

1 **Early life experience with natural odors modifies olfactory behavior through an associative
2 process**

3 Kristina V. Dylla, Thomas F. O'Connell, and Elizabeth J. Hong

4 Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
5 91125

6

7 **ABSTRACT**

8 Past work has shown that chronic exposure of *Drosophila* to intense monomolecular odors in
9 early life leads to homeostatic adaptation of olfactory neural responses and behavioral habituation
10 to the familiar odor. Here, we found that, in contrast, persistent exposure to natural odors in early
11 life increases behavioral attraction selectively to familiar odors. Odor experience increases the
12 attractiveness of natural odors that are innately attractive and decreases the aversiveness of
13 natural odors that are innately aversive. These changes in olfactory behavior are unlikely to arise
14 from changes in the sensitivity of olfactory neurons at the first stages of olfactory processing:
15 odor-evoked output from antennal lobe projection neurons was unchanged by chronic exposure
16 to natural odors in terms of olfactory sensitivity, relational distances between odors, or response
17 dynamics. We reveal a requirement for additional features of the environment beyond the odor in
18 establishing odor experience-dependent behavioral plasticity. Passive odor exposure in a
19 featureless environment lacking strong reinforcing cues was insufficient to elicit changes in
20 olfactory preference; however, the same odor exposure resulted in behavioral plasticity when food
21 was present in the environment. Together, these results indicate that behavioral plasticity elicited
22 by persistent exposure to natural odors in early life is mediated by an associative process. In
23 addition, they highlight the importance of using naturalistic odor stimuli for investigating olfactory
24 function.

25 **Keywords**

26 Olfaction; experience-dependent plasticity; associative learning; perceptual learning; odor trap;
27 natural odors; olfactory attraction and aversion; *Drosophila*; olfactory projection neurons

28

29 **INTRODUCTION**

30 The structure and function of animal brains are shaped by sensory experience in early life. For
31 instance, in the mammalian visual system, rearing animals in visual environments that contain
32 only contours of a single orientation results in long-term changes in visual behaviors and selective
33 shifts in cortical orientation maps to over-represent the experienced orientation¹⁻⁴. Similarly, the
34 spectrotemporal features of familiar sounds are over-represented and elicit stronger responses in
35 rodent cortical auditory neurons^{5,6}. In the olfactory system, odor experience in early life also
36 impacts how animals behave towards familiar odors later in life. For instance, divergent olfactory
37 experiences arising from childhoods in different cultures or from prenatal exposure to different
38 maternal diets can alter the perception of odor intensity or pleasantness⁷⁻¹¹. In vertebrate and

39 invertebrate animals, persistent passive exposure to odors in early life elicits long-lasting changes
40 in the structure and function of olfactory systems and in odor-dependent behaviors^{12,13}.

41 One hypothesis is that experience-dependent plasticity helps sensory systems adapt to the
42 statistical distribution of stimuli in the local environment, promoting the efficient encoding of
43 sensory information with a limited number of neurons¹⁴⁻¹⁸. However, raising animals in highly
44 controlled environments dominated by a single defined stimulus (e.g., contour orientation, sound
45 frequency, monomolecular odorant), often degrades performance in discrimination tasks that
46 depend on the familiar stimulus and can have a deleterious impact on sensory tasks that use
47 unfamiliar stimuli^{3,19,20}. Thus, laboratory studies using extreme artificial sensory environments
48 provide insights into the instructive roles of normal sensory experience in the developing nervous
49 system but may also reflect the consequences of prolonged exposure to abnormal sensory
50 environments.

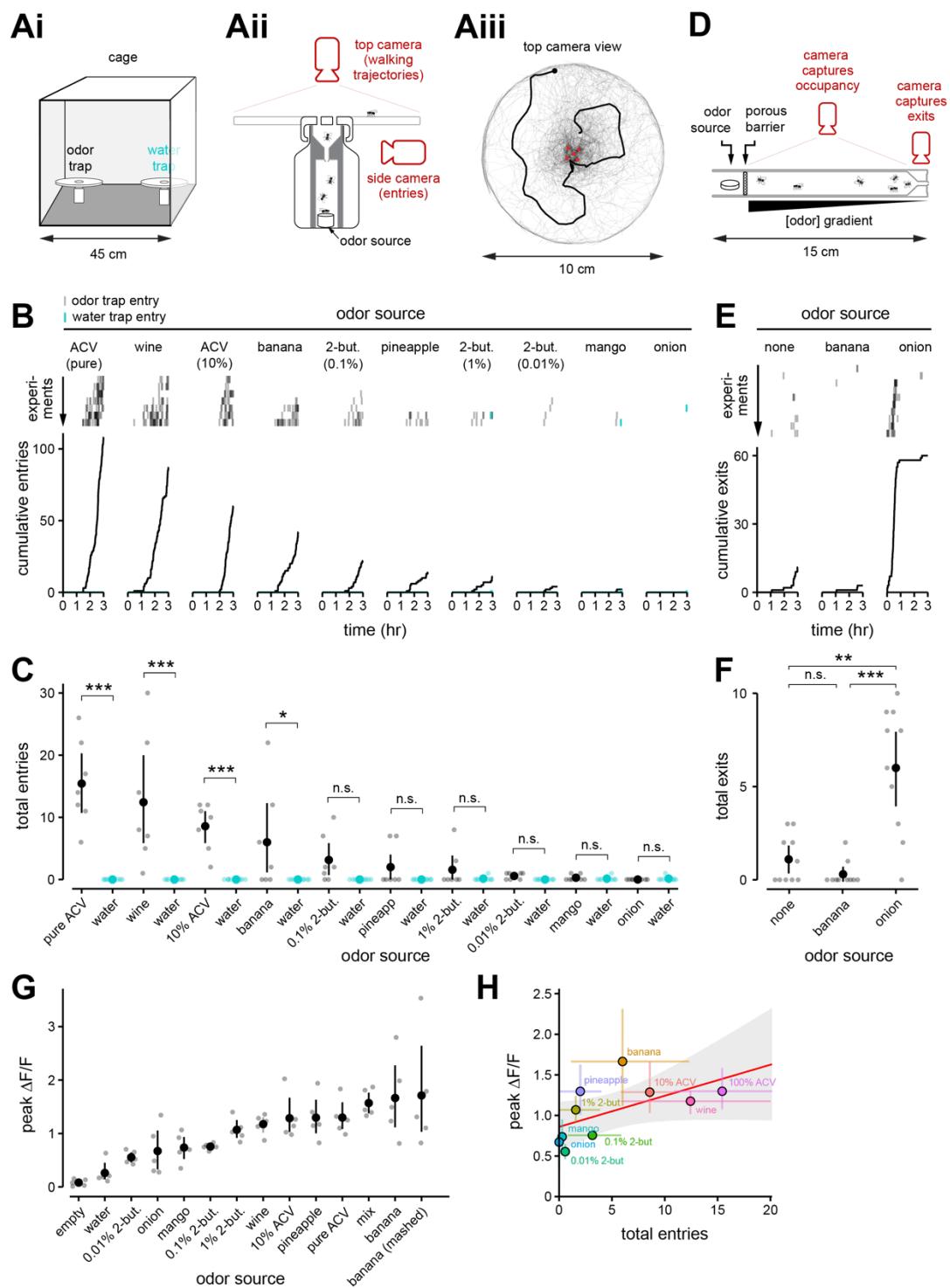
51 Broadly, the goal of this study was to better understand how sensory experience in early life
52 affects sensory coding and behavior in natural environments. We investigated this problem in the
53 olfactory system of the vinegar fly *Drosophila melanogaster*, a well characterized sensory system
54 with several experimental advantages, which include its numerical compactness, genetic
55 accessibility, and the availability of powerful tools for functional circuit interrogation^{21,22}. In
56 *Drosophila*, chronic exposure of flies to high concentrations of a monomolecular odor reduces
57 behavioral responses towards that odor^{13,17,18,23,24}. This effect is selective for the specific odor that
58 is common or overrepresented in the environment; responses to novel unrelated odors are
59 unaffected. Behavioral plasticity triggered by chronic exposure to high concentration of
60 monomolecular odor has been attributed to long-term, stimulus-specific increases in inhibitory
61 gain at the first synaptic stage of olfactory processing^{17,18}. Very high concentrations of
62 monomolecular odors, as were used in these studies, are nearly always innately aversive to
63 animals, and long-term behavioral habituation to such odors would be beneficial by allowing flies
64 to occupy environments naïve animals find aversive.

65 Monomolecular odor stimuli used in prior studies of olfactory plasticity diverge from natural odors
66 in several important ways. First, natural odors are complex blends of many distinct
67 monomolecular odorants, often mixed at characteristic ratios²⁵⁻²⁷. Second, individual
68 monomolecular volatiles in natural odor stimuli are present at significantly lower concentrations²⁸⁻
69 ³⁰ (~1 ppb to <10 ppm in air) compared to monomolecular concentrations presented in prior
70 laboratory studies (~10³-10⁴ ppm)^{17,18,23}. Finally, many natural odors elicit behavioral
71 attraction^{31,32}, even at the highest naturally occurring intensities that would be encountered close
72 to the odor source.

73 Here, we asked whether long-lasting experience with ecologically relevant odors in early life,
74 particularly innately attractive odors such as those arising from appetitive natural food sources,
75 also elicits olfactory plasticity in flies, and, if so, what form that plasticity takes. The answer is not
76 straightforward since, if behavioral plasticity induced by chronic odor exposure is primarily driven
77 by sensory habituation and decreased gain at the first olfactory synapse, flies should respond
78 less strongly (be less sensitive) to the familiar odor. However, from the perspective of what is
79 adaptive for survival, one might predict that flies should respond more strongly (be more sensitive)
80 to a familiar odor from an environment that supported survival and reproduction in early life.

81 We investigated this question by rearing animals in environments odorized with natural food
82 sources that could be realistically encountered in the biological world. We found that chronic
83 exposure to an innately attractive odor can increase behavioral attraction selectively towards that
84 odor, and exposure to an innately aversive odor can decrease behavioral aversion towards that
85 odor. Unexpectedly, functional imaging studies showed that olfactory projection neuron output is
86 stable and unaffected by chronic exposure to odors in naturalistic conditions, indicating changes
87 in olfactory gain or sensitivity are unlikely to account for behavioral plasticity. Using a novel
88 apparatus for rearing flies in odorized environments, we demonstrate that access to food during
89 odor experience is required to elicit behavioral plasticity. Together these results demonstrate that
90 changes in olfactory behavior elicited by long-term experience with natural odors in early life
91 occurs through a non-classical form of associative learning.

92


93 **Results**

94 **Evaluating the attractiveness or aversiveness of natural odors**

95 We used a free-flight trap-based assay to evaluate the behavioral attractiveness or aversiveness
96 of odors arising from various natural food sources. Trap-based assays were chosen because they
97 naturalistically model odor-guided food search by hungry flies; video monitoring of the flies'
98 behavior near the trap entrances allowed us to survey different stages of fly foraging behavior
99 (Figure 1A). Behavioral attraction was measured by comparing the number of flies that entered a
100 trap baited with the odor source to the number entering a control trap containing water (Figure
101 1Ai). The top of each trap had five openings, each ~1 mm in diameter, through which odor diffused
102 out of the trap and through which flies could enter into the trap. The trap openings were centered
103 in a 10-cm circular platform on which flies could land and explore the openings. Each trap was
104 simultaneously imaged from the top and side view (Figure 1Aii-iii).

105 In each experiment, fifty flies (3-4 days old; starved for 24 hr) were introduced into a cage (~90
106 dm³) containing an odorized trap and a water trap, and their positions and entries at the traps
107 were measured for three hours. Entries of individual flies into each trap were extracted from side
108 video data (see Methods) and revealed that the odors of the ten sources tested varied in their
109 behavioral attractiveness (Figure 1B). The odors of apple cider vinegar and red wine were the
110 most attractive in our stimulus panel, confirming prior reports of their reliability as olfactory
111 attractants³³⁻³⁵, and the odor of banana fruit was moderately attractive (Figure 1B-C). The
112 behavioral attractiveness of odors was concentration-dependent: flies were more attracted to the
113 odor of undiluted apple cider vinegar compared to 10% apple cider, and they were most attracted
114 to the odor of 0.1% 2-butanone compared to either 1% or 0.01% dilutions. Entries into the water
115 trap in any experiment with any odor source were rare (Figure 1C), and many flies do not enter
116 either trap within the three hours assayed.

117 Entries into the onion trap were not observed in any of ten replicate experiments. To determine
118 whether flies avoid the odor of onion or, alternatively, either do not detect the odor of onion or
119 behave neutrally towards it, we developed an “exit assay” that measures odor avoidance as the
120 number of flies that leave an odorized environment compared to an unodorized environment
121 (Figure 1D). Groups of ten unstarved flies were introduced into a cylindrical chamber (25 cm³)
122 odorized with banana, onion, or no odor (control). Whereas flies typically exited the odorized

Figure 1: Natural odor sources vary in their innate behavioral attractiveness to flies in a free flight trap-based olfactory assay

(Ai - Aiii) Schematics of free-flight trap-based assay. **(Ai)** Flies are presented with two traps, one containing an odor source and one containing water, within a mesh-enclosed cubic cage. **(Aii)** Cross-section through an odor trap. The top camera records the flies' walking behavior on the trap platform, surrounding the trap entrances. The side camera records the flies' passages into the trap. Flies are unable to exit the trap once they have passed through the narrow entrance passage. **(Aiii)** Example reconstructed walking trajectories (gray traces) on the platform of a trap baited

with banana. One individual trajectory is shown in black, with the endpoint designated with a black dot. Red circles mark the entrance apertures of the trap.

(B) Cumulative trap entries for ten different odor sources, each tested against water. Groups of fifty starved flies choose between a trap baited with an odor source (black) and a trap containing water (blue). Top: Time of individual entries in each experiment (row) for each odor source, experiments sorted by the total number of entries. Bottom: Cumulative entries across all experiments ($n = 7$ experiments; ACV, apple cider vinegar; 2-but., 2-butanone).

(C) Mean and 95% CI for total entries from **(B)** into traps baited with each odor source (black) tested against water (blue) ($n = 7$ experiments). * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, n.s., no significant difference ($p \geq 0.05$), two-way analysis of variance with Bonferroni correction for multiple comparisons.

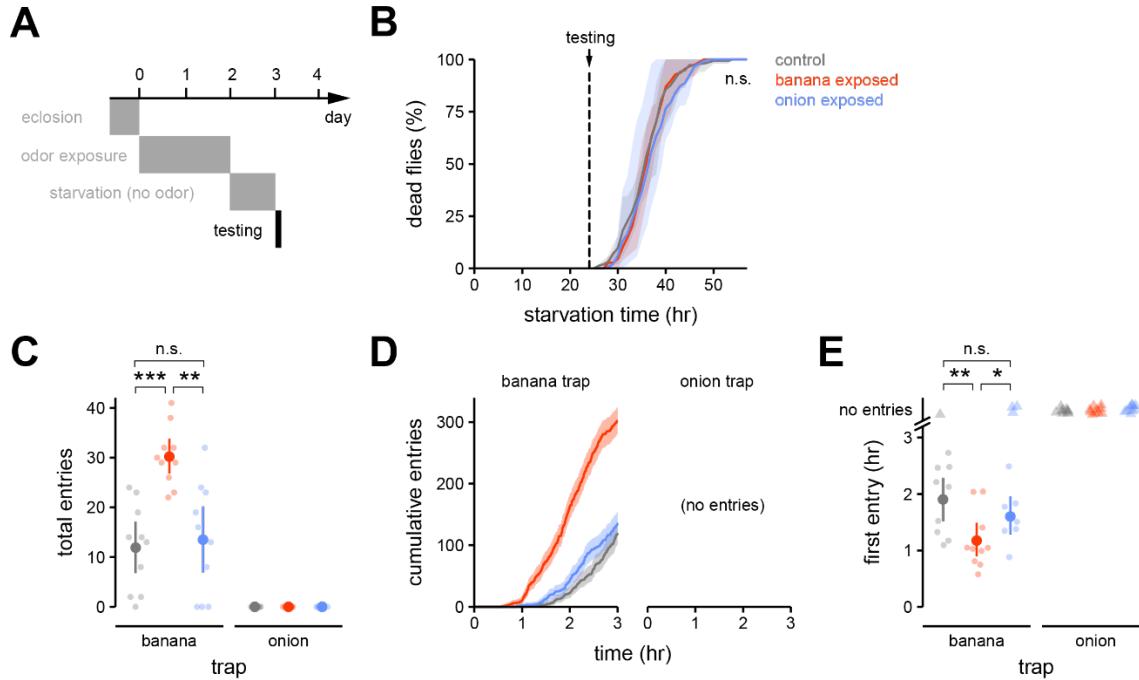
(D) Cross-sectional view of the exit assay. Groups of ten unstarved flies are introduced into the main chamber, constructed of transparent plastic. A porous barrier prevented flies from physically touching the odor source but allowed odor to diffuse into the main chamber. The other side of the tube narrowed to a small opening through which flies could exit. Clean air diffused into the chamber through the exit port, establishing an odor gradient between the odor source and the exit. The flies' positions and exits from the trap were recorded for three hours.

(E) Cumulative exits from the exit assay. Three odor sources were individually tested in parallel: banana, onion, or no odor (control). Top: Time of individual exits in each experiment (row) for each odor source, sorted by the time of first exit. Bottom: Cumulative exits across all experiments ($n = 10$).

(F) Mean and 95% CI for total exits from **(E)** from traps baited with each odor source ($n = 10$ experiments). ** $p < 0.01$, *** $p < 0.001$, n.s., no significant difference ($p \geq 0.05$), two-tailed permutation t-test with Bonferroni correction.

(G) Peak amplitude (mean and 95% CI, solid symbol) of stimulus-evoked calcium responses in projection neuron (PN) terminals, measured in a single plane of the mushroom body (MB) calyx in flies expressing GCaMP6f in ~75% of PNs ($n = 5$ flies; light symbols are average of three trials per stimulus in each fly). $\Delta F/F$ response was computed as the pixel mean within a large ROI that circumscribed PN axonal boutons in each fly. See Supplementary Figure S1C for mean response traces (changes in fluorescence over time). Odor stimuli from left to right: empty odor vial; water; 2-butanone (10^{-4}); onion; mango; 2-butanone (10^{-3}); 2-butanone (10^{-2}); red wine; 10% apple cider vinegar (ACV); pineapple; 100% ACV; mix of 2-butanone, 2-pentanone, E2-hexenal, and pentyl acetate, each at 1%; banana; and mashed banana. The fly genotype was *yw*+/−; *NP225-Gal4*+/−; 20x-UAS-*Syn21-OpGCaMP6f*-*p10*+/−.

