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Abstract

Multi-omics analyses are increasingly employed in microbiome studies to obtain a holistic view
of molecular changes occurring within microbial communities exposed to different conditions.
However, it is not always clear to what extent each omics data type contributes to our
understanding of the community dynamics and whether they are concordant with each other.
Here we map the molecular response of a synthetic community of 32 human gut bacteria to
three non-antibiotic drugs by using five omics layers, namely 16S rRNA gene profiling,
metagenomics, metatranscriptomics, metaproteomics, and metabolomics. Using this
controlled setting, we find that all omics methods with species resolution in their readouts are
highly consistent in estimating relative species abundances across conditions. Furthermore,
different omics methods complement each other in their ability to capture functional changes
in response to the drug perturbations. For example, while nearly all omics data types captured
that the antipsychotic drug chlorpromazine selectively inhibits Bacteroidota representatives in
the community, the metatranscriptome and metaproteome suggested that the drug induces
stress responses related to protein quality control and metabolomics revealed a decrease in
polysaccharide uptake, likely caused by Bacteroidota depletion. Taken together, our study
provides insights into how multi-omics datasets can be utilised to reveal complex molecular

responses to external perturbations in microbial communities.
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Introduction

The human gut microbiota is a complex community of microorganisms, which is affected by
endogenous and environmental factors such as host genotype, diet, drug treatment, and
disease status, and in turn influences host health and disease progression (Kau et al, 2011;
Cho & Blaser, 2012; Cani, 2018; Durack & Lynch, 2018; Schmidt et al, 2018; Lindell et al,
2022). Currently, insights into structure and function of the microbiota community mainly come
from 16S rRNA gene profiling and shotgun metagenomics. While 16S rRNA amplicon
sequencing offers a cost-efficient way to assess bacterial abundance at a higher taxonomic
level, whole-genome shotgun metagenomics resolves abundance of species and strains,
together with the functional potential they encode (Quince et al, 2017; Almeida et al, 2019;
Pasolli et al, 2019). In addition, gene and protein expression and metabolite abundance in the
community can be quantified with metatranscriptomics (Bashiardes et al, 2016),
metaproteomics (Zhang & Figeys, 2019) and metabolomics (Zierer et al, 2018; Han et al,
2021), respectively. Ultimately, the combination of these methods should enable integration
of the major molecular layers of the cell, resulting in a more complete picture of the microbiome
(Jansson & Baker, 2016; Heintz-Buschart & Wilmes, 2018). Several studies have shown how
a combination of two or more of these omics methods could lead to novel insights regarding
the dynamics and inner workings of a microbial community (Heintz-Buschart et al, 2016; Lloyd-
Price et al, 2017; Salazar et al, 2019; Taylor et al, 2020). While multi-omics measurements
provide information across molecular layers, their comprehensive integration remains
challenging. One challenge is the limited knowledge about the concordance of different
measurements in complex in natura settings in the absence of ground truth. Another challenge
in comparing and integrating multi-omics datasets is the difference in their dynamics in
response to perturbations. Whereas metabolite changes occur on a time scale of seconds,
transcriptional changes usually occur on a time scale of minutes, while protein abundance
changes take the longest to respond to a perturbation (Gerosa & Sauer, 2011; Choi et al,
2020).

Synthetic microbial communities have been increasingly used to obtain a better understanding
of the dynamics and species—species interactions (Goldford et al, 2018; Cheng et al, 2021).
Compared to a natural gut microbiota, these synthetic communities have lower complexity,
higher controllability and reproducibility, and a well-defined composition at the strain level, at
the cost of being simplified representations of natural ecosystems (Roy et al, 2014; Weiss et
al, 2022; Aranda-Diaz et al, 2022). Yet, they do offer advantages over single species studies,
as single species’ behaviour can significantly differ in mono-culture compared to co-culture
(D’hoe et al, 2018).
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81  The complex interactions between the gut microbiota and non-antibiotic drugs have been
82 elucidated from large-scale human studies and high-throughput laboratory experiments
83 (Rizkallah & Aziz, 2010; Forslund et al, 2015; Spanogiannopoulos et al, 2016; Wilson &
84  Nicholson, 2017; Zimmermann et al, 2021; Forslund et al, 2021). This relationship is
85  bidirectional, as drugs can influence microbiome composition (Maier et al, 2018; Jackson et
86 al, 2018; Vich Vila et al, 2020; Vieira-Silva et al, 2020), while the gut microbiota can have an
87  impact on a drug’s efficacy and toxicity by altering its chemical structure (Zimmermann et al,
88  2019a, 2019b; Javdan et al, 2020; Klinemann et al, 2021). The emerging knowledge on drug—
89  microbiota interactions has the potential to influence the future of drug development and
90 personalized medicine (Doestzada et al, 2018; Weersma et al, 2020; Maier et al, 2021;

