

Revised

1

2

3 **ATP is a major determinant of phototrophic bacterial longevity in growth arrest.**

4

5 Liang Yin^a, Hongyu Ma^{a, b}, Elizabeth M. Fones^a, David R. Morris^c, and Caroline S. Harwood^{a†}

6

7 ^aDepartment of Microbiology, University of Washington, Seattle, USA.

8 ^bDepartment of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, P.R.

9 China.

10 ^cDepartment of Biochemistry, University of Washington, Seattle, USA.

11

12 Running title: Impact of energy depletion on growth-arrested bacteria

13 [†]Corresponding author

14 csh5@uw.edu

15 Department of Microbiology, University of Washington, Box 357735, 1705 NE Pacific Street,
16 Seattle, WA 98195-7735

17

18

19

20

21

22

Revised

23 **ABSTRACT.** How bacteria transition into growth arrest as part of stationary phase has been
24 well-studied, but our knowledge of features that help cells to stay alive in the following days
25 and weeks is incomplete. Most studies have used heterotrophic bacteria that are growth-
26 arrested by depletion of substrates used for both biosynthesis and energy generation, making it
27 difficult to disentangle the effects of the two. In contrast, when grown anaerobically in light,
28 the phototrophic bacterium *Rhodopseudomonas palustris* generates ATP from light via cyclic
29 photophosphorylation and builds biomolecules from organic substrates such as acetate. As
30 such, energy generation and carbon utilization are independent from one another. Here we
31 compared the physiological and molecular responses of *R. palustris* to growth arrest caused by
32 carbon source depletion in light (energy-replete) and dark (energy-depleted) conditions. Both
33 sets of cells remained viable for six to ten days, at which point dark-incubated cells lost viability
34 whereas light-incubated cells remained fully viable for 60 days. Dark-incubated cells were
35 depleted in intracellular ATP prior to losing viability, suggesting that ATP depletion is a cause of
36 cell death. Dark-incubated cells also shut down measurable protein synthesis, whereas light-
37 incubated cells continued to synthesize proteins at low levels. Cells incubated in both
38 conditions continued to transcribe genes. We suggest that *R. palustris* may completely shut
39 down protein synthesis in dark, energy-depleted, conditions as a strategy to survive the
40 nighttime hours of day/night cycles it experiences in nature, where there is a predictable source
41 of energy in the form of sunlight during days.

42

43 **IMPORTANCE.** The molecular and physiological basis of bacterial longevity in growth arrest is
44 important to investigate for several reasons. Such investigations could improve treatment of

Revised

45 chronic infections, advance use of non-growing bacteria as biocatalysts to make high yields of
46 value-added products, and improve estimates of microbial activities in natural habitats, where
47 cells are often growing slowly or not at all. Here we compared survival of the phototrophic
48 bacterium *Rhodopseudomonas palustris* under conditions where it generates ATP (incubation in
49 light) and where it does not generate ATP (incubation in dark) to directly assess effects of
50 energy depletion on long-term viability. We found that ATP is important for long-term survival
51 over weeks. However, *R. palustris* survives 12h periods of ATP depletion without loss of
52 viability, apparently in anticipation of sunrise and restoration of its ability to generate ATP. Our
53 work suggests that cells respond to ATP depletion by shutting down protein synthesis.

54

55 **INTRODUCTION**

56 Microorganisms are defined by their growth curves. Studies of model heterotrophic bacterial
57 species like *E. coli* have taught us a great deal about how cells grow and how metabolism is
58 reprogrammed as cells slow their growth rate and enter stationary phase (1). Less studied are
59 strategies used by microbes to survive for long periods in growth arrest. Growth arrest can be
60 caused by many factors including starvation for carbon, nitrogen, phosphate, or other nutrients
61 that cells need for growth and replication. Many nutrients exist in growth-limiting amounts in
62 natural environments (2), and bacteria can survive for long periods of time when growing very
63 slowly or not at all (3–5). There are practical reasons to better understand the physiology of
64 non-growing bacteria. In infectious disease, there is evidence that bacteria in growth arrest or
65 those exhibiting very slow growth are more tolerant to antibiotics, and in the realm of

Revised

66 biotechnology, growth-arrested bacteria are better biocatalysts because they can divert cellular
67 resources to conversion of substrates to value-added products instead of to growth (6–8).
68 We have been exploring the molecular basis of bacterial longevity in growth arrest using the
69 phototrophic alpha-proteobacterium *Rhodopseudomonas palustris* as a model. This microbe
70 has extreme metabolic versatility (9, 10) and has received attention as a potential
71 biotechnology chassis organism (11–13). An advantage that it has over heterotrophic bacteria
72 for studies of longevity is that it generates all its ATP from light by photophosphorylation (Fig.
73 1). It derives carbon for biosynthesis from organic compounds but does not metabolize them
74 for energy. This allows us to study growth arrest caused by nutrient limitation without the
75 confounding effects of energy depletion that inevitably occur as heterotrophic cells struggle to
76 stay alive when starved for an essential nutrient such as carbon. *R. palustris* cells that stop
77 growing due to depletion of carbon or nitrogen remain viable for months when incubated in
78 light (8, 14). Evidence that growth-arrested *R. palustris* cells are not undergoing cycles of
79 growth and death on long time scales include insensitivity to antibiotics that inhibit cell wall
80 growth or DNA replication and experiments showing that such cells maintain unstable plasmids
81 that are lost during cell division (15).

