

1 Disruption of the standard kinetochore in holocentric *Cuscuta* species

2 Neumann Pavel^{1*}, Ludmila Oliveira¹, Tae-Soo Jang^{1,2}, Petr Novák¹, Andrea Koblížková¹, Veit
3 Schubert³, Andreas Houben³, and Jiří Macas¹

4 ¹ Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České
5 Budějovice 37005, Czech Republic

6 ² Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National
7 University, Daejeon 34134, Republic of Korea

8 ³ Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)
9 Gatersleben, Seeland, Saxony-Anhalt 06466, Germany

10 * Corresponding author

11 Abstract

12 Segregation of chromosomes depends on the centromere. Most species are monocentric, with the
13 centromere restricted to a single region per chromosome. In some organisms, monocentric
14 organization changed to holocentric, in which the centromere activity is distributed over the entire
15 chromosome length. However, the causes and consequences of this transition are poorly understood.
16 Here, we show that the transition in the genus *Cuscuta* was associated with dramatic changes in the
17 kinetochore, a protein complex that mediates the attachment of chromosomes to microtubules. We
18 found that in holocentric *Cuscuta* species the KNL2 genes were lost; the CENP-C, KNL1, and
19 ZWINT1 genes were truncated; the centromeric localization of CENH3, CENP-C, KNL1, MIS12,
20 and NDC80 proteins was disrupted; and the spindle assembly checkpoint (SAC) was degenerated.
21 Our results demonstrate that holocentric *Cuscuta* species lost the ability to form a standard
22 kinetochore and do not employ SAC to control the attachment of microtubules to chromosomes.

23 **Introduction**

24 Faithful segregation of chromosomes during mitosis and meiosis depends on the centromere, a
25 chromosomal domain that facilitates attachment of chromosomes to spindle microtubules. In
26 monocentric chromosomes, the centromere is localized at a single site per chromosome, which is
27 morphologically discernible as a primary constriction. Holocentric chromosomes, on the other hand,
28 lack this primary constriction and instead have the centromere domains distributed along almost the
29 entire chromosome length. Holocentricity evolved from monocentric organization independently
30 several times during the evolution of both plants and animals ¹; however, the causes of the
31 transitions are still enigmatic. This is primarily because only a few holocentric species have been
32 studied so far and because most groups of holocentric species evolved from the monocentric
33 ancestors a long time ago, making the factors involved in the transition elusive.

34 In most species, the centromere is epigenetically determined by the presence of CENH3, a
35 centromere-specific variant of histone H3 that replaces the canonical H3 histones in centromeric
36 nucleosomes ². At the same time, CENH3 serves as the basis for the kinetochore, a complex
37 multiprotein structure that mediates the connection between centromeric chromatin and the
38 microtubules of the mitotic spindle in most species. The backbone of the kinetochore consists of the
39 constitutive centromere associated network (CCAN), which connects the kinetochore with
40 centromeric chromatin, and the KMN network, which constitutes an interface towards spindle
41 microtubules ^{3,4}. The function of the kinetochore is regulated by additional proteins, the most
42 studied of which belong to the spindle assembly checkpoint (SAC) ^{5,6} and the chromosome
43 passenger complex (CPC) ⁷⁻⁹.

44 The role of CENH3 in centromere determination predicts that the transition from
45 monocentric to holocentric centromere organization requires the formation of CENH3-containing
46 domains along entire chromosomes. Indeed, in the few holocentric species studied to date, CENH3
47 is typically localized along the entire poleward surface of each chromatid where microtubules attach
48 ^{10,11}. An exception are holocentric insects that lack CENH3 and use an alternative pathway of
49 kinetochore assembly that depends on CENP-T protein ¹²⁻¹⁴.

50 Recently, we identified the first exception in plants, in *Cuscuta europaea*, which belongs to
51 the holocentric subgenus *Cuscuta* of the parasitic plant genus *Cuscuta* (Convolvulaceae) ¹⁵. In this
52 species, the chromosomes restrict CENH3 to only one to three heterochromatin bands, despite being
53 attached to the mitotic spindle along their entire length. This suggests that CENH3 has either lost its
54 centromere function in this species or acts in parallel with an additional CENH3-independent
55 mechanism of kinetochore assembly. Since monocentric relatives of *C. europaea* from the sister
56 subgenus, *Grammica*, and the more distant subgenus, *Monogynella*, have CENH3 localized
57 specifically in primary constrictions ¹⁶, it is plausible that the peculiar CENH3 localization in *C.*

58 *europaea* resulted from changes in kinetochore assembly that were linked to the transition to
59 holocentricity in the subgenus *Cuscuta*. However, how kinetochore assembly has changed and
60 whether these changes are related to the transition to holocentricity remains unknown.

61 In this study, we addressed these questions by comparing the repertoire of major structural
62 and regulatory kinetochore proteins and their chromosomal localization between two *Cuscuta*
63 species from the holocentric subgenus *Cuscuta* (*C. europaea* and *C. epithymum*), two monocentric
64 *Cuscuta* species from the sister subgenus *Grammica* (*C. australis* and *C. campestris*), and *Ipomoea*
65 *nil*, which was included as an outgroup Convolvulaceae species. To obtain high-quality data for
66 gene identification in the two holocentric *Cuscuta* species, we sequenced both their genomes and
67 transcriptomes. The chromosomal localization of kinetochore proteins was determined using
68 antibodies developed against key proteins representing different subcomponents of the kinetochore.
69 Comparison of the results between monocentric and holocentric species allowed us to uncover an
70 unprecedented level of changes that occurred specifically in the holocentric species and thus likely
71 played an important role in the transition to holocentricity in *Cuscuta*.

72 Results

73 **Transition to holocentricity in *Cuscuta* was associated with massive changes of kinetochore 74 protein genes**

75 Sequencing of the holocentric species *C. europaea* and *C. epithymum* resulted in genome
76 assemblies of 975.8 Mb (N50 = 17.9 Mb) and 997 Mb (N50 = 3.3 Mb), respectively
77 (Supplementary Note 1, and Supplementary Table 1). The completeness of gene space and quality
78 of gene prediction were assessed using BUSCO and were comparable to genome assemblies
79 previously published for the monocentric *Cuscuta* relatives *C. australis* and *C. campestris*
80 (Supplementary Fig. 1). The quality of gene prediction in the genome assembly was also verified by
81 the independent assembly of the transcriptomes, which showed similar results following BUSCO
82 analysis (Supplementary Table 2). To identify kinetochore protein sequences in the species selected
83 for this study, we created a sequence database of 29 structural and regulatory kinetochore proteins
84 known in plants. First, we used the database as a query for blastp searches to identify homologous
85 protein sequences in the monocentric species *C. australis*, *C. campestris*, and *Ipomoea nil*. The
86 identified sequences were manually verified and corrected when needed, and added to the database
87 to improve its sensitivity for homologous protein recognition. The improved database was then used
88 for blastp searches in the two holocentric *Cuscuta* species. Comparison of the identified kinetochore
89 protein genes revealed that all 29 tested genes are present and mostly intact in the monocentric

90 species, whereas in the holocentric species some of the genes are either absent, significantly
91 truncated, or duplicated accompanied by a higher rate of sequence divergence (Fig. 1a,
92 Supplementary Table 3 and Supplementary Data 1).

93 The lost genes included both eudicotyledonous plant homologs of *KNL2*, referred to as
94 α *KNL2* and β *KNL2*¹⁷, and four of eight spindle assembly checkpoint (SAC) genes, namely, *BMF1*,
95 *BMF2*, *BMF3*, and *MAD2* (Fig. 1a). Their absence was in all cases confirmed by comparison of
96 genomic loci possessing these genes in *C. australis* with the orthologous loci in *C. europaea* and *C.*
97 *epithymum* (Supplementary Figs. 2 and 3), as well as by their absence in genome-independent
98 transcriptome assemblies. The only exception was *BMF1* whose transcriptionally inactive fragment
99 still remains in *C. epithymum* (Supplementary Fig. 3). Large gene truncations took place in three
100 structural kinetochore protein genes, including *CENP-C*, *KNL1*, and *ZWINT1*, and the SAC gene
101 *MAD1* (Figs. 2 and 3 and Supplementary Figs. 4 and 5). Finally, the *CENH3* gene in holocentric
102 species was found to have duplicated once in the common ancestor of *C. europaea* and *C.*
103 *epithymum*, and once independently in each of the two species. The diversification of the duplicated
104 *CENH3* genes in holocentric species resulted in considerably higher protein sequence variability for
105 *CENH3* compared with monocentric *Grammica* species, suggesting that they evolved more rapidly
106 (Supplementary Figs. 6, 7, 8 and 9).

107 Given the function of proteins that are either missing or truncated, the changes are likely to
108 have had a substantial impact on kinetochore assembly and function at multiple levels, from
109 *CENH3* loading (absence of *KNL2*) and kinetochore assembly (truncation of *CENP-C*, *KNL1*, and
110 *ZWINT1*), to regulation of its function (absence of several key proteins of SAC) (Fig. 1b,c).

111 ***CENH3* histones do not have holocentric-like distribution in holocentric *Cuscuta* species**

112 Since *KNL2* is essential for proper loading of *CENH3* to centromeres¹⁷⁻²⁰, the loss of both α *KNL2*
113 and β *KNL2* in holocentric *Cuscuta* species is likely to have a serious impact on *CENH3*
114 localization. On holocentric chromosomes, *CENH3* is expected to specifically localize along the
115 poleward side of each chromatid. In contrast to this expectation, we have previously shown that
116 *CENH3* occurs in all but one prominent transversal heterochromatin band in *C. europaea* and that
117 *CENH3* distribution does not correlate with the distribution of mitotic spindle attachment sites
118 detected with antibodies against α -tubulin¹⁵ and Fig. 4a,b). To determine the localization of
119 *CENH3* in *C. epithymum*, we developed three antibodies against different N-terminal sequence
120 variants of the proteins. Although the antibodies were made to recognize all *CENH3* protein
121 sequence variants present in the tested plant, none of them produced a signal on chromosomes and
122 nuclei that could be distinguished from the background (Supplementary Fig. 10a-g). On the other
123 hand, two of the antibodies developed for *C. epithymum* detected *CENH3* in the heterochromatin

124 domains in *C. europaea* (Supplementary Fig. 10c,e), demonstrating that they were functional for *in*
125 *situ* detection. These results suggest that CENH3 is either not present in chromatin in *C. epithymum*
126 or that its levels are considerably lower than in *C. europaea*, and thus below the limits of detection
127 for the applied *in situ* immunodetection technique. Despite the absence of CENH3 signal, α -tubulin
128 immunostaining revealed attachment of mitotic spindle microtubules to chromosomes along their
129 poleward sides, confirming the holocentric nature of chromosomes in *C. epithymum* (Fig. 4c). This
130 was in contrast to monocentric *Cuscuta* spp., which had microtubules attached only to CENH3
131 containing domains (Fig. 4d and data not shown). These results suggest that CENH3 does not
132 function as a foundational kinetochore protein in holocentric *Cuscuta* species.

133 ***Kinetochore assembly is impaired in holocentric Cuscuta species***

134 The chromosomal distribution of CENH3 together with the truncation of three structural
135 kinetochore proteins suggested that kinetochore assembly may be impaired in holocentric *Cuscuta*
136 species. To test whether the kinetochore assembles along the poleward chromosome surface, as
137 expected for holocentric chromosomes, we examined the localization of CENP-C, which is a linker
138 between CENH3 and the KMN network, and of MIS12, KNL1, and NDC80, which represent the
139 three complexes of the KMN network (Fig. 1b). Antibodies were developed against peptides
140 designed from domains that were conserved in the holocentric species. However, owing to high
141 sequence similarity between species, it was likely that the antibodies against KNL1, NDC80, and
142 MIS12 would also recognize homologous proteins from monocentric *Cuscuta* species. Indeed,
143 when these antibodies were used for *in situ* detection, monocentromeres in *C. australis* as well as in
144 *C. reflexa* from the more distant subgenus *Monogynella* were labeled, demonstrating the
145 functionality of the antibodies (Fig. 4e-g and Supplementary Fig. 11). The antibodies against KNL1
146 and NDC80 proved to be particularly versatile, functioning even in *Rhynchospora pubera*, an
147 evolutionarily very distant plant species with holocentric chromosomes, where they detected
148 holocentromere-characteristic signals for both proteins (Fig. 4h,i). In agreement with the lack of
149 CENH3 signal in *C. epithymum*, CENP-C, KNL1 and NDC80 were not detected on either mitotic
150 chromosomes or in interphase nuclei in this species (data not shown). In *C. europaea*, these three
151 proteins were detected in small subdomains embedded within CENH3-containing heterochromatin
152 during interphase but not on mitotic chromosomes (Fig. 4j-l, Supplementary Movie 1, and data not
153 shown). Simultaneous *in situ* detection of KNL1 with either CENP-C or NDC80 revealed that these
154 proteins fully colocalized (Fig. 4m,n and Supplementary Movies 2 and 3). These results suggest that
155 the assembly of the kinetochore during interphase in *C. europaea* still depends, at least in part, on
156 the presence of CENH3, but that kinetochore organization is disrupted before cells enter mitosis.
157 Strikingly, MIS12 was detected in 2 - 16 (n = 100) discrete nuclear domains during interphase in

158 both holocentric species (Fig. 4o,p). In *C. europaea*, these domains were always located away from
159 the CENH3-containing heterochromatin (Fig. 4o and Supplementary Movie 4), indicating that
160 MIS12 has become independent of CENP-C and the KMN network proteins.

161 ***Conventional SAC is abolished in holocentric Cuscuta species***

162 To test if the regulatory kinetochore complexes form on chromosomes in holocentric *Cuscuta*
163 species despite the absence of the tested kinetochore proteins and the massive loss of the SAC genes
164 observed, we raised antibodies against BUB3;1/2 and Borealin, which are components of the SAC
165 and CPC, respectively. While the BUB3;1/2 antibodies produced monocentric-like signals on
166 chromosomes in *C. australis* and *C. reflexa*, and holocentromere-like signals in *Rhynchospora*
167 *pubera*, BUB3;1/2 was not detectable on chromosomes in holocentric *Cuscuta* species (Fig. 5a-c
168 and data not shown). On the other hand, the antibodies against Borealin labeled the chromosomes in
169 the region around areas of sister chromatid cohesion at centromeres in monocentric *C. reflexa* and
170 along the entire chromosome length in both holocentric *Cuscuta* species (Fig. 5d-f). These results
171 indicate that the conventional SAC is abolished, while the CPC maintains at least some of its
172 functions in holocentric *Cuscuta* species.

173 **Discussion**

174 The peculiar CENH3 localization in *C. europaea* described in our previous study¹⁵ suggested that
175 the transition to holocentricity in the genus *Cuscuta* may have been associated with the formation of
176 a CENH3-independent kinetochore assembly. In this study, we have demonstrated that the transition
177 to holocentricity in *Cuscuta* species was associated with extensive changes in structural and
178 regulatory kinetochore protein genes, and disruption of both standard kinetochore assembly and
179 SAC regulation of mitotic chromosome segregation. This distinguishes holocentric *Cuscuta* species
180 from both the holocentric nematode *Caenorhabditis elegans*, which use the CENH3-CENP-C
181 pathway of kinetochore assembly²¹, and holocentric insects, in which the CENH3-CENP-C
182 pathway of kinetochore assembly was lost and replaced by the CENP-T pathway¹²⁻¹⁴ (Fig. 6).

183 We hypothesize that one of the most important changes in the evolution of holocentric
184 *Cuscuta* species was the loss of KNL2. In *C. elegans*, RNAi depletion of KNL2 leads to a reduction
185 in the presence of CENH3 to levels undetectable by immunodetection, resulting in chromosome
186 segregation defects and embryonic lethality^{18,19}. Similar phenotypes have been observed in KNL2
187 mutants in other species, including *A. thaliana*, demonstrating the general importance of KNL2 for
188 CENH3 loading^{17,20}. Therefore, the depletion/absence of CENH3 in *C. epithymum* chromatin could
189 be due to the absence of both KNL2 variants. On the other hand, it is puzzling that CENH3

190 accumulates in heterochromatin domains in *C. europaea* despite the loss of KNL2. Given that all
191 heterochromatin domains that contain CENH3 possess the same repetitive sequences, whereas the
192 heterochromatin domain that lacks these repeats also lacks CENH3^{15,22}, the incorporation of
193 CENH3 into these domains could be DNA sequence-dependent. In light of the importance of KNL2
194 and CENH3 for centromere determination and kinetochore assembly, it is surprising that the loss of
195 KNL2 in both holocentric *Cuscuta* species, the depletion/absence of CENH3 on chromosomes in *C.*
196 *epithymum*, and the peculiar CENH3 distribution on chromosomes in *C. europaea* are neither lethal
197 nor cause chromosome segregation defects. The simplest explanation is that CENH3 is no longer
198 necessary for correct chromosome segregation in holocentric *Cuscuta* species (Supplementary Fig.
199 12).

