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Summary 48 

A comprehensive pan-human spectral library is critical for biomarker discovery 49 

using mass spectrometry (MS)-based proteomics. DPHL v1, a previous pan-human 50 

library built from 1096 data-dependent acquisition (DDA) MS data of 16 human 51 

tissue types, allows quantifying 10,943 proteins. However, a major limitation of 52 

DPHL v1 is the lack of semi-tryptic peptides and protein isoforms, which are 53 

abundant in clinical specimens. Here, we generated DPHL v2 from 1608 DDA-MS 54 

data acquired using Orbitrap mass spectrometers. The data included 586 DDA-MS 55 

newly acquired from 17 tissue types, while 1022 files were derived from DPHL v1. 56 

DPHL v2 thus comprises data from 24 sample types, including several cancer types 57 

(lung, breast, kidney, and prostate cancer, among others). We generated four variants 58 

of DPHL v2 to include semi-tryptic peptides and protein isoforms. DPHL v2 was then 59 

applied to a publicly available colorectal cancer dataset with 286 DIA-MS files. The 60 

numbers of identified and significantly dysregulated proteins increased by at least 61 

21.7% and 14.2%, respectively, compared with DPHL v1. Our findings show that the 62 

increased human proteome coverage of DPHL v2 provides larger pools of potential 63 

protein biomarkers.  64 
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Introduction 70 

Mass spectrometry (MS)-based quantitative proteomics is widely used for 71 

protein biomarker discovery1-3. The subsequent biomarker validation is often 72 

performed with targeted proteomics methods, such as selected reaction monitoring 73 

(SRM)4 and parallel reaction monitoring (PRM)5. Recently, biomarker discovery and 74 

validation have been increasingly performed with targeted analysis of data-75 

independent acquisition (DIA) MS data6, an emerging strategy for high-throughput 76 

proteomics analyses with a high level of reproducibility7. A spectral library containing 77 

experimental peptide precursor information is crucial for SRM- and PRM-based 78 

protein biomarker validation, as well as DIA-based biomarker discovery7. In recent 79 

years, spectral libraries have been established for several organisms, such as human8, 80 

9, mouse10, zebrafish11, Arabidopsis thaliana12, and Escherichia coli13. To support the 81 

identification of new protein biomarkers, the comprehensiveness of a spectral library 82 

is crucial. 83 

The Human Proteome Project (HPP)14 launched by Human Proteome 84 

Organization (HUPO) has reported the community-based ten-year achievement of a 85 

high-stringency proteome blueprint of 17,874 Protein Evidence 1 (PE1) proteins in 86 

2020, covering 90.4% of the human proteome15. A pan-human spectral library (PHL), 87 

containing 149,130 peptide precursors and 10,322 proteins, was developed to analyze 88 

Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) data 89 

acquired on SCIEX TripleTOF Systems8. Another DIA pan-human library (DPHL v1) 90 

for Orbitrap data comprises 289,237 peptide precursors and 10,943 proteins9. 91 
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However, the proteins in these two libraries are proteotypic; protein isoforms are not 92 

included. The isoforms of each protein family may result from post-translational 93 

modifications, splice variants, proteolytic products, genetic variations, or somatic 94 

recombination occurring during protein evolution16, and participate in different 95 

biological processes17. Therefore, a specific protein isoform could be a valuable 96 

biomarker. A spectral library with significant coverage of the human proteome and its 97 

protein isoforms is thus needed. Additionally, previous studies demonstrated that only 98 

~10-15% of all the tryptic peptides from a protein sample can be identified when 99 

about 50% of the protein identifications are based on a single tryptic peptide due to 100 

the intrinsic chemical properties of tryptic peptides18-20. Therefore, identifying more 101 

peptides (e.g., non-tryptic peptides), preferably at low computational costs, would 102 

increase the confidence in the proteins identified via tryptic peptides and increase the 103 

overall number of identifications. 104 

Here, we present a large DIA spectral library (DPHL v2), generated from 24 105 

different sample types and available in four variants. DPHL v2 includes more peptide 106 

precursors, peptides, and proteins than DPHL v1. It also provides higher coverage 107 

ratios, particularly for brain-, esophagus-, and ovary-specific or -enriched proteins, as 108 

well as FDA-approved drug targets. Two variants of DPHL v2 generated better 109 

identifications of the hallmark gene sets than DPHL v1. Finally, using a publicly 110 

available colorectal cancer (CRC) cohort, DPHL v2 provided larger numbers of 111 

protein and differentially expressed protein identifications than DPHL v1 and library-112 

free method. 113 
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Results and Discussion 114 

