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Abstract 

 
The development of a reference atlas of the healthy human body requires automated 

image segmentation of major anatomical structures across multiple organs based on 

spatial bioimages generated from various sources with differences in sample 

preparation. We present the setup and results of the “Hacking the Human Body” 

machine learning algorithm development competition hosted by the Human 

Biomolecular Atlas (HuBMAP) and the Human Protein Atlas (HPA) teams on the Kaggle 

platform. We showcase how 1,175 teams from 78 countries engaged in community-

driven, open-science code development that resulted in machine learning models which 

successfully segment anatomical structures across five organs using histology images 

from two consortia and that will be productized in the HuBMAP data portal to process 

large datasets at scale in support of Human Reference Atlas construction. We discuss 

the benchmark data created for the competition, major challenges faced by the 

participants, and the winning models and strategies. 

Introduction 

The creation of a human reference atlas (HRA) requires harmonization and analysis of 

massive amounts of imaging and other data to capture the organization and function of 

major anatomical structures and cell types1–3. A key task is the segmentation of major 

anatomical structures—from the whole body to the single-cell level. Functional tissue 

units (FTUs) are used as a “stepping stone” from the organ to the single cell level. FTUs 

are defined as the smallest tissue organization that performs a unique physiologic 
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function and is replicated multiple times in a whole organ. The spatial organization of 

FTUs matters and strongly impacts function. FTUs that are diseased have different cell 

type populations and possibly different sizes and shapes, or are altered in the number 

of FTUs within an organ. Several organ atlas efforts within the HuBMAP effort are now 

focusing on cell types, cell states, and biomarkers in specific FTUs. Being able to 

segment FTUs is an important part of identifying cell types and their gene/protein 

expression patterns within an FTU. 

To segment anatomical structures in histological tissue sections efficiently, human 

intelligence must be efficiently combined with machine intelligence to overcome several 

challenges: segmenting histological images manually is labor-intensive, there are 

challenges with inter-observer variability, and there might be subtle differences and 

details that cannot be recognized or may be missed by the human eye. In support of 

efficient and high-quality tissue segmentation, human-in-the-loop approaches have 

been implemented4,5. Here, human expertise is used to identify and prepare relevant 

image data; design, optimize, train, and run effective machine learning (ML) algorithms; 

and interpret results. Once high-quality ML training datasets are compiled, generation 

and federation pipelines are set up, ML algorithms can be trained and optimized to 

segment image data at scale. As new datasets are segmented and these ML 

segmentations are validated and/or improved by human experts, ML algorithm 

performance can be further improved using this additional training data. Over the last 

decade, much work has been done on segmenting histological images; most of this 

work focuses on single cell segmentation5 or target structures in a single organ4,6–8, 

including functional tissue units (FTUs). FTUs are defined as the smallest level of tissue 
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organization that performs a unique physiologic function9. To the best of our knowledge, 

there exist no ML algorithms that can segment FTUs across multiple organs in datasets 

from different laboratories.  

In 2021, the Human BioMolecular Atlas Program (HuBMAP) conducted a Kaggle 

competition10,11 that focussed exclusively on segmentation of renal glomeruli in PAS 

stained histological images of kidney tissue, engaging 1,200 teams from 60 countries. 

The winning model from this competition was validated and productized in the HuBMAP 

data portal; it is now being run on all kidney tissue data at scale. In parallel, the Human 

Protein Atlas (HPA)2 conducted two Kaggle competitions12–15 that focussed on 

classification of subcellular patterns in cultivated cells in microscope confocal images, 

engaging nearly 3,000 teams across the two competitions. In addition to the confocal 

images of cultivated cells, the HPA has also generated >10 million 

immunohistochemically stained images from all major tissues of the human body16.   

HuBMAP and HPA partnered to address two major challenges when constructing a 

Human Reference Atlas (HRA): (1) standardization of data coming from various sources 

(different sample preparation and staining protocol, different equipment readout, etc.) 

and (2) robust and generalized segmentation of various tissue types. The two teams 

hosted a joint competition on Google’s ML community platform, Kaggle17, inviting 

competitors to develop machine learning algorithms that correctly segment FTUs of 

different shapes and sizes across five organs. This paper details the competition design 

(Fig. 1) and highlights the major challenges of the competition and the strategies used 

by the winning teams. We also present an analysis of competition dynamics and code 

performance improvements by 1,175 teams making 39,568 submissions over the 3-
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month period. Analogous to the previous HuBMAP competition, solutions from the 

winning teams will be productized in the HuBMAP data portal and ultimately process 

large amounts of relevant data to extract biologically relevant knowledge that can be 

used to construct the human reference atlas. 