(H) Peak amplitudes of odor-evoked PN responses (mean and 95% CI, from **(G)**) are weakly correlated with total trap entries (mean and 95% CI) elicited by each odor from **(C)**; Spearman's rank-order correlation, $r = 0.76$, $p = 0.016$.


123 environment within the first hour of the three-hour experiment when onion was the odor source
124 (Figure 1E), significantly fewer flies left when it was not odorized (control) or odorized with banana
125 (Figure 1F). These results indicate that flies detect and avoid the odor of onion in this assay.

126 To evaluate the relationship between the attractiveness of an odor and the sensitivity of the fly
127 olfactory system for the odor, we estimated the overall level of olfactory activity elicited by each
128 odor using two-photon functional imaging. We expressed the genetically encoded calcium
129 indicator GCaMP6f in ~75% of olfactory projection neurons (PNs; from the *NP0225-GAL4* driver³⁶)
130 and measured odor-evoked calcium signals from PN axon terminals where they arborize in the
131 calyx of the mushroom body (Figure S1A). We confirmed that the relative amplitudes of bulk PN
132 bouton responses among stimuli is not strongly sensitive to the specific imaging plane in the calyx
133 (Figure S1A-B). All odor stimuli in our panel evoked reliable, widespread calcium signals in PN
134 terminals throughout the calyx (Figure 1G, S1A-C). Additionally, odors that were more
135 behaviorally attractive tended to evoke higher mean levels of olfactory activity than odors that
136 were less attractive (Spearman's rank correlation, $r=0.76$, $p=0.016$) (Figure 1G-H, Figure S1C).
137 These results confirm that the odor stimuli used in our behavioral experiments are detected by
138 the fly olfactory system and show that the level of olfactory activity elicited by an odor is related
139 to how attractive it will be to naïve flies.

140

141 **Chronic exposure to a natural odor in early life increases behavioral attraction selectively
142 towards that odor**

143 We asked whether chronic exposure of flies to odors from natural sources in early life can change
144 the attractiveness or aversiveness of the odor when it is encountered again later in life. We

Figure 2: Persistent exposure to banana odor in early life increases behavioral attraction selectively to banana odor

(A) Newly eclosed flies were exposed to a natural odor source for two days, then starved for one day on wet tissue paper in the absence of the odor source. Flies were presented with a choice between a trap baited with onion or a trap baited with banana (Figure 1A) for the duration of three hours. Olfactory preference was evaluated in 3–4 day old flies.

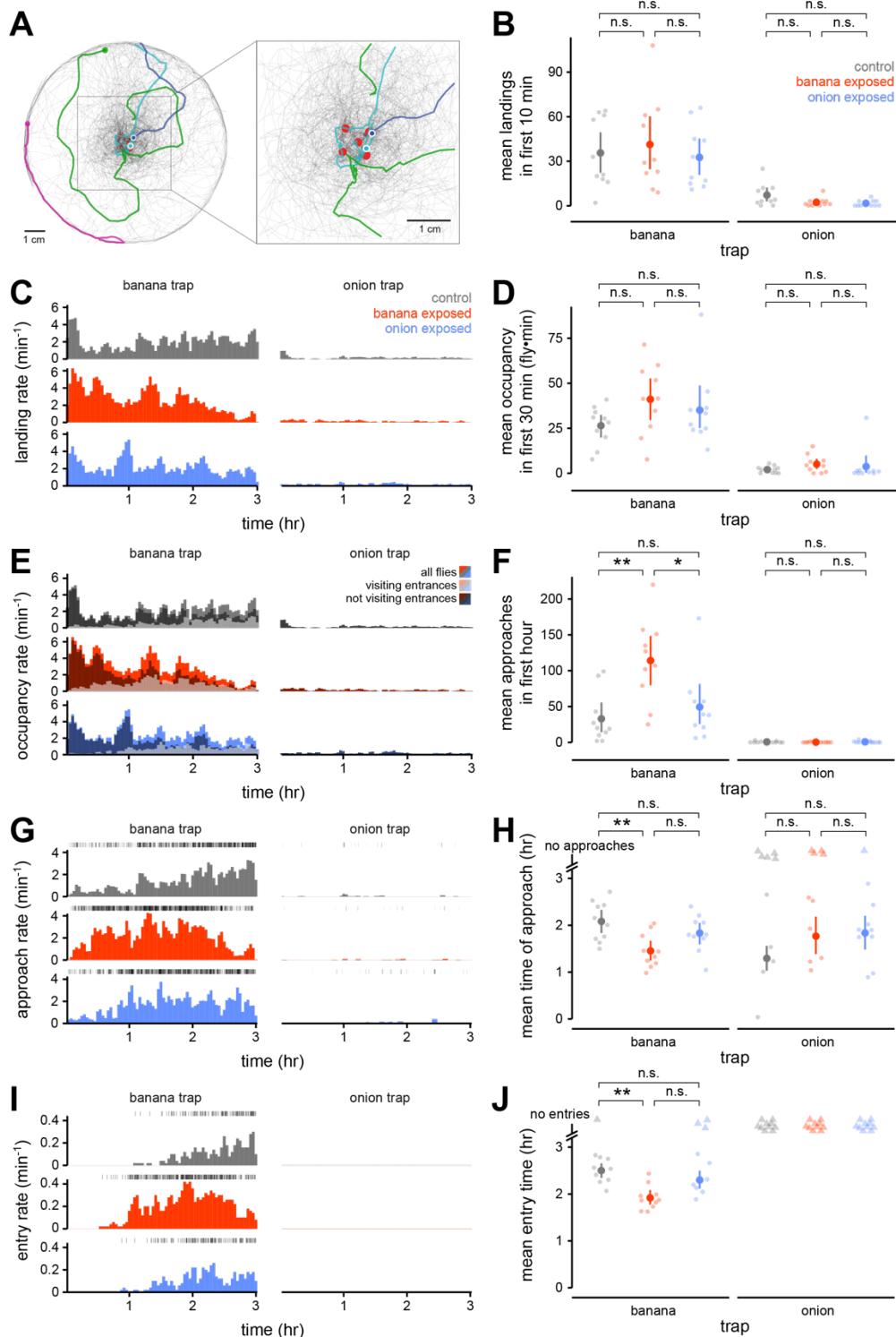
(B) Survival for control- (grey), banana odor- (red), or onion odor- (blue) exposed flies (mean and 95% CI; $n = 3$ experiments/group) as a function of starvation time. Odor exposure as in **(A)**; starvation time 0 corresponds to the start of the third day in **(A)**. Testing would normally commence at 24 hr starvation. Odor experience does not affect survival, n.s., no significant difference, $p \geq 0.05$ (two-sample Kolmogorov-Smirnov test with Bonferroni correction).

(C) Total entries (mean and 95% CI, solid symbols) into the banana- or onion-odorized trap over three hours by control- (grey), banana odor- (red), or onion odor- (blue) exposed flies ($n = 10$ experiments, light symbols). No flies entered the onion trap. $**p < 0.01$, $***p < 0.001$, n.s., no significant difference ($p \geq 0.05$), two-tailed permutation t-test with Bonferroni correction.

(D) Cumulative entries into each trap across all experiments for each odor exposure group from **(C)**. Error envelope is the 95% CI bootstrapped across experiments ($n = 10$).

(E) Time of the first entry into each trap in an experiment (mean and 95% CI, solid symbol) from **(C)** (individual experiments, light symbol). Triangle symbols mark cases where no entries were observed. $*p < 0.05$, $**p < 0.01$, n.s., no significant difference ($p \geq 0.05$), pairwise log-rank test with Bonferroni correction.

145 continually exposed groups of newly eclosed flies for two days to the odor of banana (moderately
146 attractive), onion (aversive), or to no odor (control; Figure 2A). Flies could not physically contact
147 the odor sources, and odor exposure itself did not impact the survival of flies (Figure 2B).
148 Following odor exposure, flies were wet-starved for 24 hours in the absence of the odor and then


149 tested for three hours in the trap assay (Figure 1A). In these experiments, flies were presented
150 with a choice between a trap baited with banana and a trap baited with onion (Figure 2C).

151 Of the 500 flies assayed across ten experiments, none were observed to enter the onion trap
152 (Figure 2C-D). Thus, prior exposure to onion odor was unable to convert the innate aversion of
153 flies towards onion odor into attraction. However, chronic exposure of flies to the odor of banana
154 resulted in a stronger preference for entering the banana-baited trap, as compared to control-
155 exposed flies. Exposure to banana odor increased the mean number of total entries into the
156 banana trap (Figure 2C) and also decreased the mean latency to the first entry of a fly into the
157 banana trap (Figure 2E). This effect was odor-specific, since onion odor-exposed flies entered
158 the banana trap at similar rates as controls (Figure 2C-D). Thus, chronic exposure of flies to odors
159 from natural sources can cause a long-lasting change in olfactory behavior, and this change is
160 observed selectively only for the familiar odor.

161 We wondered whether the earlier and more frequent entry of banana odor-exposed flies into the
162 banana trap reflected a heightened ability to detect and/or navigate to the banana odor. To
163 examine different stages of the flies' odor-guided search, particularly near the trap entrances
164 where the odor concentration is highest, we extracted the walking trajectories of individual flies
165 on the platforms of the banana or onion traps, using data from the top view camera (Figure 3A,
166 S2A). These data showed that flies from all odor exposure groups landed at least briefly on both
167 odor traps (Figure 3B-C, S2B), but they occupied and explored the surface of the banana trap
168 much more extensively throughout the experiment (Figure 3B-E, S2A). Focusing on the banana
169 trap, we observed that, as a population, flies from all odor exposure groups located and landed
170 on the banana trap platform with similar latencies (Figure 3B-C, S2B) and spent a similar amount
171 of time on the trap platform during the first 30 min of each experiment (Figure 3D-E). These
172 observations suggest that odor experience does not strongly affect the behavioral sensitivity or
173 ability of the flies to locate the familiar odor in this assay.

174 Comparisons of occupancy on the trap platform measured from the top view camera (Figure 3C,
175 E) with trap entries measured with the side view camera (Figure 2D) showed that flies from all
176 odor exposure conditions locate the banana trap much earlier than when they enter it (Figure 3C,
177 I). This observation suggests that flies evaluate the trap for some time before making the decision
178 to enter. We examined movies of the flies' behavior at the entrances of the banana trap and found
179 that flies rarely enter the trap on their first visit to an entrance. They typically investigated one or
180 more entrance holes multiple times before entering the trap, often repeatedly extending and
181 retracting their head and upper thorax into the apertures (Supplemental Video S1). We defined a
182 region of interest (ROI) that comprised the (noncontiguous) set of pixels containing the five trap
183 entrances (Figure 3A, red), approximately 1% of the total area of the platform. On average, as
184 the experiment progressed, the fraction of flies on the trap platform that visited the ROI (i.e., at
185 the trap entrances) increased relative to the fraction not visiting the ROI (Figure 3E), consistent
186 with an increasing intensity of investigation at the source of the odor. We defined a walking
187 trajectory in which flies entered into any part of the ROI as an "approach" to the trap entrances
188 (Figure 3A, inset, for approach examples) and compared their frequency and timing to that of
189 entries into the trap (Figure 3G, I).

190 For all groups of flies, the number of approaches to the trap entrances was much higher than the
191 number of entries into the banana trap, and entries into the banana trap began much later than

Figure 3: Chronic olfactory experience alters different stages of odor-guided search behavior towards the familiar odor.

(A) Example reconstructed walking trajectories (light grey traces) on the platform of a trap baited with banana with four individual trajectories highlighted in color. The solid circle marks the trajectory endpoint. The five red circles comprise the region of interest (ROI) containing the entrance holes to the trap. Inset: enlarged view of the trap

entries. The cyan, and blue traces are “approaches,” defined as trajectories that enter the ROI at least once, whereas the green and magenta traces are not.

(B - J) Quantification of fly behavior in experiments from Figure 2C-E. Control- (grey), banana odor- (red), or onion odor- (blue) exposed flies in the free-flight assay chose between a trap baited with onion or a trap baited with banana (n = 10 experiments/condition). For **B, D, F, H, J**, solid symbols are mean and 95% CI, shaded symbols are individual experiments. *p < 0.05, **p < 0.01, n.s., no significant difference (p ≥ 0.05), two-tailed permutation t-test with Bonferroni correction. For **C, E, G, I**, histograms report the event rate computed in 5-min bins with 50% overlap.

(B) Mean number of landings on each trap during the first ten minutes of each experiment.

(C) Landing rate over time across all experiments in each condition. Landings are defined as the initiation of a trajectory.

(D) Mean occupancy on each trap during the first 30 minutes of each experiment. Occupancy was measured in units of fly•min; one fly on the trap for 5 minutes is equivalent to five flies on the trap for 1 minute each.

(E) Occupancy rate over time across all experiments in each condition. Occupancy was measured as the number of unique trajectories occurring in the time bin. Occupancy is broken down into flies that do not visit the trap entries (trajectories out of ROI, dark shaded) and flies that visit the trap entries (pass through the ROI at least once, light shaded) during each time bin.

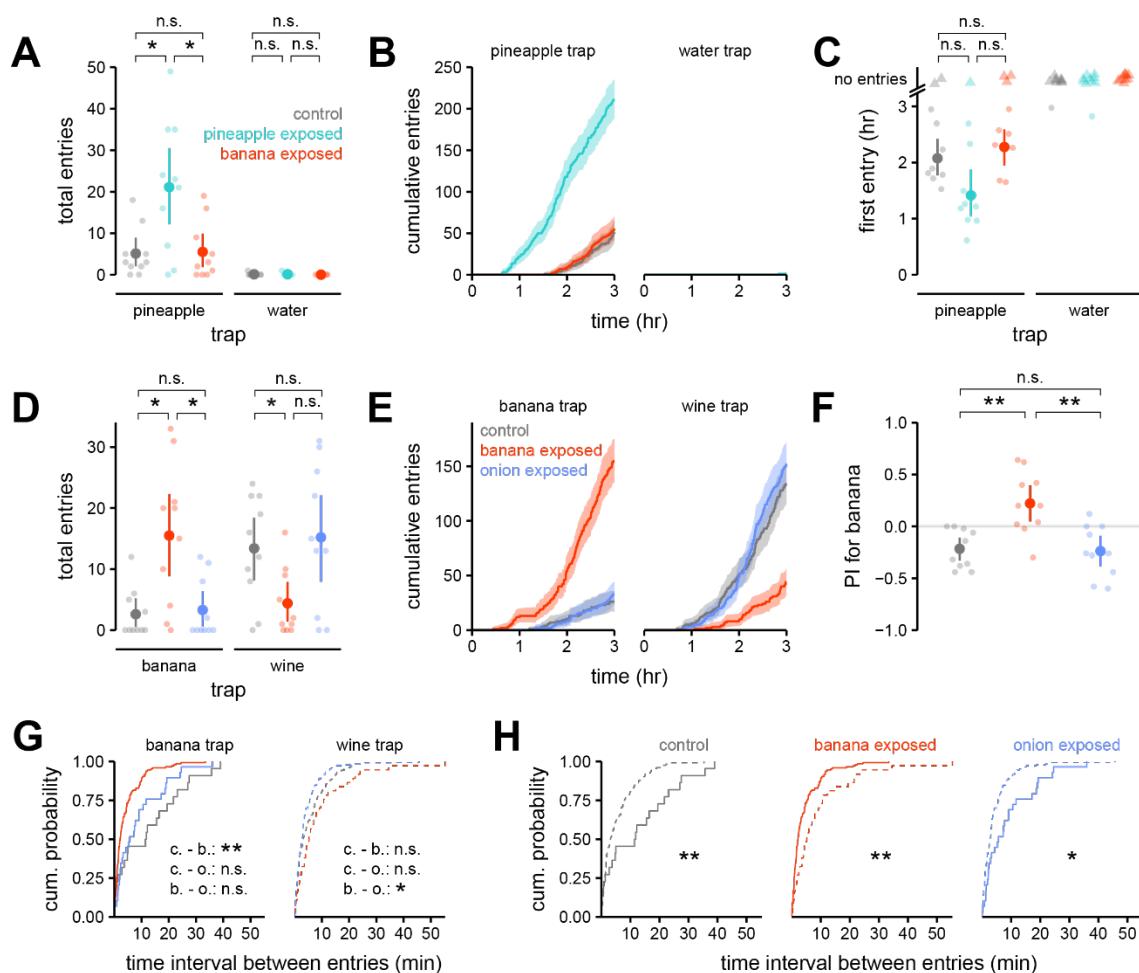
(F) Mean number of approaches (to entrances) on each trap during the first hour of the experiment.

(G) Approach rate (to entrances) over time across all experiments in each condition. Raster plots above each histogram show the time of each approach.

(H) Mean (across experiments) of the median time of approach in each experiment for each condition.

(I) Entry rate over time across all experiments in each condition. Raster plots above each histogram show the time of each entry. No entries into the onion trap were observed in any experiments.

(J) Mean (across experiments) of the median time of entry in each experiment for each condition.


192 approaches (Figure 3G, I). Compared with onion odor- or control-exposed flies, banana odor-exposed flies approached the entrances of the banana trap earlier (median time, 1.45 hr for 193 banana odor-exposed versus 1.83 hr or 2.08 hr for onion odor- or control-exposed, respectively) 194 (Figure 3G-H) and more frequently (Figure 3F-G). Other metrics of fly behavior, including walking 195 speeds (Figure S2A, S2C, S2E), spatial distribution on the trap (Figure S2D), and time duration 196 of trajectories (Figure S2F-G), were unaffected by chronic odor exposure. Thus, olfactory 197 experience does not appear to impact the ability of flies to locate the banana trap but affects odor- 198 guided behavior at the trap in this assay. Flies more readily and more vigorously investigate a 199 local source of the familiar odor when they re-encounter it, concomitant with earlier and more 200 frequent entries into the trap baited with the experienced odor. These results are most consistent 201 with chronic experience-dependent behavioral plasticity representing a change in the meaning or 202 mapping of the experienced odor to behavioral programs for approach, rather than a change in 203 the sensitivity of the fly to the odor. 204

205

206 **Olfactory experience can alter the naïve rank preference for different natural odors**

207 We tested whether the form of behavioral plasticity elicited by chronic exposure to banana odor 208 also extends to additional odors and additional choice contexts. When given a choice between 209 two traps, one odorized with pineapple and one containing water, flies exposed to the odor of 210 pineapple entered traps odorized with pineapple earlier and in larger numbers, compared to flies 211 exposed to banana odor or no odor (control) (Figure 4A-B). The latency to the first entry into the 212 pineapple trap tended to be earlier in the pineapple odor-exposed condition across experiments, 213 though the trend was not statistically significant (Figure 4C). Flies in the banana odor-exposed 214 and control conditions were statistically indistinguishable across all metrics, confirming that

215 behavior plasticity was odor-specific. These results demonstrate that heightened behavioral
 216 attraction elicited by prior experience with attractive natural odors generalizes to another attractive

Figure 4: Behavioral plasticity elicited by odor experience in early life extends to additional odors and additional choice contexts

(A) Total entries (mean and 95% CI, solid symbols) over three hours into the pineapple- or water- (control) odorized trap by control- (gray), banana odor- (red), or pineapple odor- (cyan) exposed flies (n = 10 experiments, light symbols). Free flight trap-based assay was as in Figure 2, except that groups of seventy, rather than fifty, flies were tested in each experiment. * $p < 0.05$, n.s., no significant difference ($p \geq 0.05$), two-tailed permutation t-test with Bonferroni correction.