82

83 We have hypothesized that the extraordinary longevity of *R. palustris* is related to its ability to
84 generate ATP from light because we found that cultures die if moved to dark incubation
85 conditions after entry into growth arrest (14). Here, we tested this hypothesis by comparing
86 growth-arrested *R. palustris* cells incubated in light or dark conditions. We found that
87 intracellular ATP levels correlated with both light availability and cell viabilities in growth arrest,

Revised

88 with decreases in ATP preceding losses in viability. Both light and dark-incubated cells were
89 transcriptionally active. However, dark-incubated cells were translationally inactive and formed
90 hibernating ribosomes, whereas light-incubated cells continued to synthesize proteins. We
91 suggest that a strategy of turning off and on protein synthesis may be an adaptation that *R.*
92 *palustris* uses to survive the day-night cycles that it experiences in nature.

93

94 RESULTS

95 **Conditions of growth arrest.** *R. palustris* was grown anaerobically in light in sealed glass tubes
96 containing mineral-salts medium until cells stopped growing due to depletion of the carbon
97 source acetate (15). We assigned the time at which the optical density of cultures stopped
98 increasing as “day 0” of growth arrest. To achieve dark-incubation conditions, tubes of growth-
99 arrested cells were covered with aluminum foil or moved to dark incubators.

100

101 **Growth-arrested cells stay alive during long intervals of darkness, but not in continuous**
102 **darkness.** As shown in Fig. 2a, *R. palustris* cultures incubated in moderately bright light
103 (40 $\mu\text{mol photons/m}^2/\text{s}$; equivalent to light from a 60 W incandescent light bulb) maintained
104 viability for a period of 25 d following growth arrest due to depletion of the carbon source
105 acetate. The same was true for cells grown and incubated following growth arrest in dim light
106 (4 $\mu\text{mol photons/m}^2/\text{s}$; equivalent to the light from a 15 W incandescent light bulb). In nature,
107 *R. palustris* is on a day-night cycle and we wondered how much darkness growth-arrested cells
108 could tolerate in a 24 h period before losing viability. Non-growing cells exposed to continuous
109 light, a 12 h light- 12 h dark cycle or a 3 h light – 21 h dark cycle, remained fully viable for 60 d.

Revised

110 Cells incubated with 1 h of light in a 24 h period or incubated in continuous darkness, started to
111 lose viability about 6 d after growth arrest, and viabilities declined thereafter, with cells
112 exposed to 1 h of light per 24 h losing viability less rapidly than cells incubated in continuous
113 darkness (Fig. 2b).

114

115 **Dark-incubated growth-arrested cells become depleted in ATP.** Intracellular ATP levels were
116 approximately 15 nmol/mg protein when *R. palustris* entered growth arrest and dropped to
117 about 7 nmol/mg total protein in cells incubated for 25 d in constant light (Fig. 3). In cells
118 moved to dark incubation conditions immediately following growth arrest, ATP levels dropped
119 to about 3.5 nmol/mg protein after 6 d, at which point cells were fully viable. At 25 d of dark
120 incubation, intracellular ATP was below the limit of detection (about 0.1 nmol/mg protein) and
121 this correlated with a three log decrease in viability (Fig. 3). Intracellular levels of ATP in non-
122 growing cells incubated on 12 h light – 12 h dark cycles for a period of 25 d are shown in Fig. 4.
123 We found that after 8 d and 25 d, ATP levels dropped to below the level of detection during the
124 12 h period of darkness but rebounded when cells were subsequently exposed to light.

125

126 **Non-growing cells incubated in dark shut down protein synthesis.** We have previously
127 reported that light-incubated *R. palustris* cells reduce but do not stop protein synthesis in
128 growth arrest, and this continued protein synthesis is required for viability (15). By contrast,
129 growth-arrested cells incubated in dark, did not appear to synthesize proteins. For example,
130 cells incubated in dark and carrying an inducible *lacZ* gene *in trans*, did not synthesize
131 significant amounts of LacZ protein at day 6 post-growth arrest, whereas light-incubated cells

Revised

132 did synthesize LacZ (Fig. 5a). The inducer, phenylacetyl-homoserine lactone (PA-HSL) is
133 diffusible across the cell membrane (16). We have previously shown that growth-arrested cells
134 express substantial levels of LacZ in the absence of inducer, but levels are about 50% higher in
135 the presence of PA-HSL (15). The ribosomes of growth-arrested cells incubated in light exist as
136 populations of 30S, 50S and 70S species, which is similar to the ribosome subunit profile of
137 growing cells (15). However, the ribosome profile of dark-incubated growth-arrested cells had
138 one dominant peak of a 100S population of ribosomes (Fig. 5b). This 100S form has been widely
139 observed in bacteria under nutrient starvation and is a translationally inactive dimer of two 70S
140 ribosomes (17, 18). Another important aspect of translation is the charging states of tRNAs.
141 During translation, tRNAs are aminoacylated (charged) with amino acids destined for delivery to
142 ribosomes. The ratio of charged to free tRNAs is, therefore, crucial for the translation process.
143 We have reported that about 60% of tRNA_{trp} is in the charged form, Trp-tRNA_{trp}, in non-
144 growing cells incubated in light (15). However, most of the tRNA_{trp} molecules were uncharged
145 in dark-incubated non-growing cells (Fig. 5c). Taken together, these data indicate that growth-
146 arrested *R. palustris* cells incubated in dark were not synthesizing measurable amounts of
147 proteins.

