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Abstract

A significant portion of the RNA produced from the human genome consists of long non-coding
RNAs (IncRNAs). These molecules tend to have lower levels of expression, are more specific to
certain tissues, and show greater variation in expression between individuals compared to
protein-coding messenger RNAs (mRNAs). LncRNAs have been linked with regulatory roles in
gene expression and genome architecture. There is growing evidence that IncRNAs play
important roles in many biological processes and diseases, and a number of IncRNAs have been
identified as potential therapeutic targets. Here, we report the identification and
characterization of the IncRNA landscape of vascular smooth muscle cells (VSMC). We used an
ensemble of bioinformatics tools to identify 329 novel IncRNAs from a large VSMC RNA-Seq
dataset. We found that majority of the novel IncRNAs are natural antisense transcripts of
protein-coding genes. In addition, we predicted cellular localization and potential miRNAs that
targets the novel IncRNAs and found that most localize in the cytoplasm and that miRNA target
site ranged from 2-889 sites on each novel IncRNA. Furthermore, we identified co-expressed
IncRNAs that correlate with the proliferation, migration and apoptosis of vascular smooth
muscle cells. These results suggest that we have identified a diverse set of previously unknown
IncRNAs that may be involved in important regulatory pathways in vascular smooth muscle
cells.
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Introduction

Long non-coding RNAs (IncRNAs) constitute a large proportion of the RNA pool transcribed from
the human genome.! They generally have lower expression levels, greater tissue-specificity in
expression, and greater variability in expression between individuals, than protein-coding
mRNAs.2®. There is growing evidence that IncRNAs play important roles in many biological
processes and diseases,” and a number of IncRNAs have been identified as potential
therapeutic targets.®1° However, there is still a lack of complete annotation of IncRNAs in
human and other species'! and our current understanding of their expression patterns and
biological roles is still rather incomplete.

Whole-genome RNA-sequencing (RNA-Seq) provides a means for identifying known and novel
IncRNAs (as well as other types of RNA). RNA-Seq of a number of different types of tissue has
been conducted by the GTEx Consortium and other investigators, and data from these efforts
have helped in gaining important biological insights on IncRNAs.*2 However, since tissue
samples generally consist of a mix of different types of cell and since the expression of some
IncRNAs can be cell-type specific,'* RNA-Seq of a single type of cell may provide a valuable
alternative approach for precise characterization of the IncRNA transcriptome of a given cell
type. This could be combined with phenotypic assays for the investigation of relationships
between IncRNA expression and cellular behavior.

Vascular smooth muscle cells (VSMCs) are a major cell type in arteries and play major roles in
vascular diseases, e.g. changes in VSMC proliferation, migration and apoptosis are key
processes in the pathogenesis of atherosclerosis, a common pathological condition that
underlies ischemic heart disease and contributes to the development of hypertension,
aneurysm and stroke.* Several IncRNAs have been shown to modulate VSMC functional
characteristics.> 1 However, it is plausible that there are still other IncRNAs that can also
influence VSMC behavior, which are yet to be identified.

In this study, we performed whole-genome RNA-Seq and behavior assays of a large collection of
VSMCs from different individuals (n=1,499), and used this large dataset to characterize the
VSMC IncRNA transcriptome and to systematically investigate relationships of the expression of
different IncRNAs with VSMC proliferation, migration and apoptosis, respectively.

Methods

VSMC isolation and storage

VSMCs were isolated from the artery of umbilical cords from 2016 donors, using a reported
method?’. Aliquots of VSMCs of passage 3 were either stored in freezing medium under liquid
nitrogen or in RNAlater solution (Sigma) at -20°C. Umbilical cord tissues used in this study were
collected and provided by the Anthony Nolan Trust with ethical approval and informed consent
of donor’s parents.
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VSMC behavior assays