Results 

Competition Design and Performance Criteria 

The aim of the “Hacking the Human Body”18 competition was to develop machine 

learning algorithms for segmentation of functional tissue units in five human organs 

using histology images sourced from two different consortia, namely HuBMAP and HPA 

(Fig. 2). The competition was designed to build algorithms that are generalizable across 

multiple organs and robust across dataset differences such as image resolution 

differences, color differences, artifacts, staining differences etc. HPA’s primary interest 

in this competition is that models that can segment FTUs in tissue sections can pave 

the way for more quantitative analysis of the data generated for the Tissue Atlas section 

of the HPA, e.g., to understand differences in protein expression patterns within FTUs 

as donor sex, ethnicity, or age change, or comparison of expression patterns of different 

proteins in the same donors. Human Reference Atlas construction in HuBMAP and 

other consortia use FTUs to characterize local cell neighborhoods with well-defined 

physiologic functions; they are interested in capturing differences in FTU numbers, 

sizes, and shapes for different donor demographics in health and disease. Being able to 

segment FTUs in tissue sections in histology images is an important step for 

characterizing their morphology, cell types and gene/protein expression patterns. 
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The HPA and HuBMAP datasets cover five FTUs in five organs, namely renal glomeruli 

in kidney (renal corpuscle, UBERON:0001229), crypts in large intestine (crypt of 

Lieberkuhn of large intestine, UBERON:0001984), alveoli in lung (pulmonary alveolus,  

UBERON:0002299), white pulp in spleen (white pulp, UBERON:0001959), and 

glandular acini in prostate (prostate glandular acinus, UBERON:0004179). A dataset of 

880 images was compiled, containing 432 images from HPA and 448 images from 

HuBMAP. This dataset was split into a training dataset of 351 images, and a private and 

public test dataset of 529 images (see Table 1 for detailed breakdown). The HuBMAP 

dataset was preprocessed into a set of smaller tiled images (see Methods) to make 

HPA and HuBMAP datasets more comparable and to ensure teams could fully focus on 

developing machine learning algorithms rather than handling large format whole slide 

images (WSIs); providing image tiles also made the competition more equitable as 

computing requirements such as high RAM and high GPU access were not needed to 

develop code. Participants were allowed to use any external, publicly available data. All 

code submitted via the Kaggle submission portal was run on the public and private test 

set, leading to team rankings on the public and private leaderboards (see Methods). 

The algorithm performance is measured using the mean Dice coefficient on the test 

sets. The top-3 teams on the private leaderboard at the end of the competition win the 

performance prizes. Additionally, teams submitted entries to win the scientific prizes and 

the diversity prize (see Methods).  

The major challenge in this competition was to build ML code solutions that are trained 

on one type of staining (from HPA) and can generalize to cover other types of staining 

(from HuBMAP) during inference. Consequently, teams developed strategies to deal 
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with differences in terms of resolution, color, tissue thickness, etc. Additionally, teams 

had to optimize code for multiple organs, as lower performance on any organ would 

negatively impact the overall score. Other challenges included small training set size, 

uneven train/test split, and class imbalance, which motivated teams to build optimal 

solutions to extract maximum signal from the training data.  

  

Performance and Winning Strategies 

The winning team for the performance prize reached a mean Dice score of 0.835 on the 

private leaderboard, followed closely by the second (0.833) and third (0.832) place 

winners. The score drops by 0.005 for the fourth place solution, reaching a mean Dice 

score of 0.827. The top-3 teams made a combined total of 619 submissions throughout 

the 3-month competition period. In general, the teams found kidney and large intestine 

to be the easiest classes, followed by spleen, prostate, and lung. Lung was the most 

challenging class in the competition (see Supplementary Table 3), primarily due to the 

variations in alveoli segmentations as they contained both collapsed and uncollapsed 

alveoli, as well as the variations in cuts (elongated vs. circular). 

The main strategies that helped the teams to increase performance scores were data 

augmentation (geometric, color, distortions, scales) which involves artificially increasing 

the amount of data by adding many minor alterations to the original data, stain 

normalization (Vahadane method19,20), using external data for training, and pseudo 

labeling which involves adding increasingly confident label predictions from semi-

supervised training loop. All three winning teams used some version of all these 

strategies. Interestingly, the fourth place solution only used heavy stain normalization 

(reducing the importance of color in a model and forcing it to look for other cues in the 
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images) and no external data or pseudo labeling, and was able to reach a mean Dice 

score of 0.827. Additionally, vision transformers proved to be extremely efficient 

compared to traditional convolutional networks due to their ability to capture long-range 

dependencies. However, such models are more sensitive to hyperparameter tuning and 

data changes. The teams found SegFormer21 models to be the best performing vision 

transformers. Since the SegFormer license is not completely open-source, teams also 

explored other vision transformer models and found Co-scale conv-attentional image 

Transformer (CoaT)22 models to be an effective replacement which performed equally 

well, while Swin23 transformers performed poorly. Finally, the second place solution 

showed that using bio-relevant auxiliary tasks such as organ classification and pixel size 

prediction also helps boost performance. 

