

1 **Identification of a novel enhancer essential for *Satb1* expression in T_H2
2 cells and activated ILC2s.**

3 Aneela Nomura¹, Michiko Ohno-Oishi^{1, a}, Tetsuro Kobayashi², Wooseok Seo^{1, b},
4 Kiyokazu Kakugawa³, Sawako Muroi¹, Hideyuki Yoshida⁴, Takaho A. Endo⁵, Kazuyo
5 Moro^{2, 6} and Ichiro Taniuchi^{1, *}

6 ¹Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical
7 Sciences (IMS), Japan.

8 ²Laboratory for Innate Immune systems, RIKEN Center for Integrative Medical
9 Sciences (IMS), Japan.

10 ³Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences
11 (IMS), Japan.

12
13 ⁴Laboratory for YCI Laboratory for Immunological Transcriptomics, RIKEN Center for
14 Integrative Medical Sciences (IMS), Japan.

15
16 ⁵Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences
17 (IMS), Japan.

18 ⁶Laboratory for Innate Immune systems, Department of Microbiology and Immunology,
19 Graduate School for Medicine, Osaka University, Osaka, Japan.

20
21 * Correspondence to Ichiro Taniuchi: ichiro.taniuchi@riken.jp
22 Present address

23 ^aDepartment of Ophthalmology, Tohoku University Graduate School of Medicine,
24 Sendai, Japan.

25 ^bDepartment of Immunology, Nagoya University Graduate School of Medicine, Nagoya,
26 Japan.

27
28
29 **(Final character count: 25,600)**
30
31

32 **Abstract**

33 The genome organizer, special AT-rich binding protein-1 (SATB1) functions to globally
34 regulate gene networks during primary T cells development and plays a pivotal role in
35 lineage-specification in CD4⁺ helper-, CD8⁺ cytotoxic- and FOXP3⁺ regulatory-T cell
36 subsets. However, it remains unclear how *Satb1* gene expression is controlled,
37 particularly in effector T cell function. Here, by using a novel reporter mouse strain
38 expressing SATB1-Venus and genome editing, we have identified a *cis*-regulatory
39 enhancer, essential for maintaining *Satb1* expression specifically in T_H2 cells. This
40 enhancer is occupied by STAT6 and interacts with *Satb1* promoters through chromatin
41 looping in T_H2 cells. Reduction of *Satb1* expression, by the lack of this enhancer,
42 resulted in elevated IL-5 expression in T_H2 cells. In addition, we found that *Satb1* is
43 induced in activated group 2 innate lymphoid cells (ILC2s) through this enhancer.
44 Collectively, these results provide novel insights into how *Satb1* expression is regulated
45 in T_H2 cells and ILC2s during type 2 immune responses.

46 **Introduction**

47 The nuclear protein, special AT-rich binding protein 1 (SATB1), functions as a genome
48 organizer and regulates highly-ordered chromatin structures by tethering specialized
49 AT-rich genomic regions, such as base unpairing regions (BURs) (Bode et al., 1992,
50 Kohwi-Shigematsu and Kohwi, 1990). SATB1 epigenetically regulates gene expression
51 by recruiting various chromatin modifiers and nucleosome remodelling and deacetylase
52 (NURD) complexes (Yasui et al., 2002) and promote heterochromatin formation.
53 Multiple studies have delineated the role of SATB1 for post-natal neuronal
54 development and function (Balamotis et al., 2012, Riessland et al., 2019). Additionally,
55 SATB1 is highly expressed in the thymus and is deemed essential for the development
56 of mature thymocytes (Alvarez et al., 2000). CD4⁺CD8⁺ double positive (DP) immature
57 thymocytes undergo a T cell antigen receptor (TCR)-mediated selection process,
58 known as positive selection, to become mature thymocytes that are committed to
59 become either helper-(T_H), cytotoxic-(T_C) or regulatory-T (Treg) cells. In this context,
60 SATB1 is required to control expression of genes encoding lineage specification
61 transcription factors, *Thpok*, *Runx3*, and *FoxP3* for T_H, T_C and Treg cells, respectively.
62 In the absence of SATB1, aberrant expression of these transcription factors occurs
63 through their de-repression. For instance, *Thpok* expression was induced in MHC-I
64 restricted T_C cells and *Foxp3* expression was induced in conventional CD4 T cells
65 (Kakugawa et al., 2017, Kitagawa et al., 2017).

66 The functions of SATB1 extends into the differentiation of effector T cells after
67 encountering antigens in the periphery. *Satb1* expression is thought to be under the
68 control of TCR signalling (Gottimukkala et al., 2016), which is counteracted by TGF- β
69 signalling (Stephen et al., 2017). SATB1 also functions to repress PD-1 expression in
70 effector T cells and suppress T cell exhaustion (Stephen et al., 2017). Lastly, *Satb1*

71 expression is increased upon IL-23 stimulation in pathogenic IL-17- producing T_{H17} s
72 and promotes their pathogenicity in experimental autoimmune encephalomyelitis (EAE),
73 via regulation of GM-CSF production and suppression of PD1 (Yasuda et al., 2019).
74 The role of SATB1 in CD4 $^{+}$ type 2 helper (T_{H2}) differentiation has been characterized
75 but have found very contradictory results. Based on the identification of SATB1-binding
76 sites in the T_{H2} locus containing $Il-5$, $Il-4$ and $Il-13$ genes in a murine T_{H2} cell line *in*
77 *vitro*, the first report claimed that SATB1 functioned as a positive regulator of T_{H2}
78 cytokine expression (Cai et al., 2006). Other studies, however, demonstrated that
79 SATB1 only represses IL-5 expression in human CD4 T_{H2} cultures (Ahlfors et al.,
80 2010). It was also reported that SATB1 cooperates with β -Catenin to control the
81 expression of *Gata3*, the key T_{H2} lineage transcription factor critical for T_{H2}
82 differentiation and function (Notani et al., 2010). However, conditional loss of *Satb1* in
83 CD4 T cells, using the ThPOK-Cre mouse strain, showed that loss of *Satb1* expression
84 had no detrimental effects on T_{H2} differentiation, at least *in vitro*. Furthermore, it has
85 been shown that the expression of *Satb1* was shown to be controlled by both IL-4 and
86 NF κ B signalling *in vitro* (Khare et al., 2019).
87 Currently, there is very little mechanistic insight to how *Satb1* gene expression is
88 transcriptionally induced in T cells. In mouse, there are four alternative promoters, P1,
89 P2, P3 and P4 generate *Satb1-1a*, *Satb1-1b*, *Satb1-1c* and *Satb1-1d* transcripts,
90 respectively. Usage of these four *Satb1* promoters are differentially regulated in CD4
91 T_{H2} *in vitro* (Khare et al., 2019) (Patta et al., 2020). Interestingly, a GWAS study
92 mapped a Psoriasis-associated single nucleotide polymorphism (SNP, rs73178598)
93 around 240kb upstream of the *SATB1* locus, where an antisense non-coding RNA
94 called *SATB1-AS1* is transcribed (Shi et al., 2021). Thus, it is quite important to define
95 *Satb1* expression during effector T cell differentiation and how it is controlled.

96 In this study, we utilized a novel SATB1-Venus reporter strain and a genome editing
97 technology to identify a novel IL-4-responsive T_H2 specific enhancer for *Satb1*, defined
98 as *Satb1-Eth2*. *Satb1-Eth2* is essential to maintain *Satb1* expression not only in CD4
99 T_H2 cells but also in activated ILC2s. Furthermore, loss of *Satb1-Eth2* resulted in
100 elevated IL-5 expression in CD4 T_H2 cells. Collectively, our study unravels mechanisms
101 by which *Satb1* expression is retained in immune cells mediating type 2 immune
102 responses.

103

104 **Results and discussion**

105 ***Characterization of the Satb1-Venus fusion reporter mouse revealed cell-context***
106 ***dependent regulation of Satb1 expression in T cells.***

107 To quantify SATB1 protein expression in various types of murine cells, particularly in T
108 cells and at single cell level, we generated a *Satb1*^{Venus} allele by the knock-in approach
109 to insert the Venus open reading frame downstream of the initiation codon (in exon2) of
110 the *Satb1* gene (Figures 1A and EV1A-B). In *Satb1*^{+/Venus} thymocytes, the *Satb1*^{Venus}
111 allele expressed the SATB1-Venus protein (Figure EV1C) that showed a cage-like
112 distribution in the nucleus as previously reported (Figure EV1D) (Cai et al., 2003).
113 Phenotypic analyses in *Satb1*^{Venus/Venus} mice did not show abnormalities in thymocyte
114 development, that was observed in *Satb1*^{Flx/Flx} *Cd4-cre* mice (Figure EV1E). Thus, the
115 SATB1-Venus fusion protein is likely to retain endogenous SATB1 function to support,
116 at least, primary T cell development. Using *Satb1*^{+/Venus} mice, we observed that majority
117 of the CD4⁻CD8⁻ DN thymocytes expressed low levels of SATB1-Venus (Figure EV1F-
118 G). Further analyses of DN sub-populations revealed that SATB1-Venus is initially
119 lowly expressed in CD44⁺CD25⁻ DN1 thymocytes and it is then incrementally increased
120 with DN1 transitioning into CD44⁺CD25⁺ DN2 and CD44⁻CD25⁻ DN3 thymocyte stages.

121 In CD25⁻CD44⁻ DN4 thymocytes, there were SATB1-Venus^{hi} and SATB1-Venus^{lo}
122 populations, the latter of which is likely to be non-T lymphoid cells. There was also a
123 significant increase in SATB1-Venus expression from CD4⁻CD8⁻ DN to CD4⁺CD8⁺ DP
124 thymocytes (Figure EV1F-G). Notably, DP thymocytes undergoing positive selection
125 (CD69⁺TCR β ^{mid} and CD69⁺TCR β ^{hi}) showed further increase in SATB1-Venus
126 expression (Figure 1B), indicating that SATB1 expression is positively controlled by
127 TCR stimulation. Additionally, there was a significant decline in SATB1-Venus
128 expression from positively selected DPs to mature thymocytes (Figure 1B and Figure
129 EV1G). In thymic Tregs, defined as CD24^{lo}TCR β ^{hi}CD4⁺CD8 α ⁻CD25⁺ cells, SATB1-
130 Venus expression was lower than their conventional CD4 counterparts (Figure 1C and
131 Figure EV1G). Further analyses of non-conventional T cell subsets, such as the
132 invariant Natural killer T (iNKTs) and $\gamma\delta$ -T cells, showed that iNKTs cells expressed
133 similar levels of SATB1-Venus to that in conventional CD4 SP cells but was
134 significantly higher than in $\gamma\delta$ -T cells. (Figure EV1H).

135 We next analysed SATB1-Venus expression in peripheral lymphocytes in the spleen.
136 Both CD4⁺ and CD8⁺ T cells in the spleen showed higher SATB1-Venus expression
137 than B cells (Figure 1D). When CD4⁺ T cells were further gated for naïve (CD62L^{hi}
138 CD44^{lo}), central memory (CD62L^{hi}CD44^{hi}) and effector memory (CD62L^{lo}CD44^{hi})
139 populations, we noted a uniform and high SATB1-Venus expression in naïve CD4 T
140 cells (Figure 1E). On the other hand, there were SATB1-Venus^{hi} and SATB1-Venus^{lo}
141 populations in both CD4 central memory and CD4 effector memory populations, with
142 increased frequency of SATB1-Venus^{lo} in effector memory cells. In the CD8 T cell pool,
143 both naïve and central memory populations sustained a uniform and high SATB1-
144 Venus expression, while the effector memory T cells consisted of both SATB1-Venus^{hi}
145 and SATB1-Venus^{lo} populations. These observations suggest that T cell activation in
146 the periphery induces down-regulation of SATB1 expression.

147 Intestinal Intraepithelial lymphocytes (IEL) are most likely to represent effector T cells,
148 as they are continuously exposed to various antigens in the gut. In the intestinal TCR β^+
149 IEL of *Satb1*^{+/Venus} mice, we detected a large and a small population of SATB1-Venus^{lo}
150 and SATB1-Venus^{hi} cells, respectively (Figure 1F). The SATB1-Venus^{hi} IEL population
151 expressed CD62L, with their CD4 and CD8 α expression profiles similar to that in
152 splenic T cells. These data suggest that these CD62L⁺SATB1-Venus^{hi}TCR β^+ IEL are
153 recent immigrants of circulating $\alpha\beta$ T cells. On the contrary, the CD62L⁻SATB1-Venus^{lo}
154 TCR β^+ IEL mainly represented a mixture of CD4⁺, CD4⁺CD8 α^+ and CD4⁻CD8 α^+ sub-
155 populations. This, therefore, suggests that SATB1-Venus could serve as a good
156 marker for separating effector and naïve T cells.

157 As described above, *Satb1* expression declines after activation of T cells. Hence, we
158 traced SATB1-Venus expression in various effector CD4 helper T cell subsets that
159 were differentiated in culture. In descending order, SATB1-Venus expression is highest
160 in CD4 T_H2, T_H1, T_H17 and lowest in Tregs (Figure 1G). Overall, SATB1 expression in
161 T cells is dynamically regulated during thymocyte development and in their functional
162 differentiation into effector cells, in a cell-context dependent manner.

163

164 ***Identification of cis-regulatory genomic regions for *Satb1* gene regulation.***

165 Our SATB1-Venus reporter mice revealed that the amount of SATB1 protein is
166 significantly altered during T-cell development. Transcriptome data generated by in the
167 immunological genome project (<https://www.immgen.org/>,) (Yoshida et al., 2019)
168 shows a nice correlation of SATB1-Venus expression with *Satb1* mRNA levels (Figure
169 S2A). This indicates that amount of SATB1 protein is mainly regulated at the
170 transcription level, rather than via post-transcriptional mechanisms. Besides the usage

171 of alternative gene promoters, cell-type specific gene expression is often regulated by
172 *cis*-regulatory elements such as enhancer(s) (Sorge et al., 2012), which are often
173 located far from the transcription start site and shows a higher chromatin accessibility
174 (Gorkin et al., 2020). Therefore, we used publicly available ATAC-seq data (Yoshida et
175 al., 2019) to search for open chromatin regions (OCRs) around the *Satb1* locus. There
176 are two genomic regions upstream of the *Satb1* gene, which we referred them to as
177 *Satb1-a* and *Satb1-b* respectively, that showed significant ATAC-seq peaks in T cell
178 subsets with activated/effector characteristics (Figure 2A, OCRs highlighted in red
179 dashed boxes). Sequences within these two genomic regions are evolutionally
180 conserved, which imply that these regions may have some functions. Interestingly, the
181 non-coding RNAs, *Gm19585* and *Gm20098*, are transcribed near the *Satb1-a* and
182 *Satb1-b* regions, respectively. RNA-seq data from ImmGen also showed that *Gm19585*
183 and *Gm20098* are expressed in various T-cell subpopulations (Figure EV2A).
184 Specifically, *Gm19585* and *Satb1* transcripts were mostly co-expressed in various T
185 cell populations, whereas *Gm20098* co-expression with *Satb1* is only limited to a small
186 number of T cells subsets such as DP thymocytes. These observations prompted us to
187 further study whether *Satb1-a* and *Satb1-b* function in *Satb1* gene regulation.

188 To determine whether the *Satb1-a* and *Satb1-b* regions have any roles in *Satb1* gene
189 regulation, we used CRISPR/Cas9-mediated genome editing technology to delete the
190 core sequences of *Satb1-a* or *Satb1-b*, either on the *Satb1*⁺ or *Satb1*^{Venus} alleles. Two
191 single guide RNAs (sgRNAs) for *Satb1-a* or *Satb1-b* were selected and co-injected with
192 the Cas9-encoding mRNA, into *Satb1*^{+/Venus} murine zygotes. The F0 founders mice that
193 had deleted *Satb1-a* or *Satb1-b* regions were crossed with C57/B6N mice, and F1
194 founders carrying the *Satb1*^{Venus} allele, together with deletion of *Satb1-a* or *Satb1-b*,
195 were selected as heterozygous mice with *Satb1*^{+/Venus-Δa} or *Satb1*^{+/Venus-Δb} genotype.
196 Among two and three F1 *Satb1*^{+/Venus-Δa} and *Satb1*^{+/Venus-Δb} founders, we chose one line

197 as a representative for $\text{Satb1}^{\text{Venus-}\Delta a}$ and $\text{Satb1}^{\text{Venus-}\Delta b}$ (Sequences information shown in
198 Figure EV2B) and were examined for the expression of SATB1-Venus in various T cell
199 subsets. In both $\text{Satb1}^{+/\text{Venus-}\Delta a}$ and $\text{Satb1}^{+/\text{Venus-}\Delta b}$ mice, there were no significant
200 changes in SATB1-Venus expression in all DN, DP, CD4-SP and CD8-SP thymocytes
201 (Figure EV2C). Analyses of spleens, however, revealed that SATB1-Venus expression
202 levels were significantly reduced in naïve CD4 T cells of $\text{Satb1}^{+/\text{Venus-}\Delta a}$, which were not
203 observed in $\text{Satb1}^{+/\text{Venus-}\Delta b}$ mutant mice (Figure 2B). It was also noteworthy that loss of
204 $\text{Satb1-}a$ caused a significant reduction in SATB1-Venus expression in CD4 effector-
205 memory populations but had no effects on CD8 naïve and memory T cell populations.
206 These results suggest that $\text{Satb1-}a$ is essential for maintaining Satb1 expression in
207 peripheral CD4 T cells with activated/memory phenotypes.