Data sources for generating DPHL v2 115 

A total of 1608 raw MS data files were collected to build our spectral library. 116 

Among these, 586 files were newly generated from various samples, including tissue 117 

biopsies of prostate cancer (PCa), hepatocellular carcinoma (HCC), triple-negative 118 

breast cancer (TNBC), lung adenocarcinoma (LUAD), esophageal carcinoma, thyroid 119 

diseases, eyelid tumors, glioblastoma multiforme (GBM), healthy brain tissues, oral 120 

squamous cell carcinoma (OSCC), thymic diseases, ovarian cancer (OV), and cervix 121 

cancer. Additionally, blood plasma samples from acute myelocytic leukemia (AML), 122 

blood diseases, T-lineage acute lymphoblastic leukemia (T-ALL), and normal plasma 123 

exosome were included. Human chronic myelogenous leukemia cell line K562 was 124 

also included. Finally, the remaining 1022 files were derived from the DPHL v1 study 125 

by Zhu et al9. The sample types and number of patients contributing to DPHL v2 are 126 

summarized in Figure 1A and Table S1. 127 

Four variants of the pan-human spectral libraries 128 

All the 1608 raw files were centroided and converted into mzXML as previously 129 

described9. These files were then combined to build our new spectral library. Two 130 

different annotation files (i.e., reviewed and isoform-reviewed fasta files) were used 131 

to search the mzXML spectra against two digestion modes (i.e., full-specific and 132 

semi-specific) using MS-Fragger (version 3.0)21. The reviewed fasta file was obtained 133 

from the UniProt database22 (accessed on 17 Jul. 2020); it included 20,361 reviewed 134 

human proteins and was used as the reference. The isoform-reviewed annotation file 135 
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was also downloaded from UniProt (accessed on 5 Aug. 2020) and comprised 42,347 136 

proteins, including 22,201 human isoforms. Philosopher23 (version 3.2.9) was used for 137 

library searching based on the spectra matches with a maximum of two missed 138 

cleavages and a false discovery rate < 0.01 for spectra, peptides, and proteins. By 139 

differently combining the two annotation files and the two digestion modes, we 140 

generated four library variants: RF (reviewed fasta sequence & full-specific digestion 141 

mode), RS (reviewed fasta sequence & semi-specific digestion mode), IF (isoform 142 

fasta sequence & full-specific digestion mode), IS (isoform fasta sequence & semi-143 

specific digestion mode). 144 

Next, in order to ensure the consistency of the results of different time gradients 145 

of the mass spectrum, we used EasyPQP (version 0.1.9, 146 

https://github.com/grosenberger/easypqp) to anchor the CiRT21 peptides for retention 147 

time (RT) normalization. Quality controls (QC) were then performed using an R 148 

script with the criteria next described to remove data of low quality. First, only 149 

precursors with multiple fragments (≥ 2) and a normalized RT range from -60 to 200 150 

were retained. Second, fragments with a library intensity < 10 or a precursor charge of 151 

+1 were removed. Finally, peptides with only one precursor were retained. However, 152 

when a peptide had two precursors, we kept the one with the highest intensity if the 153 

absolute difference of the normalized RT between the two precursors was > 5; 154 

otherwise, both precursors were kept. When a peptide has more than two precursors, 155 

the averaged normalized RTs of all precursors and their differences with respect to 156 

their mean RT were calculated. Next, peptides with an absolute difference > 5 were 157 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2023. ; https://doi.org/10.1101/2023.01.07.523067doi: bioRxiv preprint 

https://github.com/grosenberger/easypqp
https://doi.org/10.1101/2023.01.07.523067
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

excluded. When all the absolute values were > 5, the median normalized RT of all the 158 

precursors and their difference from the median RT were further calculated: only the 159 

peptides with a difference < 5 were then selected. The normalized RT correlations 160 

