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Abstract

The development of a reference atlas of the healthy human body requires automated
image segmentation of major anatomical structures across multiple organs based on
spatial bioimages generated from various sources with differences in sample
preparation. We present the setup and results of the “Hacking the Human Body”
machine learning algorithm development competition hosted by the Human
Biomolecular Atlas (HUuBMAP) and the Human Protein Atlas (HPA) teams on the Kaggle
platform. We showcase how 1,175 teams from 78 countries engaged in community-
driven, open-science code development that resulted in machine learning models which
successfully segment anatomical structures across five organs using histology images
from two consortia and that will be productized in the HUBMAP data portal to process
large datasets at scale in support of Human Reference Atlas construction. We discuss
the benchmark data created for the competition, major challenges faced by the

participants, and the winning models and strategies.

Introduction

The creation of a human reference atlas (HRA) requires harmonization and analysis of
massive amounts of imaging and other data to capture the organization and function of
major anatomical structures and cell types'-3. A key task is the segmentation of major
anatomical structures—from the whole body to the single-cell level. Functional tissue
units (FTUs) are used as a “stepping stone” from the organ to the single cell level. FTUs

are defined as the smallest tissue organization that performs a unique physiologic
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function and is replicated multiple times in a whole organ. The spatial organization of
FTUs matters and strongly impacts function. FTUs that are diseased have different cell
type populations and possibly different sizes and shapes, or are altered in the number
of FTUs within an organ. Several organ atlas efforts within the HUBMAP effort are now
focusing on cell types, cell states, and biomarkers in specific FTUs. Being able to
segment FTUs is an important part of identifying cell types and their gene/protein

expression patterns within an FTU.

To segment anatomical structures in histological tissue sections efficiently, human
intelligence must be efficiently combined with machine intelligence to overcome several
challenges: segmenting histological images manually is labor-intensive, there are
challenges with inter-observer variability, and there might be subtle differences and
details that cannot be recognized or may be missed by the human eye. In support of
efficient and high-quality tissue segmentation, human-in-the-loop approaches have
been implemented*s. Here, human expertise is used to identify and prepare relevant
image data; design, optimize, train, and run effective machine learning (ML) algorithms;
and interpret results. Once high-quality ML training datasets are compiled, generation
and federation pipelines are set up, ML algorithms can be trained and optimized to
segment image data at scale. As new datasets are segmented and these ML
segmentations are validated and/or improved by human experts, ML algorithm
performance can be further improved using this additional training data. Over the last
decade, much work has been done on segmenting histological images; most of this
work focuses on single cell segmentation® or target structures in a single organ*5-8,

including functional tissue units (FTUs). FTUs are defined as the smallest level of tissue
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organization that performs a unique physiologic function®. To the best of our knowledge,
there exist no ML algorithms that can segment FTUs across multiple organs in datasets

from different laboratories.

In 2021, the Human BioMolecular Atlas Program (HUBMAP) conducted a Kaggle
competition®! that focussed exclusively on segmentation of renal glomeruli in PAS
stained histological images of kidney tissue, engaging 1,200 teams from 60 countries.
The winning model from this competition was validated and productized in the HuBMAP
data portal; it is now being run on all kidney tissue data at scale. In parallel, the Human
Protein Atlas (HPA)? conducted two Kaggle competitions??-%5 that focussed on
classification of subcellular patterns in cultivated cells in microscope confocal images,
engaging nearly 3,000 teams across the two competitions. In addition to the confocal
images of cultivated cells, the HPA has also generated >10 million
immunohistochemically stained images from all major tissues of the human body?¢.
HuUBMAP and HPA partnered to address two major challenges when constructing a
Human Reference Atlas (HRA): (1) standardization of data coming from various sources
(different sample preparation and staining protocol, different equipment readout, etc.)
and (2) robust and generalized segmentation of various tissue types. The two teams
hosted a joint competition on Google’s ML community platform, Kaggle'’, inviting
competitors to develop machine learning algorithms that correctly segment FTUs of
different shapes and sizes across five organs. This paper details the competition design
(Fig. 1) and highlights the major challenges of the competition and the strategies used
by the winning teams. We also present an analysis of competition dynamics and code

performance improvements by 1,175 teams making 39,568 submissions over the 3-
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month period. Analogous to the previous HUBMAP competition, solutions from the
winning teams will be productized in the HUBMAP data portal and ultimately process
large amounts of relevant data to extract biologically relevant knowledge that can be