208 To elucidate whether $\text{Satb1-}a$ and $\text{Satb1-}b$ have any roles in regulating SATB1
209 expression in effector CD4 T cell subsets, we activated naïve CD4 T cells of
210 $\text{Satb1}^{+/\text{Venus-}\Delta a}$ and $\text{Satb1}^{+/\text{Venus-}\Delta b}$ mutant mice *in vitro*, under $\text{T}_{\text{H}0}$, $\text{T}_{\text{H}1}$, $\text{T}_{\text{H}2}$, $\text{T}_{\text{H}17}$ or iT_{reg}
211 polarising conditions. Interestingly, we observed a substantial reduction in SATB1-
212 Venus expression in $\text{Satb1}^{+/\text{Venus-}\Delta a}$ CD4 $\text{T}_{\text{H}0}$ and iT_{reg} cells, but most strikingly, SATB1-
213 Venus expression was almost lost in $\text{Satb1}^{+/\text{Venus-}\Delta a}$ $\text{T}_{\text{H}2}$ cells (Figure 2C). On the
214 contrary, we did not detect any decline in SATB1-Venus in $\text{Satb1}^{+/\text{Venus-}\Delta b}$ CD4 $\text{T}_{\text{H}0}$, $\text{T}_{\text{H}1}$,
215 $\text{T}_{\text{H}2}$, $\text{T}_{\text{H}17}$ or iT_{reg} cells (Figure 2C), thereby discarding any potential roles of $\text{Satb1-}b$ in
216 regulating Satb1 expression in T cells. We also confirmed that removal of the $\text{Satb1-}a$
217 region from the Satb1 locus resulted in a significant reduction of SATB1 protein levels
218 in *in vitro* differentiated CD4 $\text{T}_{\text{H}2}$ and $\text{T}_{\text{H}0}$ cells (Figure EV2D), which was accompanied
219 with reduction of Satb1 transcripts (Figure 2D). These results confirm that $\text{Satb1-}a$ is
220 essential to maintain Satb1 expression under $\text{T}_{\text{H}2}$ polarising conditions.

221

222 ***Satb1-a region functions as a genomic enhancer***

223 In addition to the decline of *Satb1* expression, we also observed a significant decline in
224 the expression of *Gm19585* transcripts in *Satb1*^{Δa/Δa} CD4 T_H2 cells (Figure 2D).
225 Therefore, one would speculate whether the loss of *Gm19585* transcripts, which may
226 function as non-coding RNAs, were causative for impaired *Satb1* expression. Hence, to
227 mechanistically understand how *Satb1-a* controls *cis* expression of *Satb1* in CD4 T_H2
228 cells, we examined whether the noncoding *Gm19585* RNAs are primarily involved in
229 stabilising *Satb1* expression. To this aim, we performed *Gm19585* knockdown studies
230 in T_H2 polarised CD4 T cells *in vitro*. Analyses of *Gm19585* transcripts deposited on
231 UCSC genome browser showed that there are at least 8 alternatively spliced
232 transcripts, as some transcripts were either exon1 or exon2 depleted sequences.
233 Therefore, 3 shRNA expression plasmids, *pLKO-Gfp-Gm19585-1*, *pLKO-Gfp-*
234 *Gm19585-2* and *pLKO-Gfp-Gm19585-4*, that target exon1, exon2 and exon4 of
235 *Gm19585* transcript respectively, were generated (Figure EV2E). *In vitro* activated CD4
236 T cells were transduced with these shRNAs expressing lentiviral particles and were
237 maintained in T_H2 polarising conditions for additional 6 days. shRNA-transduced CD4
238 T_H2 cells defined as CD4⁺GFP⁺ were sorted and were subjected to *Satb1*
239 transcriptional analyses by qRT-PCR. *pLKO-Gfp-Gm19585-2* or *pLKO-Gfp-Gm19585-4*
240 shRNAs were able to knock down *Gm19585* transcripts by 2-fold but had no significant
241 effects on *Satb1* transcript levels in CD4 T_H2 cells (Figure 3A). These results suggest
242 that the noncoding RNAs from *Gm19585* are unlikely to be responsible for maintaining
243 *Satb1* expression under T_H2 polarising conditions.
244 The above finding raised the possibility that *Satb1-a* functions as an enhancer to
245 control *Satb1* gene expression in *cis*. To investigate this possibility, we used a publicly
246 available three-enzyme Hi-C (3e Hi-C) data set from murine CD4 T_H2 and embryonic

247 stem cells (ESCs) (Ren et al., 2017), to identify genome wide interactions between
248 *Satb1*-exon1 (which contain promoters) and *Satb1-a* region. Interestingly, we found
249 that *Satb1*-exon1 and *Satb1-a* are closely located within a topologically associated
250 domain (TAD), specifically in CD4 T_H2 cells (Figure 3B). This indicates a specific *cis*-
251 genomic interaction between these regions is induced in CD4 T_H2 cells through
252 chromatin looping. Given that the regulation of chromatin looping is often mediated by
253 a transcription factor, we next sought to identify which T_H2 specific transcription factor
254 could be responsible for promoting chromatin looping of *Satb1-a* to the *Satb1*
255 promoters in CD4 T_H2 cells. It is already established that the signal transducer and
256 activator of transcription 6 (STAT6) is activated downstream of IL-4 signalling in CD4
257 T_H2 cells and directly regulates *Satb1* expression (Khare et al., 2019). We noticed that
258 there are STAT DNA-binding motifs within the *Satb1-a* region. Hence, we examined
259 publicly available STAT6 ChIP-seq data sets in murine CD4 T_H2 cells (Wei et al., 2010)
260 and found that *Satb1-a* was indeed occupied by STAT6 in these cells, suggesting that
261 STAT6 binds and activate the *Satb1-a* in T_H2 cells (Figure 3C). Therefore, we have
262 classified *Satb1-a* as an enhancer of *Satb1* expression in the context of T_H2 and
263 henceforth shall be referred as *Satb1-Eth2* (*enhancer for T_H2 cells*).

264

265 ***Satb1-Eth2 is essential for repressing IL-5 expression in CD4 T_H2 cells in vitro.***

266 Having established that *Satb1-Eth2* is essential in maintaining *Satb1* expression in
267 CD4 T_H2 cells, we then investigated the relevance of *Satb1-Eth2* on the differentiation
268 and function of CD4 T_H2 cells. For this aim, we established *Satb1*^{ΔEth2/ΔEth2} mice on
269 C57BL6 background by genome editing. First, it was previously reported that SATB1
270 functions to promote *Gata3* expression in CD4 T_H2 cells *in vitro* (Notani et al., 2010).
271 Therefore, we first considered whether *Satb1-Eth2* had any role in regulating *Gata3*

272 expression in CD4 T_H2 cells *in vitro*. Interestingly, although *Satb1*^{ΔEth2/ΔEth2} CD4⁺ T_H2
273 cells showed a significant loss of *Satb1* mRNA, there was no significant reduction in
274 *Gata3* expression (Figure EV3A). This data suggests that low levels of *Satb1*, via by
275 loss of *Satb1-Eth2*, did not impair *Gata3* expression and primary CD4 T_H2
276 differentiation *in vitro*. Next, it has been reported that SATB1 binds and regulates the
277 expression of the T_H2 cytokines IL-4 and IL-5 and IL-13 (Cai et al., 2006), and hence
278 we examined whether *Satb1-Eth2* is essential for the expression of IL-4, IL-5, and IL-13
279 in *Satb1*^{ΔEth2/ΔEth2} CD4 T_H2 cells *in vitro*. PMA and Ionomycin stimulation in
280 *Satb1*^{ΔEth2/ΔEth2} CD4 T_H2 cells revealed no significant differences in the intracellular
281 expression of IL-4, which suggested that *Satb1-Eth2* is not required for IL-4 induction in
282 CD4 T_H2 cells (Figure EV3B). We, however, did find a significant increase in IL4⁺IL-5⁺
283 cells in our *Satb1*^{ΔEth2/ΔEth2} CD4 T_H2 cultures (Figure 4A). Further analyses of *Il-4*, *Il-5*
284 and *Il-13* transcripts in PMA and Ionomycin stimulated *Satb1*^{ΔEth2/ΔEth2} CD4 T_H2 cells
285 revealed that only *Il-5* transcripts were significantly elevated in *Satb1*^{ΔEth2/ΔEth2} CD4 T_H2
286 cells (Figure EV3C). Moreover, the elevated expression of *Il-5* in *Satb1*^{ΔEth2/ΔEth2} CD4
287 T_H2 cells coincided with elevated IL-5 secretion in culture supernatants post PMA and
288 Ionomycin stimulation (Figure 4B). These results collectively show that *Satb1-Eth2* is
289 crucial to maintain SATB1 levels in CD4 T_H2 cells, and to restrain IL-5 expression levels.

290

291 ***Satb1-Eth2 is required to maintain SATB1 expression in CD4 T_H2 and ILC2s***
292 ***during T_H2 immune responses in vivo.***

293 We have demonstrated that *Satb1*^{ΔEth2/ΔEth2} CD4 T_H2 cells have elevated expression of
294 IL-5 *in vitro*. These results are consistent with former studies showing the requirement
295 of SATB1 in suppressing IL-5 in Human CD4 T_H2 cells (Ahlfors et al., 2010). IL-5 is the
296 key soluble factor for eosinophil activation and recruitment. At the site of a T_H2

297 immune response, eosinophils release granules containing proinflammatory proteins
298 that cause inflammation and tissue damage. Dysregulation in IL-5 expression and
299 eosinophil activity drive allergic reactions and have clinical implications in the
300 progression of asthmatic responses. We therefore speculated that SATB1 functions to
301 repress CD4 T_H2 immune responses via IL-5 suppression and promotes immune
302 resolution. Thus, we next explored the *in vivo* function of *Satb1-Eth2* in controlling type
303 2 immune responses and used an extract of *Alternaria alternata* (A.A.) to induce
304 experimental airway inflammation. First, we traced eosinophils infiltration in the
305 bronchial alveolar lavage (BAL) after treating the *Satb1*^{+/Venus} mice with A.A. on day 4, 7
306 and 10, and confirmed it to peak from day 7 to 10 (Figure EV3D). On day 7, we found a
307 small but a significant induction of SATB1-Venus in CD4 T_H2 cells (Figure EV3E),
308 which is further maintained at day 10. During this study, we also noticed that SATB1-
309 Venus expression was induced in ILC2s (Figure EV3E), a subset of lymphocytes
310 responsible for T_H2 responses at the early phase of lung inflammation. Previous
311 studies failed to detect *Satb1* expression in ILC2s of naïve mice, so we suspected
312 whether ILC2s could only induce *Satb1* expression during lung inflammation. Indeed,
313 *ex vivo* analyses of lung resident ILC2s in naïve mice revealed very little expression of
314 SATB1-Venus expression (Figure EV3E). However, *in vitro* activation of lung-resident
315 ILC2s with IL-33, IL-2 and IL-7 resulted in a significant induction of SATB1-Venus from
316 *Satb1*^{Venus/Venus} mice (Figure EV3F). Importantly, this SATB1-Venus induction was
317 completely absent in *in vitro* activated ILC2s from *Satb1*^{Venus-ΔEth2/Venus-ΔEth2} mice (Figure
318 EV3F). These results indicate that *Satb1-Eth2* is indispensable for *Satb1* induction in
319 activated ILC2s. We next examined SATB1-Venus expression in lung CD4 T_H2 cells
320 and ILC2s with or without *Satb1-Eth2* enhancer 7-10 days post A.A. extract injection.
321 To our expectations, BAL-CD4 T cells and lung-derived CD4 T_H2 cells and ILC2s from
322 in A.A injected *Satb1*^{+/Venus-ΔEth2} mice failed to upregulate SATB1-Venus expression

323 (Figure 5A). Crucially, these results demonstrate the strict requirement of *Satb1-Eth2* in
324 inducing SATB1 expression during *in vivo* T_H2 immune responses. To determine
325 whether loss of *Satb1-Eth2* function exacerbated lung inflammation in response to A.A.,
326 we examined eosinophil infiltration in BAL of A.A. treated *Satb1*^{ΔEth2/ΔEth2} mice versus
327 *Satb1*^{+/+} but found no significant increase in eosinophils numbers in A.A. treated
328 *Satb1*^{ΔEth2/ΔEth2} mice at 7 days post-injection (Figure 5B). Additionally, quantification of
329 IL-5 in the BAL supernatants of A.A. treated *Satb1*^{ΔEth2/ΔEth2} mice also revealed no
330 significant increase in IL-5 expression (Figure 5B). Lastly, sorted lung CD4 T_H2 cells
331 and ILC2s from A.A. treated mice, at 10 days post-injection, showed similar
332 frequencies of IL-4⁺IL-5⁺ or IL4⁻IL-5⁺ subpopulations between *Satb1*^{+/+} and *Satb1*
333 ^{ΔEth2/ΔEth2} mice (Figure 5C). Hence, our *in vivo* model could not find a functional
334 relevance of *Satb1-Eth2* in restraining both T_H2 immune responses and IL-5 expression
335 in CD4 T_H2 cells and ILC2s during A.A. induced lung inflammation. Overall, our results
336 from the A.A. induced lung inflammation model confirmed that *Satb1-Eth2* is required
337 to maintain SATB1 expression in innate and adaptive T_H2 lymphocytes during acute
338 lung inflammation, but the physiological relevance of *Satb1-Eth2* in regulating T_H2
339 immune responses waits for further investigation.

340 A recent GWAS study identified a Psoriasis-associated single nucleotide polymorphism
341 in *SATB1-AS1*, an antisense RNA that is encoded 240 kb upstream of the *SATB1*
342 locus and showed a T-cell-specific interaction with the *SATB1* promoter (Shi et al.,
343 2021). This study was not only the first to reveal the possibility of *cis*-regulatory
344 transcriptional mechanisms that could regulate *Satb1* expression in both human and
345 murine T cells, but it was also the first link SATB1 to allergy and inflammatory disease.
346 Previous studies have examined the function of SATB1 in T_H2 cells. SATB1 was shown
347 to bind to the murine T_H2 locus and promoted *Il-5*, *Il-4* and *Il-13* gene expression (Cai

348 et al., 2006). Another study showed the induction of *Satb1* expression upon IL-4
349 signalling in *in vitro* differentiated CD4 T_H2 cells (Khare et al., 2019), in a STAT6
350 dependent manner. This upregulation of *Satb1* expression in CD4 T_H2 cells is
351 associated with altered *Satb1* promoter usage from P1 to P2 and P3, but the biological
352 relevance of these promoters in regulating *Satb1* expression during T cell development
353 were not fully addressed. Hence, it was unclear how *Satb1* expression is specifically
354 controlled during effector CD4 T_H cell differentiation, particular in CD4 T_H2 cells. In
355 addition, current studies have not examined whether *Satb1* was induced during
356 activation of ILC2s, in part due to low *Satb1* expression in steady state ILC2s. Here, we
357 have identified and shown a crucial function of *Satb1-Eth2* in regulating *Satb1*
358 expression in T_H2 cells and ILC2s *in vitro* and *in vivo*. Loss of *Satb1-Eth2* function
359 significantly impacted on the transcriptional levels of *Satb1*, specifically in T_H2 cells and
360 activated ILC2s. Interestingly, *Satb1-Eth2* overlapped with exon 4 of the non-coding
361 gene, *Gm19585*, and loss of *Satb1-Eth2* function was accompanied with the reduction
362 of *Gm19585* transcript levels. However, knockdown of *Gm19585* transcripts did not
363 affect *Satb1* expression in T_H2 cells, which suggests that the *Gm19585* transcripts
364 have no role in regulating *Satb1* gene expression. Rather, chromatin looping between
365 *Satb1-Eth2* with *Satb1* promoters and STAT6 binding to the *Satb1-Eth2* in T_H2 cells
366 support the notion that *Satb1-Eth2* functioned as an IL-4 inducible T_H2 specific
367 enhancer for *Satb1* gene expression.

