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Summary

A comprehensive pan-human spectral library is critical for biomarker discovery
using mass spectrometry (MS)-based proteomics. DPHL v1, a previous pan-human
library built from 1096 data-dependent acquisition (DDA) MS data of 16 human
tissue types, allows quantifying 10,943 proteins. However, a major limitation of
DPHL v1 is the lack of semi-tryptic peptides and protein isoforms, which are
abundant in clinical specimens. Here, we generated DPHL v2 from 1608 DDA-MS
data acquired using Orbitrap mass spectrometers. The data included 586 DDA-MS
newly acquired from 17 tissue types, while 1022 files were derived from DPHL v1.
DPHL v2 thus comprises data from 24 sample types, including several cancer types
(lung, breast, kidney, and prostate cancer, among others). We generated four variants
of DPHL v2 to include semi-tryptic peptides and protein isoforms. DPHL v2 was then
applied to a publicly available colorectal cancer dataset with 286 DIA-MS files. The
numbers of identified and significantly dysregulated proteins increased by at least
21.7% and 14.2%, respectively, compared with DPHL v1. Our findings show that the
increased human proteome coverage of DPHL v2 provides larger pools of potential

protein biomarkers.

Keywords
Targeted proteomics; Spectral library; Data-independent acquisition; Mass

spectrometry; Cancer; Colorectal cancer
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Introduction

Mass spectrometry (MS)-based quantitative proteomics is widely used for
protein biomarker discovery!=. The subsequent biomarker validation is often
performed with targeted proteomics methods, such as selected reaction monitoring
(SRM)* and parallel reaction monitoring (PRM)?°. Recently, biomarker discovery and
validation have been increasingly performed with targeted analysis of data-
independent acquisition (DIA) MS data®, an emerging strategy for high-throughput
proteomics analyses with a high level of reproducibility’. A spectral library containing
experimental peptide precursor information is crucial for SRM- and PRM-based
protein biomarker validation, as well as DIA-based biomarker discovery’. In recent
years, spectral libraries have been established for several organisms, such as human®
® mouse®, zebrafish!!, Arabidopsis thaliana?, and Escherichia coli*3. To support the
identification of new protein biomarkers, the comprehensiveness of a spectral library
is crucial.

The Human Proteome Project (HPP)* launched by Human Proteome
Organization (HUPO) has reported the community-based ten-year achievement of a
high-stringency proteome blueprint of 17,874 Protein Evidence 1 (PE1) proteins in
2020, covering 90.4% of the human proteome®®. A pan-human spectral library (PHL),
containing 149,130 peptide precursors and 10,322 proteins, was developed to analyze
Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) data
acquired on SCIEX TripleTOF Systems®. Another DIA pan-human library (DPHL v1)

for Orbitrap data comprises 289,237 peptide precursors and 10,943 proteins®.
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92  However, the proteins in these two libraries are proteotypic; protein isoforms are not
93 included. The isoforms of each protein family may result from post-translational
94  modifications, splice variants, proteolytic products, genetic variations, or somatic
95  recombination occurring during protein evolution'®, and participate in different
96  biological processes!’. Therefore, a specific protein isoform could be a valuable
97  biomarker. A spectral library with significant coverage of the human proteome and its
98  protein isoforms is thus needed. Additionally, previous studies demonstrated that only
99  ~10-15% of all the tryptic peptides from a protein sample can be identified when
100  about 50% of the protein identifications are based on a single tryptic peptide due to
101 the intrinsic chemical properties of tryptic peptides'®2°. Therefore, identifying more
102  peptides (e.g., non-tryptic peptides), preferably at low computational costs, would
103 increase the confidence in the proteins identified via tryptic peptides and increase the
104  overall number of identifications.
105 Here, we present a large DIA spectral library (DPHL v2), generated from 24
106 different sample types and available in four variants. DPHL v2 includes more peptide
107  precursors, peptides, and proteins than DPHL v1. It also provides higher coverage
108  ratios, particularly for brain-, esophagus-, and ovary-specific or -enriched proteins, as
109  well as FDA-approved drug targets. Two variants of DPHL v2 generated better
110 identifications of the hallmark gene sets than DPHL v1. Finally, using a publicly
111  available colorectal cancer (CRC) cohort, DPHL v2 provided larger numbers of
112 protein and differentially expressed protein identifications than DPHL v1 and library-

113 free method.
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114  Results and Discussion