(+2/+3 states of each peptide) after these filtering steps are shown in Figure S1. 161 

Default parameters were used for all software unless otherwise indicated. The 162 

computational pipeline is schematized in Figure 1B. 163 

Characteristics of DPHL v2 164 

We next evaluated DPHL v2 using DIALib-QC24 and found that all four variants 165 

of our pan-human spectral library are of high quality (Figure S2-5). We also 166 

characterized the four libraries in terms of peptide and protein identifications. As 167 

shown in Figure 1C, the RF library includes 601,982 peptide precursors, 441,141 168 

peptides, and 13,465 proteins; the IF library includes 604,748 peptide precursors, 169 

443,150 peptides, and 14,375 proteins. IS, another isoform-based library, comprises 170 

808,672 peptide precursors, 624,467 peptides, and 14,555 proteins. Finally, the RS 171 

library contains 772,401 peptide precursors, 588,984 peptides, and 13,570 proteins. 172 

We then evaluated the protein identifications of the four libraries for each of the 24 173 

sample types. As shown in Figures S6-7, the brain had the highest number of total and 174 

unique proteins among all sample types, possibly due to the larger number of brain 175 

tissues included (n = 163). 176 

Next, we compared our four libraries with the PHL and DPHL v1 and found that 177 

our four libraries exhibited at least a 23.0% and 30.4% increase in protein coverage 178 

compared to DPHL v1 and the PHL, respectively. Among our four libraries, the 179 
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isoform-based ones (IS and IF) comprise relatively high numbers of proteins (Figure 180 

2A). Similarly, our four libraries exhibit considerably larger numbers of peptide 181 

(Figure 2C) and precursor (Figure 2E) identifications when compared to DPHL v1 182 

and the PHL. In particular, the semi-specific digestion libraries (IS and RS) have the 183 

most significant numbers of peptide and precursor identifications. As shown in Figure 184 

2B, 2D, and 2F, 7262 proteins, 89,328 peptides, and 103,704 precursors are shared 185 

among these six libraries, while 1,144 proteins, 165,041 peptides, and 253,673 186 

precursors are shared only by our four libraries. These findings indicate that DPHL v2 187 

provides higher coverage among precursors, peptides, and proteins than DPHL v1 and 188 

the PHL. 189 

We next compared the numbers of shared proteins and peptides between our four 190 

library variants (i.e., between fasta files and digestion models) (Figure 3A, 3B). We 191 

found that protein identifications were affected mainly by the fasta file, while peptide 192 

identifications were affected by the digestion model. We also compared our four 193 

libraries with DPHL v1 in terms of the enriched/specific proteins from three tissues 194 

(brain, ovary, and esophagus; Figure 3C) obtained from the Human Protein Atlas 195 

(https://www.proteinatlas.org/, data available from v21.0.proteinatlas.org). Our results 196 

indicated that the coverages of our four libraries are superior to that of DPHL v1. 197 

Similarly, our four libraries provided higher coverage of FDA-approved drug targets 198 

than DPHL v1 (Figure 3C). In addition, the hallmark gene sets from the MSigDB v7.4 199 

database (http://www.broad.mit.edu/gsea/msigdb/, accessed on 22 Nov. 2021)25, 26 200 

were analyzed using these five libraries. We found that RF and RS cover more than 201 
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44% of the genes with well-defined biological states or processes, and both provide 202 

better coverages than DPHL v1 (Figure 3C). However, fewer coverages were found in 203 

the isoform-based libraries. One possible reason is that most genes from the hallmark 204 

gene sets are reviewed. 205 

Applicability of DPHL v2 for DIA targeted data analysis 206 

To assess the applicability of DPHL v2, we used our four libraries, DPHL v1, or 207 

a library-free method to analyze a CRC cohort, including 201 CRC cases, 40 benign 208 

samples, and 45 biological/technical replicates27. The missing values generated by our 209 

four libraries or DPHL v1 were comparable. On the other hand, the library-free 210 

method generated fewer missing values (Figure 4A). As shown in Figure 4B, the 211 

number of proteins identified with any variant of DPHL v2 was significantly higher 212 

than with DPHL v1 or the library-free method. A total of 978 proteins were identified 213 

by all six methods, while 166 were shared by our four libraries only (Figure 4C). 214 