Proliferation assay

Cells were seeded at a density of 5,000 cells per well in 0.2% gelatin-coated 96-well plates.
After overnight incubation, the cells were incubated with 10uM EdU for a period of 6 hours.
After this incubation, the cells were fixed with 3.7% formaldehyde for 15 minutes. EdU
incorporation was detected using the BaseClick EJU HTS 488 kit (Sigma, BCK-HTS488-20) using
the fluorophore 6-FAM, following the manufacturer’s protocol. Cells were then incubated with
1.6uM Hoechst 33342, and imaged on an Operetta CLS High-Content Analysis System (Perkin
Elmer) with a 10x air objective and 21 fields per well. Following imaging, image analysis using
Harmony 4.8 was performed. Firstly, the nuclei were segmented using the Hoechst 33342
channel followed by calculation of the intensity of 6-FAM staining. Cells with maximum 6-FAM
staining above a threshold of 2000 were classified as EdU-positive, whilst cells with maximum
intensity below 2000 were classified as EdU-negative. The EdU-positive cells were further
segregated into “high” and “low” categories based on intensity. Cells with maximum intensity
values >10,000 were classified as “high” whilst those with maximum intensity between 2000
and 10,000 were classified as low. The percentage of total cells for each category was
calculated.

Migration assay

Cells were seeded at a density of 1,500 cells per well in 0.2% gelatin-coated 96-well plates.
After incubation overnight, the cytoplasm of the cells was stained with 10uM CellTracker Green
CMFDA (ThermofFisher) following the manufacturer’s protocol, whilst the nuclei were stained
with 0.4uM Hoechst 33342. After staining, the cells were incubated in media containing 2%
foetal calf serum and 0.4uM Hoechst 33342. The cells were then imaged every 1 hour for 16
hours using an Operetta CLS High-Content Analysis System (Perkin Elmer) with a 10x air
objective and 21 fields per well. Image analysis was performed to segment the cell nuclei and
cytoplasm, followed by individual cell tracking over the course of the assay. Cells fully tracked
for the full 16 hours were used to calculate the straightness, speed, accumulated distance, and
displacement parameters using Harmony 4.8 (all cells with 2 or more consecutive time points
were also used to calculate the migration speed).

Apoptosis assay

We performed apoptosis assay on VSMCs from 1861 donors. Cells at passage 3 were seeded
into 96-well plates (CellCarrier Ultra, Perkin ElImer) coated with 0.2% gelatin at a density of 800
cells per well, with 4 replicate wells for cells from each donor. After overnight incubation, the
cells were stained with Hoechst 33342 (1.6uM) and propidium iodide (0.5uM), the latter of
which only stains membrane-compromised cells, and imaged on an Operetta CLS High-Content
Analysis System (Perkin Elmer) with a 10x air objective and 9 imaging fields. The plate was
removed from the instrument and the media replaced with media containing Hoechst 33342,
propidium iodide and the apoptosis inducer staurosporine (2.5uM). The plate was returned to
the Operetta CLS and incubated for 30 minutes before imaging the plate every 30 minutes for
16 hours. Upon completion of the assay, the images were analyzed using Harmony 4.8 software
(Perkin Elmer). The cell nuclei were first segmented using the Hoechst 33342 channel and
nuclear morphology and intensity parameters were calculated. The area of the nucleus was
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compared between the initial image and the 30- and 60-minute timepoints. Also, nuclear
fragmentation was assessed using the fragmentation index (the coefficient of variation in
nuclear Hoechst 33342 pixel intensity), and comparisons between the initial, pre-staurosporine
treatment images and the fragmentation index at 30 and 60 minutes post-staurosporine
treatment were made. Cells were also assessed for propidium iodide staining; those with
positive staining resulting from compromised cell membrane integrity were classified as
“dead”. The percentage of cells classified as “dead” at each time point were calculated and also
used to determine the time taken for 50% of the cells to become propidium iodide staining
positive.

RNA isolation, strand-specific RNA-Seq library preparation and sequencing

Total RNA was extracted from an aliquot of passage-3 VSMCs in RNAlater solution, with the use
of the Biobasic EZ-10 DNAaway RNA miniprep kit (Biobasic), according to the manufacturer’s
protocol with additional wash steps to ensure complete removal of residual salts from the
samples. RNA concentration and integrity was assessed by RNA BR and RNA IQ assays using a
Qubit4 instrument (ThermoFisher). Samples were used for RNA-sequencing if they had a
concentration >70ng/ul and an RNA integrity number (RIN) > 6.8. Analysis of the RNA samples
using a NanoDrop 8000 was also performed, with a 260:280 and 260:230 acceptance threshold
of >=2.