used to construct the human reference atlas.
Results

Competition Design and Performance Criteria

The aim of the “Hacking the Human Body™® competition was to develop machine
learning algorithms for segmentation of functional tissue units in five human organs
using histology images sourced from two different consortia, namely HUBMAP and HPA
(Fig. 2). The competition was designed to build algorithms that are generalizable across
multiple organs and robust across dataset differences such as image resolution
differences, color differences, artifacts, staining differences etc. HPA’s primary interest
in this competition is that models that can segment FTUs in tissue sections can pave
the way for more quantitative analysis of the data generated for the Tissue Atlas section
of the HPA, e.g., to understand differences in protein expression patterns within FTUs
as donor sex, ethnicity, or age change, or comparison of expression patterns of different
proteins in the same donors. Human Reference Atlas construction in HUBMAP and
other consortia use FTUs to characterize local cell neighborhoods with well-defined
physiologic functions; they are interested in capturing differences in FTU numbers,
sizes, and shapes for different donor demographics in health and disease. Being able to
segment FTUs in tissue sections in histology images is an important step for

characterizing their morphology, cell types and gene/protein expression patterns.
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The HPA and HUBMAP datasets cover five FTUs in five organs, namely renal glomeruli
in kidney (renal corpuscle, UBERON:0001229), crypts in large intestine (crypt of
Lieberkuhn of large intestine, UBERON:0001984), alveoli in lung (pulmonary alveolus,
UBERON:0002299), white pulp in spleen (white pulp, UBERON:0001959), and
glandular acini in prostate (prostate glandular acinus, UBERON:0004179). A dataset of
880 images was compiled, containing 432 images from HPA and 448 images from
HUBMAP. This dataset was split into a training dataset of 351 images, and a private and
public test dataset of 529 images (see Table 1 for detailed breakdown). The HUBMAP
dataset was preprocessed into a set of smaller tiled images (see Methods) to make
HPA and HUBMAP datasets more comparable and to ensure teams could fully focus on
developing machine learning algorithms rather than handling large format whole slide
images (WSIs); providing image tiles also made the competition more equitable as
computing requirements such as high RAM and high GPU access were not needed to
develop code. Participants were allowed to use any external, publicly available data. All
code submitted via the Kaggle submission portal was run on the public and private test
set, leading to team rankings on the public and private leaderboards (see Methods).
The algorithm performance is measured using the mean Dice coefficient on the test
sets. The top-3 teams on the private leaderboard at the end of the competition win the
performance prizes. Additionally, teams submitted entries to win the scientific prizes and
the diversity prize (see Methods).

The major challenge in this competition was to build ML code solutions that are trained
on one type of staining (from HPA) and can generalize to cover other types of staining

(from HUBMAP) during inference. Consequently, teams developed strategies to deal
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with differences in terms of resolution, color, tissue thickness, etc. Additionally, teams
had to optimize code for multiple organs, as lower performance on any organ would
negatively impact the overall score. Other challenges included small training set size,
uneven train/test split, and class imbalance, which motivated teams to build optimal

solutions to extract maximum signal from the training data.

Performance and Winning Strategies

The winning team for the performance prize reached a mean Dice score of 0.835 on the
private leaderboard, followed closely by the second (0.833) and third (0.832) place
winners. The score drops by 0.005 for the fourth place solution, reaching a mean Dice
score of 0.827. The top-3 teams made a combined total of 619 submissions throughout
the 3-month competition period. In general, the teams found kidney and large intestine
to be the easiest classes, followed by spleen, prostate, and lung. Lung was the most
challenging class in the competition (see Supplementary Table 3), primarily due to the
variations in alveoli segmentations as they contained both collapsed and uncollapsed
alveoli, as well as the variations in cuts (elongated vs. circular).

The main strategies that helped the teams to increase performance scores were data
augmentation (geometric, color, distortions, scales) which involves artificially increasing
the amount of data by adding many minor alterations to the original data, stain
normalization (Vahadane method'®2%), using external data for training, and pseudo
labeling which involves adding increasingly confident label predictions from semi-
supervised training loop. All three winning teams used some version of all these
strategies. Interestingly, the fourth place solution only used heavy stain normalization

(reducing the importance of color in a model and forcing it to look for other cues in the
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images) and no external data or pseudo labeling, and was able to reach a mean Dice
score of 0.827. Additionally, vision transformers proved to be extremely efficient
compared to traditional convolutional networks due to their ability to capture long-range
dependencies. However, such models are more sensitive to hyperparameter tuning and
data changes. The teams found SegFormer?' models to be the best performing vision
transformers. Since the SegFormer license is not completely open-source, teams also
explored other vision transformer models and found Co-scale conv-attentional image
Transformer (CoaT)?? models to be an effective replacement which performed equally
well, while Swin? transformers performed poorly. Finally, the second place solution
showed that using bio-relevant auxiliary tasks such as organ classification and pixel size
prediction also helps boost performance.