200 The absence of detectable levels of structural kinetochore proteins on mitotic chromosomes
201 in holocentric *Cuscuta* species is in contrast not only to monocentric *Cuscuta* species but also to the
202 holocentric-like distribution of NDC80 and KNL1 in *R. pubera* (Cyperaceae), which was used as a
203 holocentric control plant in this study (Fig. 4). This suggests that the formation of the standard
204 kinetochore is disrupted in holocentric *Cuscuta* species. In *C. epithymum*, this could be primarily a
205 direct consequence of the depletion/absence of CENH3 on the chromosomes. In *C. europaea*, the
206 causes of kinetochore disruption must be different because CENH3-containing heterochromatin is
207 present throughout the cell cycle and partially colocalizes with CENP-C, KNL1, and NDC80
208 proteins during interphase. The reasons why the putative complex of kinetochore proteins formed
209 during interphase disappears at the onset of mitosis are not clear. Considering that three structural
210 kinetochore proteins are truncated (Fig. 1a), one possibility is that the complex falls apart because
211 of disrupted interactions between kinetochore components (Fig. 1c). The truncation of CENP-C
212 may be the most critical because CENP-C is the only protein known to link centromeric chromatin
213 to the outer kinetochore in plants (Figs. 1b,c and 2a). Although the N-terminus of CENP-C is
214 divergent in sequence between eukaryotes, it has been shown to bind MIS12c in both humans and
215 yeast, indicating a conserved function²³⁻²⁵. Given that this function is also conserved in plants, the
216 N-terminal truncation of CENP-C in *C. europaea* should interfere with MIS12c binding. Consistent
217 with this notion, we found that MIS12 does not colocalize with CENP-C and accumulates in
218 discrete domains that are clearly separated from CENH3-containing domains (Fig. 41 and
219 Supplementary Movie 4). While the colocalization of CENP-C, KNL1, and NDC80 suggests that
220 the kinetochore assembles during interphase, despite the absence of MIS12, the complex may not be
221 sufficiently stable to survive mitosis. The N-terminal truncation of CENP-C is, however, unlikely to
222 cause the disappearance of the protein itself because the N-terminus is not required for the binding
223 of centromeric nucleosomes (Fig. 2a and²⁶). Although the internal portion of CENP-C contains a
224 domain that binds centromeric nucleosomes in humans and yeast (Fig. 2a), the high sequence

225 divergence of CENP-C prevented us from determining by a sequence similarity-based approach
226 whether it overlaps with the region lost in *C. europaea*. On the other hand, the large size disparity
227 between the domains containing CENH3 and CENP-C (Fig. 4j,o and Supplementary Movies 1 and
228 2) suggests that there is an imbalance between the levels of the two proteins that may reflect
229 inefficient binding of CENP-C to CENH3.

230 The results discussed above support a model in which holocentric *Cuscuta* species either use
231 substantially reduced kinetochores lacking CENH3, CENP-C, KNL1, MIS12, and NDC80 or, more
232 likely, have evolved a completely novel mechanism of chromosome attachment to the mitotic
233 spindle. This conclusion is also supported by the degeneracy of SAC genes that would have been
234 required had the kinetochore been present and functioning in a conventional manner. Alternative
235 kinetochores have already been described in Kinetoplastida, most of which have lost CENH3 and
236 all CCAN and KMN genes. They consist of proteins that probably evolved from meiotic
237 components of chromosome synapsis and homologous recombination machinery^{27,28}. Moreover,
238 kinetochore-independent chromosomal movement along the spindle, facilitated by kinesin motor
239 proteins, has been described for acentric chromosomes in *Drosophila* neuroblasts^{29,30} and for
240 chromatin knobs in maize^{31,32}.

241 Overall, we have shown that the transition to holocentricity in *Cuscuta* species was unique
242 among all species studied to date. It was accompanied, and perhaps even triggered, by the
243 degeneration of standard kinetochore structure and regulation and the formation of a novel
244 mechanism for chromosome attachment to microtubules. The insights gained in this study provide
245 the basis for future studies aimed at uncovering the plasticity of kinetochore assembly and
246 discovering as yet unknown principles of chromosome segregation.

247 **Material and Methods**

248 **Plant material**

249 Seeds of *C. europaea* (serial number: 0101147) were obtained from the Royal Botanic Garden
250 (Ardingly, UK). *C. epithymum* plants were collected from a natural population at “U Cáby”
251 (Kroclov, Czech Republic). Seeds of *C. australis* and *C. campestris* were provided by Prof.
252 Jianqiang Wu (Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China) and
253 Dr. Chnar Fathoulla (University of Salahaddin, Kurdistan Region, Iraq), respectively. *C. reflexa*
254 Roxb. plant was obtained from the Botanic Gardens of the Rhenish Friedrich-Wilhelm University
255 (Bonn, Germany). *Cuscuta* plants were cultivated on the following host plant species: *Urtica dioica*
256 (*C. europaea*), *Betonica officinalis* and *Coleus blumei* (*C. epithymum*), *Ocimum basilicum* (*C.*

257 *australis* and *C. campestris*), or *Pelargonium zonale* (*C. reflexa*). Plants of *R. pubera* were obtained
258 from Dr. André Marques (Max Planck Institute for Plant Breeding Research, Cologne, Germany).

259 ***Genome sequencing and assembly***

260 DNA for Illumina and Pac-Bio sequencing was isolated using the CTAB method from nuclei
261 extracted from young shoots of *C. europaea* and *C. epithymum* as described previously ³³. Shotgun
262 Illumina paired-end sequencing of DNA was performed by the Brigham Young University (Provo,
263 UT, USA) and Admera Health (South Plainfield, NJ, USA). High molecular weight nuclear DNA
264 used for Oxford nanopore sequencing was isolated using a modified CTAB protocol as described
265 previously ³⁴. Nanopore sequencing was performed as described ²². Detailed information about all
266 genome sequence datasets produced in this study is provided in Supplementary Table 4.

267 Illumina paired-end reads and Oxford nanopore reads were assembled using MaSuRCA ³⁵.
268 PacBio HiFi reads were assembled using Hifiasm assembler (v0.15.5-r350; ³⁶) with default
269 parameters for PacBio HiFi sequence reads. Since the quality of the HiFi-based assemblies were
270 considerably better than those generated by MaSuRCA (Supplementary Table 1), they were selected
271 for submission to European Nucleotide Archive (<https://www.ebi.ac.uk/ena/browser/home>;
272 Accession numbers: ERZ12293622 (*C. europaea*) and ERZ12293623 (*C. epithymum*)).
273 Completeness and contiguity of assemblies were evaluated using BUSCO (v5.2.2; ³⁷) and QUAST
274 (v5.0.2; ³⁸). Genome characteristics were evaluated using kmer analysis and the jellyfish program
275 ³⁹ with kmer length 21 and 51 for Illumina and PacBio HIFI sequence reads, respectively.
276 Heterozygosity was estimated using GenomeScope program ⁴⁰.

277 ***Transcriptome sequencing, assembly and gene prediction***

278 Total RNA was isolated using the Trizol method. Preliminary sequencing for de-novo transcriptome
279 assemblies of *C. epithymum*, *C. europaea*, and *C. campestris* was performed at GATC Biotech
280 (Konstanz, Germany) using Illumina technology producing 50bp paired-end reads. In each species,
281 RNA was isolated from shoots and inflorescences, mixed in a 1:1 ratio, treated with DNase I
282 (Ambion, Austin, TX, USA), and then enriched for poly-A fraction using the Dynabeads mRNA
283 purification kit (Thermo Fisher Scientific, Waltham, MA, USA). Deep transcriptome sequencing of
284 *C. epithymum*, *C. europaea*, and *C. australis* was done using RNA isolated from shoot tips, shoot
285 internodia, or inflorescences at various stages of development. For each species and tissue, the RNA
286 samples were produced in three biological replicates (samples from different plants collected at
287 different time). Subtraction of poly-A RNA using NEBNext Ultra II with a Poly-A Selection kit
288 (New England Biolabs, Ipswich, MA, USA) and poly-A RNA sequencing were performed at
289 Admera Health (South Plainfield, NJ, USA). The sequencing generated more than 500 million 151

290 nt long paired-end reads for each RNA sample, giving a total yield of about 5 billion reads per
291 species (Supplementary Table 5).

292 Transcriptomes were de-novo assembled using the Trinity program ⁴¹ with default options
293 from pair-end reads. Sequences from individual replicates and tissue samples of each species were
294 concatenated before their assembly. The presence of single copy orthologs in the transcriptomes
295 was evaluated using the BUSCO (v.5.2.2) program ³⁷. To create gene models, pair-end RNA-Seq
296 Illumina reads were aligned to genome assembly using the STAR program (v2.7.7a; ⁴²) with
297 parameters --outSAMstrandField intronMotif --outSAMtype BAM SortedByCoordinate --
298 alignIntronMax 20000. Each sample was aligned independently. Resulting alignments were merged
299 into a single BAM file using samtools ⁴³. Whole length transcripts and genes were then
300 reconstructed using the Stringtie program (v2.1.7; ⁴⁴) with parameters -c 2 -f 0.05. Candidate coding
301 regions within transcript sequences were identified using TransDecoder program
302 (<https://github.com/TransDecoder/TransDecoder>) with default settings.

303 Predicted protein sequences from *C. europaea* and *C. epithymum* were compared with
304 published proteomes of *C. campestris*, *C. australis*, and *Ipomoea nil* using program OrthoFinder
305 (v2.5.2; ⁴⁵) to identify orthologs and orthogroups. Genome assemblies and associated files
306 containing detailed information about predicted gene models, protein and CDS sequences were
307 downloaded from <http://plabipd.de/portal/cuscuta-campestris> (*C. campestris*) or GenBank
308 (<https://www.ncbi.nlm.nih.gov/genbank/>; *C. australis*: GCA_003260385.1; *I. nil*:
309 GCF_001879475.1). RNA-seq data for these species were downloaded from the Sequence Read
310 Archive (SRA; <https://www.ncbi.nlm.nih.gov/sra>) from the following accession numbers:
311 SRR6664647 – SRR6664654 (*C. australis*), ERR1916345 – ERR1916364 (*C. campestris*), and
312 DRR024544 – DRR024549 (*I. nil*). The RNA-seq data produced in this study or downloaded from
313 other studies were used to verify and correct automatically predicted gene models if needed.
314 Manual verification and editing of gene models were performed using Apollo Genome Annotation
315 Editor ⁴⁶.

316 ***Identification and characterization of kinetochore proteins***

317 Structural and regulatory kinetochore protein sequences identified in *A. thaliana* were downloaded
318 from uniprot database and from published studies ^{47–49}. These sequences were used for blastp
319 searches to identify their homologs in genome assemblies of *C. australis* and *C. campestris* ^{50,51},
320 representing monocentric *Cuscuta* species, and in *I. nil* ⁵², selected as a monocentric nonparasitic
321 genus of the family Convolvulaceae. All sequences with significant similarity hits were manually
322 inspected to remove false positives, correct erroneous protein sequences, or add additional variants
323 due to alternative splicing. Protein sequences from *A. thaliana* and the three Convolvulaceae

324 species were combined into a reference data set that was used for blastp and tblastn searches to find
325 homologous kinetochore protein genes in holocentric *C. epithymum* and *C. europaea*. The searches
326 were primarily performed in gene and protein sequences predicted using StringTie in the assembly
327 produced from Pac-Bio reads, but the results were verified using the data from the parallel genome
328 assemblies that were made from Illumina and nanopore reads as well as the transcriptome
329 assemblies produced using Trinity.

330 CENH3 sequences from additional *Cuscuta* species or other plants of the same *Cuscuta*
331 species were obtained from our previous study (*C. campestris*, *C. japonica*¹⁵), identified in
332 transcriptome shotgun assemblies (*C. reflexa*, *C. campestris*) or other available genome assembly
333 (*C. epithymum*), amplified from RNA using RT-PCR or RACE methods (*C. epithymum*), or
334 reconstructed from available next generation genome sequence data using GRABb and GeneWise
335 programs (*C. americana*, *C. californica*, *C. pentagona*; ^{53,54}). More detailed information about
336 sources of the CENH3 sequences is provided in Supplementary Table 6.

337 Sequence alignments were performed using MUSCLE⁵⁵. Time trees were inferred using ITS
338 and *rbcL* sequences and methods described in our previous study¹⁶. ITS and *rbcL* sequences from
339 *C. australis* were reconstructed from Illumina paired end reads (SRA run accession number:
340 SRR5851367) using RepeatExplorer⁵⁶. A search for conserved sequence motives was performed
341 using MEME⁵⁷. Sequence logos were generated using WebLogo⁵⁸. The sources of CENP-C and
342 ZWINT1 sequences used for MEME and WebLogo analyses are provided in the Supplementary
343 Table 7.

344 *Antibodies*

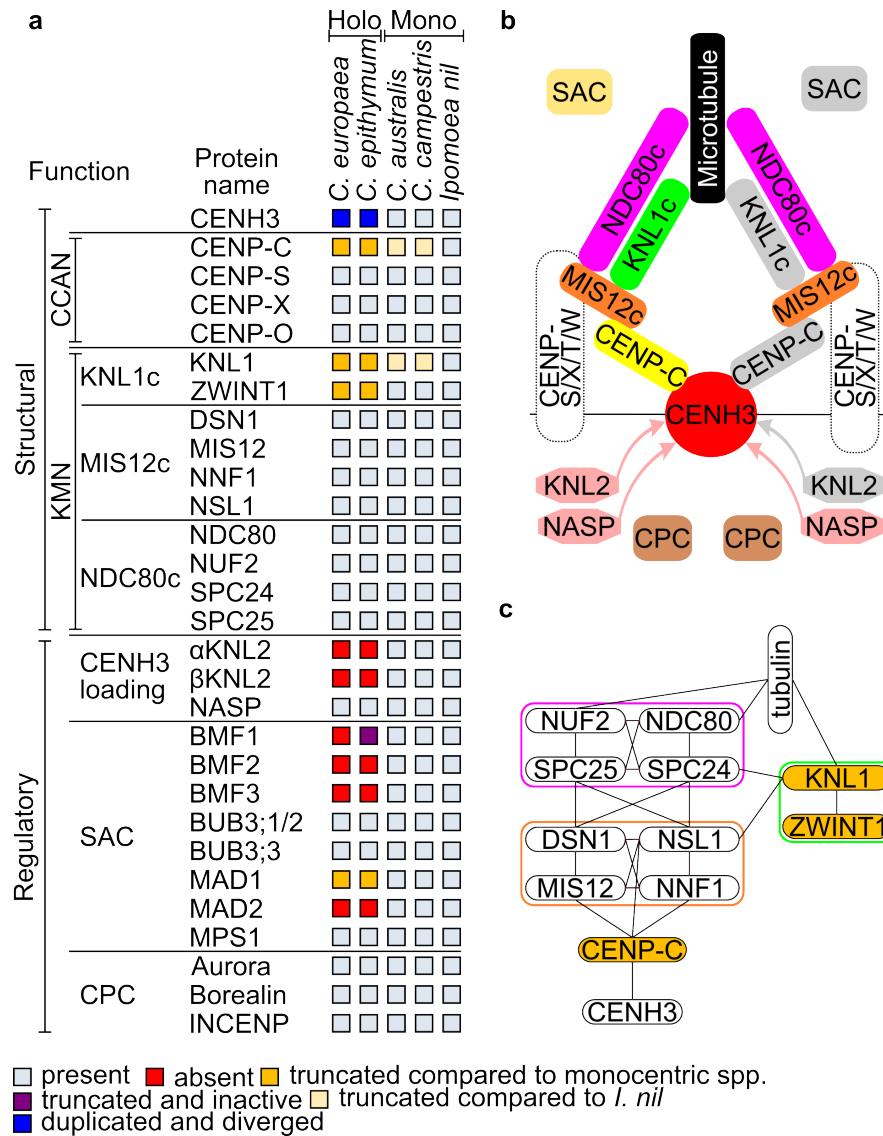
345 Antibodies to all kinetochore proteins used in this study were custom-produced by GenScript
346 (Piscataway, NJ, USA) or Biomatik (Cambridge, ON, Canada) against peptides designed from
347 regions that were most conserved among *Cuscuta* species and *I. nil*. The particular peptide
348 sequences used for immunization in rabbits were always designed from *C. europaea* kinetochore
349 protein sequences, with the exception of CENH3, which was designed from variable N-termini. The
350 peptide sequences are provided in Supplementary Table 8. Antibody specificity was confirmed
351 using *in situ* immunodetection to identify signals in the primary constrictions of monocentric
352 *Cuscuta* species. The mouse monoclonal antibody to α -tubulin was purchased from Sigma-Aldrich
353 (St. Louis, MO, USA; catalog number: T6199).