A strand specific library with rRNA removal was prepared from total RNA of each VSMC sample,
and 150bp paired-end sequencing at a 30 million read depth was performed using the lllumina
platform, carried out by Novogene.

RNA-Seq data quality control and mapping

Read quality was assessed with FastQC v0.11.5
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Adapters were trimmed with
BBMap v38.51 (https://www.osti.gov/biblio/1241166). STAR v2.7.1a'® was used to map reads
to the human reference genome file, Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa and
annotation file Homo_sapiens.GRCh38.100.gtf, both downloaded from Ensembl®® (Accessed
10/06/2020). The non-default STAR options used for read mapping were —twopassMode Basic,
—outSAMunmapped Within, and —limitSjdbInsertNsj 2000000.

Novel IncRNA identification pipeline
We implemented a pipeline outlined in Supplementary Figure | and briefly described below, to
identify novel IncRNAs.
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Transcript assembly and detection of candidate novel IncRNA

Mapped reads were assembled and merged with Stringtie v2.1.1.2° IncRNA annotation from
LNCipedia??, Incipedia_5_2 hg38.gtf (Accessed 03/08/2020) was combined with
Homo_sapiens.GRCh38.100.gtf using cuffmerge v2.2.1%2. The merged assembly was compared
to the combined Ensembl-LNCipedia annotation using GffCompare v0.12.123. Transcripts that
were 200 nt in length, had more than two exons, and whose GffCompare classification codes
were “i”, “u”, “x” were selected as candidate novel IncRNA. Transcript sequences were
extracted from Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa with GffRead v0.12.2%3

and SeqKit?4.

Filtration of candidate novel IncRNA

Sequences of candidate IncRNAs were assessed for coding potential with CPC?°>, CPAT?® and
PLEK?” and those reported as non-coding were selected. Also, the candidate IncRNAs were
filtered with FEELnc_filter.pl module with the option —-monoex=-1 to remove spurious
transcripts, and their coding potential assessed with FEELnc_codpot module with ensemble
protein_coding and IncRNA transcripts serving as training datasets.?® The sequences of
candidate IncRNAs were translated to all possible six frames and blasted against Uniprot?® and
Pfam3C databases using blast+ v2.9.0%!. Transcripts whose translated frames did not have any
significant (e-value 10x%0, alignment length 10, and amino acids and identity 95%) blast hits
were selected as non-coding. Transcripts that passed these six filtration steps and not currently
annotated in Ensembl Homo_sapiens.GRCh38.100.gtf and Incipedia_5_2 hg38.gtf were
considered novel IncRNAs.

Annotation of novel IncRNA

The novel IncRNAs were annotated with FEELnc_classifier.pl module?®.
Homo_sapiens.GRCh38.100.gtf served as reference annotation and the best matches were
selected. Further information on each transcript was extracted from the transcript GTF file and
added to the FEELnc classification using a custom R script.

In silico functional characterization of novel IncRNA transcripts

Subcellular localization analysis of novel IncRNA transcripts

We predicted the subcellular localization of the novel IncRNA transcripts using two online tools;
iLoc-IncRNA (Su et al 2018) (Accessed 18/03/21) and LocIncRNA (Wang et al 2021) (Accessed
18/03/21). iLoc-IncRNA predicts localization in four cell compartments; nucleus, cytoplasm,
ribosome and exosome while LocIncRNA predicts localization in just nucleus and cytoplasm. To
make the predictions from both tools comparable we classed ribosome and exosome
predictions by iLoc-IncRNA as cytoplasm. We selected only transcripts with consensus
predictions from both tools.

miRNA Target Prediction

We used Probability of Interaction by Target Accessibility (PITA) (Kertesz et al, 2007) to predict
novel INcRNAs that are targets of miRNAs. Human mature miRNAs were downloaded from
miRbase v22 (Kozomara et al, 2019) (accessed 04/06/2021). Default PITA settings were used to
predict the miRNA targets and only sites with AAG < 15 kcal/mol were considered.
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Gene expression quantification and normalization

We used kallisto3? to quantify gene expression. Transcript sequences of Stringtie merged reads
were extracted from Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa with GffRead,
indexed and each RNASeq sample was quantified with kallisto using the following options -b
100 —rf-stranded. The R package tximport v1.16.133 was used to obtain gene-level count of
expression. DESeq2 v1.28.0%* was used to normalize the gene expression data.