The first and third place winning teams also performed ablation studies (see
Supplementary Tables 1 and 2) to assess the impact of different strategies on
performance. The three most effective strategies were building ensembles of multiple
models with at least one vision transformer model, using external data and pseudo
labeling, and heavy data augmentation and/or stain normalization strategies. Team 3
used pixel size adaptation and histogram matching to heavily boost performance. Team
2 found that heavy encoders and networks with larger input resolutions worked better.
Team 1 showed that while ensembles provide the best performance, the SegFormer
mit-b4 model?*2* provides the best score (0.828) as a single model. This is an important
result as ensembles are extremely resource intensive and can be impractical for some
production settings. A single model combined with carefully selected image

preprocessing strategies can be a good choice in production environments. Detailed
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code implementations and documentation of the three winning solutions can be found

on GitHub (see Code Availability).

Participation Analysis using Meta Kaggle
The competition ran from June 22, 2022 to September 22, 2022 and involved 1,517

individual competitors from 78 countries that collaborated in 1,175 teams. For 286
competitors, it was their first time participating in a Kaggle competition and 36 of them
made the top-100 list on the private leaderboard. In total, the teams made 39,568
submissions and created 922 public code notebooks. Additionally, the participants
created 224 public discussion forum posts and made 943 discussion comments. These
metrics help understand the truly collaborative and globally inclusive nature of Kaggle

competitions where teams interact extensively to share code, data, and knowledge.

Kaggle ranks all its users in five performance tiers based on their achievements and
engagement on the platform, using their user Progression System?. In this competition,
we had 22 Grand Masters, 103 Masters, 372 Experts, 559 Contributors, and 450
Novices participating (performance tier data is missing in Meta Kaggle for 11 users).
The top-2 winning teams included experienced software engineers with a passion for
machine learning and computer vision. The team winning third place consisted of
computer scientists, machine learning researchers and analysts. Many participants
came from biomedical backgrounds as well and shared their domain expertise

generously via the discussion forums.

Fig. 3 graphs the dynamics of the three-month competition. Fig. 3a shows the number

of teams and messages and the progression of top leaderboard scores over the
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competition period. Note the sudden increase in the number of messages after the team
merger deadline and winner announcement. The scores reached nearly 0.80 midway
through the competition after which improvements were made through fine tuning
solutions using techniques such as pseudo labels, using ensembles of multiple models,
etc. Importantly, the public and private leaderboard scores remained similar throughout
the competition leading to minimal shake-up at competition end and indicating a good
dataset split between public test and private test datasets. Fig. 3b plots the
performance tiers of participating users. Fig. 3c plots the number of submissions versus
the highest private score; many of the 1,175 teams have few submissions with rather
low scores; some teams have many submissions with high scores. Performance
winners submitted 264 times (15t place), 100 times (2" place), and 255 times (3

place).

Scientific and Diversity Prizes

A total of six teams submitted their entries for the Scientific and Diversity prizes using a
Google Form. The ten judges reviewed all submissions and graded them based on the
rubric, ranking all submissions. Submission 5 and Submission 6 received the most
points from all the judges for the two scientific prizes. Submission 5 focussed on
showcasing differences between a convolution model and a vision transformer model,
the latter achieving better performance as their bigger receptive field helps analyze
images in a global context which is more suitable for medical image segmentation
tasks. Additionally, it also showcased the importance of stain normalization in bridging
the domain difference between the HPA and HUBMAP data. Submission 6 showcased

the impact of noisy labels in the ground truth for training data and proposed a method to
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dynamically relabel missing annotations and minimize the gap between noisy and clean
labels, thereby boosting performance by 4% on the private leaderboard.

All judges unanimously agreed Submission 1 should receive the Diversity and
Presentation prize for building a team of diverse members and presenting their

experiments and results in an extremely well documented and accessible manner.

Discussion

Building the Human Reference Atlas is an extremely challenging task that requires
close collaboration by experts from different scientific domains to solve key data
integration, modeling, and visualization challenges across spatial and temporal scales.
Kaggle’s open-source and community-driven nature makes it possible to bring in
experts from industry, academia, government; to try out algorithms that were originally
developed for different application domains; and to discuss solutions and results
publicly empowering many to develop innovative solutions. All data and code is shared
openly as a benchmark for use in future algorithm performance exercises and
comparisons. Kaggle and other code competition platforms make it possible to share
the burden of effective data preprocessing; run and compare thousands of ML
algorithms in a very short period of time; and build on and advance these solutions
collectively; something that is not possible at this speed and scale if research is
performed in individual labs.