115  Data sources for generating DPHL v2

116 A total of 1608 raw MS data files were collected to build our spectral library.

117  Among these, 586 files were newly generated from various samples, including tissue
118  biopsies of prostate cancer (PCa), hepatocellular carcinoma (HCC), triple-negative
119  breast cancer (TNBC), lung adenocarcinoma (LUAD), esophageal carcinoma, thyroid
120  diseases, eyelid tumors, glioblastoma multiforme (GBM), healthy brain tissues, oral
121 squamous cell carcinoma (OSCC), thymic diseases, ovarian cancer (OV), and cervix
122 cancer. Additionally, blood plasma samples from acute myelocytic leukemia (AML),
123 blood diseases, T-lineage acute lymphoblastic leukemia (T-ALL), and normal plasma
124  exosome were included. Human chronic myelogenous leukemia cell line K562 was
125  also included. Finally, the remaining 1022 files were derived from the DPHL v1 study
126 by Zhu et al’. The sample types and number of patients contributing to DPHL v2 are
127  summarized in Figure 1A and Table S1.

128  Four variants of the pan-human spectral libraries

129 All the 1608 raw files were centroided and converted into mzXML as previously
130  described®. These files were then combined to build our new spectral library. Two
131  different annotation files (i.e., reviewed and isoform-reviewed fasta files) were used
132 to search the mzXML spectra against two digestion modes (i.e., full-specific and

133 semi-specific) using MS-Fragger (version 3.0)?%. The reviewed fasta file was obtained
134  from the UniProt database?® (accessed on 17 Jul. 2020); it included 20,361 reviewed

135  human proteins and was used as the reference. The isoform-reviewed annotation file


https://doi.org/10.1101/2023.01.07.523067
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.07.523067; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

136 was also downloaded from UniProt (accessed on 5 Aug. 2020) and comprised 42,347
137 proteins, including 22,201 human isoforms. Philosopher? (version 3.2.9) was used for
138 library searching based on the spectra matches with a maximum of two missed

139  cleavages and a false discovery rate < 0.01 for spectra, peptides, and proteins. By

140  differently combining the two annotation files and the two digestion modes, we

141  generated four library variants: RF (reviewed fasta sequence & full-specific digestion
142 mode), RS (reviewed fasta sequence & semi-specific digestion mode), IF (isoform
143  fasta sequence & full-specific digestion mode), IS (isoform fasta sequence & semi-
144  specific digestion mode).

145 Next, in order to ensure the consistency of the results of different time gradients
146  of the mass spectrum, we used EasyPQP (version 0.1.9,

147  https://github.com/grosenberger/easypap) to anchor the CiRT?! peptides for retention

148  time (RT) normalization. Quality controls (QC) were then performed using an R

149  script with the criteria next described to remove data of low quality. First, only

150  precursors with multiple fragments (> 2) and a normalized RT range from -60 to 200
151  were retained. Second, fragments with a library intensity < 10 or a precursor charge of
152 +1 were removed. Finally, peptides with only one precursor were retained. However,
153  when a peptide had two precursors, we kept the one with the highest intensity if the
154  absolute difference of the normalized RT between the two precursors was > 5;

155  otherwise, both precursors were kept. When a peptide has more than two precursors,
156  the averaged normalized RTs of all precursors and their differences with respect to

157  their mean RT were calculated. Next, peptides with an absolute difference > 5 were
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158  excluded. When all the absolute values were > 5, the median normalized RT of all the
159  precursors and their difference from the median RT were further calculated: only the
160  peptides with a difference < 5 were then selected. The normalized RT correlations
161  (+2/+3 states of each peptide) after these filtering steps are shown in Figure S1.

162  Default parameters were used for all software unless otherwise indicated. The

163  computational pipeline is schematized in Figure 1B.

164  Characteristics of DPHL v2

165 We next evaluated DPHL v2 using DIALib-QC?* and found that all four variants
166 of our pan-human spectral library are of high quality (Figure S2-5). We also

167  characterized the four libraries in terms of peptide and protein identifications. As

168  shown in Figure 1C, the RF library includes 601,982 peptide precursors, 441,141

169  peptides, and 13,465 proteins; the IF library includes 604,748 peptide precursors,

170 443,150 peptides, and 14,375 proteins. IS, another isoform-based library, comprises
171 808,672 peptide precursors, 624,467 peptides, and 14,555 proteins. Finally, the RS
172 library contains 772,401 peptide precursors, 588,984 peptides, and 13,570 proteins.
173 We then evaluated the protein identifications of the four libraries for each of the 24
174  sample types. As shown in Figures S6-7, the brain had the highest number of total and
175  unique proteins among all sample types, possibly due to the larger number of brain
176  tissues included (n = 163).

