

# 1 Simultaneous proteome localization and turnover analysis reveals 2 spatiotemporal features of protein homeostasis disruptions

3 <sup>1</sup>Jordan Currie, <sup>1</sup>Vyshnavi Manda, <sup>1</sup>Sean K. Robinson, <sup>4</sup>Celine Lai, <sup>5</sup>Vertica Agnihotri, <sup>1</sup>Veronica  
4 Hidalgo, <sup>1</sup>R. W. Ludwig, <sup>6</sup>Kai Zhang, <sup>1</sup>Jay Pavelka, <sup>6</sup>Zhao V. Wang, <sup>5</sup>June-Wha Rhee, <sup>1,2,3</sup>Maggie  
5 P. Y. Lam, <sup>1,3</sup>Edward Lau

6           1. Department of Medicine  
7           2. Department of Biochemistry and Molecular Genetics  
8           3. Consortium for Fibrosis Research and Translation  
9            University of Colorado School of Medicine  
10           Aurora, CO 80045, USA  
11           4. Stanford Cardiovascular Institute  
12           Stanford University  
13           Stanford, CA 94305, USA  
14           5. Department of Medicine, Division of Cardiology  
15           City of Hope Comprehensive Cancer Center  
16           Durante, CA 91010, USA  
17           6. Department of Diabetes and Cancer Metabolism  
18           Beckman Research Institute, City of Hope National Medical Center  
19           Duarte, CA 91010, USA

## 20 Correspondence

21 Edward Lau, PhD: [edward.lau@cuanschutz.edu](mailto:edward.lau@cuanschutz.edu)

## 22 Abstract

23 The functions of proteins depend on their spatial and temporal distributions, which are not  
24 directly measured by static protein abundance. Under endoplasmic reticulum (ER) stress, the  
25 unfolded protein response (UPR) pathway remediates proteostasis in part by altering the  
26 turnover kinetics and spatial distribution of proteins. A global view of these spatiotemporal  
27 changes has yet to emerge and it is unknown how they affect different cellular compartments  
28 and pathways. Here we describe a mass spectrometry-based proteomics strategy and data  
29 analysis pipeline, termed Simultaneous Proteome Localization and Turnover (SPLAT), to  
30 measure concurrently the changes in protein turnover and subcellular distribution in the same  
31 experiment. Investigating two common UPR models of thapsigargin and tunicamycin challenge  
32 in human AC16 cells, we find that the changes in protein turnover kinetics during UPR varies  
33 across subcellular localizations, with overall slowdown but an acceleration in endoplasmic  
34 reticulum and Golgi proteins involved in stress response. In parallel, the spatial proteomics  
35 component of the experiment revealed an externalization of amino acid transporters and ion  
36 channels under UPR, as well as the migration of RNA-binding proteins toward an endosome co-  
37 sedimenting compartment. The SPLAT experimental design classifies heavy and light SILAC  
38 labeled proteins separately, allowing the observation of differential localization of new and old

39 protein pools and capturing a partition of newly synthesized EGFR and ITGAV to the ER under  
40 stress that suggests protein trafficking disruptions. Finally, application of SPLAT toward human  
41 induced pluripotent stem cell derived cardiomyocytes (iPSC-CM) exposed to the cancer drug  
42 carfilzomib, identified a selective disruption of proteostasis in sarcomeric proteins as a potential  
43 mechanism of carfilzomib-mediated cardiotoxicity. Taken together, this study provides a global  
44 view into the spatiotemporal dynamics of human cardiac cells and demonstrates a method for  
45 inferring the coordinations between spatial and temporal proteome regulations in stress and drug  
46 response.

## 47 Keywords

48 Unfolded protein response, protein turnover, spatial proteomics, mass spectrometry, stress  
49 response, subcellular localization, spatiotemporal dynamics

## 50 Introduction

51 Protein turnover is an important cellular process that maintains the quality and quantity of protein  
52 pools in homeostasis, and involves fine regulations of the rates of synthesis and degradation of  
53 individual proteins. A close relationship exists between turnover kinetics with the spatial  
54 distribution of proteins. Cellular organelles including the cytosol, endoplasmic reticulum (ER),  
55 and mitochondria are equipped with distinct quality control and proteolytic mechanisms that  
56 maintain protein folding and regulate protein degradation in a localization dependent manner  
57 (Lemberg and Strisovsky, 2021; Mårtensson et al., 2019; Tsai et al., 2022). Newly synthesized  
58 proteins need to be properly folded and trafficked to their intended subcellular localization  
59 through subcellular targeting and sorting mechanisms, whose capacity has to be coordinated to  
60 match the rate of protein synthesis (Chartron et al., 2016; Jan et al., 2014; Lakkaraju et al., 2008).  
61 A primary subcellular trafficking mechanism of new proteins is the ER vesicular transport and  
62 secretory pathway through the endomembrane system, which is a rate-limiting step in the  
63 production of membrane and extracellular proteins. A mismatch between temporal synthesis  
64 rate and spatial localization capacity can lead to ER stress and subsequently mislocalization of  
65 newly synthesized proteins (Hetz et al., 2020).

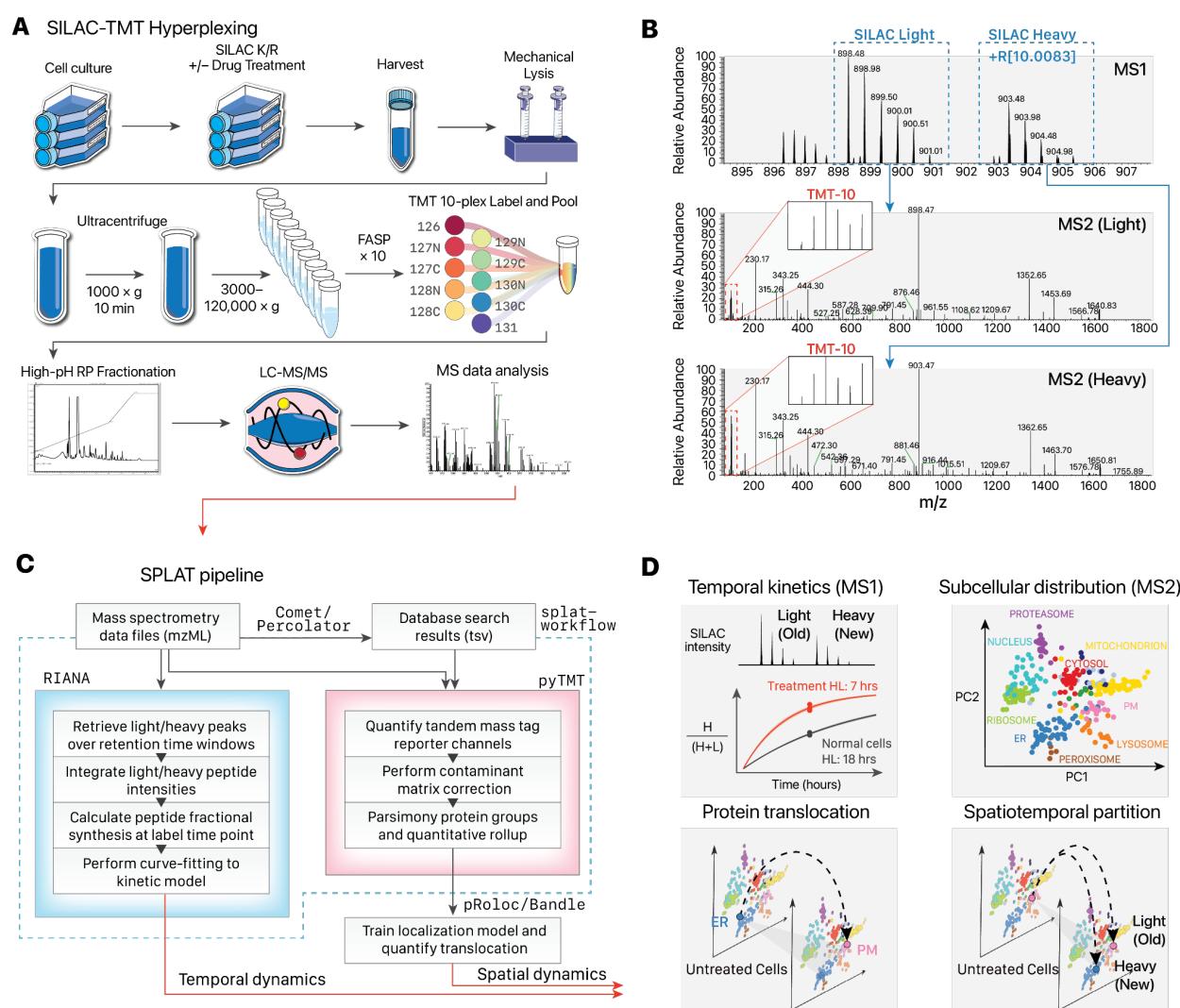
66 Disruption of protein turnover and homeostasis is broadly implicated in human diseases  
67 including cardiomyopathies, cancer, and neurodegeneration (Hetz et al., 2020; Ren et al., 2021).  
68 In stressed cells, the accumulation of misfolded proteins triggers the unfolded protein response  
69 (UPR), which involves signaling pathways that suppress protein synthesis and promote protein  
70 folding and proteolysis to relieve proteostatic stress. At the same time, UPR activation invokes  
71 a spatial reorganization of the proteome, including but not limited to the transient translocation  
72 of UPR pathway mediators to the nucleus during initial stress response, the retrotranslocation of  
73 misfolded ER proteins to the cytosol for proteasomal clearance under endoplasmic-reticulum-  
74 associated protein degradation (ERAD), and the sequestration of RNA and RNA-binding proteins  
75 into stress granules. Despite ongoing research, how the cellular proteome reorganizes under  
76 proteostatic stress remains incompletely understood, and the full scope of differentially localized  
77 proteins and pathways remains to be elucidated.

78 We wonder how the spatial and temporal regulations of proteins change in conjunction  
79 under UPR, such as whether proteins with differential spatial distributions are also differentially  
80 turned over. Advances in mass spectrometry methods have allowed the turnover rate and  
81 subcellular localization of proteins to be measured on a large scale. The turnover rate and half-  
82 life of proteins can be measured using stable isotope labeling in cells and in intact animals  
83 followed by mass spectrometry measurements of isotope signatures and kinetics modeling to  
84 derive rate constants (Claydon and Beynon, 2012; Doherty et al., 2009; Hammond et al., 2022;  
85 Schwahnässer et al., 2011). Quantitative comparison of turnover rates provides a temporal view  
86 into proteostatic regulations and can implicate new pathological signatures and pathways over  
87 steady-state mRNA and protein levels (Andrews et al., 2022; Lam et al., 2014; Lau et al., 2018).  
88 In parallel, spatial proteomics methods have allowed increasing power to discern the subcellular  
89 localization of proteins on a large scale (Christopher et al., 2021; Geladaki et al., 2019; Kennedy  
90 et al., 2020; Mulvey et al., 2021; Orre et al., 2019). In recent work using a differential solubility  
91 fractionation strategy and mass spectrometry, we observed broad substantial rearrangement of  
92 proteins across three subcellular fractions in an acute paraquat challenge model of UPR in the  
93 mouse heart, consistent with protein translocation being an important layer of proteome  
94 regulation under proteostatic stress (Dostal et al., 2020). Nevertheless, an integrated strategy  
95 that can simultaneously measure protein turnover kinetics and spatial information has thus far  
96 not been realized.

97 Here we extended protein turnover measurements to include subcellular localization  
98 dynamics, by integrating dynamic SILAC labeling with differential ultracentrifugation-based  
99 spatial proteomics profiling strategies. We describe an experimental strategy and computational  
100 analysis pipeline to perform simultaneous proteome localization and turnover (SPLAT)  
101 measurements in baseline and stressed cells. SPLAT builds on prior work in protein turnover  
102 measurements and subcellular localization profiling, by combining dynamic SILAC isotope  
103 labeling, differential ultracentrifugation, isobaric TMT labeling, and kinetic modeling. This  
104 strategy allows for concurrent measurement of changes in the turnover dynamics and subcellular  
105 distributions of whole cell proteomes under perturbation in a single experiment. Applying this  
106 method to human AC16 cardiac cells under thapsigargin- and tunicamycin-induced UPR and to  
107 human induced pluripotent stem cell derived-cardiomyocytes (iPSC-CM) under carfilzomib  
108 induced proteasome inhibition, we delineated prominent changes in the spatial and temporal  
109 distributions of proteins on a proteome scale. The inclusion of spatial information of light and  
110 heavy SILAC labeled proteins moreover allowed disaggregation of the localization and trafficking  
111 of new and old protein pools.

## 112 Results

### 113 **Simultaneous acquisition of turnover and spatial information using a double 114 labeling strategy**


115 We reason that we can use a hyperplexing strategy to simultaneously encode temporal and  
116 spatial protein information through isotope labels in the MS1 and MS2 levels, respectively.

117 Hence, we designed a workflow that combines dynamic SILAC metabolic labeling in cultured  
118 cells, with TMT labeling of spatially separated fractions to simultaneously measure new protein  
119 synthesis as well as subcellular localization under baseline and perturbation conditions (**Figure**  
120 **1A**). To determine the rate of protein turnover during control, thapsigargin, and tunicamycin  
121 conditions, a dynamic SILAC strategy was used to measure the rate of appearance of post-  
122 labeling synthesized protein. Briefly, cells were pulsed with a lysine and arginine depleted media  
123 supplemented with heavy labeled lysine and arginine concurrently with drug treatment to label  
124 post-treatment synthesized proteins and derive fractional synthesis rates through kinetic  
125 modeling.

126 Upon harvesting, the cells were fractionated to resolve subcellular compartments. We  
127 adopted a protein correlation profiling approach. In particular, the LOPIT-DC (Localisation of  
128 Organelle Proteins by Isotope Tagging after Differential ultraCentrifugation) method (Geladaki et  
129 al., 2019) uses sequential ultracentrifugation to enrich different subcellular fractions from the  
130 same samples, which facilitates ease of adoption and reproducibility. Briefly, the cells were lysed  
131 under gentle conditions and then sequentially pelleted through ultracentrifugation steps, which  
132 pellets subcellular fractions based on their sedimentation rate and which is a function of particle  
133 mass, shape, and volume. The ultracentrifugation fractions were each subsequently solubilized,  
134 and the extracted proteins were digested and further labeled with tandem mass tag (TMT)  
135 isobaric stable isotope labels. The acquired mass spectrometry data therefore carries temporal  
136 information in the dynamic SILAC tags and spatial information in the TMT channel intensities  
137 (**Figure 1B**).