The first and third place winning teams also performed ablation studies (see 

Supplementary Tables 1 and 2) to assess the impact of different strategies on 

performance. The three most effective strategies were building ensembles of multiple 

models with at least one vision transformer model, using external data and pseudo 

labeling, and heavy data augmentation and/or stain normalization strategies. Team 3 

used pixel size adaptation and histogram matching to heavily boost performance. Team 

2 found that heavy encoders and networks with larger input resolutions worked better. 

Team 1 showed that while ensembles provide the best performance, the SegFormer 

mit-b4 model21,24 provides the best score (0.828) as a single model. This is an important 

result as ensembles are extremely resource intensive and can be impractical for some 

production settings. A single model combined with carefully selected image 

preprocessing strategies can be a good choice in production environments. Detailed 
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code implementations and documentation of the three winning solutions can be found 

on GitHub (see Code Availability). 

Participation Analysis using Meta Kaggle 
The competition ran from June 22, 2022 to September 22, 2022 and involved 1,517 

individual competitors from 78 countries that collaborated in 1,175 teams. For 286 

competitors, it was their first time participating in a Kaggle competition and 36 of them 

made the top-100 list on the private leaderboard. In total, the teams made 39,568 

submissions and created 922 public code notebooks. Additionally, the participants 

created 224 public discussion forum posts and made 943 discussion comments. These 

metrics help understand the truly collaborative and globally inclusive nature of Kaggle 

competitions where teams interact extensively to share code, data, and knowledge. 

Kaggle ranks all its users in five performance tiers based on their achievements and 

engagement on the platform, using their user Progression System25. In this competition, 

we had 22 Grand Masters, 103 Masters, 372 Experts, 559 Contributors, and 450 

Novices participating (performance tier data is missing in Meta Kaggle for 11 users). 

The top-2 winning teams included experienced software engineers with a passion for 

machine learning and computer vision. The team winning third place consisted of 

computer scientists, machine learning researchers and analysts. Many participants 

came from biomedical backgrounds as well and shared their domain expertise 

generously via the discussion forums.  

Fig. 3 graphs the dynamics of the three-month competition. Fig. 3a shows the number 

of teams and messages and the progression of top leaderboard scores over the 
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competition period. Note the sudden increase in the number of messages after the team 

merger deadline and winner announcement. The scores reached nearly 0.80 midway 

through the competition after which improvements were made through fine tuning 

solutions using techniques such as pseudo labels, using ensembles of multiple models, 

etc. Importantly, the public and private leaderboard scores remained similar throughout 

the competition leading to minimal shake-up at competition end and indicating a good 

dataset split between public test and private test datasets. Fig. 3b plots the 

performance tiers of participating users. Fig. 3c plots the number of submissions versus 

the highest private score; many of the 1,175 teams have few submissions with rather 

low scores; some teams have many submissions with high scores. Performance 

winners submitted 264 times (1st place), 100 times (2nd place), and 255 times (3rd 

place).  

Scientific and Diversity Prizes 
A total of six teams submitted their entries for the Scientific and Diversity prizes using a 

Google Form. The ten judges reviewed all submissions and graded them based on the 

rubric, ranking all submissions. Submission 5 and Submission 6 received the most 

points from all the judges for the two scientific prizes. Submission 5 focussed on 

showcasing differences between a convolution model and a vision transformer model, 

the latter achieving better performance as their bigger receptive field helps analyze 

images in a global context which is more suitable for medical image segmentation 

tasks. Additionally, it also showcased the importance of stain normalization in bridging 

the domain difference between the HPA and HuBMAP data. Submission 6 showcased 

the impact of noisy labels in the ground truth for training data and proposed a method to 
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dynamically relabel missing annotations and minimize the gap between noisy and clean 

labels, thereby boosting performance by 4% on the private leaderboard.   

All judges unanimously agreed Submission 1 should receive the Diversity and 

Presentation prize for building a team of diverse members and presenting their 

experiments and results in an extremely well documented and accessible manner.    

Discussion 
Building the Human Reference Atlas is an extremely challenging task that requires 

close collaboration by experts from different scientific domains to solve key data 

integration, modeling, and visualization challenges across spatial and temporal scales. 

Kaggle’s open-source and community-driven nature makes it possible to bring in 

experts from industry, academia, government; to try out algorithms that were originally 

developed for different application domains; and to discuss solutions and results 

publicly empowering many to develop innovative solutions. All data and code is shared 

openly as a benchmark for use in future algorithm performance exercises and 

comparisons.  Kaggle and other code competition platforms make it possible to share 

the burden of effective data preprocessing; run and compare thousands of ML 

algorithms in a very short period of time; and build on and advance these solutions 

collectively; something that is not possible at this speed and scale if research is 

performed in individual labs. 