177 Next, we compared our four libraries with the PHL and DPHL v1 and found that
178  our four libraries exhibited at least a 23.0% and 30.4% increase in protein coverage

179  compared to DPHL v1 and the PHL, respectively. Among our four libraries, the
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isoform-based ones (IS and IF) comprise relatively high numbers of proteins (Figure
2A). Similarly, our four libraries exhibit considerably larger numbers of peptide
(Figure 2C) and precursor (Figure 2E) identifications when compared to DPHL vl
and the PHL. In particular, the semi-specific digestion libraries (IS and RS) have the
most significant numbers of peptide and precursor identifications. As shown in Figure
2B, 2D, and 2F, 7262 proteins, 89,328 peptides, and 103,704 precursors are shared
among these six libraries, while 1,144 proteins, 165,041 peptides, and 253,673
precursors are shared only by our four libraries. These findings indicate that DPHL v2
provides higher coverage among precursors, peptides, and proteins than DPHL v1 and
the PHL.

We next compared the numbers of shared proteins and peptides between our four
library variants (i.e., between fasta files and digestion models) (Figure 3A, 3B). We
found that protein identifications were affected mainly by the fasta file, while peptide
identifications were affected by the digestion model. We also compared our four
libraries with DPHL v1 in terms of the enriched/specific proteins from three tissues
(brain, ovary, and esophagus; Figure 3C) obtained from the Human Protein Atlas

(https://www.proteinatlas.org/, data available from v21.0.proteinatlas.org). Our results

indicated that the coverages of our four libraries are superior to that of DPHL v1.
Similarly, our four libraries provided higher coverage of FDA-approved drug targets
than DPHL v1 (Figure 3C). In addition, the hallmark gene sets from the MSigDB v7.4

database (http://www.broad.mit.edu/gsea/msigdb/, accessed on 22 Nov. 2021)% 2

were analyzed using these five libraries. We found that RF and RS cover more than
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44% of the genes with well-defined biological states or processes, and both provide
better coverages than DPHL v1 (Figure 3C). However, fewer coverages were found in
the isoform-based libraries. One possible reason is that most genes from the hallmark
gene sets are reviewed.

Applicability of DPHL v2 for DIA targeted data analysis

To assess the applicability of DPHL v2, we used our four libraries, DPHL v1, or
a library-free method to analyze a CRC cohort, including 201 CRC cases, 40 benign
samples, and 45 biological/technical replicates?’. The missing values generated by our
four libraries or DPHL v1 were comparable. On the other hand, the library-free
method generated fewer missing values (Figure 4A). As shown in Figure 4B, the
number of proteins identified with any variant of DPHL v2 was significantly higher
than with DPHL v1 or the library-free method. A total of 978 proteins were identified
by all six methods, while 166 were shared by our four libraries only (Figure 4C).

In order to demonstrate the applicability of the library, we performed differential
expression analyses of the CRC data generated using the six methods described
above. Differential expressions were considered significant if their adjusted p-values
were < 0.01 and their log> (fold-change) absolute values were > 1. We obtained 1997
(RF), 1984 (RS), 2024 (1F), 1992 (1S), 1783 (DPHL v1), and 1737 (library-free) up-
regulated (adjusted p-value < 0.01 & logz (fold-change) > 1) proteins, and 330 (RF),
359 (RS), 346 (IF), 370 (IS), 255 (DPHL v1), and 230 (library-free) down-regulated
(adjust p-value < 0.01 & log> (fold-change) < -1) proteins (Figure 4B). Compared

with the DPHLvV1, the numbers of identified and significantly dysregulated proteins

10
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increased by at least 21.7% (RF) and 14.2% (RF). Compared with the analysis using
only SwissProt reviewed proteins sequences, 463 and 472 differentially expressed
protein isoforms were identified using IF and IS, respectively. Similarly, 94 and 92
proteins were dysregulated in the CRC tissues compared with the benign samples by
semi-specific digestion modes. These findings show that DPHL v2 allows identifying
a larger number of differentially expressed proteins or protein isoforms between
tumors and benign samples, providing more options for subsequent investigations.

We next used our four libraries and DPHL v1 to analyze the CRC cohort using
the sub-library strategy?’, which refines a pan-human spectral library based on the
tissue specificity. Compared with the conventional library search method, the sub-
library strategy improved our results in all aspects (Figure S8A-C). First, the missing
values were reduced by about 1% on average. The protein identifications increased by
22 (RF), 344 (RS), 103 (IF), 405 (IS), or 193 (DPHL v1). In the subsequent
differential expression analysis, the total number of dysregulated proteins increased
by 70 (RF), 163 (RS), 42 (IF), 203 (1S), and 20 (DPHL v1).

