONB30416) with 100 mM NH4HCOs3 to exchange the buffer and retain globular
846  particles above 3 kDa. Thirty units of PNGase F were added to each sample and
847 incubated in a 37 °C Thermomixer for 24 h. After PNGase F digestion, purified N-glycans
848 were eluted by Sep-Pak C18 cartridges (Water, WAT023590) with 5% acetic acid and
849 dried in a speed vacuum. 40 pl of 10 pg/uL (w/v) ammonium borane solution was added
850 to purified N-glycan samples and incubated in a 60 °C Thermomixer for one h. After
851 incubation, the borane-ammonia complex was removed by the repeated evaporation of
852 400 pl of methanol using a speed vacuum. The reducing N-glycan sample was

853 permethylated by optimized solid-phase permethylation as describe by Guan et
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854  al.(2020)7(76). Purified and reduced N-glycan samples were dissolved in 110 pl of
855 DMSO/water (100:10) solution, and then 70 pl of methyl iodide was added. Redissolved
856 samples were transferred to a tube which contained 200 mg sodium hydroxide beads and
857 incubated in a Thermomixer for 10 min by 1300 rpm at room temperature. 200 pl of 5%
858 acetic acid was added to each sample to quench the permethylation and eliminate
859 oxidation reactions. Derivatized N-glycan was isolated using 300 pL of chloroform by
860 chloroform-water extraction. Permethylated reducing N-glycans were resuspended in
861 0.1% FA solution to a final concentration of 2 mg/ml and subjected to LC-MS. For N-
862 glycans, separation was achieved using a linear gradient from 2% to 30% buffer B in 10
863 min, increased to 70% in 75 min and finally to 95% in 85 min. lons were detected in
864 automatic gain control (AGC) (target: 2.0e5 ions) with an accumulation time of 120 ms.
865 Induced collision was performed at 35% normalised collision energy and an isolation

866  window of 2 m/z).

867 Raw data processing:

868

869 Processing of DNA Methylation Array Data:

870 Idat files generated using the above protocol were processed in R (Version 4.0.5). The
871 files were read in using the minfi package (Version 1.36.0)"8.Detection P-value was used
872  to identify sample quality and filter out bad quality samples (hone were excluded, n=0).
873  Further, probes having bad quality (n=49,091), probes with single nucleotide
874  polymorphism (n = 12,868) and probes present on X and Y chromosomes (n=8,777) were
875 filtered out. After normalization and probe filtering, the m-values log2(M/U) where
876  methylation intensity is denoted by M and unmethylation intensity denoted by U were
877 used for further analysis. Differentially methylated probes/ CpG sites were found using
878 the limma package (Version 3.46.0)"°, comparing all subtypes using the contrast function
879 and correcting for multiple testing using Benjamini Hochberg (cut-off 5% FDR). Based on
880 this, M-values of 10,000 differentially methylated CpG sites which could cluster subtypes
881 based on biological differences were selected for further analysis. Heatmaps were
882 generated using ComplexHeatmap (Version 2.6.2)% and pheatmap (Version 1.0.12).
883
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884 Processing of Proteome raw data:

885 Obtained raw data from in-house generated and publicly available (Archer et al (2018)%,
886 TMT 10-Plex; Petralia et al. (2021)'7, TMT 11-Plex). TMT-based LC-MS measurements
887  were processed with the Andromeda algorithm, implemented in the MaxQuant software
888 (Max Plank Institute for Biochemistry, Version 1.6.2.10)8 and searched against
889 areviewed human database (downloaded from Uniprot February 2019, 26,659 entries).
890 The Carboxymethylation of cysteine residues was set as a fixed modification. Methionine
891 oxidation, N-terminal protein acetylation and the conversion of glutamine to
892 pyroglutamate were set as variable modifications. Peptides with a minimum length of 6
893 amino acids and a maximum mass of 6,000 Da were considered. The mass tolerance
894  was setto 10 ppm. The maximum number of allowed missed cleavages in tryptic digestion
895 was two. A false discovery rate (FDR) value threshold <0.01, using a reverted decoy
896 peptide databases approach, was set for peptide identification. Quantification was
897 performed, based on TMT reporter intensities at MS3 level for LC-MS3 in-house data and
898 at MS2 level for LC-MS2 data, acquired by Archer et al.'® and Petralia et al.1” All studies
899  were searched separately. Fractions for each TMT batch were searched jointly.

900 For stable isotope labeling by amino acids in cell culture (super-SILAC) data, acquired by
901 Forget at al. (2018)%°, log2 transformed SILAC ratios were directly obtained from the
902 MassIVE online repository (MSV000082644).