91 Zimmermann et al, 2021).

92 To systematically assess and compare how multi-omics measurements capture dynamic
93  changes in microbial communities in response to perturbations, we designed a controlled time-
94  course experiment with a synthetic community of 32 human gut representatives (Tramontano
95 et al, 2018) in response to three drugs from diverse indication areas: chlorpromazine
96 (antipsychotic), metformin (antidiabetic) and niclosamide (anthelmintic), which were previously
97  reported to impair growth of several gut bacteria (Maier et al, 2018). We followed the response
98  of the defined community to the three non-antibiotic drugs over four days on the structural and
99  functional levels across multi-omics layers, based on 16S rRNA gene, metagenome,

100  metatranscriptome, metaproteome and untargeted metabolome profiling.

101 Results

102 Establishment of a synthetic community for drug perturbations

103  To investigate microbial community response to drug perturbations in a controlled system
104 across five omics layers, we combined 32 human gut microbiome representatives
105  (Tramontano et al, 2018) and exposed this community to three different non-antibiotic drugs
106  (Figure 1A). The complete experiment was performed twice (run A and run B) as biological
107  replicates, starting from the initial community assembly step from single bacterial cultures.
108  More specifically, seven slow-growing species (inoculated on day 1) were combined with 25
109  fast-growing species (inoculated on day 3) on day 5 to form a synthetic community (Figure 1A,
110  B). In order to ensure stable community composition, we performed three culture passages
111 by growing the mixed culture for 48 hours and transferring 1% of total volume to a fresh culture
112 medium. Samples for 16S rRNA amplicon sequencing were taken immediately after combining
113 the strains (Inoculum mix) and after each passage (Transfer 1 - 3) to evaluate the stabilisation

114  of the community (Figure 1A; top row). We found that in both runs of the experiment the
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115  community reached a stable composition with four highly abundant species after three
116  transfers (relative abundance >10% for Escherichia coli, Clostridium perfringens, Veillonella
117  parvula and Bacteroides thetaiotaomicron, Supplementary Figure 1A). Bray-Curtis
118  dissimilarity index showed that both runs were highly similar after the third transfer

119  (Supplementary Figure 1B, C).
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120 GTDB Phylum: Actinobacteriota Firmicutes_A Bacteroidota Firmicutes_C Proteobacteria Verrucomicrobiota
121 Figure 1. Experimental design and species used in this study. A) Schematic overview of the experimental design. B) Species
122 cladogram constructed by pruning the relevant species from the GTDB species cladogram (release 95).

123 After stabilisation, in each run the community perturbation was performed in duplicate during
124  exponential growth (i.e., five hours after passaging, as determined by optical density
125  measurements on the previous transfer; Supplementary Figure 1D) by addition of one of the
126 following drugs: i) 5 mM metformin, a type 2 diabetes drug, ii) 20 yM chlorpromazine, an
127 antipsychotic drug, or iii) 20 yM niclosamide, an anthelmintic drug (Figure 1A), while DMSO
128 was used as a control. The higher concentration for metformin was based on reported
129  intestinal concentrations, and previous data on metformin amounts sufficient to impair growth
130  of gut microbiota members in vitro (Maier et al, 2018; Bailey et al, 2008b). The communities
131 were sampled right before the addition of the drugs and 15 min, 30 min, 1 h, and 3 h following
132 the drug perturbation (Figure 1A, Supplementary Table 1). These time points were chosen to
133 elucidate the early response of the bacterial community to drug treatment. After 43 h, an
134  additional sample was taken, and the communities were transferred into a fresh culture
135  medium containing the drugs at initial concentrations. A final sample was taken 48 h after this
136 passage (91 hours after the initial drug addition). In general, high correlation was evident

137 between technical replicates within the same omics dataset (Supplementary Figure 2).
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138 Consistency of community composition across omics