354 Reactivity of the antibodies raised against CENH3 with individual CENH3 variants in *C.*
355 *europaea* and *C. epithymum* was tested using western blot. Full-length CENH3-coding sequences
356 were cloned into pEXP5-NT/TOPO vector (Invitrogen, Carlsbad, CA, USA) in frame with the N-
357 terminal 6xHis tag-coding sequence. Recombinant proteins were produced in BL21-AI strain of *E.*

358 *coli* (Invitrogen, Carlsbad, CA, USA) upon induction with isopropyl β -D-thiogalactoside (IPTG).
359 Total protein was extracted using 1 \times SDS-PAGE buffer according to the manufacturer's instructions
360 supplied with the pEXP5-NT/TOPO vector, separated on 12% SDS-PAGE gel, and then transferred
361 onto Immobilon-P membrane (Sigma-Aldrich, St. Louis, MO, USA) using TE77XP semi-dry
362 transfer unit (Hoefer, Holliston, MA, USA). Membranes were blocked using 5% skim milk powder
363 in 1 \times PBS (PBS-M) overnight at 4°C and then incubated for 2 hours at RT with the primary
364 antibody diluted in 1 \times PBS-M to 2–3 μ g/ml. Following six washes in 1 \times PBS for 10 min at RT
365 each, the antibodies were detected using goat anti-rabbit IgG StarBright Blue 520 secondary
366 antibodies (Bio-Rad, Hercules, CA, USA; catalog number: 12005870) in 1 \times PBS-M for 1 h at RT.
367 Fluorescent signals were visualized using the Chemidoc MP imaging system (Bio-Rad, Hercules,
368 CA, USA). The presence of recombinant CENH3 proteins on the membrane was always verified by
369 detection with the HisG epitope tag antibody (Thermo Fisher Scientific, Waltham, MA, USA;
370 catalog number: R940-25) and secondary antibody StarBright Blue 700 Goat Anti-Mouse IgG (Bio-
371 Rad, Hercules, CA, USA; catalog number: 12004159).

372 ***In situ* immunodetection of kinetochore proteins**

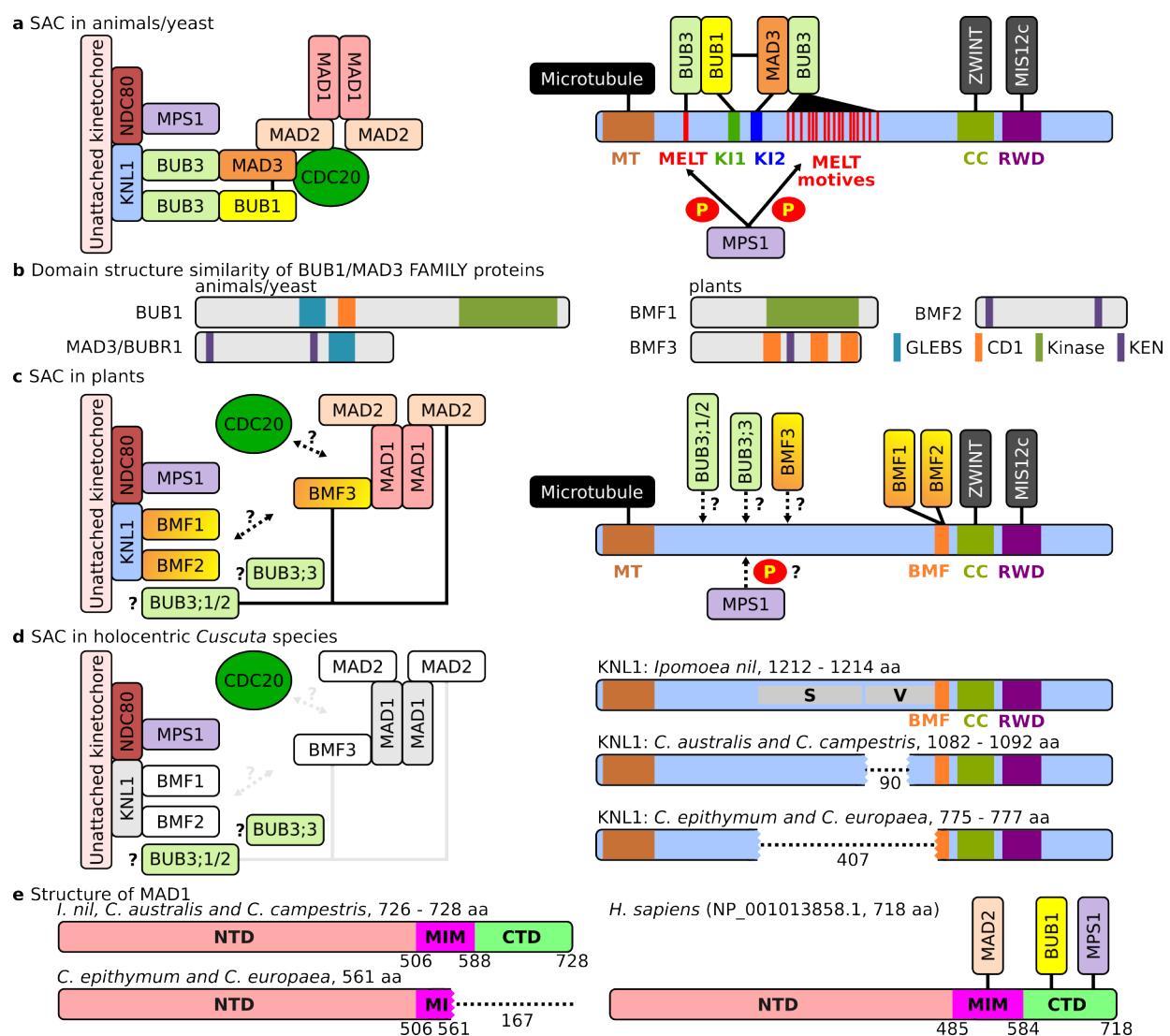
373 The biological material (shoot tips for *Cuscuta* and root tips for *Rhynchospora*) was fixed in TRIS-
374 fix buffer (4% formaldehyde, 10 mM Tris, 10 mM Na₂EDTA, 100 mM NaCl, pH 7.5) for 30 min at
375 10°C. Infiltration of the fixative was enhanced by applying a vacuum during the first 5 minutes.
376 After fixation, the material was washed in TRIS buffer (10 mM Tris, 10 mM Na₂EDTA, 100 mM
377 NaCl, pH 7.5) on ice for 30 minutes. For the preparation of chromosomes and nuclei in *Cuscuta*
378 species, the squashing technique was first used after digesting the shoot apical meristems for one
379 hour at 27.4°C in 2% cellulase ONOZUKA R10 (SERVA Electrophoresis, Heidelberg, Germany)
380 and 2% pectinase (MP Biomedicals, Santa Ana, CA, USA). The squashes were performed in either
381 1 \times phosphate-buffered saline (PBS) or LB01 (15 mM Tris(hydroxymethyl)aminomethane, 2 mM
382 Na₂EDTA, 0.5 mM spermine, 80 mM KCl, 20 mM NaCl, 15 mM mercaptoethanol, and 0.1% (v/v)
383 Triton X-100, pH 7.5). With this technique, it was possible to obtain reasonable results, but to
384 minimize background, chromosomes and nuclei were later isolated in suspension as described
385 below. Shoot apical meristems were cut up in 1 ml of cold LB01 using a mechanical homogenizer
386 (Ultra-turrax T8, IKA Z404519). The suspension was filtered through a 48 μ m nylon mesh and spun
387 onto slides using a Hettich centrifuge with cytopin chambers. In *Rhynchospora pubera*,
388 formaldehyde-fixed root tip meristems were digested with 2% cellulase ONOZUKA R10 (SERVA
389 Electrophoresis, Heidelberg, Germany) and 2% pectinase (MP Biomedicals, Santa Ana, CA, USA)
390 for one hour at 37 °C. After washing with cold distilled water, meristems were squashed in 1 \times PBS.
391 Before immunostaining, slides were incubated for 30 minutes at room temperature (RT) in 1 \times PBS-

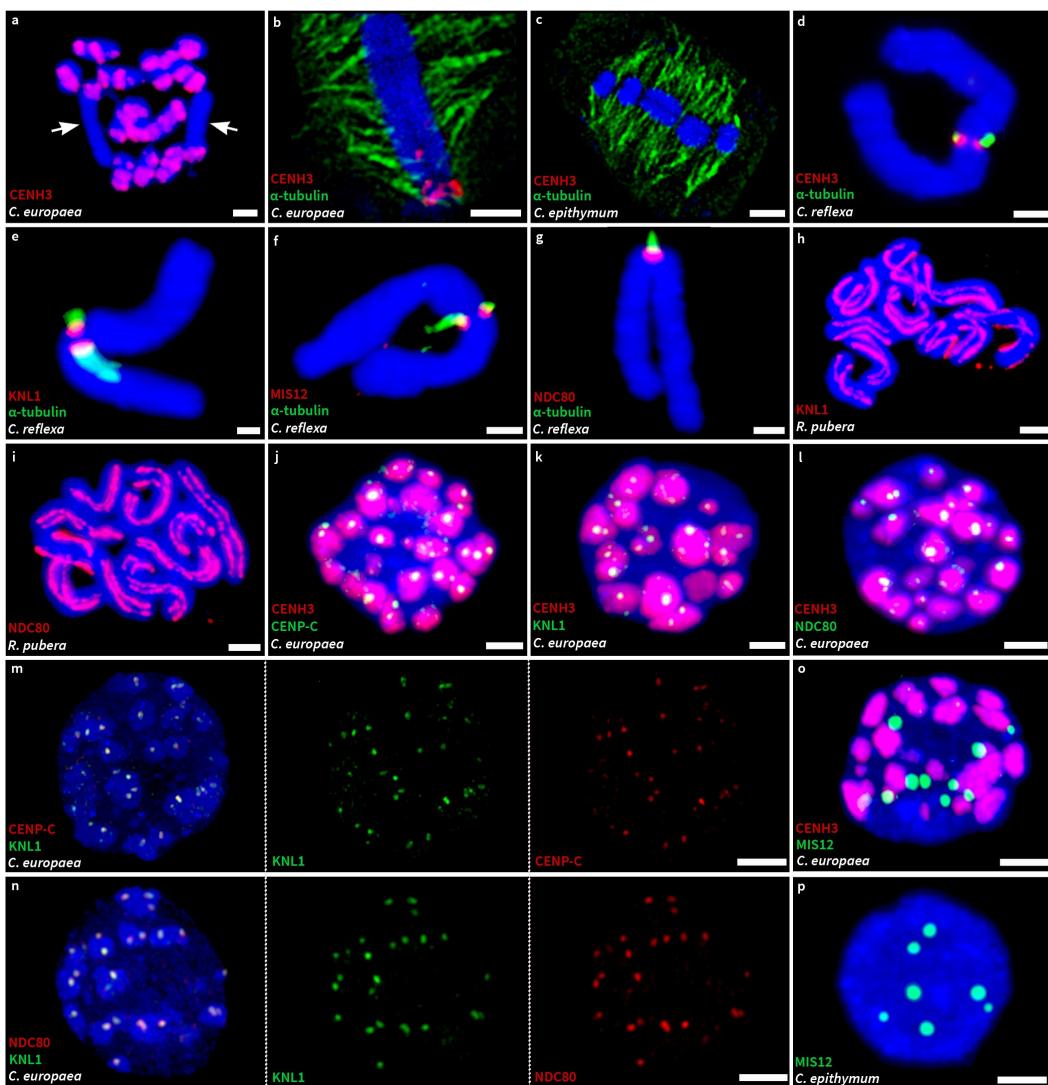

392 T1 buffer (1× PBS and 0.5% Triton, pH 7.4) (RT) to increase permeabilization. Slides were washed
393 twice in 1× PBS for 5 minutes at RT and once in 1× PBS-T2 (1× PBS, 0.1% Tween 20, pH 7.4) for
394 5 minutes at RT. For immunostaining, slides were incubated with primary antibody diluted in 1×
395 PBS-T2 overnight at 4°C. The dilution ratios were as follows: 1:1000 for antibodies to kinetochore
396 proteins and 1:100 for antibodies to α -tubulin (Sigma-Aldrich, St. Louis, MO; catalog number
397 T6199). After washing twice for 5 minutes in 1× PBS at RT, slides were incubated for one hour at
398 RT with the secondary antibody in 1× PBS and then washed twice for 5 minutes in 1× PBS at RT.
399 Primary rabbit and mouse antibodies were detected with goat anti-rabbit Rhodamine Red X
400 (dilution 1:500; Jackson ImmunoResearch, Suffolk, UK; catalog number: 111-295-144) and goat
401 anti-mouse Alexa Fluor 488 (dilution 1:500; Jackson ImmunoResearch; catalog number: 115-545-
402 166), respectively. To distinguish specific signals from background signals caused by nonspecific
403 binding of the secondary antibody, negative control slides were used and subjected to the same
404 treatments as for standard detection, except that the primary antibody was not added. For
405 simultaneous detection of different proteins with two rabbit antibodies, antibodies were labeled
406 directly using Alexa Fluor 488 and Alexa Fluor 568 antibody labeling kits (Thermo Fisher
407 Scientific, Waltham, MA, USA; catalog numbers: A20181 and A20184, respectively) according to
408 the manufacturer's recommendations. The degree of labeling was determined using a
409 spectrophotometer DS-11 (DeNovix, Wilmington, DE, USA). Before embedding the slides in
410 Vectashield mounting medium (Vector Laboratories, Burlingame, CA) supplemented with 49,6-
411 diamino-2-phenylindole (DAPI), the slides were fixed with 4% formaldehyde in 1× PBS for 10
412 minutes at RT and then washed twice for 5 minutes in 1× PBS at RT.