903 For the external validation the dataset published by Waszak et al. (2020)23 was used. The
904 DIA raw data spectra were downloaded from PRIDE and processed using Data
905 Independent Acquisition with Neural Networks (DIA-NN, version 1.8.1) 8. The spectra
906 were searched against a peer reviewed human FASTA database (downloaded from
907  UniProt April 2020, 20,365 entries). A spectral library was generated in silico by DIA-NN
908 using the same FASTA database. Smart profiling was enabled for library generation.
909 Methionine oxidation, carboxymethylation of cysteine residues as well as N-terminal
910 methionine excision were set as variable modifications. The maximum number of variable
911 modifications was set to three, the maximum number of missed cleavages was two. The
912  peptide length range was set from 7 to 30. Mass accuracy, MS1 accuracy, and the scan
913 window were optimized by DIA-NN. An FDR < 0.01 was applied at the precursor level -

914 decoys were generated by mutating target precursors’ amino acids adjacent to the
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915 peptide termini. Interference removal from fragment elution curves as well as
916 normalization were disabled. Neural network classifier was set to single-pass mode and
917 the fixed-width center of each elution peak was used for quantification.

918

919

920 Processing of N-Glycan raw data:

921 N-Glycan raw data were open with Xcalibur Qual Browser (Version No 4.2.28.14).
922 MaxQuant were used for extracting all the detected masses and m/z from MS raw data
923  of permethylated reducing N-glycans. Home-made Python-scripts is used to extract and
924  calculate monosaccharide compositions based on the molecular weight of each
925 derivatized N-glycan®. The N-glycan structures were identified manually based on full
926 MS, m/z and MS2 ion according to Xcalibur and Glycoworkbench 2.1. The
927 monosaccharide compositions, m/z and charge were exported into the Skyline software
928 (Version No 21.1.0.278) to calculate the peak area of each N-glycan. Finally, the table,
929 including N-Glycan compositions, the abundance of N-glycan and mass, was input into
930 the Perseus software.

931

932 Data normalization and integration:

933 Normalization and integration of DNA Methylation Array Data:

934  Single-sample noob normalization (ssNoob) was performed since we combined samples
935 from different arrays (EPIC and 450K). In single sample noob normalization, there is no
936 need for reference sample-based dye-correction. The detailed method development has
937 been mentioned® 8>, Raw signal intensities for EPIC and 450K files were read individually.
938 Since ~ 93% of the loci of 450K array are also present on EPIC array, they can be
939 combined using minfi's combineArrays (). After combining the two arrays they can be
940 output as a virtual array. In this study, 450K array was the output virtual array since a
941  greater number of samples were measured on 450K.

942

943

944  Normalization and integration of Proteome data:
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945  Prior to data integration, protein abundances were handled separately for each dataset.
946  TMT reporter intensities were log2 transformed and median normalized across columns.
947 Technical variances between TMT batches were corrected, using the parametric
948 empirical Bayesian framework with L/S scaling, implemented in the HarmonizR
949 framework Version 0.0.0.9). As described by Voss & Schlumbohm et al. (2022)?’, mean
950 subtraction across rows was applied to batch-effect corrected TMT reporter intensities to
951 mimic SILAC ratios, prior to data integration. Log2 transformed super SILAC ratios were
952  median normalized across columns prior to data integration.

953 Processed data from individual studies was combined based on the UniProt identifier.
954  The resulting combined dataset was subjected to HarmonizR (Version 0.0.0.9). Batch
955 effect correction between individual datasets was performed trough the L/S scaling-based
956 parametric ComBat mode®. Combined, harmonized protein abundances were mean
957  subtracted across rows. Out of 176 analyzed cases, 9 patients were excluded from further
958 analysis, as high blood protein yields, suppressing tumor-specific signals, were detected
959 from LC-MS/MS measurements (Supplementary table 1a).

960 For the validation cohort protein abundances were log2 transformed and median
961 normalized across columns. Samples were assigned to proteome subtypes individually.
962 Protein abundances were reduced to the 3998 proteins, considered in the main cohort.
963 Harmonized protein abundances from the main cohort were integrated with each
964 individual sample. Mean row normalization was performed to adjust values from validation
965 samples to the main cohort. Pearson correlation-based hierarchical clustering, with
966 average linkage was applied using thePerseus software (Max Plank Institute for
967 Biochemistry, Version 1.5.8.5)%.

968

969 Normalization of N-Glycan data:

970 N-Glycan intensities were log2 transformed and median normalized across columns to
971 compensate for injection amount variations.