(B) Cumulative entries into each trap across all experiments (n = 10) for each condition from **(A)**. Error envelope is the 95% CI bootstrapped across experiments.

(C) Time of first entry (mean and 95% CI, solid symbol) into each trap for each experiment (light symbols) in **(A)**. Triangle symbols denote experiments where no entries were observed. n.s., no significant difference ($p \geq 0.05$), pairwise log-rank test with Bonferroni correction.

(D) Total entries (mean and 95% CI, solid symbols) over three hours into the banana- or wine-odorized trap by control- (gray), banana odor- (red), or onion odor- (blue) exposed flies (n = 10 experiments, light symbols). * $p < 0.05$, n.s., no significant difference ($p \geq 0.05$), two-tailed permutation t-test with Bonferroni correction.

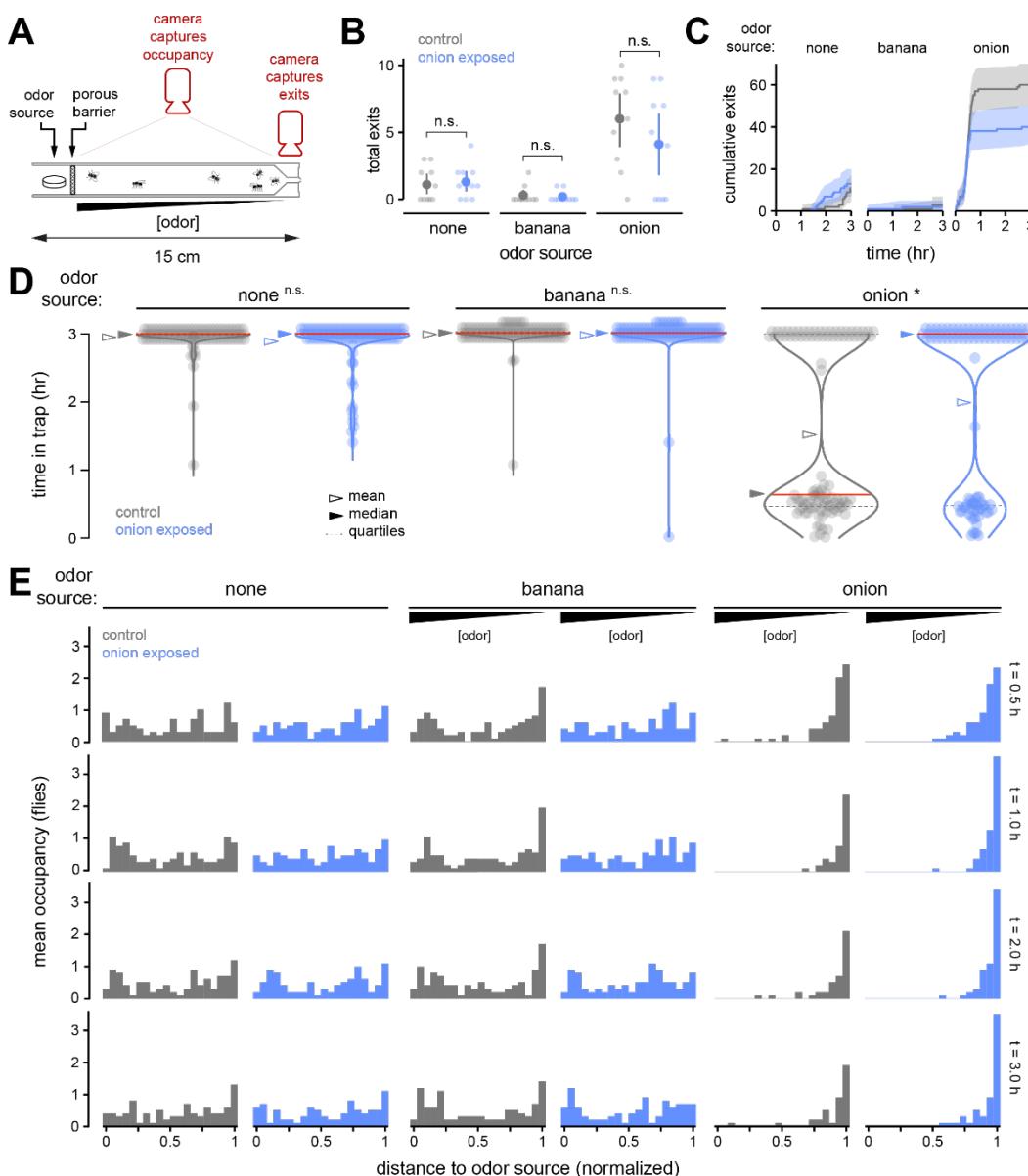
(E) Cumulative entries into each trap across all experiments (n = 10) for each condition from **(D)**. Error envelope is the 95% CI bootstrapped across experiments.

(F) Preference index for banana (mean and 95% CI, solid symbols) for each odor exposure group from **(D)**. ** $p < 0.01$, n.s., no significant difference ($p \geq 0.05$), two-tailed permutation t-test with Bonferroni correction.

(G-H) Cumulative probability distributions of inter-entry time intervals for experiments in **(D)**, grouped by odor trap (**G**) or odor exposure condition (**H**). Solid curves, banana trap; dashed curves, wine trap. ** $p < 0.01$, * $p < 0.05$, n.s., no significant difference ($p \geq 0.05$), two-sample Kolmogorov-Smirnov test with Bonferroni correction.

217 odor and occurs regardless of whether flies are choosing between attractive and aversive stimuli
218 (banana vs. onion odor) or attractive and neutral stimuli (pineapple vs. water odor).

219 We next asked whether olfactory experience can alter the naïve relative preference of flies for
220 different odors. Naïve (and control-exposed) flies reliably preferred the odor of wine over that of
221 banana in the trap assay (Figure 1B-C, Figure 4D). However, when given a choice between wine-
222 and banana-odorized traps, banana odor-exposed flies entered the banana trap earlier and in
223 greater numbers compared to flies exposed to no odor (control-exposed) (Figure 4D-F). The
224 change in preference was odor-specific; onion odor-exposed flies and control flies exhibited
225 similarly strong preferences for wine odor over banana odor (Figure 4F). Banana odor-exposed
226 flies entered the banana trap at a higher frequency than the wine trap, whereas the opposite was
227 true for onion odor-exposed and control flies (Figure 4G-H). Therefore, the increased number of
228 entries of banana odor-exposed flies into the banana trap during the three-hour testing period
229 was attributable not only to an earlier onset of entries (as in Figure 2D), but also a higher rate of
230 entries. These data show that prior experience with a natural odor in early life can increase its
231 attractiveness sufficiently to alter the relative preference of the fly for that odor in relation to
232 another attractive stimulus.


233

234 **Persistent experience with an aversive natural odor in early life reduces behavioral
235 avoidance of the familiar odor**

236 Exposure in early life to the odor of onion, which is aversive to naïve flies, did not significantly
237 alter how flies behaved towards any odor, including onion odor, in the free flight trap-based assay
238 (Figure 1B-C). This result might indicate that chronic exposure to onion odor does not alter fly
239 olfactory behavior; however, another possibility is that, because the trap assay mostly measures
240 behavioral attraction, it is poorly suited to reporting changes in the behavioral aversiveness of an
241 odor.

242 To evaluate behavioral aversion more directly, we tested the olfactory behavior of unstarved
243 control and onion odor-exposed flies using the exit assay (Figure 5A; Figure 1D-F). We measured
244 the flies' positions in, and exits from, three different environments, each odorized with onion,
245 banana, or no odor source. The mean number of total exits during the three-hour testing period
246 was not significantly different between odor exposure groups from all odor environments (Figure
247 5B), but the cumulative number of exits (across experiments) from the onion-odorized
248 environment was ~30% reduced in onion odor-exposed flies compared to controls (Figure 5C).
249 Additionally, across all flies in all experiments for each exposure group, the median time spent in
250 the onion-odorized environment was higher for onion odor-exposed flies as compared to control
251 flies (Figure 5D), consistent with fewer exits among onion odor-exposed flies. This difference in
252 dwell times was observed in the onion-odorized environment, but not the banana-odorized or non-
253 odorized environments, indicating that the change in olfactory behavior was specific to the
254 exposure odor.

255 Inspection of the spatial distribution of flies in each odor gradient over time showed that,
 256 irrespective of their prior experience, flies avoided higher concentrations of onion odor. In
 257 comparison, flies were more uniformly distributed in the environment when it was non-odorized
 258 or odorized with banana (Figure 5E). These observations suggest that exposure to onion odor in
 259 early life does not strongly affect the sensitivity or ability of flies to detect onion odor. As the
 260 experiment progressed, larger numbers of onion odor-exposed flies compared to control flies
 261 accumulated at the far end of the onion odorized environment, away from the odor source (Figure
 262 5E); this difference reflects the reduced number of exits from the onion environment by onion
 263 odor-exposed flies compared to controls. We conclude that chronic exposure to an aversive odor

Figure 5: Persistent exposure to onion odor in early life reduces behavioral avoidance of onion odor selectively

(A) Cross-sectional view of the exit assay. Reproduced from Figure 1D. The positions and exits of ten unstressed flies from the odorized environment were recorded in each experiment.

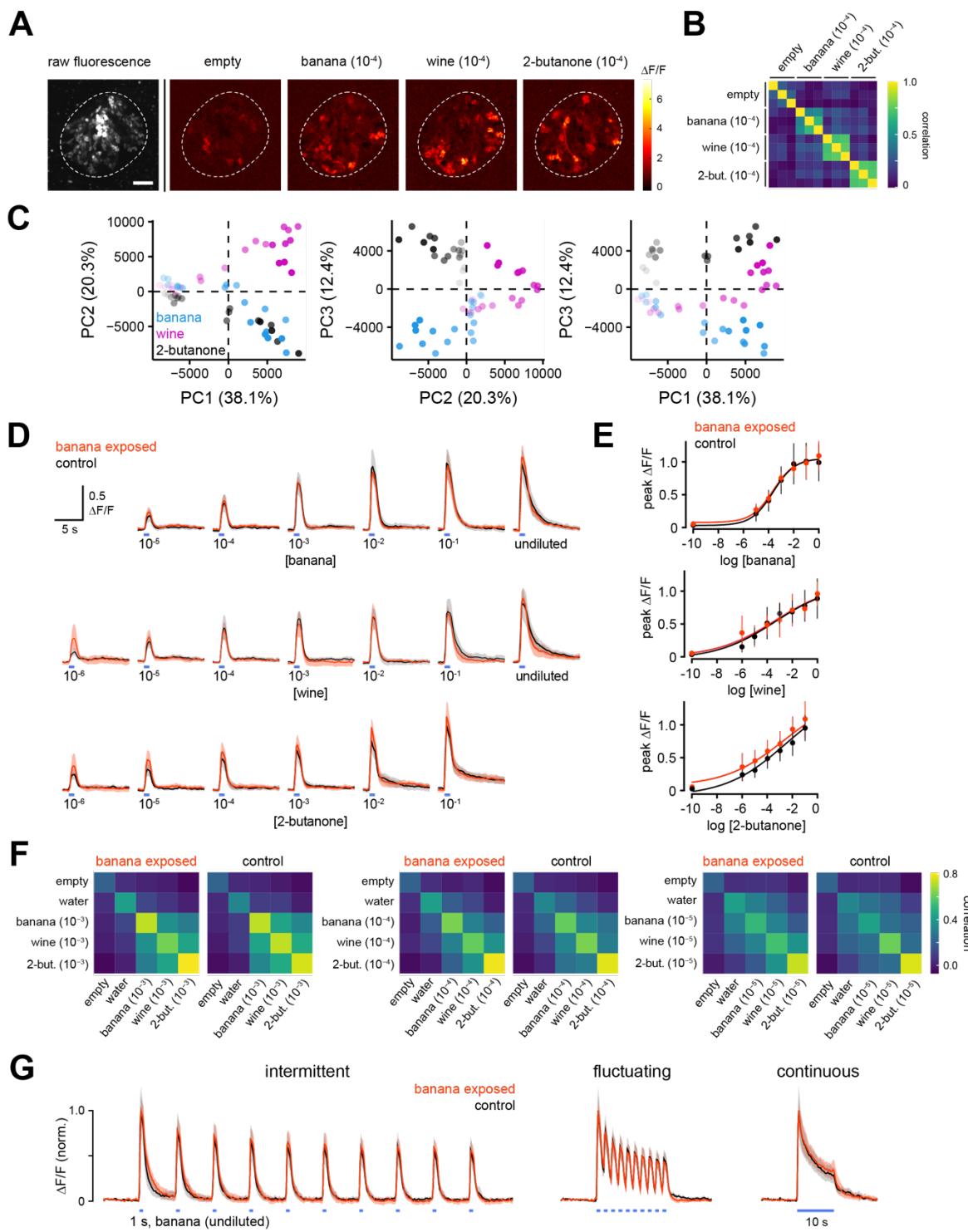
(B) Total exits (mean and 95% CI, solid symbols) over three hours for control- (gray) or onion odor- (blue) exposed flies from environments odorized with either banana, onion, or no odor (control) (n = 10 experiments, light symbols). n.s., no significant difference ($p \geq 0.05$), two-tailed permutation t-test with Bonferroni correction.

(C) Cumulative exits from environments odorized with each natural source across all experiments (n = 10) for each condition in **(B)**. Error envelope is the 95% CI bootstrapped across experiments.

(D) Distributions of time spent in each environment for all animals (100 flies) across all experiments (n = 10) in each condition. Flies that never exit the environment during the assay period are assigned a dwell time of three hours. Triangles mark the mean (open) or median (solid) dwell times in each condition. * $p < 0.05$, n.s., no significant difference ($p \geq 0.05$), two-tailed permutation t-test with Bonferroni correction.

(E) Mean occupancy along the normalized length of each trap across all experiments (n = 10) for each condition in **(B)**, at 0.5, 1, 2, and 3 hours after flies are introduced into each odorized environment.

264 in early life can modestly reduce its behavioral aversiveness but is not sufficient to convert it into
265 an attractive stimulus. Thus, behavioral responses to odor are not completely flexible; they can
266 be shifted by odor experience, but this plasticity is bounded by the naïve olfactory preferences of
267 the animal.


268

269 **PN sensitivity to familiar or unfamiliar odors is unaffected by chronic experience with a**
270 **natural odor in early life**

271 Second-order projections neurons (PNs) are the sole source of olfactory input to higher-order
272 brain areas that process odor information. Some prior studies have shown that chronic exposure
273 to high concentrations of monomolecular odors in early life reduces PN activity selectively in
274 response to the familiar odor^{17,18}. To evaluate the impact of early life experience with natural odors
275 on PN odor representations, we used two-photon functional calcium imaging to compare PN
276 activity in flies chronically exposed to banana odor in early life with activity in control-exposed
277 flies. As before (Figure S1), we expressed the genetically encoded calcium indicator GCaMP6f in
278 the majority of PNs (using the *NP0225-Gal4* driver) and confirmed that chronic exposure to
279 banana odor in early life elicits behavioral plasticity in this specific genotype (Figure S3A-C). In
280 each experiment, we imaged from PN axon terminals in a single imaging plane (~17 um below
281 the dorsal boundary of the calyx) through the mushroom body calyx and recorded PN responses
282 to varying concentrations of each of three odors – banana, wine, and 2-butanone (Figure 6A, D).
283 As controls for odor specificity and the responsiveness of the preparation, PN responses to an
284 empty vial, to water, and to a mix of monomolecular odors were also measured in every
285 experiment (Figure S3D).

286

287 The spatial patterns of peak odor-evoked responses across PN boutons were reliable and odor-
288 specific: patterns of PN bouton activity from trials of the same odor were highly correlated to one
289 another compared with PN activity from trials presenting different odors (Figure 6B). Principal
290 component analysis on the spatial patterns of PN activity elicited across all stimuli in all three odor
291 concentration series (in an individual fly) showed that, whereas the first principal component (PC)
292 captured mostly variation from stimulus intensity, as expected, PN response patterns elicited by
293 the three odors were well separated by their weightings on PC2 and PC3 (Figure 6C). The
294 separability of PN representations of different odors increased with stimulus intensity (Figure 6C,
295 S3E). Thus, odor-evoked activity in PN boutons reliably encodes stimulus identity.

Figure 6: The sensitivity of PN responses to familiar or unfamiliar odors is unaltered by chronic experience with banana odor in early life.

(A) Peak $\Delta F/F$ odor-evoked response patterns in PN axon terminals in an example imaging plane through the mushroom body calyx (white dashed line) of flies expressing GCaMP6f in a large subset of PNs. Grayscale image (left) shows raw fluorescence. Images (right) are trial-averaged peak responses (three trials/stimulus) to the odors

of empty vial, banana, wine, or 2-butanone, each diluted 10⁻⁴ in water. Scale bar, 10 μ m. The fly genotype was *yw*+/+; *NP225-Gal4*+/+; *20x-UAS-IVS-Syn21-OpGCaMP6f-p10*+/+.

(B) Pairwise Pearson correlation across pixels of peak PN response patterns evoked by different odor stimuli in **(A)**. Each small block is the similarity between the response patterns elicited in individual trials of the indicated stimulus.

(C) Principal component analysis of odor-evoked response patterns in PN terminals across all stimuli in the concentration series for banana, wine, and 2-butanone (same fly as in **(A)**, **(B)**). Odor stimuli are as in **(D)**. Numbers in parentheses indicate the percentage of the variance in the data accounted for by each principal component.