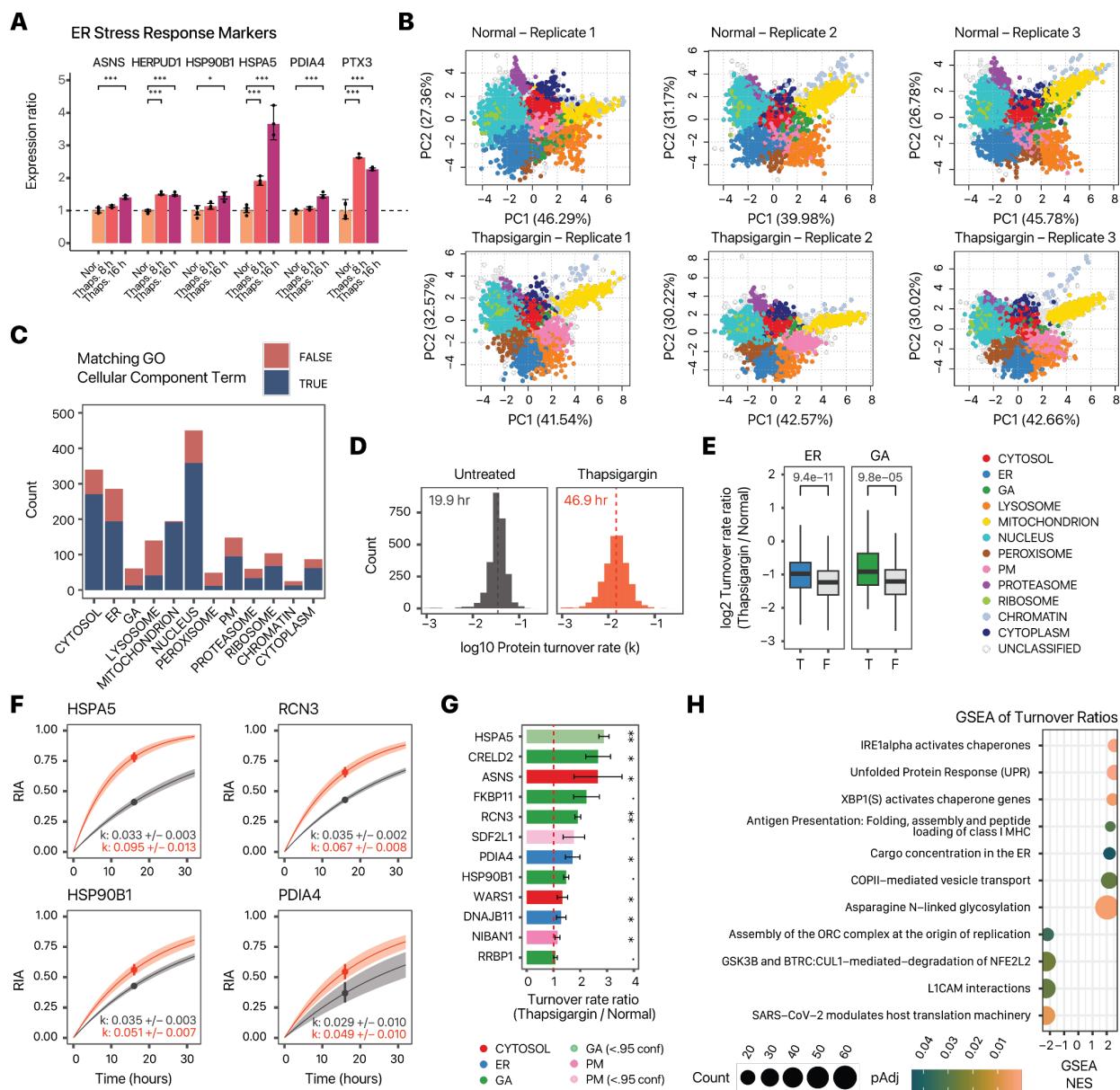
138 To process the double isotope encoded mass spectrometry data, we assembled a  
139 custom computational pipeline comprising database search and post-processing, and  
140 quantification for dynamic SILAC and TMT data (**Figure 1C**). The turnover kinetics information  
141 from the dynamic SILAC data is analyzed using a mass spectrometry software tool we previously  
142 developed, RIANA (Hammond et al., 2022), which integrates the areas-under-curve of mass  
143 isotopomers from peptides over a specified retention time window, then performs kinetic curve-  
144 fitting to a mono-exponential model to measure the fractional synthesis rates (FSR) of each  
145 dynamic SILAC-labeled (K and R containing) peptide. To extract the ultracentrifugation fraction  
146 quantification information for spatial analysis, we developed a new version of the pyTMT tool  
147 which we previously described (Dostal et al., 2020), and used it to perform TMT label  
148 quantification for the Comet/Percolator workflow. To account for specific challenges related to  
149 spatial proteomics data features, we made two new modifications. First, we account for isotope  
150 impurities in TMT tags. Because the TMT data are row normalized in the LOPIT-DC design, we  
151 incorporated correction of isotope contamination of TMT channels based on the batch  
152 contamination data sheet (**Supplemental Table S1**) to account for isotope impurity in fractional  
153 abundance calculation from randomized channels across experiments (**Supplemental**  
154 **Methods**). Second, we implemented an isoform-aware quantitative rollup of peptide channel  
155 intensities into the protein level for the downstream spatial proteomics analysis. Standard protein  
156 inference invokes parsimony rules that assign peptides to the protein within a protein group with  
157 the highest level of evidence, but razor peptides can conflate spatial information from different  
158 proteins with different localization. Here the TMT-quantified peptides are summed into protein

159 groups using a more conservative aggregate method, such that the identified peptides that are  
 160 assigned to two or more top-level UniProt protein accessions are discarded to avoid  
 161 confounding of spatial information in the TMT channels. Moreover, protein groups containing  
 162 two or more proteins belonging to the same top-level UniProt accession are removed from  
 163 consideration if one of the non-canonical isoforms contain a unique peptide, and are otherwise  
 164 rolled up to the canonical protein. Protein isoforms are only included in downstream analysis  
 165 through quantified isoform-unique peptides. Following RIANA and pyTMT processing, the  
 166 SPLAT pipeline combines the dynamic SILAC and TMT information by peptides and appends a  
 167 heavy ("H") tag to the UniProt accession of all peptides containing dynamic SILAC  
 168 modifications for separate localization analyses. The data were then used for temporal kinetics  
 169 summaries using the MS1 encoded information and subcellular localization classification from  
 170 the MS2 encoded information (**Figure 1D**). By separately analyzing heavy and light peptides, the  
 171 subcellular spatial information of the heavy (new) and light (old) subpools of thousands of  
 172 proteins can be mapped simultaneously in normal and perturbed cells.



173  
 174 **Figure 1.** Overview of the SPLAT strategy. **A.** Experimental workflow. Control, thapsigargin-treated, and  
 175 tunicamycin-treated human A16 cardiomyocytes were labeled with  $^{13}\text{C}_6^{15}\text{N}_2$  L-Lysine and  $^{13}\text{C}_6^{15}\text{N}_4$  L-

176 Arginine dynamic SILAC labels. For each condition, 3 biological replicate SPLAT experiments were  
177 performed (n=3). After 16 hours, cells were harvested and mechanically disrupted, followed by differential  
178 ultracentrifugation steps to pellet proteins across cellular compartments. Proteins from the  
179 ultracentrifugation fractions were digested and labeled using tandem mass tag (TMT) followed by mass  
180 spectrometry. **B.** Dynamic SILAC labeling allowed differentiation of pre-existing (unlabeled, i.e., SILAC  
181 light) and post-labeling (heavy lysine or arginine, i.e., +R[10.0083]) synthesized peptides at 16 hours. The  
182 light and heavy peptides were isolated for fragmentation separately to allow the protein sedimentation  
183 profiles containing spatial information to be discerned from TMT channel intensities. **C.** Computational  
184 workflow. Mass spectrometry raw data were converted to mzML format to identify peptides using a  
185 database search engine. The mass spectra and identification output were processed using RIANA (left) to  
186 quantitate the time dependent change in SILAC labeling intensities and determine the protein half-life, and  
187 using pyTMT (right) to extract and correct TMT channel intensities from each light or heavy peptide MS2  
188 spectrum. The TMT data were further processed using pRoloc/Bandle to predict protein subcellular  
189 localization via supervised learning. **D.** Temporal information and spatial information is resolved in MS1  
190 and MS2 levels, respectively. SPLAT allows the subcellular spatial information of the heavy (new) and light  
191 (old) subpools of thousands of proteins to be quantified simultaneously in normal and perturbed cells. HL:  
192 Half-life.


193 **Protein turnover kinetics regulations under unfolded protein response vary by**  
194 **cellular compartments**

195 We applied SPLAT to identify protein spatiotemporal changes in human AC16 cells under UPR  
196 induced by 1  $\mu$ M thapsigargin for 16 hours. Thapsigargin at the dosage and duration used is a  
197 common and robust model to induce ER stress and integrated stress response in cardiac and  
198 other cell types through the inhibition of sarco/endoplasmic reticulum Ca<sup>2+</sup>-ATPase (SERCA).  
199 Thapsigargin treatment at 16 hours robustly induced known ER stress markers (Glembotski,  
200 2007) including BiP/HSPA5, HSP90B1, PDIA4 (limma FDR adjusted P < 0.01) (**Figure 2A**). Three  
201 biological replicate SPLAT experiments were carried out for normal and thapsigargin-treated  
202 AC16 cells (n=3 each). We analyzed the spatial fractionation patterns of the proteins following  
203 ultracentrifugation and TMT labeling, and classified the subcellular localization of proteins using  
204 a Bayesian model BANDLE as previously described (Crook et al., 2018). A spatial classification  
205 model is trained separately for each treatment using a basket of canonical organelle markers  
206 (**see Methods**) which showed clear separation in PC1 and PC2 in each condition (**Supplemental**  
207 **Figure S1**). The ultracentrifugation profiles of each cellular compartment are highly consistent  
208 across treatments and replicates (**Supplemental Figure S2**). To minimize the potential ratio  
209 compression that can result from MS2-based TMT quantification, we employed extensive two-  
210 dimensional fractionation and narrow isolation window, and verified that identified MS2 spectra  
211 had high precursor ion purity (median purity 92–93%) (**Supplemental Figure S3**). We further  
212 performed a direct comparison of MS2 and MS3 based quantification on an identical sample  
213 (control replicate 2) (**Supplemental Figure S4**), which confirmed that MS2-based quantification  
214 produced acceptable spatial resolution, consistent with previous observations (Shin et al., 2020).

215 In total using MS2-based TMT quantification, we mapped the subcellular profiles of 4360  
216 protein features (i.e., 1,820 new and 2,540 old proteins) in normal AC16 cells across 3 biological  
217 replicate experiments using a stringent two-peptide filter at 1% FDR of protein identification,

218 with 1946 old proteins and 1,462 new proteins assigned to one of 12 subcellular localization with  
219 >95% confidence after removing outliers (see Methods) (**Figure 2B; Supplemental Data S1**).  
220 The accuracy of the spatial classification is supported by the observation that 69.5% of assigned  
221 proteins in normal AC16 cells contain matching cellular component annotation in Gene Ontology  
222 despite the current incompleteness of annotations (**Figure 2C**) and 71.6% of proteins match  
223 their localization annotation in thapsigargin-treated cells (**Supplemental Figure S5**). From the  
224 associated SILAC data of the proteins with spatial information, we further quantified and  
225 compared the turnover kinetics of 2516 proteins (**Supplemental Data S2**); hence we were able  
226 to acquire proteome-wide spatial and temporal information in matching samples from a single  
227 experiment.

228 Considering the temporal kinetics data, we observed a proteome-wide decrease in  
229 fractional synthesis rates under thapsigargin challenge compared with normal cells (median  
230 protein half-life 46.9 vs. 19.9 hours; Mann-Whitney test  $P < 2.2e-16$ ) (**Figure 2D**). This slowdown  
231 is consistent with the extensive shutdown in protein translation due to ribosome remodeling  
232 under integrated stress response (Bresson et al., 2020; Pakos-Zebrucka et al., 2016), shown  
233 here by the decreased rate of SILAC incorporation into proteins. Notwithstanding the overall  
234 slowdown, we also observed a wide range of protein turnover rates in both the untreated and  
235 thapsigargin treated conditions that differ by the assigned subcellular compartment  
236 (**Supplemental Figure S6**). Changes in protein kinetics following thapsigargin also varies by  
237 compartment, with ER and Golgi proteins having significantly less slowdown of protein kinetics  
238 compared to protein in other compartments (Mann-Whitney test  $P: 9.4e-11$  and  $9.8e-5$ ,  
239 respectively;  $<< 0.05/13$ ) (**Figure 2E**). On an individual protein level, out of the 2516 proteins  
240 measured, 1542 showed significant changes in temporal kinetics (Mann-Whitney test, FDR  
241 adjusted  $P$  value  $< 0.1$ ), but the vast majority of these proteins show decreases in turnover as  
242 expected, with only 12 proteins showing significant increased temporal kinetics. Among these  
243 are the induced ER stress markers BiP/HSPA5, HSP90B1, and PDIA4 (**Figure 2F; Supplemental**  
244 **Data S3**) but also other ER and Golgi proteins that may be involved in stress response (**Figure**  
245 **2G**). SDF2L1 (stromal-cell derived factor 2 like 1) is recently described to form a complex with  
246 the ER chaperone DNAJB11 to retain it in the ER (Hanafusa et al., 2019). In control cells, we  
247 found that SDF2L1 has a basal turnover rate of 0.027/hr. Upon thapsigargin treatment, its  
248 turnover rate increased to 0.048 /hr (adjusted  $P: 0.07$ ). DNAJB11 also experienced accelerated  
249 kinetics (1.28-fold in thapsigargin, adjusted  $P: 0.029$ ) hence both proteins may be preferentially  
250 synthesized during UPR. On a proteome level, gene set enrichment analysis (GSEA) of temporal  
251 kinetics changes show a preferential enrichment of proteins in unfolded protein response (FDR  
252 adjusted  $P: 4.1e-4$ ), ER to Golgi anterograde transport (FDR adjusted  $P: 0.036$ ) and N-linked  
253 glycosylation (FDR adjusted  $P: 1.7e-3$ ) but a negative enrichment of translation-related terms  
254 (**Figure 2H**). Overall, protein kinetic changes are modestly correlated with protein abundance  
255 changes (**Supplemental Figure S7**), suggesting that AC16 cells actively regulate protein  
256 synthesis and degradation kinetics in normal and stressed conditions beyond changes in protein  
257 abundance.

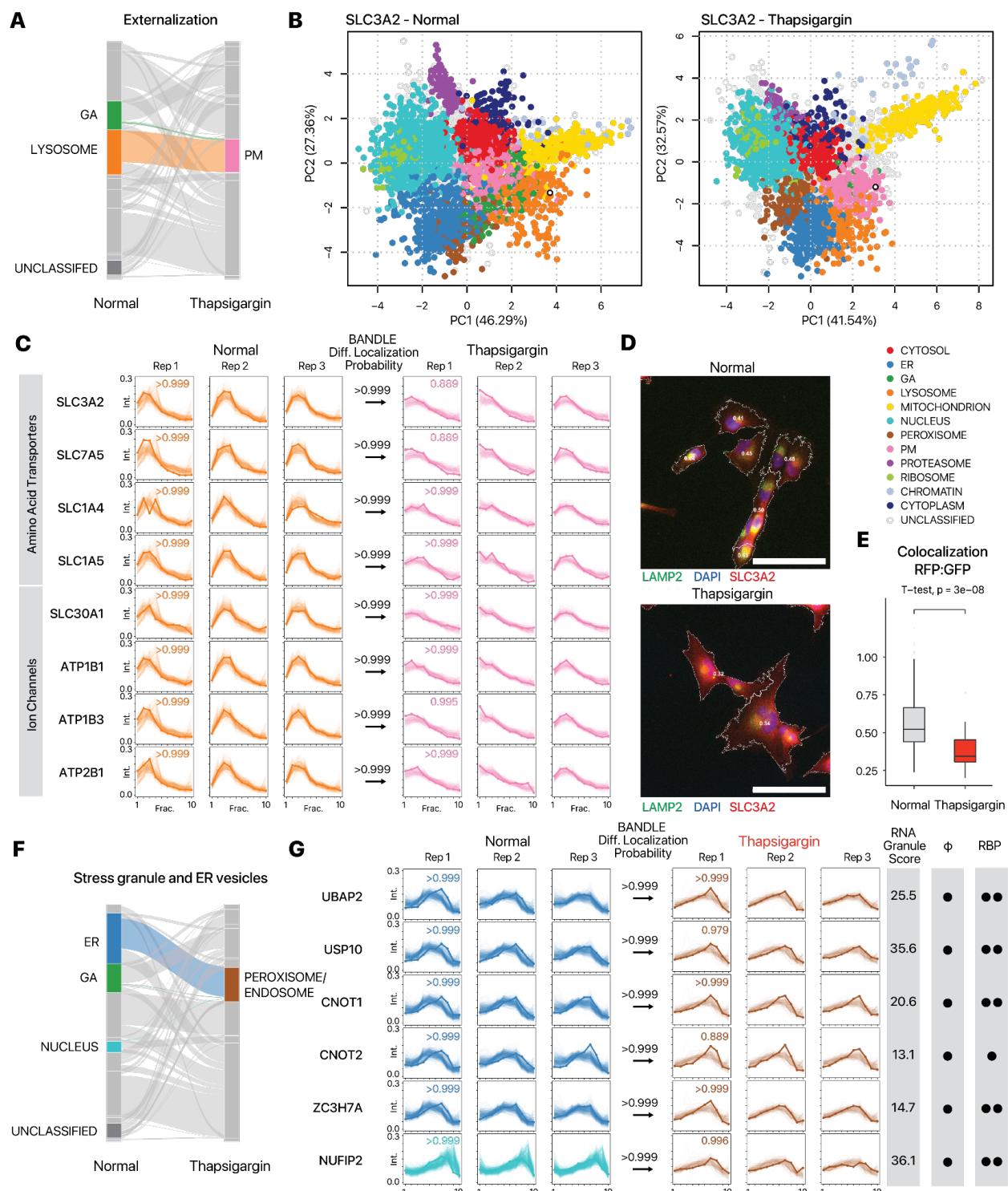


258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271

**Figure 2.** Simultaneous measurements of spatial and temporal kinetics under UPR. **A.** Bar charts showing activation of known ER stress markers upon thapsigargin treatment for 8 hours and 16 hours. X-axis: ER stress markers; y-axis: expression ratio (n=6 normal AC16; n=3 thapsigargin). \*: limma adjusted  $P < 0.01$ ; \*\*: limma adjusted  $P < 0.001$ ; \*\*\*: limma adjusted  $< 0.0001$ ; error bars: s.d. **B.** PC1 and PC2 of proteins spatial map showing the localization of confidently allocated proteins in normal and thapsigargin-treated AC16 cells. Each data point represents a protein; color represents classification of subcellular localization. **C.** Distribution of light (unlabeled) protein features in each of the 12 subcellular compartments (n=3); fill color represents whether the protein is also annotated to the same subcellular compartment in UniProt Gene Ontology Cellular Component terms. **D.** Histograms of the determined  $\log_{10}$  protein turnover rates in control and thapsigargin treated cells (n=3). Text overlay indicates median half-life. **E.** Boxplot showing the  $\log_2$  turnover rate ratios in thapsigargin over normal AC16 cells for proteins that are localized to the ER (blue) (T) or not (F); or the Golgi (GA; green). P values: Mann-Whitney test. A Bonferroni corrected threshold of  $0.05/13$  is considered significant. Center line: median; box limits: interquartile range; whiskers:

272 1.5x interquartile range. **F.** Example of best fit curves in the first-order kinetic model at the protein level  
273 between normal (gray), and thapsigargin treated (red) AC16 cells showing four known ER stress markers  
274 with elevated turnover (HSPA5, RCN3, HSP90B1, and PDIA4). Because the sampling time point is known,  
275 the measured relative isotope abundance of a peptide (prior to reaching the asymptote) is sufficient to  
276 define the kinetic curve and the parameter of interest (k). **G.** Turnover rate ratio (thapsigargin vs. normal)  
277 of the top proteins with elevated temporal kinetics in UPR within the ER (blue) and Golgi (green); ..: Mann-  
278 Whitney test FDR adjusted P value < 0.1; \*: < 0.05; \*\* < 0.01; red dashed line: 1:1 ratio; bars: standard  
279 error. **H.** Gene set enrichment analysis (GSEA) of turnover rate ratios in thapsigargin treatment; proteins  
280 with faster kinetics are significantly enriched in DNA damage response and UPR pathways. Color: FDR  
281 adjusted P values in GSEA; x-axis: GSEA normalized enrichment score (NES). Size: number of proteins in  
282 gene set.