In order to demonstrate the applicability of the library, we performed differential 215 

expression analyses of the CRC data generated using the six methods described 216 

above. Differential expressions were considered significant if their adjusted p-values 217 

were < 0.01 and their log2 (fold-change) absolute values were > 1. We obtained 1997 218 

(RF), 1984 (RS), 2024 (IF), 1992 (IS), 1783 (DPHL v1), and 1737 (library-free) up-219 

regulated (adjusted p-value < 0.01 & log2 (fold-change) > 1) proteins, and 330 (RF), 220 

359 (RS), 346 (IF), 370 (IS), 255 (DPHL v1), and 230 (library-free) down-regulated 221 

(adjust p-value < 0.01 & log2 (fold-change) < -1) proteins (Figure 4B). Compared 222 

with the DPHLv1, the numbers of identified and significantly dysregulated proteins 223 
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increased by at least 21.7% (RF) and 14.2% (RF). Compared with the analysis using 224 

only SwissProt reviewed proteins sequences, 463 and 472 differentially expressed 225 

protein isoforms were identified using IF and IS, respectively. Similarly, 94 and 92 226 

proteins were dysregulated in the CRC tissues compared with the benign samples by 227 

semi-specific digestion modes. These findings show that DPHL v2 allows identifying 228 

a larger number of differentially expressed proteins or protein isoforms between 229 

tumors and benign samples, providing more options for subsequent investigations. 230 

We next used our four libraries and DPHL v1 to analyze the CRC cohort using 231 

the sub-library strategy27, which refines a pan-human spectral library based on the 232 

tissue specificity. Compared with the conventional library search method, the sub-233 

library strategy improved our results in all aspects (Figure S8A-C). First, the missing 234 

values were reduced by about 1% on average. The protein identifications increased by 235 

22 (RF), 344 (RS), 103 (IF), 405 (IS), or 193 (DPHL v1). In the subsequent 236 

differential expression analysis, the total number of dysregulated proteins increased 237 

by 70 (RF), 163 (RS), 42 (IF), 203 (IS), and 20 (DPHL v1).  238 

Finally, we built a random forest model based on the overlap dysregulated 239 

proteins generated by the four libraries to find new biomarkers. The 241 samples with 240 

1426 proteins were randomly divided into the training set (N = 200) and the test set 241 

(N = 41). After a 5-fold cross validation, we identified 14 features that provided the 242 

highest accuracy for colorectal cancer, including S100A11, CEACAM6, GARS1, 243 

CDYL2, POTEKP, SCGN, SNCG, S100B, SCG2, NCAM1, OGN, CD81, COL28A1, 244 

CNRIP1 (Figure 5A). The area under the curve (AUC) of the training set and the test 245 
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set achieved 1, 0.903 (Figure 5B), and the accuracy (ACC) achieved 0.988, 0.927, 246 

respectively (Figure 5C). Among these, S100A1128, 29, CEACAM630, 31, CDYL232, 247 

SCGN33, SNCG34, 35, S100B36, SCG237, 38, NCAM139, OGN40, CD8141, CNRIP142, 248 

have been reported to be closely related to colorectal cancer. Three features (GARS1, 249 

POTEKP, COL28A1) may be new biomarkers for colorectal cancer.  250 

Analysis of protein isoforms and semi-tryptic peptides 251 

We next checked whether this resource could be used to analyze specific protein 252 

isoform. Among the dysregulated proteins from IF , we identified SPTBN1 253 

(SPTBN1-long) and one of its isoforms (SPTBN1-short)43. As reported in literature, 254 