368 Loss of *Satb1-Eth2* expression significantly caused depression of IL-5 in T_H2 cells *in*
369 *vitro*, which therefore highlights a biological role of *Satb1-Eth2* in supressing IL-5
370 expression in T_H2 cells. Our study is also consistent with what others have observed
371 with *Satb1* knockdown assays in human CD4 T_H2 cells (Ahlfors et al., 2010), and
372 therefore indicates that IL-5 de-repression, caused by loss of the *Satb1-Eth2* function,
373 is mediated by the reduction of SATB1. Notably, IL-5 is known to play a major role in

374 promoting eosinophil recruitment and promote the progression of allergy or asthma
375 (Rothenberg and Hogan, 2006). A previous report presumed that SATB1 had a
376 significant role in suppressing lung inflammation, but this was never examined in *in vivo*
377 models (Ahlfors et al., 2010). Indeed, we examined the role of *Satb1-Eth2* in
378 augmenting lung inflammation *in vivo* but found that loss of the *Satb1-Eth2* had no
379 additive effects on eosinophil infiltration or on IL-5 expression in the BAL of A.A. treated
380 mice, albeit of low *Satb1* expression in both lung T_H2 cells and ILC2s. Based on this
381 key information, one would have to truly consider whether SATB1 has any function in
382 controlling T_H2 immune responses *in vivo*. However, these results do not formally
383 exclude the involvement of SATB1 in controlling T_H2 immune responses *in vivo* under
384 different experimental settings, for instance in chronic lung inflammation and in atopic-
385 dermatitis models (Oyoshi et al., 2010), and thus would merit further investigation.

386 We also uncovered a partial, but significant reduction of SATB1-Venus expression in
387 naïve and effector memory CD4 T cells, caused by loss of *Satb1-Eth2* function. Naïve
388 CD4 T cells undergo homeostatic proliferation to maintain their survival in the periphery,
389 which crucially requires both self-MHC ligands and the IL-7 cytokine (Boyman et al.,
390 2007). Additionally, effector memory T cells require the IL-15 for their survival. Both IL-
391 7 and IL-15 signalling pathways activate the STAT5 transcription factors downstream. It
392 should be noted that majority of STAT transcription factor members recognise the
393 palindromic DNA sequence TTCNNNGAA. It is therefore possible that, in both naïve
394 and effector memory CD4 T cells, STAT5 could bind to *Satb1-Eth2* and regulate *Satb1*
395 expression. However, since loss of *Satb1-Eth2* function had a partial effect on SATB1
396 expression in naïve CD4 T cells, we believe that *Satb1-Eth2* is partially responsive to
397 either IL-7 and/or IL-15. Alternatively, the regulation of *Satb1* expression in naïve and
398 memory CD4 T cells could be mediated by other *cis*-enhancers, which may require an
399 in-depth analysis.

400 Overall, the present study identifies and demonstrates the essential role of the *cis*-
401 regulatory enhancer, *Satb1-Eth2*, in regulating *Satb1* expression specifically in CD4
402 T_H2 cells and ILC2s, which significantly contributes to our current understandings of
403 how *Satb1* expression is controlled during T_H2 mediated immune responses. Our study
404 signifies the beginnings of an era of identifying *cis*- and/or *trans*-regulatory elements
405 that regulate *Satb1* gene expression in T cells and thus provides insightful information
406 on *Satb1* function in a T cell context dependent manner.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421 **Materials and methods**

422 **Mice**

423 The *Satb1*^{Venus} allele was generated by knock-in insertion of the Venus open reading
424 frame downstream of transcription start site (TSS) (exon2) of the *Satb1* gene. For this
425 aim, a BAC clone B6Ng01-312L13, which included the 5' area of the *Satb1* gene, was
426 purchased from RIKEN BRC (Tsukuba, Japan). A 13 kb genomic region harboring the
427 ATG start codon was subcloned into the pBlueScript II vector (Stratagene). The DNA
428 fragment harboring partial exon2 sequences and Venus cDNA sequences were
429 generated by overlapping PCR technique and was used to construct a targeting vector.
430 The targeting vector was transfected into murine M1 ES cells as previously described
431 (Muroi et al., 2008). G418-resistant ES clones were screened for homologous
432 recombination event between the target vector and the *Satb1* gene. Appropriate ES
433 clones were then used to generate chimera mice by ES aggregation. F1 founders from
434 the chimera mice carrying the *Satb1*^{Venus} allele were selected for establishing mouse
435 line and were analyzed. *Satb*^{Flx} mice were previously described in (Kakugawa et al.,
436 2017). *Satb1*^{+/Venus-Δa} (or *Satb1*^{Venus-ΔEth2}) and *Satb1*^{+/Venus-Δb} mice were generated by co-
437 injection of Cas9-mRNA with sgRNAs into *Satb1*^{+/Venus} fertilised eggs that were
438 generated by *in vitro* fertilisation with sperm from a *Satb1*^{Venus/Venus} male mouse and
439 *Satb1*^{+/+} oocytes. The F0 founders that had deleted *Satb1-a* or *Satb1-b* regions were
440 then crossed with C57/B6N mice and F1 founders that deleted *Satb1-a* or *Satb1-b* on
441 the *Satb1*^{Venus} allele were selected as heterozygous mice with *Satb1*^{+/Venus-Δa} or
442 *Satb1*^{+/Venus-Δb} genotype. Among the two and three F1 *Satb1*^{+/Venus-Δa} and *Satb1*^{+/Venus-Δb}
443 founders, we chose one line as a representative for *Satb1*^{Venus-Δa} and *Satb1*^{Venus-Δb} and
444 were examined with littermate controls. Similarly, C57/B6N *Satb1*^{Δa} (*Satb1*^{ΔEth2}) mice
445 were generated by co-injection of Cas9-mRNA with *Satb1-a* gRNA into C57Bl/6

446 fertilised eggs. Sequences for sgRNA are as follows: *Satb1*^{Δa} sgRNAs 5`-
447 TCAACATCAGAATTCT-3` and 5`-CAGTCAACATCAGAATTCT-3`; and *Satb1*^{Δb}
448 sgRNAs 5`-ACACACACTGTCTGTTGTGC-3` and 5`-GCTGCCTGCTTTACATATC-3`.
449 All mice were maintained at the RIKEN Center for Integrative Medical Sciences. The
450 animal protocol was approved by the Institutional Animal Care and Use Committee of
451 RIKEN Yokohama Branch (2020-026).

452

453 **Immunohistochemistry (IHC)**

454 50,000 of thymocytes from *Satb1*^{+/Venus} mice were resuspended in 0.1mL RPMI-1640
455 medium (10% FBS) and were mounted on a poly-L-lysine-coated glass slide
456 (Polysciences, Inc., REF: 26414) and incubated at 37 °C for 2 hours. Attached cells
457 were gently washed 3 times in PBS. The cells were fixed with 4% PFA at room
458 temperature for 10 mins and then washed 3 times in PBS. Cells were permeabilized
459 with 70% ethanol and kept at -20 °C, until analysis. On the day of the analysis,
460 thymocytes were stained with 1/100 of DAPI (abcam, ab228549) at room temperature,
461 for 30 mins, and washed 3 times in PBS. Cover slips were mounted on top of the
462 thymocytes with Fluoromount-G™ mounting medium (ThermoFisher, 00-4958-02) and
463 sealed with Biotium CoverGrip™ Coverslip Sealant (REF, 23005). Confocal
464 microscopic images were obtained with TCS-SP5 (Leica Microsystems) using 40x
465 objective.

466

467 **Ex vivo cell preparation for flow cytometry**

468 Thymus, spleen, and peripheral lymph nodes (axillary, inguinal and cervical) were
469 removed from mice at 4-8 weeks of age and were mashed through a 70 µm cell

470 strainer in a petri dish to make single-cell suspensions. For the elimination of red blood
471 cells, splenocytes were treated with ACK lysis buffer (Gibco A1049201, 2.5mL per
472 spleen) for 3 minutes and pelleted by centrifugation at 300 g at 4°C for 5 minutes.
473 Supernatants were discarded and cell pellets were resuspended into RPMI-1640 (2%
474 FBS). All cell suspensions were maintained at 4 °C for flow cytometry analyses.

475 For the preparation of IEL, the small intestine was cut into three sections and Peyer
476 Patches were removed. Each section was cut longitudinally and washed twice with
477 HBSS (5% of FCS). Sections were further cut into 0.5 cm pieces and put into a 50 mL
478 conical tube containing 25 mL HBSS (5% of FCS). The tissues were then placed in an
479 incubator at 37 °C, at 250 rpm for 15 minutes. The supernatant was transferred into a
480 new 50mL tube, through a metal mesh, and cells were pelleted down by centrifugation
481 at 300 g at 4 °C for 5 minutes. The supernatant was discarded. The cell pellet was then
482 resuspended in 8.5 mL of HBSS + 40% Percoll and layered onto 2 mL HBSS+ 70%
483 Percoll in a 15 mL falcon tube. Cells were then centrifuged at 860 g for 25 minutes at
484 room temperature, with brakes off. IEL were collected in the interphase between 40%
485 and 70% Percoll and washed twice with HBSS (5% of FCS). IEL were then subjected
486 to flow cytometric analyses.

487 For the preparation of lung cell suspensions, the lungs were first perfused with 20 mL
488 of PBS through the left ventricle of the heart. Perfused lungs were dissected out and
489 minced up prior to incubation in RPMI-1640 (2% FBS) + 0.3 mg/ml collagenase IV
490 (Sigma, C-5138) + 0.3 mg/ml of DNase I (Wako, 043-26773) at 37 °C for 45 minutes
491 with continuous shaking. To homogenize the samples, the digested lung tissues were
492 mashed in a 70-µm cell strainer in a petri dish and cell suspensions were then pelleted
493 by centrifugation at 300 g at 4 °C for 5 minutes. For the elimination of debris, the cell
494 pellets were resuspended in 10 mL RPMI (2% FBS) + 30% Percoll and separated by

495 centrifugation at 860 g at room temperature for 20 minutes with brakes off. Debris in
496 the upper phase were aspirated off and cell pellets were resuspended in 5 mL RPMI-
497 1640 (2% FBS). Cells were washed pelleted by centrifugation at 300 g at 4°C for 5
498 minutes and were then subjected for analysis.

499

500 **Flow cytometry**

501 Cells were stained with following fluorophore-conjugated antibodies: B220 (RA3-6B2)
502 CD4 (RM4-5), CD8a (53-6.7), CD11B (M1/70), CD11C (HL3), CD19 (1D3), CD24
503 (M1/69), CD25 (PC61.5), CD44 (IM7), CD45 (30-F11), CD62L (MEL-14), CD69
504 (H1.2F3), FOXP3 (FJK-16s), GATA3 (L50-823), Gr1 (RB6-8C5), IL-4 (11B11), IL-5
505 (TRFK5), IFN-γ (XMG1.2), Ly6C (AL-21), Ly6G (1A8), NK1.1 (PK136) Siglec-F (E13-
506 161.7), ST2 (U29-93) TCRβ (H57-597), TCRγδ (GL3) and Ter119 (TER-119). Murine
507 CD1d dimmer XI (BD-Bioscience, 557599) loaded with α-GalCer was used to define
508 iNKT cells. For flow cytometric analyses 1-2x10⁶ cells were washed out of complete
509 medium, by centrifugation at 300 g at 4°C for 5 minutes and resuspended in FACS
510 buffer (PBS + 1% FBS and 0.05% NaN₃). For the analyses of extracellular marker on
511 live cells, cells suspensions from spleen, pLNs, IEL and lungs were treated with rat α-
512 mouse CD16/CD32 (BD Biosciences) for 10 minutes at 4°C. Fluorophore antibodies for
513 extracellular markers were then added and stained for 30 minutes at 4 °C. After
514 incubation, cells were then pelleted by centrifugation at 300 g at 4 °C for 5 minutes and
515 resuspended in FACS buffer containing 7AAD/DAPI cell viability dye. For analyses of
516 both extracellular and intracellular markers, cell suspensions of all tissues were stained
517 with fixable live dead (ebiosciences, 65-0866-18) for 10 minutes prior to rat α-mouse
518 CD16/CD32 treatment and extracellular marker staining. Using the FOXP3 staining
519 buffer kit (ebiosciences, 00-5523-00), stained cells were then fixed, permeabilised and

520 stained for intracellular transcription factors as per manufacturer's instructions. All
521 cytometry analysis was performed using a FACS CANTO II (BD-Bioscience) and data
522 were analysed using FlowJo (Tree Star) software.

523

524 ***In vitro* CD4 T helper differentiation**

525 Naïve CD4 T cells were pooled from spleen and peripheral lymph nodes. Spleen and
526 peripheral lymph nodes (axillary, inguinal and cervical) were removed from mice at 6-
527 10 weeks of age and were mashed through a 70 µm cell strainer in a petri dish to make
528 single-cell suspensions. Splenocytes were treated with ACK lysis buffer (Gibco
529 A1049201, 2.5 mL per spleen) for 3 minutes prior to pelleting (by centrifugation at 300
530 g at 4°C for 5 minutes) and resuspension into RPMI-1640 (2% FBS). Naïve CD4 T cells
531 from either sorted by FACS Aria (sorted for CD4⁺CD25⁻CD62L^{hi}CD44⁺) or isolated by
532 using EasySep mouse naïve CD4 T cell isolation kit (ST-19765). Naïve T cells were
533 resuspended in complete medium (KOHJIN BIO DMEM-H (16003016) + 10% FBS)
534 and activated in the presence of 2 µg/mL of anti-CD3 (BD Pharmingen, REF: 553058)
535 and 2 µg/mL of anti-CD28 (BD Pharmingen, REF: 553295)(precoated in a rounded 96-
536 well plate) in either T_H0 (5 µg/mL of anti-IFNy (Invitrogen, REF: 16-741185) , 5 µg/mL
537 of anti-IL-12/23 (Biolegend, REF: 505308), 5 µg/mL of anti-IL-4 (BD Pharmingen, REF:
538 554385) and 10 ng/mL of IL-2 (R&D systems, 404-ML-010)), T_H1 (5 µg/mL of anti-IL-4,
539 10 ng/mL of IL-2 and 10 ng/mL of IL-12 (R&D systems, 419-ML-010)), T_H2 (5 µg/mL of
540 anti-IFN- γ, 5 µg/mL of anti-IL-12/23,10 ng/mL of IL-2, and 10 ng/mL of IL-4 (R&D
541 systems, 402-ML-020)), T_H17 (R and D systems, CDK017, as per manual instructions)
542 and iTreg (5 µg/mL of anti-IFNy, 5 µg/mL of anti-IL-12/23, 5 µg/mL of anti-IL-4, 2 ng/mL
543 of IL-2 and 3 ng/mL of TGFβ (R&D systems, 7666-MB-055)) conditions. Naïve CD4
544 cells under T_H0, T_H1 and T_H2 conditions were activated for 48 hours and were further

545 maintained in $T_H0/1/2$ polarising conditions for another 3-5 days. Naïve CD4 cells under
546 T_H17 and iTreg conditions were activated for 72 hours and were further maintained in
547 $T_H17/Treg$ conditions for another 3-4 days. To confirm CD4 helper differentiation, 1×10^5
548 of T_H0 , T_H1 , T_H2 and were stimulated with 100 ng/mL of PMA (Sigma, P8139,) and 0.5
549 $\mu\text{g/mL}$ of Ionomycin (Sigma, I0634-1MG), in a rounded 96-well plate for 5 hours in the
550 presence of 2 μM of Monesin (Biomol, Cay16488-1). T_H17 cells were stimulated as per
551 manufacturer's instructions (R and D systems, CDK017). After stimulation, cells were
552 analysed for intracellular expression of IFN- γ , IL-4 and IL-17 by flow cytometry. The *in*
553 *vitro* differentiated Tregs were analysed for the intracellular expression of FOXP3 by
554 flow cytometry. After confirmation of CD4 helper differentiation, *Satb1* expression levels
555 were analysed by flow cytometry, immunoblotting and qPCR. Culture supernatants
556 of PMA and Ionomycin treated CD4 T_H0 and CD4 T_H2 cells (in the absence of
557 Monesin) were also recovered, flash frozen in N_2 and stored in -80 $^{\circ}\text{C}$. The
558 quantification of mIL-4 and mIL-5 cytokines in these supernatants were performed by
559 the Laboratory for Immunogenomics (RIKEN, IMS) via Luminex analysis.