283 **Changes in protein subcellular distribution under ER stress**


284 We next analyzed the spatial proteomics component of the data to find proteins that  
285 change in their subcellular localization following thapsigargin treatment. To do so, we used a  
286 Bayesian statistical model implemented in the BANDLE package to estimate the differential  
287 spatial localization of proteins. In total, we identified 1,306 translocating protein features (687  
288 light and 619 heavy) in thapsigargin under a stringent filter of BANDLE differential localization  
289 probability > 0.95 with an estimated FDR of 0.0018 (0.18%), and further filtered using a bootstrap  
290 differential localization probability of > 0.95. We then further prioritized 330 pairs of differentially  
291 localized proteins where the light and heavy features both show confident differential localization  
292 (**Supplemental Data S2, Supplemental Data S4**). The differential localization of these 330  
293 proteins recapitulate previously established relocalization events in cellular stress response,  
294 capturing the migration of caveolae toward the mitochondrion under cellular stress (Fridolfsson  
295 et al., 2012) (**Supplemental Figure S8A**), and the engagement of EIF3 to ribosomes in EIF3-  
296 dependent translation initiation in integrated stress response (Guan et al., 2017) (**Supplemental  
297 Figure S8B**), thus supporting the confidence of the spatial translocation assignment.

298 From the results, we discerned three major categories of differential localization  
299 behaviors in ER stress that revealed new insights into proteome-wide features of UPR. First, we  
300 observed the externalization of proteins toward the plasma membrane (**Figure 3A**). The large  
301 neutral amino acid transporter component SLC3A2 is localized to the lysosome fraction in normal  
302 cells ( $P_r > 0.999$ ) but in thapsigargin-treated cells is localized confidently to the plasma  
303 membrane (BANDLE differential localization probability > 0.999) (**Figure 3B**). Showing similar  
304 behaviors are SLC7A5, the complex interacting partner of SLC3A2; and two other amino acid  
305 transporters SLC1A4, and SLC1A5 (**Figure 3C**); whereas the ion channel proteins SLC30A1,  
306 ATP1B1, ATB1B3 and ATP2B1 also showed confident localization toward the cell surface  
307 (**Figure 3C**). The change in localization of SLC3A2 is corroborated by immunostaining (**Figure  
308 3D**), which shows a decrease in co-localization between immunostaining signals of SLC3A2 and  
309 lysosome marker LAMP2 upon thapsigargin treatment (**Figure 3E**).

310 Second, thapsigargin treated AC16 cells are associated with an increase in proteins  
311 classified into the peroxisome fraction including proteins whose locations changed from the ER,  
312 Golgi, and the nucleus in normal cells (**Figure 3F**). In mammalian cells, ER and peroxisomes are  
313 spatially adjacent; the peroxisome associated fractions sediment prominently at 5000–9000  $\times g$

314 (F3 and F4) in the LOPIT-DC protocol (**Supplemental Figure S2**), marked by canonical  
315 peroxisome markers PEX14 and ACOX1 (**Supplemental Data S2**). However, although this  
316 compartment was trained using peroxisome markers, the majority of proteins categorized into  
317 this compartment are not annotated to be in the peroxisome whereas 30 out of 49 (61%) of  
318 proteins in the control cells allocated to this compartment were annotated also as endosome,  
319 including canonical markers EEA1 and VPS35L. We thus refer to this compartment hereafter as  
320 peroxisome/endosome. Moreover, proteins that become differentially localized to this fraction in  
321 thapsigargin include known stress granule proteins UBAP2, USP10, CNOT1, CNOT2, CNOT3,  
322 CNOT7, CNOT10, ZC3H7A, and NUFIP2 (**Figure 3G and Supplemental Figure S9**), which show  
323 high-confidence translocation to the peroxisome/endosome fraction, and are known RNA  
324 binding proteins that participate in phase separation, consistent with stress granule formation in  
325 UPR. Notably, LMAN1, LMAN2, SCYL2, and SNX1 are RNA-binding proteins that are not  
326 currently established stress granule components and show identical translocation patterns,  
327 nominating them as potential participants in RNA granule related processes in AC16 cells for  
328 further studies (**Supplemental Figure S9**). Other proteins in this fraction include the ER-to-Golgi  
329 transport vesicle proteins GOLT1B, GOSR2, RER1, and NAPA (**Supplemental Figure S9**).

330 Lastly, we see evidence of proteins from the ER and Golgi targeted to the lysosome (see  
331 Tunicamycin section below). Thus taken together, the spatial proteomics component of the data  
332 reveals a complex network of changes in protein spatial distribution during UPR.



333

334 **Figure 3. SPLAT captures extensive protein translocation in AC16 cells under UPR. A.** Alluvial plot of  
335 translocation events ( $> 0.99$  BANDLE translocation probability; estimated FDR  $< 1\%$ ) following  
336 thapsigargin treatment showing a cohort of proteins moving from the Golgi apparatus (GA) and lysosome  
337 towards the plasma membrane (PM) (n=3). **B.** Protein spatial map for SLC3A2 (open black circle) in normal  
338 (left) and thapsigargin-treated (right) AC16 cells, showing its colocalization with lysosomal proteins in  
339 normal cells and in PM proteins in thapsigargin-treated cells. Colors represent allocated subcellular

340 localization. **C.** Ultracentrifugation fraction profile of SLC3A2 and other amino acid transporters SLC7A5,  
341 SLC1A4, SLC1A5 and ion channel proteins SLC30A1, ATP1B1, ATP1B3, and ATP2B1 with similar  
342 migration patterns. X-axis: fraction 1 to 10 of ultracentrifugation. Y-axis: relative channel abundance. Bold  
343 lines represent the protein in question; light lines represent ultracentrifugation profiles of all proteins  
344 classified to a respective localization. Colors correspond to subcellular localization in panel B and for all  
345 AC16 data throughout the manuscript; numbers within boxes correspond to BANDLE allocation probability  
346 to compartment. **D.** Immunofluorescence of SLC3A2 (red) against the lysosome marker LAMP2 (green)  
347 and DAPI (blue). Numbers in cell boundary: colocalization score per cell. Scale bar: 90  $\mu$ m. **E.**  
348 Colocalization score (Mander's correlation coefficient) between SLC3A2 and LAMP2 decreases  
349 significantly (two-tailed unpaired t-test P value: 3e-8) following thapsigargin treatment, consistent with  
350 movement away from lysosomal fraction (n= 205 normal cells, n = 32 thapsigargin treated cells). Center  
351 line: median; box limits: interquartile range; whiskers: 1.5x interquartile range; points: outliers. **F.** Alluvial  
352 plot showing the migration of ER, GA, and nucleus proteins toward the peroxisome/endosome containing  
353 fraction in thapsigargin treated cells. **G.** Ultracentrifugation fraction profile of stress granule proteins  
354 UBAP2, USP10, CNOT1, CNOT2, ZC3H7A, and NUFIP2. RNA Granule Score: score from RNA Granule  
355 Database (<https://rnagranuledb.lunenfeld.ca/>). A score of 7 or above is considered a known stress granule  
356 protein. Phi: predicted phase separation participation. Circle denotes a prediction of True within the  
357 database. RBP: Annotated RNA binding protein on the RNA Granule Database. One circle denotes known  
358 RBP in at least one data set; two circles denote known RBP in multiple datasets.

### 359 **Partition of newly synthesized and pre-existing protein pools**


360 We next considered the interconnectivity of temporal and spatial dynamics, namely whether  
361 some localization changes are contingent upon protein pool lifetime, such as where light (old)  
362 protein does not change in spatial distribution but the heavy (new) proteins display differential  
363 translocation upon UPR. Because the spatial profiles of the light and heavy proteins are acquired  
364 independently, this experimental design allowed us to examine whether old and new proteins  
365 are localized to identical cellular locales. In both normal and thapsigargin-treated cells, we found  
366 that the independently measured spatial profiles of light (pre-existing) proteins and their  
367 corresponding heavy SILAC (newly synthesized) counterparts are highly concordant, with a  
368 normalized spatial distribution distance (see Supplemental Methods) of 0.020 [0.015 – 0.030],  
369 compared to 0.117 [0.080 – 0.155] in random pairs of pre-existing proteins (1,614 light-heavy  
370 pairs, Mann-Whitney P < 2.2e-16) in normal cells, and 0.028 [0.019 – 0.041] and 0.122 [0.081  
371 – 0.161] in thapsigargin-treated cells (1,614 light-heavy pairs, Mann-Whitney P < 2.2e-16)  
372 (**Figure 4A**). This robust agreement provided an additional independent confirmation on the  
373 accuracy of the spatial measurements. Consistently, among heavy-light protein pairs with  
374 confidently assigned subcellular localization, the heavy and light proteins are assigned to the  
375 identical subcellular compartment in 93% and 89% of the cases in normal and thapsigargin-  
376 treated AC16 cells, respectively (**Figure 4B**). We focused on the unusual cases where the spatial  
377 distribution distances between the heavy and light proteins increased noticeably following  
378 thapsigargin treatment, as they may be indicative of localization changes that are dependent  
379 upon time since synthesis. These include two proteins EGFR and ITGAV with an uncommon  
380 increase in heavy-light spatial distances (Z: 12.00 and 2.24, respectively) (**Figure 4C**). Epidermal  
381 growth factor receptor (EGFR/ErbB1/HER1) is a receptor tyrosine kinase with multiple subcellular

382 localizations and signaling roles, and is implicated in cardiomyocyte survival (Lee et al., 2020).  
383 Following a variety of stressors, EGFR is known to be inactivated by intracellular trafficking,  
384 including being internalized to the early endosome and lysosome following oxidative stress and  
385 hypoxia in cancer cells (Tan et al., 2016). In the spatial proteomics data, the spatial distribution  
386 of EGFR borders the lysosome and plasma membrane fractions, which we interpret as EGFR  
387 having potential multiple pools including a cell surface fraction (**Figure 4D**). In the thapsigargin  
388 treated cells, the light-heavy spatial distance of EGFR increased from 0.014 in normal cells to  
389 0.052, and the dynamic SILAC labeled pool (heavy) becomes internalized toward the ER  
390 (BANDLE differential localization probability:  $>0.999$ ) but not the pre-existing (light) pool (**Figure**  
391 **4E**). The data therefore suggests that the internalization of EGFR under thapsigargin is likely to  
392 be due to endomembrane stalling or redistribution upon new protein synthesis, possibly leading  
393 to fewer new EGFR molecules reaching the cell surface. Likewise, in thapsigargin-treated AC16  
394 cells, newly-synthesized ITGAV (integrin subunit alpha V) shows a partition from the plasma  
395 membrane fraction to the ER fraction but not the old/existing protein pool, concomitant with an  
396 increase in spatial distribution distance from 0.017 to 0.057 between old and new proteins  
397 (**Figure 4F–G**). With the function of integrins as cell surface receptors that function in  
398 intracellular-to-extracellular and retrograde communication, the ER localization of newly  
399 synthesized ITGAV, such as due to stress-induced stalling of protein trafficking along the  
400 secretory pathway, could indicate a decrease in integrin signaling function through spatial  
401 regulation rather than protein abundance. To partially corroborate the partial redistribution of  
402 EGFR, we performed immunocytochemistry imaging of EGFR subcellular distribution in AC16  
403 cells with or without thapsigargin (**Figure 4H**). Thapsigargin treatment did not increase cell size  
404 (**Figure 4I**), and whereas there is an increase in immunofluorescence signal of EGFR in  
405 thapsigargin (**Figure 4J**), this signal is distributed preferentially to the interior of the cell such that  
406 there is a significant reduction in the ratio of mean intensity at cell borders over the whole cell in  
407 thapsigargin vs. untreated cells (0.673 vs. 0.746, n=93 and 71 cells, Mann-Whitney P: 1.7e-4)  
408 (**Figure 4K**), consistent with a partial redistribution of EGFR toward an internal pool. Taken  
409 together, these examples demonstrate the SPLAT strategy can be used to distinguish time-  
410 dependent differential localization of proteins such as due to the trafficking of newly synthesized  
411 proteins.