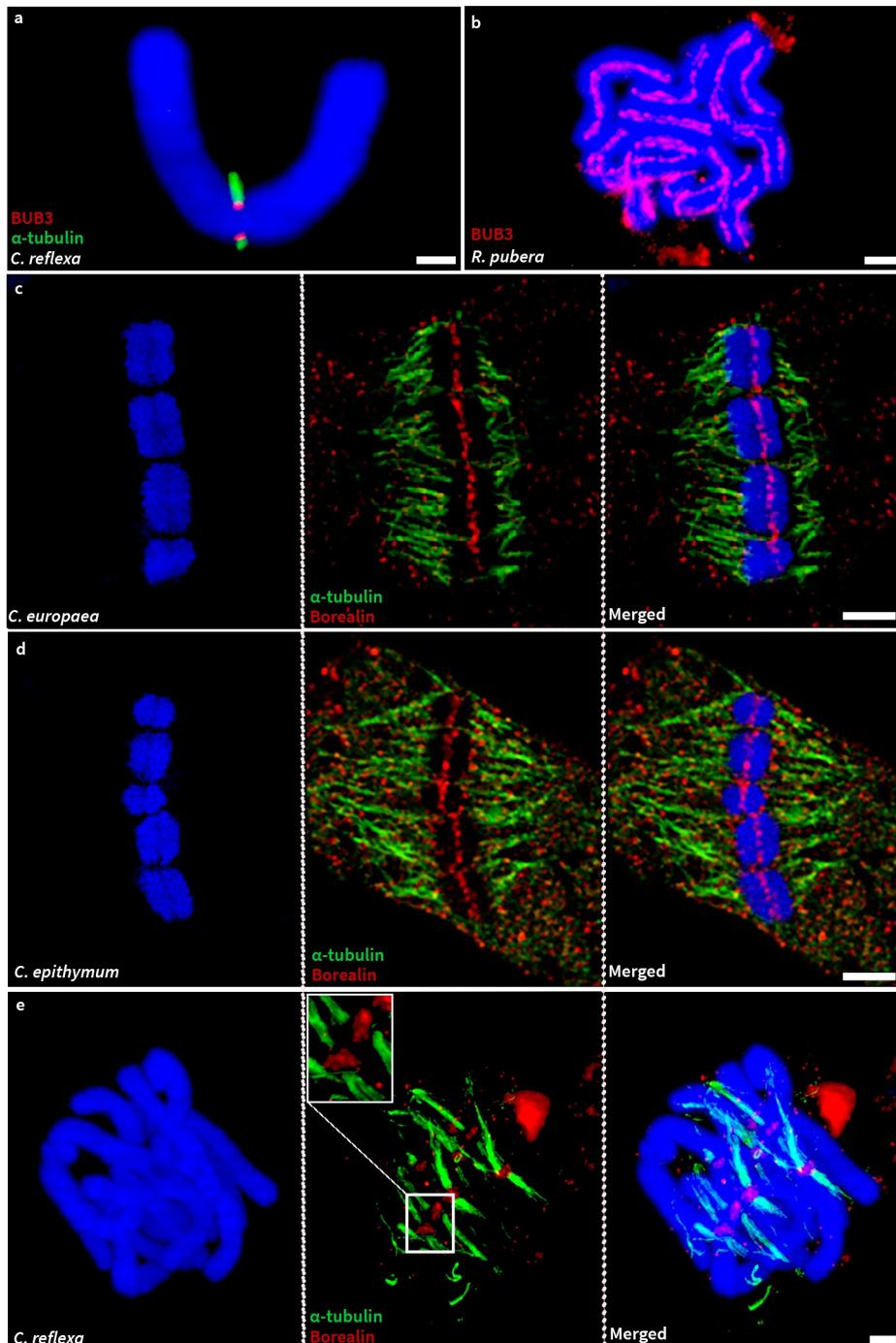
413 ***Microscopy***

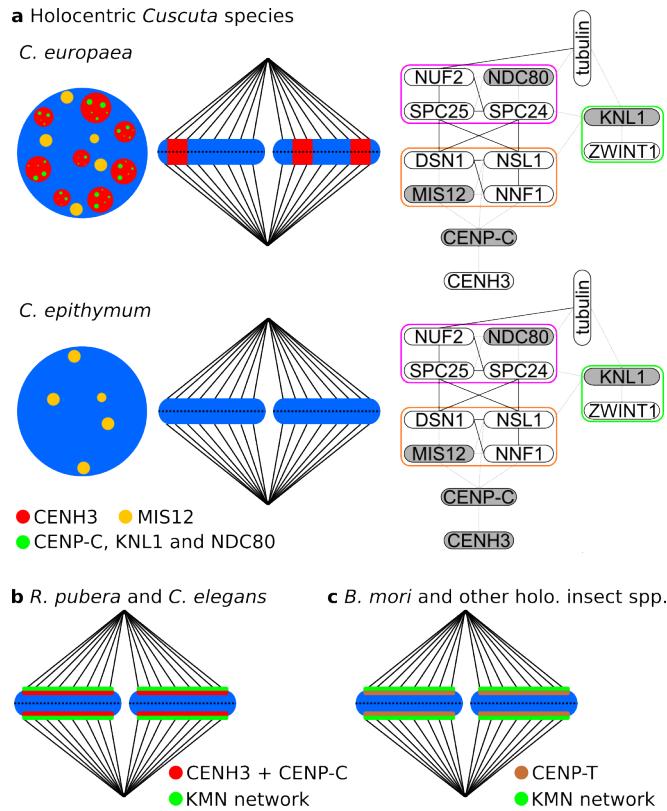
414 For conventional wide-field fluorescence microscopy, a Zeiss AxioImager.Z2 microscope equipped
415 with an Axiocam 506 mono camera was used along with an Apotome2.0 device for better resolution
416 in the z-axis, which was needed when the images were composed of multiple optical sections.
417 Images were generated using the ZEN 3.2 software (Carl Zeiss GmbH). To capture signals at the
418 super-resolution level (~120 nm using a 488 nm laser), spatial structured illumination microscopy
419 (3D-SIM) was performed using a 63 \times /1.4 Oil Plan-Apochromat objective on an Elyra PS.1
420 microscope system, controlled by the ZENBlack software (Carl Zeiss GmbH). Images were
421 captured using the 405, 488, and 561 nm laser lines for excitation and the appropriate emission
422 filters ⁵⁹. Three-dimensional movies were produced from 3D-SIM image stacks using the Imaris 9.7
423 (Bitplane) software.

424 Acknowledgements


425 This research was financially supported by grants from the Czech Science Foundation (20-25440S)
426 and the Czech Academy of Sciences (RVO:60077344). Computational resources and data-storage
427 facilities were provided by the ELIXIR-CZ Research Infrastructure Project (LM2018131). We thank
428 to J. Láhalová and V. Tetourová for their technical assistance.


429 **Fig. 1 | The repertoire of structural and regulatory kinetochore proteins analyzed in this**
 430 **study. a, Results of the survey of the protein sequences. b, Simplified schematic illustration of**
 431 **kinetochore structure^{3,4}. Proteins or complexes containing proteins that have been truncated or lost**
 432 **in holocentric *Cuscuta* species are highlighted in gray on the right. Centromeric chromatin is**
 433 **determined by the presence of CENH3. The deposition of CENH3 in plants depends on the KNL2**
 434 **and NASP proteins. The outer kinetochore consists of the KMN network, which includes three**
 435 **subcomplexes, KNL1c, MIS12c, and NDC80c. The connection between centromeric chromatin and**
 436 **the KMN network is mediated by CENP-C. Some metazoan species have an alternative pathway of**
 437 **kinetochore assembly based on CENP-T. CENP-T forms a complex with CENP-S, CENP-X, and**
 438 **CENP-W, and also interacts with NDC80c and MIS12c^{12,59}. Because the plant homologs of CENP-**
 439 **T are not known, it is not clear whether the CENP-T pathway also exists in plants. The precise**
 440 **spatiotemporal and orderly progression of mitosis is ensured by the activity of regulatory**
 441 **kinetochore proteins belonging to the spindle assembly checkpoint (SAC) and the chromosome**
 442 **passenger complex (CPC). The SAC monitors the state of chromosome attachment to spindle**
 443 **microtubules and prevents the transition from metaphase to anaphase until all sister chromatids are**
 444 **attached to microtubules⁶. The CPC is involved in mitotic checkpoint activity, destabilizes**
 445 **improperly attached spindle microtubules, and promotes axial shortening of chromosome arms**
 446 **during anaphase⁷⁻⁹. c, Schematic illustration of the interactions between the proteins forming the**
 447 **CENP-C pathway of kinetochore assembly. Proteins truncated in holocentric *Cuscuta* species are**
 448 **highlighted in orange. The interactions were drawn based on findings in yeast and humans^{24,60-65} but**
 449 **likely also occur in plants.**


450 **Fig. 2 | Truncation of CENP-C in *Cuscuta* species.** **a**, Comparison of domain structure between
 451 human, *Saccharomyces cerevisiae*, and monocentric and holocentric *Convolvulaceae* species.
 452 Human and yeast CENP-C sequences are divergent, but the positions of the functional domains are
 453 conserved^{65,66}. Compared with *I. nil*, CENP-C is truncated in both monocentric and holocentric
 454 *Cuscuta* species, but with more extensive truncations in the latter species (the missing parts are
 455 shown as dashed lines, and the numbers below indicate their length). The N-terminal truncation in
 456 *C. europaea* and the internal truncations in all *Cuscuta* species resulted in the loss of domains
 457 recognized by MEME as conserved in dicotyledonous plants, indicating their functional
 458 importance. The sequence logos of these domains are shown on the right. **b**, Comparison of CDS
 459 exon-intron structure of CENP-C genes. The exon-intron structure is conserved in all
 460 *Convolvulaceae* species (the orthologous exons are connected with black lines). The internal
 461 truncations of CENP-C proteins in *Cuscuta* species are due to deletions in the sixth coding exon. **c**,
 462 Schematic illustration of the CENP-C gene locus in *C. europaea*. The current CENP-C locus is
 463 compared with the putative ancestral CENP-C gene structure (top), which was reconstructed by
 464 adding the missing region from *C. epithymum*. The original CENP-C gene gradually changed by a
 465 short inverted duplication of the first coding exon and part of the following intron (red arrows), a
 466 partial deletion in the first coding exon that remained in the correct orientation (marked with a red
 467 asterisk), the insertion of the Ty1/Copia LTR retrotransposon Ale (green), and a large inverted
 468 duplication (black arrows). The remnants of the first ancestral coding exon became part of the
 469 intron. The second ancestral coding exon was retained and became the first coding exon of the gene
 470 in present-day *C. europaea*.


471 **Fig. 3 | Schematic illustration of interactions between SAC and KNL1 in animals/yeasts,**
472 **plants, and holocentric *Cuscuta* species.** Schematics were adapted from ^{6,47}, with modifications to
473 reflect the results of other studies cited below. **a**, SAC and KNL1 in animals and yeast. (Left) SAC
474 is activated on kinetochores that are not attached to microtubules, and its formation is initiated by
475 MPS1, a kinase that phosphorylates MELT repeats in KNL1. Phosphorylated KNL1 serves as a
476 binding platform for SAC, which interacts with CDC20 to form the mitotic checkpoint complex,
477 preventing entry into anaphase. (Right) Schematic representation of the protein binding domains in
478 KNL1 (drawn after ⁶⁷). Protein interactions in both schematics are shown as adjacent rectangles or
479 black lines. **b**, Domain organization in BUB1/MAD3 family (BMF) proteins in animals/yeasts and
480 their plant counterparts BMF1-BMF3 (drawn after ⁴⁷). **c**, SAC and KNL1 in plants. (Left) The
481 architecture of the plant SAC differs from that in animals/yeasts ^{47,48,68,69}, and the function and
482 interactions of some SAC proteins are not yet known (dashed lines with question marks). (Right)
483 Plant KNL1 lacks MELT, KI1, and KI2 domains and binds BMF1 and BMF2 proteins via the BMF
484 domain near the C-terminus ⁴⁸. **d**, SAC and KNL1 in holocentric *Cuscuta* species. (Left) SAC is
485 severely impaired by the absence or truncation of several proteins (white and gray boxes,
486 respectively). (Right) Truncation of KNL1 in *Cuscuta* species as compared to *I. nil*. The region
487 missing in monocentric *Cuscuta* species corresponds to a highly variable region (V), whereas the
488 region missing in the holocentric species also includes a segment that shares sequence similarity to
489 KNL1 from various plant species (S). The truncations are depicted as dotted lines, and their lengths
490 are indicated by the numbers below. **e**, Structure of MAD1. N-terminal domain (NTD), MAD2
491 interaction motif (MIM), and C-terminal domain (CTD) were determined by comparison with
492 human MAD2 ⁷⁰. C-terminal truncation of MAD2 in holocentric *Cuscuta* species resulted in the loss
493 of domains interacting with MAD2, BUB1, and MPS1 in humans.

494 **Fig. 4 | In situ immunodetection of structural kinetochore proteins and α -tubulin.** **a**, Detection
495 of CENH3 on mitotic chromosomes in *C. europaea*. Arrows indicate chromosomes 1, which
496 possess a single subtelomeric CENH3-containing domain, while the majority of the chromosome
497 lacks CENH3 signals. **b**, Detection of CENH3 and α -tubulin on selected chromosome 1 in *C. europaea*. The image is a single optical section selected from an 3D-SIM image stack showing that
498 microtubules of the mitotic spindle are evenly attached to the chromosome at its poleward sides and
499 along its entire length, independent of the occurrence of CENH3 signals. **c**, Detection of CENH3
500 and α -tubulin in *C. epithymum*. The image is a single optical section selected from an 3D-SIM
501 image stack showing even distribution of microtubules of the mitotic spindle despite the absence of
502 CENH3 signals. **d-g**, Detection of α -tubulin with either CENH3 (d), KNL1 (e), MIS12 (f), and
503 NDC80 (g) on selected *C. reflexa* chromosomes. All four proteins are specifically localized on the
504 surface of primary constriction where microtubules attach. **h-i**, Detection of KNL1 (h) and NDC80
505 (i) in *Rhynchospora pubera*. Both proteins show holocentromere-characteristic distribution of both
506 proteins along the entire length of all chromosomes. **j-l**, Detection of CENH3 with either CENP-C
507 (j), KNL1 (k), or NDC80 (l) in interphase nuclei of *C. europaea*. CENP-C, KNL1, and NDC80 are
508 localized in small domains embedded in much larger CENH3-containing heterochromatin domains.
509 The images were reconstructed using maximum-intensity projection from 3D-SIM image stacks. **m**-
510 **n**, Detection of KNL1 with either CENP-C (m) or NDC80 (n), showing that all three proteins are
511 colocalized. The images were reconstructed using maximum-intensity projection from 3D-SIM
512 image stacks. **o**, Detection of MIS12 and CENH3 in an interphase nucleus of *C. europaea*, showing
513 that the two proteins are not colocalized. **p**, Detection of MIS12 in interphase nucleus of *C. epithymum*. The spatial visualizations of nuclei shown in k, l, o, and p are available as
514 Supplementary Movies 1-4. Chromosomes were stained with DAPI (blue). Scale bars = 2 μ m.
515

517 **Fig. 5 | In situ immunodetection of BUB3;1/2 and Borealin.** **a**, Simultaneous detection of
518 BUB3;1/2 and α -tubulin on mitotic chromosomes in *C. reflexa*. The image shows that BUB3;1/2 is
519 specifically localized on the surface of the primary constriction where microtubules attach. **b**,
520 Detection of BUB3;1/2 on mitotic chromosomes in *R. pubera*, showing holocentromere-
521 characteristic distribution of the signals along the entire length of all chromosomes. **c-d**,
522 Simultaneous detection of Borealin and α -tubulin on mitotic chromosomes in *C. europaea* (c) and
523 *C. epithymum* (d). The images show single optical slices selected from 3D-SIM image stacks. **e**,
524 Simultaneous detection of Borealin and α -tubulin on mitotic chromosomes in *C. reflexa*.
525 Chromosomes were stained with DAPI (blue). Scale bars = 2 μ m.

526 **Fig. 6 | Comparison of kinetochore structure between holocentric *Cuscuta* species and other**
527 **previously studied holocentric species.** **a,** (Left) Summary of the distribution of structural
528 kinetochore proteins examined in this study in *C. europaea* and *C. epithymum*. In both *Cuscuta*
529 species, the microtubules of the mitotic spindle are attached to the chromosomes along their entire
530 length, indicating their holocentric nature. In *C. europaea*, CENH3 is specifically localized in
531 transverse heterochromatin bands rather than on the poleward surface along the entire chromosome
532 length. During interphase, the kinetochore proteins CENP-C, KNL1, and NDC80 are colocalized in
533 small areas within CENH3-containing heterochromatin, whereas MIS12 occurs at separate, discrete
534 sites. None of these proteins were detected on mitotic chromosomes. In *C. epithymum*, which lacks
535 conspicuous heterochromatin domains, CENH3, CENP-C, KNL1, and NDC80 were not detected in
536 interphase nuclei or on mitotic chromosomes, whereas MIS12 was detected at several discrete sites
537 in interphase nuclei. (Right) Schematic illustrations of the interactions between the proteins forming
538 the CENP-C pathway of kinetochore assembly from Fig. 1c, where the proteins that were examined
539 but not detected on mitotic chromosomes are shaded in gray and the resulting missing interactions
540 are shown as gray dashed lines. They show that the absence of these proteins likely disrupts overall
541 kinetochore assembly. **b,** Kinetochore formation on holocentromeres in *R. pubera* and
542 *Caenorhabditis elegans*. Centromere domains are determined by the presence of CENH3. On
543 mitotic chromosomes, they form a continuous layer on the poleward surface of each chromatid
544 where the kinetochore forms and spindle microtubules attach. The KMN network of the outer
545 kinetochore is connected to the CENH3-containing nucleosomes via the CENP-C protein. **c,**
546 Kinetochore formation on holocentromeres in *Bombyx mori* and other holocentric insect species.
547 These species lack CENH3 and the KMN network is linked to chromosomes via the CENP-T
548 protein.