Correlation analysis
Spearman correlation coefficients were calculated using the R package psych (https://CRAN.R-
project.org/package=psych).

Weighted gene co-expression analysis (WGCNA)

Gene name and biotype of expressed genes were obtained with Biomartr v2.44.0%°. We then
extracted IncRNAs, including the novel IncRNAs we just discovered, from the gene expression
data. The IncRNA expression data and VSMC phenotype data was used as input for WGCNA
v1.693%, One sample was judged an outlier and removed based on sample clustering
dendrogram. After removing IncRNAs with excessive missing values, 16256 IncRNAs were used
for network analysis. We chose a power of 5 based on the scale free topology and mean
connectivity plots (Supplementary Figure Il and Ill). The network was constructed with the
WGCNA function, blockwiseModules with the following arguments networkType = “signed”,
corType = “bicor”, minModuleSize = 30, mergeCutHeight = 0.25. Module hub genes were
obtained with the function chooseTopHublnEachModule. Pearson correlation between module
eigengenes and VSMC phenotypes was calculated with the WGCNA function, cor and plotted
with the function, labeledHeatmap.

GO Term analysis of partner protein-coding genes of IncRNAs in different modules

Because most IncRNAs still lack functional annotation, we could not carry out gene ontology
analysis directly with IncRNAs assigned to different WGCNA modules. As a proxy, we performed
gene ontology analysis using protein-coding genes that are located nearby IncRNAs in the
genome (in this paper, we refer to these nearby protein-coding genes as partners). For each
module, partner protein-coding genes located within 10kb of the module’s IncRNAs were
obtained with BEDTools v 2.25.0 (Quinlan and Hall, 2010). The VSMC expression profile of
IncRNAs and their partner protein-coding genes were correlated. Partner protein-coding genes
with r > 4 (p-value £ 0.05) were used to perform gene ontology analysis with ToppGene
(accessed 12/08/2021) (Chen et al 2019). Redundant gene ontology terms were filtered out
with REVIGO (accessed 15/09/2021) (Supek et al. 2010) in order to make plots.

Results

Known and novel IncRNA detected in the VSMC transcriptome

In this study, we performed an RNA-Seq analysis on a large collection of vascular smooth
muscle cells (VSMCs) derived from umbilical arteries of different donors (n=1,486). In brief, a
strand specific library with rRNA removal was prepared for each sample, and 150bp paired-end
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sequencing at a 30 million read depth was performed using the lllumina platform. The RNA-Seq
generated an average of 47,077,173 raw reads per sample, with an average of 43,496,830 reads
after trimming and 93.07% of reads being uniquely mapped (Supplementary Table I).

From this RNA-Seq dataset, we detected transcripts from a total of 60,790 genes. Of these
60,790 genes, 32.8% were protein-coding genes, 28.1% were IncRNA genes, and the remainder
were pseudogenes, genes of other types of RNA (Figure 1 and Supplementary Table Il). As
described elsewhere, a multi-dimensional scaling (MDS) analysis comparing the transcriptomes
of our VSMC samples with reported transcriptomic data from human coronary artery smooth
muscle cells*” and transcriptomic data from the GTEx Portal'3 for other cell/tissue types showed
that our VSMC samples were very similar to human coronary artery smooth muscle cells but
dissimilar to other cell types.

Gene biotype

. Protein coding
IncRNA

. Processed pseudogene
Others

. Unprocessed pseudogene
Miscellaneous RNA
snRNA

[ mirna

TEC

Figure 1: The percentages of different types of genes detected in VSMCs in this study. TEC; To
be Experimentally Confirmed.

The use of a strand specific, directional library prepared from total RNA, with removal of the
abundant rRNAs to enrich non-rRNA transcripts, for RNA-Seq in our study made our data high
suitable for IncRNA discovery and analysis. We used an analytic pipeline described in
Supplementary Figure | to identify novel IncRNAs. The pipeline included methods that had been
previously used to identify INcRNAs3841 as well as multiple well-established software to confirm
that the IncRNAs identified had no strong coding potential and to verify that none of them
represented a coding mRNA for any protein recorded in the Uniprot or Pfam databases.