412

413

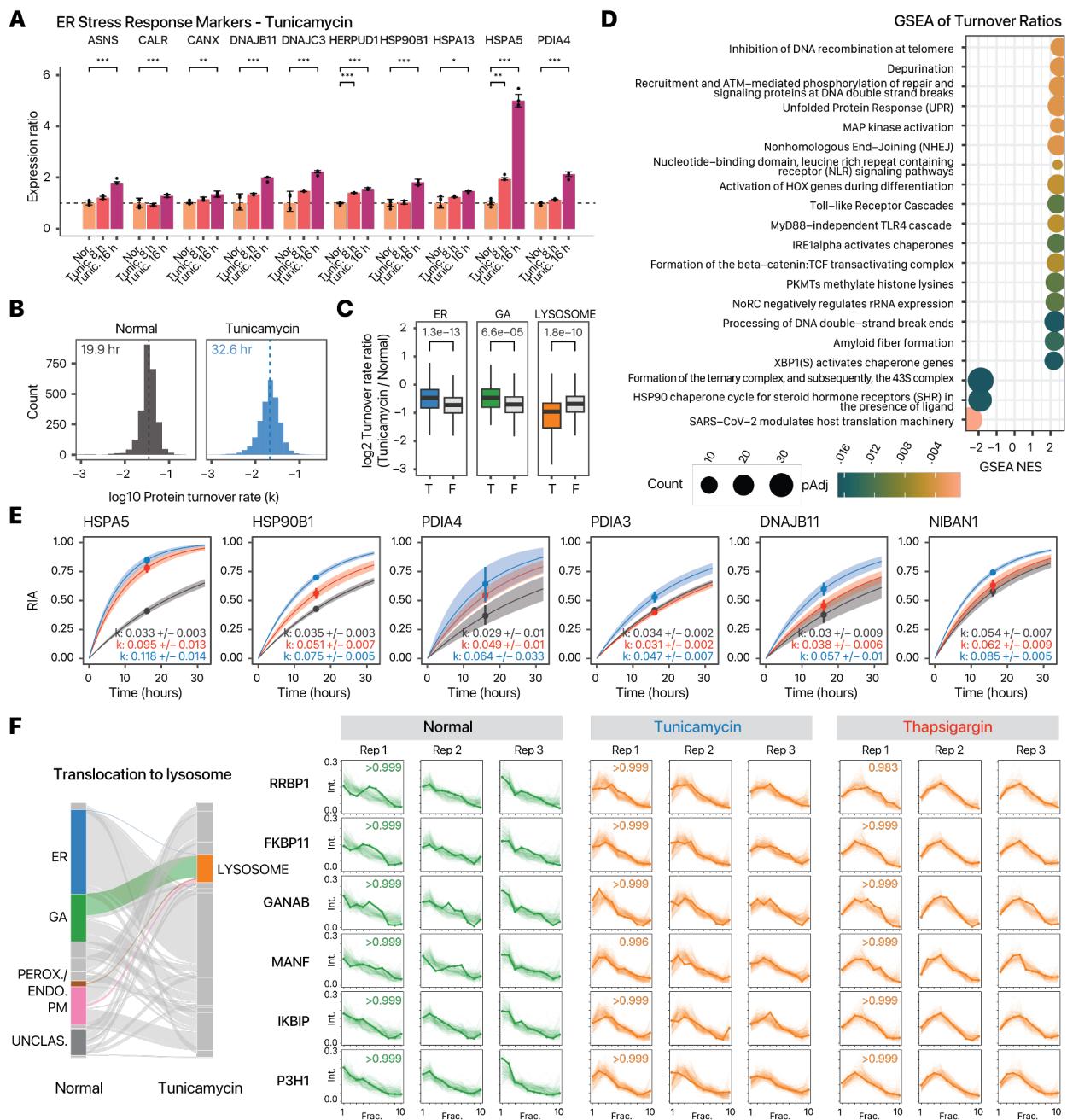
414



415

416

**Figure 4.** SPLAT reveals protein-lifetime dependent translocation. **A.** Histogram showing the similarity in light and heavy proteins in normalized fraction abundance profiles in (left) normal and (right) thapsigargin-treated AC16 cells. X-axis: the spatial distribution distance of two proteins is measured as the average euclidean distance of all TMT channel relative abundance in the ultracentrifugation fraction profiles across 3 replicates; y-axis: count. Blue: distance for 1,614 quantified light-heavy protein pairs (e.g., unlabeled EGFR, heavy SILAC-labeled EGFR). Grey: distribution of each corresponding light protein with another random light protein. P value: Mann-Whitney test. **B.** Proportion of heavy-light protein pairs with confidently assigned localization that are assigned to the same location (purple) in normal (left; 93%) and


424 thapsigargin-treated (right; 89%) cells. **C.** Ranked changes in heavy-light pair euclidean distance upon  
425 thapsigargin treatment. The difference in heavy-light distances in thapsigargin is adjusted by the average  
426 changes in the spatial distance of the light protein with 250 other sampled light proteins to calculate the  
427 normalized difference. The majority of proteins show no change (+/- 0.02 in euclidean distance). The  
428 positions of EGFR and ITGAV are highlighted. Inset: Z score distribution of all changes. **D.** Spatial map  
429 showing the location of the light and heavy EGFR in normal and thapsigargin-treated AC16 cells. Each  
430 data point is a light or heavy protein species. Colors correspond to other AC16 experiments in the  
431 manuscript. Numbers correspond to euclidean distance in fraction profiles over 3 replicates. **E.**  
432 Corresponding fraction profiles; x-axis: ultracentrifugation fraction; y-axis: fractional abundance. Post-  
433 labeling synthesized EGFR is differentially distributed in thapsigargin and shows ER retention (blue),  
434 whereas the preexisting EGFR pool remains to show a likely cell surface localization (pink) after  
435 thapsigargin. **F-G.** As above, for ITGAV. **H.** Confocal imaging of EGFR immunofluorescence supports a  
436 partial relocalization of EGFR from the cell surface toward internal membranes following thapsigargin  
437 treatment. Numbers: The mean intensity of the labeled EGFR channel of a 3 pixel border at cell boundaries  
438 was divided by mean intensity of the whole cell to estimate the ratio of EGFR at the plasma membrane to  
439 the cell interior. Blue: DAPI; Green: EGFR; scale bar: 90  $\mu$ m. **I.** Cell areas; Mann-Whitney P: 0.72. Center  
440 line: median; box limits: interquartile range; whiskers: 1.5x interquartile range. **J.** Total EGFR intensity per  
441 cell; Mann-Whitney P: 2.2e-05. Center line: median; box limits: interquartile range; whiskers: 1.5x  
442 interquartile range. **K.** Edge/total intensity ratios in normal and thapsigargin-treated AC16 cells (n=71  
443 normal cells; n=93 thapsigargin cells; Mann-Whitney P: 1.7e-4). Center line: median; box limits:  
444 interquartile range; whiskers: 1.5x interquartile range.

445 **Spatiotemporal proteomics highlights similarities and differences of ER stress**  
446 **induction protocols**

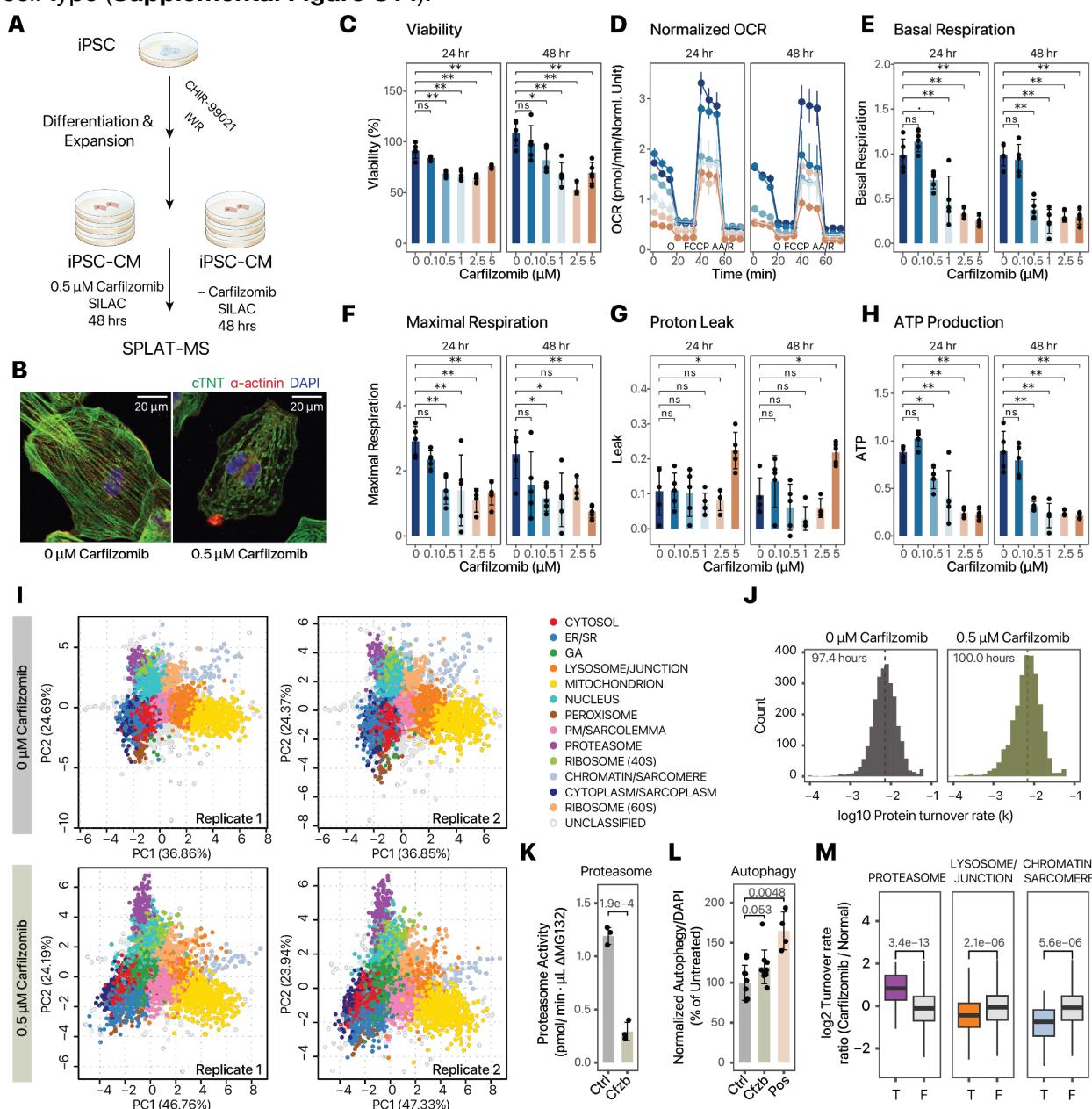
447 We next investigated the protein spatiotemporal features of AC16 cells under the treatment of  
448 tunicamycin, another compound commonly used to induce ER stress in cardiac cells (Liu et al.,  
449 2012; Toro et al., 2022) by inducing proteostatic stress via inhibition of nascent protein  
450 glycosylation. Three biological replicate SPLAT experiments were performed in tunicamycin-  
451 treated cells to resolve the temporal kinetics and subcellular localisation of proteins  
**(Supplemental Figures S1, S2C, S5B, S6, S7B, S10).** Tunicamycin treatment at 1  $\mu$ g/mL for  
453 16 hours robustly induced the known ER stress response markers BiP/HSPA5, HSP90B1,  
454 PDIA4, CALR, CANX, and DNAJB11 (limma FDR adjusted P < 0.10) (**Figure 5A**) demonstrating  
455 effective ER stress induction. Overall, tunicamycin treatment led to a lesser slowdown of  
456 temporal kinetics than thapsigargin (average protein half-life 32.6 hours) (**Figure 5B**;  
**Supplemental Data S5**). As in thapsigargin treatment, the kinetic changes following  
458 tunicamycin are different across cellular compartments, with ER and Golgi proteins having  
459 relatively faster kinetics than other cellular compartments (Mann-Whitney test P: 1.3e-13 and  
460 6.6e-5; << Bonferroni corrected threshold 0.05/13); whereas the greatest reduction was  
461 observed among proteins localized to the lysosome, a compartment closely linked to  
462 glycosylation and recycling of glycans (Mann-Whitney test P: 1.8e-10) (**Figure 5C**). Gene set  
463 enrichment analysis (GSEA) of turnover rate ratios revealed a significant positive enrichment of  
464 UPR proteins (adjusted P 3.5e-3) and DNA repair terms (e.g., processing of DNA double-strand  
465 break ends; adjusted P 0.017) and a negative enrichment of translation related terms (**Figure**

466 **5D**). Compared to thapsigargin treatment however, no significant enrichment of glycosylation  
467 and vesicle transport related terms were found in tunicamycin. Inspection of individual protein  
468 kinetics changes likewise revealed both similar induction of the ER stress response markers  
469 HSPA5, HSP90B1 and PDIA4 as in thapsigargin treatment, but other stress response genes  
470 PDIA3 and NIBAN1 are not induced in thapsigargin (**Figure 5E**). On the other hand, RCN3  
471 (reticulocalbin 3) is an ER lumen calcium binding protein that regulates collagen production  
472 (Martínez-Martínez et al., 2017) and shows increased temporal kinetics in thapsigargin (**Figure**  
473 **2F**) but not in tunicamycin (ratio 0.76 over normal; **Supplemental Data S5**), altogether  
474 reflecting potential differences in stress response modality to a different ER stress inducer.  
475

Parallel to the less prominent changes in vesicle transport, tunicamycin treatment also  
476 led to fewer translocating proteins than thapsigargin, with 620 translocating features (including  
477 282 light proteins and 338 heavy proteins) at BANDLE differential localization probability >  
478 0.95, corresponding to an estimated FDR of 0.35%, and thresholded by bootstrapping  
479 differential localization probability > 0.95; from which we highlighted 109 proteins where the  
480 heavy and light versions both showed translocation. The spatial data revealed a high degree of  
481 similarity but also notable differences with thapsigargin-induced ER stress. We found that in  
482 both tunicamycin and thapsigargin treatment, there was evidence of lysosome targeting from  
483 other endomembrane compartments, including: RRBP1, a ribosome-binding protein of the ER,  
484 GANAB, a glucosidase II alpha subunit integral to the proper folding of proteins in the ER,  
485 FKBP11, a peptidyl-prolyl cis/trans isomerase important to the folding of proline-containing  
486 peptides, IKBIP, an interacting protein to the IKBKB nuclear kinase, and MANF, a neurotrophic  
487 factor which has relations to ER stress-related cell death when its expression is lowered  
488 (BANDLE differential localization probability > 0.999) (Sayers et al., 2022) (**Figure 5F**). Among  
489 these proteins was the collagen synthesis enzyme P3H1 in both thapsigargin and tunicamycin.  
490 Interestingly, prior work found no correlation between the protein abundance of collagen  
491 modifying enzymes with the known reduction of collagen synthesis in chondrocytes and  
492 fibroblasts under ER stress (Vonk et al., 2010). The results here suggest that the functional  
493 decline may instead correlate with a change in the subcellular localization of collagen  
494 modifying enzymes in AC16 cells. Tunicamycin treatment also induced old-new protein  
495 partitions in EGFR and ITGAV as observed in thapsigargin (**Supplemental Figure S11**).  
496 Notably, although tunicamycin also induced the translocation of proteins toward the  
497 peroxisome/endosome fraction, different proteins are involved, including the stress response  
498 proteins DNAJB11, DNAJC3, DNAJC10, and PDIA6 as well as other proteins EMC4, EMC8,  
499 VAPA, and VAPB (**Supplemental Figure S12**) which further outlines different modalities of  
500 cellular response toward two different ER stress inducers. The translocating stress response  
501 proteins DNAJB11, DNAJC10, and PDIA6 also showed significant acceleration in temporal  
502 kinetics in tunicamycin (Mann-Whitney test, FDR adjusted P < 0.10; **Supplemental Data S6**)  
503 which is consistent with specific production of the proteins followed by shuttling to subcellular  
504 location for their function during stress response.



505  
 506 **Figure 5.** Comparison of ER stress induction methods. **A.** Bar charts showing activation of known ER  
 507 stress markers upon tunicamycin treatment for 8 hours and 16 hours. X-axis: ER stress markers; y-axis:  
 508 expression ratio (n=6 normal AC16; n=3 tunicamycin). \*: limma adjusted  $P < 0.01$ ; \*\*: limma adjusted  $P <$   
 509 0.001; \*\*\*: limma adjusted  $P < 0.0001$ ; error bars: s.d.. **B.** Histograms of the determined  $\log_{10}$  protein  
 510 turnover rates in control and tunicamycin treated cells (n=3). **C.** Boxplot showing the  $\log_2$  turnover rate  
 511 ratios in tunicamycin over normal AC16 cells for proteins that are localized to the ER (T) or not (F); Golgi  
 512 apparatus, or the lysosome. P values: two-tailed t-test. Center line: median; box limits: interquartile range;  
 513 whiskers: 1.5x interquartile range. A Bonferroni corrected threshold of 0.05/13 is considered significant.  
 514 **D.** Gene set enrichment analysis (GSEA) of turnover rate ratios in tunicamycin treatment. Color: FDR  
 515 adjusted P values in GSEA; x-axis: GSEA normalized enrichment score (NES). Size: number of proteins in  
 516 the gene set. **E.** Example of best fit curves in the first-order kinetic model at the protein level between


517 normal (gray), tunicamycin (blue) and thapsigargin (red) treated AC16 cells showing known ER stress  
518 markers with elevated turnover in both ER stress inducers (HSPA5, HSP90B1, and PDIA4) as well as stress  
519 response proteins with elevated turnover only in tunicamycin (PDIA3, DNAJB11, NIBAN1). **F.** Alluvial plot  
520 showing the migration of ER, GA, and peroxisome/endosome proteins toward the lysosome (left). On the  
521 right, the ultracentrifugation fraction profiles of translocating proteins RRBP1, FKBP11, GANAB, MANF,  
522 IKBIP, and P3H1 are shown that are targeted toward the lysosome in both tunicamycin and thapsigargin  
523 treatment (BANDLE differential localization probability > 0.95). Numbers in boxes are the BANDLE  
524 allocation probability in each condition (n=3).