549 **References**

- 550 1. Melters, D. P., Paliulis, L. V., Korf, I. F. & Chan, S. W. L. Holocentric chromosomes: 551 convergent evolution, meiotic adaptations, and genomic analysis. *Chromosom. Res.* **20**, 579– 552 93 (2012).
- 553 2. McKinley, K. L. & Cheeseman, I. M. The molecular basis for centromere identity and 554 function. *Nat. Rev. Mol. Cell Biol.* **17**, 16–29 (2016).
- 555 3. Pesenti, M. E., Weir, J. R. & Musacchio, A. Progress in the structural and functional 556 characterization of kinetochores. *Curr. Opin. Struct. Biol.* **37**, 152–163 (2016).
- 557 4. Yamagishi, Y., Sakuno, T., Goto, Y. & Watanabe, Y. Kinetochore composition and its 558 function: lessons from yeasts. *FEMS Microbiol. Rev.* **38**, 185–200 (2014).
- 559 5. Lara-Gonzalez, P., Westhorpe, F. G. & Taylor, S. S. The spindle assembly checkpoint. *Curr. 560 Biol.* **22**, R966–R980 (2012).
- 561 6. Musacchio, A. The molecular biology of spindle assembly checkpoint signaling dynamics. 562 *Curr. Biol.* **25**, R1002–R1018 (2015).
- 563 7. Komaki, S. *et al.* Functional analysis of the plant chromosomal passenger complex. *Plant 564 Physiol.* **183**, 1586–1599 (2020).
- 565 8. Carmena, M., Wheelock, M., Funabiki, H. & Earnshaw, W. C. The chromosomal passenger 566 complex (CPC): from easy rider to the godfather of mitosis. *Nat. Rev. Mol. Cell Biol.* **13**, 567 789–803 (2012).
- 568 9. van der Waal, M. S., Hengeveld, R. C. C., van der Horst, A. & Lens, S. M. A. Cell division 569 control by the Chromosomal Passenger Complex. *Exp. Cell Res.* **318**, 1407–1420 (2012).
- 570 10. Buchwitz, B. J., Ahmad, K., Moore, L. L., Roth, M. B. & Henikoff, S. A histone-H3-like 571 protein in *C. elegans*. *Nature* **401**, 547–548 (1999).
- 572 11. Schubert, V. *et al.* Super-resolution microscopy reveals diversity of plant centromere 573 architecture. *Int. J. Mol. Sci.* **21**, 3488 (2020).
- 574 12. Cortes-Silva, N. *et al.* CenH3-independent kinetochore assembly in Lepidoptera requires 575 CCAN, including CENP-T. *Curr. Biol.* **30**, 561–572.e10 (2020).
- 576 13. Drinnenberg, I. A., DeYoung, D., Henikoff, S. & Malik, H. S. Recurrent loss of CenH3 is 577 associated with independent transitions to holocentricity in insects. *Elife* **3**, e03676 (2014).
- 578 14. Senaratne, A. P. *et al.* Formation of the CenH3-deficient holocentromere in Lepidoptera 579 avoids active chromatin. *Curr. Biol.* **31**, 173–181.e7 (2021).
- 580 15. Oliveira, L. *et al.* Mitotic spindle attachment to the holocentric chromosomes of *Cuscuta 581 europaea* does not correlate with the distribution of CENH3 chromatin. *Front. Plant Sci.* **10**, 582 1799 (2020).
- 583 16. Neumann, P. *et al.* Impact of parasitic lifestyle and different types of centromere organization 584 on chromosome and genome evolution in the plant genus *Cuscuta*. *New Phytol.* **229**, 2365– 585 2377 (2021).

586 17. Zuo, S. *et al.* Recurrent plant-specific duplications of KNL2 and its conserved function as a
587 kinetochore assembly factor. *Mol. Biol. Evol.* **39**, (2022).

588 18. Maddox, P. S., Hyndman, F., Monen, J., Oegema, K. & Desai, A. Functional genomics
589 identifies a Myb domain-containing protein family required for assembly of CENP-A
590 chromatin. *J. Cell Biol.* **176**, 757–763 (2007).

591 19. Steiner, F. a & Henikoff, S. Holocentromeres are dispersed point centromeres localized at
592 transcription factor hotspots. *Elife* **3**, 1–22 (2014).

593 20. Lermontova, I. *et al.* *Arabidopsis* KINETOCHERE NULL2 is an upstream component for
594 centromeric Histone H3 Variant cenH3 deposition at centromeres. *Plant Cell* **25**, 3389–404
595 (2013).

596 21. Pintard, L. & Bowerman, B. Mitotic cell division in *Caenorhabditis elegans*. *Genetics* **211**,
597 35–73 (2019).

598 22. Vondrak, T. *et al.* Complex sequence organization of heterochromatin in the holocentric plant
599 *Cuscuta europaea* elucidated by the computational analysis of nanopore reads. *Comput.*
600 *Struct. Biotechnol. J.* **19**, 2179–2189 (2021).

601 23. Dimitrova, Y. N., Jenni, S., Valverde, R., Khin, Y. & Harrison, S. C. Structure of the MIND
602 complex defines a regulatory focus for yeast kinetochore assembly. *Cell* **167**, 1014-1027.e12
603 (2016).

604 24. Petrovic, A. *et al.* Structure of the MIS12 complex and molecular basis of its interaction with
605 CENP-C at human kinetochores. *Cell* **167**, 1028-1040.e15 (2016).

606 25. Screpanti, E. *et al.* Direct binding of Cenp-C to the Mis12 complex joins the inner and outer
607 kinetochore. *Curr. Biol.* **21**, 391–398 (2011).

608 26. Przewloka, M. R. *et al.* CENP-C is a structural platform for kinetochore assembly. *Curr.*
609 *Biol.* **21**, 399–405 (2011).

610 27. Tromer, E. C., Wemyss, T. A., Ludzia, P., Waller, R. F. & Akiyoshi, B. Repurposing of
611 synaptonemal complex proteins for kinetochores in Kinetoplastida. *Open Biol.* **11**, (2021).

612 28. Butenko, A. *et al.* Evolution of metabolic capabilities and molecular features of diplomonads,
613 kinetoplastids, and euglenids. *BMC Biol.* **18**, 1–28 (2020).

614 29. Karg, T., Elting, M. W., Vicars, H., Dumont, S. & Sullivan, W. The chromokinesin Klp3a and
615 microtubules facilitate acentric chromosome segregation. *J. Cell Biol.* **216**, 1597–1608
616 (2017).

617 30. Vicars, H., Karg, T., Warecki, B., Bast, I. & Sullivan, W. Kinetochore-independent
618 mechanisms of sister chromosome separation. *PLOS Genet.* **17**, e1009304 (2021).

619 31. Swentowsky, K. W. *et al.* Distinct kinesin motors drive two types of maize neocentromeres.
620 *Genes Dev.* **34**, 1239–1251 (2020).

621 32. Dawe, R. K. *et al.* A Kinesin-14 motor activates neocentromeres to promote meiotic drive in
622 maize. *Cell* **173**, 839–850 (2018).

623 33. Dellaporta, S. L. S. L., Wood, J. & Hicks, J. B. J. B. A plant DNA minipreparation: version
624 II. *Plant Mol. Biol. Report.* **1**, 19–21 (1983).

625 34. Vondrak, T. *et al.* Characterization of repeat arrays in ultra-long nanopore reads reveals
626 frequent origin of satellite DNA from retrotransposon-derived tandem repeats. *Plant J.* **101**,
627 484–500 (2020).

628 35. Zimin, A. V. *et al.* The MaSuRCA genome assembler. *Bioinformatics* **29**, 2669–2677 (2013).

629 36. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo
630 assembly using phased assembly graphs with hifiasm. *Nat. Methods* **18**, 170–175 (2021).

631 37. Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update:
632 novel and streamlined workflows along with broader and deeper phylogenetic coverage for
633 scoring of eukaryotic, prokaryotic, and viral genomes. *Mol. Biol. Evol.* **38**, 4647–4654
634 (2021).

635 38. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for
636 genome assemblies. *Bioinformatics* **29**, 1072–1075 (2013).

637 39. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of
638 occurrences of k-mers. *Bioinformatics* **27**, 764–770 (2011).

639 40. Vrture, G. W. *et al.* GenomeScope: fast reference-free genome profiling from short reads.
640 *Bioinformatics* **33**, 2202–2204 (2017).

641 41. Grabherr, M. G. *et al.* Full-length transcriptome assembly from RNA-Seq data without a
642 reference genome. *Nat. Biotechnol.* **29**, 644–652 (2011).

643 42. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21 (2013).

644 43. Li, H. *et al.* The sequence alignment/map format and SAMtools. *Bioinformatics* **25**, 2078–
645 2079 (2009).

646 44. Pertea, M. *et al.* StringTie enables improved reconstruction of a transcriptome from RNA-seq
647 reads. *Nat. Biotechnol.* **33**, 290–295 (2015).

648 45. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative
649 genomics. *Genome Biol.* **20**, 1–14 (2019).

650 46. Dunn, N. A. *et al.* Apollo: democratizing genome annotation. *PLOS Comput. Biol.* **15**,
651 e1006790 (2019).

652 47. Komaki, S. & Schnittger, A. The spindle assembly checkpoint in *Arabidopsis* is rapidly shut
653 off during severe stress. *Dev. Cell* **43**, 172–185.e5 (2017).

654 48. Su, H. *et al.* Kn11 participates in spindle assembly checkpoint signaling in maize. *Proc. Natl.*
655 *Acad. Sci.* **118**, e2022357118 (2021).

656 49. van Hooff, J. J., Tromer, E., van Wijk, L. M., Snel, B. & Kops, G. J. Evolutionary dynamics
657 of the kinetochore network in eukaryotes as revealed by comparative genomics. *EMBO Rep.*
658 **18**, 1559–1571 (2017).

659 50. Sun, G. *et al.* Large-scale gene losses underlie the genome evolution of parasitic plant
660 *Cuscuta australis*. *Nat. Commun.* **9**, 2683 (2018).

661 51. Vogel, A. *et al.* Footprints of parasitism in the genome of the parasitic flowering plant
662 *Cuscuta campestris*. *Nat. Commun.* **9**, 2515 (2018).

663 52. Hoshino, A. *et al.* Genome sequence and analysis of the Japanese morning glory *Ipomoea nil*.
664 *Nat. Commun.* **7**, 13295 (2016).

665 53. Brankovics, B. *et al.* GRAbB: selective assembly of genomic regions, a new niche for
666 genomic research. *PLOS Comput. Biol.* **12**, e1004753 (2016).

667 54. Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. *Genome Res.* **14**, 988–995
668 (2004).

669 55. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high
670 throughput. *Nucleic Acids Res.* **32**, 1792–1797 (2004).

671 56. Novák, P., Neumann, P. & Macas, J. Global analysis of repetitive DNA from unassembled
672 sequence reads using RepeatExplorer2. *Nat. Protoc.* **15**, 3745–3776 (2020).

673 57. Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover
674 motifs in biopolymers. *Proceedings. Int. Conf. Intell. Syst. Mol. Biol.* **2**, 28–36 (1994).

675 58. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo
676 generator. *Genome Res.* **14**, 1188–90 (2004).

677 59. Weisshart, K., Fuchs, J. & Schubert, V. Structured illumination microscopy (SIM) and
678 photoactivated localization microscopy (PALM) to analyze the abundance and distribution of
679 RNA polymerase II molecules on flow-sorted *Arabidopsis* nuclei. *Bio-protocol* **6**, e1725
680 (2016).

681 60. Hara, M. & Fukagawa, T. Where is the right path heading from the centromere to spindle
682 microtubules? *Cell Cycle* **18**, 1199–1211 (2019).

683 61. Ciferri, C. *et al.* Implications for kinetochore-microtubule attachment from the structure of an
684 engineered Ndc80 Complex. *Cell* **133**, 427–439 (2008).

685 62. Alushin, G. M. *et al.* The Ndc80 kinetochore complex forms oligomeric arrays along
686 microtubules. *Nature* **467**, 805–810 (2010).

687 63. Welburn, J. P. I. *et al.* Aurora B phosphorylates spatially distinct targets to differentially
688 regulate the kinetochore-microtubule interface. *Mol. Cell* **38**, 383–392 (2010).

689 64. Petrovic, A. *et al.* Modular assembly of RWD domains on the Mis12 complex underlies outer
690 kinetochore organization. *Mol. Cell* **53**, 591–605 (2014).

691 65. Valverde, R., Ingram, J. & Harrison, S. C. Conserved tetramer junction in the kinetochore
692 Ndc80 complex. *Cell Rep.* **17**, 1915–1922 (2016).

693 66. Ali-Ahmad, A., Bilokapić, S., Schäfer, I. B., Halić, M. & Sekulić, N. CENP-C unwraps the
694 human CENP-A nucleosome through the H2A C-terminal tail. *EMBO Rep.* **20**, 1–13 (2019).

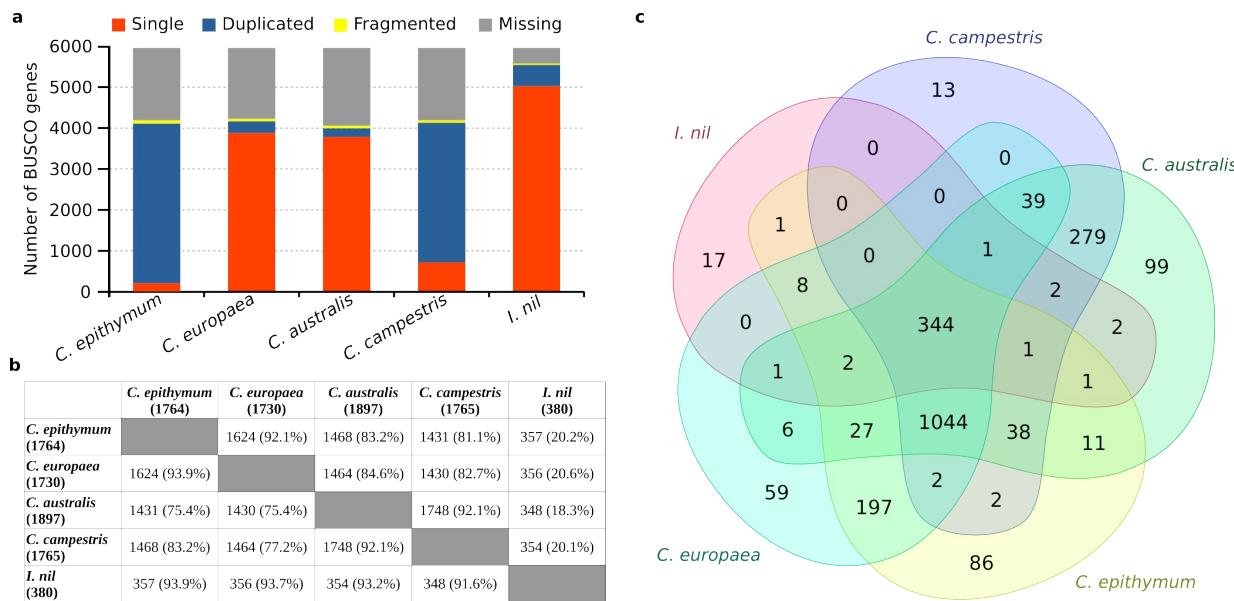
695 67. Hornung, P. *et al.* A cooperative mechanism drives budding yeast kinetochore assembly
696 downstream of CENP-A. *J. Cell Biol.* **206**, 509–524 (2014).

697 68. Ghongane, P., Kapanidou, M., Asghar, A., Elowe, S. & Bolanos-Garcia, V. M. The dynamic
698 protein Knl1 - a kinetochore rendezvous. *J. Cell Sci.* **127**, 3415–3423 (2014).