148

149 **Dark-incubated, growth-arrested *R. palustris* cells are transcriptionally active.** Even though
150 growth-arrested cells incubated in dark were translationally inactive at day 6 post-growth
151 arrest, RNA-seq experiments showed that they continued to synthesize mRNA. However, an
152 analysis of the total number of sequencing reads generated from RNA isolated from equivalent
153 numbers of viable cells in exponential growth and at day 6 post growth arrest in light or in dark,

Revised

154 showed that growth-arrested cells incubated under light or dark conditions both synthesized
155 less RNA than exponentially growing cells and dark-incubated cells synthesized 35% less mRNA
156 than light-incubated cells in growth arrest (SI Table S1). These differences, which are less than
157 2-fold, are not reflected in the RNA seq data presented in SI Tables S2 and S3, because
158 calculation of RKPM (Reads Per Kilobase Million) values per gene and of fold changes between
159 samples with statistical accuracy using DESeq2 both correct for differences in total sequence
160 reads per sample. With this caveat, we found that about 500 genes were expressed at greater
161 than 4-fold higher levels in dark- and light-incubated cells in growth arrest compared to cells in
162 active growth and there was an overlap of about 200 genes between the two data sets (Fig. S1).
163 The largest number of genes expressed at higher levels at day 6 post-growth arrest in both
164 dark- and light-incubated cells as compared with exponentially growing cells fell into COG
165 category S: function unknown (SI Fig S2). Dark-incubated cells had an enrichment of genes in
166 category K, for transcription, that were expressed at higher levels.
167
168 Both dark- and light-incubated cells expressed about 700 genes at greater than 4-fold lower
169 levels at day 6 post growth arrest compared to in active growth. Again, there was large overlap
170 (~450 genes) between the two data sets (SI Fig S1). For several categories of genes that were
171 expressed at lower levels in both conditions, dark-incubated cells showed greater drops in gene
172 expression than light-incubated cells (Fig. 6, SI Table S3). For example, 81% of the genes within
173 the photosynthesis gene cluster (*rpa1505-1554*) that were down-regulated in both conditions
174 showed greater decreases in gene expression in dark than in light. Similar patterns were

Revised

175 observed for genes encoding ATP synthase subunits and ribosomal proteins (Fig. 6 and SI Table
176 S3).

177

178 As we have reported before (14), under illumination, most of the shift in transcription happens
179 within the first day of growth arrest (SI Table S3). To examine if a longer period might induce
180 additional changes, we measured the transcriptome at 20 d post-growth arrest in light but saw
181 relatively few changes from day 6 to day 20. Of the 12 genes that showed a >4-fold increase in
182 expression during this period, eight are predicted to encode hypothetical proteins with
183 unknown function, one is a gene transfer agent (a phage-like entity) gene, two are
184 transcriptional regulators, and one is a predicted permease (SI Table S3). The 38 genes that
185 were expressed at lower levels at day 20 relative to day 6 post-growth arrest, included *cbbSL*
186 genes encoding ribulose-bisphosphate carboxylase required for carbon dioxide fixation. These
187 genes increased more than 15-fold in expression between day 1 and day 6 post-growth arrest,
188 but then decreased in expression between day 6 and day 20. This may reflect a response to
189 carbon dioxide that may be released from cells early in growth arrest as they metabolize
190 carbon-storage compounds, like glycogen (19), but these sources of carbon dioxide diminish
191 over time.

192

193 **DISCUSSION**

194 Use of the phototropic bacterium *R. palustris* as a model to study longevity in growth arrest
195 provides an opportunity to compare strategies that a bacterium uses to survive in energy-
196 replete and energy-depleted situations. Cells in growth arrest due to carbon depletion

Revised

197 maintained almost full viability for two months when incubated in light, but cells moved to dark
198 immediately following growth arrest lost viability after an initial period of 6-10 days of full
199 viability.

200 We found that although light-incubated cells maintained high levels of intracellular ATP over a
201 period of 25 d following growth arrest, ATP levels dropped to undetectable levels over the
202 same period in dark-incubated cells. These results are in line with those obtained with the same
203 strain of *R. palustris* (CGA009) by Kanno et al.(20) In addition, these investigators measured the
204 adenylate energy charge ($[ATP] + 0.5 [ADP])/[ATP] + [ADP] + [AMP]$) (21) of light and dark-
205 incubated cells at day 5 post-growth arrest and found that whereas the energy charge of light-
206 incubated cells matched that of growing cells, the energy charge of dark-incubated cells was
207 dramatically lower. We note that intracellular ATP levels dropped in advance of losses of
208 viability, suggesting that energy depletion caused cell death.

209
210 To identify consequences of ATP depletion we looked carefully at protein synthesis. Our
211 rationale was that protein synthesis is an ATP-requiring process that can consume over 50% of
212 the energy budget of bacteria (22). Dark-incubated cells appeared to carry out very little or no
213 protein synthesis. Direct evidence for this is that dark-incubated cells did not translate a *lacZ*
214 gene provided *in trans*. Indirect evidence is that the ribosome profile of dark-incubated cells
215 consisted almost entirely of the 100S hibernating, translationally inactive form of ribosome and
216 such cells did not have appreciable levels of amino-acylated tRNA_{trp}.

217

Revised

218 Given that dark-incubated cells appeared not to be active in protein synthesis we were
219 surprised to find that they continued to synthesize RNA at day 6 post growth arrest. Cells at this
220 time point have about 20% of the amount of intracellular ATP that day 6 light-incubated cells
221 have, and it may be that this is enough to support RNA synthesis. We did not identify genes
222 known to be involved in RNA degradation or turnover to be upregulated in dark-incubated cells.
223 Although we can't exclude the possibility that dark-incubated cells maintain a subset of
224 ribosomes that are translationally active, it is also possible that these cells have evolved to
225 continue to synthesize RNA in anticipation that they will encounter light and quickly generate
226 sufficient ATP to resume protein synthesis. This might explain why the transcriptional responses
227 of both dark- and light-incubated cells in growth arrest are so similar. Differences in
228 transcriptional responses in the two conditions could reflect a response of dark-incubated cells
229 to prolonged ATP depletion and increasing physiological dysregulation that will result in cell
230 death.