## 525 **Application of SPLAT to the mechanism of cardiotoxicity in iPSC-CM models**

526 We next assessed the applicability of SPLAT toward a different, non-proliferating cell type  
527 (human iPSC-derived cardiomyocytes [iPSC-CMs]) and its utility for interrogating the mechanism  
528 of cardiotoxicity following proteasome inhibitor treatment (**Figure 6A**). The ubiquitin proteasome  
529 system is responsible for the degradation of over 70% of cellular proteins. Compounds that  
530 inhibit proteasome function, including carfilzomib, are widely used as cancer treatment and have  
531 led to remarkable improvement in the survival of multiple myeloma patients. Mechanistically,  
532 carfilzomib functions by binding to and irreversibly inhibiting the proteasome catalytic subunit  
533 PSMB5 (Cromm and Crews, 2017), leading to the accumulation of unfolded proteins in cancer  
534 cells. Importantly, despite its efficacy as a cancer treatment, carfilzomib also leads to cardiotoxic  
535 adverse effects including heart failure (<20%), arrhythmia (<10%), and hypertension (11-37%) in  
536 a significant number of patients (IBM Watson Health, 2023). This cardiotoxicity has been  
537 modeled in vitro by exposure of 0.01 – 10  $\mu$ M carfilzomib to human iPSC-CMs (Forghani et al.,  
538 2021), yet the molecular mechanisms of carfilzomib cardiotoxicity remain incompletely  
539 understood. To examine the protein spatiotemporal changes upon carfilzomib-mediated  
540 proteasome inhibition in cardiac cells, we differentiated contractile iPSC-CMs using a small  
541 molecule based protocol, and treated the cells with 0.5  $\mu$ M carfilzomib. To verify toxicity  
542 modeling, we measured iPSC-CM viability and phenotypes under 0 to 5  $\mu$ M carfilzomib for 24  
543 and 48 hours. Under the chosen treatment (0.5  $\mu$ M for 48 hours), iPSC-CMs showed sarcomeric  
544 disarray consistent with prior observations on the cardiotoxic effects of carfilzomib (**Figure 6B**)  
545 but maintained viability (82%) (**Figure 6C**), while showing significant decreases in oxygen  
546 consumption (**Figure 6D**), basal respiration (**Figure 6E**), and maximal respiration (**Figure 6F**),  
547 whereas higher doses are accompanied with drops in viability at 48 hours and an increase in  
548 proton leak (**Figure 6G**). ATP production at the 0.5  $\mu$ g dose was significantly lower than untreated  
549 cells at both 24 and 48 hours (**Figure 6H**). Therefore cardiotoxicity due to carfilzomib can be  
550 recapitulated in a human iPSC-CM model, consistent with prior work in the literature.

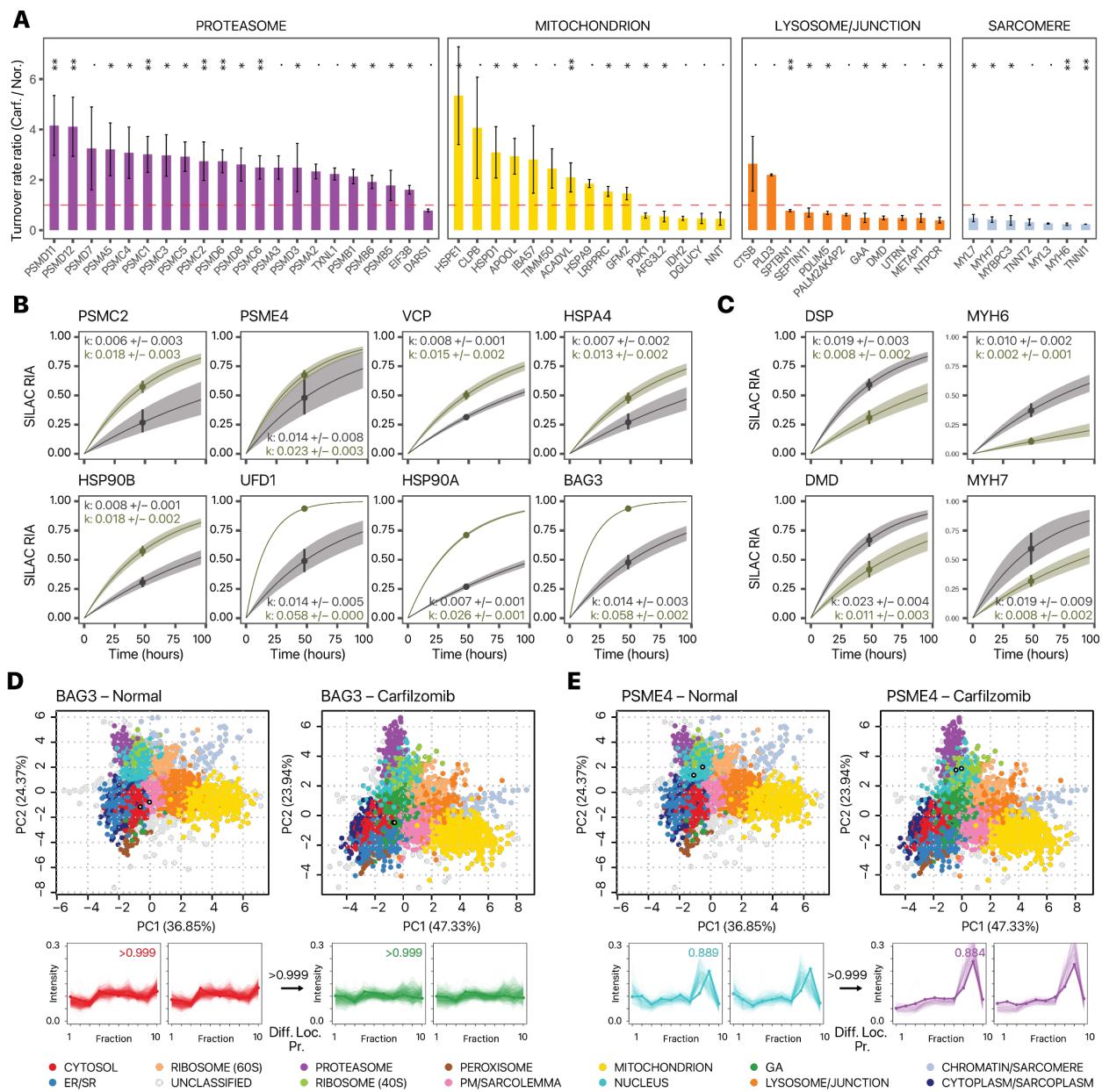
551 From the untreated and carfilzomib-treated (0.5  $\mu$ M, 48 hrs) human iPSC-CMs, we  
552 constructed a protein subcellular spatial map that takes into account several features of the  
553 iPSC-CM cell type, including the inclusion of cell junction and desmosome proteins, as well as  
554 a sarcomere protein compartment, that are not apparently recognized as discrete compartments  
555 in the prior spatial maps (**Supplemental Figure S13**). In addition, the 40S and 60S ribosomes  
556 showed clear separation in iPSC-CM unlike in AC16 cells and are hence classified separately.  
557 This separation is consistent with less active protein translation in this cell type. In total, we  
558 mapped the subcellular localization of 5,047 protein features including 2,680 old proteins and

559 2,367 new proteins using a stringent two-peptide filter at 1% FDR of protein identification,  
 560 including 2,010 old proteins and 1,737 new proteins assigned to one of 13 subcellular localization  
 561 with >95% confidence after removing outliers (**Figure 6I; Supplemental Data S7**). The iPSC-  
 562 CM spatial map achieved similar levels of concordance with known cellular component  
 563 annotations as in AC16 cells (70.8% with known annotation matching the assigned compartment  
 564 in normal iPSC-CM; 63.0% in carfilzomib-treated cells) (**Supplemental Figure S14**). The iPSC-  
 565 CM map has comparable spatial distance between light and heavy protein pairs as in AC16 cells,  
 566 and 87.6% heavy-light protein pairs map to the same compartment in the baseline, supporting  
 567 that there is sufficient spatial resolution to resolve subcellular compartment differences in this  
 568 cell type (**Supplemental Figure S14**).



569

570 **Figure 6. Applicability in human iPSC-derived cardiomyocytes.** **A.** Schematic of human iPSC  
571 differentiation into cardiomyocytes, carfilzomib treatment, and SPLAT analysis. **B.** Confocal microscopy  
572 images showing sarcomeric disarray in iPSC-CMs upon 48 hrs of 0.5  $\mu$ M carfilzomib; green: cTNT, red:  
573 alpha-actinin; blue: DAPI; scale bar: 20  $\mu$ m. **C-H.** Cell viability (%), normalized Seahorse oxygen  
574 consumption rate (OCR; pmol/min), basal respiration, maximal respiration, proton leak, and ATP  
575 production upon 0 – 5  $\mu$ M carfilzomib for 24 or 48 hrs; ..: adjusted  $P < 0.1$ ; \*: adjusted  $P < 0.05$ ; \*\*: adjusted  
576  $P < 0.01$ , ANOVA with Tukey's HSD post-hoc at 95% confidence level; n=5. Error bars: s.d. for bar charts  
577 in panels C, E, F, G, H; s.em. for the OCR graph in panel D. Colors in panel D: dosage, same as panel C.  
578 O: Oligomycin; AA/R: Antimycin A/Rotenone. **I.** Spatial map with 13 assigned subcellular localizations in  
579 iPSC-CMs at the baseline (top) and upon 0.5  $\mu$ M carfilzomib treatment (n=2). **J.** Histogram of log10 protein  
580 turnover rates (k), with median half-life of 97.4 hours and 100.0 hours in normal and carfilzomib-treated  
581 iPSC-CM. **K.** Proteasome activity in iPSC-CMs treated with 0 (Ctrl) vs. 0.5  $\mu$ M carfilzomib (Cfzb) for 48  
582 hrs. P value: two-tailed t-test; n = 3. **L.** Autophagy assay for iPSC-CMs treated with 0 (Ctrl) vs. 0.5  $\mu$ M  
583 carfilzomib (Cfzb) for 48 hrs, and positive control (Pos); data were normalized to DAPI and normal cells. P  
584 value: two-tailed t-test; n = 10. **M.** log2 Turnover rate ratios between carfilzomib-treated and untreated  
585 iPSC-CM from the spatiotemporal proteomics data. Proteins assigned the proteasome compartment have  
586 significantly increased temporal kinetics; proteins in the lysosome/junction and chromatin/sarcomere  
587 compartments have significantly reduced temporal kinetics. P values: Mann-Whitney; with a threshold of  
588 0.05/14 considered significant. Center line: median; box limits: interquartile range; whiskers: 1.5x  
589 interquartile range.


590 Among proteins with spatial information, we compared the temporal kinetics of 2,648  
591 proteins. Unexpectedly, there was no overall slowdown of protein temporal kinetics with the  
592 median protein half-lives being 97.4 hours and 100.0 hours in normal and carfilzomib-treated  
593 cells, respectively (**Figure 6J; Supplemental Data S8**), suggesting that at 48 hours following  
594 proteasome inhibitor treatment, the observed cellular toxicity is not directly explainable by a drop  
595 of per-protein average in global protein degradation. At 48 hours of carfilzomib treatment in  
596 iPSC-CMs, proteasome chymotrypsin-like activities are partially suppressed but significant  
597 partial activities are also observable (**Figure 6K**); whereas other proteolysis mechanisms may  
598 also compensate for proteasome inhibition, including a suggestive increase in autophagy (P:  
599 0.053) (**Figure 6L**). Inspection of the spatial data revealed that the changes in protein kinetics  
600 upon carfilzomib are localization specific, with a significant reduction in chromatin/sarcomere  
601 protein turnover rate, and significant increase for the proteasome compartment under carfilzomib  
602 treatment (**Figure 6M**).

603 Notably, on an individual protein level we find that the majority of proteins with increased  
604 protein kinetics belong to subunits of the regulatory 19S complex rather than the core 20S  
605 complex (**Figure 7A**) suggesting possible changes in 26S proteasome activity and target  
606 engagement. In addition to proteasome subunits, the temporal kinetics revealed a robust  
607 induction of chaperons HSP90AA1/HSP90A, HSP90AB1/HSP90B, HSPA4, and BAG3; and  
608 ERAD associated proteins VCP and UFD1 (**Figure 7B, Supplemental Data S8**). Within the  
609 mitochondrion, quality control proteins HSPD1, HSPE1, and CLPB are induced (**Figure 7A**). In  
610 contrast, among proteins that show reduced turnover in carfilzomib treatment are major  
611 sarcomeric proteins MYH6, MYH7, MYBPC3, MYL7; as well as proteins classified to the cell

612 junction compartment dystrophin (DMD) and utrophin (UTRN), and the desmosome complex  
613 protein desmoplakin (DSP) (**Figure 7A & C**).

614 We observed an interconnectivity of spatial and temporal changes, with 23 out of 339  
615 pairs of confident translocators also showing significant kinetic changes. BAG3, a muscle  
616 chaperone important for sarcomere turnover (Martin et al., 2021a), shows elevated kinetics  
617 (**Figure 7B**) and a partition away from the soluble cytosol compartment (**Figure 7D**) toward an  
618 expanded compartment in carfilzomib that co-sediments with Golgi markers. Inspection of  
619 existing annotations show that the majority of categorized proteins are not canonical Golgi  
620 proteins but contain cytoplasm and endosome terms; hence it likely represents a less soluble  
621 cytoplasmic fraction consistent with a lower abundance in the last ultracentrifugation step  
622 (**Supplemental Figure S13, Supplemental Figure S14, Supplemental Data S9**). This is  
623 consistent with the known dynamic partitioning of BAG3 between the cytosol and myofilament  
624 fractions for its function (Martin et al., 2021b). Secondly, we find that accelerated temporal  
625 kinetics of PA200/PSME4 proteasome activator (**Figure 7B**) in conjunction with a change in  
626 localization from the nuclear compartment in baseline toward the proteasome compartment  
627 upon carfilzomib (**Figure 7E**). The PSME4/PA200 proteasome activator is known to bind with the  
628 20S/26S proteasome complex to stimulate proteolysis and has a putative nuclear localization  
629 signal (Ustrell et al., 2002). The change in localization is therefore consistent with increased  
630 binding with the proteasome complex. In parallel, the proteasome activator PA28/PSME3 also  
631 relocates to the proteasome upon carfilzomib (**Supplemental Figure S15**), altogether  
632 suggesting a remodeling of proteasome configuration upon carfilzomib.

633 Taken together, the spatiotemporal proteomics data here identified major proteostatic  
634 pathways induced in carfilzomib, involving a potential remodeling of the proteasome, induction  
635 of chaperones and ERAD proteins, and mitochondrial protein quality control mechanisms that  
636 may be important for preserving function. On the other hand, a preferential decrease of temporal  
637 kinetics in sarcomere and desmosome proteins suggest that the interruption of protein quality  
638 control and turnover in these important cardiomyocyte components may be principal sites of  
639 lesion in carfilzomib cardiotoxicity. Finally, we assessed the protein-level expression profiles in  
640 the hearts of mice treated with carfilzomib for 2 weeks to model cardiac dysfunction  
641 (Supplemental Methods). Notably, we find differential protein abundance analysis showed that  
642 MHC- $\beta$  (MYH7) and desmoplakin (DSP) are the 1st and 5th most significantly up-regulated  
643 proteins among 3,379 quantified proteins in the hearts of mice treated with carfilzomib  
644 (**Supplemental Figure S16**), consistent with their accumulation following proteasome inhibition  
645 and suggesting the possibility that similar proteostatic lesions may underlie cardiotoxicity  
646 mechanism *in vivo*.



647

648

649

650

651

652

653

654

655

656

657

658

659

**Figure 7. Proteostatic pathways and lesions in carfilzomib mediated cardiotoxicity in iPSC-CMs. A.** Changes in protein turnover rates between carfilzomib vs. normal iPSC-CMs across selected cellular compartments; \*\*:  $P < 0.01$ ; \*:  $P < 0.05$ ; .:  $P < 0.1$ ; Mann-Whitney test FDR adjusted  $P$  values. error bars: standard error. **B.** Kinetic curve representations of proteins with accelerated temporal kinetics in carfilzomib including PSMC2 which corresponds to the ratio in panel A, as well as additional ERAD proteins and chaperones; gray: normal iPSC-CM; green: carfilzomib. **C.** Kinetic curve representations of slowdown of protein kinetics in DSP, DMD, MYH6, and MYH7, corresponding to the ratios in panel A. **D-E.** Spatial map (PC1 vs. PC2) and ultracentrifugation fraction profiles of **D.** BAG3 and **E.** PSME4 in normal and carfilzomib-treated human iPSC-CM, showing a likely differential localisation in conjunction with kinetics changes. White-filled circles: light and heavy BAG3 or PSME4 in each plot. The kinetic curves of BAG3 and PSME4 are in panel B. Numbers at arrows correspond to BANDLE differential localization probability (Diff. Loc. Pr.).