The “Hacking the Human Body" competition showcases the value of vision transformers
in biological image processing, with all three winning teams building model ensembles

consisting of some or all vision transformer models. This is in stark contrast to the
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previous HUBMAP competition? (concluded in May 2021) where all winning teams used
only convolutional models, evincing the quick rise of transformer models in the field.
Sourcing ground truth labels for supervised learning tasks, especially in biomedical
domains, is an extremely time-consuming and expensive challenge. The participants
used diverse techniques to overcome this challenge, including using additional
unlabeled data and creating pseudo-labels for training iteratively to improve
performance using a semi-supervised approach. This, in addition to clever data
augmentation and normalization techniques, turned out to be the key to building
generalized solutions that can be deployed at scale.

While this competition provides several innovative and high-performing solutions, there
exist several limitations of these models for real-world production use cases: 1) Since
the models are trained on a small dataset, there is risk of model overfitting; 2) The
vision transformer models, as teams realized via many iterations of experiments, are
much more sensitive to hyperparameter tuning and data changes than the convolutional
models; 3) Model ensembles are computationally expensive and might be impractical or
inefficient for many production environments.

Going forward, we plan to address the above-mentioned limitations by training and
validating the models on more data, and compressing the large ensembles into single
models. The code from the winning models will be productized and deployed in the
HUBMAP data portal to process large amounts of tissue data and extract biological

knowledge in support of Human Reference Atlas construction and usage.
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Methods

Competition and Prizes

The “HUBMAP + HPA - Hacking the Human Body” competition was conducted on
Google’s ML and data science community platform called Kaggle, from June 22, 2022,
to September 22, 2022. The private leaderboard for identifying the three performance
prize winners was finalized on September 26, 2022. The Judges prize winners were
announced 3 weeks later, after a thorough review and discussion by the judges panel.
The winners of the performance prize were awarded with a cash prize (US$15,000 for
first place; US$10,000 for second place; US$5,000 for third place). The winners of the
Judges’ prize were also awarded with a cash prize (US$10,000 each for two scientific

prizes; US$10,000 for one diversity prize).

Performance Prize

A fast and efficient performance evaluation metric was required to score hundreds of
submissions per day and a total of 39,568 over three months. The teams submitted their
inference code, after training their models, on the Submission portal. The submitted
code was then run over the public test set to rank the teams on the public leaderboard.
The teams typically use this score to validate their models. The teams can make an
unlimited number of submissions before the competition deadline, limited to 5
submissions per day. On competition end, the teams can choose up to two solutions to
submit as their final submissions, which are then scored on the private test set, which
always remains inaccessible to the teams, to rank the teams on the private leaderboard.

All scoring is done using the mean Dice score as the evaluation metric (see Evaluation


https://doi.org/10.1101/2023.01.05.522764
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.05.522764; this version posted January 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Metrics under Methods) and the top-3 teams on the private leaderboard are selected as

winners for the performance prize.

Judges’ Prize

Judges' prizes were aimed to promote experimentation, diversity, and science
communication. The scientific prizes aimed to motivate solutions that go beyond the
Dice evaluation metric and are more experimental in nature, providing insight into the
dataset and/or computational techniques. The diversity and presentation prize promoted
inclusion and the effective communication of scientific results. The winners were
determined by a panel of human judges using a predefined and publicly available
evaluation rubric (see Supplementary Information) that was publicly available on the

Kaggle competition website at competition start.

Dataset Collection and Assembly

All tissue data used in this study is from donors examined and identified by pathologists
as pathologically unremarkable tissue that can be used to derive the function of healthy
cells. As the focus of this work is on the identification of FTUs, all images used in this

competition feature at least one FTU.

HPA Data. The HPA data consists of immunohistochemistry images of 1 mm diameter
tissue microarray cores and 4 pum thickness, stained with antibodies visualized with 3,3'-
diaminobenzidine (DAB) and counterstained hematoxylin (H)626. We retrieved over 7TB
of public data from the HPA which comprised 23,610 images of 1 mm diameter tissue
microarray (TMA) cores for the large intestine, 27,906 for kidney, 28,098 for lung,