231
232 *R. palustris* resembles other bacteria in that it produces (p)ppGpp as it enters stationary phase,
233 and this is essential for its longevity in growth arrest when illuminated (15). *E. coli* and other
234 gram-negative bacteria respond to depletion of amino acids and other carbon and energy
235 sources by synthesizing (p)ppGpp as part of the stringent response that includes decreased
236 transcription of ribosomal protein genes and ribosomal RNAs, as well as down-modulation of
237 ribosome maturation (1, 23). We note that the fold changes of downregulated ribosomal
238 protein genes were much greater in dark-incubated cells than light-incubated cells, and perhaps
239 a stringent response could explain this. It is known that the stringent response contributes to

Revised

240 the ability of the cyanobacterium *Synechococcus elongatus* to adapt to darkness (24). However,
241 the stringent response likely doesn't explain all the transcriptional changes that we see and
242 known transcription factors that regulate for example, expression of photosynthesis genes,
243 were not altered in expression in growth-arrested cells incubated in either light or dark.

244

245 Gram-negative heterotrophic bacteria, including *Escherichia coli*, respond to growth arrest
246 caused by energy and nutrient depletion by shrinking in size and there is evidence that they use
247 their lipids, nucleic acids, and proteins as energy sources to maintain viability (1). *R. palustris*
248 does not undergo a reduction in cell size during light or dark incubation following growth arrest,
249 and although light and dark-incubated cells have markedly different metabolite profiles (20),
250 there is no evidence that *R. palustris* CGA009 can generate ATP anaerobically in dark. We have
251 reported that some level of protein synthesis is essential for longevity of growth-arrested *R.*
252 *palustris* cells incubated in light and the same may be true for *E. coli*. In *E. coli*, hibernating
253 ribosomes account for only about 60% of the total ribosome pool in stationary phase cells (25)
254 and although *E. coli* has other mechanisms to shut down protein synthesis (26, 27), it is unclear
255 whether it does so completely. Certainly, there is evidence that growth-arrested cells of *E. coli*
256 and other gram-negative bacteria continue to synthesize proteins for days (4, 28). This suggests
257 that some heterotrophic bacteria in growth arrest may resemble energy-replete growth-
258 arrested *R. palustris* in prioritizing protein synthesis as a survival strategy.

259

260 If we extrapolate our observations of dark-incubated cells at 6 d post growth arrest to cells that
261 have been incubated on a 12 h light-12 h dark cycle, the physiological response of *R. palustris* to

Revised

262 dark makes sense. We found that even though *R. palustris* ATP levels were below the level of
263 detection by day 8 in the dark phase of continuous 12 h light – 12 h dark cycles, intracellular
264 ATP rebounded during the light phase. We hypothesize that *R. palustris* forms 100S ribosomes
265 in dark as a way of preserving ribosomes that would then resolve to the 70S form in response
266 to ATP generated from light. In short, *R. palustris* may have evolved to rapidly recommence
267 protein synthesis in nature when ATP levels rise upon exposure to sun during the day. *R.*
268 *palustris* has homologs of the cyanobacterial circadian clock genes *kaiB* and *kaiC* but is missing
269 the *kaiA* clock gene (9). Circadian timekeeping in cyanobacteria is mediated by a
270 phosphorylation- dephosphorylation cycle of KaiC that is driven by association and dissociation
271 of a KaiA-KaiB-KaiC nanocomplex in a rhythmic cycle that maintains a self-sustained oscillation
272 over 24 h periods of constant light (29). *R. palustris* has daily rhythms of KaiC phosphorylation
273 in a regimen of 12 h light – 12 h dark, but the rhythm degenerates in constant light. Although *R.*
274 *palustris* does not have true circadian rhythms as defined for cyanobacteria, a *kaiC* mutant has
275 a growth defect when grown in 12 h light- 12 h dark cycles but not when grown in continuous
276 light (30) . It will be interesting to test if this proto-circadian response may be involved in
277 driving alternating periods of active and inactive protein synthesis in growth arrested cells.

278

279 METHODS

280 **Bacterial strains, growth, and incubation conditions.** *R. palustris* strain CGA009 was used as
281 the wild type for this study as described before (15). Phototrophic cultures were grown
282 anaerobically under illumination at 30°C in sealed glass tubes in defined PM medium (31) with
283 20 mM sodium acetate as the carbon source. When cultures reached their maximum optical

Revised

284 density (approximately 2.0×10^9 cells /ml), they were either maintained under illumination or
285 moved to dark incubators to achieve dark incubation conditions. The viability of *R. palustris*
286 cultures was determined by counting colony-forming units.

287

288 **ATP measurements.** At desired time points, 0.9 ml culture was harvested by centrifugation. Cell
289 pellets were immediately frozen in liquid nitrogen and stored at -80°C until used in ATP assays.
290 For ATP measurements, frozen samples were resuspended with 1 ml 1% trichloroacetic acid
291 and incubated for about 20 min at 30°C until cells were lysed. Cell lysate was centrifuged at
292 maximum speed in a microcentrifuge for 2 min. The supernatant (about 500µl) was collected,
293 and the pH of the supernatant was adjusted to ~7.8 with 10M KOH and 25µl of 200mM Tris-
294 Base. ATP in the supernatant was determined with an ATP bioluminescent assay kit according
295 to instructions from the manufacturer (Sigma-Aldrich, FLAA-1KT).

296

297 **Ribosome purification and tRNA analysis.** Ribosomes were purified and analyzed on a sucrose
298 gradient as described previously (15, 32). The charging state of *R. palustris* transfer RNA was
299 determined as described previously (31).