The “Hacking the Human Body'' competition showcases the value of vision transformers 

in biological image processing, with all three winning teams building model ensembles 

consisting of some or all vision transformer models. This is in stark contrast to the 
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previous HuBMAP competition11 (concluded in May 2021) where all winning teams used 

only convolutional models, evincing the quick rise of transformer models in the field. 

Sourcing ground truth labels for supervised learning tasks, especially in biomedical 

domains, is an extremely time-consuming and expensive challenge. The participants 

used diverse techniques to overcome this challenge, including using additional 

unlabeled data and creating pseudo-labels for training iteratively to improve 

performance using a semi-supervised approach. This, in addition to clever data 

augmentation and normalization techniques, turned out to be the key to building 

generalized solutions that can be deployed at scale. 

While this competition provides several innovative and high-performing solutions, there 

exist several limitations of these models for real-world production use cases: 1) Since 

the models are trained on a small dataset, there is risk of model overfitting; 2) The 

vision transformer models, as teams realized via many iterations of experiments, are 

much more sensitive to hyperparameter tuning and data changes than the convolutional 

models; 3) Model ensembles are computationally expensive and might be impractical or 

inefficient for many production environments.  

Going forward, we plan to address the above-mentioned limitations by training and 

validating the models on more data, and compressing the large ensembles into single 

models. The code from the winning models will be productized and deployed in the 

HuBMAP data portal to process large amounts of tissue data and extract biological 

knowledge in support of Human Reference Atlas construction and usage. 
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Methods 
Competition and Prizes 

The “HuBMAP + HPA - Hacking the Human Body” competition was conducted on 

Google’s ML and data science community platform called Kaggle, from June 22, 2022, 

to September 22, 2022. The private leaderboard for identifying the three performance 

prize winners was finalized on September 26, 2022. The Judges prize winners were 

announced 3 weeks later, after a thorough review and discussion by the judges panel. 

The winners of the performance prize were awarded with a cash prize (US$15,000 for 

first place; US$10,000 for second place; US$5,000 for third place). The winners of the 

Judges’ prize were also awarded with a cash prize (US$10,000 each for two scientific 

prizes; US$10,000 for one diversity prize). 

Performance Prize 

A fast and efficient performance evaluation metric was required to score hundreds of 

submissions per day and a total of 39,568 over three months. The teams submitted their 

inference code, after training their models, on the Submission portal. The submitted 

code was then run over the public test set to rank the teams on the public leaderboard. 

The teams typically use this score to validate their models. The teams can make an 

unlimited number of submissions before the competition deadline, limited to 5 

submissions per day. On competition end, the teams can choose up to two solutions to 

submit as their final submissions, which are then scored on the private test set, which 

always remains inaccessible to the teams, to rank the teams on the private leaderboard. 

All scoring is done using the mean Dice score as the evaluation metric (see Evaluation 
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Metrics under Methods) and the top-3 teams on the private leaderboard are selected as 

winners for the performance prize. 

Judges’ Prize 

Judges' prizes were aimed to promote experimentation, diversity, and science 

communication. The scientific prizes aimed to motivate solutions that go beyond the 

Dice evaluation metric and are more experimental in nature, providing insight into the 

dataset and/or computational techniques. The diversity and presentation prize promoted 

inclusion and the effective communication of scientific results. The winners were 

determined by a panel of human judges using a predefined and publicly available 

evaluation rubric (see Supplementary Information) that was publicly available on the 

Kaggle competition website at competition start. 

Dataset Collection and Assembly 

All tissue data used in this study is from donors examined and identified by pathologists 

as pathologically unremarkable tissue that can be used to derive the function of healthy 

cells. As the focus of this work is on the identification of FTUs, all images used in this 

competition feature at least one FTU.  

HPA Data. The HPA data consists of immunohistochemistry images of 1 mm diameter 

tissue microarray cores and 4 µm thickness, stained with antibodies visualized with 3,3'-

diaminobenzidine (DAB) and counterstained hematoxylin (H)16,26. We retrieved over 7TB 

of public data from the HPA which comprised 23,610 images of 1 mm diameter tissue 

microarray (TMA) cores for the large intestine, 27,906 for kidney, 28,098 for lung, 

28,934 for prostate, and 27,474 for spleen. Given that the HRA aims to capture human 
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adults, we removed all images associated with patients below the age of 18. We 

computed sex, age, tissue region percentage per image and selected 500 public images 

that maximize sex and age diversity per organ, have at least 1 FTU, and have a tissue 

region percentage above a threshold value (where threshold value is 5% for lung and 

15% for kidney, spleen, large intestine, and prostate). The resulting dataset has 432 

public HPA images distributed across the five organs (Table 1). We further retrieved 

about 44GB of private (unpublished) data from the HPA which comprised 253 images 

for large intestine, 295 images for kidney, 291 images for lung, 265 images for prostate, 

and 290 images for spleen. This dataset was processed in the same way as the public 

HPA data. A total of 81 images were selected for the final private dataset. All images, 

both public and private, are 3,000 px x 3,000 px (with some exceptions as roughly 19 

images lie between 2,308 x 2,308 px and 3,070 x 3,070 px), and the diameter of each 

tissue area within an image is approximately 2,500 px x 2,500 px which corresponds to 

1 mm. Hence, the pixel size of the images in this dataset is roughly 0.4 µm. 