28,934 for prostate, and 27,474 for spleen. Given that the HRA aims to capture human
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adults, we removed all images associated with patients below the age of 18. We
computed sex, age, tissue region percentage per image and selected 500 public images
that maximize sex and age diversity per organ, have at least 1 FTU, and have a tissue
region percentage above a threshold value (where threshold value is 5% for lung and
15% for kidney, spleen, large intestine, and prostate). The resulting dataset has 432
public HPA images distributed across the five organs (Table 1). We further retrieved
about 44GB of private (unpublished) data from the HPA which comprised 253 images
for large intestine, 295 images for kidney, 291 images for lung, 265 images for prostate,
and 290 images for spleen. This dataset was processed in the same way as the public
HPA data. A total of 81 images were selected for the final private dataset. All images,
both public and private, are 3,000 px x 3,000 px (with some exceptions as roughly 19
images lie between 2,308 x 2,308 px and 3,070 x 3,070 px), and the diameter of each
tissue area within an image is approximately 2,500 px x 2,500 px which corresponds to

1 mm. Hence, the pixel size of the images in this dataset is roughly 0.4 pum.

HuBMAP Data. Multiple teams within or affiliated with HUBMAP shared 257 periodic
acid-Schiff (PAS)?” or hematoxylin and eosin (H&E)?® stain WSIs of healthy human
tissue that has not been published. From these WSIs, 1mm x 1mm tiles were extracted
to match the size of the HPA TMA core images. Minimum donor metadata for all WSIs
used in this competition included organ name, sex, and age. The resulting dataset had
448 image tiles distributed across the five organs and sourced from five different teams.
All donors across all organs were above the age of 18, an exception being spleen which
included younger donors of ages 0 through 18. The pixel size of images across different

organs was 0.5 um for kidney, 0.229 um for large intestine, 0.756 pm for lung, 0.494 pm


https://doi.org/10.1101/2023.01.05.522764
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.05.522764; this version posted January 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

for spleen, and 6.263 um for prostate. The tissue slice thickness of all images in
HUBMAP data was between 4-10 um: 10 um for kidney, 8 pum for large intestine, 4 um

for spleen, 5 um for lung, and 5 um for prostate.

Dataset Sampling. Some images feature space without human tissue. We calculated
the tissue region percentage for each image using Otsu’s? thresholding. The specific
threshold values for each organ were selected manually by analyzing the number of
images available against different threshold values (Supplementary Figure 1). The
values were selected such that images with very low actual tissue area are discarded,

yet leaving a sufficient number of images to work with.

We then constructed a dataset with similar numbers of donor samples across age
groups and sex for all organs (Supplementary Figure 2a)--insofar possible given
available HUBMAP and HPA data. Note that systematic sampling of healthy human
organ tissue is non-trivial; while human donors do not mind giving up adipose tissue,
getting tissue from other organs is often only possible if an organ transplant cannot be
executed or a patient dies and the tissue is released for single-cell research.
Consequently, the number of donors above the age of 50 is higher than those below 50,

especially for the HPA data (Supplementary Figure 2b).

Data Format. For consistency, all images are exported as TIF files and all
segmentations are provided as run-length encoded (RLE) masks for efficient storage
and submissions (along with original JSON files) to the teams. Note that the RLE
versions of the segmentation masks are cleaner than the JSON masks, although
differences are minor. The JSON versions are more raw and the annotations might

have issues, like overlaps, that do not exist in the RLE copies but can also allow the
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teams to distinguish between multiple adjacent FTUs which would all end up in the

same mask with RLESs.

Acquiring Ground Truth Labels and Final Dataset

For four organs (except kidney), 1-3 trained pathologists and/or anatomists (with
experience in segmentation and histology) per organ provided initial segmentations
done manually. For the kidney, the winning model from the previous HUBMAP Kaggle
competition was used to generate initial FTU segmentations for all HPA and HUBMAP
kidney data which were then manually reviewed and corrected by a professional

anatomist.

All segmentations were verified and corrected through a final expert review process
conducted by the lead pathologist for each organ. All images that were considered
unsuitable were rejected. Partial FTUs were accepted, provided a human expert can
segment it with confidence. All annotators, during the initial segmentation process as
well as during the final review process, were given access to the images via an internal
web-based segmentation tool (originally developed by the HPA team and further
modified by the HUBMAP team). Please note that while extreme care was taken to get
the best possible ground truth segmentations from experts, the labels do contain some
noise, due to human bias, and existing issues were openly discussed on the public

discussion forums of the competition.

Final Dataset. The final dataset used in the competition contains 432 images from the
HPA (including 351 public and 81 unpublished images with a total of 6,173 FTU

annotations) and 448 unpublished images from HUBMAP (with a total of 6,728 FTU
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annotations). All data is divided into three distinct datasets: a public training dataset
containing all public HPA data (351 images), a public test dataset containing all
unpublished HPA images (81 images) and HUBMAP images (209 images), and a
private test dataset containing only HUBMAP images (239 images) (Fig. 1). The training

dataset is openly accessible to the teams, while the test datasets remain hidden.