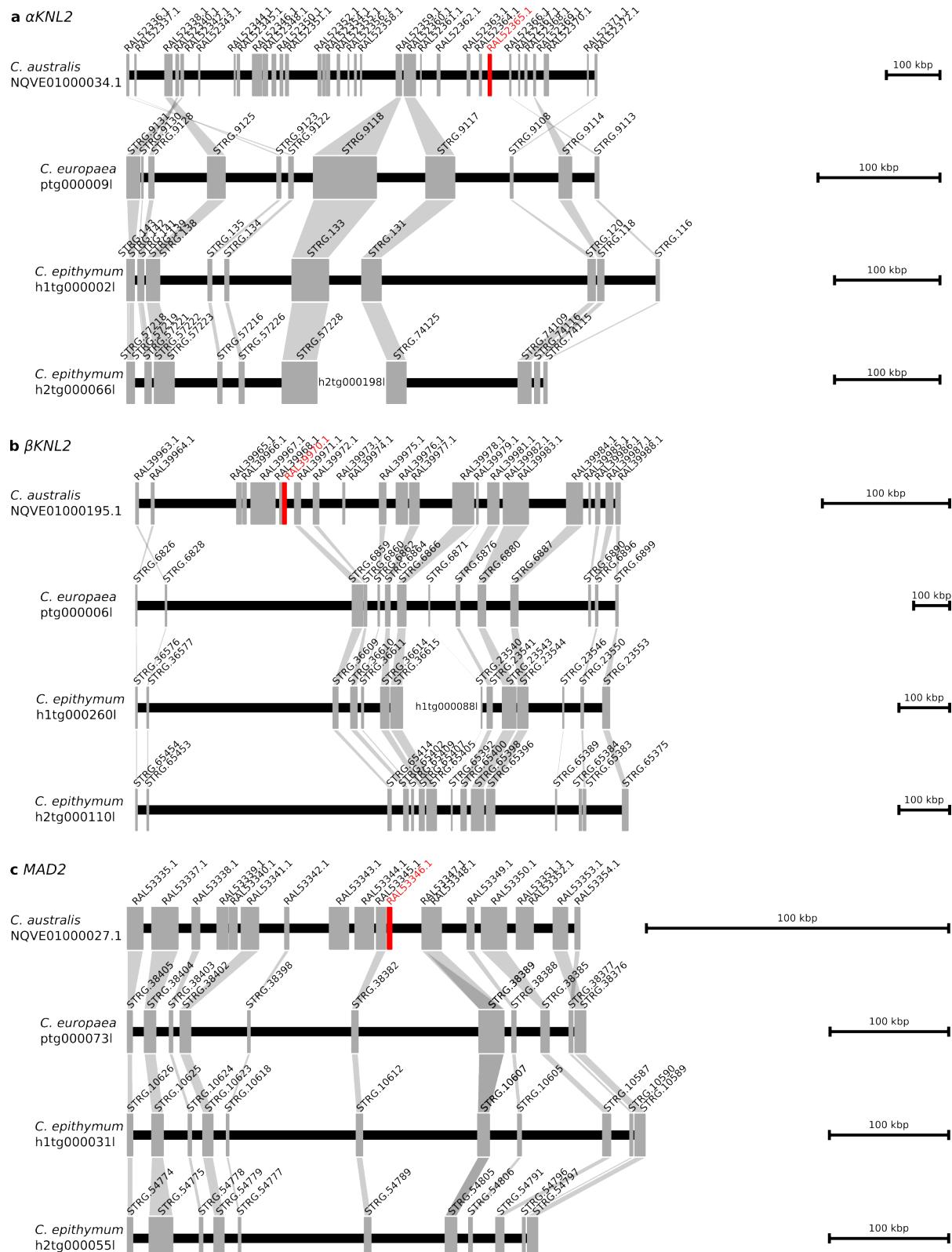
699 69. Caillaud, M. C. *et al.* Spindle assembly checkpoint protein dynamics reveal conserved and
700 unsuspected roles in plant cell division. *PLoS One* **4**, (2009).

701 70. Zhang, H. *et al.* Role of the BUB3 protein in phragmoplast microtubule reorganization
702 during cytokinesis. *Nat. Plants* **4**, 485–494 (2018).

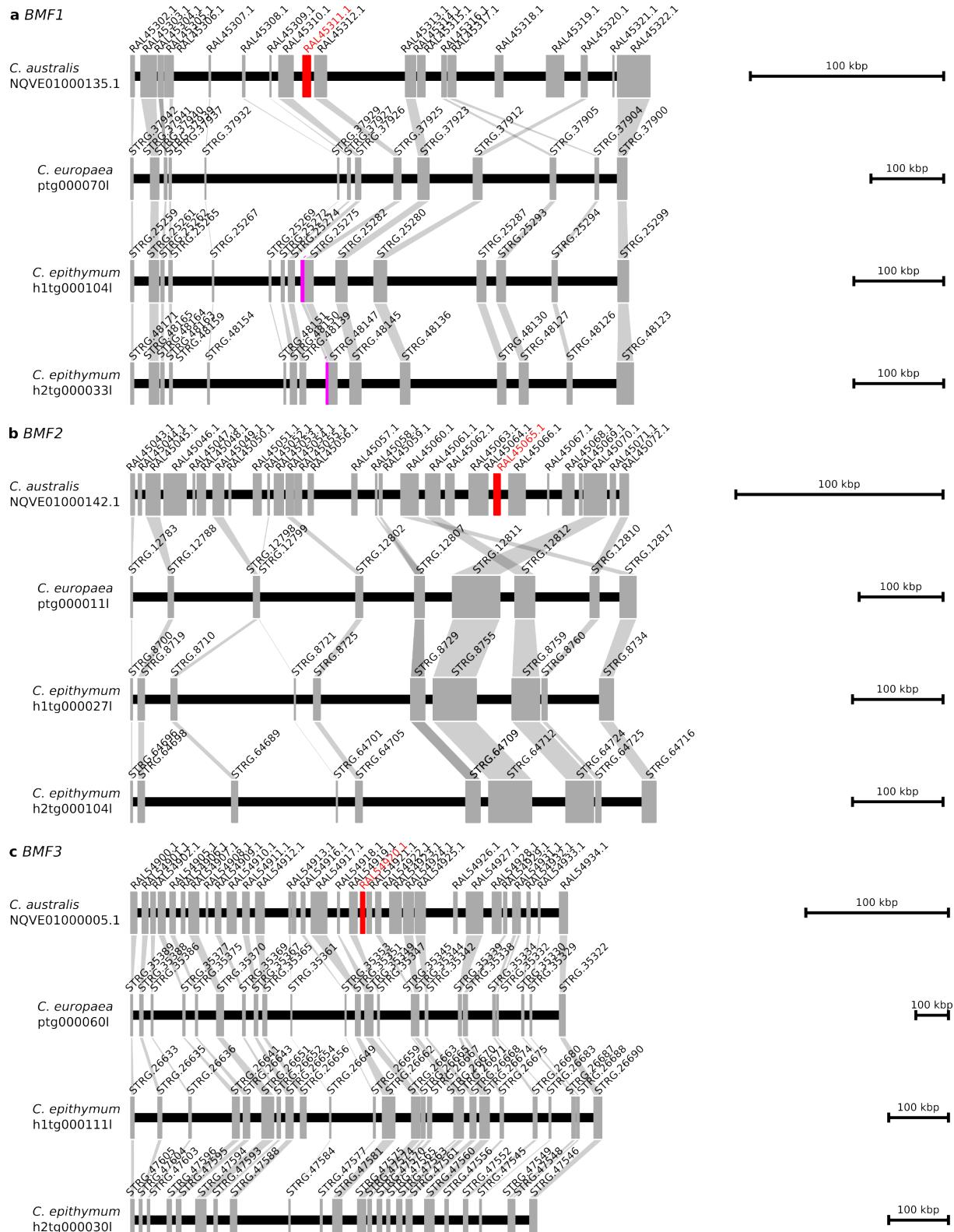
703 71. Luo, Y., Ahmad, E. & Liu, S.-T. MAD1: kinetochore receptors and catalytic mechanisms.
704 *Front. Cell Dev. Biol.* **6**, 1–10 (2018).

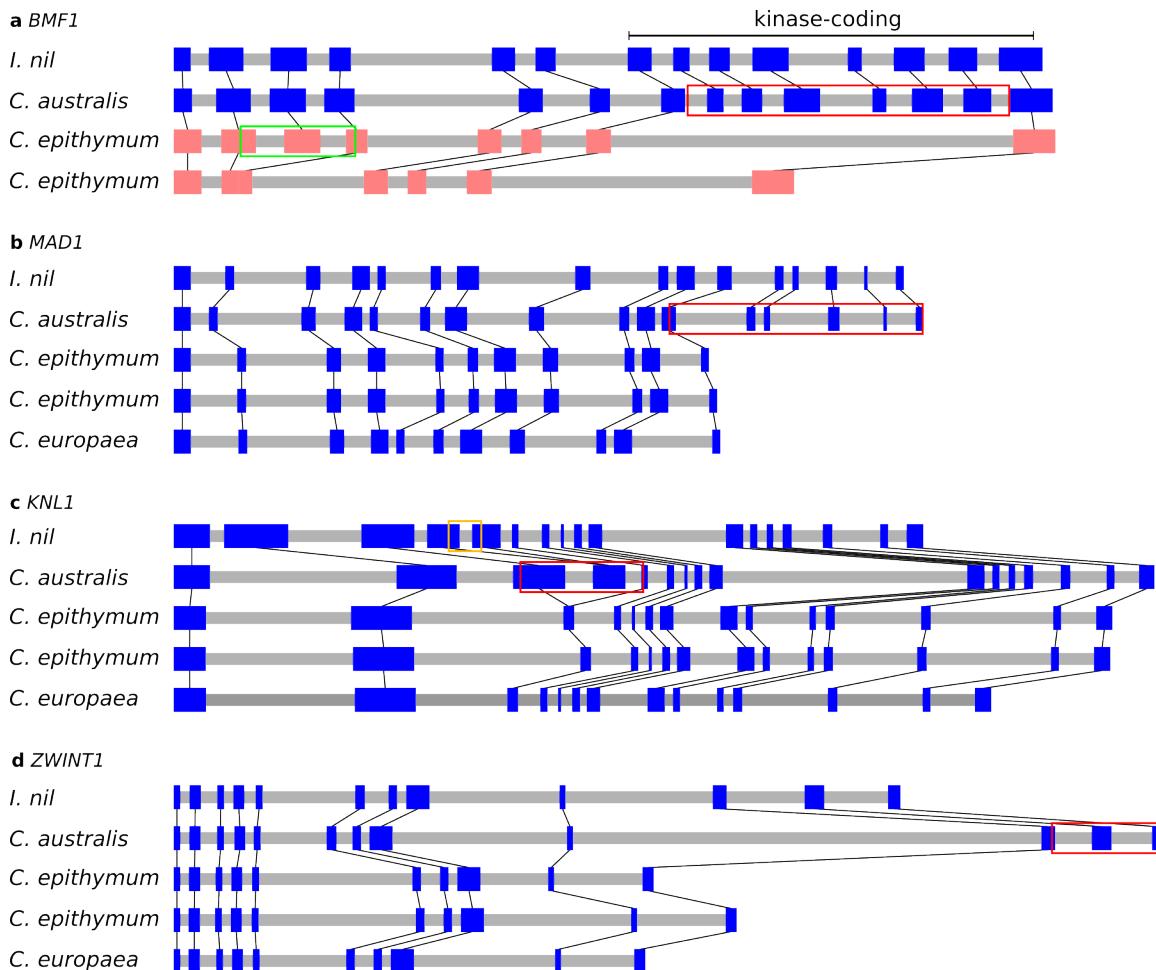

705 **Supplementary Information**

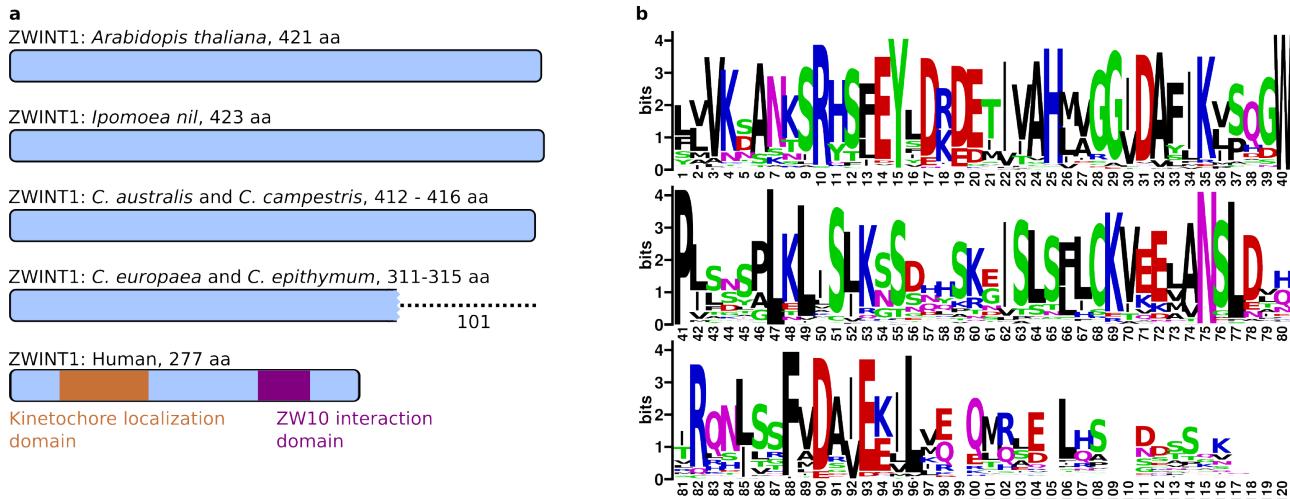
706 **Supplementary Notes**

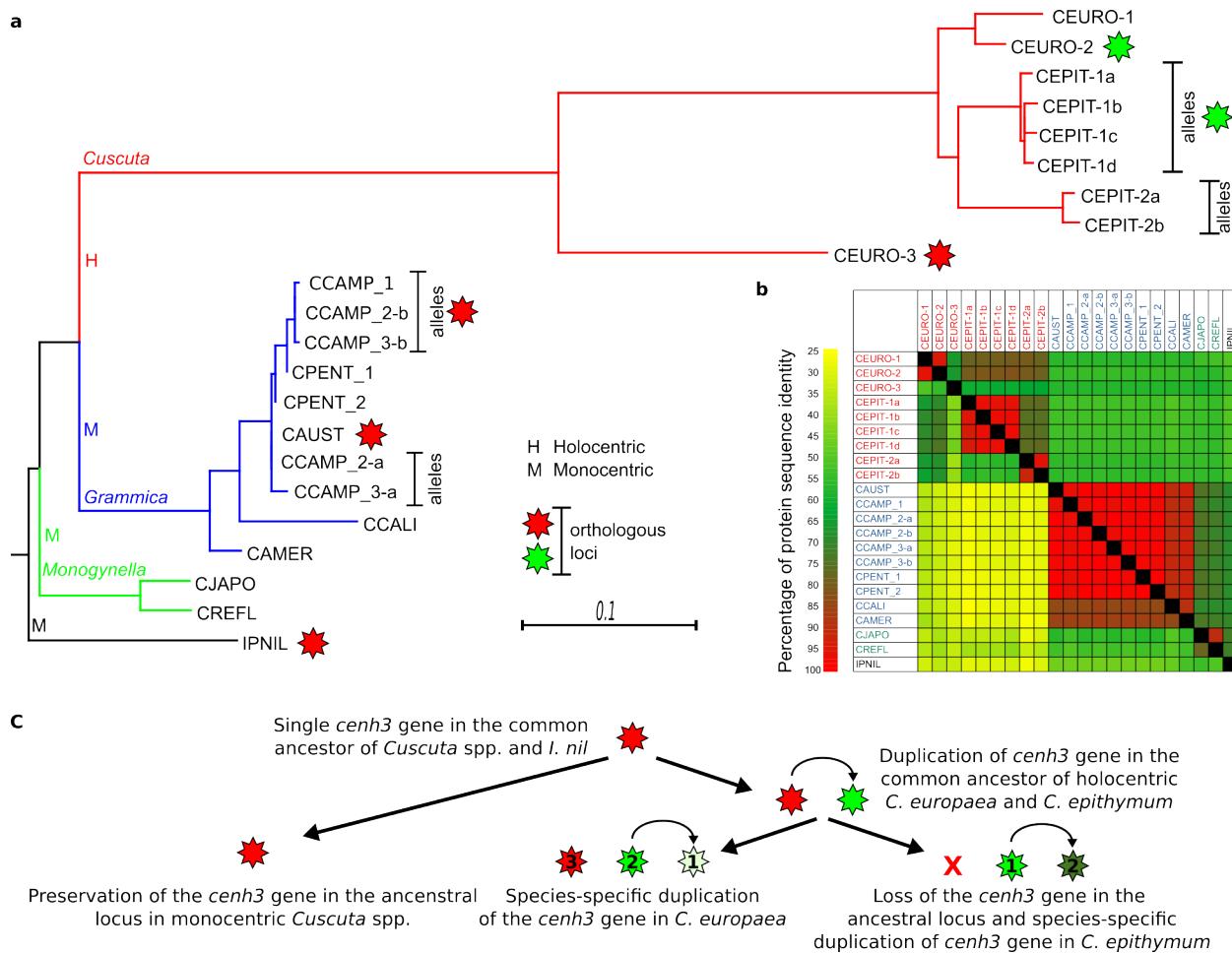

707 **Supplementary Note 1: Genome Assembly and gene prediction in holocentric *Cuscuta* spp.**