Finally, we built a random forest model based on the overlap dysregulated
proteins generated by the four libraries to find new biomarkers. The 241 samples with
1426 proteins were randomly divided into the training set (N = 200) and the test set
(N = 41). After a 5-fold cross validation, we identified 14 features that provided the
highest accuracy for colorectal cancer, including S100A11, CEACAMS6, GARSL,
CDYL2, POTEKP, SCGN, SNCG, S100B, SCG2, NCAM1, OGN, CD81, COL28A1,

CNRIP1 (Figure 5A). The area under the curve (AUC) of the training set and the test

11
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set achieved 1, 0.903 (Figure 5B), and the accuracy (ACC) achieved 0.988, 0.927,
respectively (Figure 5C). Among these, SI00A11%82°. CEACAMG6* 31, CDYL2%,
SCGN™*, SNCG** #, S100B%*, SCG2%" %, NCAM1*, OGN*, CD81*, CNRIP1%,
have been reported to be closely related to colorectal cancer. Three features (GARS1,
POTEKP, COL28A1) may be new biomarkers for colorectal cancer.
Analysis of protein isoforms and semi-tryptic peptides

We next checked whether this resource could be used to analyze specific protein
isoform. Among the dysregulated proteins from IF , we identified SPTBN1
(SPTBN1-long) and one of its isoforms (SPTBN1-short)*3. As reported in literature,
SPTBNL1 is significantly dysregulated and plays an essential role in liver cancer®*,
colorectal cancer, and breast cancer, among others*® 46, To assess the accuracy of the
identification, we showed the sequence of SPTBN1-long and SPTBN1-short
identified in the library, in addition to the common parts of the two sequences, our
library had also identified the peptide (TSSISGPLSPAYTGQVPYNYNQLEGR)
specific in SPTBN1-short (Figure 6A). The Skyline software (Skyline-daily version)
was used to show the peak spectrum of this peptide and a common peptide form these
two proteins within the DIA raw file (Figure 6B-C).

Regarding those were only characterized through semi-specific peptides in our
semi-specific libraries (IS and RS), including VWF, LMO7, ALDH2, NPEPL1,
NUAKZ1, and TPT1, many of them have important biologic implications. ADAM22 is
a new therapeutic option for treating metastatic brain disease and may be appropriate

for treatment of breast cancer*” %8, By analyzing mRNA expression profiles, Xin et al.

12


https://doi.org/10.1101/2023.01.07.523067
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.07.523067; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

made available under aCC-BY-NC-ND 4.0 International license.

found that ASPM is highly expressed in GBM, and patients with high ASPM
expression have poor prognoses®. LRP6 inhibits cell proliferation and delays tumor
growth in vivo, especially in colon, liver, breast, and pancreatic cancers®® >, CHD9
was reported as a potential biomarker for clear cell renal cell carcinoma®2. In addition,
FAIM2 promotes non-small cell lung cancer growth and bone metastasis formation by
regulating the epithelial-mesenchymal transformation process and the Wnt/p-catenin
signaling pathway®2. In our analysis, all these proteins showed significant differences
between tumor and non-tumor samples, indicating that DPHL v2 can assist with the
discovery of new potential protein biomarkers.
Conclusion

We present DPHL v2: four comprehensive spectral libraries (RF, RS, IF, and IS)
derived from 1608 DDA MS raw files, including 24 sample types. By identifying over
440,000 peptides and more than 14,000 proteins, DPHL v2 can confidently detect and
quantify more than 66.1% of the reviewed human proteins annotated by
UniProtKB/Swiss-Prot. Our results suggest that DPHL v2 could support protein
biomarker identification, especially for protein isoforms and semi-tryptic peptides.
DPHL v2 outperforms previous DIA libraries in the following aspects. Firstly, five
additional tissue types (oral cavity, thymus, esophagus, eyelid, and ovary) and one
blood plasma sample from T-ALL were included. Secondly, protein isoforms and
semi-trypsin digestion were used for library searching. In addition, these libraries are
compatible with various commonly used DIA tools, with or without format

transformation, such as OpenSWATH>*, DIA-NN>°, Skyline®%, and Spectronaut®’.