SPTBN1 is significantly dysregulated and plays an essential role in liver cancer44, 255 

colorectal cancer, and breast cancer, among others45, 46. To assess the accuracy of the 256 

identification, we showed the sequence of SPTBN1-long and SPTBN1-short 257 

identified in the library, in addition to the common parts of the two sequences, our 258 

library had also identified the peptide (TSSISGPLSPAYTGQVPYNYNQLEGR) 259 

specific in SPTBN1-short (Figure 6A). The Skyline software (Skyline-daily version) 260 

was used to show the peak spectrum of this peptide and a common peptide form these 261 

two proteins within the DIA raw file (Figure 6B-C). 262 

 Regarding those were only characterized through semi-specific peptides in our 263 

semi-specific libraries (IS and RS), including VWF, LMO7, ALDH2, NPEPL1, 264 

NUAK1, and TPT1, many of them have important biologic implications. ADAM22 is 265 

a new therapeutic option for treating metastatic brain disease and may be appropriate 266 

for treatment of breast cancer47, 48. By analyzing mRNA expression profiles, Xin et al. 267 
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found that ASPM is highly expressed in GBM, and patients with high ASPM 268 

expression have poor prognoses49. LRP6 inhibits cell proliferation and delays tumor 269 

growth in vivo, especially in colon, liver, breast, and pancreatic cancers50, 51. CHD9 270 

was reported as a potential biomarker for clear cell renal cell carcinoma52. In addition, 271 

FAIM2 promotes non-small cell lung cancer growth and bone metastasis formation by 272 

regulating the epithelial-mesenchymal transformation process and the Wnt/β-catenin 273 

signaling pathway53. In our analysis, all these proteins showed significant differences 274 

between tumor and non-tumor samples, indicating that DPHL v2 can assist with the 275 

discovery of new potential protein biomarkers. 276 

Conclusion 277 

We present DPHL v2: four comprehensive spectral libraries (RF, RS, IF, and IS) 278 

derived from 1608 DDA MS raw files, including 24 sample types. By identifying over 279 

440,000 peptides and more than 14,000 proteins, DPHL v2 can confidently detect and 280 

quantify more than 66.1% of the reviewed human proteins annotated by 281 

UniProtKB/Swiss-Prot. Our results suggest that DPHL v2 could support protein 282 

biomarker identification, especially for protein isoforms and semi-tryptic peptides. 283 

DPHL v2 outperforms previous DIA libraries in the following aspects. Firstly, five 284 

additional tissue types (oral cavity, thymus, esophagus, eyelid, and ovary) and one 285 

blood plasma sample from T-ALL were included. Secondly, protein isoforms and 286 

semi-trypsin digestion were used for library searching. In addition, these libraries are 287 

compatible with various commonly used DIA tools, with or without format 288 

transformation, such as OpenSWATH54, DIA-NN55, Skyline56, and Spectronaut57. 289 
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Materials and Methods 290 

All chemicals used in this study were purchased from Sigma. All MS-grade 291 

reagents were acquired from Thermo Fisher Scientific (Waltham, MA).  292 

Clinical samples 293 

Formalin-fixed paraffin-embedded, fresh or fresh frozen tissue biopsies from 294 

GBM, healthy human brain, eyelid tumor, thyroid disease, sarcoma, OSCC, thymus, 295 

LUAD, TNBC, HCC, gastric cancer, diffuse large B-cell lymphoma, pancreatic ductal 296 

adenocarcinoma, bladder cancer, PCa, and OV were collected in this study. Human 297 

plasma samples, including acute lymphoblastic leukemia (ALL), AML, T-ALL, 298 

normal plasma exosome, and blood disease, were also analyzed, as well as K562 299 

cells. Six of these tissues were new additions compared to the DPHL v1. Eyelid 300 

samples were obtained from the Second Affiliated Hospital of Zhejiang University 301 

School of Medicine, China. The ovary cohort was obtained from The Cancer Hospital 302 

of the University of Chinese Academy of Sciences. The OSCC, esophagus, T-ALL, 303 

and thymus cancer samples were collected at Amsterdam UMC/VU Medical Center, 304 

Amsterdam, and Erasmus University Medical Center. Sample details are provided in 305 

Table S1. 306 

To compare our libraries with the DPHL v1 and library-free method, we used the 307 

DIA data of a CRC cohort generated by Ge et al.27, which consists of 201 cancer 308 

samples, 40 para-cancer tissues, and 45 biological and technical replicates from 40 309 

CRC patients and four healthy controls. The detailed sample information is given in 310 

Table S2. 311 
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MS Data acquisition  312 