HuBMAP Data. Multiple teams within or affiliated with HuBMAP shared 257 periodic 

acid-Schiff (PAS)27 or hematoxylin and eosin (H&E)28 stain WSIs of healthy human 

tissue that has not been published. From these WSIs, 1mm x 1mm tiles were extracted 

to match the size of the HPA TMA core images. Minimum donor metadata for all WSIs 

used in this competition included organ name, sex, and age. The resulting dataset had 

448 image tiles distributed across the five organs and sourced from five different teams. 

All donors across all organs were above the age of 18, an exception being spleen which 

included younger donors of ages 0 through 18. The pixel size of images across different 

organs was 0.5 µm for kidney, 0.229 µm for large intestine, 0.756 µm for lung, 0.494 µm 
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for spleen, and 6.263 µm for prostate. The tissue slice thickness of all images in 

HuBMAP data was between 4-10 µm: 10 µm for kidney, 8 µm for large intestine, 4 µm 

for spleen, 5 µm for lung, and 5 µm for prostate. 

Dataset Sampling. Some images feature space without human tissue. We calculated 

the tissue region percentage for each image using Otsu’s29 thresholding. The specific 

threshold values for each organ were selected manually by analyzing the number of 

images available against different threshold values (Supplementary Figure 1). The 

values were selected such that images with very low actual tissue area are discarded, 

yet leaving a sufficient number of images to work with.  

We then constructed a dataset with similar numbers of donor samples across age 

groups and sex for all organs (Supplementary Figure 2a)--insofar possible given 

available HuBMAP and HPA data. Note that systematic sampling of healthy human 

organ tissue is non-trivial; while human donors do not mind giving up adipose tissue, 

getting tissue from other organs is often only possible if an organ transplant cannot be 

executed or a patient dies and the tissue is released for single-cell research. 

Consequently, the number of donors above the age of 50 is higher than those below 50, 

especially for the HPA data (Supplementary Figure 2b).  

Data Format. For consistency, all images are exported as TIF files and all 

segmentations are provided as run-length encoded (RLE) masks for efficient storage 

and submissions (along with original JSON files) to the teams. Note that the RLE 

versions of the segmentation masks are cleaner than the JSON masks, although 

differences are minor. The JSON versions are more raw and the annotations might 

have issues, like overlaps, that do not exist in the RLE copies but can also allow the 
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teams to distinguish between multiple adjacent FTUs which would all end up in the 

same mask with RLEs. 

Acquiring Ground Truth Labels and Final Dataset  

For four organs (except kidney), 1-3 trained pathologists and/or anatomists (with 

experience in segmentation and histology) per organ provided initial segmentations 

done manually. For the kidney, the winning model from the previous HuBMAP Kaggle 

competition was used to generate initial FTU segmentations for all HPA and HuBMAP 

kidney data which were then manually reviewed and corrected by a professional 

anatomist. 

All segmentations were verified and corrected through a final expert review process 

conducted by the lead pathologist for each organ. All images that were considered 

unsuitable were rejected. Partial FTUs were accepted, provided a human expert can 

segment it with confidence. All annotators, during the initial segmentation process as 

well as during the final review process, were given access to the images via an internal 

web-based segmentation tool (originally developed by the HPA team and further 

modified by the HuBMAP team). Please note that while extreme care was taken to get 

the best possible ground truth segmentations from experts, the labels do contain some 

noise, due to human bias, and existing issues were openly discussed on the public 

discussion forums of the competition.  

Final Dataset. The final dataset used in the competition contains 432 images from the 

HPA (including 351 public and 81 unpublished images with a total of 6,173 FTU 

annotations) and 448 unpublished images from HuBMAP (with a total of 6,728 FTU 
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annotations). All data is divided into three distinct datasets: a public training dataset 

containing all public HPA data (351 images), a public test dataset containing all 

unpublished HPA images (81 images) and HuBMAP images (209 images), and a 

private test dataset containing only HuBMAP images (239 images) (Fig. 1). The training 

dataset is openly accessible to the teams, while the test datasets remain hidden. 