560

561 **Western blotting**

562 T cells in complete medium were pelleted down by centrifugation at 200 g for 5 minutes
563 at 4 $^{\circ}\text{C}$. Supernatants were aspirated, and the cell pellets were resuspended in 1mL of
564 ice-cold PBS. Cells were transferred into 1.5 mL Eppendorfs and pelleted down by
565 centrifugation at 200 g for 5 minutes at 4 $^{\circ}\text{C}$. Supernatants were aspirated, and pellets
566 were washed in 1mL of ice-cold PBS. Cells were pelleted down by centrifugation at 200
567 g for 5 minutes at 4 $^{\circ}\text{C}$ and supernatants were aspirated. Cells were lysed in lysis
568 buffer (2% SDS in 50 μM Tris-HCL pH.8, supplemented with EDTA-free protease
569 inhibitor, Roche) at cell concentration of $20 \times 10^6/\text{mL}$ and incubated at 95 $^{\circ}\text{C}$ for 15

570 minutes. Debris were pelleted down by centrifugation at 13000 g for 10 minutes at
571 room temperature and protein lysates were transferred into new 1.5 mL Eppendorf
572 tubes. Protein lysates were adjusted with 2X laemil sample buffer (Bio-Rad, CA) + 2-β-
573 mercaptoethanol and boiled at 95 °C for 10 minutes. Each lane was loaded with the
574 equivalent of 100,000 T cells and separated by SDS-PAGE in 10% polyacrylamide gels
575 (e-PAGE, ATTO, Tokyo, Japan, EHR-T10L). Proteins were then transferred onto
576 polyvinylidene difluoride membrane (Biorad, REF:1704156) and blots were blocked
577 with TBST (nacalai tesque, REF: 12749-21, 0.05% v/v) + 5% (w/v) of milk for 1 hour.
578 All antibodies were used accordingly to the manufacturer's instructions. Blots were
579 then probed with the following primary antibodies in TBST (0.05% v/v) + 5% (w/v) of
580 milk, overnight at 4 °C: SATB1 (abcam, ab109122) and SMC1 (abcam, ab9262). Blots
581 were then wash 3 times in 15-30 mL TBST (0.05% v/v) prior to incubation in HRP-
582 conjugated secondary antibodies (Invitrogen, REF:65-6120) in TBST (0.05% v/v) + 5%
583 (w/v) of milk. Blots were then wash 3 times in 15-30 mL TBST (0.05% v/v) and
584 chemiluminescence were quantified on the Amersham Imager 680 (GE Healthcare). All
585 immunoblots shown are representative of 3 or more biological replicates.

586

587 qRT-PCR

588 1x10⁶ of T_H0, T_H1 or T_H2 cells were pelleted down by centrifugation at 200 g, at 4 °C for
589 5 minutes. Supernatants were discarded and cell pellets were immediately
590 resuspended in 750 µL of Trizol (Ambion, REF: 15596026). Samples were snap frozen
591 in liquid N₂. For RNA isolation, cell lysates were thawed, and chloroform added (200 µL
592 per 1 ml of Trizol). RNA samples were extracted as per manufacturer's instruction.
593 Samples were vortexed for 20 seconds and incubated at room temperature for 3
594 minutes. Samples were pelleted down by centrifugation at 12,000 g at 4 °C for 15

595 minutes. The top aqueous phase containing RNA was transferred into a new tube.
596 RNA samples were purified by using Zymogen RNA clean and concentrator kit (Zymo
597 research, R1017), as per manufacturer's instructions. RNA concentrations were
598 obtained on a NanoDrop Spectrophotometer and 1.2 µg of RNA were subjected to
599 cDNA synthesis by using the Super VILO cDNA synthesis kit (Thermo Scientific,
600 REF:11756050). qRT-PCR was performed using Power up™ SYBR green master mix
601 (applied biosystems, REF: A25742) on the QuantStudio 3 Real-Time PCR Systems,
602 accordingly to manufacturer's instructions. The following gene expression levels
603 analysed by qRT-PCR are listed in Table 1.

604

605 **Gm19585 shRNA lentiviral production**

606 The RNAi consortium was used to generate three shRNAs for the knockdown of
607 *Gm19585* derived transcripts (see Table 2). shRNA sequences were cloned into the
608 *PLKO.gfp* cloning vector, which was kindly gifted by Dr. Jun Huh (Harvard University):
609 cloning, transfection and production of lentiviral particles were performed accordingly to
610 Addgene's protocol. After screening for shRNA inserts, lentiviruses for individual
611 shRNAs were produced in HEK293T cells plated in six-well plates in antibiotic-free
612 DMEM (Gibco, supplemented with glutamine and 10 %FBS). For one transfection
613 assay and using the Fugene HD transfection reagent (Promega, REF: E1312)
614 accordingly to the manufacturer's instructions, the HEK293T cells were cultured in 10%
615 FBS-containing DMEM and were transfected with 1 µg of shRNA plasmid, 750 ng of
616 psPAX2 packaging plasmid and 250ng of pMD2.G envelope plasmids. Packaging and
617 envelope plasmids were obtained from Addgene. Viral supernatants were collected 3
618 days post transfection and filtered through 0.45 µm low protein-binding filters.

619 Polybrene (Sigma-Aldrich) was added to the viral supernatants at a final concentration
620 of 2 µg/ml, aliquoted, and stored at -80 °C.

621

622 **Gm19585 knock-down in *in vitro* T_H2 CD4 T cells**

623 CD4 T cells from wild type mice were isolated from pLNs (axillary, inguinal and
624 cervical) by using EasySep mouse CD4 T cell isolation kit (ST-19752). Cells were
625 stimulated with 2 µg/mL of immobilised anti-CD3 and anti-CD28 in T_H2 polarising
626 conditions (5 µg/mL of anti-IFN- γ, 5 µg/mL of anti-IL-12/23, 10 ng/mL of IL-2, and 10
627 ng/mL of IL-4) for 24 hours. After activation, cells were pelleted down by centrifugation
628 at 200 g, at room temperatrue for 5 minutes and resuspended in 20µL of prewarmed
629 PBS. Cells were added to 500µL of thawed viral supernatants and put into 48-well
630 plates. Cells were centrifuged at 660 g, at 32 °C for 1.5 hours and were rested in the
631 tissue culture incubator for 1 hour. 1 volume of 2X T_H2 cytokines (5 µg/mL of anti-IFN-
632 γ, 5 µg/mL of anti-IL-12/23, 10 ng/mL of IL-2, and 10 ng/mL of IL-4), were then added
633 and cell were incubated for another 48 hours. *pLKO-Gfp* (empty) and *pLKO-Gfp-*
634 *Gm19585* shRNA transduced cells were monitored and T_H2 cytokines were refreshed
635 every second day. CD4⁺GFP⁺ cells were then sorted on 6 days post transduction and
636 immediately lysed in Trizol for qRT-PCR analyses.

637

638 **ATAC-Seq analyses**

639 ATAC-Bigwig files from Immgen database (Yoshida et al., 2019) were analysed and
640 visualized on the IGV genome browser. Genomic regions of interest were then further
641 analysed on the USCS genome browser for conservation.

642

643 **3e HiC data analyses**

644 3e-HiC data sets were downloaded from the Gene Expression Ominus (GEO) site with
645 the accession number GSE66343 (Ren et al., 2017). To examine the chromosome
646 structure and TAD structures surrounding *Satb1* and *Satb1-a* (exon 4 of *Gm19585*) loci,
647 reads on chromosome 17 were extracted and realigned on mouse genome mm10
648 using bowtie2 (version 2.4.6). Mapped reads were collected and converted into .hic
649 format using Juicer tools (version 1.22.01, <https://github.com/aidenlab/juicer>) and
650 visualized using Juicebox (version 1.6, <https://github.com/aidenlab/Juicebox/>).

651

652 **STAT6 ChIP-seq analyses**

653 Publicly available mouse dataset for STAT6 ChIP-seq in CD4 T_H2 cells (Wei et al.,
654 2010), was used to analyse STAT6 DNA binding sites at the *Satb1-a* locus. The
655 sequence Read Archive file SRA054075 was downloaded from SRA website.
656 *Fastdump* was used to convert the SRA files into fasta, which were processed for the
657 removal of adaptor sequences and then realigned to mm10 reference genome using
658 Bowtie2. Samtools was then used to sort and convert the SAM files (output files,
659 generated from the genome alignment) into BAM files. BAM files were then indexed
660 using samtools for the generation of bigwig files. The bigwig files were then visualized
661 on the IGV genome browser.

662

663 ***Alternaria alternata* induced airway inflammation model**

664 8-12 weeks old female mice were anesthetized by isofluorane inhalation, followed by
665 intra-nasal or intra-tracheal injection of A.A. extract (ITEA, 10117., 20 μ g per head, in
666 40 μ L of PBS) on Day 0, Day 3, Day 6 and/or Day 9. After 24 hours post final challenge,

667 naïve and A.A. treated female mice were euthanized by CO₂ inhalation. For cytokine
668 analyses, BAL fluid (BALF) was first collected by intratracheal insertion of a catheter
669 and 1 lavage of 500 µL of HBSS (2% FBS) and transferred into new 1.5 mL eppendorf
670 tubes. The extracted BALF was immediately pelleted down by centrifugation (300 g, 5
671 minutes at 4 °C) and BALF supernatant were transferred into new 1.5mL Eppendorf
672 tubes. The pelleted cells were resuspended in 500 µL of HBSS (2% FBS). BALF
673 supernatants were flash frozen in liquid N₂ and stored in –80 °C. Additional 2 lavages of
674 500 µL of HBSS (2% FBS) was used to further collect the BALF of naïve and AA
675 challenged mice and were combined with BALF cells from the 1st lavage, totalling to
676 final volume of 1.5 mL. BALF cells were kept on 4 °C for flow cytometric analyses.
677 Lung cell suspensions from mice were prepared as outlined above. After Percoll
678 gradient centrifugation, CD4 T_H2 cells (CD45⁺Thy1.2⁺CD4⁺ST2⁺) and ILC2s
679 (CD45⁺Thy1.2⁺CD4⁺ST2⁺) were sorted using FACS Aria. 10,000 CD4 T_H2 cells and
680 ILC2s were activated PMA (100 ng/mL) and Ionomycin (0.5 µg/mL) in a rounded 96-
681 well plate for 4 hours, in the presence of Monesin and were then subjected to flow
682 cytometry analyses for intracellular cytokines levels. The quantification of the mIL-5
683 cytokine in BAL supernatants of naïve and A.A. treated mice were also performed by
684 the Laboratory for Immunogenomics (RIKEN, IMS) via Luminex analysis.

685

686 ***In vitro* activation of ILC2s**

687 Lung cell suspensions from mice were prepared as outlined above. After Percoll
688 gradient centrifugation, 5000 ILC2s (CD45⁺Lin[−]CD3ε[−]Thy1.2⁺) were sorted into each
689 well of 96 well-plate. Sorted ILC2s were cultured in 100 µL of complete medium
690 (KOHJIN BIO DMEM-H (16003016) + 10% FBS). in the presence of mIL-33 (10 ng/mL),
691 mIL-2 (10 ng/mL) and mIL-7 (10 ng/mL) for 4 days.

692

693 **Statistical analysis**

694 Student T tests and two-way ANOVA with post hoc Bonferroni tests were performed
695 using GraphPad Prism software: ***p < 0.001, **p < 0.01, and *p < 0.05.

696

697 **Acknowledgments**

698 We thank Noriko Yoza for her continuous help with cell sorting and Yusuke Iizuka and
699 RIKEN IMS Animal group for ES aggregation and genome editing. We'd also like
700 express our gratitude to Chizuko Miyamoto, Yuria Taniguchi, Miho Mochizuki and
701 Natsuki Takeno for their assistance with experiments and genotyping.

702 This work was supported by the MITSUBISHI FOUNDATION (201910029) and Ministry
703 of Education, Culture, Sports, Science and Technology Grants-in-Aid for Scientific
704 Research on Innovative Areas “Replication of Non-Genomic Codes” (JP19H05747)
705 (I.T.) and by support funding from RIKEN’s Gender Equality Program (A.N.).

706

707 **Author Contributions**

708 S.M. generated the *Satb1*^{Venus} allele. A.N., M.O.O., T.K., W.S., K.K. performed
709 phenotypic analyses of mice and other experiments. H.Y. analysed ATAC-seq data.
710 T.A.E. analysed 3e-Hi-C data. A.N., K.M. and T.K. performed and analysed *Alternaria*
711 *alternata* induced airway inflammation model. A.N. and I.T. wrote manuscript. All
712 authors read and approved the manuscript.

713

714 **Declaration of interests**

715 The authors have no competing interests to disclose.

716 **Data Availability**

717 This study includes no data deposited in external repositories.

718

719

720

721 **References**

722 AHLFORS, H., LIMAYE, A., ELO, L. L., TUOMELA, S., BURUTE, M.,
723 GOTTIMUKKALA, K. V. P., NOTANI, D., RASOOL, O., GALANDE, S. &
724 LAHESMAA, R. 2010. SATB1 dictates expression of multiple genes including
725 IL-5 involved in human T helper cell differentiation. *Blood*, 116, 1443-1453.

726 ALVAREZ, J. D., YASUI, D. H., NIIDA, H., JOH, T., LOH, D. Y. & KOHWI-
727 SHIGEMATSU, T. 2000. The MAR-binding protein SATB1 orchestrates
728 temporal and spatial expression of multiple genes during T-cell development.
729 *Genes & Development*, 14, 521-535.

730 BALAMOTIS, M. A., TAMBERG, N., WOO, Y. J., LI, J., DAVY, B., KOHWI-
731 SHIGEMATSU, T. & KOHWI, Y. 2012. Satb1 Ablation Alters Temporal
732 Expression of Immediate Early Genes and Reduces Dendritic Spine Density
733 during Postnatal Brain Development. *Molecular and Cellular Biology*, 32, 333-
734 347.

735 BODE, J., KOHWI, Y., DICKINSON, L., JOH, T., KLEHR, D., MIELKE, C. & KOHWI-
736 SHIGEMATSU, T. 1992. Biological Significance of Unwinding Capability of
737 Nuclear Matrix-Associating DNAs. *Science*, 255, 195-197.

738 BOYMAN, O., PURTON, J. F., SURH, C. D. & SPRENT, J. 2007. Cytokines and T-cell
739 homeostasis. *Current Opinion in Immunology*, 19, 320-326.

740 CAI, S., HAN, H.-J. & KOHWI-SHIGEMATSU, T. 2003. Tissue-specific nuclear
741 architecture and gene expression regulated by SATB1. *Nature Genetics*, 34, 42-
742 51.

743 CAI, S., LEE, C. C. & KOHWI-SHIGEMATSU, T. 2006. SATB1 packages densely
744 looped, transcriptionally active chromatin for coordinated expression of cytokine
745 genes. *Nature Genetics*, 38, 1278-1288.

746 GORKIN, D. U., BAROZZI, I., ZHAO, Y., ZHANG, Y., HUANG, H., LEE, A. Y., LI, B.,
747 CHIOU, J., WILDBERG, A., DING, B., ZHANG, B., WANG, M., STRATTAN, J.
748 S., DAVIDSON, J. M., QIU, Y., AFZAL, V., AKIYAMA, J. A., PLAJZER-FRICK,
749 I., NOVAK, C. S., KATO, M., GARVIN, T. H., PHAM, Q. T., HARRINGTON, A.
750 N., MANNION, B. J., LEE, E. A., FUKUDA-YUZAWA, Y., HE, Y., PREISSL, S.,
751 CHEE, S., HAN, J. Y., WILLIAMS, B. A., TROUT, D., AMRHEIN, H., YANG, H.,
752 CHERRY, J. M., WANG, W., GAULTON, K., ECKER, J. R., SHEN, Y., DICKE, D. E.,
753 VISEL, A., PENNACCHIO, L. A. & REN, B. 2020. An atlas of dynamic
754 chromatin landscapes in mouse fetal development. *Nature*, 583, 744-751.

755 GOTTIMUKKALA, K. P., JANGID, R., PATTA, I., SULTANA, D. A., SHARMA, A.,
756 MISRA-SEN, J. & GALANDE, S. 2016. Regulation of SATB1 during thymocyte
757 development by TCR signaling. *Molecular Immunology*, 77, 34-43.

758 KAKUGAWA, K., KOJO, S., TANAKA, H., SEO, W., ENDO, T. A., KITAGAWA, Y.,
759 MUROI, S., TENNO, M., YASMIN, N., KOHWI, Y., SAKAGUCHI, S., KOWHI-
760 SHIGEMATSU, T. & TANIUCHI, I. 2017. Essential Roles of SATB1 in
761 Specifying T Lymphocyte Subsets. *Cell Reports*, 19, 1176-1188.