139 Measurements

140  We first evaluated similarities and differences between the omics measurements in their ability
141 to estimate species abundance. For sequencing-based omics methods, we performed both
142 naive analyses with commonly used computational pipelines that do not use the information
143  about synthetic community composition (DADA2 for 16S rRNA amplicon sequencing
144  (Callahan et al, 2016), mOTUS v2.5 for metagenomics and metatranscriptomics (Milanese et
145  al, 2019)), and targeted analyses based on mapping to the 32 reference genomes of species
146 comprising our community (Materials and methods). Within each omics method, both
147 computational approaches produced highly similar results (Supplementary Figure 3). As the
148  composition-naive approach only yields genus-level resolution for 16S rRNA sequencing data
149  (Knight et al, 2018), we used the reference genome mapping approach that yields higher
150  resolution for all methods for comparison of community composition across omics types. For
151  consistency, the same methodology (reference genome mapping) was used for
152  metagenomics and metatranscriptomics. For metaproteomics data, we estimated species
153  abundance by summing protein intensities for all proteins assigned to each species and
154  dividing these values by the total protein intensity in each sample, as suggested previously
155  (Kleiner et al, 2017).

156  We compared relative species abundances between all pairs of omics methods except for
157 metabolomics, which by nature represents total metabolite measurements in the community
158  and does not allow to separate compounds by species. Based on correlation analysis, we
159  found the abundance estimates to be highly similar (minimum Spearman correlation coefficient
160 p = 0.78). Congruence was more pronounced for highly abundant species (Figure 2A).
161  Specifically, metagenomics and metatranscriptomics were the most similar of all pairwise
162  comparisons (p = 0.92). Further, 16S rRNA amplicon sequencing showed high similarity with
163  metagenomics for species with relative abundances higher than 0.001% (p = 0.89). However,
164  for several species with low relative abundances, 16S rRNA sequencing provided higher
165  relative abundance estimates compared to metagenomics, while other species, detected by
166  metagenomics, were not detected with 16S rRNA sequencing. For this observation, no clear
167  taxon-specific or condition-specific effect was found (Supplementary Figure 4), indicating that
168  the differences at these low relative abundances are most likely a result of differences in
169  sequencing depth per sample, as has been previously reported (Pereira-Marques et al, 2019;
170  Durazzi et al, 2021). Although metaproteomics is not yet widely used for species abundance
171 estimation, we found the corresponding estimates in good agreement with the other omics

172 methods, but only for species with relative abundance above 1% (p = 0.78 — 0.84; 16 out of
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173 29 species detected across all samples). This indicates that metaproteomics is less sensitive
174  than sequencing-based methodologies for species abundance estimation, as has also been
175  observed for in natura metaproteomics studies (Zhang & Figeys, 2019). Our results show
176 ~ generally high consistency between omics data types in relative species abundance
177 estimations, and underline that metaproteomics can, in principle, provide robust species

178  abundance estimates, at least for synthetic microbial communities, albeit with lower sensitivity.
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180 Figure 2. Comparison of species and feature abundances and functional coverage across omics methods. (A) Scatter
181 plots representing species abundance defined as relative abundance of corresponding omics measurement in each sample. Each
182 dot represents single species abundance in one sample. p - Spearman correlation coefficient. (B) Scatter plots representing gene,

183 transcript or protein abundance linked through KEGG orthology. Each dot represents a single KEGG ortholog in one sample. (C)

184 Left: Genome coverage of each of the omics datasets across samples for each species, right: relative species abundance
185 estimated by metagenomics. The fraction of coverage is defined as the number of genes to which at least one read was mapped
186 (for metagenomics and metatranscriptomics), or the number of detected proteins for metaproteomics divided by the total number
187 of genes in the corresponding genome. (Metagenomics n = 75 samples, metatranscriptomics n = 101 samples and
188 metaproteomics n = 112 samples) (D) KEGG pathway coverage. For the metabolomics dataset, pathway coverage is defined as

189 the number of unique pathway metabolites detected in at least one sample, divided by the total number of metabolites in the
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190 pathway. For metagenomics, metatranscriptomics and metaproteomics, KEGG orthologs are used instead of pathway
191 metabolites. (E) Heatmap of Mantel correlations across omics methods and Spearman correlation between replicates within each
192 omics method.