300

301 **LacZ assays.** The inducible *lacZ* reporter was constructed as previously described and LacZ
302 assays were as previously described (15). Briefly, *R. palustris* carrying P_{hirRI} -*lacZ* in *trans* on a
303 plasmid was grown until growth arrest. The inducer phenylacetate-homoserine lactone (PA-
304 HSL) was then added to light- and dark-incubated cultures on day 6 of growth arrest. LacZ

Revised

305 activity was measured after 2 d of incubation. The LacZ activity shown in Fig 5a is relative to the
306 baseline of detectable activity in our assays.

307

308 **RNA-seq analysis.** *R. palustris* was grown in PM medium as described above. Samples from the
309 mid-logarithmic phase of growth were collected at $OD_{660} = \sim 0.6$. After cultures stopped growing
310 due to carbon depletion, samples were taken 1, 6 and 20 d post- growth arrest. Biological
311 duplicates of samples were treated as follows. RNA was extracted from 5 ml samples using the
312 miRNAeasy mini kit (Qiagen), treated with TURBO DNase (Ambion) and purified with RNeasy
313 MinElute Cleanup kit (Qiagen). The samples were then sent to Genewiz, Inc. for library
314 preparation and HiSeq RNA-seq sequencing. Raw RNA-seq reads were quality filtered and
315 trimmed of adapters with Trimmomatic v0.39 (33) and the following parameter settings:
316 HEADCROP:15 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:35. Surviving read quality
317 was assessed with FastQC (34). Reads were aligned to the *R. palustris* CGA009 reference
318 genome and residual rRNA/tRNA reads were removed using Strand NGS v4.0, build 242089 (©
319 Strand Life Sciences, Bangalore, India) following default parameters. Differential gene
320 expression analysis was performed using DESeq2 (fold-change ≥ 4 , $p < 0.05$)(35). Sequencing
321 results were processed and analyzed in house with StrandNGS (strand/ngs.com).

322

323 **DATA AVAILABILITY.** All data are supplied as supplementary files. Raw data are available on
324 request from the corresponding author.

325

326 **ACKNOWLEDGMENTS**

Revised

327 This work was supported by the US Army Research Office, contract W911NF2110015.

328

329

Revised

330 **FIGURE LEGENDS.**

331

332 Figure 1. Diagram of *R. palustris* metabolism used to support growth prior to growth arrest.

333 Cells in the experiments described here were grown photoheterotrophically with light (hv) as

334 the energy source used by cells to generate ATP by cyclic photophosphorylation. Ammonium

335 (NH_4^+) was provided in excess as a nitrogen source and acetate was supplied as the carbon

336 source, which is not used in ATP-generating pathways and is used only to produce biomass.

337 Cells were grown anaerobically. To achieve growth arrest, cells were given growth limiting

338 amount of acetate, such that they became growth arrested when this carbon source was

339 depleted. Growth-arrested cells continue to generate ATP from light but lose their ability to

340 generate energy when incubated in continuous darkness.

341

342 Figure 2. (a) Viability of *R. palustris* after growth arrest and incubation in moderate light (60W

343 incandescent light bulb placed 10 cm away) or low light (15 W incandescent light bulb placed 10

344 cm away). Error bars represent standard deviations (n = 2) (b) Viability of *R. palustris* after

345 growth arrest and incubation for variable amounts of time (in hours) in light per 24 h period.

346 Cells were incubated in moderate light and moved to dark incubators for the dark periods of

347 each 24 h day. Error bars represent standard deviations (n = 2)

348

349 Figure 3. Viabilities and intracellular ATP content of *R. palustris* incubated in constant light or in

350 constant dark following growth arrest. Error bars represent standard deviations (n=2).

351

Revised

352 Figure 4. Intracellular ATP content of *R. palustris* in growth arrest day 0, day 8 and day 25 of
353 continuous cycles of 12 h light - 12 h dark incubation. Error bars represent standard deviations
354 (n=2).

355

356 Figure 5. a) *R. palustris* carrying P_{hirRI} -*lacZ* in *trans* on a plasmid was grown until growth arrest.
357 The inducer PA-HSL (1 μ M) was then added to cultures as indicated and cells were incubated as
358 indicated. LacZ activity was measured after 2 d of incubation. b) Wild-type *R. palustris* was
359 grown photoheterotrophically until acetate was depleted. The ribosome profile of light-
360 incubated cells in growth arrest was reported previously (15) and is shown again here. For dark-
361 incubated cells in growth arrest, ribosomes were purified and analyzed on a 7-47% sucrose
362 gradient after 6 days incubation in dark. (c) The charging state of tRNA_{trp} in growing cells, or
363 growth-arrested cells incubated in light or dark. A sample of uncharged tRNA was included as
364 the negative control “NEG control,” as described previously (28).

365

366 Figure 6. Comparison of fold-changes in expression of *R. palustris* photosynthesis genes,
367 ribosomal protein genes and ATP synthase genes in light-incubated and dark-incubated cells at
368 day 6 of growth arrest relative to growing cells.

369

370

Revised

371 **SUPPLEMENTAL TABLE AND FIGURE LEGENDS.**

372

373 Figure S1. Genes increased and decreased in expression four-fold or more relative to growing
374 cells after 6 d incubation in light or dark following growth arrest.