762 KHARE, S. P., SHETTY, A., BIRADAR, R., PATTA, I., CHEN, Z. J., SATHE, A. V.,
763 REDDY, P. C., LAHESMAA, R. & GALANDE, S. 2019. NF- κ B Signaling
764 and IL-4 Signaling Regulate SATB1 Expression via Alternative Promoter Usage
765 During Th2 Differentiation. *Front Immunol*, 10, 667.

766 KITAGAWA, Y., OHKURA, N., KIDANI, Y., VANDENBON, A., HIROTA, K.,
767 KAWAKAMI, R., YASUDA, K., MOTOOKA, D., NAKAMURA, S., KONDO, M.,
768 TANIUCHI, I., KOHWI-SHIGEMATSU, T. & SAKAGUCHI, S. 2017. Guidance of
769 regulatory T cell development by Satb1-dependent super-enhancer
770 establishment. *Nature Immunology*, 18, 173-183.

771 KOHWI-SHIGEMATSU, T. & KOHWI, Y. 1990. Torsional stress stabilizes extended
772 base unpairing in suppressor sites flanking immunoglobulin heavy chain
773 enhancer. *Biochemistry*, 29, 9551-60.

774 MUROI, S., NAOE, Y., MIYAMOTO, C., AKIYAMA, K., IKAWA, T., MASUDA, K.,
775 KAWAMOTO, H. & TANIUCHI, I. 2008. Cascading suppression of
776 transcriptional silencers by ThPOK seals helper T cell fate. *Nature Immunology*,
777 9, 1113-1121.

778 NOTANI, D., GOTTIMUKKALA, K. P., JAYANI, R. S., LIMAYE, A. S., DAMLE, M. V.,
779 MEHTA, S., PURBEY, P. K., JOSEPH, J. & GALANDE, S. 2010. Global
780 Regulator SATB1 Recruits β -Catenin and Regulates TH2 Differentiation in Wnt-
781 Dependent Manner. *PLOS Biology*, 8, e1000296.

782 OYOSHI, M. K., LARSON, R. P., ZIEGLER, S. F. & GEHA, R. S. 2010. Mechanical
783 injury polarizes skin dendritic cells to elicit a TH2 response by inducing
784 cutaneous thymic stromal lymphopoietin expression. *Journal of Allergy and*
785 *Clinical Immunology*, 126, 976-984.e5.

786 PATTA, I., MADHOK, A., KHARE, S., GOTTIMUKKALA, K. P., VERMA, A., GIRI, S.,
787 DANDEWAD, V., SESHADRI, V., LAL, G., MISRA-SEN, J. & GALANDE, S.
788 2020. Dynamic regulation of chromatin organizer SATB1 via TCR-induced
789 alternative promoter switch during T-cell development. *Nucleic Acids Research*,
790 48, 5873-5890.

791 REN, G., JIN, W., CUI, K., RODRIGEZ, J., HU, G., ZHANG, Z., LARSON, D. R. &
792 ZHAO, K. 2017. CTCF-Mediated Enhancer-Promoter Interaction Is a Critical
793 Regulator of Cell-to-Cell Variation of Gene Expression. *Molecular Cell*, 67,
794 1049-1058.e6.

795 RIESSLAND, M., KOLISNYK, B., KIM, T. W., CHENG, J., NI, J., PEARSON, J. A.,
796 PARK, E. J., DAM, K., ACEHAN, D., RAMOS-ESPIRITU, L. S., WANG, W.,
797 ZHANG, J., SHIM, J.-W., CICERI, G., BRICHTA, L., STUDER, L. &
798 GREENGARD, P. 2019. Loss of SATB1 Induces p21-Dependent Cellular
799 Senescence in Post-mitotic Dopaminergic Neurons. *Cell Stem Cell*, 25, 514-
800 530.e8.

801 ROTHENBERG, M. E. & HOGAN, S. P. 2006. THE EOSINOPHIL. *Annual Review of*
802 *Immunology*, 24, 147-174.

803 SHI, C., RAY-JONES, H., DING, J., DUFFUS, K., FU, Y., GADDI, V. P., GOUGH, O.,
804 HANKINSON, J., MARTIN, P., MCGOVERN, A., YARWOOD, A., GAFFNEY, P.,
805 EYRE, S., RATTRAY, M., WARREN, R. B. & OROZCO, G. 2021. Chromatin
806 Looping Links Target Genes with Genetic Risk Loci for Dermatological Traits.
807 *The Journal of investigative dermatology*, 141, 1975-1984.

808 SORGE, S., HA, N., POLYCHRONIDOU, M., FRIEDRICH, J., BEZDAN, D., KASPAR,
809 P., SCHAEFER, M. H., OSSOWSKI, S., HENZ, S. R., MUNDORF, J., RÄTZER,
810 J., PAPAGIANNOULI, F. & LOHMANN, I. 2012. The cis-regulatory code of Hox
811 function in Drosophila. *Embo j*, 31, 3323-33.

812 STEPHEN, T. L., PAYNE, K. K., CHAURIO, R. A., ALLEGREZZA, M. J., ZHU, H.,
813 PEREZ-SANZ, J., PERALES-PUCHALT, A., NGUYEN, J. M., VARA-AILOR, A.
814 E., ERUSLANOV, E. B., BOROWSKY, M. E., ZHANG, R., LAUFER, T. M. &
815 CONEJO-GARCIA, J. R. 2017. SATB1 Expression Governs Epigenetic
816 Repression of PD-1 in Tumor-Reactive T Cells. *Immunity*, 46, 51-64.

817 WEI, L., VAHEDI, G., SUN, H.-W., WATFORD, W. T., TAKATORI, H., RAMOS, H. L.,
818 TAKAHASHI, H., LIANG, J., GUTIERREZ-CRUZ, G., ZANG, C., PENG, W.,
819 O'SHEA, J. J. & KANNO, Y. 2010. Discrete Roles of STAT4 and STAT6
820 Transcription Factors in Tuning Epigenetic Modifications and Transcription
821 during T Helper Cell Differentiation. *Immunity*, 32, 840-851.

822 YASUDA, K., KITAGAWA, Y., KAWAKAMI, R., ISAKA, Y., WATANABE, H., KONDOH,
823 G., KOHWI-SHIGEMATSU, T., SAKAGUCHI, S. & HIROTA, K. 2019. Satb1
824 regulates the effector program of encephalitogenic tissue Th17 cells in chronic
825 inflammation. *Nature Communications*, 10, 549.
826 YASUI, D., MIYANO, M., CAI, S., VARGA-WEISZ, P. & KOHWI-SHIGEMATSU, T.
827 2002. SATB1 targets chromatin remodelling to regulate genes over long
828 distances. *Nature*, 419, 641-645.
829 YOSHIDA, H., LAREAU, C. A., RAMIREZ, R. N., ROSE, S. A., MAIER, B.,
830 WROBLEWSKA, A., DESLAND, F., CHUDNOVSKIY, A., MORTHA, A.,
831 DOMINGUEZ, C., TELLIER, J., KIM, E., DWYER, D., SHINTON, S.,
832 NABEKURA, T., QI, Y., YU, B., ROBINETTE, M., KIM, K.-W., WAGERS, A.,
833 RHOADS, A., NUTT, S. L., BROWN, B. D., MOSTAFAVI, S., BUENROSTRO, J.
834 D. & BENOIST, C. 2019. The cis-Regulatory Atlas of the Mouse Immune
835 System. *Cell*, 176, 897-912.e20.

836

837

838 Table1: list of cDNA primers used for qRT-PCR

cDNA primer name (mouse)	sequence	Source
Satb1-F	CCCTCTAGGAAGAGGAAGGC	Eurofins
Satb1-R	GTTCCACCAACGCAGAAAATGG	Eurofins
Gm19585 -F	CCCGTCTAAAGGATGTGGAATTGG	Eurofins
	A	
Gm19585-R	GGCCATCCACTAGGAATACCCA	Eurofins
Hprt-F	GTCGTGATTAGCGATGATGAACC	Eurofins
Hprt-R	ATGACATCTCGAGCAAGTCTTC	Eurofins
	G	
Gata3-F	GCAGAACCGGCCCTTATCAA	Eurofins
Gata3-R	GTCTGACAGTTCGCGCAGGA	Eurofins
Il4-F	TCGGCATTGAAACGAGGTC	Eurofins
Il4-R	GAAAAGCCGAAAGAGTCTC	Eurofins
Il5- F	CCGTGGGGTACTGTGGAAATG	Eurofins
Il5-R	TCCGTCTCTCGCCACAC	Eurofins
Il13-F	GTTCTGTGTTAGCCCTGGATTCCC	Eurofins
Il13-R	CCGTGGCGAACAGTTGCTT	Eurofins

839

840 Table2: list of shRNA primers used for Gm19585 knockdown study

shRNA primer name for mouse	Sequence	Source
Gm19585-ex1 shRNA-F:	CCGGTCTAAGGTCTAGGGTCTTACTCGAGTAAAGACCCCTAGG ACCTTAGATTTTG	Eurofins
Gm19585-ex1 shRNA-R:	AATTCAAAAATCTAAGGTCTAGGGTCTTACTCGAGTAAAGAC	Eurofins

	CCTAGGACCTTAGA	
Gm19585-ex2 shRNA-F:	CCGGGGACTTGCTTACCGTCTAAACTCGAGTTAGACGGGTAA GCAAGTCCTTTTG	Eurofins
Gm19585-ex2 shRNA-R:	AATTCAAAAAGGACTTGCTTACCGTCTAAACTCGAGTTAGAC GGGTAAGCAAGTCC	Eurofins
Gm19585-ex4 shRNA-F:	CCGGAGCAGAGTCATTTACTTATTACTCGAGTAATAAGTAAATGA CTCTGCTTTTTG	Eurofins
Gm19585-ex4 shRNA-R:	AATTCAAAAAAGCAGAGTCATTTACTTATTACTCGAGTAATAAGT AAATGACTCTGCT	Eurofins

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855 **Figure Legends**

856 **Figure 1: Expression of SATB1-venus reporter during T cell development and**
857 **activation. A,** Schematic shows *Satb1*-Venus gene locus in *Satb1*^{Venus} knockin mice.
858 **B,** Dotplots show flow cytometry gating strategies to define the following thymocyte
859 populations: preselected CD24^{hi}CD69⁻TCR β ⁻ (1) and CD24^{hi}CD69⁻TCR β ^{lo} (2)
860 thymocytes; post-selected CD24^{hi}CD69⁺TCR β ^{mid} (3) and CD24^{hi}CD69⁺TCR β ^{hi} (4)
861 thymocytes; and mature CD24^{lo}TCR β ^{hi} (5) thymocytes of *Satb1*^{+/Venus} mice. Left
862 histograms show SATB1-Venus expression in thymocyte populations 1,2,3,4 and 5 of
863 *Satb1*^{+/Venus} mice. Numerical values indicate SATB1-Venus MFI (mean fluorescence
864 intensity) (n = 3 mice for each genotype). **C,** Histograms show SATB1-Venus
865 expression in conventional CD4⁺CD25⁻ versus regulatory CD4⁺CD25⁺ mature
866 thymocytes of *Satb1*^{+/Venus} mice. Numerical values indicate SATB1-Venus MFI (n = 3
867 mice for each genotype). **D, E,** Left histograms show expression of SATB1-Venus in
868 splenic B cells (B220⁺TCR β ⁻), T cells (B220⁻TCR β ⁺), CD4 T cells (TCR β ⁺CD4⁺CD8 α ⁻)
869 and CD8 T cells (TCR β ⁺CD4⁻CD8 α ⁺) of *Satb1*^{+/Venus} mice (D). Right two histograms
870 show SATB1-Venus expression in CD4 or CD8 T cell subpopulations: CD62L^{hi}CD44^{lo}
871 naïve, CD62L^{hi}CD44^{hi} central memory and CD62L^{lo}CD44^{hi} effector memory T cells
872 from *Satb1*^{+/Venus} mice (E). Numerical values indicate SATB1-Venus MFI (n = 4 mice for
873 each genotype). Data from E are summarised in the adjacent graph. **D,** Left contour
874 plot shows SATB1-Venus and CD62L expression in intraepithelial TCR β ⁺ T cells (IET)
875 of *Satb1*^{+/Venus} mice, and right contour plots show CD4 and CD8 α expression in -
876 CD62L⁻ SATB1-Venus^{lo} and CD62L⁺SATB1-Venus^{hi} cells. (n = 3 mice for each
877 genotype). **E,** Histograms shows SATB1-Venus expression in *in vitro* differentiated
878 CD4 T_H0, T_H1, T_H2, T_H17 and iT_{Reg} cells generated from *Satb1*^{+/Venus} mice. (n = 3 mice
879 for each genotype). Data are summarised in the adjacent graph, from at least 3

880 independent experiments Statistics were calculated by 2-way ANNOVA Tukey's
881 multiple comparisons: * p -<0.05, ** p -<0.01, *** p -<0.001.

882 **Figure 2: Analyses of *Satb1-a* and *Satb1-b* function in regulating *Satb1*
883 expression. A,** ATAC-seq signals in *Satb1*, and in upstream genomic regions
884 transcribing *Gm20098* and *Gm19585* in various murine T cell populations. Red dashed
885 boxes highlight genomic regions, *Satb1-a* and *Satb1-b*, that show ATAC-seq signals in
886 thymocytes and T cells. *Satb1-a* and *Satb1-b* are evolutionarily conserved and located
887 near regions transcribing *Gm19585* and *Gm20098* respectively. **B,** Histograms show
888 SATB1-Venus expression in splenic CD4 or CD8 T cell subpopulations (1.
889 CD62L^{hi}CD44^{lo} naïve, 2. CD62L^{hi}CD44^{hi} central memory and 3. CD62L^{lo}CD44^{hi} effector
890 memory T cells) from *Satb1*^{+/Venus}, *Satb1*^{+/Venus-Δa} and *Satb1*^{+/Venus-Δb} mutant mice.
891 Numerical values indicate SATB1-Venus MFI (mean fluorescence intensity). Graph
892 shows quantification of SATB1-Venus MFI in splenic CD4 and CD8 T cell
893 subpopulations (n = 4 mice for each genotype). Statistics were calculated by 2-way
894 ANNOVA Tukey's multiple comparisons; * p -<0.05, ** p -<0.01, *** p -<0.001. **C.**
895 Histograms show SATB1-Venus expression in *in vitro* differentiated CD4 T_H0, T_H1, T_H2,
896 T_H17 and iT_{Reg} cells, generated from *Satb1*^{Venus-Δa} (top) and *Satb1*^{Venus-Δb} (bottom)
897 mutant mice (n = 2 mice for each genotype). Graph shows quantification of SATB1-
898 Venus MFI. Data are summarised from 2 independent experiments. **D,** qRT-PCR
899 analysis of *Satb1* and *Gm19585* expression in *Satb1*^{+/+} and *Satb1*^{Δa/Δa} CD4 T_H0, T_H1,
900 T_H2 cells (n = 4 mice for each genotype) . Statistics were calculated by unpaired T test;
901 * p -<0.05, ** p -<0.01, *** p -<0.001.

902

903 **Figure 3: *Satb1-a* interacts with *Satb1* promoter and is bound by STAT6. A,**
904 Graphs show qRT-PCR analyses of *Gm19585* and *Satb1* expression in CD4 T_H2 cells

905 transduced with *pLKO-GFP-empty*, *pLKO-Gfp-Gm19585-1*, *pLKO-Gfp-Gm19585-2*, or
906 *pLKO-Gfp-Gm19585-4* shRNAs expressing vectors (n = 2 mice for each genotype). **B**,
907 Heatmaps show contact matrices of chromosome 17 from murine embryonic stem
908 (mES) cells (top) versus CD4 T_H2 (bottom). The location of *Satb1-exon1* and *Satb1-a*
909 are pinpointed by black solid lines. **C**, Genome browser ChIP-seq tracks shows binding
910 of STAT6 to the *Satb1-a* in murine CD4 T_H2 cells. ATAC-seq signals in colonic Tregs is
911 shown as a reference. Two putative STAT6 binding motifs within the *Satb1-a* region
912 are indicated as ovals.

913

914 **Figure 4: Analyses of *Satb1-Eth2* (*Satb1-a*) in CD4 T_H2 differentiation and**

915 **function *in vitro*.** Intracellular expression of IL-4 and IL-5 (**A**) and their concentrations

916 in culture supernatants (**B**) from PMA and Ionomycin stimulated *Satb1^{+/+}* and

917 *Satb1^{ΔEth2/ΔEth2}* *in vitro* differentiated T_H0 and T_H2 cells (n = 3 mice for each genotype).