This pipeline found 329 novel IncRNAs and additionally detected 244 previously annotated
IncRNAs, in our VSMC RNA-Seq dataset (Supplementary Table Ill). Of the 329 novel IncRNAs,
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278 were genic transcripts and the remaining 51 were intergenic, with the vast majority being
antisense to their partner mRNA transcripts (Table 1). An analysis using FEELnc?® indicated that
the novel IncRNA transcripts detected encoded a total of 185 genes.

Table 1: Classification of novel IncRNAs
Novel VSMC IncRNAs transcripts

Intergenic (51) Genic (278)
Same Strand Convergent Divergent | Containing (39) Nested (135) Overlapping (104)
17 23 11 S AS S AS S AS
14 25 9 126 4 100

S, Same sense; AS, antisense.

572Using in silico tools we predicted cellular localization and potential miRNAs that targets the
novel IncRNAs. We obtained consensus localization predictions for 161 out of 329 novel
IncRNAs using iLoc-IncRNA (Su et al 2018) and LocIncRNA (Wang et al 2021). Fifteen novel
IncRNAs were predicted to localize in the nucleus while 146 were predicted to localize in the
cytoplasm (Supplementary Table VI). The proportion of IncRNA predicted to localize in the
cytoplasm and nucleus are similar to previous reports (Heesch et al 2014; Carlevaro-Fita and
Johnson, 2019). In addition, the predicted number of miRNAs that target sites in individual
novel IncRNAs ranged from 2 to 889 miRNAs per transcript (Supplementary Table VII).

Associations between IncRNA expression and VSMC behaviour

To test associations between the expression of the various IncRNAs and VSMC behavior, we
first carried out a Spearman correlation analysis of the expression value of each IncRNA in
relation to results from proliferation, migration and apoptosis assays, respectively, on VSMCs
from n=1,499 individuals in our VSMC bank. The analysis identified a total of 572 IncRNAs
whose expression highly significantly correlated with VSMC behavioral parameters (significance
threshold, correlation coefficients and P values are described in Supplementary Table IV). Some
of these IncRNAs have previously been implicated in VSMC biology, e.g. ANRIL has been
reported to promote VSMC migration*? and in agreement, its expression positively correlated
with VSMC migration in our study (Figure 2A), whereas H19 has been described to inhibit VSMC
apoptosis and our study observed an inverse association between H19 expression and VSMC
apoptosis. Additionally, our study showed associations of many other IncRNAs with various
VSMC behavior parameters (Supplementary Table 1V).
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Figure 2: Correlations of ANRIL and H19 with VSMC behavior parameters.

As it is expected that VSMC behavior is influenced by many IncRNAs concurrently, we
performed a weighted gene co-expression network analysis (WGCNA)3¢. The WGCNA algorithm
clustered the IncRNAs detected in our VSMC samples into 6 co-expression modules, which were
designated blue, brown, green, grey, turquoise, and yellow, respectively (Figure 3A, Table 2 and
Supplementary Table V). The green module had the smallest number of genes, whilst the grey
module consisted of the largest number of genes, noting that the WGCNA algorithm typically
assigns genes whose expression has little variation to the grey module.

Table 2: WGCNA modules and hub genes of VSMC IncRNAs

Module No. of genes Hub gene Symbol Description

Blue 504 ENSG00000229847 EMX20S EMNX2 opposite strand/antisense RNA
Brown 336 ENSG00000242125 SNHG3 small nucleolar RNA host gene 3
Green 47 ENSG00000269243 NA NA

Grey 12603 NA NA NA

Turquoise 2644 ENSG00000241743 NA NA

Yellow 122 ENSG00000204387 SNHG32 small nucleolar RNA host gene 32

NA; not available

The WGCNA analysis revealed significant associations of the co-expressed gene modules with
the various VSMC behavior parameters (Figure 3B). The strongest and statistically most
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significant association observed was an inverse correlation between the blue module and
apoptosis, especially the parameter TT50D (the length of time before 50% of the VSMCs were
found to have died after treatment with the apoptosis inducer staurosporine, r = 0.44, P = 1x10

2 Figure 3B).

To further assess the associations of gene modules with VSMC behavior, we used the WGCNA
package to examine the correlation between module membership (correlation between IncRNA

expression value and module membership eigengene value) and VSMC behavior association

(correlation between IncRNA expression value and VSMC behavioural parameter value). Again,
the blue module and TT50D showed the strongest correlation (r = 0.74, p = 1.7x10788)(Figure 4),
compared with the relationships of the other modules and VSMC phenotypes (Supplementary

Figure IV-VI).