(D) Change in fluorescence over time (mean and 95% CI) in PN axon terminals in response to increasing concentrations of banana odor, wine odor, or 2-butanone odor in banana odor- (red) and control- (gray) exposed flies (n = 5–11 flies, banana odor-exposed; n = 5–9 flies, control-exposed). Blue bar indicates time of 1-s odor pulse.

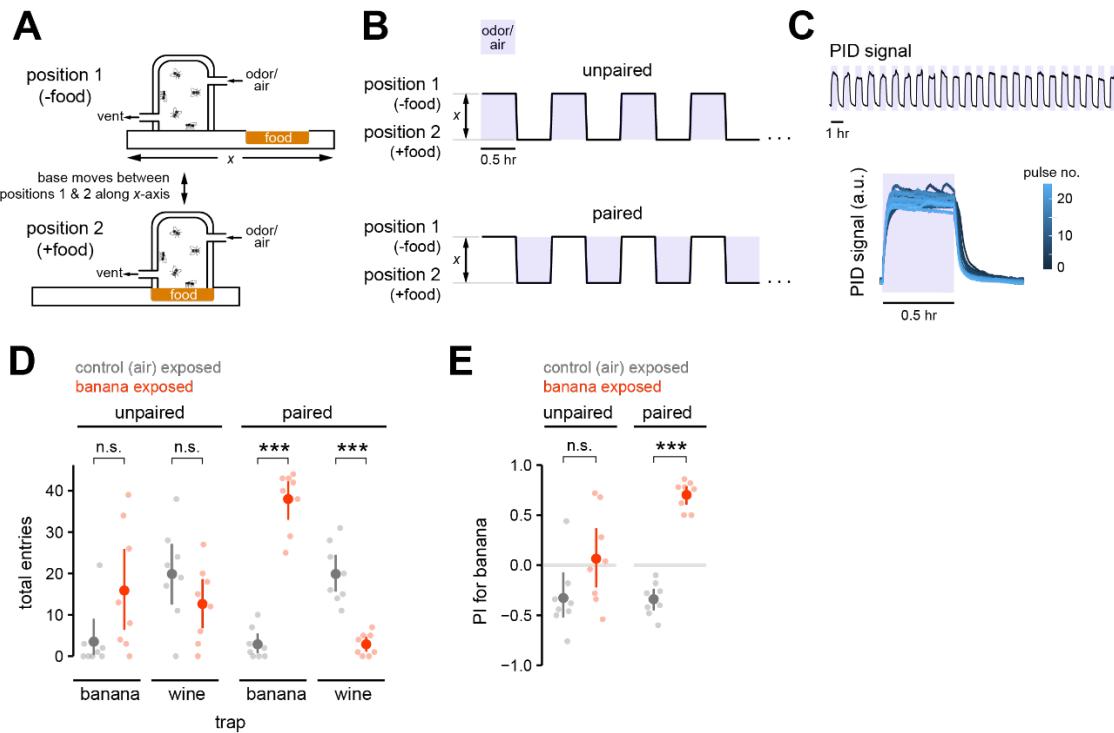
(E) Dose-response curves plotting peak PN response amplitudes from **(D)** (mean and 95% CI) at each concentration of each odor.

(F) Mean pairwise Pearson correlation of peak PN response patterns evoked by different odors, at three different stimulus intensities, in banana odor- and control-exposed flies. Odor relationships, as measured by correlation in PN activity, are not significantly different between banana odor- and control-exposed flies for any pair of odors at any concentration ($p \geq 0.05$, two-tailed permutation t-test with Bonferroni correction).

(G) Change in fluorescence over time (mean and 95% CI) in PN axon terminals of banana odor- (red) and control- (gray) exposed flies (n = 7–8 flies) in response to banana odor presented with three different temporal structures (stimulus timing indicated by blue bars). To allow direct comparisons of response dynamics, bulk $\Delta F/F$ signals were normalized to the peak amplitude in every trial. Odor stimuli comprised of 10 s of undiluted banana odor presented as a 0.1 Hz train at 10% duty cycle (intermittent); a 0.5 Hz train at 50% duty cycle (fluctuating); or a sustained 10-s pulse (continuous).

296 The mean peak PN response amplitude, computed in an ROI circumscribing all PN boutons in
297 the imaging plane for each fly, increased with concentration for all odors. Comparing PN response
298 amplitudes in banana odor-exposed flies and control flies, we observed no significant differences
299 in PN sensitivity to any odors, including to the familiar odor banana (Figure 6D-E). Chronic
300 exposure to banana odor also did not significantly affect the relationship between any odors,
301 including banana odor, in the representational space defined by PN bouton responses (Figure
302 6F). Odor relationships were determined by computing the mean pairwise correlation between
303 peak PN activity patterns, evoked by each odor at approximately matched intermediate
304 intensities, in banana odor-exposed and control flies.

305 Finally, we asked whether the dynamics of PN activity in response to odor stimuli of varying
306 temporal structure are affected by chronic odor exposure in early life. Calcium signals in PN axon
307 terminals were recorded in banana odor-exposed and control flies in response to a combined 10
308 seconds of banana odor presented with the following temporal structures: a 0.1 Hz train at 10%
309 duty cycle (intermittent), a 0.5 Hz train at 50% duty cycle (fluctuating; Figure S3F), or a sustained
310 10-s pulse of odor (continuous) (Figure 6G). These stimuli probe how PN responses adapt when
311 encountering odor stimuli that vary on different timescales. Bulk PN bouton calcium signals were
312 normalized to the peak amplitude elicited in each trial to visualize the relative adaptation of the
313 PN response over the course of the stimulus. We observed that PN boutons responded with
314 distinct and reliable dynamics to each of the three stimulus structures, but the dynamics of PN
315 output response amplitudes were indistinguishable between banana-exposed and control flies
316 (Figure 6G). Taken together, we conclude that prior experience with natural odors does not
317 strongly affect the sensitivity of olfactory PNs, to either familiar or unfamiliar odors, nor does it
318 change the dynamics of PN output responses. These results indicate that the earlier and more
319 frequent entry by banana odor-exposed flies into the banana trap are not accounted for by
320 changes in either the sensitivity or overall level of activation driven by the familiar natural odor at
321 early stages of sensory processing.


322

323 **Odor experience-dependent behavioral plasticity requires the presence of food during**
324 **odor exposure**

325 Given that olfactory experience that reliably alters behavioral attraction to odor does not strongly
326 affect PN sensitivity, behavioral plasticity triggered by exposure to natural odors likely arises from
327 changes in the olfactory circuit downstream of PN output. Experience-dependent behavioral
328 plasticity elicited by chronic manipulation of the sensory environment has typically been
329 interpreted as a form of non-associative learning that requires only passive long-term exposure
330 to specific stimuli, without reinforcement or feedback^{1,2,5,17,18}. Another possibility, however, is that
331 continual experience with a specific natural odor while inhabiting an environment that robustly
332 supports survival and reproduction could lead to formation of an association between the odor
333 and the environment, increasing the attractiveness of the odor to the fly.

334 To disambiguate between these possibilities, we constructed a custom device for rearing flies that
335 allowed us to temporally disassociate chronic exposure to a specific odor from the presence of
336 food, since accessible, nutrient-rich food is a key feature of a high-quality environment. Groups
337 of ~500 flies were reared for two days in an acrylic cylinder (~280 cm³) that could be rapidly
338 odorized and de-odorized (Figure 7A). A platform fitted tightly against the base of the cylinder
339 moved slowly (~0.5 mm/s) on a linear track between two positions ~7 cm apart – one in which the
340 open base of the cylinder snugly abutted a smooth plastic surface, and the other in which it was
341 tightly opposed to the surface of a well of standard molasses-cornmeal fly food (Figure 7A). Flies
342 reared in this device were exposed to alternating 30-min epochs of banana-odorized and clean
343 (unodorized) air (Figure 7B). Photoionization measurements of the odor environment in the
344 cylinder confirmed that 30-min odor bouts were stable in amplitude and dynamics across 24 hours
345 (the odor source was refreshed daily) (Figure 7C). In the paired condition, flies were positioned
346 above the food during the epochs when banana-odorized air flowed through the cylinder and
347 above the plastic surface during the epochs of non-odorized air, and vice versa for flies in the
348 unpaired condition. In this way, both experimental groups of flies (paired and unpaired) were
349 exposed to banana odor and given access to food for the same amount of time in total, with the
350 only difference being whether food was made available to each group during the banana-odor
351 epochs (paired) or the air epochs (unpaired) (Figure 7B). For both the paired and unpaired
352 condition, a separate group of control flies were also reared in parallel using the same procedures,
353 except clean unodorized air was substituted for banana-odorized air.

354 Flies were reared for two days in the device, starved for one day, and then tested for their
355 preferences for wine or banana odor using the free-flight trap assay. Flies reared in our custom
356 device tended to enter the traps with increased latency, so we extended the length of the assay
357 period and evaluated the number of entries occurring within 24 hours. As expected, air-exposed
358 control flies, from either the paired or unpaired condition, exhibited the same odor preference as
359 naïve flies: they reliably preferred the odor of wine to that of banana (Figure 7D, Figure 4D-F),
360 demonstrated by a greater number of entries into the wine trap compared to the banana trap.
361 However, banana odor-exposed flies from the paired condition, which experience banana odor in

Figure 7: Increased behavioral attraction evoked by chronic exposure to natural odors requires the presence of food during odor exposure

(A) Schematic of custom device for rearing flies that allows temporal disassociation of long-lasting odor exposure and access to food. The base of the device, which sits tightly apposed to the cylinder housing the flies, shifts between two positions: one which provides a smooth, plastic base (position 1, -food) for the cylinder and the other which provides access to a well of food (position 2, +food). Humidified air, which is odorized if desired, flows constantly through the housing cylinder.

(B) Unpaired (top) and paired (bottom) odor exposure. In the paired exposure condition, banana odor flows through the housing cylinder containing the flies only during the 30-min epochs it is apposed to food (position 2, +food). In the unpaired exposure condition, banana odor flows through the housing cylinder only during the 30-min epochs it is apposed to a smooth base (position 1, -food). Flies are reared in the custom device for 48 hrs. Flies in either exposure condition (paired or unpaired) experience banana odor and have access to food for equal amounts of time. Control-exposed flies are treated equivalently except that clean air, rather than banana odor, is used.

(C) Photoionization measurement of the concentration of banana odor in the housing cylinder over 24 hours (top). The odor pulses for the 30-min odorized portion of every hour are overlaid (bottom panel), aligned to the onset of the TTL trigger for the odor valve, and color-coded by time. The natural odor source is refreshed after 24 hours.

(D) Total entries (mean and 95% CI, solid symbols) over 24 hours into the banana- or wine-odorized trap by control (gray) and banana odor- (red) exposed flies (n = 8 experiments, light symbols), exposed using the unpaired or paired procedure. ***p < 0.001, n.s., no significant difference (p ≥ 0.05), two-tailed permutation t-test with Bonferroni correction.

(E) Preference index for banana odor (mean and 95% CI, solid symbols) for each odor exposure condition in (D). ***p < 0.001, n.s., no significant difference (p ≥ 0.05), two-tailed permutation t-test with Bonferroni correction.

362 the presence of food, strongly preferred banana odor over wine odor (Figure 7D-E). This result
 363 shows that paired odor exposure in the custom rearing device increased behavioral attraction to
 364 the odor, recapitulating the behavioral plasticity observed under more naturalistic conditions
 365 where the odor source is simply placed into the growth environment of the fly (Figure 4D-F).
 366 However, banana odor-exposed flies from the unpaired condition, which chronically experience
 367 banana odor without the presence of food, did not exhibit an increased attraction to banana odor
 368 and were similarly attracted to the odor of banana and wine (Figure 7D-E).

369 Together, these data demonstrate that passive odor experience alone is insufficient to elicit
370 changes in olfactory behavior towards the odor. The change in olfactory preference elicited by
371 chronic exposure to banana odor depends on additional features of the environment beyond just
372 the prevalence of banana odor; the presence of food during odor exposure is also required. These
373 results strongly suggest that behavioral plasticity elicited by chronic exposure to natural odors in
374 early life represents a form of associative learning; its relationship to highly studied forms of
375 classical conditioning in *Drosophila* is an important open question.

376

377 **DISCUSSION**

378 **The role of odor experience in shaping the fly olfactory system in naturalistic conditions**

379 The goal of this study was to better understand the role of odor experience in shaping the olfactory
380 system of flies living in natural environments. Past work investigating the impact of odor
381 experience on fly olfaction chronically exposed flies in early life to intense monomolecular
382 odorants, olfactory stimuli that are universally aversive to naïve flies and are very rarely found in
383 natural environments. These experiments concluded that the primary effect of chronic odor
384 exposure was to reduce behavioral responses towards familiar odors^{13,17,18,23,24}. Such behavioral
385 habituation was determined to be the result of stimulus-selective changes in olfactory gain in PNs,
386 implemented by neuron-specific increases in GABAergic inhibition^{17,18}, and acted to match the
387 sensitivity of the fly's olfactory system to the local distribution of odors in the environment^{16,37}.

388 We asked whether this framework describes how flies are affected by constant and long-lasting
389 exposure in early life to natural odor sources that may be overrepresented in their local
390 environment, including odors that are innately attractive to naïve flies. If behavioral plasticity
391 elicited by chronic odor exposure were principally driven by long-term sensory adaptation in PNs,
392 we expected to observe decreased aversion to innately aversive natural odors and decreased
393 attraction to innately attractive natural odors. Instead, we found that chronic exposure to a natural
394 odor in early life results in increased behavioral attraction selectively to the odor, irrespective of
395 whether the odor is innately attractive or aversive to naïve flies. Thus, behavioral plasticity elicited
396 by chronic experience with natural odors acts to promote acceptance and attraction to familiar
397 odors experienced in early life.

398

399 **PN sensitivity is unchanged by long-lasting, persistent activation with natural odors**

400 We found that odor-evoked output responses in PN axon terminals are not strongly altered by
401 chronic exposure in early life to natural odors that strongly excite the fly olfactory system³⁸ (Figure
402 6, Figure S1). In flies exposed to banana odor, PN response sensitivity was unchanged in
403 response to both familiar and unfamiliar odor stimuli across a concentration range spanning
404 several orders of magnitude (Figure 6D). PN response dynamics were also stable (Figure 6E).
405 These results diverge from prior findings that chronic exposure of flies to high concentrations of
406 the monomolecular odors carbon dioxide or ethyl butyrate reduces PN sensitivity selectively to
407 the familiar odor, giving rise to behavioral habituation^{17,18}.

408 Some of the differences between the current study and past studies on the impact of chronic odor
409 experience on PN sensitivity may reflect methodological issues, for instance, the use of a different
410 calcium indicator³⁹ in functional imaging measurements. However, the differences may also
411 reflect that chronic experience with different types of odor stimuli has varying long-term effects on
412 olfactory physiology^{38,40,41}. In past studies, animals were chronically exposed to monomolecular
413 odors at estimated concentrations of $\sim 10^3$ to $\sim 10^5$ ppm in air^{17,18,23,24,42-46}, whereas the headspace
414 concentrations of the most abundant monomolecular volatiles common in natural odor sources
415 like fruit typically range from ~ 1 ppb to ~ 10 ppm in air⁴⁷⁻⁴⁹. Even when all individual volatiles for a
416 natural mixture are summed, the estimated upper bound of the total concentration of headspace
417 volatiles for the vast majority of natural odor sources is ~ 100 ppm in air^{28,29,49}. For ripe banana^{28,50}
418 and pineapple²⁹, the estimated concentration of total headspace volatiles is ~ 1 - 2.5 ppm or ~ 250
419 ppb in air, respectively (using a vapor pressure estimate of ~ 15.3 mm Hg at 25°C for all volatiles).
420 Thus, an important difference in our study is that animals are exposed to significantly lower overall
421 concentrations of odor volatiles. We note that recent studies have reported limited PN plasticity,
422 or sometimes even slightly increased PN sensitivity, in flies chronically exposed in early life to
423 monomolecular odors at low concentrations. These concentrations are within the range
424 encountered in natural sources, but still strongly activate individual high affinity odorant
425 receptors^{40,51}.

426 Importantly, natural odor mixtures, such as wine or banana odor, can evoke overall levels of PN
427 activity similar in strength to that evoked by an intense monomolecular stimulus (for example, 1%
428 2-butanone is $\sim 10^3$ ppm in air) (Figure 1G, and data not shown). This result indicates that
429 differences in the overall extent to which different odor stimuli activate the olfactory system do not
430 account for differences in their ability to trigger PN plasticity. Another key factor is that natural
431 odors are usually complex blends of dozens of distinct monomolecular odorants^{25,26,48,49}. Thus,
432 the distribution of input activity to the olfactory system (e.g., how narrowly or broadly an odor
433 stimulus acts across olfactory receptor neuron classes) elicited by monomolecular odors or
434 natural odors may be an important factor contributing to how chronic olfactory excitation affects
435 PN odor coding. However, our study demonstrates that olfactory behavioral plasticity elicited by
436 persistent odor experience need not necessarily arise from changes in PN sensitivity.

437 Understanding the effects on olfactory function of chronic exposure to either monomolecular
438 odors or to natural odors is important. The impact of persistent experience with specific natural
439 odors provides insight into the adaptive functions of olfactory plasticity in the natural context in
440 which olfactory systems evolved. However, human activity creates local environments where
441 people and other organisms can be chronically exposed to artificially high concentrations of a
442 particular monomolecular volatile. For instance, the National Institute for Occupational Safety and
443 Health establishes guidelines for safe indoor exposure limits to specific volatiles from the
444 perspective of acute human toxicity, in the range of $\sim 10^2$ - 10^3 ppm in air for several hours for most
445 volatiles⁵². However, the long-term consequence of unabated exposure to sub-lethal, but still high
446 concentrations of monomolecular volatiles for olfactory physiology and behavior requires more
447 investigation.

448

449 **The role of innate preference in odor experience-dependent behavioral plasticity**

450 Generally, we found that odor experience in early life shifts olfactory preference towards
451 increased behavioral attraction to the familiar odor. However, odor experience cannot shift
452 olfactory preference sufficiently to convert behavioral aversion towards a naively aversive odor,
453 such as onion odor, into behavioral attraction: onion odor-exposed flies, like naïve flies, never
454 select the onion trap and still strongly prefer banana odor (Figure 2C). Also, in the exit assay,
455 although onion odor-exposed flies are more willing to dwell in the onion-odorized trap (Figure 5D),
456 they still avoid onion odor, preferring to occupy the side of the trap with the lowest concentration
457 of odor (Figure 5E). On the other hand, rank odor preference is not immutable: for two innately
458 attractive odors, wine and banana, the preference of naïve flies for wine odor over banana odor
459 can be reversed by early life experience with banana odor (Figure 4). Our data suggest the
460 existence of inherent boundaries to the degree that odor preference can be altered by naturalistic
461 experience, and these boundaries are likely odor-specific. Odors emanating from a toxic or
462 dangerous source are often innately aversive, and a hard limit to the degree that olfactory aversion
463 can be modified by experience may preclude catastrophic outcomes for the animal. However, a
464 switch in preference between two attractive odors signaling food may be adaptive, promoting the
465 selection of the one associated with reliable food and/or reduced risk during foraging. The form
466 of behavioral plasticity triggered by chronic exposure to a specific odor stimulus may depend on
467 the innate meaning or valence of the stimulus to the fly, on the identity and degree of activation
468 of specific olfactory receptor neurons by the stimulus, or on both.