375

376 Figure S2. Transcript profile of *R. palustris* cells incubated in light or dark for 6 days after onset
377 of growth arrest. Genes whose expression changed significantly (>4-fold, p<0.05) from log-
378 phase growth were classified by NCBI Clusters of Orthologous Genes (COG). COG Categories: C-
379 Energy production/conversion, D- Cell cycle control, E- Amino acid transport/metabolism, F-
380 Nucleotide transport/metabolism, G- Carbohydrate transport/metabolism, H- Coenzyme
381 transport/metabolism, I- Lipid transport/metabolism, J- Translation/ribosomal structure and
382 biogenesis, K- Transcription, L- Replication, M- Cell wall/membrane/envelope biosynthesis, N-
383 Cell motility, O- Post-translational modification, P- Inorganic ion transport/metabolism, Q-
384 Secondary metabolites biosynthesis, S- Unknown, T- Signal transduction mechanisms, U-
385 Intracellular trafficking, V- Defense mechanisms, None- No COG assigned.

386

387 SI Table S1. Number of reads generated by RNA sequencing before and after quality-filtering
388 and alignment to the reference transcriptome.

389

390 SI Table S2. RPKM (Reads Per Kilobase Million) of RNA isolated from *R. palustris* in log-phase or
391 in growth arrest incubated in dark or in light for the number of days indicated. D1, D6, and D20
392 refer to day 1, day 6, and day 20 of growth arrest, respectively.

Revised

393

394 SI Table S3. List of genes that are differentially expressed (\geq 2-fold change, $p < 0.05$) between
395 the experimental conditions described in each tab with RPKM values that exceeded 50 for at
396 least one of the conditions described.

397

398 REFERENCES.

399

400 1. Dworkin J, Harwood CS. 2022. Metabolic reprogramming and longevity in quiescence. *Annu Rev Microbiol* 76:91–111.

402 2. Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, Galbraith ED, Geider RJ,
403 Guieu C, Jaccard SL, Jickells TD, Roche JL, Lenton TM, Mahowald NM, Marañón E, Marinov I,
404 Moore JK, Nakatsuka T, Oschlies A, Saito MA, Thingstad TF, Tsuda A, Ulloa O. 2013. Processes
405 and patterns of oceanic nutrient limitation. *Nat Geosci* 6:701–710.

406 3. Moore RA, Tuanyok A, Woods DE. 2008. Survival of *Burkholderia pseudomallei* in water. *BMC Res Notes* 1:11.

408 4. Bergkessel M, Delavaine L. 2021. Diversity in starvation survival strategies and outcomes
409 among heterotrophic proteobacteria. *Microb Physiology* 31:146–162.

410 5. Amy PS, Morita RY. 1983. Starvation-survival patterns of sixteen freshly isolated open-ocean
411 bacteria. *Appl Environ Microb* 45:1109–1115.

412 6. Pontes MH, Groisman EA. 2019. Slow growth determines nonheritable antibiotic resistance in
413 *Salmonella enterica*. *Sci Signal* 12:eaax3938.

414 7. Lempp M, Lubrano P, Bange G, Link H. 2020. Metabolism of non-growing bacteria. *Biol Chem*
415 401:1479–1485.

416 8. Gosse JL, Engel BJ, Hui JC-H, Harwood CS, Flickinger MC. 2010. Progress toward a biomimetic
417 leaf: 4,000 h of hydrogen production by coating-stabilized nongrowing photosynthetic
418 *Rhodopseudomonas palustris*. *Biotechnol Progr* 26:907 918.

419 9. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT,
420 Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres JLT y, Peres C, Harrison FH, Gibson J,
421 Harwood CS. 2004. Complete genome sequence of the metabolically versatile photosynthetic
422 bacterium *Rhodopseudomonas palustris*. *Nat Biotechnol* 22:55 61.

423 10. Harwood CS. 2021. *Rhodopseudomonas palustris*. *Trends Microbiol* 30:307–308.

424 11. Toit J-P du, Lea-Smith DJ, Git A, Hervey JRD, Howe CJ, Pott RWM. 2021. Expression of
425 alternative nitrogenases in *Rhodopseudomonas palustris* is enhanced using an optimized
426 genetic toolset for rapid, markerless, modifications. *Acs Synth Biol* 10:2167–2178.

427 12. Li M, Ning P, Sun Y, Luo J, Yang J. 2022. Characteristics and application of
428 *Rhodopseudomonas palustris* as a microbial cell factory. *Frontiers Bioeng Biotechnology*
429 10:897003.

Revised

430 13. Brown B, Wilkins M, Saha R. 2022. *Rhodopseudomonas palustris*: A biotechnology chassis.
431 Biotechnol Adv 60:108001.

432 14. Pechter KB, Yin L, Oda Y, Gallagher L, Yang J, Manoil C, Harwood CS. 2017. Molecular basis
433 of bacterial longevity. Mbio 8:e01726-17.

434 15. Yin L, Ma H, Nakayasu ES, Payne SH, Morris DR, Harwood CS. 2019. Bacterial Longevity
435 requires protein synthesis and a stringent response. Mbio 10.e02189-19

436 16. Liao L, Schaefer AL, Coutinho BG, Brown PJB, Greenberg EP. 2018. An aryl-homoserine
437 lactone quorum-sensing signal produced by a dimorphic prosthecate bacterium. Proc National
438 Acad Sci 115:7587–7592.

439 17. Prossliner T, Winther KS, Sorensen MA, Gerdes K. 2018. Ribosome hibernation. Annu Rev
440 Genet 52:321–348.

441 18. Yoshida H, Wada A. 2014. The 100S ribosome: ribosomal hibernation induced by stress.
442 Wiley Interdiscip Rev Rna 5:723–732.

443 19. McKinlay JB, Oda Y, Rühl M, Posto AL, Sauer U, Harwood CS. 2014. Non-growing
444 *Rhodopseudomonas palustris* increases the hydrogen gas yield from acetate by shifting from
445 the glyoxylate shunt to the tricarboxylic acid cycle. J Biol Chem 289:1960 1970.