Baseline Segmentation Model

To ensure the task is neither too easy (i.e., nearly 100 percent accuracy is achieved
within little effort) nor too hard or impossible to accomplish (i.e., a satisfying accuracy is
impossible), initial runs using the winning algorithm from the first HUBMAP Kaggle
competition, Tom, created a baseline model. The model was run on Indiana University’s
Carbonate large-memory compute cluster, using the GPU partition which consists of 24
Apollo 6500 GPU-accelerated nodes where each node is equipped with two Intel 6248
2.5GHz 20-core CPUs. We used a single node with 300 GB of RAM and 2 Nvidia V100-

PCIE-32GB GPUs.

The model required about 5 hours for training and nearly 20 minutes for the inference
task. It achieved a mean Dice score of 0.76 and 0.53 on the private HPA data and
HUBMAP data, respectively. The mean Dice value achieved across the total private test
dataset (HPA and HUBMAP) is 0.57. The same model achieved a mean Dice value of
about 0.95 for the task of segmenting renal glomeruli in kidney images in the first
HuBMAP Kaggle competition. The results of this baseline model demonstrate the task is

neither too easy nor too difficult, and there is a need for more generalizable algorithms.
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Evaluation Metrics

The metric used to rank the performance of the teams in the competition is mean Dice
coefficient (also referred to as the mean Dice score). The Dice score compares the

pixel-wise agreement between a predicted segmentation (PS) and its corresponding

2%|GTNPS|

ground truth (GT) segmentation for an image: GTI+IPS|

The leaderboard score used is the mean of the Dice coefficients for each image in the
test set. It should be noted that calculation of Dice coefficient does not take into account
separation between individual instances. Hence, in case multiple predicted FTUs
overlap/merge, the Dice coefficient for that prediction may still be high while the FTU
count may be incorrect (and might require further processing, either programmatic or

manual, to separate the individual instances of FTUS).

After extensive discussion of options with the Kaggle data scientists and machine
learning experts from the panel of judges, the mean Dice coefficient was selected for
performance prize ranking. While other metrics such as the mean Average Precision
(mAP) might have been better suited for the problem, the Kaggle team recommended
going forward with the mean Dice score, taking into account the nature of the dataset
and timeline for the competition. Dice is a well-tested metric used in many competitions
on the Kaggle platform and other metrics require much more testing by the Kaggle team
to ensure participants cannot find loopholes and exploit vulnerabilities in the metric
during the competition. Hence, while Dice score may not be the ideal metric®°3t in a
production setting, it is a good enough metric to evaluate and compare solutions from

Kaggle competitions.
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Public and Private Leaderboards

Kaggle ranks teams on two leaderboards—public leaderboard and private leaderboard—
each using a different subset of the test data, using the predetermined evaluation metric
for the performance prize. The public leaderboard uses the public test data and the
private leaderboard uses the private test data. The public leaderboard rankings and
scores are visible to the teams and are used to validate their algorithms, providing
feedback they can use to improve their algorithms. The private leaderboard rankings
remain hidden to the teams until the end of the competition to ensure algorithms are not
overfit to test data. The top-3 teams on the private leaderboard are considered as

winners of the performance prizes.

Participation Analysis

At the conclusion of the competition, participation metadata becomes publicly available
on Meta Kaggle®?—~Kaggle’s public data on competitions, users, submission scores and
kernels. Meta Kaggle tables were initiated in 2015 and are updated daily with
information on completed competitions. We use this data to understand how the
“Hacking the Human Body” competition unfolded over its 3-month period.

We use standard python packages for data science such as Pandas®, NumPy34,
Matplotlib®®, and Seaborn3® for running all analyses; creating all visualizations in
Jupyters” Notebooks. The analyses can be replicated for any competition on Meta

Kaggle using the code we made available on GitHub (see Code Availability).
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Figure 1. Overview of competition setup. Tissue data for five organs (top row)
collected within HPA and HUBMAP using different tissue harvesting and processing
protocols are collected and divided into a public training, public test, and private test
dataset. Kaggle teams use the public training data to train their models; they then
submit the models to the Kaggle Submission Portal to receive performance scores
computed using the public test data. At the end competition, when all teams submitted
their best algorithm solutions, all solutions were run against the private test set to

determine Performance Prize winners.
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Figure 2. Exemplary tissue microarray cores with FTU segmentations outlined in
red (top) and illustrations for all five FTUs (bottom). a. Glomerulus in the kidney. b.
Crypt in the large intestine (top: perpendicular cross-section, bottom: lengthwise cross-

section). c. Alveolus in the lung. d. Glandular acinus in the prostate. e. White pulp in the

spleen.
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Figure 3. Competition dynamics over three months. a. Number of teams and
messages and leaderboard high scores per day over competition period. b. Number of
users by performance tier. c. Number of submissions vs. highest private leaderboard

score for each of the 1,175 teams as a heatscatter.
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Tables