660 Discussion

661 Advances in spatial proteomics have opened new avenues to discover the subcellular  
662 localization of proteins on a proteome scale. Thus far however, few efforts have linked the spatial  
663 dynamics of the proteome to other dynamic proteome parameters, which hinders a multi-  
664 dimensional view of protein function (Burnum-Johnson et al., 2022; Larance et al., 2013). Co-  
665 labeling of SILAC (MS1) and TMT (MS2) tags have been used to increase the channel capacity  
666 of quantitative proteomics experiments (Dephoure and Gygi, 2012). Here we adopted the  
667 extended labeling capacity to encode spatial and temporal information in the same experiment  
668 (**Figure 1D**). The SPLAT design has the advantages of resolving proteome-wide temporal  
669 kinetics and spatial distributions in the same experiments and identifying their interactions such  
670 as compartment-specific turnover; secondly, it allows separate observations of spatial  
671 distribution of new vs. old protein pools. Despite each of the SILAC labeled pairs (light and heavy)  
672 and their associated TMT profiles being separately quantified by mass spectrometry as  
673 independent ions, the spatial profiles of light and heavy proteins are highly similar under baseline  
674 conditions (**Figure 4A-B**) which provides additional assurance of spatial assignments.

675 Applying the workflow to human AC16 cardiac cells under thapsigargin and tunicamycin  
676 induced ER stress and the associated UPR, we observed that both ER stress inducing drugs led  
677 to a global suppression in turnover rate, consistent with the reduced translation known to be  
678 caused by ER stress. The temporal kinetics data of individual proteins revealed the coordinated  
679 activation of known and suspected stress mediators through their increased kinetics, particularly  
680 concentrated in the ER and Golgi compartments (**Figure 2E**). At the same time, the spatial  
681 proteomics profiles revealed substantial endomembrane remodeling and hundreds of  
682 translocating proteins under ER stress. A recent work also reported ~75 translocator protein  
683 candidates under acute low-dose thapsigargin (250 nM for 1 hr) in U-2 OS cells, although the  
684 experimental approach was more optimized toward mRNA detection (Villanueva et al., 2022).  
685 The spatial data here add to an emerging view of dynamical protein regulation under cellular  
686 stress, illustrating a differential localization of RNA binding proteins to stress granules, targeting  
687 of specific proteins toward lysosomes, as well as membrane trafficking of ion channels and  
688 amino acid transporters. UPR activation is known to induce the biosynthesis of non-essential or  
689 partly-essential amino acids despite protein synthesis suppression (Gonen et al., 2019); the  
690 recycling of lysosomal lysine and arginine regulates the sensitivity to ER stress (Higuchi-Sanabria  
691 et al., 2020); whereas deprivation of amino acids is known to activate downstream pathways of  
692 UPR including CHOP in vitro (Harding et al., 2003). Moreover, the knockdown of SLC3A2 has  
693 been found to suppress the activation of ER stress response pathways including ATF4/6  
694 induction (Liu et al., 2018), together suggesting amino acid transporters may function in ER stress  
695 response. The data here indicate that these transporters may in turn be regulated by their spatial  
696 localization beyond steady-state abundance. Other changes are found that may be specific to  
697 stressors. Tunicamycin treatment leads to a further decrease in turnover of lysosomal proteins  
698 compared to other organelles. The lysosome plays important roles in recycling of glycans, a  
699 process which may be slowed under ER stress in response to the decrease in glycosylation.

700 Changes in protein spatial distribution can occur due to a relocation of an existing protein,  
701 where in a protein may respond to a signaling cue such as a post-translational modification

702 status and subsequently migrate to a subcellular location. Alternatively, an alternate localization  
703 of newly synthesized proteins can also drive spatial redistribution. By comparing the  
704 translocation behaviors of new and old protein pools separately, we were able to observe a  
705 partitioning of new and old protein pools including epidermal growth factor receptor  
706 (EGFR/ErbB1/HER1). ErbB family proteins are required for both normal heart development and  
707 prevention of cardiomyopathies in the adult heart. EGFR is a receptor tyrosine kinase of this  
708 family capable of triggering multiple signaling cascades, and can be activated via both ligand  
709 dependent and ligand independent pathways. Upon ER stress induction, EGFR  
710 immunofluorescence showed a partial translocation away from the plasma membrane. Although  
711 immunofluorescence cannot distinguish between old and new protein pools, this partial  
712 translocation is consistent with the mass spectrometry data showing partial translocation,  
713 involving the newly synthesized heavy protein pool. We hypothesize that this partial translocation  
714 is suggestive of a ligand-independent trafficking of newly synthesized protein, rather than ligand  
715 dependent activation and internalization that is agnostic to protein lifetime. Of note, ligand-  
716 independent activation and internalization of EGFR has been previously induced via both  
717 starvation and tyrosine kinase inhibitor treatment, leading to cellular autophagy (Tan et al., 2015),  
718 hence this partial translocation may carry functional significance to protective cellular response.

719 We further applied SPLAT to a different, non-proliferating cell type, namely human iPSC-  
720 derived cardiomyocytes, which have gained increasing utility for modeling the cardiotoxic effects  
721 of the cancer drugs, including carfilzomib. In the carfilzomib experiment, the data from SPLAT  
722 revealed a surprising similarity in global turnover rates between control and treatment. These  
723 observations are consistent with a compensatory rescue of proteasome abundance and activity  
724 previously observed in proteasome inhibition by carfilzomib (Demo et al., 2007; Forghani et al.,  
725 2021) or bortezomib (Meiners et al., 2003) in other cell types. Proteasomes are known to be  
726 regulated by negative feedback mechanisms (Meiners et al., 2003; Xie and Varshavsky, 2001;  
727 Xu et al., 2008), which could explain the lack of change in proteome-wide half-life differences  
728 and instead suggest that toxicity may derive from more specific cellular lesions. We identified a  
729 significant reduction in turnover in sarcomere proteins, which may be particularly sensitive to  
730 interruptions in proteasome activity and moreover may account for the bulk of turnover flux in  
731 iPSC-CMs given their high abundance. Finally, the activation and translocation of proteostatic  
732 pathway proteins BAG3 and PA200/PSME4 in cardiac cells may be explored as potential targets  
733 to ameliorate proteostatic disruptions and cardiotoxic effects.

### 734 **Limitations**

735 Although there is no inherent limit to the number of dynamic SILAC labeling time points that can  
736 be investigated, in our experiments we have used only a single time point per treatment (16 hours  
737 post thapsigargin or tunicamycin; 48 hours post carfilzomib), which was selected based on the  
738 drug treatment models but also needed to be sufficient to capture the median half-life of proteins  
739 in the cell types studied (**Figure 2D; Figure 6J**). Hence the collection time points need to be  
740 optimized for different cell types with distinct intrinsic protein turnover rates. Synthesized  
741 proteins may have further relocalized following the start of dynamic SILAC labeling, hence some  
742 acute translocation responses may be missed. Although the inclusion of earlier time points might

743 provide insight into early translocation events, reaching this objective may be technically  
744 challenging, as the acquisition of spatial localization information from the heavy SILAC labeled  
745 peptides would be hindered by their low intensity. The double labeling design also requires  
746 independent MS2 acquisition of light and heavy peptides, which can decrease the depth and  
747 data completeness of mass spectrometry-based proteomics analysis. Future work may alleviate  
748 this limitation by modifying the mass spectrometry acquisition methods to automatically trigger  
749 the acquisition of heavy peptides and reduce incomplete light-heavy pairs.

750 Secondly, SPLAT shares limitations that are common to common spatial proteomics  
751 strategies. The differential ultracentrifugation method employed here requires  $\sim 10^7$  cells and  
752 cannot resolve some subcellular fractions, e.g., lysosome from cell junction. The number of  
753 classifiable subcellular localizations here is in line with other LOPIT-DC studies, and may be  
754 improved in future work that attempts to couple turnover analysis to gradient-based  
755 sedimentation approaches with higher spatial resolution. Protein correlation profiling based  
756 techniques generally face challenges in recognizing proteins with multiple localizations or partial  
757 translocations. For instance, the multi-functional ERAD protein p97/VCP is known to have  
758 multiple subcellular localizations, but its precise subcellular translocation profile is difficult to  
759 interpret from the TMT data and is unclassified to any compartment. Because translocation may  
760 be sub-stoichiometric, translocated proteins can have lower confidence in classification of  
761 location. Hence, other biologically relevant translocators reside in the data that await exploration.  
762 In the thapsigargin and tunicamycin experiments, upward of 1,000 candidate translocation  
763 patterns were detected with significant differences in localization (99% probability) using  
764 BANDLE, but many proteins presented a challenge to clear interpretation of compartments upon  
765 manual inspection. Progress in this area may require development of spatial separation methods  
766 that combine orthogonal separation principles.

767 In summary, we describe an experimental workflow and data analysis pipeline that  
768 integrates dynamic time-resolved stable isotope labeling kinetic analysis with differential  
769 ultracentrifugation-based subcellular proteomics to characterize proteome-wide spatial and  
770 temporal changes upon perturbation. This method may be broadly useful for understanding the  
771 function and behaviors of proteins inside the cell, and may provide new insight into the  
772 mechanisms that regulate protein stability and localization in stress, disease, and drug treatment.

## 773 Methods

774 Additional methods can be found in the Supplemental Information file.

## 775 AC16 Cell culture, metabolic labeling, UPR induction

776 AC16 cells procured from Millipore between passage number 11 and 16 were cultured in  
777 DMEM/F12 supplemented with 10% FBS and no antibiotics. Cells were maintained at 37°C with  
778 5% CO<sub>2</sub> and 10% O<sub>2</sub>. For isotopic labeling, SILAC DMEM/F12 (Thermo Scientific) deficient in  
779 both L-lysine and L-arginine was supplemented with 1% dialyzed FBS and heavy amino acids  
780 <sup>13</sup>C<sub>6</sub><sup>15</sup>N<sub>2</sub> L-Lysine-2HCl and <sup>13</sup>C<sub>6</sub><sup>15</sup>N<sub>4</sub> L-Arginine-HCl (Thermo Scientific) at concentrations of

781 0.499 mM and 0.699 mM, respectively. Light media was switched to heavy media and cells were  
782 labeled for 16 hours prior to harvest. UPR was induced with 1  $\mu$ M thapsigargin (SelleckChem) or  
783 1  $\mu$ g/mL tunicamycin (Sigma) at the same time as isotopic labeling.

784 **Cell harvest, differential centrifugation, and isobaric labeling**

785 Cell harvest and subcellular fractionation was performed based on the LOPIT-DC differential  
786 ultracentrifugation protocol as described in Geladaki et al. (Geladaki et al., 2019). Briefly, AC16  
787 cells were treated, harvested with trypsinization, washed 3x with room temperature PBS, and  
788 resuspended in a detergent free gentle lysis buffer (0.25 M sucrose, 10 mM HEPES pH 7.5, 2  
789 mM magnesium acetate). 1.5 mL of suspension at a time was lysed using an Isobiotec ball  
790 bearing homogenizer with a 16  $\mu$ M clearance size until ~80% of cell membranes were lysed, as  
791 verified with trypan blue (approximately 15 passes through the chamber). Lysates were spun 3  
792 times each in a 4°C swinging bucket centrifuge 200  $\times$  g, 5 min to remove unlysed cells. The  
793 supernatant was retained and used to generate the 9 ultracentrifugation pellets using spin  
794 parameters shown in **Supplemental Table S2**.

795 The supernatant generated in the final spin was removed and all pellets and the final supernatant  
796 were stored at -80°C until proceeding. Supernatant was thawed on ice and precipitated in 3x  
797 the volume of cold acetone overnight at -20°C. This was used to generate pellet 10 by  
798 centrifuging at 13,000  $\times$  g for 10 minutes at 4°C. Excess acetone was removed and the pellet  
799 was allowed to dry briefly before resuspension in a resolubilization buffer of 8 M urea, 50 mM  
800 HEPES pH 8.5, and 0.5% SDS with 1x Halt Protease and Phosphatase Inhibitor Cocktail (Thermo  
801 Scientific). The suspension was sonicated in a Biorupter with settings 20x 30s on 30s off at 4°C.

802 Pellets from the ultracentrifugation fractions 1 to 9 were resuspended in RIPA buffer with Halt  
803 Protease and Phosphatase Inhibitor Cocktail (Thermo Scientific) with sonication in a Biorupter  
804 with settings 10x 30s on 30s off at 4°C. Insoluble debris was removed from all samples (1-10) by  
805 centrifugation at 14,000  $\times$  g, 5 minutes. Protein concentration of all samples was measured with  
806 Rapid Gold BCA (Thermo Scientific). The samples were digested and isobarically tagged using  
807 the iFASP protocol (McDowell et al., 2013). 25 ug protein per sample in 250  $\mu$ L 8M urea was  
808 loaded onto Pierce Protein Concentrators PES, 10K MWCO prewashed with 100 mM TEAB. The  
809 samples were again washed with 8 M urea to denature proteins and remove SDS. The samples  
810 were washed with 300  $\mu$ L 100 mM TEAB twice. The samples were then reduced and alkylated  
811 with TCEP and CAA for 30 minutes at 37°C in the dark. CAA and TCEP were removed with  
812 centrifugation and the samples were washed 3x with 100 mM TEAB. Samples were digested  
813 atop the filters overnight at 37°C with mass spectrometry grade trypsin (Promega) at a ratio of  
814 1:50 enzyme:protein. A total of 0.2 mg of TMT-10plex isobaric labels (Thermo Scientific) per  
815 differential centrifugation fraction were equilibrated to room temperature and reconstituted in 20  
816  $\mu$ L LC-MS grade anhydrous acetonitrile. In each experiment, labels were randomly assigned to  
817 each fraction (**Supplemental Tables S3-S4**) with a random number generator to mitigate  
818 possible batch effect. Isobaric tags were added to peptides still atop the centrifugation filters  
819 and incubated at room temperature for 1 hour with shaking. The reactions were quenched with

820 1  $\mu$ L 5% hydroxylamine at room temperature for 30 minutes with shaking. Labeled peptides were  
821 eluted from the filters with centrifugation. To further elute labeled peptides 40  $\mu$ L 50 mM TEAB  
822 was added and filters were again centrifuged. All 10 labeled fractions per experiment were  
823 combined and mixed well before dividing each experiment into two aliquots. Aliquots were dried  
824 with speed-vac and stored at -80°C.

## 825 **Liquid chromatography and mass spectrometry**

826 One aliquot per experiment was reconstituted in 50  $\mu$ L 20 mM ammonium formate pH 10 in LC-  
827 MS grade water (solvent A) for high pH reverse phase liquid chromatography (RPLC)  
828 fractionation. The entire sample was injected into a Jupiter 4  $\mu$ m Proteo 90  $\text{\AA}$  LC Column of 150  
829  $\times$  1 mm on a Ultimate 3000 HPLC system. The gradient was run with a flow rate of 0.1 mL/min  
830 as follows: 0–30 min: 0%–40% Solvent B (20 mM ammonium formate pH 10 in 80% LC-MS  
831 grade acetonitrile); 30–40 min: 40%–80% Solvent B; 40–50 min: 80% Solvent B. Fractions were  
832 collected every minute and pooled into a total of 20 peptide fractions, then dried with speed-  
833 vac.

834 The dried fractions were reconstituted in 10  $\mu$ L each of pH 2 MS solvent A (0.1% formic  
835 acid) and analyzed with LC-MS/MS on a Q-Exactive HF orbitrap mass spectrometer coupled to  
836 an LC with electrospray ionization source. Peptides were separated with a PepMap RSLC C18  
837 column 75  $\mu$ m x 15 cm, 3  $\mu$ m particle size (ThermoScientific) with a 90 minute gradient from 0 to  
838 100% pH 2 MS solvent B (0.1% formic acid in 80% LC-MS grade acetonitrile). Full MS scans  
839 were acquired with a 60,000 resolution. A stepped collision energy of 27, 30 and 32 was used  
840 and MS2 scans were acquired with a 60,000 resolution and an isolation window of 0.7 m/z.