972

973 Quantification and statistical analysis:

974 Dimensionality reduction and hierarchical clustering:
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975 Nonlinear Iterative vertical Least Squares (NIPALS) PCA and hierarchical clustering were

976 performed in the R software environment (version 4.1.3). For Principal component

977 calculation and visualization, the mixOmics package (Version 6.19.4.)* was used in

978  Bioconductor (version 3.14). Hierarchical clustering was performed based on pheatmap

979 package (version 1.0.12) Pearson correlation was applied as a distance metric. Ward.D

980 linkage was used. Pairwise complete correlation was used, to enable the consideration

981 of missing values.

982

983 Consensus Clustering:

984  To determine the ideal number of clusters from combined proteome and DNA-methylation

985 data, Consensus Clustering was applied on normalized and integrated datasets, using

986 the ConsensusClusterPlus package (Version 1.6) 8, in the R software environment

987  (version 4.1.3). In correspondence with the current maximum number of suspected MB

988 subtypes, the number of clusters was varied from 2 to 12 and calculated with 1,000

989 subsamples for all combinations of two clustering methods (Hierarchical clustering (HC)

990 and partition around medoids (PAM)) and three distance metrics (Euclidean, Spearman,

991 Pearson). The Ward's method was applied for linkage. Missing value tolerant pairwise

992 complete correlation was used, to enable the consideration of missing values. For each

993 sample, the cluster certainty was calculated by how many times under the application of

994  different distance metrics (Euclidan, Spearman, Pearson) and clustering approaches (k-

995 medoids, hierarchical clustering) a sample was associated with a certain cluster, while

996 allowing a total number of six clusters.

997

998 Differential analysis and visualization.

999  Statistical testing was carried out, using the Perseus software (Max Plank Institute for
1000 Biochemistry, Version 1.5.8.5)%. ANOVA testing was performed for the comparison
1001 across multiple subgroups/subtypes. Factors, identified with p-value <0.05 were
1002 considered statistically significant differential abundant across groups. For the
1003 identification of subtype-specific biomarkers, Students t-testing was applied (p-value

1004 <0.05, Foldchange difference > 1.5). Visualization of t-test results and abundance
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1005 distributions across groups was performed in PRISM (GraphPad, Version 5) and
1006  Microsoft excel (Version 16.5.)

1007

1008 For proteome data, only proteins, found in at least 30% of all proteome subtypes were
1009 considered to guarantee a high statistical validity and reasonable cohort size in differential
1010  analysis.

1011

1012  Functional annotation of data sets:

1013 REACTOME- based® Gene Set Enrichment Analysis was performed by using the GSEA
1014  software (version 4.1, Broad Institute, San Diego, CA, USA)®!, 1000 permutations were
1015 used. Permutation was performed based on gene sets. A weighted enrichment statistic
1016  was applied, using the signal-to-noise ratio as a metric for ranking genes. No additional
1017 normalization was applied within GSEA. As in default mode, gene sets smaller than 15
1018 and bigger than 500 genes were excluded from analysis. For visualization of GSEA
1019 results, the EnrichmentMap (version 3.3) % application within the Cytoscape environment
1020  (version 3.8.2) ® was used. Gene sets were considered if they were identified at an FDR
1021 < 0.25 and a p-value < 0.1. For gene-set-similarity filtering, data set edges were set
1022  automatically. A combined Jaccard and Overlap metric was used, applying a cutoff of
1023  0.375. For gene set clustering, AutoAnnotate (version 1.3) °** was used, using the Markov
1024  cluster algorithm (MCL). The gene-set-similarity coefficient was utilized for edge
1025 weighting.

1026

1027  Survival curves:

1028 Kaplan-Meier curves were generated for the overall survival of 121 patients. All Kaplan-
1029 Meier curves and log rank test p values were generated with PRISM (GraphPad, Version
1030 5). A conservative log-rank test (Mantel-Cox) was used for the comparison of survival
1031 curves. A significant difference between curves was assumed at a p-value < 0.05.

1032

1033

1034 Copy number frequency plots of Proteome and DNA Methylation data:
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1035 Copy number analysis was performed on samples having both methylation and proteomic
1036 data (N=115). Samples from 450K and EPIC array were read in separately. Data were
1037 read using read.metharray.sheet () and read.metharray.exp() using the minfiData
1038 package (Version 0.36.0)’®. For normalization, preprocesslllumina normalization using
1039 MsetEx data containing control samples for normalization of 450K array data, while for
1040 EPIC array data minfidataEPIC (Version1.16.0)"® was used.
1041  IlluminaHumanMethylation450kanno.iimn12.hgl9 and
1042  llluminaHumanMethylationEPICanno.iim10b4.hgl9 were wused to generate the
1043  annotation files of 450K and EPIC array data respectively. Individual sample CNV plots
1044  were generated using CNV functions as mentioned in the Conumee package (Version
1045 1.24.0). vignette, and the segmentation information from each sample was saved which
1046  was used later for generation of cumulative CNV plot using CNAppWeb tool (PMID :
1047  31939734)%. The segmentation information for all samples belonging to were combined
1048 into a single file in subgroup specific manner and then read into CNAppWeb tool (cut-off
1049 >=|0.2|) for gain or loss ) [CNAppWeb user guide].