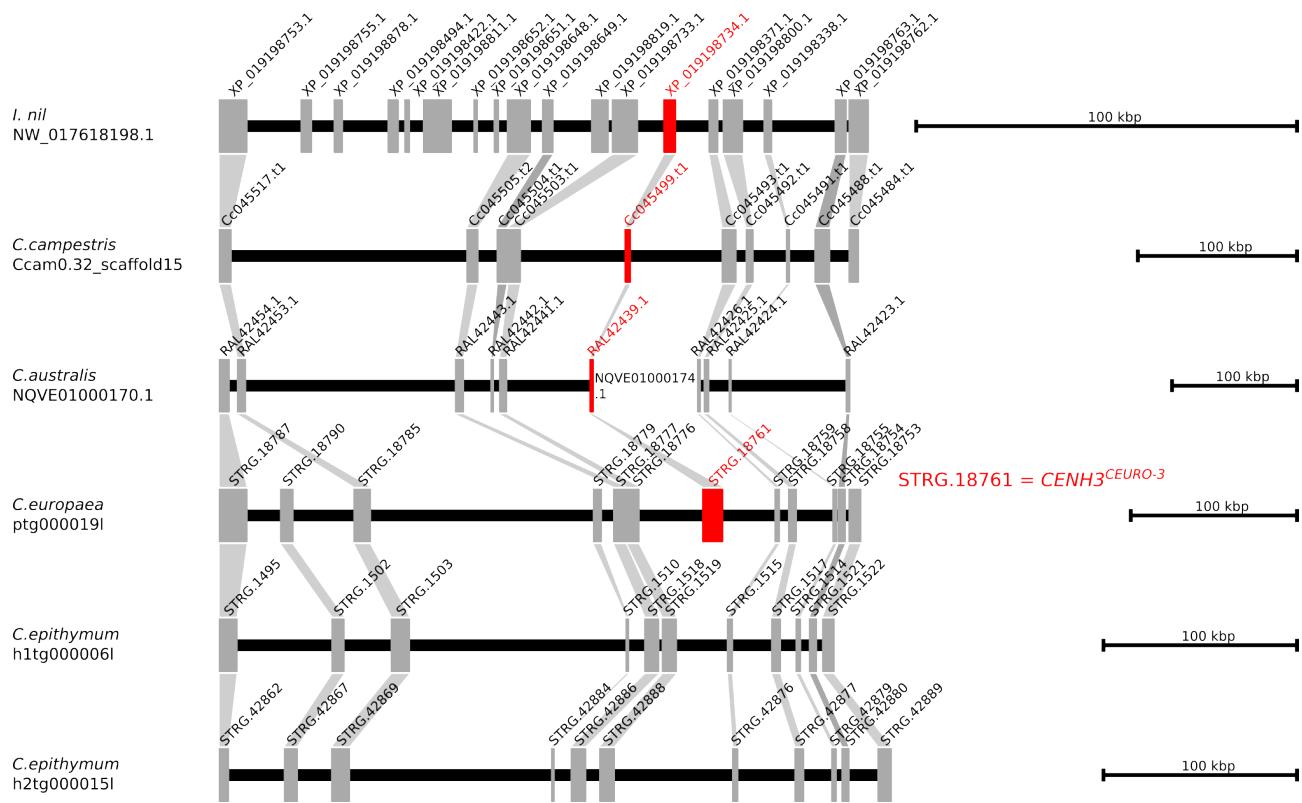
708 To assemble genome sequences of *C. epithymum* and *C. europaea*, we sequenced the genomic DNA
709 using Illumina, Oxford nanopore, and Pac-Bio Hi-Fi sequencing technologies. Sequence reads from
710 the two former technologies were assembled using MaSuRCA ¹, whereas Pac-Bio Hi-Fi reads were
711 assembled using Hifiasm ². The latter type of the assembly was considerably better in both species
712 (Supplementary Table 1). The total assembly size in *C. epithymum* was 975 Mbp, which is 1.8-fold
713 bigger than the estimated genome size (1C = 533 Mb) ³. This disparity was attributed to high
714 heterozygosity in the sequenced clone, resulting in the presence of two haplotypes in the assembly
715 (Supplementary Table 1). The *C. europaea* genome assembly was 997 Mbp in size, corresponding
716 to about 85% of previously estimated genome (1C = 1,169 Mb). This difference was likely due to
717 the presence of highly abundant satellite DNA repeats, which make up 18% of the genome and are
718 generally difficult to assemble ³. Gene prediction using the Stringtie program resulted in 89,521 and
719 49,635 gene models for *C. epithymum* and *C. europea*, respectively. The almost two-fold higher
720 number of gene models in *C. epithymum* was caused by the presence of two haplotypes in the
721 assembly and thus two alleles for most genes. BUSCO analysis revealed a high proportion of
722 missing genes in both *C. epithymum* and *C. europaea*, but comparison with *C. campestris*, *C.*
723 *australis*, and *I. nil* showed that it was not due to poor genome assemblies and/or gene prediction
724 but to a large gene loss that preceded the divergence of monocentric and holocentric *Cuscuta*
725 species (Supplementary Fig. 1). This was also confirmed by BUSCO analysis of the assembly-
726 independent *de novo* transcriptome assemblies (Supplementary Table 2).

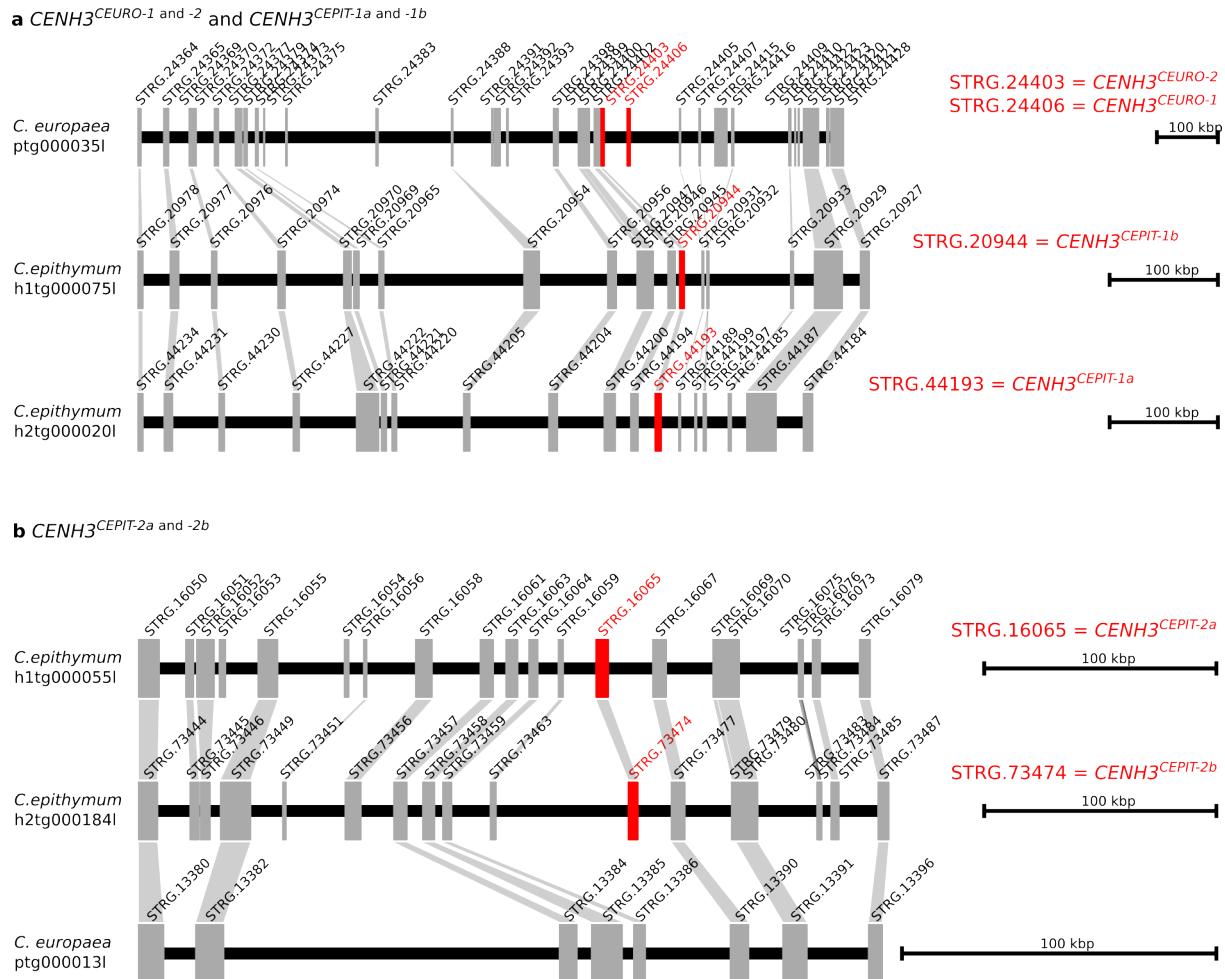

727 **Supplementary Figures**

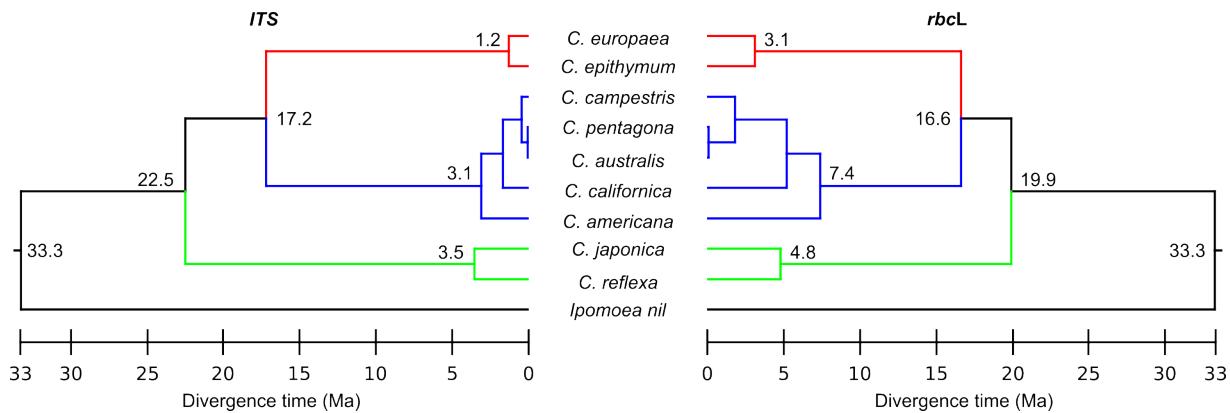

728 **Supplementary Fig. 1 | Assessment of the completeness of the gene content in genome**
729 **assemblies of *C. europaea* and *C. epithymum*.** The analysis was done with BUSCO using
730 Solanales_odb10 dataset containing 5590 genes and the results were compared with those obtained
731 for previously published genome assemblies of *C. australis*, *C. campestris*, and *I. nil*⁴⁻⁶. **a**,
732 Summary of BUSCO results. The number of missing BUSCO genes is similar between *C. europaea*
733 and *C. epithymum* sequenced in this study and monocentric *Cuscuta* species sequenced previously.
734 The high number of duplicated genes in *C. epithymum* and *C. campestris* reflects the presence of
735 two haplotypes and tetraploid origin, respectively. **b**, Pairwise species comparison of missing
736 BUSCO genes. The analysis shows that not only the two holocentric but also the two monocentric
737 species share a high proportion of missing BUSCO genes. The percentages of genes missing for
738 each species shown in the rows are indicated in brackets. **c**, Venn diagram showing overlaps of
739 missing BUSCO genes between all five species. Overall, 344 genes were probably lost before the
740 divergence of the five Convolvulaceae species and an additional 1044 genes were lost before
741 divergence of the four *Cuscuta* species. On the other hand, only 86 (1.4%) and 59 (1.0%) BUSCO
742 genes were missing specifically in *C. epithymum* and *C. europaea*, respectively. These results
743 demonstrate that the high number of missing BUSCO genes is not due to poor genome assemblies
744 and/or gene prediction in *C. europaea* and *C. epithymum*, but to relatively massive gene loss that
745 preceded the divergence of monocentric and holocentric *Cuscuta* species.

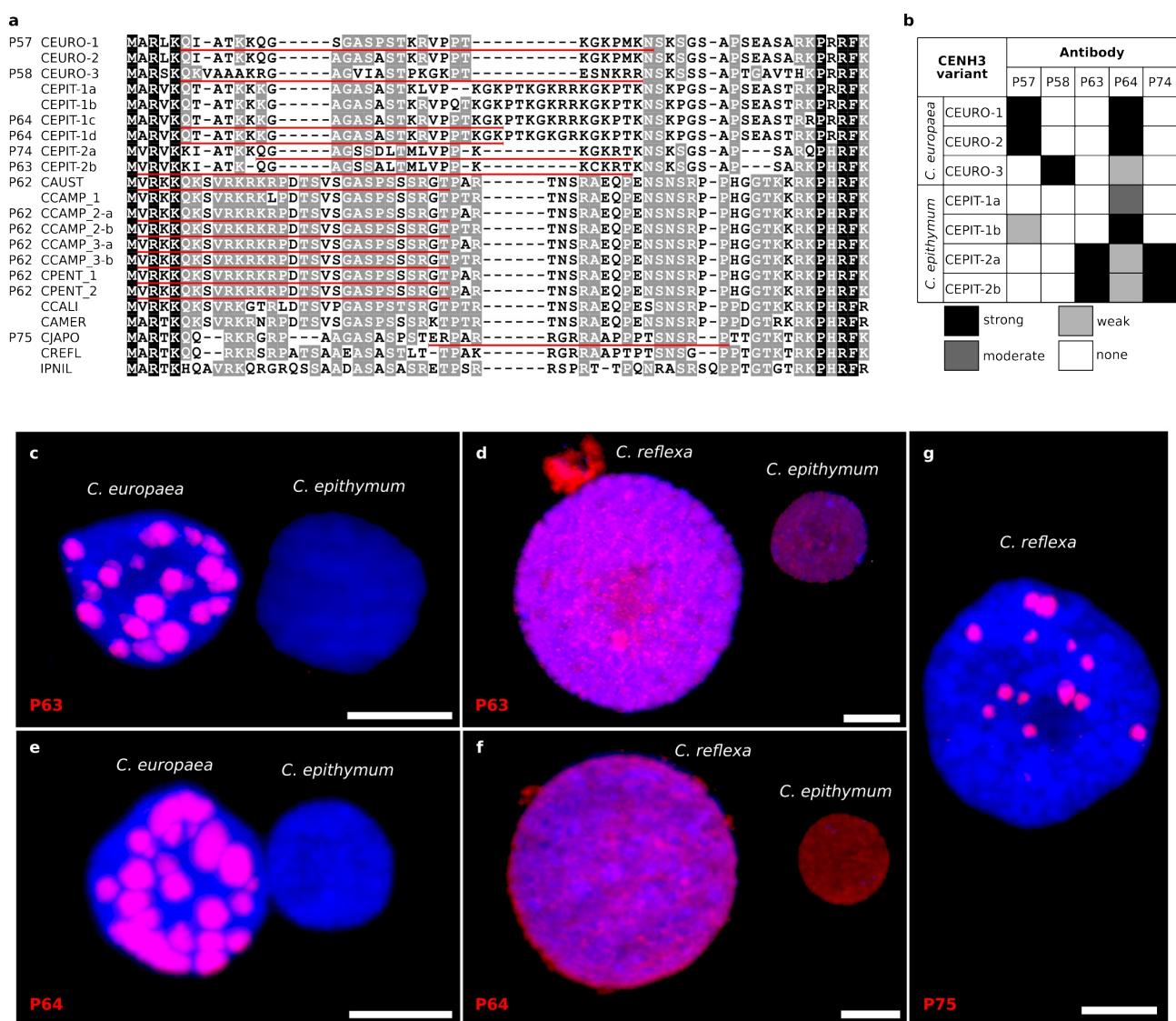

746 **Supplementary Fig. 2 | Comparison of orthologous loci, part 1.** Comparison of loci possessing
747 α KNL2, β KNL2, and MAD2 genes (highlighted in red) in *C. australis* with orthologous loci in *C.*
748 *europaea* and *C. epithymum*. As *C. epithymum* has two haplotypes each locus is represented by two
749 contigs.