## 841 **Mass spectrometry data processing and turnover analysis**

842 Mass spectrometry raw data were converted to mzML format using ThermoRawFileParser  
843 v.1.2.0 (Hulstaert et al., 2020) then searched against the UniProt Swiss-Prot human canonical  
844 and isoform protein sequence database (retrieved 2022-10-27) using Comet v.2020\_01\_rev3  
845 (Eng et al., 2015). The fasta database was further appended with contaminant proteins using  
846 Philosopher v4.4.0 (total 42,402 forward entries). The search settings were as follows: peptide  
847 mass tolerance: 10 ppm; isotope error: 0/1/2/3; number of enzyme termini: 1; allowed missed  
848 cleavages: 2; fragment bin tolerance: 0.02; fragment bin offset: 0; variable modifications: TMT-  
849 10plex tag +229.1629 for TMT experiments, and lysine + 8.0142, arginine + 10.0083 for all SILAC  
850 experiments; fixed modifications: cysteine + 57.0214. The search results were further reranked  
851 and filtered using Percolator v3.0 (The et al., 2016) at a 5% FDR. Following database search, the  
852 mzML files and Percolator PSMs were input to the SPLAT pipeline. The dynamic SILAC data  
853 were analyzed using RIANA v0.7.1 (Hammond et al., 2022) to integrate the peak intensity within  
854 a 25 ppm error of the light (+0), heavy (+8, +10), and double K/R (+16, +18, +20) peptide peaks  
855 over a 20 second retention time window encompassing the first and last MS2 scan where the  
856 peptide is confidently identified. We then calculated the fractional synthesis of all K/R containing  
857 peptides as the intensity of the 0th isotopomer peak (m0) over the sum of applicable light and  
858 heavy isotopomers (e.g., m0/m0+m8 for a peptide with one lysine). RIANA then performs

859 intensity-weighted least-square curve-fitting using the scipy optimize function to a first-order  
860 exponential rise model to find the best-fit peptide turnover rate. Protein turnover rates are  
861 calculated as the harmonic mean of peptide turnover rates

862 **Subcellular localization classification**

863 Subcellular localization classification and translocation predictions were performed using the  
864 pRoloc (Gatto et al., 2014) and the BANDLE (Crook et al., 2022) packages in R/Bioconductor.  
865 Three replicate batches of AC16 cells per condition each were individually labeled and treated,  
866 fractionated and analyzed by mass spectrometry, and biological replicate data were used for  
867 pRoloc and BANDLE analysis. Briefly, the subcellular localization markers were selected from  
868 the intersecting proteins with a prior data set generated from human U-2 OS osteosarcoma cells  
869 (Geladaki et al., 2019) with further curation to account for cell type specific marker expression  
870 (**Supplemental Data S10**). A random walk algorithm is used to prune the markers to maximize  
871 normalized between-class separation. For differential localization analyses we used the Markov-  
872 chain Monte-Carlo (MCMC) and non-parametric model in BANDLE to find unknown protein  
873 classification and evaluate differential localization probability. MCMC parameters are 9 chains,  
874 10,000 iterations, and 5,000 burn-in, 20 thinning, seed 42; convergence of the Markov chains is  
875 assessed visually by rank plots as recommended (Crook et al., 2019). For additional analysis to  
876 describe baseline protein classification and compare MS2 and MS3 performance, a T-  
877 augmented Gaussian mixture model with a maximum a posteriori (MAP) method in pRoloc was  
878 used.

879 **Human iPSC-derived cardiomyocytes and proteasome inhibition**

880 Human AICS-0052-003 induced pluripotent stem cell (iPSC) (mono-allelic C-terminus mEGFP-  
881 tagged MYL7 WTC; Allen Institute Cell Collection) line was acquired from Coriell Institute and  
882 seeded onto Geltrex (Gibco) coated 6 well plates and maintained in StemFlex (Thermo Scientific)  
883 media at 37 °C, 5% CO<sub>2</sub> with daily media changes. At 80% confluence, cells were passaged  
884 using 0.5 mM EDTA before resuspension in StemFlex supplemented with 10 µM Y-27632  
885 (Selleck). Cells were replated into Geltrex coated 12 well plates at a density of 3 × 10<sup>5</sup> cells/well  
886 and daily media changes of StemFlex continued until the cells reached 80% confluence, day 0  
887 of cardiac differentiation. The iPSCs were differentiated into cardiomyocytes using a small  
888 molecule based GSK-3 inhibition-Wnt inhibition protocol (Burridge et al., 2014). Briefly, on day  
889 0, cell media was replaced with 2 mL/well RPMI supplemented with B-27 minus insulin (Gibco)  
890 and 6 µM CHIR99021 (STEMCELL); on day 2, the media was changed to 2 mL/well RPMI+B-27  
891 minus insulin. On day 3, the media was changed to 2 mL/well RPMI+B27 minus insulin  
892 supplemented with 5 µM IWR-1-Endo (STEMCELL). On day 7, the media was changed to 2 mL  
893 RPMI+B27 with insulin. Differentiation was confirmed via visualization of morphology,  
894 spontaneous contraction of cells, and imaging of the GFP tagged MYL7/MLC-2a. On day 9, the  
895 media was changed to RPMI+B27 with insulin without glucose to select for cardiomyocytes. The  
896 cardiomyocytes were then passaged at low density with 2 µM CHIR-99021 (Maas et al., 2021).  
897 At approximately 75% confluence on passage 2, CHIR supplemented media was removed and

898 replaced with RPMI B-27 with insulin, and used for experiments on day 25–30 post  
899 differentiation. For isotopic labeling, RPMI (Thermo Scientific) deficient in both L-lysine and L-  
900 arginine was supplemented with B27 with insulin and heavy amino acids  $^{13}\text{C}_6^{15}\text{N}_2$  L-Lysine-2HCl  
901 and  $^{13}\text{C}_6^{15}\text{N}_4$  L-Arginine-HCl (Thermo Scientific) at concentrations 0.219 mM and 1.149 mM,  
902 respectively. 48 hours after CHIR removal, light media was replaced with this heavy media and  
903 cells were labeled for 48 hours prior to harvest. 0.5  $\mu\text{M}$  carfilzomib (Selleck) was added with  
904 heavy media in the treatment group. Harvesting and ultracentrifugation proceeded as above with  
905 the following exception. Due to the diffuse nature of pellets generated in the iPSC-derived  
906 cardiomyocytes (iPSC-CM) control experiment, the MLA-50 (Beckman) rotor was switched to  
907 the TLA-55 rotor after generation of pellet 5. Consistent force (g) of each spin was maintained  
908 by increasing the smaller rotor's RPM on subsequent spins. This change was repeated during  
909 the iPSC-CM treatment experiment. Proteins from each cellular fraction were digested and  
910 analyzed with mass spectrometry as above.

## 911 Data Availability

912 Raw mass spectrometry data have been uploaded to ProteomeXchange under the accession  
913 numbers PXD038054, PXD041386, PXD046669, PXD046670, and PXD046671. Source data are  
914 provided with this paper.

## 915 Code Availability

916 Software code for the SPLAT pipeline is available on GitHub at <https://github.com/lau-lab/splat>,  
917 <https://github.com/ed-lau/riana> and <https://github.com/ed-lau/pytmt>.  
918

## 919 Author Contributions

920 J.C. and E.L. conceptualized the study. J.C., V.M., S.K.R. V.H., C.L., V.A., R.W.L., K.Z., J.P., J-  
921 W.R. and M.P.L. performed experiments. J.C., V.M., and E.L. processed the data and interpreted  
922 the results. J.C. and E.L. wrote software code and performed analysis. J.C., S.K.R., V.M., and  
923 E.L. drafted and revised the manuscript. J-W.R., Z.V.W., M.P.L., and E.L. managed funding. All  
924 authors read and approved the final version of the manuscript.

## 925 Acknowledgments

926 The authors thank Dr. Christopher Ebmeier (Director, Proteomics and Mass Spectrometry Core  
927 Facility, University of Colorado Boulder) for his assistance with TMT-MS3 experiments. This work  
928 was supported in part by NIH award K08-HL148540 to J-W.R., NIH awards R01-HL141278 and  
929 R01-GM144456 to M.P.L. and NIH awards R35-GM146815 to E.L.; and the University of  
930 Colorado SOM Translational Research Scholars Program (TSRP) award to E.L..

## 931 References

932 Andrews, B., Murphy, A.E., Stofella, M., Maslen, S., Almeida-Souza, L., Skehel, J.M., Skene,  
933 N.G., Sobott, F., Frank, R.A.W., 2022. Multidimensional Dynamics of the Proteome in  
934 the Neurodegenerative and Aging Mammalian Brain. *Mol. Cell. Proteomics* 21, 100192.  
935 <https://doi.org/10.1016/j.mcpro.2021.100192>

936 Bresson, S., Shchepachev, V., Spanos, C., Turowski, T.W., Rappaport, J., Tollervey, D., 2020.  
937 Stress-Induced Translation Inhibition through Rapid Displacement of Scanning Initiation  
938 Factors. *Mol. Cell* 80, 470-484.e8. <https://doi.org/10.1016/j.molcel.2020.09.021>

939 Burnum-Johnson, K.E., Conrads, T.P., Drake, R.R., Herr, A.E., Iyengar, R., Kelly, R.T.,  
940 Lundberg, E., MacCoss, M.J., Naba, A., Nolan, G.P., Pevzner, P.A., Rodland, K.D.,  
941 Sechi, S., Slavov, N., Spraggins, J.M., Van Eyk, J.E., Vidal, M., Vogel, C., Walt, D.R.,  
942 Kelleher, N.L., 2022. New Views of Old Proteins: Clarifying the Enigmatic Proteome.  
943 *Mol. Cell. Proteomics* 21, 100254. <https://doi.org/10.1016/j.mcpro.2022.100254>

944 Burridge, P.W., Matsa, E., Shukla, P., Lin, Z.C., Churko, J.M., Ebert, A.D., Lan, F., Diecke, S.,  
945 Huber, B., Mordwinkin, N.M., Plews, J.R., Abilez, O.J., Cui, B., Gold, J.D., Wu, J.C.,  
946 2014. Chemically defined generation of human cardiomyocytes. *Nat. Methods* 11, 855-  
947 860. <https://doi.org/10.1038/nmeth.2999>

948 Chartron, J.W., Hunt, K.C.L., Frydman, J., 2016. Cotranslational signal-independent SRP  
949 preloading during membrane targeting. *Nature* 536, 224-228.  
950 <https://doi.org/10.1038/nature19309>

951 Christopher, J.A., Stadler, C., Martin, C.E., Morgenstern, M., Pan, Y., Betsinger, C.N., Rattray,  
952 D.G., Mahdessian, D., Gingras, A.-C., Warscheid, B., Lehtio, J., Cristea, I.M., Foster,  
953 L.J., Emili, A., Lilley, K.S., 2021. Subcellular proteomics. *Nat. Rev. Methods Primer* 1,  
954 32. <https://doi.org/10.1038/s43586-021-00029-y>

955 Claydon, A.J., Beynon, R., 2012. Proteome dynamics: revisiting turnover with a global  
956 perspective. *Mol. Cell. Proteomics MCP* 11, 1551-1565.  
957 <https://doi.org/10.1074/mcp.O112.022186>

958 Cromm, P.M., Crews, C.M., 2017. The Proteasome in Modern Drug Discovery: Second Life of  
959 a Highly Valuable Drug Target. *ACS Cent. Sci.* 3, 830-838.  
960 <https://doi.org/10.1021/acscentsci.7b00252>

961 Crook, O.M., Breckels, L.M., Lilley, K.S., Kirk, P.D.W., Gatto, L., 2019. A Bioconductor  
962 workflow for the Bayesian analysis of spatial proteomics. *F1000Research* 8, 446.  
963 <https://doi.org/10.12688/f1000research.18636.1>

964 Crook, O.M., Davies, C.T.R., Breckels, L.M., Christopher, J.A., Gatto, L., Kirk, P.D.W., Lilley,  
965 K.S., 2022. Inferring differential subcellular localisation in comparative spatial  
966 proteomics using BANDLE. *Nat. Commun.* 13, 5948. <https://doi.org/10.1038/s41467-022-33570-9>

967 Crook, O.M., Mulvey, C.M., Kirk, P.D.W., Lilley, K.S., Gatto, L., 2018. A Bayesian mixture  
968 modelling approach for spatial proteomics. *PLOS Comput. Biol.* 14, e1006516.  
969 <https://doi.org/10.1371/journal.pcbi.1006516>

970 Demo, S.D., Kirk, C.J., Aujay, M.A., Buchholz, T.J., Dajee, M., Ho, M.N., Jiang, J., Laidig, G.J.,  
971 Lewis, E.R., Parlati, F., Shenk, K.D., Smyth, M.S., Sun, C.M., Vallone, M.K., Woo, T.M.,  
972 Molineaux, C.J., Bennett, M.K., 2007. Antitumor Activity of PR-171, a Novel Irreversible  
973 Inhibitor of the Proteasome. *Cancer Res.* 67, 6383-6391. <https://doi.org/10.1158/0008-5472.CAN-06-4086>

974 Dephoure, N., Gygi, S.P., 2012. Hyperplexing: A Method for Higher-Order Multiplexed  
975 Quantitative Proteomics Provides a Map of the Dynamic Response to Rapamycin in  
976 Yeast. *Sci. Signal.* 5. <https://doi.org/10.1126/scisignal.2002548>

979 Doherty, M.K., Hammond, D.E., Clague, M.J., Gaskell, S.J., Beynon, R.J., 2009. Turnover of  
980 the human proteome: determination of protein intracellular stability by dynamic SILAC.  
981 *J. Proteome Res.* 8, 104–112. <https://doi.org/10.1021/pr800641v>

982 Dostal, V., Wood, S.D., Thomas, C.T., Han, Y., Lau, E., Lam, M.P.Y., 2020. Proteomic  
983 signatures of acute oxidative stress response to paraquat in the mouse heart. *Sci. Rep.*  
984 10, 18440. <https://doi.org/10.1038/s41598-020-75505-8>

985 Eng, J.K., Hoopmann, M.R., Jahan, T.A., Egertson, J.D., Noble, W.S., MacCoss, M.J., 2015. A  
986 deeper look into Comet--implementation and features. *J. Am. Soc. Mass Spectrom.* 26,  
987 1865–1874. <https://doi.org/10.1007/s13361-015-1179-x>

988 Forghani, P., Rashid, A., Sun, F., Liu, R., Li, D., Lee, M.R., Hwang, H., Maxwell, J.T.,  
989 Mandawat, A., Wu, R., Salaita, K., Xu, C., 2021. Carfilzomib Treatment Causes  
990 Molecular and Functional Alterations of Human Induced Pluripotent Stem Cell-Derived  
991 Cardiomyocytes. *J. Am. Heart Assoc.* 10, e022247.  
992 <https://doi.org/10.1161/JAHA.121.022247>

993 Fridolfsson, H.N., Kawaraguchi, Y., Ali, S.S., Panneerselvam, M., Niesman, I.R., Finley, J.C.,  
994 Kellerhals, S.E., Migita, M.Y., Okada, H., Moreno, A.L., Jennings, M., Kidd, M.W.,  
995 Bonds, J.A., Balijepalli, R.C., Ross, R.S., Patel, P.M., Miyano, A., Chen, Q.,  
996 Lesniewsky, E.J., Head, B.P., Roth, D.M., Insel, P.A., Patel, H.H., 2012. Mitochondria-  
997 localized caveolin in adaptation to cellular stress and injury. *FASEB J. Off. Publ. Fed.*  
998 *Am. Soc. Exp. Biol.* 26, 4637–4649. <https://doi.org/10.1096/fj.12-215798>

999 Gatto, L., Breckels, L.M., Wieczorek, S., Burger, T., Lilley, K.S., 2014. Mass-spectrometry-  
1000 based spatial proteomics data analysis using pRoloc and pRolocdata. *Bioinformatics*  
1001 30, 1322–1324. <https://doi.org/10.1093/bioinformatics/btu013>

1002 Geladaki, A., Kočevar Britovšek, N., Breckels, L.M., Smith, T.S., Vennard, O.L., Mulvey, C.M.,  
1003 Crook, O.M., Gatto, L., Lilley, K.S., 2019. Combining LOPIT with differential  
1004 ultracentrifugation for high-resolution spatial proteomics. *Nat. Commun.* 10, 331.  
1005 <https://doi.org/10.1038/s41467-018-08191-w>

1006 Glembotski, C.C., 2007. Endoplasmic Reticulum Stress in the Heart. *Circ. Res.* 101, 975–984.  
1007 <https://doi.org/10.1161/CIRCRESAHA.107.161273>

1008 Gonen, N., Meller, A., Sabath, N., Shalgi, R., 2019. Amino Acid Biosynthesis Regulation during  
1009 Endoplasmic Reticulum Stress Is Coupled to Protein Expression Demands. *iScience* 19,  
1010 204–213. <https://doi.org/10.1016/j.isci.2019.07.022>