Baseline Segmentation Model 

To ensure the task is neither too easy (i.e., nearly 100 percent accuracy is achieved 

within little effort) nor too hard or impossible to accomplish (i.e., a satisfying accuracy is 

impossible), initial runs using the winning algorithm from the first HuBMAP Kaggle 

competition, Tom, created a baseline model. The model was run on Indiana University’s 

Carbonate large-memory compute cluster, using the GPU partition which consists of 24 

Apollo 6500 GPU-accelerated nodes where each node is equipped with two Intel 6248 

2.5GHz 20-core CPUs. We used a single node with 300 GB of RAM and 2 Nvidia V100-

PCIE-32GB GPUs. 

The model required about 5 hours for training and nearly 20 minutes for the inference 

task. It achieved a mean Dice score of 0.76 and 0.53 on the private HPA data and 

HuBMAP data, respectively. The mean Dice value achieved across the total private test 

dataset (HPA and HuBMAP) is 0.57. The same model achieved a mean Dice value of 

about 0.95 for the task of segmenting renal glomeruli in kidney images in the first 

HuBMAP Kaggle competition. The results of this baseline model demonstrate the task is 

neither too easy nor too difficult, and there is a need for more generalizable algorithms. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2023.01.05.522764doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.05.522764
http://creativecommons.org/licenses/by/4.0/


Evaluation Metrics 

The metric used to rank the performance of the teams in the competition is mean Dice 

coefficient (also referred to as the mean Dice score). The Dice score compares the 

pixel-wise agreement between a predicted segmentation (PS) and its corresponding 

ground truth (GT) segmentation for an image: 2∗|𝐺𝐺𝐺𝐺∩𝑃𝑃𝑃𝑃|
|𝐺𝐺𝐺𝐺|+|𝑃𝑃𝑃𝑃|

. 

The leaderboard score used is the mean of the Dice coefficients for each image in the 

test set. It should be noted that calculation of Dice coefficient does not take into account 

separation between individual instances. Hence, in case multiple predicted FTUs 

overlap/merge, the Dice coefficient for that prediction may still be high while the FTU 

count may be incorrect (and might require further processing, either programmatic or 

manual, to separate the individual instances of FTUs).  

After extensive discussion of options with the Kaggle data scientists and machine 

learning experts from the panel of judges, the mean Dice coefficient was selected for 

performance prize ranking. While other metrics such as the mean Average Precision 

(mAP) might have been better suited for the problem, the Kaggle team recommended 

going forward with the mean Dice score, taking into account the nature of the dataset 

and timeline for the competition. Dice is a well-tested metric used in many competitions 

on the Kaggle platform and other metrics require much more testing by the Kaggle team 

to ensure participants cannot find loopholes and exploit vulnerabilities in the metric 

during the competition. Hence, while Dice score may not be the ideal metric30,31 in a 

production setting, it is a good enough metric to evaluate and compare solutions from 

Kaggle competitions. 
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Public and Private Leaderboards 

Kaggle ranks teams on two leaderboards–public leaderboard and private leaderboard–

each using a different subset of the test data, using the predetermined evaluation metric 

for the performance prize. The public leaderboard uses the public test data and the 

private leaderboard uses the private test data. The public leaderboard rankings and 

scores are visible to the teams and are used to validate their algorithms, providing 

feedback they can use to improve their algorithms. The private leaderboard rankings 

remain hidden to the teams until the end of the competition to ensure algorithms are not 

overfit to test data. The top-3 teams on the private leaderboard are considered as 

winners of the performance prizes. 

 

Participation Analysis 

At the conclusion of the competition, participation metadata becomes publicly available 

on Meta Kaggle32–Kaggle’s public data on competitions, users, submission scores and 

kernels. Meta Kaggle tables were initiated in 2015 and are updated daily with 

information on completed competitions. We use this data to understand how the 

“Hacking the Human Body” competition unfolded over its 3-month period. 

We use standard python packages for data science such as Pandas33, NumPy34, 

Matplotlib35, and Seaborn36 for running all analyses; creating all visualizations in 

Jupyter37 Notebooks. The analyses can be replicated for any competition on Meta 

Kaggle using the code we made available on GitHub (see Code Availability). 
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Figures 

 
Figure 1. Overview of competition setup. Tissue data for five organs (top row) 

collected within HPA and HuBMAP using different tissue harvesting and processing 

protocols are collected and divided into a public training, public test, and private test 

dataset. Kaggle teams use the public training data to train their models; they then 

submit the models to the Kaggle Submission Portal to receive performance scores 

computed using the public test data. At the end competition, when all teams submitted 

their best algorithm solutions, all solutions were run against the private test set to 

determine Performance Prize winners. 
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Figure 2. Exemplary tissue microarray cores with FTU segmentations outlined in 

red (top) and illustrations for all five FTUs (bottom). a. Glomerulus in the kidney. b. 