1050

1051  Further to map the protein abundancies to each of the chromosomes, protein names were
1052  converted to their respective gene names and a column containing mapping information
1053 for these genes was added. Copynumber (Version 1.30.0) package in R was used to
1054 generate segmentation information for these proteins in an indirect manner.
1055 Segmentation data generated was read into the CNAppWeb tool and using the cut-off
1056 mentioned above was used to map the protein abundancies to respective chromosomes.
1057

1058 Finally, combining the segmentation information from proteome data and methylome data
1059 in subgroup specific manner, pearson correlation-based distance plot was generated.
1060

1061 Integration of Proteome and DNA Methylation data:

1062 DIABLO or multiblock sparse partial least square discriminant analysis (sPLS-DA) using
1063 latent variables method from mixOmics (Version 6.19.4)** was used for integration of
1064 proteome and methylome data to understand the correlation between the two data types.

1065 The proteome data (3990 proteins,115 samples) and methylome data (10,000
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1066 differentially methylated CpG sites, 115 proteins) were pre-processed as mentioned
1067 above. Steps followed were same as explained in the mixOmics vignette. Briefly, datasets
1068 were integrated, an output variable containing information about which subgroup the
1069 samples belong to was also supplied. Each data set is broken down into components (5
1070 components for this study) or latent variables which are associated with the data.
1071  Components were selected using 5-fold cross validation repeated 50 times and since the
1072  groups were imbalanced lowest overall error rate and centroid distance was used. For
1073 each dataset and for each component sparse DIABLO was applied which will select
1074  variables contributing maximally to the selected component. Finally, sPLS-DA was
1075 applied to the selected variables to generate the correlation circus plot (cut-off 0.7) which
1076  gives the variables that are either positively or negatively correlation with each other.
1077

1078 Global correlation of Proteome and DNA Methylation data:

1079  To check for overall correlation between the two datasets, subgroup specific (pWNT =
1080 13, pSHHt =29, pSHHs =6, pG4 = 36, pG3 =11, pG3Myc = 20) pearson correlation (cut-
1081 off 0.7) was performed between the proteome (3990 proteins and 115 samples) and
1082 methylome (381,717 probes and 115 samples) in R (Version 4.0.5. The data was subset
1083 for correlation value and matches to their respective probes using python script in
1084 anaconda JupyterLab (Version 3.0.14). All plots were generated using ggplot2 (Version
1085 3.3.6). Further, we also checked for the global non-subgroup specific pearson correlation
1086 between the proteome and methylome data as mentioned above and using the same cut-
1087  off only this time focusing on potential biomarkers for each subgroup and their correlation
1088  with methylation probes. Scatterplots of biomarker’s protein abundance and the M-values
1089 of CpG sites of its own gene (crossing the pearson correlation cut-off of 0.7) were plotted
1090 to confirm the correlations.

1091

1092  Quantification of Immunohistochemical stainings

1093 Immunostained tissue sections were digitalized using a Hamamatsu NanoZoomer 2.0-
1094 HT C9600 whole slide scanner (Hamamatsu Photonics, Tokyo, Japan). Slide images
1095 were exported using NDP view v2.7.43 software. Digital image analysis was performed

1096 using ImageJ/Fiji software® after white balance correction in Adobe Photoshop 2022
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(Adobe Inc., San Jose, USA). Tumor areas were labelled via manually drawn regions of
interest (ROIs). Tissue areas not eligible for quantification (e.g. non-tumorous tissue,
technical or digital artifacts) were excluded from the analysis. Total tumor tissue areas
were measured in grayscale converted images via consistent global thresholding (0, 241)
and subsequent pixel quantification within the ROIs. DAB-positive pixels (i.e. brown
immunostaining) were quantified on a three-tiered intensity scale after application of the
color deconvolution plugin. In detail, pixels were successively quantified within three
distinct thresholds [0, 134 (strong/ 3+); 135, 182 (medium/2+); and 183, 203 (weak/ 1+)].
Based on the conventional Histo-score, pixel quantities of strong, medium and weak
intensity were multiplied by three, two and one, respectively, and then summed up. The

hereby generated score is referred to as a digital Histoscore (DH-score).
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