918 and are summarised in the adjacent graphs. Statistics were calculated by unpaired T

919 test; *p<0.05, **p<0.01, ***p<0.001.

920

921 **Figure 5: *Satb1-Eth2* functions to regulate SATB1 expression in CD4 T_H2 cells**

922 **and activated ILC2s *in vivo*.** **A**, Histograms show SATB1-Venus expression in BAL

923 CD4⁺ T cells (CD45⁺TCR β ⁺CD4⁺), in lung CD4 T_H2 cells

924 (CD45⁺TCR β ⁺CD4⁺GATA3⁺ST2⁺) and ILC2s (CD45⁺TCR β ⁺CD4⁺GATA3⁺ST2⁺) of naïve

925 and A.A. treated *Satb1^{+/+}*, *Satb1^{+/Venus}* and *Satb1^{+/Venus-ΔEth2}* mice on day 7 (at least n = 3

926 mice for each genotype). Graphs summarise SATB1-Venus expression in those cells

927 from A.A. treated *Satb1^{+/+}*, *Satb1^{+/Venus}* and *Satb1^{+/Venus-ΔEth2}* mice on day 7. **B**, Dot plots

928 show frequencies of eosinophils in BAL of naïve (*Satb1^{+/+}*) and A.A. treated *Satb1^{+/+}*

929 and *Satb1^{ΔEth2/ΔEth2}* mice on day 7. Graphs below summarise eosinophil numbers and

930 IL-5 concentration in BAL of naïve (*Satb1*^{+/+}) and A.A. treated *Satb1*^{+/+} and
931 *Satb1*^{ΔEth2/ΔEth2} mice on day 7 (n = 3 mice for each genotype). **C**, Contour plots show
932 intracellular expression of IL-4 and IL-5 in PMA and Ionomycin stimulated lung CD4
933 T_H2 cells and ILC2s, from A.A. treated *Satb1*^{+/+} and *Satb1*^{ΔEth2/ΔEth2} mice on day 10.
934 Adjacent graphs show the frequencies of IL-4⁺IL-5⁻, IL-4⁺IL-5⁺ and IL-4⁻IL-5⁻
935 subpopulations in PMA and Ionomycin stimulated lung CD4 T_H2 cells and ILC2s from
936 A.A. treated *Satb1*^{+/+} and *Satb1*^{ΔEth2/ΔEth2} mice on day 10 (n = 3 mice for each genotype).
937 Statistics were calculated by unpaired T test; *p<0.05, **p<0.01, ***p<0.001.

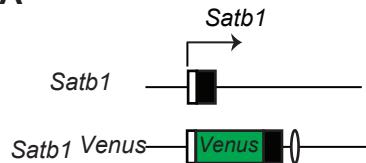
938

939 **Figure EV1: Generation and characterisation of *Satb1*^{Venus} knockin mice. A,**
940 Schematic shows the strategy to generate *Satb1*^{Venus} allele by homologous
941 recombination in mouse ES cells. Structures of *Satb1* gene, a targeting vector and
942 targeted *Satb1*^{VenusN} are indicated. Neomycin resistance (*neo*^r) gene was removed in
943 ES cells by transient transfection of expression vector encoding Cre recombinase. **B**,
944 Result of genomic PCR to identify ES clone (11-7) that underwent homologous
945 recombination event P; positive control, N; Wildtype. **C**, Immunoblot analysis shows
946 expression of SATB1-Venus protein in thymocytes of *Satb1*^{+/Venus} mouse. **D**,
947 Representative Image of fluorescent microscopy of thymocytes from *Satb1*^{+/Venus} mice **E**,
948 Dot plots show frequencies of mature thymocytes (CD24^{lo}TCRβ^{hi}, top panel) and their
949 CD4/CD8 expression patterns (bottom panel) from *Satb1*^{+/+}, *Satb1*^{Venus/Venus} and
950 *Satb1*^{Flx/Flx} CD4-Cre mice. Frequencies of mature CD4-SP and CD8-SP thymocytes
951 from *Satb1*^{+/+} and *Satb1*^{Venus/Venus} mice are summarised in the adjacent graph (n = 3
952 mice for each genotype). **F**, Top histograms show expression of SATB1-Venus in CD4⁻
953 CD8⁻ DN, CD4⁺CD8⁺ DP, CD24^{lo}TCRβ^{hi}CD4⁺CD8⁻ mature SP and CD24^{lo}TCRβ^{hi}CD4⁻
954 CD8⁺ mature SP thymocytes of *Satb1*^{+/Venus} mice. Bottom histograms show expression

955 of SATB1-VENUS in DN1 ($CD44^+CD25^-$), DN2 ($CD44^+CD25^+$), DN3 ($CD44^-CD25^+$) and
956 DN4 ($CD44^-CD25^-$) thymocytes from *Satb1*^{+/Venus} mice. Numerical values indicate
957 SATB1-VENUS MFI (n = 3 mice for each genotype). **G**, Graph shows quantification of
958 SATB1-Venus MFI in DN, preselected DPs (populations 1,2 shown in Figure 1B), post
959 selected DPs (populations 3,4 shown in Figure 1B), mature CD4 SP, mature CD8 SPs,
960 mature $CD4^+CD25^-$ and regulatory $CD4^+CD25^+$ thymocytes (n = 3 mice for each
961 genotype). Statistics were calculated by 2-way ANNOVA Tukey's multiple
962 comparisons: *p-<0.05, **p-<0.01, ***p-<0.001. **H**, Histograms show expression of
963 SATB1-Venus in thymic invariant NKT (aGalcer⁺TCR β ^{mid}) and $\gamma\delta$ T cells ($CD4^-CD8\alpha^-$
964 TCR β^- TCR $\gamma\delta^+$). Graph below shows quantification of SATB1-Venus MFI in thymic iNKT
965 and $\gamma\delta$ T cells from *Satb1*^{+/Venus} mice (n = 3 mice for each genotype). Statistics were
966 calculated by paired T-test; *p-<0.05, **p-<0.01, ***p-<0.001.

967

968 **Figure EV2: Analyses of *Satb1-a* and *Satb1-b* function in regulating *Satb1***
969 **expression during T cell development.** **A**, Histograms show comparative expression
970 analyses of *Satb1* versus *Gm1958* (left) and *Gm20098* (right) in various murine T cell
971 subsets. Data are derived from IMMGEN RNA-seq database. **B**, Sequence information
972 of *Satb1-a* and *Satb1-b* regions. Conserved regions is shown as grey (shaded) and the
973 sequences of sgRNAs used to induce their deletions in mice are highlighted in red font.
974 Sequences flanked with asterisks (*) denote genomic regions deleted in *Satb1*^{Venus- Δa}
975 and *Satb1*^{Venus- Δb} mutant mice. **C**, Histograms show SATB1-Venus expression in $CD4^-CD8^-$ DN thymocytes, $CD4^+CD8^+$ DP thymocytes, $CD24^{\text{lo}}TCR\beta^{\text{hi}}CD4^+CD8^-$ mature SP
976 and $CD24^{\text{lo}}TCR\beta^{\text{hi}}CD4^-CD8^+$ mature SP thymocytes of *Satb1*^{+/Venus}, *Satb1*^{+/Venus- Δa} and
977 *Satb1*^{+/Venus- Δb} mutant mice. Numerical values indicate SATB1-Venus MFI. Graph below
978 shows quantification of SATB1-Venus MFI in *Satb1*^{+/Venus}, *Satb1*^{+/Venus- Δa} and
979 *Satb1*^{+/Venus- Δb}


980 *Satb1*^{+/Venus-Δb} thymocytes (n = 3 mice for each genotype). Statistics were calculated by
981 2-way ANNOVA Tukey's multiple comparisons; *p<0.05, **p<0.01, ***p<0.001. **D**,
982 Immunoblot shows SATB1 expression in *Satb1*^{+/+} and *Satb1*^{Δa/Δa} T_H0, T_H1, T_H2 cells
983 differentiated *in vitro* (n = 3 mice for each genotype). **E**, Schematic shows experimental
984 strategy to knockdown *Gm19585* expression. After designing short hairpin (sh) RNA
985 sequences to knockdown exon1-derived (*Gm19585-1-shRNA*), exon2-derived
986 (*Gm19585-2-shRNA*) or exon4-derived (*Gm19585-4-shRNA-4*) transcripts, pLKO-Gfp-
987 *Gm19585-1*, pLKO-Gfp-*Gm19585-2*, or pLKO-Gfp-*Gm19585-4* lentiviral vectors were
988 generated and transduced into *Satb1*^{+/+} CD4 T_H2 cells *in vitro*.

989

990 **Figure EV3: Function of *Satb1-Eth2* (*Satb1-a*) in CD4 T_H2 and ILC2s. A**, Graph
991 shows qRT-PCR analysis of *Satb1* and *Gata3* expression in *in vitro* differentiated T_H0
992 and T_H2 cells of *Satb1*^{+/+} and *Satb1*^{ΔEth2/ΔEth2} mice (n = 3 mice for each genotype). **B**, Dot
993 plots show intracellular expression of IFN-γ and IL-4 expression in PMA and Ionomycin
994 stimulated CD4 T_H0, T_H1, and T_H2 cells from *Satb1*^{+/+} and *Satb1*^{ΔEth2/ΔEth2} mice (n = 4
995 mice for each genotype). Graph shows percentages of IFN-γ⁺ and IL-4⁺ cells in PMA
996 and Ionomycin stimulated *Satb1*^{+/+} and *Satb1*^{ΔEth2/ΔEth2} CD4 T_H0, T_H1, and T_H2 cells (n =
997 4 mice for each genotype). **C**, Graphs show qRT-PCR analysis of *Il-4*, *Il-5* and *Il-13*
998 mRNA level in unstimulated and PMA and Ionomycin stimulated CD4 T_H0, T_H1, and
999 T_H2 cells, from *Satb1*^{+/+} and *Satb1*^{ΔEth2/ΔEth2} mice (n = 3 mice for each genotype).
1000 Statistics were calculated by 2-way ANNOVA Tukey's multiple comparisons; *p<0.05,
1001 **p<0.01, ***p<0.001. **D**, Dot plots show frequency of eosinophils (CD45⁺CD11C⁻
1002 SiglecF⁺) in bronchial alveolar lavage (BAL) of naïve (Day 0) and A.A. treated
1003 *Satb1*^{+/Venus} mice on day 4, 7 and 10. Adjacent graph summarises eosinophil
1004 frequencies in BAL of A.A. treated *Satb1*^{+/Venus} mice on day 4, 7 and 10. **E**, (left)

1005 Histograms show SATB1-Venus expression in lung CD4 T_H2 (CD45⁺CD4⁺GATA3⁺ST2⁺,
1006 top) and ILC2s (CD45⁺CD4⁺GATA3⁺ST2⁺, bottom) of naïve (Day 0) and A.A. treated
1007 *Satb1*^{+/Venus} on day 4, 7 and 10. (right) Graphs summarise SATB1-Venus expression
1008 levels in lung CD4 T_H2 and ILC2 of A.A. treated *Satb1*^{+/Venus} mice on day 4, 7 and 10. F,
1009 Histograms show quantification of SATB1-Venus MFI in *in vitro* activated ILC2s from
1010 *Satb1*^{Venus/Venus} and *Satb1*^{Venus-ΔEth2/Venus-ΔEth2} mutant mice. Data are summarised in the
1011 graph below (n = 3 mice for each genotype). Statistics were calculated by unpaired T
1012 test; *p-<0.05, **p-<0.01, ***p-<0.001.

1013

A**B**

Pre-selected and Post-selected thymocytes: gating

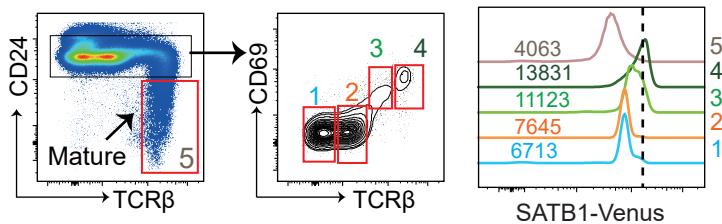
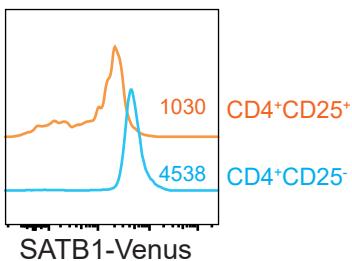
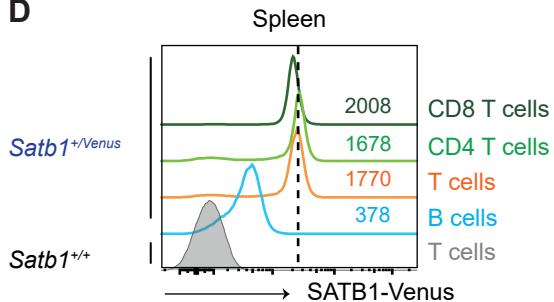
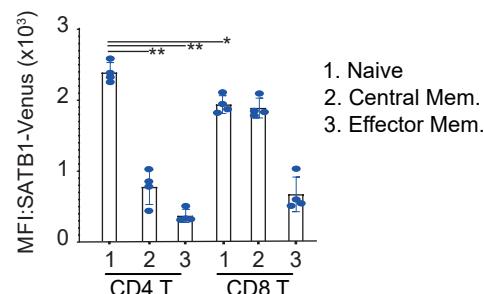
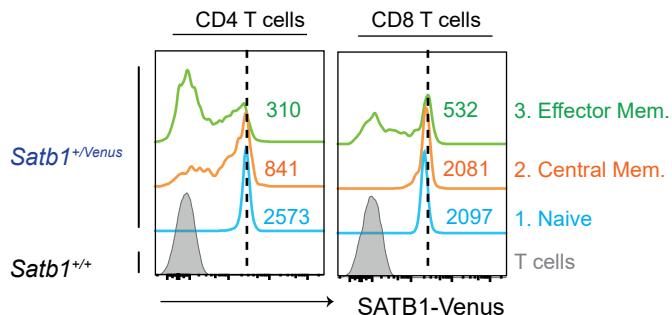
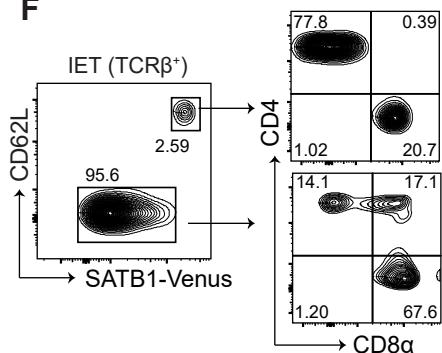
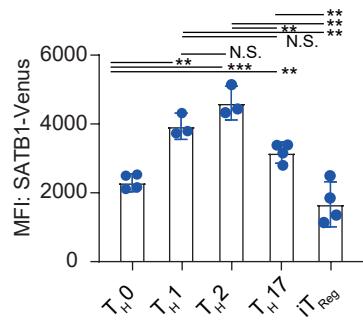
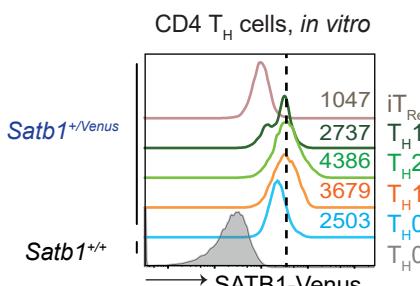