193 Consistency of functional profiles across omics measurements

194  For each protein-coding gene of each species, we can compare relative abundances across
195  the three molecular layers: gene (metagenomics), transcript (metatranscriptomics), and
196  protein (metaproteomics). We performed such pairwise comparisons both for individual genes
197 across all species (Supplementary Figure 5) and for genes grouped based on KEGG orthology
198  (Kanehisa et al, 2017) (Figure 2B). The correlation between metagenomic and metaproteomic
199  estimates of gene and protein abundances was moderate (p = 0.5 for KEGG grouped features
200 and p = 0.48 for all non-zero genes and proteins). Metatranscriptomics and metaproteomics
201 were the most similar (p = 0.73 for KEGG orthologs and p = 0.60 for transcripts and proteins),
202 followed by metagenomics and metatranscriptomics (p = 0.7 for KEGG orthologs and p = 0.61

203  for genes and transcripts).

204 To systematically assess how much information on the functional level is captured by
205 metagenomics, metatranscriptomics and metaproteomics for different species, we estimated
206 gene and pathway coverage by calculating the proportion of genes or pathways that were
207  detected by each method (Figure 2C and D). We found that 18 out of 32 species had an almost
208 complete coverage (> 90%) in metagenomics, indicating that for these species most of the
209  genes were recovered in all samples measured in this experiment (Figure 2C; in total 101,559
210  out of 103,921 possible protein-coding genes were detected at least once in the
211 metagenomics dataset). This was not the case for 14 low abundant species, for which the
212 average gene content coverage was < 20%. For metatranscriptomics, the coverage was
213 generally lower than for metagenomics (91,094 out of 103,921 possible transcripts detected
214  atleastonce). This is however expected as not all genes are expressed in any given condition.
215  Metaproteomics coverage was found to be much lower than metagenomics and
216 metatranscriptomics (9,144 out of 103,921 predicted proteins). This may be due to the limited
217 dynamic range: In contrast to mass-spectrometry-based measurements, sequencing-based
218  methods include an amplification step that increase the amount of material and makes it
219  possible to cover rare transcripts and genes. For Escherichia coli, the most abundant species
220 in our synthetic community, the maximum coverage of proteins across all samples did not
221 exceed 30% (1,428 proteins out of 4,978 (29%) predicted proteins compared to 4,978 genes
222 out of 4,978 predicted genes (100%) for metagenomics and 4,962 transcripts out of 4,978
223  transcripts (99%) for metatranscriptomics). This result is lower than state-of-the-art single
224  species proteomics experiments where around ~62% (2,586 detected proteins out of 4,189

225  predicted proteins) of bacterial proteins are captured (Mateus et al, 2020), likely due to

7
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226  increased sample complexity in the community context, the increased search space of
227  proteins, and the presence of highly similar protein sequences in homologous proteins (where

228  peptides cannot be unambiguously mapped to one protein).

229  Since metabolomics data reflects the total pools of metabolites in the sample and cannot be
230 analysed at the species level, we assessed the coverage of metabolic pathways defined in
231 the KEGG database and compared it to pathway coverages by other omics methods (Figure
232  2D). For metabolic pathways annotated in bacterial genomes, we observed an average
233  pathway coverage of 35% for metabolomics, as compared to 44% for metaproteomics and
234  86% for metatranscriptomics. Even though direct comparison of both methods is challenging,
235 we believe that the lower coverage for metabolomics has several explanations. First, we
236 measured metabolites in supernatant samples, where rich medium components mask the
237  signal (e.g. amino acids, peptides and polysaccharides), and extracellular products of bacterial
238  metabolism, especially produced by only one or few species, may therefore not be detected.
239  Second, only a subset of all metabolites present in the bacterial cell will be secreted outside
240  of the cell. Third, to calculate metabolic pathway coverage, we assumed that each pathway
241  consists of metabolites that are produced or consumed by metabolic enzymes annotated in
242  bacterial genomes, which is likely an overestimation of pathway sizes, since presence of an
243  enzyme in the genome does not necessarily imply that this enzyme is expressed, and that the

244  corresponding metabolite will be produced and measured extracellularly.