469

470 **Chronic exposure to natural odors alters distinct aspects of odor-driven behavior**

471 The free-flight odor trap assay models a simple foraging task, in which hungry flies search for
472 food in the environment using odor as a cue. Trap entry is preceded by several stages of foraging
473 behavior: first, flies locate from a distance and land on the surface of the trap; second, flies
474 repeatedly approach and locally investigate the entrance apertures of the trap; and, third, flies
475 make the final decision to walk through the entrance apertures and access the trap. By extracting
476 the positions of individual flies on the trap over time from video data, we gained new insights into
477 how different phases of this foraging behavior are affected by chronic experience with natural
478 odors (Figure 3).

479 We observed that the earliest stages of odor search are unaffected by prior olfactory experience,
480 with all groups of flies locating, landing, and occupying the platform of the banana-odorized trap
481 for a similar amount of time in the first few minutes of the experiment. However, flies having long-
482 lasting experience with banana odor in early life exhibited altered behavior at later stages of odor
483 search: they investigated the entrance apertures of the trap, where odor concentration is highest,
484 with a greater intensity, making earlier and more frequent approaches to the trap entrances. Flies
485 repeatedly approached and sampled the entrance holes (Supplementary Video S1), often
486 extending half their body length into the entrance aperture before withdrawing, briefly leaving, and
487 returning to repeat the process. This series of behaviors suggests that passage through an
488 entrance aperture into the trap carries a certain degree of risk. This risk may be overcome by
489 repeated exploration of the trap entrances, increasing pressure in starved animals to locate
490 energy resources, and/or prior knowledge about the odor emanating from the apertures.

491 The temporal profile of behavior is consistent with functional imaging measurements indicating
492 that odor-evoked output from PNs is unaffected by chronic odor exposure. Irrespective of earlier
493 olfactory experience, all groups of flies appear to detect and locate banana odor with comparable
494 latencies, inconsistent with a significant impact of chronic odor exposure on olfactory behavioral
495 sensitivity or habituation. Rather, odor experience elicits long-lasting changes in the flies' olfactory
496 exploratory behavior and alters the behavioral threshold for odor-mediated passage through the
497 narrow trap entrances. These changes in foraging behavior suggest that long-lasting odor
498 exposure could be teaching flies something about either the value and/or risk that they associate
499 with the odor.

500

501 **Natural odor experience changes olfactory behavior through an associative process**

502 The development of a novel rearing environment that allowed the temporal decorrelation of food
503 access from odor exposure enabled us to evaluate whether food-related cues in the environment
504 are important for behavioral plasticity triggered by natural odors⁴¹. Investigating the effects of long-
505 term exposure to biased sensory environments on animal brains usually requires the provision of
506 food in the environment, and past work investigating the effects of chronic exposure to
507 monomolecular odors have necessarily been performed in the presence of food^{17,18,23,24,40,43,45}.
508 We discovered that the induction of behavioral plasticity by chronic odor exposure depends
509 critically on the presence of food during intervals of odor exposure. Our results are consistent with
510 a scenario where the temporal coincidence of odor and food over long timescales teaches flies
511 that the familiar odor reliably signals the local availability of a nutrient-rich energy source, through
512 an associative process.

513 Learning elicited by chronic odor experience may be related to, but is distinct from, well-
514 established forms of associative learning like classical olfactory conditioning, a form of learning
515 that has been powerfully dissected at the genetic and neural circuit level in *Drosophila*. Chronic
516 olfactory experience-dependent plasticity differs in several ways, including: 1) flies are not food-
517 deprived prior to the learning phase, whereas in classical appetitive odor conditioning, flies are
518 strongly starved before training with sugar reinforcement; and 2) the pairing of odor and
519 reinforcement (presumptively the food environment) occurs over long timescales (hours),
520 whereas in classical appetitive odor conditioning, odor and sugar reinforcement are temporally
521 paired within a seconds- to minutes-long window^{53,54}. Both types of learning induce strong, long-
522 lasting plasticity that persists for at least a day.

523 Thus, olfactory experience-dependent plasticity and classical olfactory conditioning are two lab-
524 based paradigms that model odor-guided associative learning and prediction occurring on
525 different natural time scales; they likely come into play in different behavioral contexts. For
526 instance, whereas olfactory experience-dependent plasticity may be important for learning the
527 reward landscape of an environment through extended exploration and foraging, classical
528 associative learning may mediate fast or single-trial learning important for avoiding danger or
529 obtaining transient rewards. A fascinating topic of future investigation is the degree to which
530 olfactory experience-dependent plasticity, elicited under slower, naturalistic behavioral
531 timescales, is mediated by mechanisms common or divergent from the well-studied circuitry
532 mediating classical olfactory conditioning in the mushroom body.

533 Olfactory experience-dependent plasticity may also be viewed through the lens of perceptual
534 learning, defined as a stimulus-selective enhancement of the ability of the flies to smell the familiar
535 odor. On balance, our results argue against chronic experience with natural odors eliciting a
536 change in sensitivity towards the odor: olfactory experience does not impact PN sensitivity to the
537 familiar odor nor does it significantly alter its representational distance from other odors (Figure
538 6), and the behavioral latency to initially locate the odor is unaltered by experience.

539 However, chronic odor experience may affect the ability of the fly to recognize or otherwise
540 interpret a familiar odor. An unavoidable feature of using natural odor sources is that the odor
541 emitted cannot be exactly identical between exposure and testing. The pieces of fruit are slowly
542 spoiling and/or fermenting over the days of odor exposure, and different pieces of fruit are used
543 in exposure and testing. Furthermore, during odor exposure, additional odors are necessarily
544 present in the growth environment, including the odor of fly food and odors from other flies at
545 close range, which are not present during testing. This aspect of our experimental design was
546 intentional and meant to emulate the types of olfactory conditions and tasks flies likely encounter
547 in the natural world. An interesting possibility is that odor experience improves the ability of flies
548 to generalize or group together variants of an ecologically important natural odor as an odor object
549 that been previously encountered and is predictive of a reliable source of food. Indeed, in the
550 auditory system, persistent exposure to single frequency tones paradoxically leads to poorer
551 discrimination in the overrepresented frequency band, consistent with perception being more
552 stable in the face of stimulus perturbations¹⁹. Such changes in perceptual judgment could also
553 contribute to experience-dependent increases in exploration and entry into traps odorized with a
554 familiar source.

555 The division between perceptual learning and associative learning ultimately may reflect historical
556 distinctions, rather than a true mechanistic dichotomy. Perceptual learning most commonly occurs
557 in the context of training to a specific task, and it is well understood that both attention and reward
558 have important roles in most forms of perceptual learning. Additionally, reward processing and
559 reinforcement impact how the brain forms perceptual judgments in sensory-based associative
560 learning tasks⁵⁵. In rodents, perceptual learning in the olfactory system occurs in the context of
561 reinforcement-based conditioning tasks⁵⁶⁻⁵⁹. Thus, chronic experience with natural odors may
562 elicit selective changes in the perception of the familiar odor, in the value or risk associated with
563 the familiar odor, or in both.

564

565 **Learning about odor environments is beneficial**

566 The non-classical form of learning elicited by chronic experience with natural odors in early life
567 may not act to principally predict rewards on fast timescales, but rather may be important for
568 allowing the animal to associate specific odors with high quality environments or with a general
569 state of well-being. From an ethological perspective, it is logical that neural sensitivity to familiar
570 odors at early stages of olfactory processing are unaffected by olfactory experience. If an odor is
571 associated with a positive environment, maintaining sensitivity to that odor would be beneficial by
572 supporting its reliable detection, whereas sensory habituation would have an opposite outcome.
573 Moreover, stability in odor representations at early stages of processing would allow long
574 timescale experience-dependent learning to interact with short timescale classical associative

575 learning, enabling the flexible reformatting of odor meaning in higher brain areas if local conditions
576 shift rapidly. Our results extend the forms of learning we understand to occur in *Drosophila* to
577 include non-classical associative learning at long timescales. Important future goals will be to
578 understand the use and interaction of these different forms of learning during odor-guided
579 adaptive behavior in natural contexts, as well as to elucidate the shared and divergent neural
580 mechanisms underlying these different forms of olfactory learning.

581

582 AUTHOR CONTRIBUTIONS

583 **Kristina V. Dylla:** Conceptualization, Methodology, Investigation, Validation, Formal analysis,
584 Writing – Original Draft, Writing – Review & Editing, Visualization. **Thomas F. O’ Connell:**
585 Methodology. **Elizabeth J. Hong:** Conceptualization, Methodology, Formal analysis, Writing –
586 Original Draft, Writing – Review & Editing, Visualization, Supervision, Funding acquisition.

587

588 ACKNOWLEDGEMENTS

589 We thank M. Dickinson for sharing *Canton-S* flies and members of the Dickinson lab for advice
590 on fly tracking. We thank D. J. Anderson for sharing unpublished flies. We are grateful to D. A.
591 Wagenaar and the Caltech Neurotechnology Core for collaborating on the design and
592 construction of the odor trap cores and the custom fly rearing device. We thank V. Hauser and A.
593 Ruiz Sandoval for assisting with fly food preparation, and D. Kim, B. G. Fang, J. Eden-Sung, and
594 J. Saltzman for assistance with processing video data. We thank members of the Hong lab for
595 their careful reading and comments on this manuscript. This work was funded by grants to E.J.H.
596 from the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program
597 (NeuroNex Award #2014217) and the Shurl and Kay Curci Foundation. K.V.D. was supported by
598 grants from the Della Martin Foundation and the German Research Foundation (DY 135/1-1). E.
599 J. H. is a Chen Scholar of the Tianqiao and Chrissy Chen Institute for Neuroscience and a Clare
600 Boothe Luce Professor of the Henry Luce Foundation.

601

602 DECLARATION OF INTERESTS

603 The authors declare no competing interests.

604

605 METHODS

606 Resource Availability

607 Lead Contact

608 Further information and requests for resources should be directed to and will be fulfilled by the
609 Lead Contact, Elizabeth J. Hong (ejhong@caltech.edu)

610 Materials Availability

611 This study did not generate new biological reagents. Design schematics for the odor trap inserts
612 and the custom rearing device are available upon request.

613 ***Data and Code Availability***

614 • All functional imaging and behavioral videos will be made available to any researcher for
615 the purposes of reproducing or advancing the results.

616 • Software in this study was adapted from existing code. All custom scripts have been
617 deposited at GitHub and are publicly available as of the date of publication. The URLs are
618 listed in the key resources table.

619 • Any additional information required to reanalyze the data reported in this paper is available
620 from the lead contact upon request.

621

622 **Experimental Model and Subject Details**

623 *Drosophila melanogaster* were raised on a 12:12 light:dark cycle at 25°C and 70% relative
624 humidity. Flies were mostly raised on Nutri-Fly® Molasses Formulation (# 66-123, Genesee
625 Scientific) supplemented with sucrose (1.6%, w/v) and propionic acid (0.45%, v/v). In some
626 experiments, flies were raised on cornmeal/molasses food with composition: water (17.8 l), agar
627 (136 g), cornmeal (1335.4 g), yeast (540 g), sucrose (320 g), molasses (1.64 l), CaCl₂ (12.5 g),
628 sodium tartrate (150 g), Tegosept (18.45 g), 95% ethanol (153.3 ml) and propionic acid (91.5 ml).
629 These two food formulations have similar composition; in both cases, food was supplemented
630 with dry yeast. Behavioral results were indistinguishable between the two food formulations.
631 Behavioral experiments were performed in mixed populations of male and female flies of wild-
632 type strain Canton-S. Functional imaging experiments were performed in female flies with
633 genotype: *yw/+; NP225-Gal4/+; 20x-UAS-IVS-Syn21-OpGCaMP6f-p10/+*.

634

635 **Method Details**

636 **Fly stocks**

637 The original stock of wild-type strain Canton-S was from M. Heisenberg lab and was a gift from
638 M. Dickinson lab (Caltech). *NP225-Gal4* was acquired from the Kyoto DGGR Stock Center
639 (DGRC: 112095). *20x-UAS-IVS-Syn21-OpGCaMP6f-p10* was a gift from D. Anderson lab
640 (Caltech).

641 **Odors**

642 Odor sources used in this study were: apple cider vinegar, red wine, banana, pineapple, mango,
643 onion, 2-butanone (Cat. #360473, Sigma-Aldrich), 2-pentanone (Cat. #46211, Sigma-Aldrich),
644 E2-hexenal (Cat. #158131000, Sigma-Aldrich), and pentyl acetate (Cat. #109584, Sigma). Fresh
645 banana (yellow ripe) and onion were purchased weekly from local grocery stores; for pineapple
646 and mango, thawed frozen chunks were used. Apple cider vinegar and red wine were purchased
647 from the grocery store. All fruits/vegetables were used without peel. For chronic odor exposure,
648 the odor sources were narrow polystyrene *Drosophila* vials (25 x 95 mm) filled ~1/3 (30 mm

649 height) with small chunks of banana, onion, or pineapple, and sealed with mesh so that flies could
650 not access the vial. For testing in the free flight trap-based assay, 2 ml of liquid odor sources or
651 ~1 cm³ solid odor sources were used. For testing in the exit assay, solid onion or banana pieces
652 of ~2 cm³ were used. For functional imaging studies, 2 ml of liquid odor sources or ~2 cm³ solid
653 odor sources were used. For the banana odor concentration series, undiluted banana was 2 ml
654 of mashed banana, which allowed v/v dilutions. All odor dilutions were v/v in water (ddH₂O) and
655 were prepared fresh every day.

656 Chronic odor exposure

657 *Standard procedure.* Groups of ~500 flies (< 24 hours post-eclosion) were transferred to fresh
658 food bottles (~237 ml round-bottomed, polypropylene) supplemented with dry yeast. A mesh-
659 sealed vial containing the odor source was inserted into the bottle. The control-exposed group
660 was treated the same way but was housed with an empty vial. Flies were maintained for two days
661 in ambient room conditions, a few meters apart from each other to avoid odor cross-
662 contamination. Odor sources were not refreshed during this period.

663 *Paired and unpaired exposure.* A custom device for rearing flies that allows temporal
664 disassociation of long-lasting odor exposure and access to food was designed and constructed
665 in collaboration with Daniel Wagenaar (Caltech Neurotechnology Laboratory). An acrylic cylinder
666 (6 x 10 cm, ~280 cm³ volume) with an open base, which housed the flies, was positioned tightly
667 against an acrylic platform (29.5 x 7.5 cm), which could be moved bidirectionally on a set of rails
668 along its long axis (x-axis in Figure 7A) using a bipolar stepper motor (NEMA 17HS4401; driver:
669 A4988, HiLetgo). The acrylic platform contained two circular cutouts (diameter 6 cm), in each of
670 which rested a plastic Petri dish (Falcon #351007, 6x 1.5 cm). The Petri dishes were completely
671 filled with fly food and the surface of the food was leveled, such that all parts of the platform
672 surface fit tightly against the base of the cylinder. A tight fit between the cylinder and the entire
673 length of the platform was important to prevent loss of flies from the cylinder. Access to food was
674 controlled by moving the platform to position one of the Petri dishes directly under the housing
675 cylinder (+ food; position 2 in Figure 7A). We alternated between making each of the two Petri
676 dishes available to flies in order to reduce the amount of time the food was exposed to air;
677 excessive exposure to air resulted in dehydration and shrinkage of the food. In the “— food”
678 condition, the solid plastic of the platform was positioned under the cylinder (position 1). Positions
679 1 and 2 were ~7.5 cm apart. The platform base was moved slowly (~0.5 mm/s) to prevent injury
680 to the flies; transitioning from position 1 to position 2 (or vice versa) took ~2.5 min. The full device
681 comprised two acrylic cylinders for housing flies and two platforms holding the food, situated side-
682 by-side. Both platforms were moved by the same stepper motor to allow rearing of odor-exposed
683 and control-exposed flies in parallel.

684 The housing cylinder could be rapidly odorized and de-odorized. A humidified carrier stream (200
685 ml/min; 60-70% relative humidity) and an odor stream (100 ml/min) were combined and
686 introduced into the cylinder, for a total constant airflow of 300 ml/min that entered the cylinder
687 through a port (~5 mm diameter) near the top and exited through a vent located near the bottom
688 of the cylinder on the opposite side. For the banana odor exposure group, the odor stream
689 switched between an empty 20-ml vial (for non-odorized epochs) or one containing a ~2 cm³ piece
690 of banana (for odorized epochs). For the control odor exposure group, the odor stream switched
691 between two empty 20-ml vials.

692 Groups of ~500 flies (< 24 hours post-eclosion) of mixed sex were exposed to banana odor (or
693 clean air in the control group) using either paired or unpaired procedures (see Results; Figure 7B)
694 for 48 hours. After 24 hours, the odor source was replaced with a fresh sample to ensure stable
695 odor levels, and the fly food was also replaced with a fresh plate. Paired and unpaired odor
696 exposure experiments were interleaved whenever possible. Odor concentrations inside the
697 rearing cylinder were measured over 24 hours with a photoionization detector (200B miniPID,
698 Aurora Scientific), sampling at 1 Hz. Coordination of the motor driving platform movement with
699 the valves regulating odor delivery was controlled using an Arduino UNO (Arduino.cc)
700 microcontroller board. Odor valves were switched to the next state when movement from one
701 position to another initiated.

702 Starvation

703 Flies were deprived of food prior to testing in the free flight trap-based assay and prior to functional
704 imaging experiments. Odor- or control-exposed flies were transferred to empty food bottles
705 containing only moistened lab tissue. Flies were transferred from the exposure bottle to the
706 starvation bottle without anesthesia and were also counted during this process. Wildtype flies
707 were starved for 24 hr. Since *yw*+/; *NP225-Gal4*+/; 20x-UAS-IVS-*Syn21-OpGCaMP6f-p10*+/ tend
708 to survive longer without food compared to wildtype (Supplementary Figure S3A), we increased
709 the starvation time for *yw*+/; *NP225-Gal4*+/; 20x-UAS-IVS-*Syn21-OpGCaMP6f-p10*+/ flies in
710 behavioral experiments to 30.5 hr (Supplementary Figure S3B-C). For functional imaging, *yw*+/;
711 *NP225-Gal4*+/; 20x-UAS-IVS-*Syn21-OpGCaMP6f-p10*+/ flies were starved between 24 and 30.5
712 hr.