13
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Materials and Methods

All chemicals used in this study were purchased from Sigma. All MS-grade
reagents were acquired from Thermo Fisher Scientific (Waltham, MA).
Clinical samples

Formalin-fixed paraffin-embedded, fresh or fresh frozen tissue biopsies from
GBM, healthy human brain, eyelid tumor, thyroid disease, sarcoma, OSCC, thymus,
LUAD, TNBC, HCC, gastric cancer, diffuse large B-cell lymphoma, pancreatic ductal
adenocarcinoma, bladder cancer, PCa, and OV were collected in this study. Human
plasma samples, including acute lymphoblastic leukemia (ALL), AML, T-ALL,
normal plasma exosome, and blood disease, were also analyzed, as well as K562
cells. Six of these tissues were new additions compared to the DPHL v1. Eyelid
samples were obtained from the Second Affiliated Hospital of Zhejiang University
School of Medicine, China. The ovary cohort was obtained from The Cancer Hospital
of the University of Chinese Academy of Sciences. The OSCC, esophagus, T-ALL,
and thymus cancer samples were collected at Amsterdam UMC/VU Medical Center,
Amsterdam, and Erasmus University Medical Center. Sample details are provided in
Table S1.

To compare our libraries with the DPHL v1 and library-free method, we used the
DIA data of a CRC cohort generated by Ge et al.?’, which consists of 201 cancer
samples, 40 para-cancer tissues, and 45 biological and technical replicates from 40
CRC patients and four healthy controls. The detailed sample information is given in
Table S2.
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MS Data acquisition

Among the newly added 586 DDA raw data files, 108 were derived from Dutch
cohorts generated at the Jimenez lab and 404 from Chinese cohorts generated at the
Guo lab. The pipeline for generating these DDA files coincided with that used for the
DPHL v1. The DDA raw files were centroided and converted into mzXML using
ProteoWizard®® (version 3.0.11579). Carbamidomethylation was set as fixed
modification at cysteine residues; oxidation was set as variable modification at
methionine residues.
DIA data analysis

The DIA raw files were submitted to DIA-NN (1.7.15), a tool for DIA or
SWATH proteomics data analysis®®. Our four libraries were used as a reference, and
no other fasta sequences were added. The library inference was set to “off”. All other
parameters were kept to their default values. The tools we used for the DIA data
analysis, as described above, are publicly available®.
Machine learning

The random forest analysis was performed with the R package “randomForest”
(version 4.6.14). 1426 proteins were firstly selected as input features to build 1000
trees with 5-fold cross validation and repeated 10 times to optimize the model. The
Mean Decrease Accuracy was set 4 to 6, with step size of 0.5. The final performance
was evaluated by mean accuracy (ACC) and mean area under curve (AUC) in a
receiver operating characteristic curve across 5-folds.
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620  Figure 1. Sample types and workflow for building DPHL v2. (A) Number and type
621  of samples included in this study. The ones that were missing from DPHL v1 are
622  highlighted in red. (B) Computational pipeline for building DPHL v2. (C) Overview
623  of the number of identified proteins, peptides, and precursors using our four library
624  variants.
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627  Figure 2. Comparison of the four variants of DPHL v2 (i.e., RF, RS, IF, and IS)
628  with DPHL v1 and PHL. The circular bars show the protein (A), peptide (C), and

629  precursor identifications (E) of the six libraries. The UpSet plots show the shared and
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unique protein (B), peptide (D), and precursor identifications (F) of the six libraries.
PHL, pan-human spectral library; DPHL v1, DIA pan-human library generated by
Zhu et al; RF, reviewed fasta sequence & full-specific digestion mode; RS, reviewed
fasta sequence & semi-specific digestion mode; IF, isoform fasta sequence & full-

specific digestion mode; IS, isoform fasta sequence & semi-specific digestion mode.
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Figure 3. Comparison of the number of proteins (A) and peptides (B) identified with
the same fasta sequence and the same digestion mode. (C) Percentage of proteins
identified among DPHL v1 and our four libraries using hallmark gene sets, FDA-
approved drug targets, and tissue-specific or tissue-enriched/enhanced proteins from

brain, esophagus, and ovary samples.
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666  Figure 4. DIA analysis of CRC and benign samples. (A) Number of missing values
667  obtained using the five libraries and library-free method. (B) Number of differentially
668  expressed proteins between CRC and benign samples obtained using the five libraries
669  and library-free method. Proteins with adjusted p-value < 0.01 and |FC| > 4 were

670  selected as significantly differentially expressed. FC, fold change. (C) Protein

671  identification overlaps across the six libraries.
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Figure 5. Machine learning to identify potential CRC biomarkers. (A)
Prioritization of 14 important variables. (B) ROC plots for the training set (up) and

the test set (down). (C) Performance of the model in the training set and test set.
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Figure 6. SPTBN1 protein identification in our DIA search results. (A) Sequences

of SPTBNL1 and its isoform. Blue: sequences that were not identified; red: identified

sequences. (B) The peak spectrum of peptide SSISGPLSPAYTGQVPYNYNQLEGR

in our DIA raw file (obtained using Skyline).
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