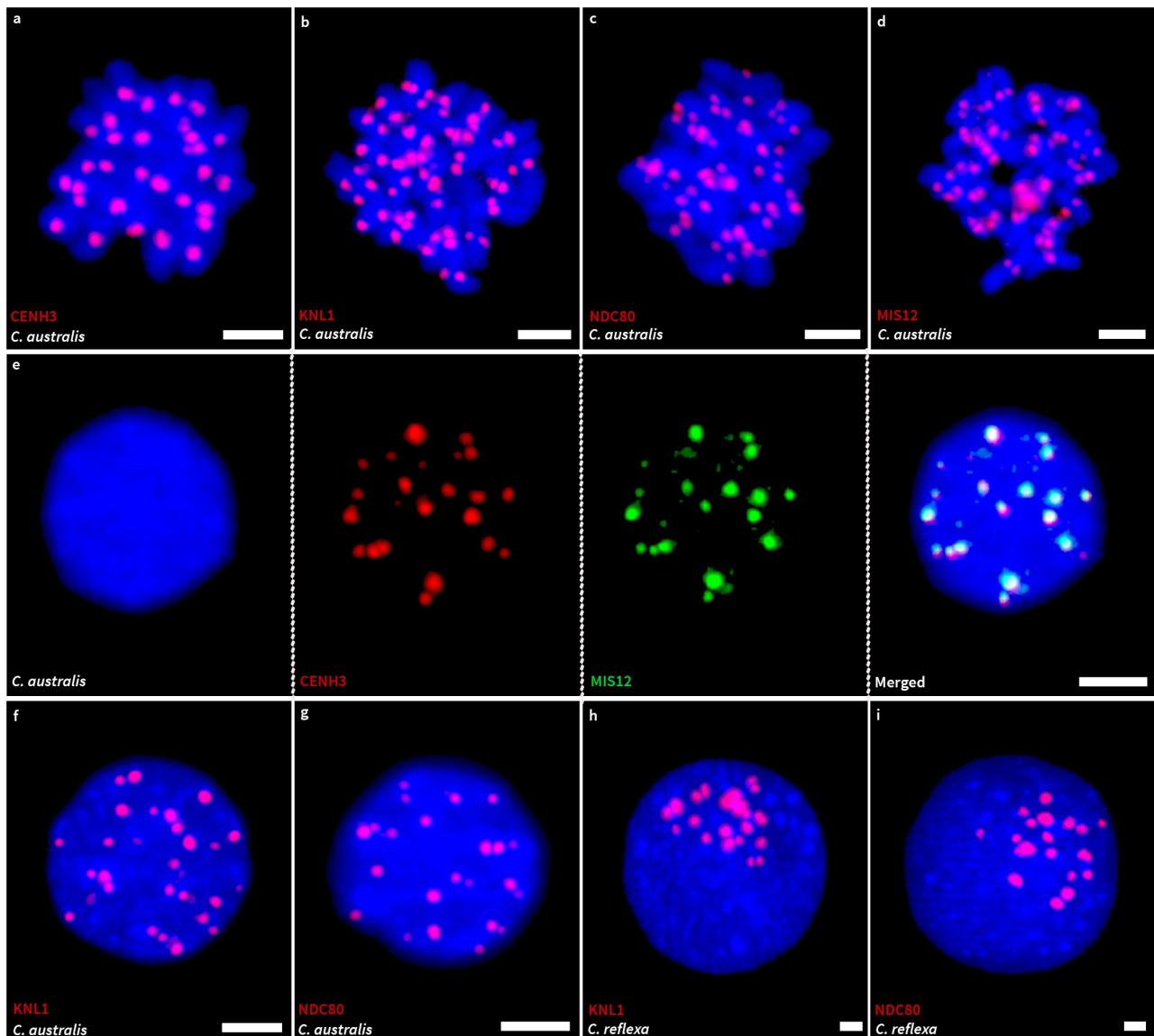

750 **Supplementary Fig. 3 | Comparison of orthologous loci, part 2.** Comparison of loci possessing
751 *BMF1*, *BMF2*, and *BMF3* genes in *C. australis* (highlighted in red) with orthologous loci in *C.*
752 *europaea* and *C. epithymum*. As *C. epithymum* has two haplotypes, each locus is represented by two
753 contigs. Both alleles of *BMF1* gene in *C. epithymum* (highlighted in purple) are truncated and the
754 gene is not transcribed.

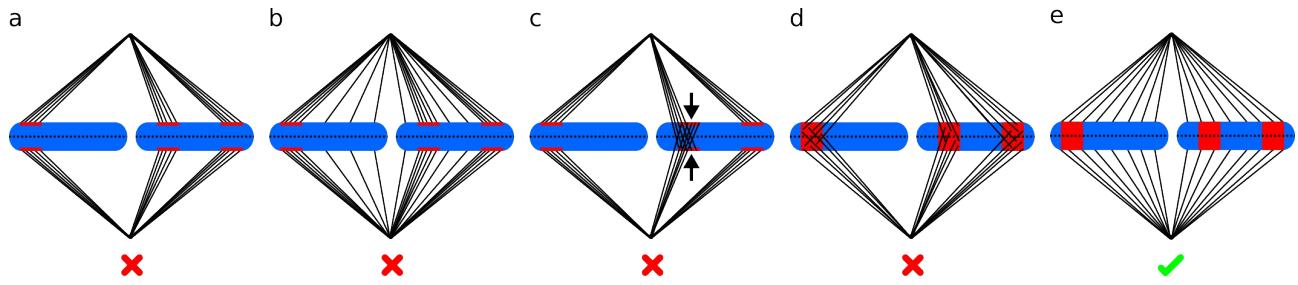

755 **Supplementary Fig. 4 | Comparison of exon/intron structures of kinetochore genes that are**
756 **truncated in holocentric *Cuscuta* species with their full-length homologs in monocentric *C.***
757 ***australis* and *I. nil*.** The red rectangles mark exons that are present in *C. australis* but absent or
758 truncated in *C. epithymum*. **a**, Comparison of *BMF1* genes. The exons that were lost in *C.*
759 *epithymum* encoded kinase domain of *BMF1*. The green rectangle marks exons present in one allele
760 of the *BMF1* gene that are missing or truncated in the other. As the *BMF1* gene is not transcribed in
761 *C. epithymum*, the exons that remained preserved are not translated into protein. **b-d**, Comparison of
762 *MAD1*, *KNL1* and *ZWINT1* genes. The orange rectangle in the *I. nil* *KNL1* gene structure marks a
763 region that is missing in its homolog in *C. australis*.


764 **Supplementary Fig. 5 | Truncation of ZWINT1 in holocentric *Cuscuta* species.** **a**, Schematic of
765 ZWINT1 proteins showing conserved size in monocentric species and C-terminal truncation in *C.*
766 *europaea* and *C. epithymum* (depicted as a dotted line). As ZWINT1 has not yet been functionally
767 characterized in plants, it is not possible to predict the impact of the truncation. In humans, a
768 domain near the C-terminus interacts with ZW10 protein⁷, but it shares no sequence similarity with
769 the plant ZWINT1 homologs. **b**, Sequence logo of ZWINT1 C-terminus inferred from alignment of
770 sequences from 129 diverse plant species demonstrating a high level of sequence conservation,
771 suggesting that the ZWINT1 C-terminal domain has a conserved function in plants.


772 **Supplementary Fig. 6 | Analysis of CENH3 sequences.** **a**, Phylogenetic tree inferred from the
773 alignment of CENH3-coding sequences using the maximum likelihood method, excluding all
774 INDEL sites. Branches corresponding to subgenera *Cuscuta*, *Grammica*, and *Monogynella*, are
775 colored in red, blue, and green, respectively. Considerably longer branches in the subgenus *Cuscuta*
776 contrast with those in the species trees inferred from *ITS* and *rbcL* sequences (Supplementary Fig.
777 9) and indicate faster divergence of CENH3 in holocentric compared with monocentric *Cuscuta*
778 species. The sources of the CENH3 sequences used for the analysis are provided in the
779 Supplementary Table 6. **b**, Similarity between CENH3 protein sequences visualized as a heatmap.
780 Boxes above and below the black diagonal show the percentage identity over the entire CENH3
781 protein sequence and the N-terminus, respectively (the exact values are available in Supplementary
782 Table 9). CENH3 protein sequences in holocentric *Cuscuta* species are considerably more
783 divergent, particularly in the N-terminus, than in monocentric *Cuscuta* species. CENH3 sequences
784 from subgenus *Cuscuta*, *Grammica*, and *Monogynella* are colored in red, blue, and green,
785 respectively. **c**, Reconstruction of CENH3 gene duplication and loss events in the evolution of
786 holocentric *Cuscuta* species, inferred from the topology of the phylogenetic tree in the panel “a”
787 combined with the information about orthologous CENH3 loci (Supplementary Figs. 7 and 8).
788 These data indicate that the ortholog of *CENH3^{CEURO-3}* was lost in *C. epithymum*, and that
789 *CENH3^{CEURO-1}* and *CENH3^{CEPIT-2}* originated from independent duplications of *CENH3^{CEURO-2}* and
790 *CENH3^{CEPIT-1}*, respectively, which occurred after the divergence of the two species. CENH3 genes
791 occurring in orthologous loci are indicated by the same star color and the numbers inside the stars
792 indicate the CENH3 variant in respective *Cuscuta* species.


793 **Supplementary Fig. 7 | Comparison of *CENH3* gene loci in holocentric *Cuscuta* species. a,**
794 Comparison of the *CENH3* gene locus in *I. nil* with orthologous loci in *C. australis*, *C. campestris*,
795 *C. europaea* and *C. epithymum*. It demonstrates that the all the species except *C. epithymum*
796 maintained the ancestral position of the *CENH3* gene. The *CENH3* genes are highlighted in red.


797 **Supplementary Fig. 8 | Comparison of *CENH3* gene loci between *C. europaea* and *C. 798***
799 ***epithymum*. a, Comparison of the locus containing *CENH3*^{CEURO-1} and *CENH3*^{CEURO-2} genes in *C. 800***
801 ***europaea* with the orthologous *CENH3*^{CEPIT-1} containing locus in *C. epithymum*. b, Comparison of the 802
803 **locus containing *CENH3*^{CEPIT-2} and the orthologous *CENH3*-lacking locus in *C. europaea*. The 804
805 ***CENH3* genes are highlighted in red.******


802 **Supplementary Fig. 9 | Time-scale phylogenetic trees of *Cuscuta* species included in the study.**
803 The trees were inferred from *ITS* (left) and *rbcL* (right) sequences using the maximum likelihood
804 method with smart model selection ^{8,9} and then dated using the RelTime method implemented in
805 MEGA X ¹⁰, assuming that the most recent common ancestor of *Cuscuta* and *Ipomoea* existed 33.3
806 million years ago (Ma) ⁵. The numbers at nodes show divergence time in Ma.

Supplementary Fig. 10 | Detection of CENH3 in *C. epithymum*. **a**, Sequence comparison of the peptides used to produce antibodies against CENH3 and the N-terminal sequences of CENH3 variants in *C. europaea* and *C. epithymum*. IDs of the antibodies are shown before the sequence names. **b**, Reactivity of CENH3 antibodies with distinct CENH3 variants in *C. europaea* and *C. epithymum*. The reactivity was tested using western blot detection of CENH3 proteins expressed in *E. coli*. While the different CENH3 antibodies had variable reactivity against individual variants, together they recognized all four CENH3 variants present in the sequenced clone of *C. epithymum*. **c-f**, *In situ* immunodetection of CENH3. To distinguish specific signals from background, chromosomes and nuclei isolated from *C. epithymum*, *C. europaea*, and *C. reflexa* were mixed and analyzed on the same slide using the same microscope settings for image acquisition. Because the regions used to generate the antibodies for CENH3 histones from *C. epithymum* showed only partial similarity to CENH3 from *C. europaea* and no significant similarity to CENH3 from *C. reflexa*, the intensity of potential signals in the latter two species could be used to set the threshold for specific signals. The antibodies P63 and P64 strongly labeled the CENH3-containing heterochromatin blocks in *C. europaea* but did not produce a visible signal on chromosomes and nuclei in *C. epithymum* (c,e) at the same exposure time. By contrast, when the exposure time was increased to visualize signals in *C. epithymum*, the signals also appeared on whole nuclei and chromosomes in *C. reflexa* (d,f), indicating that they were not CENH3-specific. The antibody P74 produced no signal in *C. epithymum* and did not label CENH3-containing heterochromatin in *C. europaea* (data not shown). **f**, CENH3 antibody raised to *Monogynella* species (P75) labeled only centromeres in *C. reflexa*. These results suggest that either the amount of CENH3 in chromosomes and nuclei was below the detection limit or that CENH3 was not present in chromatin in *C. epithymum*.

829 **Supplementary Fig. 11 | Detection of CENH3 and KMN proteins in *C. australis* and *C. reflexa*.**
830 The two species were selected as representatives of monocentric *Cuscuta* species of the subgenus
831 *Grammica* and *Monogynella*, respectively. **a-g**, Detection of kinetochore proteins on mitotic
832 chromosomes (a-d) and nuclei (e-g) in *C. australis*. All kinetochore proteins were detected in a
833 single domain on each sister chromatid of mitotic chromosomes and in discrete centromere domains
834 in interphase nuclei, suggesting that the kinetochore is assembled in centromere domains during all
835 or most of the cell cycle. Simultaneous detection of CENH3 and MIS12 (e) revealed colocalization
836 of the two proteins, confirming the specificity of the MIS12 antibody. **h-i**, Detection of KNL1 and
837 NDC80 in interphase nuclei of *C. reflexa*. The staining pattern resembles that of *C. australis*,
838 suggesting that kinetochores are assembled during interphase in both *Grammica* and *Monogynella*
839 species.

840 **Supplementary Fig. 12 | Models for the distribution of CENH3 and tubulin during mitotic**
841 **metaphase in *C. europaea*.** **a-d,** Hypothetical models that would be applicable if CENH3 retained
842 its function as a foundational kinetochore protein, i.e., initiation of kinetochore assembly. Red
843 crosses indicate the models that are not supported by cytogenetic observations. **a,** CENH3 is
844 restricted to the poleward site where microtubules specifically attach to chromosomes. **b,** As for a,
845 but microtubules also attach to chromosomes at sites where CENH3 is present but undetectable. In
846 this case, the density of microtubules would likely be sparse compared with the major sites of
847 CENH3 accumulation. **c,** As for a, except that the presence of two CENH3-containing domains on
848 the same chromatid results in merotelic attachment (arrows). In merotelic attachment, which often
849 occurs in dicentric chromosomes, a single chromatid is attached to microtubules originating from
850 opposite poles. This leads to defects in chromosome segregation. **d,** The presence of CENH3 in
851 transverse bands leads to disordered attachment of chromosomes to mitotic spindle microtubules,
852 which impairs bi-orientation of chromosomes to the mitotic spindle and leads to defects in
853 chromosome segregation. **e,** The observed distribution of CENH3 and microtubules shows that
854 there is no correlation between the density of microtubules of the mitotic spindle and the occurrence
855 of CENH3, suggesting that CENH3 is not a foundational kinetochore protein in mitosis in *C. europaea*.
856

857 **Supplementary Movies**

858 **Supplementary Movie 1** | Spatial distribution of CENH3 (red) and KNL1 (green) in an interphase
859 nucleus (blue) of *C. europaea*.

860 **Supplementary Movie 2** | Spatial distribution of KNL1 (green) and CENP-C (red) in an interphase
861 nucleus (blue) of *C. europaea*.

862 **Supplementary Movie 3** | Spatial distribution of KNL1 (green) and NDC80 (red) in an interphase
863 nucleus (blue) of *C. europaea*.

864 **Supplementary Movie 4** | Spatial distribution of CENH3 (red) and MIS12 (green) in an interphase
865 nucleus (blue) of *C. europaea*.

866 **Supplementary References**

867 1. Zimin, A. V. *et al.* The MaSuRCA genome assembler. *Bioinformatics* **29**, 2669–2677 (2013).

868 2. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo
869 assembly using phased assembly graphs with hifiasm. *Nat. Methods* **18**, 170–175 (2021).

870 3. Neumann, P. *et al.* Impact of parasitic lifestyle and different types of centromere organization
871 on chromosome and genome evolution in the plant genus *Cuscuta*. *New Phytol.* **229**, 2365–
872 2377 (2021).

873 4. Howley, P. M., Israel, M. a, Law, M. F. & Martin, M. a. A rapid method for detecting and
874 mapping homology between heterologous DNAs. Evaluation of polyomavirus genomes. *J.
875 Biol. Chem.* **254**, 4876–83 (1979).

876 5. Sun, G. *et al.* Large-scale gene losses underlie the genome evolution of parasitic plant
877 *Cuscuta australis*. *Nat. Commun.* **9**, 2683 (2018).

878 6. Vogel, A. *et al.* Footprints of parasitism in the genome of the parasitic flowering plant
879 *Cuscuta campestris*. *Nat. Commun.* **9**, 2515 (2018).

880 7. Vos, L. J., Famulski, J. K. & Chan, G. K. T. HZwint-1 bridges the inner and outer
881 kinetochore: identification of the kinetochore localization domain and the hZw10-interaction
882 domain. *Biochem. J.* **436**, 157–168 (2011).

883 8. Lefort, V., Longueville, J. E. & Gascuel, O. SMS: smart model selection in PhyML. *Mol.
884 Biol. Evol.* **34**, 2422–2424 (2017).

885 9. Guindon, S. *et al.* New algorithms and methods to estimate maximum-likelihood
886 phylogenies: assessing the performance of PhyML 3.0. *Syst. Biol.* **59**, 307–321 (2010).

887 10. Mello, B. Estimating TimeTrees with MEGA and the TimeTree resource. *Mol. Biol. Evol.* **35**,
888 2334–2342 (2018).