446 20. Kanno N, Matsuura K, Haruta S. 2018. Different metabolomic responses to carbon
447 starvation between light and dark conditions in the purple photosynthetic bacterium,
448 *Rhodopseudomonas palustris*. Microbes Environment 33:83–88.

449 21. Chapman AG, Fall L, Atkinson DE. 1971. Adenylate energy charge in *Escherichia coli* during
450 growth and starvation. J Bacteriol 108:1072–1086.

451 22. Russell JB, Cook GM. 1995. Energetics of bacterial growth: balance of anabolic and catabolic
452 reactions. Microbiological reviews 59:48–62.

453 23. Irving SE, Choudhury NR, Corrigan RM. 2021. The stringent response and physiological roles
454 of (pp)pGpp in bacteria. Nat Rev Microbiol 19:256–271.

455 24. Hood RD, Higgins SA, Flamholz A, Nichols RJ, Savage DF. 2016. The stringent response
456 regulates adaptation to darkness in the cyanobacterium *Synechococcus elongatus*. Proc
457 National Acad Sci 113:E4867-76.

458 25. Wada A, Yamazaki Y, Fujita N, Ishihama A. 1990. Structure and probable genetic location of
459 a “ribosome modulation factor” associated with 100S ribosomes in stationary-phase *Escherichia*
460 *coli* cells. Proc National Acad Sci 87:2657–2661.

Revised

461 26. Zegarra V, Bedrunka P, Bange G, Czech L. 2022. How to save a bacterial ribosome in times of
462 stress. *Semin Cell Dev Biol* <https://doi.org/10.1016/j.semcd.2022.03.015>.

463 27. Starosta AL, Lassak J, Jung K, Wilson DN. 2014. The bacterial translation stress response.
464 *FEMS Microbiol Rev* 38:1172–201.

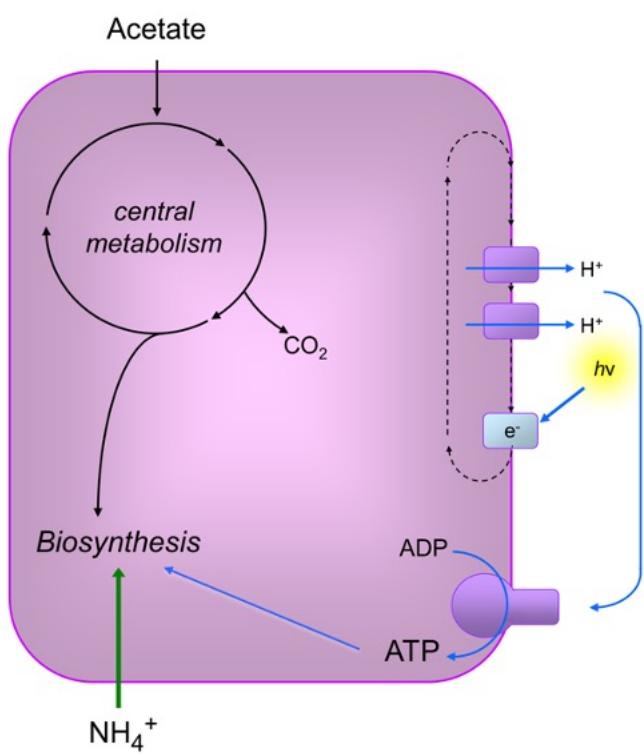
465 28. Gefen O, Fridman O, Ronin I, Balaban NQ. 2014. Direct observation of single stationary-
466 phase bacteria reveals a surprisingly long period of constant protein production activity. *Proc
467 National Acad Sci* 111:556–61.

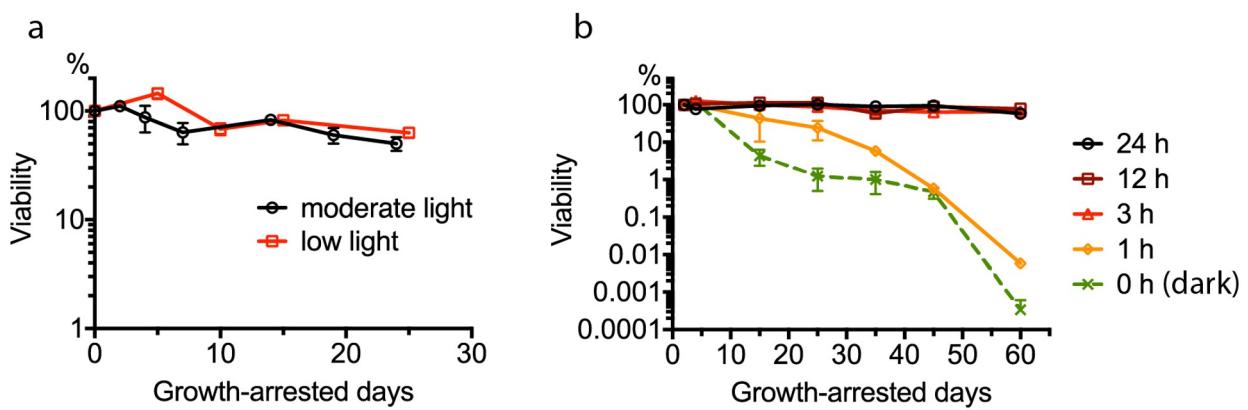
468 29. Johnson CH, Zhao C, Xu Y, Mori T. 2017. Timing the day: what makes bacterial clocks tick?
469 *Nat Rev Microbiol* 15:232–242.