245  To further compare the samples measured with different omics methods, we performed a
246  Mantel test, which measures a correlation coefficient between sample similarity matrices
247  calculated based on each omics data type individually (Figure 2E). For example, while it is not
248  possible to directly compare matrices of species and protein abundances, it is possible to
249  calculate sample similarity matrices for these two methods that can then be compared with
250  each other. Hierarchical clustering of Mantel correlation coefficients revealed two clusters: one
251  containing species abundance data (from metagenomics, metatranscriptomics, and
252  metaproteomics) and gene abundance (metagenomics); and a second cluster containing
253  transcript abundance data (metatranscriptomics), protein abundance data (metaproteomics),
254  and metabolite abundances. The emergence of these clusters can be explained by the nature
255  of data used to calculate sample distance matrices: species and gene abundances in one
256  cluster, and functional feature abundances in the other cluster. Notably, transcript abundance
257  as measured by metatranscriptomics showed a high correlation (=0.57) with sample distance
258  matrices of all other omics measurements, underlining that this method captures both species
259  abundance and functional information in our experiment. Altogether, metatranscriptomics was

260 found to be the most universal and versatile readout, as it can both provide robust and
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261  sensitive estimates of species abundance, and at the same time reflects functional changes,

262  which are in concordance with protein changes detected by metaproteomics.

263 Chlorpromazine treatment strongly affects community
264 Ccomposition

265  After testing the technical consistency between omics measurements in a synthetic microbial
266  community, we explored the impact of drug perturbations on the community composition and
267  the respective responses at species, gene, transcript, protein and metabolite levels. For the
268  control condition and all perturbations (chlorpromazine, metformin and niclosamide), similar
269  dynamic changes in alpha diversity were observed over time. In general, the alpha diversity
270  (inverse Simpson index) increased as the community grew over time after inoculation,
271 however, this increase was lower for chlorpromazine compared to the other drugs and the
272 control condition (Supplementary Figure 6A, B). We observed different community dynamics
273 between runs A and B during the exponential phase: E. coli and C. perfringens were the most
274  abundant species in all conditions in run A (Fig. 3A, Supplementary Figure 6C), while E. coli
275  dominated community composition during exponential phase in run B. However, community
276 ~ compositions became more similar between the runs at 43 h after drug treatment
277 (Supplementary Figure 7). These analyses revealed that the addition of metformin and
278  niclosamide had negligible effects on the community composition, while chlorpromazine

279  treatment shifted the community composition in both runs.

280 To identify differentially abundant species after drug perturbation, we analysed the
281  composition of microbiomes by comparing species abundances in drug-treated samples
282  against control samples estimated by each omics type (Figure 3B) (ANCOM (Mandal et al,
283  2015)). This analysis revealed that most members of the Bacteroidota phylum (Odoribacter
284  splanchnicus, Parabacteroides distasonis, Phocaeicola vulgatus, Bacteroides fragilis,
285  Bacteroides thetaiotaomicron and Bacteroides uniformis) were less abundant in
286  chlorpromazine-treated samples. This reduction in Bacteroidota abundance was detected
287  across all four omics methods capturing community composition, indicating that each of these
288 methods is capable of detecting strong signals of species abundance change. In addition to
289  Bacteroidota, Fusobacterium nucleatum was found to be less abundant in chlorpromazine-
290 treated samples. In contrast, the other two drugs did not cause major shifts in relative
291 abundances: although ANCOM test identified significant changes of abundance of several
292  species, their relative abundance was not changing more than two-fold (Figure 3B). In
293  summary, we found a consistent and substantial depletion of species belonging to the phylum

294  Bacteroidota upon chlorpromazine treatment.
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296 Figure 3. Changes in community composition upon drug perturbation. (A). Relative species abundance changes over time
297 in the three drug conditions and control. Time 0 indicates timepoint of the drug addition 5 h after the passage in the fresh medium.
298 Relative abundance measured from metagenomics data. (B). Left, distribution of relative species abundance for each species
299 across all samples (all conditions and timepoints). Right, heatmap of species abundance fold changes measured by different
300 omic methods for each drug condition versus control. Significance of changes estimated by the ANCOM test is indicated by
301 asterisks: * changes detected at 0.7 threshold of W statistic; ** changes detected at 0.8 threshold; *** changes detected at 0.9
302 threshold; nd — not detected.