Table 1. Metadata for HPA data, both public and private, and HUBMAP data. All
donors in the private HPA dataset are present in the public HPA dataset. All donors in
the HUBMAP dataset are different from donors in the HPA dataset.
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# Images # Male/Female Donor Age #FTUs
Unique Donors Range

Public HPA Data

kidney 99 5/3 28-73 337
large intestine 58 3/4 47-84 3,107
lung 48 4/4 21-78 188
prostate 93 8/0 37-76 1,097
spleen 53 4/4 21-82 167
Public HPA Totals 351 24/15 21-84 4,896
Private HPA Data

kidney 19 4/3 28-70 69
large intestine 18 3/4 47-84 892
lung 14 3/4 43-78 66
prostate 18 710 37-76 212
spleen 12 3/3 21-74 38
Private HPA Totals 81 20/14 21-84 1,277
HPA Totals 432 29/17 21-84 6,173
HuBMAP Data

kidney 79 8/7 20-77 538
large intestine 43 2/2 22-48 1,966
lung 115 16/7 19-73 2,630
prostate 98 10/0 18-57 1,202
spleen 113 9/2 0-47 392
HuBMAP Totals 448 45/18 0-77 6,728
Totals 880 74/35 0-84 12,901
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Table 2. Results for run time and accuracy from pilot run using baseline model.
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Algorithm Training Inference Time | Mean Mean Dice Mean Dice
Time (seconds) Dice (HUBMAP) (Private
(seconds) (Private HPA +
HPA) HuBMAP)
Tom 18,339 1,424 0.76 0.53 0.57
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Supplementary Figure 1. Tissue region percentage vs. number of images against
different threshold values for public HPA data for all five organs. Final selected

tissue region percentage thresholds: 5% for lung and 15% for other four organs.
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Supplementary Figure 2. Tissue samples per organ and age for all 5 organs. a.
Donor distribution color coded by male (blue) and female (red). b. Donor age and sex

distribution color coded by HPA (purple) and HUBMAP (green).
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Supplementary Notes

Supplementary Notes 1. Judges’ Prizes Rubric

1.1 Scientific Prize

Kaggle teams were asked to investigate correlations between predicted FTUs (e.g.,
area and shape) and donor demographics (e.g., sex and age). The evaluation rubric
further emphasized validation of methods and implementations, documentation of
performance and limitations, novelty of solutions, and presentation of insights useful for
generation of reference FTUs for inclusion into a Human Reference Atlas. Scientific
Prize winners were identified by a panel of human experts who selected two teams to
receive equal Scientific Prize amounts ($10,000 each) based on the submission’s
contribution to science and demonstration of innovative approaches. The complete
evaluation rubric, as presented below, consisted of eight criteria which were used by the
judges to evaluate the winners. Each criterion consisted of ten points for a total of 80

points.

1. Are the statistical and modeling methods used to identify FTUs appropriate for
the task?

2. Are confidence scores and other metrics provided that help interpret the results
achieved by the segmentation methods?

3. Is the presented characterization of FTUs useful for understanding individual
differences, e.g., the impact of donor sex and age on the shape, size or spatial

distribution of FTUs?
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4. Is it possible to predict FTU area size distribution, given age and sex information
across all organs?

5. Did the team validate their methods and algorithm implementations and provide
information on algorithm performance and limitations?

6. Did the team document their method and code appropriately?

7. Did the team develop a creative or novel method to segment FTUs?

8. Did the team provide insights that would be useful for generating reference FTUs

for inclusion into a HUman Reference Atlas?

1.2 Diversity and Presentation Prize

The complete evaluation rubric, as presented below, consisted of three criteria which
were used by the judges to evaluate the winner. Each criterion consisted of ten points

for a total of 30 points.

1. Does the team embrace diversity and equity, welcoming team members of
different ages, genders, ethnicities, and with multiple backgrounds and
perspectives?

2. Did the authors effectively communicate the details of their method for
segmenting FTUs, and the quality and limitations of their results? For example,
did they use data visualizations to present algorithm setup, run, results and/or to
provide insight into the comparative performance of different methods? Were
these visualizations effective at communicating insights about their approach and
results to experts and novice users?