Crypt in the large intestine (top: perpendicular cross-section, bottom: lengthwise cross-

section). c. Alveolus in the lung. d. Glandular acinus in the prostate. e. White pulp in the 

spleen. 
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Figure 3. Competition dynamics over three months. a. Number of teams and 

messages and leaderboard high scores per day over competition period. b. Number of 

users by performance tier. c. Number of submissions vs. highest private leaderboard 

score for each of the 1,175 teams as a heatscatter. 
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Tables 
Table 1. Metadata for HPA data, both public and private, and HuBMAP data. All 
donors in the private HPA dataset are present in the public HPA dataset. All donors in 
the HuBMAP dataset are different from donors in the HPA dataset. 
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 # Images # Male/Female 
Unique Donors 

Donor Age 
Range 

# FTUs 

Public HPA Data     
kidney 99 5/3 28-73 337 
large intestine 58 3/4 47-84 3,107 
lung 48 4/4 21-78 188 
prostate 93 8/0 37-76 1,097 
spleen 53 4/4 21-82 167 
Public HPA Totals 351 24/15 21-84 4,896 
Private HPA Data     
kidney 19 4/3 28-70 69 
large intestine 18 3/4 47-84 892 
lung 14 3/4 43-78 66 
prostate 18 7/0 37-76 212 
spleen 12 3/3 21-74 38 
Private HPA Totals 81 20/14 21-84 1,277 
HPA Totals 432 29/17 21-84 6,173 
HuBMAP Data     
kidney 79 8/7 20-77 538 
large intestine 43 2/2 22-48 1,966 
lung 115 16/7 19-73 2,630 
prostate 98 10/0 18-57 1,202 
spleen 113 9/2 0-47 392 
HuBMAP Totals 448 45/18 0-77 6,728 
Totals 880 74/35 0-84 12,901 
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Table 2. Results for run time and accuracy from pilot run using baseline model.  
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Algorithm Training 
Time 
(seconds) 

Inference Time 
(seconds) 

Mean 
Dice 
(Private 
HPA) 

Mean Dice 
(HuBMAP) 

Mean Dice 
(Private 
HPA + 
HuBMAP)  

Tom  18,339 1,424 0.76 0.53 0.57 
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Supplementary Information 

Supplementary Figures 

 

Supplementary Figure 1. Tissue region percentage vs. number of images against 

different threshold values for public HPA data for all five organs. Final selected 

tissue region percentage thresholds: 5% for lung and 15% for other four organs. 
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Supplementary Figure 2. Tissue samples per organ and age for all 5 organs. a. 

Donor distribution color coded by male (blue) and female (red). b. Donor age and sex 

distribution color coded by HPA (purple) and HuBMAP (green).  
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Supplementary Notes  

Supplementary Notes 1. Judges’ Prizes Rubric 

1.1 Scientific Prize 

Kaggle teams were asked to investigate correlations between predicted FTUs (e.g., 

area and shape) and donor demographics (e.g., sex and age). The evaluation rubric 

further emphasized validation of methods and implementations, documentation of 

performance and limitations, novelty of solutions, and presentation of insights useful for 

generation of reference FTUs for inclusion into a Human Reference Atlas. Scientific 

Prize winners were identified by a panel of human experts who selected two teams to 

receive equal Scientific Prize amounts ($10,000 each) based on the submission’s 

contribution to science and demonstration of innovative approaches. The complete 

evaluation rubric, as presented below, consisted of eight criteria which were used by the 

judges to evaluate the winners. Each criterion consisted of ten points for a total of 80 

points. 

1. Are the statistical and modeling methods used to identify FTUs appropriate for 

the task? 

2. Are confidence scores and other metrics provided that help interpret the results 

achieved by the segmentation methods? 

3. Is the presented characterization of FTUs useful for understanding individual 

differences, e.g., the impact of donor sex and age on the shape, size or spatial 

distribution of FTUs? 
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4. Is it possible to predict FTU area size distribution, given age and sex information 

across all organs? 

5. Did the team validate their methods and algorithm implementations and provide 

information on algorithm performance and limitations? 

6. Did the team document their method and code appropriately? 

7. Did the team develop a creative or novel method to segment FTUs? 

8. Did the team provide insights that would be useful for generating reference FTUs 

for inclusion into a HUman Reference Atlas? 

1.2 Diversity and Presentation Prize 

The complete evaluation rubric, as presented below, consisted of three criteria which 

were used by the judges to evaluate the winner. Each criterion consisted of ten points 

for a total of 30 points. 

1. Does the team embrace diversity and equity, welcoming team members of 

different ages, genders, ethnicities, and with multiple backgrounds and 

perspectives? 