s Multi-omics measurements capture functional response of the

304 community to all three drugs

305 As compositional shifts do not provide information on the mechanisms of response of each
306 community member, we investigated these functional responses in more detail by performing
307  differential analysis of metatranscriptomic, metaproteomic and metabolomic datasets after a
308  normalization step wherein taxonomic abundance effects were reduced (see “Gene, transcript
309 and protein counting” in the Methods section). The highest number of differentially abundant
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310  transcripts, proteins and metabolites were found in samples treated with chlorpromazine
311 (adjusted p-value < 0.001 and absolute fold change > 4 compared to control for
312  metatranscriptomics, adjusted p-value < 0.05 and absolute fold change > 1.5 for
313  metaproteomics and metabolomics; Figure 4A), which is in line with our findings that
314  chlorpromazine caused the largest disruption to bacterial community (Figure 3B).
315  Transcriptional response to chlorpromazine is detected already after 15 minutes of treatment
316 across species belonging to different phyla, suggesting that, although Bacteroidota show the

317  strongest response, other species also adapt their gene expression.

318 In order to evaluate similarities between functional responses across omics data types, we
319  performed pathway enrichment analysis of differentially abundant features between drug
320 treatment and controls across all time points using KEGG pathway annotations (Figure 4B).
321 In general, we detected less overlap between omics layers on the functional level compared
322 to species abundance analysis, as no single pathway was statistically significant in the
323  enrichment analysis of all three functional omics datasets. Across all conditions, five pathways
324  were found to be significantly enriched upon drug treatment compared to the control condition
325 in two omics data types, while 35 pathways were statistically significantly enriched in only one
326 omics dataset. The largest number of significantly enriched pathways was found in

327  chlorpromazine-treated samples for metatranscriptomics data.

328  Several pathways were significantly overrepresented (pFDR<0.001 for metatranscriptomics
329 and pFDR<0.05 for metaproteomics and metabolomics) within the set of up- and
330 downregulated features (transcripts/proteins/metabolites) in metformin-treated samples. For
331  example, three pathways, i) lysine degradation, ii) biotin metabolism and iii) arginine and
332  proline metabolism, were enriched in differentially abundant metabolites. Further inspection of
333  metabolites involved in these pathways showed that their abundance also decreased upon
334  addition of metformin in the non-bacterial control samples (Supplementary Figure 8). This
335 indicates that metformin primarily interferes with the measurement of these metabolites,
336  probably due to their chemical similarity, underlining the importance of including non-bacterial
337  control samples to study drug response. However, we cannot exclude that metformin also
338 interacts with lysine and arginine metabolism pathways in bacteria, as reported before (Pryor
339 et al, 2019; Forslund et al, 2015). In general, we did not observe substantial effects of
340  metformin neither on community composition nor on transcript or protein abundance in our
341  study, at least at the concentrations used. In previous experiments, metformin at the same
342 concentration had an effect on several of the tested species grown in single culture (Maier et
343 al, 2018), however it is possible that these species show a different behaviour in a community
344  setting (D’hoe et al, 2018).
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345  For niclosamide-treated samples, ten pathways were significantly enriched (pFDR<0.001)
346  among regulated transcripts, including amino acid and nitrogen metabolism. Transcripts of
347  nitrogen metabolism pathway upregulated in the early time points (15 min, 30 min, 1 h, 3 h)
348  were annotated as NAD-specific glutamate dehydrogenase (belonging to the Cluster of
349  Orthologous Groups COG0334 from the EggNOG database present in B. thetaiotaomicron,
350 P. wvulgatus, B. fragilis), hydroxylamine reductase (COG1151 in C. perfringens, B. uniformis)
351  and carbamate kinase (COG0549 in Eggerthella lenta) (Supplementary Figure 9). Previously,
352  NAD-specific glutamate dehydrogenase was found to be upregulated in response to nitrogen
353  availability in Mycobacterium smegmatis, where it is assumed to have a de-aminating activity
354  (Harper et al, 2010). Furthermore, hydroxylamine reductase and carbamate kinase are
355 enzymes belonging to the family of oxidoreductases which both act on nitrogenous
356 compounds. Therefore, the upregulated pathway and its transcripts suggest an increased
357  metabolization of nitrogen in niclosamide-treated samples. Further examination of our
358  metabolomic dataset revealed that niclosamide gets degraded in both runs of the experiment
359  (Supplementary Figure 10). Additional follow-up experiments are needed to elucidate the
360 mechanisms underlying the microbial degradation of niclosamide and the roles of individual