1011 Guan, B.-J., van Hoef, V., Jobava, R., Elroy-Stein, O., Valasek, L.S., Cargnello, M., Gao, X.-H.,  
1012 Krokowski, D., Merrick, W.C., Kimball, S.R., Komar, A.A., Koromilas, A.E., Wynshaw-  
1013 Boris, A., Topisirovic, I., Larsson, O., Hatzoglou, M., 2017. A Unique ISR Program  
1014 Determines Cellular Responses to Chronic Stress. *Mol. Cell* 68, 885–900.e6.  
1015 <https://doi.org/10.1016/j.molcel.2017.11.007>

1016 Hammond, D.E., Simpson, D.M., Franco, C., Wright Muelas, M., Waters, J., Ludwig, R.W.,  
1017 Prescott, M.C., Hurst, J.L., Beynon, R.J., Lau, E., 2022. Harmonizing Labeling and  
1018 Analytical Strategies to Obtain Protein Turnover Rates in Intact Adult Animals. *Mol. Cell.*  
1019 *Proteomics* 21, 100252. <https://doi.org/10.1016/j.mcpro.2022.100252>

1020 Hanafusa, K., Wada, I., Hosokawa, N., 2019. SDF2-like protein 1 (SDF2L1) regulates the  
1021 endoplasmic reticulum localization and chaperone activity of ERdj3 protein. *J. Biol.*  
1022 *Chem.* 294, 19335–19348. <https://doi.org/10.1074/jbc.RA119.009603>

1023 Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., Sadri, N., Yun, C., Popko,  
1024 B., Paules, R., Stojdl, D.F., Bell, J.C., Hettmann, T., Leiden, J.M., Ron, D., 2003. An  
1025 Integrated Stress Response Regulates Amino Acid Metabolism and Resistance to  
1026 Oxidative Stress. *Mol. Cell* 11, 619–633. [https://doi.org/10.1016/S1097-2765\(03\)00105-9](https://doi.org/10.1016/S1097-2765(03)00105-9)

1028 Hetz, C., Zhang, K., Kaufman, R.J., 2020. Mechanisms, regulation and functions of the  
1029 unfolded protein response. *Nat. Rev. Mol. Cell Biol.* 21, 421–438.  
1030 <https://doi.org/10.1038/s41580-020-0250-z>

1031 Higuchi-Sanabria, R., Shen, K., Kelet, N., Frankino, P.A., Durieux, J., Bar-Ziv, R., Sing, C.N.,  
1032 Garcia, E.J., Homentcovschi, S., Sanchez, M., Wu, R., Tronnes, S.U., Joe, L., Webster,  
1033 B., Ahilon-Jeronimo, A., Monshietehadi, S., Dallarda, S., Pender, C., Pon, L.A., Zoncu,  
1034 R., Dillin, A., 2020. Lysosomal recycling of amino acids affects ER quality control. *Sci.*  
1035 *Adv.* 6, eaaz9805. <https://doi.org/10.1126/sciadv.aaz9805>

1036 Hulstaert, N., Shofstahl, J., Sachsenberg, T., Walzer, M., Barsnes, H., Martens, L., Perez-  
1037 Riverol, Y., 2020. ThermoRawFileParser: Modular, Scalable, and Cross-Platform RAW  
1038 File Conversion. *J. Proteome Res.* 19, 537–542.  
1039 <https://doi.org/10.1021/acs.jproteome.9b00328>

1040 IBM Watson Health, 2023. Micromedex (Electronic Version).

1041 Jan, C.H., Williams, C.C., Weissman, J.S., 2014. Principles of ER cotranslational translocation  
1042 revealed by proximity-specific ribosome profiling. *Science* 346, 1257521.  
1043 <https://doi.org/10.1126/science.1257521>

1044 Kennedy, M.A., Hofstadter, W.A., Cristea, I.M., 2020. TRANSPiRE: A Computational Pipeline to  
1045 Elucidate Intracellular Protein Movements from Spatial Proteomics Data Sets. *J. Am.*  
1046 *Soc. Mass Spectrom.* 31, 1422–1439. <https://doi.org/10.1021/jasms.0c00033>

1047 Lakkaraju, A.K.K., Mary, C., Scherrer, A., Johnson, A.E., Strub, K., 2008. SRP Keeps  
1048 Polypeptides Translocation-Competent by Slowing Translation to Match Limiting ER-  
1049 Targeting Sites. *Cell* 133, 440–451. <https://doi.org/10.1016/j.cell.2008.02.049>

1050 Lam, M.P.Y., Wang, D., Lau, E., Liem, D.A., Kim, A.K., Ng, D.C.M., Liang, X., Bleakley, B.J., Liu,  
1051 C., Tabaraki, J.D., Cadeiras, M., Wang, Y., Deng, M.C., Ping, P., 2014. Protein kinetic  
1052 signatures of the remodeling heart following isoproterenol stimulation. *J. Clin. Invest.*  
1053 124, 1734–1744. <https://doi.org/10.1172/JCI73787>

1054 Larance, M., Ahmad, Y., Kirkwood, K.J., Ly, T., Lamond, A.I., 2013. Global Subcellular  
1055 Characterization of Protein Degradation Using Quantitative Proteomics. *Mol. Cell.*  
1056 *Proteomics* 12, 638–650. <https://doi.org/10.1074/mcp.M112.024547>

1057 Lau, E., Cao, Q., Lam, M.P.Y., Wang, J., Ng, D.C.M., Bleakley, B.J., Lee, J.M., Liem, D.A.,  
1058 Wang, D., Hermjakob, H., Ping, P., 2018. Integrated omics dissection of proteome  
1059 dynamics during cardiac remodeling. *Nat. Commun.* 9, 120.  
1060 <https://doi.org/10.1038/s41467-017-02467-3>

1061 Lee, J.W., Koeppen, M., Seo, S.-W., Bowser, J.L., Yuan, X., Li, J., Sibilia, M., Ambardekar,  
1062 A.V., Zhang, X., Eckle, T., Yoo, S.-H., Eltzschig, H.K., 2020. Transcription-independent  
1063 Induction of ERBB1 through Hypoxia-inducible Factor 2A Provides Cardioprotection  
1064 during Ischemia and Reperfusion. *Anesthesiology* 132, 763–780.  
1065 <https://doi.org/10.1097/ALN.0000000000003037>

1066 Lemberg, M.K., Strisovsky, K., 2021. Maintenance of organellar protein homeostasis by ER-  
1067 associated degradation and related mechanisms. *Mol. Cell* 81, 2507–2519.  
1068 <https://doi.org/10.1016/j.molcel.2021.05.004>

1069 Liu, C., Li, X., Li, C., Zhang, Z., Gao, X., Jia, Z., Chen, H., Jia, Q., Zhao, X., Liu, J., Liu, B., Xu,  
1070 Z., Tian, Y., He, K., 2018. SLC3A2 is a novel endoplasmic reticulum stress-related  
1071 signaling protein that regulates the unfolded protein response and apoptosis. *PLoS One*  
1072 13, e0208993. <https://doi.org/10.1371/journal.pone.0208993>

1073 Liu, C.-L., Li, X., Hu, G.-L., Li, R.-J., He, Y.-Y., Zhong, W., Li, S., He, K.-L., Wang, L.-L., 2012.  
1074 Salubrinal protects against tunicamycin and hypoxia induced cardiomyocyte apoptosis  
1075 via the PERK-eIF2α signaling pathway. *J. Geriatr. Cardiol. JGC* 9, 258–268.  
1076 <https://doi.org/10.3724/SP.J.1263.2012.02292>

1077 Maas, R.G.C., Lee, S., Harakalova, M., Snijders Blok, C.J.B., Goodyer, W.R., Hjortnaes, J.,  
1078 Doevendans, P.A.F.M., Van Laake, L.W., van der Velden, J., Asselbergs, F.W., Wu, J.C.,  
1079 Sluijter, J.P.G., Wu, S.M., Buikema, J.W., 2021. Massive expansion and  
1080 cryopreservation of functional human induced pluripotent stem cell-derived  
1081 cardiomyocytes. *STAR Protoc.* 2, 100334. <https://doi.org/10.1016/j.xpro.2021.100334>  
1082 Mårtensson, C.U., Priesnitz, C., Song, J., Ellenrieder, L., Doan, K.N., Boos, F., Floerchinger, A.,  
1083 Zufall, N., Oeljeklaus, S., Warscheid, B., Becker, T., 2019. Mitochondrial protein  
1084 translocation-associated degradation. *Nature* 569, 679–683.  
1085 <https://doi.org/10.1038/s41586-019-1227-y>  
1086 Martin, T.G., Myers, V.D., Dubey, P., Dubey, S., Perez, E., Moravec, C.S., Willis, M.S., Feldman,  
1087 A.M., Kirk, J.A., 2021a. Cardiomyocyte contractile impairment in heart failure results  
1088 from reduced BAG3-mediated sarcomeric protein turnover. *Nat. Commun.* 12, 2942.  
1089 <https://doi.org/10.1038/s41467-021-23272-z>  
1090 Martin, T.G., Tawfik, S., Moravec, C.S., Pak, T.R., Kirk, J.A., 2021b. BAG3 expression and  
1091 sarcomere localization in the human heart are linked to HSF-1 and are differentially  
1092 affected by sex and disease. *Am. J. Physiol.-Heart Circ. Physiol.* 320, H2339–H2350.  
1093 <https://doi.org/10.1152/ajpheart.00419.2020>  
1094 Martínez-Martínez, E., Ibarrola, J., Fernández-Celis, A., Santamaria, E., Fernández-Irigoyen, J.,  
1095 Rossignol, P., Jaisser, F., López-Andrés, N., 2017. Differential Proteomics Identifies  
1096 Reticulocalbin-3 as a Novel Negative Mediator of Collagen Production in Human  
1097 Cardiac Fibroblasts. *Sci. Rep.* 7, 12192. <https://doi.org/10.1038/s41598-017-12305-7>  
1098 McDowell, G.S., Gaun, A., Steen, H., 2013. iFASP: combining isobaric mass tagging with filter-  
1099 aided sample preparation. *J. Proteome Res.* 12, 3809–3812.  
1100 <https://doi.org/10.1021/pr400032m>  
1101 Meiners, S., Heyken, D., Weller, A., Ludwig, A., Stangl, K., Kloetzel, P.-M., Krüger, E., 2003.  
1102 Inhibition of Proteasome Activity Induces Concerted Expression of Proteasome Genes  
1103 and de Novo Formation of Mammalian Proteasomes. *J. Biol. Chem.* 278, 21517–21525.  
1104 <https://doi.org/10.1074/jbc.M301032200>  
1105 Mulvey, C.M., Breckels, L.M., Crook, O.M., Sanders, D.J., Ribeiro, A.L.R., Geladaki, A.,  
1106 Christoforou, A., Britovšek, N.K., Hurrell, T., Deery, M.J., Gatto, L., Smith, A.M., Lilley,  
1107 K.S., 2021. Spatiotemporal proteomic profiling of the pro-inflammatory response to  
1108 lipopolysaccharide in the THP-1 human leukaemia cell line. *Nat. Commun.* 12, 5773.  
1109 <https://doi.org/10.1038/s41467-021-26000-9>  
1110 Orre, L.M., Vesterlund, M., Pan, Y., Arslan, T., Zhu, Y., Fernandez Woodbridge, A., Frings, O.,  
1111 Fredlund, E., Lehtiö, J., 2019. SubCellBarCode: Proteome-wide Mapping of Protein  
1112 Localization and Relocalization. *Mol. Cell* 73, 166–182.e7.  
1113 <https://doi.org/10.1016/j.molcel.2018.11.035>  
1114 Pakos-Zebrucka, K., Koryga, I., Mnich, K., Ljubic, M., Samali, A., Gorman, A.M., 2016. The  
1115 integrated stress response. *EMBO Rep.* 17, 1374–1395.  
1116 <https://doi.org/10.15252/embr.201642195>  
1117 Ren, J., Bi, Y., Sowers, J.R., Hetz, C., Zhang, Y., 2021. Endoplasmic reticulum stress and  
1118 unfolded protein response in cardiovascular diseases. *Nat. Rev. Cardiol.* 18, 499–521.  
1119 <https://doi.org/10.1038/s41569-021-00511-w>  
1120 Sayers, E.W., Bolton, E.E., Brister, J.R., Canese, K., Chan, J., Comeau, D.C., Connor, R., Funk,  
1121 K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z.,  
1122 Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., Tse, T., Wang, J., Williams,  
1123 R., Trawick, B.W., Pruitt, K.D., Sherry, S.T., 2022. Database resources of the national  
1124 center for biotechnology information. *Nucleic Acids Res.* 50, D20–D26.  
1125 <https://doi.org/10.1093/nar/gkab1112>

1126 Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., Selbach, M., 2011. Global quantification of mammalian gene expression control. *Nature* 473, 337–342. <https://doi.org/10.1038/nature10098>

1127 Shin, J.J.H., Crook, O.M., Borgeaud, A.C., Cattin-Ortolá, J., Peak-Chew, S.Y., Breckels, L.M., Gillingham, A.K., Chadwick, J., Lilley, K.S., Munro, S., 2020. Spatial proteomics defines the content of trafficking vesicles captured by golgin tethers. *Nat. Commun.* 11, 5987. <https://doi.org/10.1038/s41467-020-19840-4>

1128 Tan, X., Lambert, P.F., Rapraeger, A.C., Anderson, R.A., 2016. Stress-Induced EGFR Trafficking: Mechanisms, Functions, and Therapeutic Implications. *Trends Cell Biol.* 26, 352–366. <https://doi.org/10.1016/j.tcb.2015.12.006>

1129 Tan, X., Thapa, N., Sun, Y., Anderson, R.A., 2015. A Kinase-Independent Role for EGF Receptor in Autophagy Initiation. *Cell* 160, 145–160. <https://doi.org/10.1016/j.cell.2014.12.006>

1130 The, M., MacCoss, M.J., Noble, W.S., Käll, L., 2016. Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0. *J. Am. Soc. Mass Spectrom.* 27, 1719–1727. <https://doi.org/10.1007/s13361-016-1460-7>

1131 Toro, R., Pérez-Serra, A., Mangas, A., Campuzano, O., Sarquella-Brugada, G., Quezada-Feijoo, M., Ramos, M., Alcalá, M., Carrera, E., García-Padilla, C., Franco, D., Bonet, F., 2022. miR-16-5p Suppression Protects Human Cardiomyocytes against Endoplasmic Reticulum and Oxidative Stress-Induced Injury. *Int. J. Mol. Sci.* 23, 1036. <https://doi.org/10.3390/ijms23031036>

1132 Tsai, P.-L., Cameron, C.J.F., Forni, M.F., Wasko, R.R., Naughton, B.S., Horsley, V., Gerstein, M.B., Schlieker, C., 2022. Dynamic quality control machinery that operates across compartmental borders mediates the degradation of mammalian nuclear membrane proteins. *Cell Rep.* 41, 111675. <https://doi.org/10.1016/j.celrep.2022.111675>

1133 Ustrell, V., Hoffman, L., Pratt, G., Rechsteiner, M., 2002. PA200, a nuclear proteasome activator involved in DNA repair. *EMBO J.* 21, 3516–3525. <https://doi.org/10.1093/emboj/cdf333>

1134 Villanueva, E., Smith, T., Pizzinga, M., Elzek, M., Queiroz, R.M.L., Harvey, R.F., Breckels, L.M., Crook, O.M., Monti, M., Dezi, V., Willis, A.E., Lilley, K.S., 2022. A system-wide quantitative map of RNA and protein subcellular localisation dynamics (preprint). *Cell Biology*. <https://doi.org/10.1101/2022.01.24.477541>

1135 Vonk, L.A., Doulabi, B.Z., Huang, C.-L., Helder, M.N., Everts, V., Bank, R.A., 2010. Endoplasmic reticulum stress inhibits collagen synthesis independent of collagen-modifying enzymes in different chondrocyte populations and dermal fibroblasts. *Biochem. Cell Biol. Biochim. Biol. Cell.* 88, 539–552. <https://doi.org/10.1139/o09-174>

1136 Xie, Y., Varshavsky, A., 2001. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. *Proc. Natl. Acad. Sci. U. S. A.* 98, 3056–3061. <https://doi.org/10.1073/pnas.071022298>

1137 Xu, H., Ju, D., Jarois, T., Xie, Y., 2008. Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells. *Breast Cancer Res. Treat.* 107, 267–274. <https://doi.org/10.1007/s10549-007-9553-4>