2. Did the authors effectively communicate the details of their method for 

segmenting FTUs, and the quality and limitations of their results? For example, 

did they use data visualizations to present algorithm setup, run, results and/or to 

provide insight into the comparative performance of different methods? Were 

these visualizations effective at communicating insights about their approach and 

results to experts and novice users? 

3. Are the important results easily understood by the average person? 
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Supplementary Notes 2. Alveoli segmentations in lung tissue 

Due to confusion regarding varied looking alveoli segmentations in lung tissue images, 

additional information was provided to the teams. The data included masks of both 

atelectatic (collapsed) and inflated alveoli (un-collapsed). The alveolar appearance on 

the image slides depends on how the tissue samples were prepared. For the inflated 

alveoli, which have a 3D ‘cup’ shaped structure, how the tissue is sectioned can cause 

variability as well. If the alveoli were sectioned in a horizontal manner, their shape will 

appear more like a complete circle. Whereas if the alveoli were sectioned vertically, they 

may appear more as a U-shape. 
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Supplementary Table Legends 

All tables can be accessed at Supplementary Tables. 
 
Supplementary Table 1. Team 1 Ablation Study. This table lists the ablation study 

done by the winning team, detailing the strategies that helped improve the performance 

of their solution.  
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SUPPLEMENTARY TABLE 1: Team 1 Ablation Study

Model Private Dice Public Dice Public Hubmap Dice Private Dice Gain
mit-b4 + lung annotation 0.79318 0.58097 0.07256
mit-b4 + prostate_downscale 0.68486 0.52633 0.05791
mit-b4 + albu dataaug + pseudo label(prostate, intestine) 0.72062 0.76051 0.54628 0.02496
mit-b4 + better resize 0.69566 0.52913 0.0108
mit-b4 + stain transfer(torchstain) 0.80838 0.80858 0.59243 0.00927
mit-b4 aug + brightness 0.82451 0.6046 0.00853
mit-b4 + external lung 0.82054 0.81345 0.60057 0.00622
mit-b4 + external spleen 0.81432 0.59722 0.00594
mit-b4 + trainval(351 images) 0.79799 0.80006 0.58248 0.00481
3 model ensemble 0.83238 0.82364 0.00417
mit-b4_optimized_threshold 0.82786 0.60663 0.00335
4 model ensemble + image ration divisor 32 0.8338 0.82622 0.00142
mit-b4 + pseudo label(prostate, intestine) patch 0.79911 0.58466 0.00112
6 model ensemble 0.83562 0.82716 0.00094
5 model ensemble 0.83468 0.82679 0.00088
mit-b4_0.8_1_1.2 0.82821 0.60718 0.00035
mit-b4 0.62695 0.47984 0
mit-b4 aug + HPA original (not stained) 0.81598 0.81661 -0.00456

* Sorted in increasing order of private gain.
** List is non-exhaustive and does not include all experiments by the team. Only listed is the subset of experiments team tracked and provided.
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Supplementary Table 2: Team 3 Ablation Study. This table lists the ablation study 

done by the team that won the third performance prize, detailing the strategies that 

helped improve the performance of their solution. 
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SUPPLEMENTARY TABLE 2: Team 3 Ablation Study

Model Out of Fold Dice Public HuBMAP Dice Private Dice Private Dice Gain
Baseline 0.71172 0.12115 0.15632 -
 + Pixel size adaptation 0.71588 0.22653 0.30195 0.14563
 + Histogram matching 0.70283 0.38732 0.48486 0.18291
 + 1 output channel + CutMix 0.75157 0.49483 0.64518 0.16032
 + Heavy augmentations 0.7695 0.51506 0.71187 0.06669
 + additional scalers + external GTEX data with pseudo labels 0.82142 0.58037 0.78352 0.07165
 + additional HPA data with pseudo labels 0.83633 0.598 0.81402 0.0305
 + Best 5 folds solo model 0.85405 0.60826 0.83332 0.0193
 + Ensemble 0.85428 0.60931 0.83419 0.00087

* Public HuBMAP Dice involves setting predictions for public test HPA data to zero.
** List is non-exhaustive and does not include all experiments by the team. Only listed is the subset of experiments team tracked and provided.
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Supplementary Table 3: Organ Dice Score Comparison for Teams Winning the 

Performance Prizes. This table provides the organ-wise breakdown of performance 

results for the three winning teams.  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2023.01.05.522764doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.05.522764
http://creativecommons.org/licenses/by/4.0/


Supplementary Table 3: Organ Dice Score Comparison for 3 Winning Teams

Team Kidney Large Intestine Lung Prostate Spleen Overall
First place winner 0.96401 0.89676 0.72664 0.85004 0.83862 0.83562
Second place winner 0.9665 0.88931 0.72092 0.84851 0.84157 0.83393
Third place winner 0.9491 0.86232 0.73599 0.84806 0.84211 0.83266

* All scores presented for private test set.
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