361  community members.
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Figure 4. Functional analysis of transcript, protein and metabolite response after niclosamide, metformin or chlorpromazine
treatment. A) Number of differentially abundant transcripts, proteins and metabolites. B) Pathway enrichment analysis across all
conditions and time points. C) Heatmap representing Spearman correlation between fold changes (relative to control) detected
by metatranscriptomics and metaproteomics across all drug perturbations. D) Scatterplot depicting protein fold changes (relative
to control) detected after 15 min of chlorpromazine exposure by metatranscriptomics versus after 1 h of exposure by
metaproteomics. E) COG enrichment analysis differentiating between species susceptible to chlorpromazine treatment
(Bacteroidota) and non-susceptible species (non-Bacteroidota). COGs that are enriched in upregulated genes are coloured in
red, while COGs that are enriched in downregulated genes are coloured in blue. Only COGs that were found to be significantly
enriched in at least three out of four early time points are shown. COG names that are coloured are discussed in more detail in
the main text. F) Di-, tri- and tetra-saccharide abundances as measured by untargeted metabolomics (metabolite annotation is
based on m/z values indicated in the panel titles). The lines are coloured according to the experimental conditions
(chlorpromazine, metformin, niclosamide and control), and the line type represents whether these are community culture or non-

bacterial controls.
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a7z Chlorpromazine induces stress response and metabolic

sz changes in the community

379  Since the number of differentially abundant features and pathways was high in
380 chlorpromazine-treated samples (Figure 4A and 4B), we tested whether there are features
381 that change concordantly across omics layers. We first compared transcript and protein fold
382  changes upon perturbation, which revealed general agreement between relative changes in
383 gene expression and protein abundance, with transcript fold changes at each time point
384  correlating more strongly with protein changes at later time points (Figure 4C, Supplementary
385  Figure 11), likely reflecting the delay between transcription and translation processes. Based
386 on this analysis, we assessed the most prominent and concordant changes between
387  metatranscriptomics and metaproteomics 15 min and 1 h after chlorpromazine addition,
388  respectively (Figure 4D). Consistent with the observed relative species abundance changes,
389 the most concordantly downregulated features were proteins and genes of Bacteroidota
390 species and F. nucleatum, including ribosomal proteins, elongation factors, and central carbon
391 metabolism enzymes gldA (glycerol dehydrogenase), gapdh (glyceraldehyde 3-phosphate
392 dehydrogenase), and pta (phosphate acetyltransferase), the latter two being downregulated
393 in several species (Figure 4D). Furthermore, the most upregulated features found both in
394  metatranscriptomics and metaproteomics were stress response genes in E. coli, such as the
395  small heat shock proteins IbpA and IbpB (Inclusion body-associated protein A and B), other
396  chaperones, and ABC transporters. IbpA and IbpB serve as a first line of defence against
397  protein aggregation (Miwa et al, 2021). In addition to ibpA and ibpB, we found upregulation of
398 the transcriptional regulator rpoH and the chaperones dnaK and groEL, which are also
399 involved in heat shock response (Yura, 2019) (Supplementary Figure 12). Together, these
400  results show that chlorpromazine causes the activation of a stress response in E. coli, probably

401 due to induction of protein aggregation either directly or indirectly.

402  We then tested whether genes associated with stress response were differently regulated
403  between chlorpromazine-susceptible and non-susceptible species. Two COGs related to the
404  stress response were enriched in upregulated genes in at least two of the four early time points
405 in the depleted (susceptible) species (Figure 4E, annotated in green, Supplementary Figure
406  13). One of them, COGO0265, is upregulated by both susceptible and non-susceptible species
407  and encompasses serine proteases (e.g., HtrA proteins such as DegP and DegQ), which
408 represent an important class of chaperones and heat-shock-induced serine proteases,
409  protecting periplasmic proteins. Furthermore, two COGs enriched in upregulated genes were
410  related to (multidrug) transporter activity. COG1538, which contains genes annotated as