C *Satb1*^{+/+Venus}, Thymus**D****E****F****G**

Figure 1

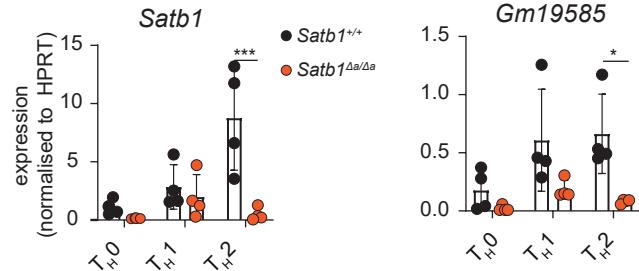
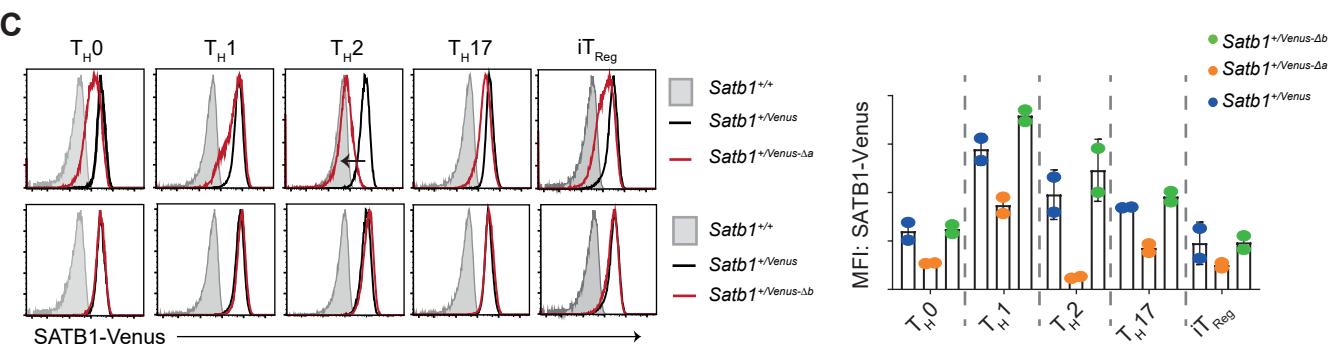
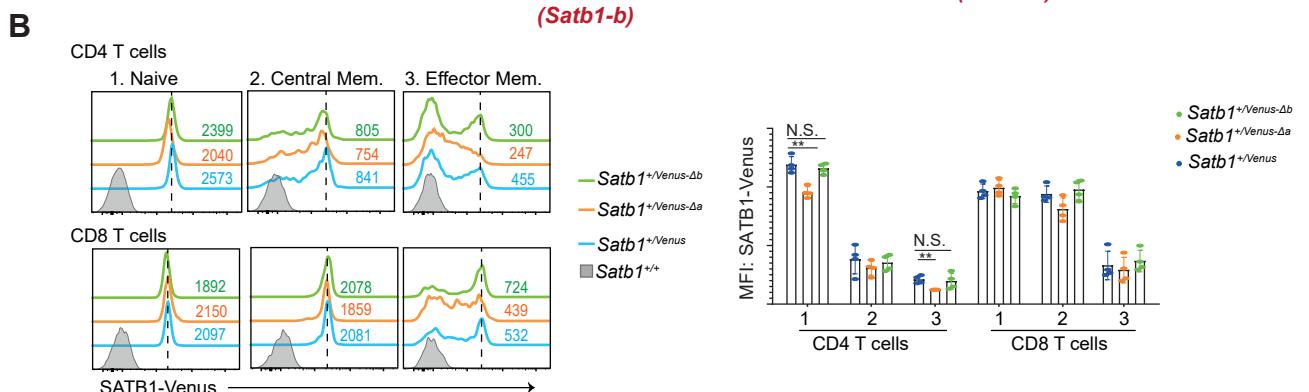
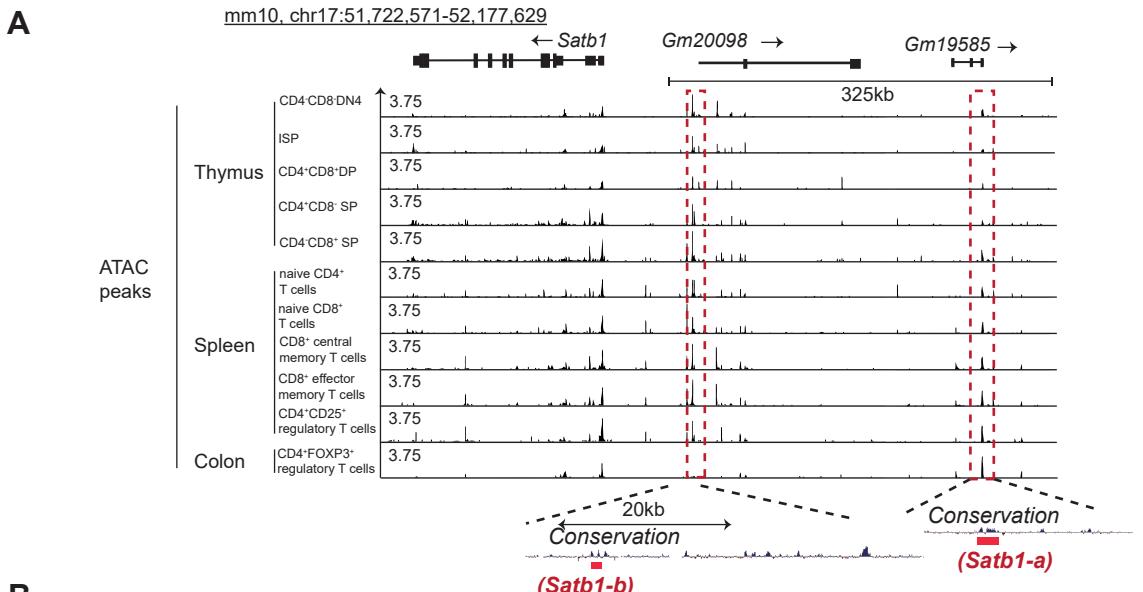





Figure 2

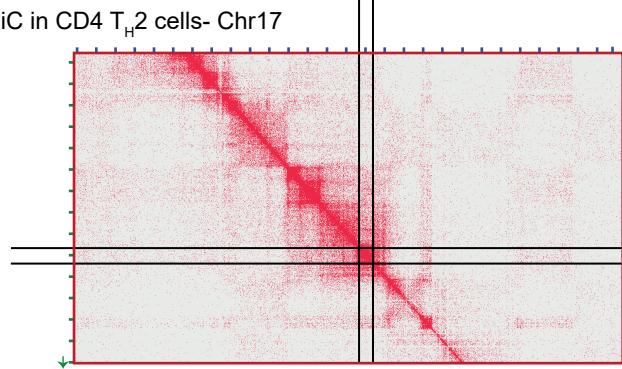
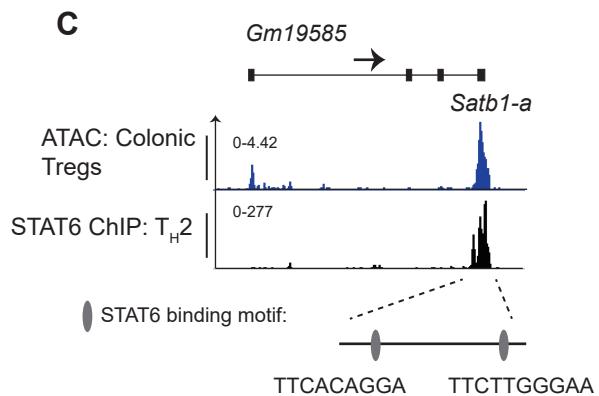
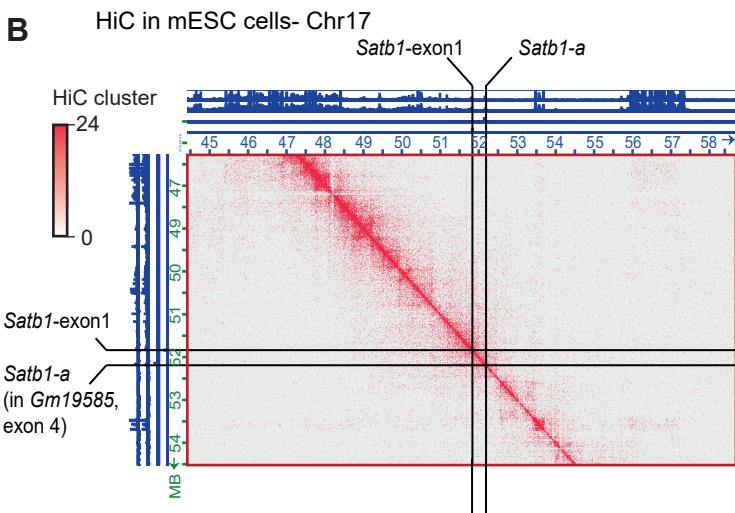
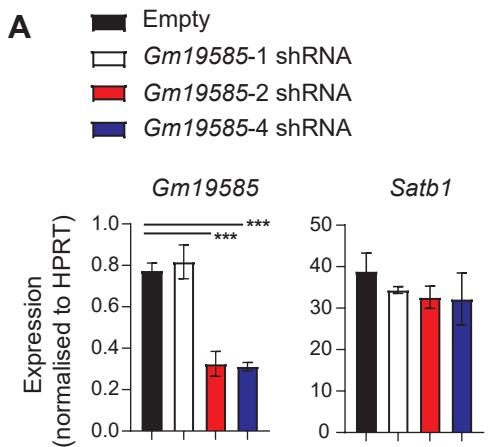
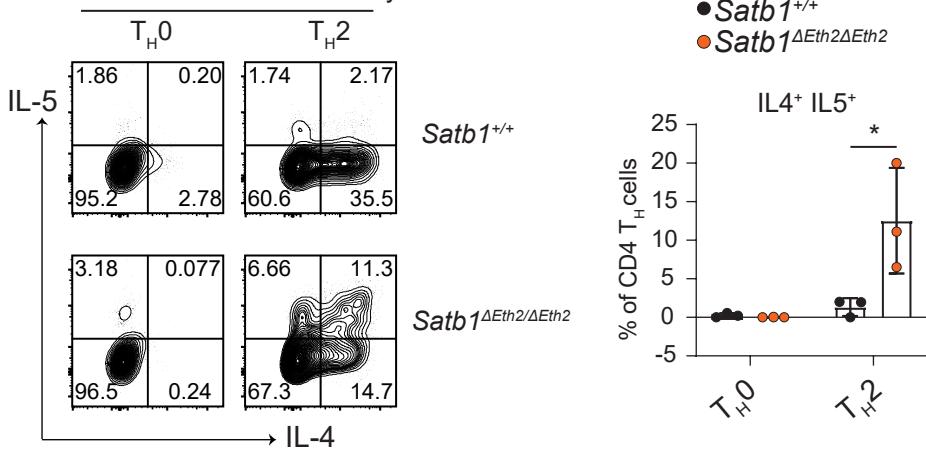
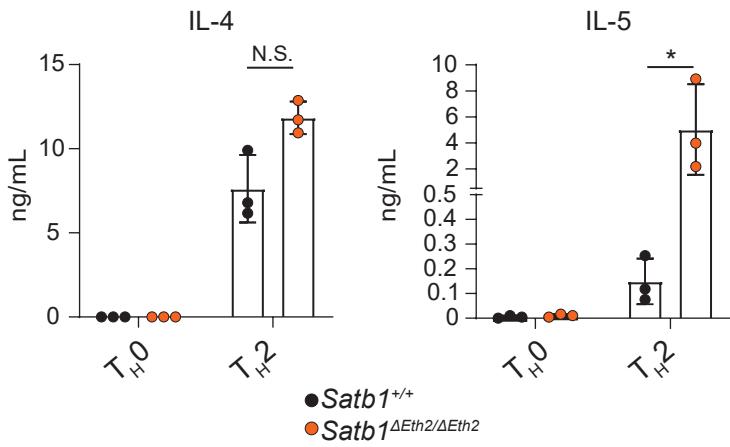
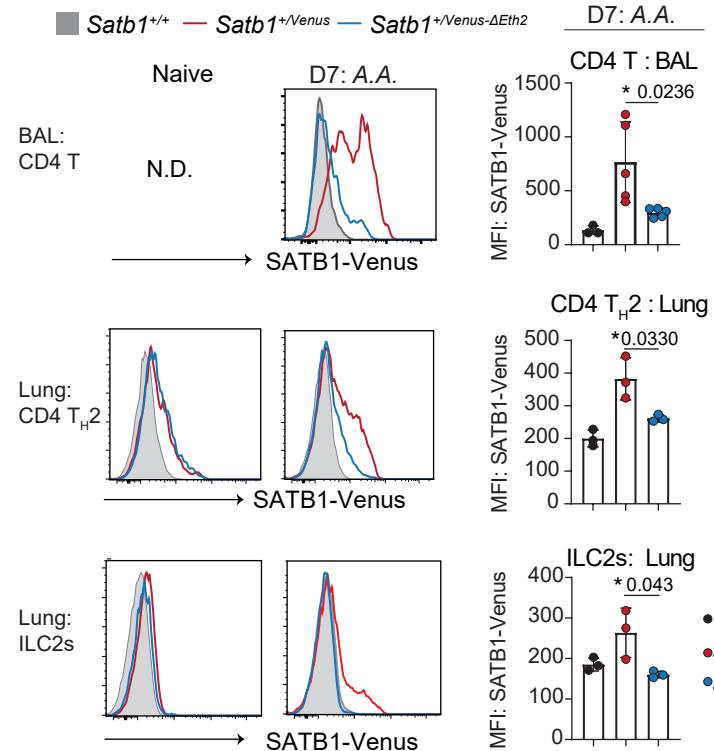
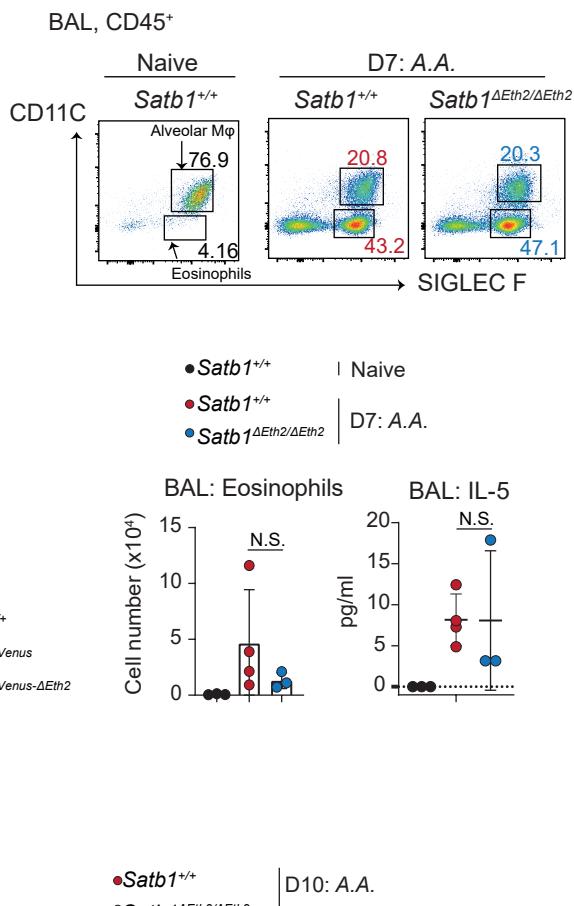
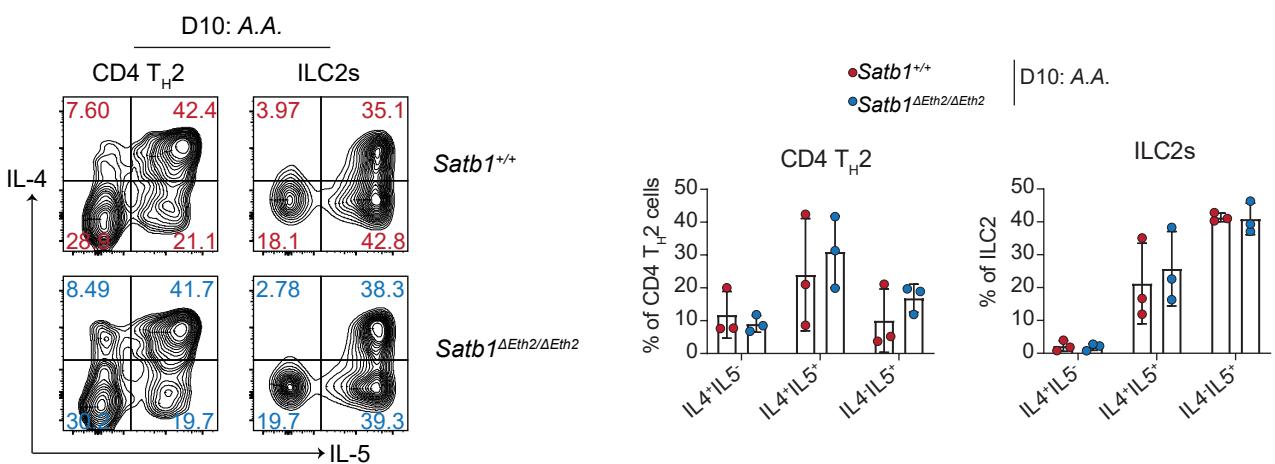
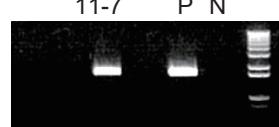
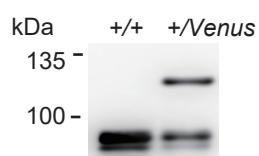
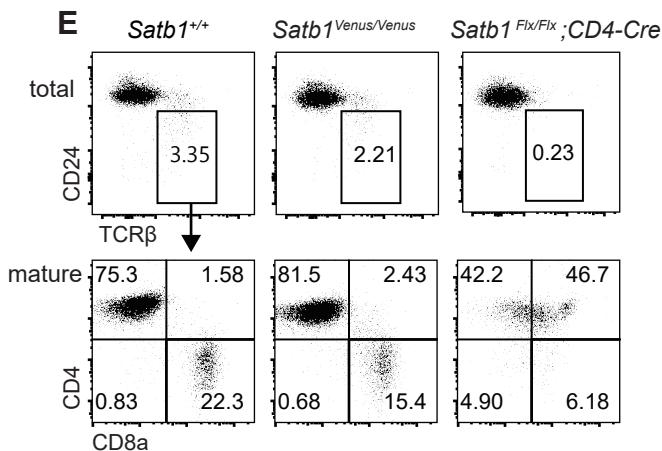
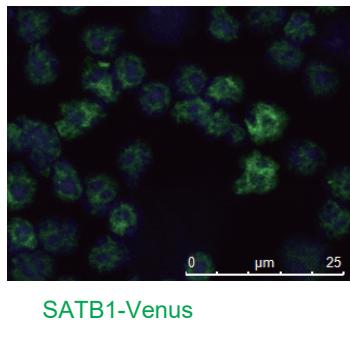
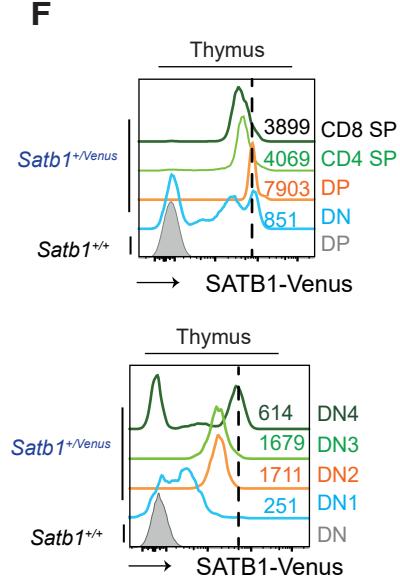
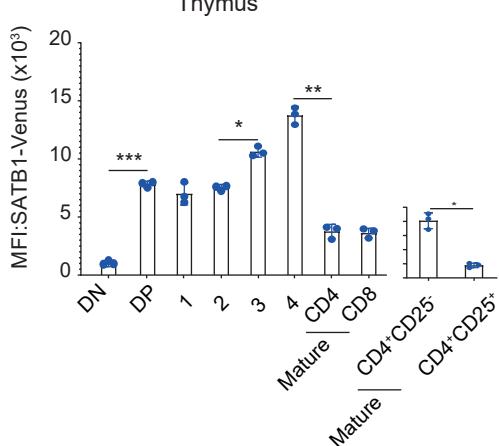