Among the newly added 586 DDA raw data files, 108 were derived from Dutch 313 

cohorts generated at the Jimenez lab and 404 from Chinese cohorts generated at the 314 

Guo lab. The pipeline for generating these DDA files coincided with that used for the 315 

DPHL v1. The DDA raw files were centroided and converted into mzXML using 316 

ProteoWizard58 (version 3.0.11579). Carbamidomethylation was set as fixed 317 

modification at cysteine residues; oxidation was set as variable modification at 318 

methionine residues. 319 

DIA data analysis 320 

The DIA raw files were submitted to DIA‐NN (1.7.15), a tool for DIA or 321 

SWATH proteomics data analysis55. Our four libraries were used as a reference, and 322 

no other fasta sequences were added. The library inference was set to “off”. All other 323 

parameters were kept to their default values. The tools we used for the DIA data 324 

analysis, as described above, are publicly available55. 325 

Machine learning 326 

The random forest analysis was performed with the R package “randomForest” 327 

(version 4.6.14). 1426 proteins were firstly selected as input features to build 1000 328 

trees with 5-fold cross validation and repeated 10 times to optimize the model. The 329 

Mean Decrease Accuracy was set 4 to 6, with step size of 0.5. The final performance 330 

was evaluated by mean accuracy (ACC) and mean area under curve (AUC) in a 331 

receiver operating characteristic curve across 5-folds.  332 
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Figure 1. 618 

 619 

Figure 1. Sample types and workflow for building DPHL v2. (A) Number and type 620 

of samples included in this study. The ones that were missing from DPHL v1 are 621 

highlighted in red. (B) Computational pipeline for building DPHL v2. (C) Overview 622 

of the number of identified proteins, peptides, and precursors using our four library 623 

variants. 624 
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Figure 2. 625 

 626 

Figure 2. Comparison of the four variants of DPHL v2 (i.e., RF, RS, IF, and IS) 627 

with DPHL v1 and PHL. The circular bars show the protein (A), peptide (C), and 628 

precursor identifications (E) of the six libraries. The UpSet plots show the shared and 629 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2023. ; https://doi.org/10.1101/2023.01.07.523067doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.07.523067
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

unique protein (B), peptide (D), and precursor identifications (F) of the six libraries. 630 

PHL, pan-human spectral library; DPHL v1, DIA pan-human library generated by 631 

Zhu et al; RF, reviewed fasta sequence & full-specific digestion mode; RS, reviewed 632 

fasta sequence & semi-specific digestion mode; IF, isoform fasta sequence & full-633 

specific digestion mode; IS, isoform fasta sequence & semi-specific digestion mode. 634 
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Figure 3. 652 

 653 

Figure 3. Comparison of the number of proteins (A) and peptides (B) identified with 654 

the same fasta sequence and the same digestion mode. (C) Percentage of proteins 655 

identified among DPHL v1 and our four libraries using hallmark gene sets, FDA-656 

approved drug targets, and tissue-specific or tissue-enriched/enhanced proteins from 657 

brain, esophagus, and ovary samples. 658 
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Figure 4. 664 

 665 

Figure 4. DIA analysis of CRC and benign samples. (A) Number of missing values 666 

obtained using the five libraries and library-free method. (B) Number of differentially 667 

expressed proteins between CRC and benign samples obtained using the five libraries 668 

and library-free method. Proteins with adjusted p-value < 0.01 and |FC| > 4 were 669 

selected as significantly differentially expressed. FC, fold change. (C) Protein 670 

identification overlaps across the six libraries. 671 
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Figure 5. 675 

 676 

Figure 5. Machine learning to identify potential CRC biomarkers. (A) 677 

Prioritization of 14 important variables.  (B) ROC plots for the training set (up) and 678 

the test set (down). (C) Performance of the model in the training set and test set. 679 
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Figure 6. 685 

 686 

Figure 6. SPTBN1 protein identification in our DIA search results. (A) Sequences 687 

of SPTBN1 and its isoform. Blue: sequences that were not identified; red: identified 688 

sequences. (B) The peak spectrum of peptide SSISGPLSPAYTGQVPYNYNQLEGR 689 

in our DIA raw file (obtained using Skyline).  690 
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