713 Behavioral assays

714 *Free flight trap-based assay.* Groups of 50 starved flies of mixed sex were released into insect
715 cages (45 x 45 x 45 cm; # 4S4545, BugDorm) containing two odor traps, positioned ~18 cm apart
716 on the floor of the cage. The exceptions were that, when testing flies exposed to pineapple or
717 when testing *NP225>GCaMP6f* flies, groups of 70 flies were tested, because overall entry rate
718 was lower in these conditions. Each trap was constructed from a 20-ml borosilicate glass
719 scintillation vial, fitted with a white polyethylene cap (# 333714, Fisher Scientific). A ring (outer
720 diameter, 95 mm; inner diameter, 24 mm) constructed from sturdy white foamboard was tightly
721 fitted around the vial cap (diameter, 24 mm) such that the surface of the cap was level and
722 continuous with the surface of the ring, creating a ~10-cm circular surface on which flies could
723 land and explore the region surrounding the trap entrances. Five circular holes (1.65 mm
724 diameter), spaced ~4 mm apart, were created in the center of the polyethylene cap by pushing a
725 16-gauge needle through the cap. A cylindrical insert (15 mm dia. x 50 mm height) fabricated from
726 transparent acrylic was centered inside the vial. The outer diameter of this trap core (15 mm) was
727 matched to the inner diameter of the mouth of the scintillation vial, so that the insert fit snugly in
728 the vial. A funnel-shaped chamber (15 mm dia. mouth x 7 mm height) was bored out of the top of
729 the cylindrical insert, and it narrowed into a stem with inner diameter ~2 mm and length ~4 mm.
730 A trimmed pipette tip was fitted on the tip of the stem, further narrowing the funnel to ~1.5 mm.
731 Flies that passed through the funnel entered a cylindrical chamber (9.5 mm dia. x ~40 mm height)
732 containing the odor source. The narrowing of the funnel exit discouraged flies from re-entering
733 the funnel stem. The stem was imaged from the side to capture entries into the trap. Flies were
734 usually allowed to investigate the traps in free flight inside the cage for three hours, during which

735 their positions on the trap platforms and entries into the traps were recorded. For the paired and
736 unpaired odor exposure experiments in Figure 7, total trap entries were counted 24 hours after
737 releasing flies because of the delayed onset of trap entries for flies grown in the custom rearing
738 device. The reasons for delayed entry into the traps are not known. The assignment of odor
739 sources (or water) to each of the two trap positions in each cage, and the assignment of exposure
740 groups to different testing cages, were pseudorandomized across experiments.

741 *Exit assay.* Groups of ten unstarved flies of mixed sex were introduced into a clear cylindrical tube
742 (15 dia. x ~140 mm). A cotton plug on one end prevented flies from existing the chamber. The
743 other end was fitted with the same custom fabricated trap core as described for the regular odor
744 traps, creating a funnel-shaped exit through which flies could exit the chamber (Figure 5A). Newly
745 introduced flies were first allowed to acclimate and randomly distribute in the cylindrical chamber
746 for ten minutes. Then, the odor source (onion, banana, or none) was placed close, but not
747 touching, the other side of the cotton barrier. The positions of flies in the cylindrical chamber, as
748 well as individual exits from the chamber, were recorded for three hours. The assignment of odor
749 sources to testing chambers at different positions in each cage and the assignment of exposure
750 groups to different testing cages were pseudorandomized across experiments.

751 *Survival experiments.* Following 48 hours of chronic odor exposure, and then 24 hours of wet
752 starvation, groups of 50 flies were briefly anesthetized with CO₂ and transferred to petri dishes
753 (10 x 1.5 cm) lined with Whatman paper. Video of flies was recorded from overhead for 33 hours,
754 by which time all flies were dead.

755 *Video recordings.* Movies were captured using multiple webcams (HD Pro Webcam C920,
756 Logitech) at each trap (Figure 1A), at a frame rate of 5 Hz and resolution of 640 x 480 pixels. A
757 custom modification of the Multi tracker package (https://github.com/tom-f-oconnell/multi_tracker)
758 was used for video acquisition.

759 *Functional imaging*

760 *Odor delivery.* Odors were delivered essentially as previously described⁶⁰. A constant stream of
761 charcoal-filtered air (2 L/min) was directed at the fly. When no odor was delivered, ten percent of
762 the airstream (200 ml/min) was routed through the “normally open” port of a three-way solenoid
763 valve (ASCO 411-L-1324-HVS, NISCO, Inc., Duluth, GA) and passed through the headspace of
764 an empty 20-ml glass scintillation vial, before rejoining the main carrier stream (1800 ml/min). For
765 odor delivery, an external trigger switched the valve to the ‘normally closed’ position and the 200
766 ml/min airstream was redirected through the headspace of a scintillation vial containing the odor
767 source, before rejoining the carrier stream. The 200 ml/min control or odor streams were carried
768 by tubing of matched lengths and rejoined the carrier stream at the same point along the carrier
769 tube (I.D., ~5 mm), approximately 10 cm from the point of exit. The end of the carrier tube faced
770 the front of the fly and was positioned ~2 cm away. Odors were vented by a vacuum line
771 connected to a funnel that was positioned behind the fly. Flow rates were controlled using mass
772 flow controllers (MC series, Alicat Scientific).

773 *Two-photon calcium imaging.* In vivo functional calcium imaging was performed essentially as
774 previously described⁶¹. In brief, female flies were briefly anesthetized on ice (<15 s) and head-
775 fixed with the head tilted ~70° downwards and the posterior plate of the head positioned as level
776 as possible, 90° with respect to the imaging axis. Cuticle, trachea, and fat were removed to expose

777 the posterior surface of the brain and underlying mushroom body. The open brain was flooded
778 with *Drosophila* saline (103 mM NaCl, 3 mM KCl, 5 mM N-Tris(hydroxymethyl)methyl-2-
779 aminoethane-sulfonic acid, 8 mM trehalose, 10 mM glucose, 26 mM NaHCO₃, 1 mM NaH₂PO₄,
780 1.5 mM CaCl₂, and 4 mM MgCl₂; pH 7.3, osmolarity adjusted to 270 – 275 mOsm), and the
781 antennae and maxillary palps remained dry below the imaging chamber, accessible to the
782 olfactometer carrier tube. The proboscis and legs were immobilized with UV glue, and the M16
783 muscle was severed, to reduce movement. Naïve PN odor responses were recorded in unstarved
784 flies using regular saline. For measurements of PN odor responses in flies chronically exposed to
785 odor, flies were starved for 24 hours after odor exposure, using the same procedure as for
786 behavioral experiments. Calcium imaging was performed using sugar-free saline (regular saline
787 in which glucose and trehalose were replaced with 18 mM ribose).

788 Two-photon GCaMP6f fluorescence was excited with 925 nm light from a Mai Tai DeepSee laser
789 (Spectra-Physics, Santa Clara, CA). Images were acquired with a 20X water immersion objective
790 (Olympus XLUMPLFLN20XW, 1.0 NA) on a two-photon microscope equipped with galvo-galvo
791 scanners (Thorlabs Imaging Systems, Sterling, VA). Imaging was performed at a frame rate of
792 4.5 Hz at a resolution of 256 × 256 pixels (73.43 × 73.43 μm^2). The collection filter was centered
793 at 925 nm with a 50 nm bandwidth. The microscope setup was housed in a lightproof box. All
794 experiments were conducted at room temperature (~21°C). The brain was constantly perfused by
795 gravity flow (~2 - 3 ml/min) with saline oxygenated with carbogen (95% O₂ / 5% CO₂).

796 The imaging plane through the mushroom body calyx was chosen to sample a large number of
797 projection neuron axon boutons while avoiding the primary axonal tracts of the PNs, typically ~17-
798 18 μm below the dorsal limit of the calyx. For measurement of naïve PN odor responses in Figure
799 1G, stimuli were presented in a different random order in each experiment. For measurement of
800 PN odor responses in Figure 6, each stimulus block started with measuring the response to water,
801 then odor stimuli were delivered with progressively increasing concentrations, alternating across
802 different odors (banana, wine, 2-butanone) at each concentration step. Odor stimuli were
803 delivered from sources diluted in the vial as follows: banana odor: 10⁻⁵, 10⁻⁴, 10⁻³, 10⁻², 10⁻¹,
804 undiluted; red wine: 10⁻⁶, 10⁻⁵, 10⁻⁴, 10⁻³, 10⁻², 10⁻¹, undiluted; and of 2-butanone: 10⁻⁶, 10⁻⁵, 10⁻⁴,
805 10⁻³, 10⁻², 10⁻¹. The presentation order of odors (banana, wine, 2-butanone) was pseudorandom
806 in each experiment. We attempted to measure responses to concentration series of all three odors
807 in every fly, but, in some flies, only two were recorded. Responses to an empty odor vial were
808 recorded both prior to and after the odor panel to evaluate for odor contamination. The responses
809 shown for the “empty” stimulus in the figures were from the first presentation of the empty odor
810 vial. Responses to the monomolecular odor mixture (2-butanone, 2-pentanone, E2-hexanal, and
811 pentyl acetate, each 10⁻¹ in water) were measured at the end of each experiment to confirm the
812 responsiveness of the preparation. In all experiments, odor stimuli were 1-s pulses presented in
813 blocks of three trials, with a 40-s intertrial interval. The odor source for PN responses to banana
814 odor of varying temporal structure in Figure 6G was a solid piece of banana (~2 cm³). A single
815 trial for each stimulus structure (intermittent, fluctuating, continuous) was collected per fly.

816

817 **Quantification and Statistical Analysis**

818 Free-flight trap-based assay

819 *Trap entries.* Extraction of each event of a fly entering a trap from side-camera video data was
820 performed with ImageJ (version 1.53f51; <http://rsbweb.nih.gov/ij/>). An ROI was defined in the
821 center of the stem that connected the funnel of the trap insert and the core of the trap. Since flies
822 were darker than the background of the trap, passage of a fly through the ROI resulted in a
823 transient reduction in mean pixel intensity in the ROI. The mean pixel intensity in the ROI was
824 computed for every frame of the movie. Temporal and intensity filters were applied in R (version
825 4.0.2; <https://www.r-project.org/>) in RStudio integrated development environment (version
826 1.4.1106; <https://www.rstudio.com/>), and the times of potential entries were extracted as the times
827 of negative peaks in the plot of mean ROI intensity as a function of time. Filter settings were
828 chosen with a bias towards false positives, and they were adjusted as needed for each movie.
829 Visual inspection of the video data was performed to confirm each entry event. Manual auditing
830 resulted in two types of corrections. Events were excluded when flies did not complete their entry
831 into the trap core after passing through the stem or when flies passed through the ROI while
832 walking on the exterior of the trap. Events were added when multiple flies that entered as a chain
833 into the trap were counted as a single entry event. We very rarely observed cases where flies
834 managed to escape from the trap core after they had entered; in such cases, the experiment was
835 excluded from analysis. The total number of entries at the end of the three-hour experiment was
836 computed for each experimental replicate, and the mean over the ten experiments for each
837 condition was calculated. Cumulative entry curves were computed by summing entries at each
838 time point across the combined data of the ten experimental replicates for each condition.

839 *Preference index.* The preference index (PI) for banana versus wine at the three-hour endpoint
840 (Figure 4F and Figure 7E) was defined as:

$$841 PI \text{ for banana} = \frac{\# \text{ flies}_{\text{banana trap}} - \# \text{ flies}_{\text{wine trap}}}{\# \text{ total flies released into cage}}$$

842 Thus, a preference index of '1' describes a situation in which all 50 flies entered the banana trap,
843 whereas a preference index of '-1' indicates that all 50 flies entered the wine trap. The preference
844 index was computed for each experiment, and then averaged across replicates for a given
845 condition.

846 *Trajectories.* 2D walking trajectories of flies on the surface of the trap platforms were
847 reconstructed post-acquisition from top-camera video data using a custom modification of the
848 Multi tracker software package for tracking multiple objects in 2D⁶², which is built on the ROS
849 (Robot Operating System) framework (https://github.com/tom-f-oconnell/multi_tracker). In brief,
850 Multi tracker performs background subtraction and thresholding, contour identification, splits
851 contours larger than a user-specified size into smaller contours (when two flies touch one
852 another), and applies Kalman filtering to smooth position information and estimate association of
853 data from adjacent frames. Multi tracker extracts trajectory identification numbers, position (x, y)
854 in a given frame, and instantaneous velocity (x, y). The quality of tracking was manually evaluated
855 by overlaying reconstructed trajectories on minimum intensity projections of the video. If
856 necessary, manual adjustment to tracking settings were made to improve tracking accuracy in
857 each video, which occasionally had slight differences in lighting. For a subset of experiments,
858 individual fly trajectories were proofread by manual comparison to fly video data to confirm the
859 accuracy of trajectory reconstruction.

860 *Walking speed.* Walking speeds (Figure S2A) were computed from instantaneous (x , y) trajectory
861 velocities. For construction of histograms (Figure S2C), walking speeds were averaged over 5-
862 min bins. To evaluate if walking speed changed as a function of how long a fly had been walking
863 on the trap platform (for a given visit to the platform) (Figure S2E), and whether this changes with
864 odor exposure, walking speeds were computed from instantaneous (x , y) trajectory velocities
865 grouped in 5-s non-overlapping time bins.

866 *Occupancy.* The number of fly landings (determined as the initiation of a new trajectory) or the
867 number of flies (determined as the number of unique trajectories) on a trap platform over time
868 was computed in 5-min time bins with 50% overlap, for a total of 72 overlapping bins tiling the
869 three-hour experiment, summed over ten replicates in each condition (Figure 3C and E).
870 Cumulative landing curves were computed by summing landings at each time point across the
871 combined data of the ten experimental replicates for each condition (Figure S3B). For the
872 occupancy analysis in Figure 3E, trajectories were classified as “in ROI” (see below) if they visited
873 at least one entrance hole during the 5-min time bin, and as “out of ROI” if they did not visit any
874 entrance hole during the 5-min time bin. The normalized spatial distribution of flies on the trap
875 platform over time was visualized by performing a 2D kernel density estimation, scaled to a
876 maximum of one for each condition (Figure S3D).

877 *Approaches.* The region of interest (ROI) corresponding to the region around the entrance holes
878 of each trap was generated by extracting the center coordinate of each entrance hole (using
879 ImageJ) and defining a four-pixel (~1 mm) radius around each coordinate. An “approach” was
880 defined as a trajectory that touched or entered any of the (noncontiguous) pixels of the ROI. The
881 time of approach was defined as the time when the trajectory first contacts the ROI. The number
882 of approaches over time was computed in 5-min time bins with 50% overlap, summed over ten
883 replicates in each condition (Figure 3G). The number of approaches during the first hour of the
884 experiment was determined for each experiment, without binning, and averaged over ten
885 replicates (Figure 3F). The approach duration (Figure S3F) was defined as the time between
886 when the trajectory first comes in contact with the ROI, and the time when the trajectory leaves
887 the ROI or ends inside the ROI.

888 Exit assay

889 Exits from the odorized environment were detected using the same procedures as for detecting
890 entries into the standard traps (see above). Flies that never exited the chamber were assigned a
891 dwell time of 3 hours. The spatial occupancy in the exit assay was analyzed from overhead video
892 data at four timepoints – 0.5, 1, 2, and 3 hours – from the initiation of the experiment (designated
893 as the time the odor source is introduced). Since flies were recorded as they moved in three
894 spatial dimensions within the cylindrical chamber, Multi tracker did not perform well on this
895 dataset. Instead, video data was background subtracted, thresholded, and the ImageJ plugin
896 Particle Tracker⁶³ was applied to obtain the centroid coordinates for each particle (fly) inside the
897 exit assay. The positions of flies along the long axis of the chamber (x -coordinate) extracted by
898 the Particle Tracker were manually reviewed and corrected when necessary at each of the four
899 time points. The coordinates were normalized by dividing the x -coordinate value by the total
900 interior length of the chamber interior, which varied very slightly between experiments due to slight
901 differences in the cotton barrier. Histograms constructed from the normalized positions were
902 pooled across the ten replicates for each condition. A value of zero means that the flies are at the

903 nearest position to the odor source as possible, whereas a value of one indicates that the flies
904 are at the farthest position from the odor source (adjacent to the exit).

905 *Survival experiments*

906 Videos were loaded into ImageJ, and dead flies were marked with the point tool at one-hour
907 intervals. Dead flies were easily identified; they lay on their sides or backs, did not move in later
908 frames, and changed position only when pushed by other flies. The percentage of dead flies at
909 each time point was averaged across three replicates for each condition.

910 *Calcium imaging*

911 Calcium imaging data was analyzed using custom scripts in MATLAB (version R2020b;
912 Mathworks), and final plots were generated in RStudio. Movies of raw fluorescence comprising
913 the three trials for each odor stimulus were motion-corrected (rigid), and a mean projection of
914 each movie was created. For each experiment, the mean projection for one movie (one stimulus)
915 was selected as a template, and the remaining mean projections were aligned to the template
916 using rigid image registration. The vector for image alignment was then applied back onto the
917 whole movies to achieve image registration across all movies of a fly. A total average image
918 across all mean projections was computed and was used for manual creation of a region of
919 interest (ROI) in each fly, which circumscribed all labeled PN axon terminals in the mushroom
920 body calyx in that imaging plane as defined by GCaMP6f fluorescence. $\Delta F/F$ videos were created
921 by computing the relative change in fluorescence (ΔF) normalized to the mean fluorescence (F)
922 in the baseline epoch (first 40 frames or ~8.9 s of the pre-stimulus baseline period), in each pixel
923 of each frame. Change in fluorescence over time in the ROI was determined by computing the
924 mean $\Delta F/F$ value across pixels inside the ROI for each frame of the movie, averaged across trials.
925 A seven-frame window starting at the time of nominal stimulus onset was defined. The frame with
926 the maximum $\Delta F/F$ in the ROI was designated the peak response for that trial. Heatmaps of peak
927 responses were generated by averaging across the three trials of the stimulus.