Figure 3

A

Treatment with PMA + Ionomycin

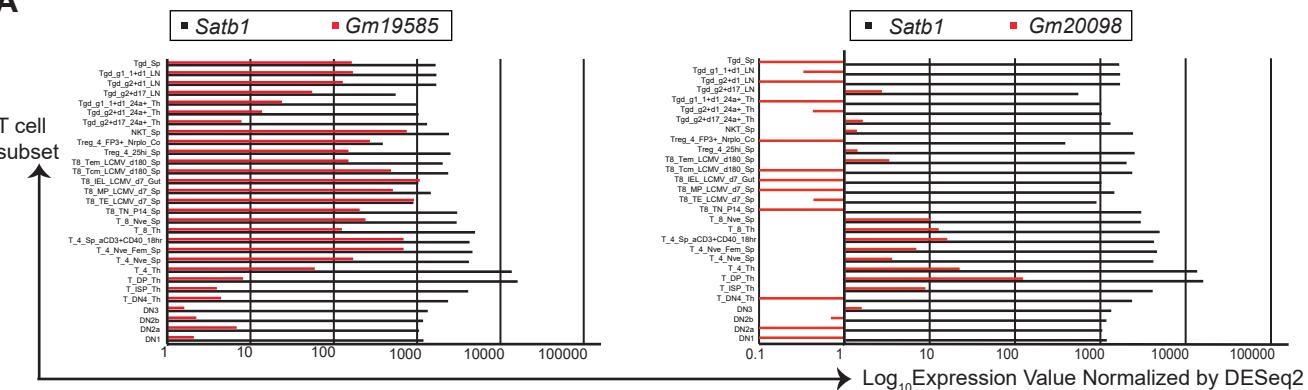
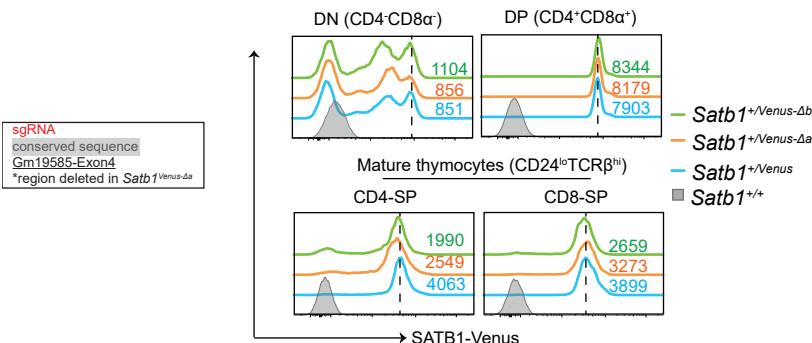
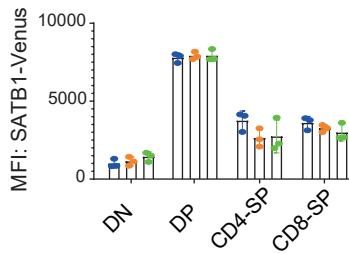
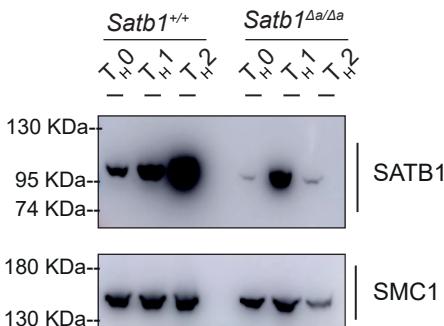
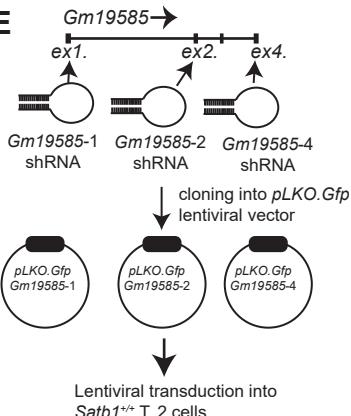

B

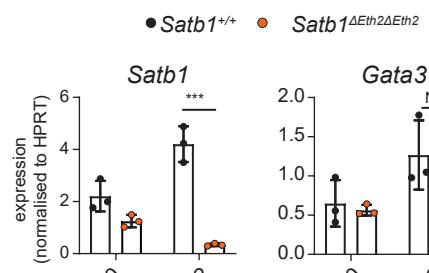
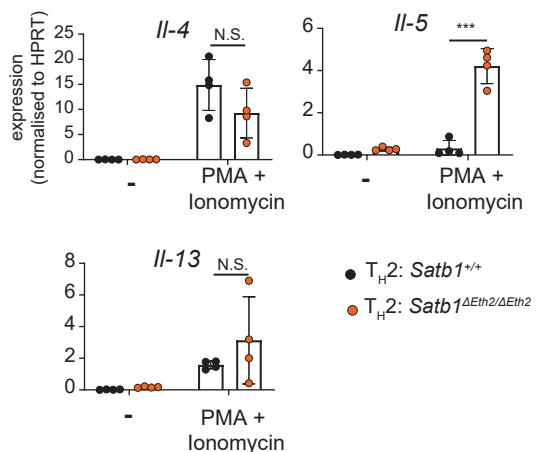
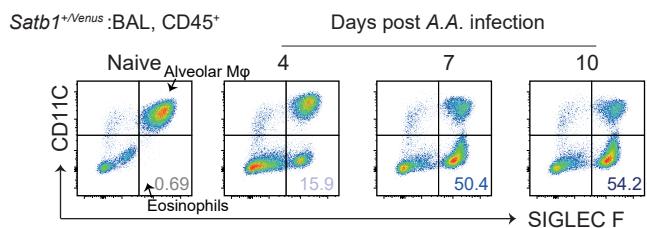
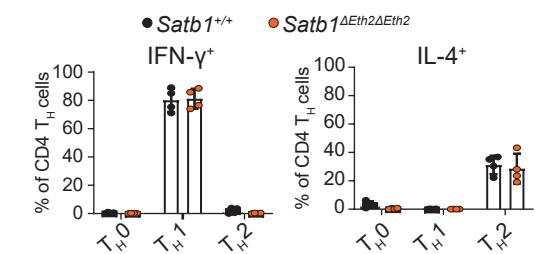
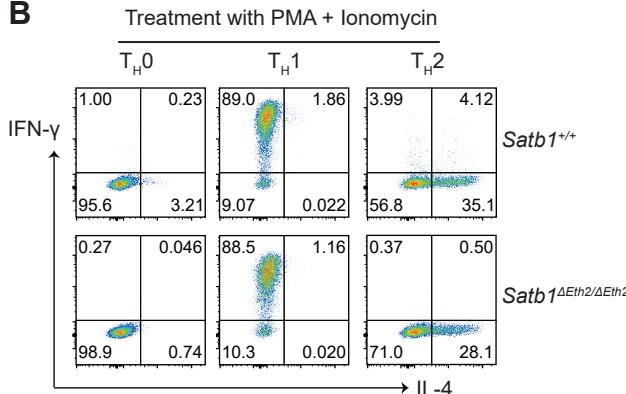
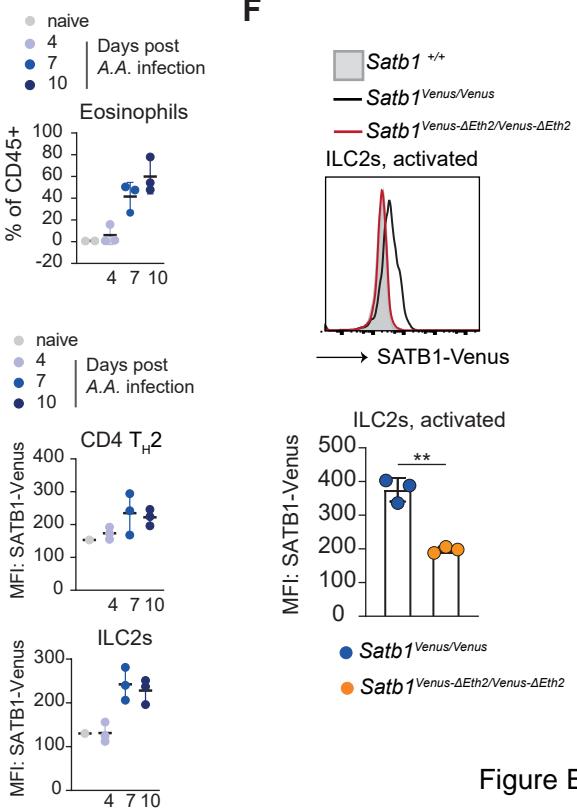
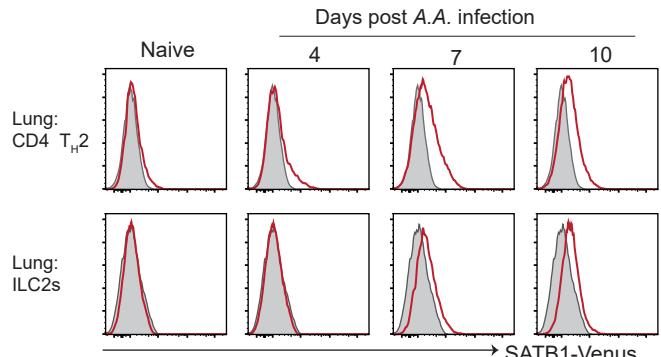
Figure 4

A**B****C****Figure 5**


A**B****C****D****F****G****H****Figure EV1**

A**B*****Satb1*-a**




TGCTTCCCTGTAGGTCTTGTATCACAACCTGGACCTGGATTAAGGTGTTCG
CATGTAAAGAATGGTGTCTTCAAGAGGGTTAGGGCAATTGCGAGAAATTG
 TTTATAGAAGGAAGAATGAGGAGGGTGTCTGGTGAAGGCCACACA
 AATTGACAGAACAGCTTCATCAGTTGATGATCTGTTCTGCAATTCTG
 TCAGATCTTATCTGGGAAAAAAATGATCAGCAATAGTATTAAAGGACTTGAC
 TTTTCTCTTTAAAAAAACAAAACAACACCCCGAGAAAACCTGAGGAGAC
 ATTGTCACAGCTGGAATGGAGGAGGAGTGTGCTGGAGAAGGAGACTGCTG
 GGGGAGGAGGAGGGGGTGCACATGGCGACCGAAGTGGAAAGGAGATGCGAG
 TTCTGAGACTAAAGAACACTGAAATAGTGTACTCTTTAAATATCAGTGA
 ACCACAGCTGATGTACTCTGATCACCGCTGATGTCAGGTGCTGTGAG
 ATAACAGCTTCTTGCATTCAGCGCTCTGCACTGGAAAGACCTTCA
 GTTGACTGTGGGGATGCTCATCAAGAAAACCTCAGGGGACACAA
 CACATGATGGAGGAGGACCGAAAACCTCTGGGGAGACATAAGGGGAAA
 GAAAAGTGTAACTTAATTTAAACACATGAAGAACGAGCTTACTTAC
 GGAAGGAGCTTCAACACACAGCTGAGACTGGTCTCTTAAAGAATG
 ACAACCGCTGAGTCCACCA**AGTCAACATCAGATTCT**GGGGAAATGCC








***Satb1*-b**

TTTTTCCCTGCTCAGCAAATAAAACGAGGTCTTACATGTTGAAAGATGCTGGGT
 TAAATATGAGGAGAAACTAATGTTTGTCTTATGTCCTCTGTTCTCTGTT
 CCTCCCCCCCA**ACACACACTGTCCTGTC**CTTCAATGAACTGATTGATTGTC
 TGCTTCAAGACGCTGTCGATTCTCTGATAACTGTTAAGACCCAGAGGTTCTCA
 TTGTTGATCTGCTTCTGATGTCCTCACAGCTATACTCTTCTTCTCTGATT
 GTAGACCCCTAAACTTTTACATGCTGCAAGACCCAAATGTTAGTACTGCCT
 CACGGAGGTACGTCCTGTCGCAATGTTTACACAAAACATTGTAATCCCC
 ATTCTTGGCTTCTCTGGGGGATCACCTTCTGAAAGGGATGGATCATCCCA
 GTTGCTGCAAGCCACATGCTCTTAAAGAACAGGGTTAACGCTTGG
 TCACTTCTGGTGTGTCATCTGAGCTGAGGAGCAGCTGTTGAAAGAAGGTG
 CAGGGTATTCTACAGGGTAGGGAGGAGCTGTCAGTACATACAGCACTATGGAA
 TGTAAAGCCCTAAACCTTCACTTCTGCTCTGGTCAAGATTTGACCTGGCAC
 AGGAATAAGAACCTTCACTTCTCTCAAGTGAGCTCAAAAGTCAAA
 CTAAAAAAATTAATTAATAGTCTTCACTTCTGCTCTGGTCAAGAACAAAACA
 GTTGATGGTTTCAAGATGGTCAAGGGGGTACCCAAAATTTCA
 CACTCAGGGTCTCATCTGAGCTGAGCTGCTTAAAGTAACAAAGAGGGA
 AGGAACAGCAGCTGTATGTAATGGTCTCCATCTGGTCTTAAAGAAGGCTGAA
 CTTGACCTTCAAGGGTCAAGAGTCAACCAACTTTAAAGAATTAATTTAAAT
 TTTAATGAGACAGTATAACGACTCTCAAACAAAAGACTGTTTTAAAG
 TAATGAGTAAAGAACAAAACCTTAAAGAAGAACACTAACACTAAAGATGAA
 AGTCTGTCCTCATCCTCATCCAAAGGAGGCCAGTGCCTGCTTACATATC
 CCCACAGAGTTACACTCATGATCTGCTTACAAGT

C

- *Satb1* $^{+/-}$ *Venus*-*Δb*
- *Satb1* $^{+/-}$ *Venus*-*Δa*
- *Satb1* $^{+/-}$ *Venus*

D**E****Figure EV2**

A**C****D****B****F****E****Figure EV3**