A good number of partner protein-coding genes showed highly correlated expression profile

with IncRNAs (Supplementary Table VIII). Remarkably, gene ontology analysis of blue module

partner protein-coding genes revealed an enrichment in smooth muscle cell relevant terms

(Figure 3C and Supplementary Tables IX-XII). This highlights the strength of our proxy approach
and suggests that blue module IncRNAs effects on VSMC behaviour may be mediated through
their interactions with nearby protein-coding genes.
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Figure 3. Associations of IncRNA gene modules with VSMC behavior. A. Clustering dendrogram
of gene expression values based on topological overlap and module assignment from weighted
gene co-expression network analysis (WGCNA) of VSMC RNA-sequencing data. B. Heatmap
representation of correlations of gene modules with VSMC behavior parameters. Values shown
are correlation coefficients and p-values (in brackets). The prefix ME in each module name
stands for module eigengene. NA30m and NA60m: change in nuclear area at 30 and 60 minutes
post treatment with the apoptosis inducer staurosporine; NF30m and NF60m: change in
nuclear fragmentation index at 30 and 60 minutes post staurosporine-treatment; %DC4h and
%DC8h: the percentage of dead cells (propidium iodide positive) at 4 and 8 hours post
staurosporine-treatment; TT50D: the time in minutes for 50% of cells to become propidium
iodide positive post staurosporine-treatment. C. Biological process category of blue module GO
terms.
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Figure 4. Scatter plots of IncRNA-apoptosis association against module membership. The x-
axis represents module membership values and the y-axis represents INcRNA-TT50D correlation
values. TT50D: the time in minutes for 50% of cells to become propidium iodide positive post
staurosporine-treatment.


https://doi.org/10.1101/2023.01.06.523019
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.06.523019; this version posted January 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Prioritization of candidate blue module gene for experimental validation

To arrive at an IncRNA to characterize from the blue module, we focused those whose
expression profile was highly correlated with VSMC behaviour and whose gene module
membership value was high. In addition, we also examined their expression profiles on GTEx v8
(GTEx Consortium) and prioritized with high expression in tissues that contain smooth muscle
cells. By so doing we selected RP11-400K9.4 (ENSG00000237807) for future functional
characterization.

Discussion

As described earlier, our study discovered 329 IncRNAs that have never been reported in any
cell/tissue types. It is well established that the expression levels of IncRNAs are generally lower
than protein-coding mRNAs.?* Their lower abundance makes their more difficult to detect. For
IncRNA identification, our study benefited from the removal of rRNAs during RNA library
preparation prior to RNA-Seq, as rRNAs are highly abundant in total RNA samples and tend to
hinder the detection of other types RNAs in RNA-Seq. Furthermore, the RNA-Seq of our study
was performed specifically on VSMCs, rather than using tissue samples comprised of a mix of
different types of cells, therefore avoiding potential confounding from other cell types. It is
plausible that some or all of the novel IncRNAs identified in our study are unique to VSMCs,
raising the possibility that they might have specific roles in VSMCs.

Genetic variants on chromosome 9p21 are associated with several major cardiovascular
diseases including coronary artery disease (CAD), abdominal aortic aneurysm and intracranial
aneurysm?® 4. Although the 9p21 locus has received extensive interests as it was the first locus
found to be associated with CAD*® and its association with the disease is statistically more
significant than any other genetic loci,*® the biological mechanism underlying this genetic
association is still incompletely understood. Previous studies**~! have shown that the
expression of the IncRNA ANRIL (also known as CDKN2B-AS1) is influenced by CAD-associated
genetic variants at the 9p21 locus,*® %8 and it has been reported that ANRIL can promote
migration of VSMCs*? and induce apoptosis of a HEK 293 (human embryonic kidney) cell line>2.
In agreement, our study shows that the expression of ANRIL positively correlated with both
migration and apoptosis of VSMCs, providing further evidence supporting the role of this
IncRNA in modulating VSMC behavior.
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