3. Are the important results easily understood by the average person?
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Supplementary Notes 2. Alveoli segmentations in lung tissue

Due to confusion regarding varied looking alveoli segmentations in lung tissue images,
additional information was provided to the teams. The data included masks of both
atelectatic (collapsed) and inflated alveoli (un-collapsed). The alveolar appearance on
the image slides depends on how the tissue samples were prepared. For the inflated
alveoli, which have a 3D ‘cup’ shaped structure, how the tissue is sectioned can cause
variability as well. If the alveoli were sectioned in a horizontal manner, their shape will
appear more like a complete circle. Whereas if the alveoli were sectioned vertically, they

may appear more as a U-shape.
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Supplementary Table Legends

All tables can be accessed at Supplementary Tables.

Supplementary Table 1. Team 1 Ablation Study. This table lists the ablation study
done by the winning team, detailing the strategies that helped improve the performance

of their solution.


https://docs.google.com/spreadsheets/d/1nK6ymRY_ERuWm_mAhPh4F29CKevsIRigkmiLrVLZ61g/edit?usp=sharing
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SUPPLEMENTARY TABLE 1: Team 1 Ablation Study

Model Private Dice Public Dice Public Hubmap Dice Private Dice Gain

mit-b4 + lung annotation 0.79318 0.58097 0.07256
mit-b4 + prostate_downscale 0.68486 0.52633 0.05791
mit-b4 + albu dataaug + pseudo label(prostate, intestine) 0.72062 0.76051 0.54628 0.02496
mit-b4 + better resize 0.69566 0.52913 0.0108
mit-b4 + stain transfer(torchstain) 0.80838 0.80858 0.59243 0.00927
mit-b4 aug + brightness 0.82451 0.6046 0.00853
mit-b4 + external lung 0.82054 0.81345 0.60057 0.00622
mit-b4 + external spleen 0.81432 0.59722 0.00594
mit-b4 + trainval(351 images) 0.79799 0.80006 0.58248 0.00481
3 model ensemble 0.83238 0.82364 0.00417
mit-b4_optimized_threshold 0.82786 0.60663 0.00335
4 model ensemble + image ration divisor 32 0.8338 0.82622 0.00142
mit-b4 + pseudo label(prostate, intestine) patch 0.79911 0.58466 0.00112
6 model ensemble 0.83562 0.82716 0.00094
5 model ensemble 0.83468 0.82679 0.00088
mit-b4_0.8_1_1.2 0.82821 0.60718 0.00035
mit-b4 0.62695 0.47984 0
mit-b4 aug + HPA original (not stained) 0.81598 0.81661 -0.00456

* Sorted in increasing order of private gain.
** List is non-exhaustive and does not include all experiments by the team. Only listed is the subset of experiments team tracked and provided.
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Supplementary Table 2: Team 3 Ablation Study. This table lists the ablation study
done by the team that won the third performance prize, detailing the strategies that

helped improve the performance of their solution.
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SUPPLEMENTARY TABLE 2: Team 3 Ablation Study

Model Out of Fold Dice Public HuBMAP Dice Private Dice Private Dice Gain
Baseline 0.71172 0.12115 0.15632 -
+ Pixel size adaptation 0.71588 0.22653 0.30195 0.14563
+ Histogram matching 0.70283 0.38732 0.48486 0.18291
+ 1 output channel + CutMix 0.75157 0.49483 0.64518 0.16032
+ Heavy augmentations 0.7695 0.51506 0.71187 0.06669
+ additional scalers + external GTEX data with pseudo labels 0.82142 0.58037 0.78352 0.07165
+ additional HPA data with pseudo labels 0.83633 0.598 0.81402 0.0305
+ Best 5 folds solo model 0.85405 0.60826 0.83332 0.0193
+ Ensemble 0.85428 0.60931 0.83419 0.00087

* Public HUBMAP Dice involves setting predictions for public test HPA data to zero.

** List is non-exhaustive and does not include all experiments by the team. Only listed is the subset of experiments team tracked and provided.
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Supplementary Table 3: Organ Dice Score Comparison for Teams Winning the
Performance Prizes. This table provides the organ-wise breakdown of performance

results for the three winning teams.
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Supplementary Table 3: Organ Dice Score Comparison for 3 Winning Teams

Team Kidney Large Intestine [Lung Prostate Spleen Overall

First place winner 0.96401 0.89676 0.72664 0.85004 0.83862 0.83562
Second place winner 0.9665 0.88931 0.72092 0.84851 0.84157 0.83393
Third place winner 0.9491 0.86232 0.73599 0.84806 0.84211 0.83266

* All scores presented for private test set.
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