928 *Dose response curves.* The response curves of peak $\Delta F/F$ as a function of stimulus concentration
929 were fit to a three-parameter logistic function:

$$930 \quad PN \text{ response} = \frac{R_{max}}{1 + 10^{(-s*(x - logEC50))}}$$

931 Fits and determination of 95% confidence intervals of model parameters (e.g., EC50) were
932 performed in MATLAB using nlinfit.

933 *Principal component analysis (PCA).* Inputs to PCA were the 57 peak response patterns recorded
934 in an individual fly to 19 different odor stimuli. Images were smoothed with a 2D Gaussian kernel
935 with SD 2 prior to PCA. Inputs were centered but not scaled. Pixels outside the ROI were assigned
936 a value of zero.

937 *Statistical analyses*

938 Error bars in figures are bootstrapped 95% confidence intervals, unless otherwise indicated.

939 *Permutation testing.* Two-way statistical comparisons were performed using permutation testing;
940 the null hypothesis was that all samples from the two comparison groups belong to the same

941 distribution. Observations across experiments for the two conditions being compared were
942 combined and randomly reassigned (permuted) into two groups, maintaining the number of
943 observations in each comparison group. The difference between the means of the shuffled groups
944 was calculated. The permutation process was repeated for a total of 10,000 resamplings, and the
945 two-tailed *p*-value for the comparison was computed as the proportion of resamplings in which
946 the absolute difference of the resampled means was larger than the absolute value of the
947 observed difference between experimental groups. Statistical significance reported in all figures
948 reflect Bonferroni-adjustment of *p*-values to correct for multiple comparisons in a given analysis.

949 For determination of the 95% confidence interval of cumulative entry/exit curves, data across
950 experimental replicates were combined in each condition and resampled (with replacement) at
951 each time point. All flies in the assay, including those that did not enter (or exit) any trap during
952 the three-hour assay period, were included in the analysis. The 0.025 and 0.975 quantile of the
953 10,000 resampled curves at each time point were taken as the 95% confidence interval. Only flies
954 that landed were included in the calculation of the 95% confidence interval of the cumulative
955 landing curves; since we did not have a quantitative count of the number of flies that did not land
956 they were not included in the analysis.

957 Comparison of the distributions of times of first entry into a trap between odor exposure groups
958 (Figure 2E, 4C) was performed using a pairwise log-rank test (survival:: pairwise_survdiff, R).
959 Comparisons of survival curves between odor exposure groups or between genotypes (Figure
960 2B, S3A), and comparisons of empirical cumulative distribution functions (Figure 4G-H), were
961 performed using a two-sample Kolmogorov-Smirnov test (stats::ks.test, R). The non-parametric
962 Spearman's rank correlation (stats::cor.test, R) was used to measure the monotonic association
963 between the mean number of trap entries and the mean PN output response strength, across
964 odor stimuli in the panel (Figure 1H).

965

966 REFERENCES

- 967 1. Sengpiel, F., Stawinski, P., and Bonhoeffer, T. (1999). Influence of experience on orientation
968 maps in cat visual cortex. *Nat Neurosci* 2, 727–732. 10.1038/11192.
- 969 2. Blakemore, C., and Cooper, G.F. (1970). Development of the brain depends on the visual
970 environment. *Nature* 228, 477–478.
- 971 3. Blasdel, G.G., Mitchell, D.E., Muir, D.W., and Pettigrew, J.D. (1977). A physiological and
972 behavioural study in cats of the effect of early visual experience with contours of a single
973 orientation. *The Journal of Physiology* 265, 615–636. 10.1113/jphysiol.1977.sp011734.
- 974 4. Kreile, A.K., Bonhoeffer, T., and Hübener, M. (2011). Altered Visual Experience Induces
975 Instructive Changes of Orientation Preference in Mouse Visual Cortex. *J Neurosci* 31, 13911–
976 13920. 10.1523/JNEUROSCI.2143-11.2011.
- 977 5. Zhang, L.I., Bao, S., and Merzenich, M.M. (2001). Persistent and specific influences of early
978 acoustic environments on primary auditory cortex. *Nat Neurosci* 4, 1123–1130. 10.1038/nn745.

979 6. Stanton, S.G., and Harrison, R.V. (1996). Abnormal cochleotopic organization in the
980 auditory cortex of cats reared in a frequency augmented environment. *Aud. Neurosci* 2, 97–107.

981 7. Ayabe-Kanamura, S., Schicker, I., Laska, M., Hudson, R., Distel, H., Kobayakawa, T., and
982 Saito, S. (1998). Differences in perception of everyday odors: A Japanese-German cross-
983 cultural study. *Chemical Senses* 23, 31–38. 10.1093/chemse/23.1.31.

984 8. Poncelet, J., Rinck, F., Bourgeat, F., Schaal, B., Rouby, C., Bensafi, M., and Hummel, T.
985 (2010). The effect of early experience on odor perception in humans: Psychological and
986 physiological correlates. *Behavioural Brain Research* 208, 458–465. 10.1016/j.bbr.2009.12.011.

987 9. Pangborn, R.M., Guinard, J.-X., and Davis, R.G. (1988). Regional aroma preferences. *Food
988 Quality and Preference* 1, 11–19. 10.1016/0950-3293(88)90003-1.

989 10. Schaal, B., Marlier, L., and Soussignan, R. (2000). Human Foetuses Learn Odours from
990 their Pregnant Mother's Diet. *Chemical Senses* 25, 729–737. 10.1093/chemse/25.6.729.

991 11. Arshamian, A., Gerkin, R.C., Kruspe, N., Wnuk, E., Floyd, S., O'Meara, C., Garrido
992 Rodriguez, G., Lundström, J.N., Mainland, J.D., and Majid, A. (2022). The perception of odor
993 pleasantness is shared across cultures. *Current Biology* 32, 2061–2066.e3.
994 10.1016/j.cub.2022.02.062.

995 12. Mandairon, N., and Linster, C. (2009). Odor Perception and Olfactory Bulb Plasticity in Adult
996 Mammals. *Journal of Neurophysiology* 101, 2204–2209. 10.1152/jn.00076.2009.

997 13. Golovin, R.M., and Broadie, K. (2016). Developmental experience-dependent plasticity in
998 the first synapse of the *Drosophila* olfactory circuit. *J Neurophysiol* 116, 2730–2738.
999 10.1152/jn.00616.2016.

1000 14. Wark, B., Lundstrom, B.N., and Fairhall, A. (2007). Sensory adaptation. *Curr Opin Neurobiol*
1001 17, 423–429. 10.1016/j.conb.2007.07.001.

1002 15. Barlow, H.G. (1961). Possible principles underlying the transformation of sensory messages.
1003 In *Sensory Communication*, W. A. Rosenblith, ed. (MIT Press), pp. 217–234.

1004 16. Laughlin, S. (1981). A simple coding procedure enhances a neuron's information capacity.
1005 *Zeitschrift fur Naturforschung. Section C. Biosciences* 36, 910–912.

1006 17. Das, S., Sadanandappa, M.K., Dervan, A., Larkin, A., Lee, J.A., Sudhakaran, I.P., Priya, R.,
1007 Heidari, R., Holohan, E.E., Pimentel, A., et al. (2011). Plasticity of local GABAergic interneurons
1008 drives olfactory habituation. *Proc Natl Acad Sci U S A* 108, E646–E654.
1009 10.1073/pnas.1106411108.

1010 18. Sachse, S., Rueckert, E., Keller, A., Okada, R., Tanaka, N.K., Ito, K., and Vosshall, L.B.
1011 (2007). Activity-dependent plasticity in an olfactory circuit. *Neuron* 56, 838–850.
1012 10.1016/j.neuron.2007.10.035.

1013 19. Han, Y.K., Köver, H., Insanally, M.N., Semerdjian, J.H., and Bao, S. (2007). Early
1014 experience impairs perceptual discrimination. *Nat Neurosci* 10, 1191–1197. 10.1038/nn1941.

1015 20. Muir, D.W., and Mitchell, D.E. (1975). Behavioral deficits in cats following early selected
1016 visual exposure to contours of a single orientation. *Brain Research* 85, 459–477. 10.1016/0006-
1017 8993(75)90820-3.

1018 21. Olsen, S.R., and Wilson, R.I. (2008). Cracking neural circuits in a tiny brain: new
1019 approaches for understanding the neural circuitry of *Drosophila*. *Trends Neurosci* 31, 512–520.

1020 22. Vosshall, L.B., and Stocker, R.F. (2007). Molecular architecture of smell and taste in
1021 *Drosophila*. *Annu Rev Neurosci* 30, 505–533. 10.1146/annurev.neuro.30.051606.094306.

1022 23. Devaud, J.M., Acebes, A., and Ferrus, A. (2001). Odor exposure causes central adaptation
1023 and morphological changes in selected olfactory glomeruli in *Drosophila*. *The Journal of*
1024 *neuroscience : the official journal of the Society for Neuroscience* 21, 6274–6282.

1025 24. Devaud, J.M., Acebes, A., Ramaswami, M., and Ferrus, A. (2003). Structural and functional
1026 changes in the olfactory pathway of adult *Drosophila* take place at a critical age. *Journal of*
1027 *neurobiology* 56, 13–23. 10.1002/neu.10215.

1028 25. Bruce, T.J.A., and Pickett, J.A. (2011). Perception of plant volatile blends by herbivorous
1029 insects – Finding the right mix. *Phytochemistry* 72, 1605–1611.
1030 10.1016/j.phytochem.2011.04.011.

1031 26. Wright, G.A., Lutmerding, A., Dudareva, N., and Smith, B.H. (2005). Intensity and the ratios
1032 of compounds in the scent of snapdragon flowers affect scent discrimination by honeybees (*apis*
1033 *mellifera*). *Journal of Comparative Physiology A* 191, 105–114.

1034 27. Lahondère, C., Vinauger, C., Okubo, R.P., Wolff, G.H., Chan, J.K., Akbari, O.S., and Riffell,
1035 J.A. (2020). The olfactory basis of orchid pollination by mosquitoes. *Proceedings of the National*
1036 *Academy of Sciences* 117, 708–716.

1037 28. Brat, P., Yahia, A., Chillet, M., Bugaud, C., Bakry, F., Reynes, M., and Brillouet, J.-M.
1038 (2004). Influence of cultivar, growth altitude and maturity stage on banana volatile compound
1039 composition. *Fruits* 59, 75–82.

1040 29. Montero-Calderón, M., Rojas-Graü, M.A., and Martín-Belloso, O. (2010). Aroma profile and
1041 volatiles odor activity along gold cultivar pineapple flesh. *Journal of Food Science* 75, S506–
1042 S512.

1043 30. Pino, J.A., and Febles, Y. (2013). Odour-active compounds in banana fruit cv. Giant
1044 Cavendish. *Food Chemistry* 141, 795–801. 10.1016/j.foodchem.2013.03.064.

1045 31. Becher, P.G., Flick, G., Rozpędowska, E., Schmidt, A., Hagman, A., Lebreton, S., Larsson,
1046 M.C., Hansson, B.S., Piškur, J., and Witzgall, P. (2012). Yeast, not fruit volatiles mediate *D*
1047 *rosophila melanogaster* attraction, oviposition and development. *Functional Ecology* 26, 822–
1048 828.

1049 32. Budick, S.A., and Dickinson, M.H. (2006). Free-flight responses of *Drosophila melanogaster*
1050 to attractive odors. *Journal of Experimental Biology* 209, 3001–3017.

1051 33. Faucher, C.P., Hilker, M., and Bruyne, M. de (2013). Interactions of Carbon Dioxide and
1052 Food Odours in *Drosophila*: Olfactory Hedonics and Sensory Neuron Properties. PLOS ONE 8,
1053 e56361. 10.1371/journal.pone.0056361.

1054 34. Barrows, W.M. (1907). The reactions of the Pomace fly, *Drosophila ampelophila* loew, to
1055 odorous substances. Journal of Experimental Zoology 4, 515–537. 10.1002/jez.1400040403.

1056 35. Landolt, P., Adams, T., and Rogg, H. (2012). Trapping spotted wing drosophila, *Drosophila*
1057 *suzukii* (Matsumura)(Diptera: Drosophilidae), with combinations of vinegar and wine, and acetic
1058 acid and ethanol. Journal of applied entomology 136, 148–154.

1059 36. Tanaka, N.K., Endo, K., and Ito, K. (2012). Organization of antennal lobe-associated
1060 neurons in adult *Drosophila melanogaster* brain. Journal of Comparative Neurology 520, 4067–
1061 4130. 10.1002/cne.23142.

1062 37. Brenner, N., Bialek, W., and Van Steveninck, R. de R. (2000). Adaptive rescaling maximizes
1063 information transmission. Neuron 26, 695–702.

1064 38. Pech, U., Revelo, N.H., Seitz, K.J., Rizzoli, S.O., and Fiala, A. (2015). Optical Dissection of
1065 Experience-Dependent Pre- and Postsynaptic Plasticity in the *Drosophila* Brain. Cell Reports
1066 10, 2083–2095. 10.1016/j.celrep.2015.02.065.

1067 39. Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter,
1068 E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al. (2013). Ultrasensitive fluorescent proteins for
1069 imaging neuronal activity. Nature 499, 295–300. 10.1038/nature12354.

1070 40. Kidd, S., Struhl, G., and Lieber, T. (2015). Notch is required in adult *Drosophila* sensory
1071 neurons for morphological and functional plasticity of the olfactory circuit. PLoS genetics 11,
1072 e1005244. 10.1371/journal.pgen.1005244.

1073 41. Chakraborty, T.S., Goswami, S.P., and Siddiqi, O. (2009). Sensory Correlates of Imaginal
1074 Conditioning in *Drosophila melanogaster*. Journal of Neurogenetics 23, 210–219.
1075 10.1080/01677060802491559.

1076 42. Mandairon, N., Stack, C., Kiselycznyk, C., and Linster, C. (2006). Broad activation of the
1077 olfactory bulb produces long-lasting changes in odor perception. PNAS 103, 13543–13548.
1078 10.1073/pnas.0602750103.

1079 43. Wang, H.W., Wysocki, C.J., and Gold, G.H. (1993). Induction of olfactory receptor sensitivity
1080 in mice. Science 260, 998–1000. 10.1126/science.8493539.

1081 44. Cadiou, H., Aoudé, I., Tazir, B., Molinas, A., Fenech, C., Meunier, N., and Grosmaitre, X.
1082 (2014). Postnatal Odorant Exposure Induces Peripheral Olfactory Plasticity at the Cellular Level.
1083 J. Neurosci. 34, 4857–4870. 10.1523/JNEUROSCI.0688-13.2014.

1084 45. Liu, A., and Urban, N.N. (2017). Prenatal and Early Postnatal Odorant Exposure Heightens
1085 Odor-Evoked Mitral Cell Responses in the Mouse Olfactory Bulb. eNeuro 4.
1086 10.1523/ENEURO.0129-17.2017.

1087 46. Chodankar, A., Sadanandappa, M.K., VijayRaghavan, K., and Ramaswami, M. (2020).
1088 Glomerulus-Selective Regulation of a Critical Period for Interneuron Plasticity in the Drosophila
1089 Antennal Lobe. *J. Neurosci.* 40, 5549–5560. 10.1523/JNEUROSCI.2192-19.2020.

1090 47. Dunkel, A., Steinhaus, M., Kotthoff, M., Nowak, B., Krautwurst, D., Schieberle, P., and
1091 Hofmann, T. (2014). Nature's chemical signatures in human olfaction: a foodborne perspective
1092 for future biotechnology. *Angewandte Chemie International Edition* 53, 7124–7143.

1093 48. Maarse, H. ed. (2017). *Volatile Compounds in Foods and Beverages* (Routledge)
1094 10.1201/9780203734285.

1095 49. Nijssen L. M. (1996). *Volatile Compounds in Food : Qualitative and Quantitative Data* 7th ed.
1096 (Zeist Netherlands: TNO-CIVO Food Analysis Institute).

1097 50. Jordán, M.J., Tandon, K., Shaw, P.E., and Goodner, K.L. (2001). Aromatic Profile of
1098 Aqueous Banana Essence and Banana Fruit by Gas Chromatography–Mass Spectrometry
1099 (GC-MS) and Gas Chromatography–Olfactometry (GC-O). *J. Agric. Food Chem.* 49, 4813–
1100 4817. 10.1021/jf010471k.

1101 51. Gugel, Z.V., Maurais, E., and Hong, E.J. (2021). Chronic exposure to odors at naturally
1102 occurring concentrations triggers limited plasticity in early stages of *Drosophila* olfactory
1103 processing. *bioRxiv*, 10.1101/2021.09.03.458834.

1104 52. National Institute for Occupational Safety and Health Immediately Dangerous To Life or
1105 Health (IDLH) Values. <https://www.cdc.gov/niosh/idlh/default.html>.

1106 53. Tempel, B.L., Bonini, N., Dawson, D.R., and Quinn, W.G. (1983). Reward learning in normal
1107 and mutant *Drosophila*. *Proceedings of the National Academy of Sciences* 80, 1482–1486.
1108 10.1073/pnas.80.5.1482.

1109 54. Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., and Heisenberg,
1110 M. (2003). Dopamine and Octopamine Differentiate between Aversive and Appetitive Olfactory
1111 Memories in *Drosophila*. *J. Neurosci.* 23, 10495–10502. 10.1523/JNEUROSCI.23-33-
1112 10495.2003.

1113 55. Law, C.-T., and Gold, J.I. (2009). Reinforcement learning can account for associative and
1114 perceptual learning on a visual-decision task. *Nature neuroscience* 12, 655–663.

1115 56. Kass, M.D., Moberly, A.H., Rosenthal, M.C., Guang, S.A., and McGann, J.P. (2013). Odor-
1116 Specific, Olfactory Marker Protein-Mediated Sparsening of Primary Olfactory Input to the Brain
1117 after Odor Exposure. *J. Neurosci.* 33, 6594–6602. 10.1523/JNEUROSCI.1442-12.2013.

1118 57. Kay, L.M., and Laurent, G. (1999). Odor- and context-dependent modulation of mitral cell
1119 activity in behaving rats. *Nature Neuroscience* 2, 1003–1009.