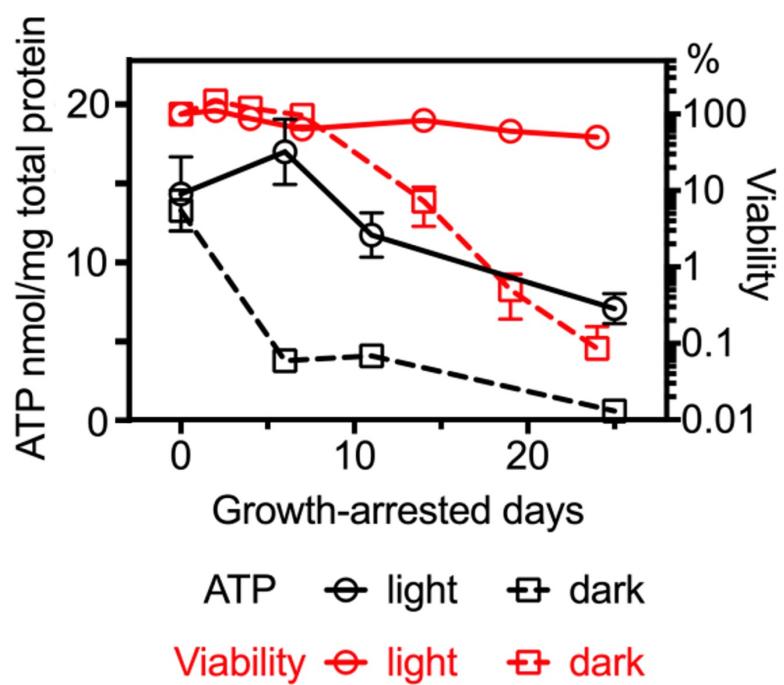
470 30. Ma P, Mori T, Zhao C, Thiel T, Johnson CH. 2016. Evolution of KaiC-dependent timekeepers:
471 A proto-circadian timing mechanism confers adaptive fitness in the purple bacterium
472 *Rhodopseudomonas palustris*. *Plos Genet* 12:e1005922.

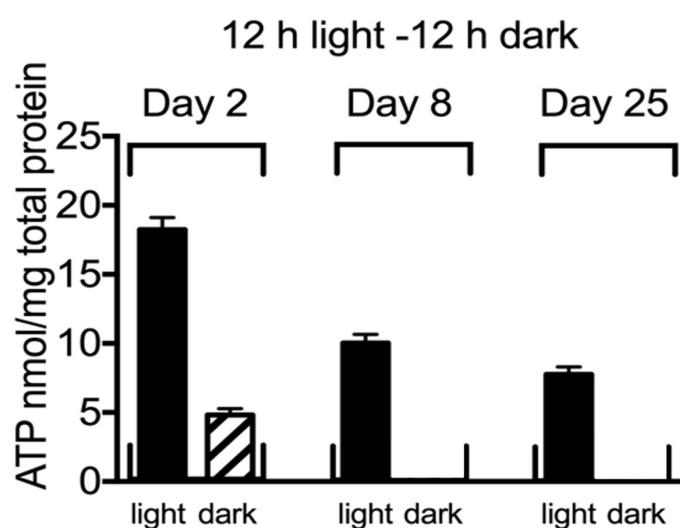
473 31. Yin L, Harwood C. 2020. Charging state analysis of transfer RNA from an α -proteobacterium.
474 *Bio-protocol* 10:e3834.

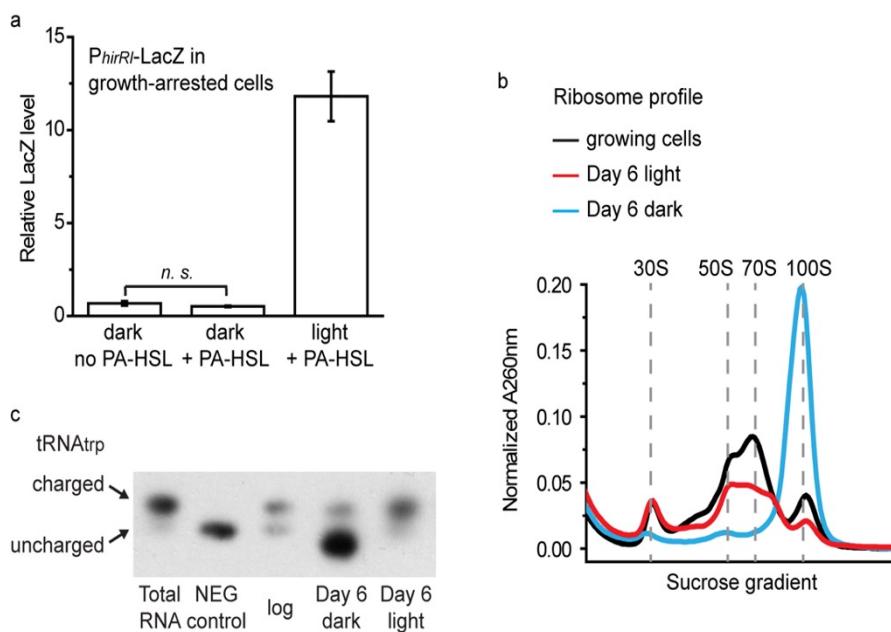
475 32. Yin L, Harwood C. 2020. Ribosome purification from an α -proteobacterium and rRNA
476 analysis by Northern Blot. *Bio-protocol* 10:e3835.


477 33. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence
478 data. *Bioinformatics* 30:2114–2120.


479 34. Andrews, S. 2010. FastQC: A quality control tool for high throughput sequence data
480 [Online]. <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.


481 35. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for
482 RNA-seq data with DESeq2. *Genome Biol* 15:550.


483


484