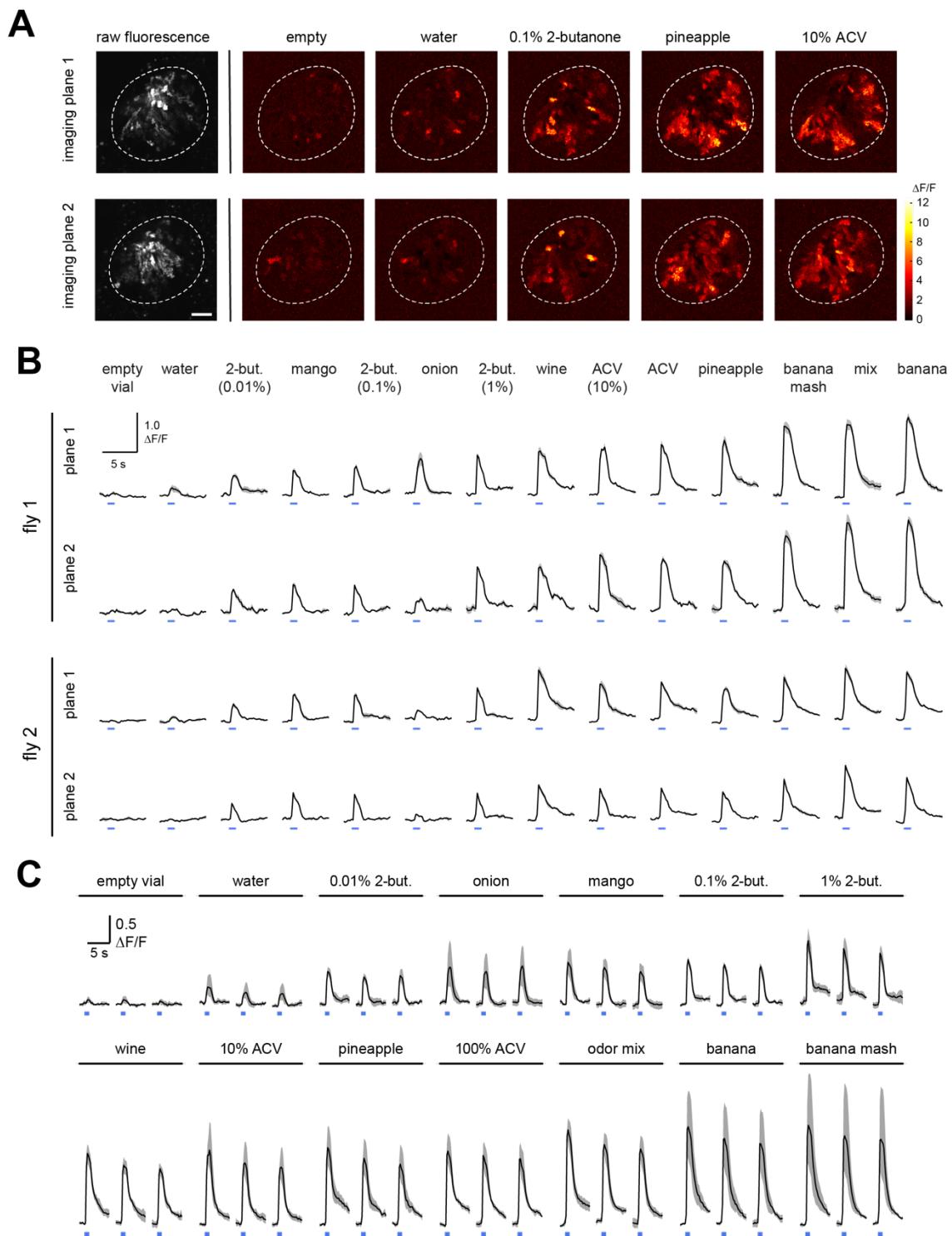
1120 58. Chu, M.W., Li, W.L., and Komiyama, T. (2016). Balancing the robustness and efficiency of
1121 odor representations during learning. *Neuron* 92, 174–186.

1122 59. McGann, J.P. (2015). Associative learning and sensory neuroplasticity: how does it happen
1123 and what is it good for? *Learning & Memory* 22, 567–576.

1124 60. Hong, E.J., and Wilson, R.I. (2015). Simultaneous encoding of odors by channels with
1125 diverse sensitivity to inhibition. *Neuron* 85, 573–589. 10.1016/j.neuron.2014.12.040.

1126 61. Zocchi, D., Emily, S.Y., Hauser, V., O'Connell, T.F., and Hong, E.J. (2022). Parallel
1127 encoding of CO₂ in attractive and aversive glomeruli by selective lateral signaling between
1128 olfactory afferents. *Current Biology*.

1129 62. van Breugel, F., Huda, A., and Dickinson, M.H. (2018). Distinct activity-gated pathways
1130 mediate attraction and aversion to CO₂ in *Drosophila*. *Nature* 564, 420–424. 10.1038/s41586-
1131 018-0732-8.

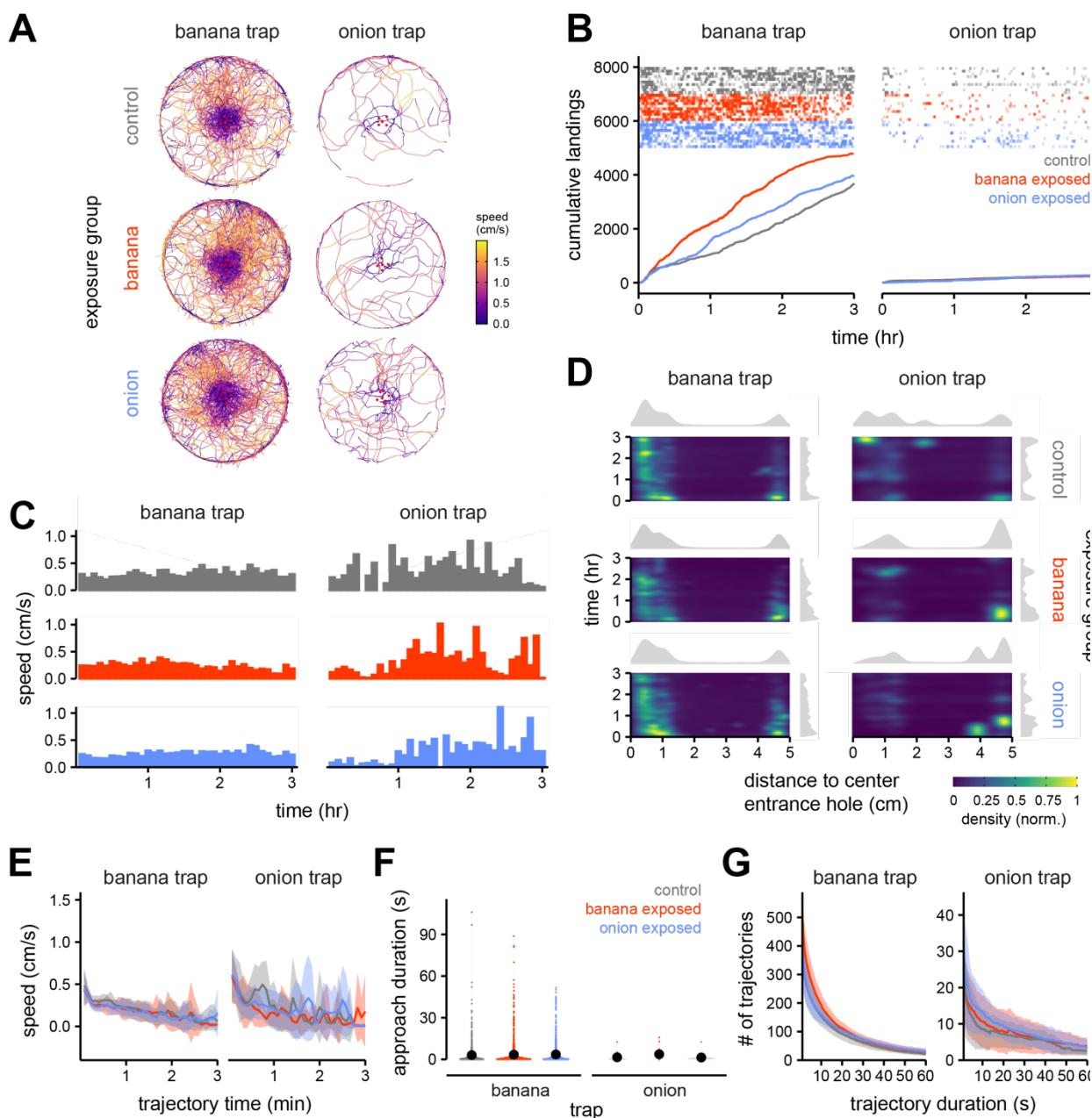

1132 63. Sbalzarini, I.F., and Koumoutsakos, P. (2005). Feature point tracking and trajectory analysis
1133 for video imaging in cell biology. *Journal of structural biology* 151, 182–195.

SUPPLEMENTARY MATERIALS

for

Early life experience with natural odors modifies olfactory behavior through an associative process

Kristina V. Dylla, Thomas F. O'Connell, and Elizabeth J. Hong


Supplementary Figure S1: The relative amplitudes of odor-evoked responses in PN axon terminals across odor stimuli is not strongly sensitive to the specific imaging plane in the calyx. Related to Figure 1.

(A) Peak $\Delta F/F$ odor-evoked response patterns in PN axon terminals in the mushroom body calyx (white dashed line) in two different z-planes in an example fly. Grayscale image (left)

shows raw fluorescence. Imaging plane 1 (top row) was 6 μm deeper in the calyx than imaging plane 2 (bottom row). ACV, apple cider vinegar. Scale bar, 10 μm . The fly genotype was *yw/+; NP225-Ga4/20x-UAS-IVS-Syn21-OpGCaMP6f-p10*; +.

(B) Time course of odor-evoked changes in fluorescence (mean and S.E.M. across trials) in PN axon terminals in two different imaging planes in the mushroom body calyx for two example flies (three trials/stimulus). Fly 1 is from **(A)**. Blue bar indicates the 1-s odor stimulus. Responses to different stimuli are ordered according to their amplitudes in plane 1 of fly 1. Odor stimuli from left to right: empty odor vial; water; 2-butanone (10^{-4}); mango; 2-butanone (10^{-3}); onion; 2-butanone (10^{-2}); red wine; 10% ACV; 100% ACV; pineapple; mashed banana; mix of 2-butanone, 2-pentanone, E2-hexenal, and pentyl acetate, each at 1%; and banana. The order of stimulus presentation was randomized in each fly, but the presentation order was the same for different imaging planes in the same fly to allow a direct comparison. Imaging plane 1 was located ventrally to plane 2 in each calyx.

(C) Time course of odor-evoked changes in fluorescence (mean and 95% CI) in PN terminals, measured in a single plane of the MB calyx in each fly ($n = 5$ flies). $\Delta F/F$ response was computed as the pixel mean within a large ROI that circumscribed PN axonal boutons in each fly. Blue bar indicates the 1-s odor stimulus. Odor stimuli are as in **(B)**.

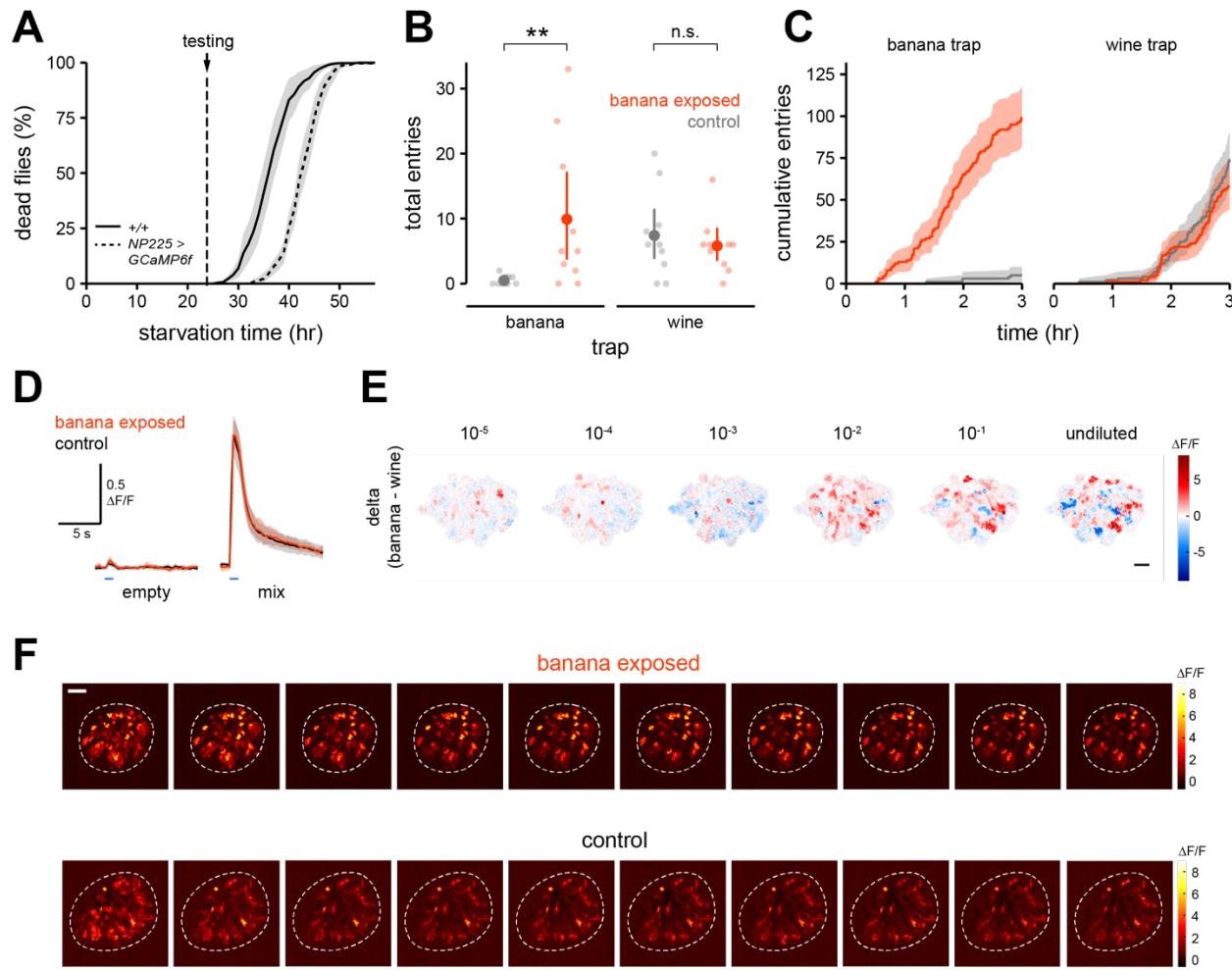
Supplementary Figure S2: Additional behavioral metrics of flies allowed to choose between a trap baited with onion or banana in the free-flight trap assay. Related to Figures 2 and 3.

(A) Overlay of all trajectories on each trap platform, color coded by instantaneous walking speed, from an example experiment for each odor exposure condition. The solid red circles are the trap entrances. Color scale is truncated at 2 cm/s.

(B-G) Quantification of fly behavior in experiments from Figure 2C-E. Control- (grey), banana odor- (red), or onion odor- (blue) exposed flies in free-flight chose between a trap baited with onion or a trap baited with banana (n=10 experiments/condition).

(B) Landings on each trap for control- (gray), banana odor- (red), or onion odor- (blue) exposed flies. Top rasters: individual landing events over time; each row is an experiment. Bottom:

Cumulative landings on each trap across all experiments (n=10) for each odor exposure group. Error envelope is 95% CI and barely visible at this scale.


(C) Mean walking speed, computed over 5-min bins, as a function of time in the experiment (n = 10 experiments).

(D) Normalized radial distribution of flies on the trap platform as a function of time in the experiment (mean of 10 experiments). Distance (x-axis) represents the distance from the fly to the center trap entrance (0 cm, center entrance hole; ~0.5 cm, outer entrance holes; ~1.5 cm, boundary between odor vial cap and platform disc; ~5 cm: outer edge of platform).

(E) Walking speed (mean and SD) as a function of time from the initiation of the trajectory, computed across all trajectories in each condition. The time-axis was truncated at three minutes (mean and SD).

(F) Distribution of time durations of trajectories that enter the trap entrance ROI (e.g., approaches) for each condition (see Figure 3A). Solid black circles are the means of each condition. Two approaches lasted longer than 250 seconds and were omitted for better display scaling.

(G) Distribution of trajectories (mean and SD across 10 experiments) across trajectory durations in time. The x-axis is truncated at sixty seconds.

Supplementary Figure S3: Measurement of odor representations in the PN axon terminals of flies chronically exposed to natural odor. Related to Figure 6.

(A) Survival curves for wildtype (HCS) (solid line) and *NP225>GCaMP6f* flies (dashed line). Data are mean and 95% CI, averaged across experiments using each genotype exposed to different odors (n = 3 experiments/condition; wildtype: control-, banana odor-, onion odor-exposed; *NP225>GCaMP6f*: control-, banana odor-exposed). Odor exposure was as in Figure 2A; starvation time 0 corresponds to the start of the third day in Figure 2A. Testing would normally commence at 24 hrs starvation time for wildtype flies. The full genotype of ... is *yw/+; NP225-Gal4/20x-UAS-Syn21-OpGCaMP6f-p10*; +.

(B) Total entries (mean and 95% CI, solid symbols) into banana- or wine-odorized traps over three hours by control- (grey) and banana odor- (red) exposed *NP225>GCaMP6f* flies in the free flight trap assay (n = 10 experiments, light symbols). Flies were starved for 30.5 hrs and were assayed in groups of 70 flies/experiment. **p < 0.01, n.s., no significant difference (p ≥ 0.05), two-tailed permutation t-test with Bonferroni correction.

(C) Cumulative entries into each trap across all experiments for each odor exposure group from (B). Error envelope is the 95% CI bootstrapped across experiments (n = 10).

(D) Change in fluorescence over time (mean and 95% CI) in PN axon terminals in response to an empty vial stimulus or a mix of 2-butanone, 2-pentanone, E2-hexenal, and pentyl acetate

(each at 1%) in banana odor- (red) and control- (gray) exposed *NP225>GCaMP6f* flies (n = 5–11 flies, banana odor-exposed; n = 5–9 flies, control-exposed). Blue bar indicates time of 1s odor pulse.

(E) Difference between peak $\Delta F/F$ response patterns in PN terminals to banana and wine odors at increasing stimulus intensities in a control-exposed fly. Red designates pixels activated more by banana odor than wine odor; blue designates the reverse. Scale bar, 10 μm .

(F) Peak $\Delta F/F$ response images in PN terminals extracted from each successive 1 s pulse in the “fluctuating” banana odor-stimulus (Figure 6F) in an example banana odor-exposed (top row) or control-exposed fly (bottom row). Images are ordered in time, with the response to the first pulse on the left. Scale bar, 10 μm .

Supplementary Video S1:

Video from the top-view camera (see Figure 1A) of control odor-exposed flies walking on a trap baited with banana. Multiple approaches to the trap entrances are made by the first fly; later, a second fly on the trap exhibits a similar behavior. Frame rate, 5 Hz.