411 membrane protein OprM, was the only COG enriched in upregulated genes by Bacteroidota
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412 in all four early time points (Fig 4F, annotated in purple). In Pseudomonas aeruginosa, OprM
413 is part of MexAB-OprM, a multidrug efflux pump of the resistance-nodulation-cell division
414  (RND) superfamily, where it plays a central role in multidrug resistance by transporting drugs
415  from the cytoplasm across the inner and outer membranes outside the cell envelope (Tsutsumi
416 et al, 2019; Alekshun & Levy, 2007). RND-efflux pumps are found in a number of Gram-
417  negative bacteria, for example, AcrAB-TolC is found in E. coli (Du et al, 2018) while
418  Bacteroides fragilis harbours multiple copies of RND pumps BmeABC (Ghotaslou et al, 2018).
419  Further, in addition to COG1538 (OprM homologues), also COG0841 containing homologues
420  of the MexB/AcrB/bmeB protein (Figure 4E, also annotated in purple) was found to be enriched
421 inupregulated genes, both in Bacteroidota and non-Bacteroidota species. These observations
422 suggest an important role of the AcrAB-TolC/MexAB-OprM/bmeABC efflux pumps in
423  determining chlorpromazine susceptibility. Indeed, a recent study showed that chlorpromazine
424  is both a substrate and an inhibitor of the AcrB multidrug efflux pump in Salmonella enterica
425 and E. coli (Grimsey et al, 2020). Together, our results suggest that chlorpromazine could also
426  be an inhibitor of BmeB, the AcrB/MexB homologue in Bacteroidota species and that this,
427  potentially in combination with protein aggregation, could be one of the reasons explaining

428  why Bacteroidota are affected by chlorpromazine treatment.

429  Finally, depletion of Bacteroidota and downregulation of their genes involved in polysaccharide
430  uptake might explain the enrichment of “Starch and sucrose” and “Fructose and mannose
431  metabolism” pathways among metabolites increased upon chlorpromazine treatment (Figure
432 4B). As Bacteroides species are known to be capable of metabolizing a wide variety of
433  polysaccharides (Schwalm & Groisman, 2017), we believe that the higher abundance of
434  polysaccharides after chlorpromazine treatment (Figure 4F) measured by metabolomics is a

435  result of their reduced consumption by these species.

436 Taken together, by integrating multi-omics measurements, we propose that a series of events
437 happens upon treatment by chlorpromazine i) a stress response is induced across several
438  bacterial species with overexpression of ibpA and ipbB chaperones being the most
439  pronounced response in E. coli; ii) this stress response involves upregulation of AcrB/BmeB
440  type of RND pumps, which may be bound and blocked by chlorpromazine in a species-specific
441 manner; iii) Bacteroidota species are more susceptible to chlorpromazine and are quickly
442  depleted from the community, which results in iv) increase in polysaccharide levels in the

443  culture medium due to the inability of the remaining community members to utilize them.

444
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x5 Discussion

446  In this study we evaluated the impact of drug perturbations on a synthetic gut microbial
447  community by analysing five different omics data types in a highly controlled in vitro
448  experiment. In general, we found concordance between all omics data types regarding the
449  estimation of community composition (taxonomic profiling). To our knowledge, this is the first
450  study to systematically compare taxonomic profiles obtained by four omics data types and can
451  thus serve as a baseline for integrating different data types in “in natura” settings. Using the
452 synthetic community, we could show a high correlation between metagenomics and
453  metatranscriptomics (p = 0.92), similar to a previous study that used only these two omics
454  methods (p = 0.81, (Heintz-Buschart & Wilmes, 2018)). The taxonomic profiles obtained from
455  our metaproteomics dataset, which is increasingly used in microbiome studies (e.g. Kleiner et
456  al, 2017; Kleikamp et al, 2021), showed correlations between p = 0.78 and p = 0.84 with all
457  other omics for species with a relative abundance higher than 1%. Although the number of
458  detected proteins and the detection limits remain to be improved, we showed that species
459  abundance estimates can be derived from metaproteomics in a relatively simple, defined

460  microbial community.

461  Of the three drugs used for perturbation, only chlorpromazine caused a large disturbance in
462  the community composition. Surprisingly, metformin, which has been shown to alter the gut
463  microbiome in patients (Forslund et al, 2015; Wu et al, 2017), did not perturb the community
464  in our study, even though our earlier study suggested that the growth of at least four different
465  species is inhibited by metformin at the concentration used in monocultures (F. nucleatum, B.
466  longum, P. copri and P. merdae, (Maier et al, 2018)). This observation hints at a protective
467  effect from the community, although this protective effect is not caused by drug degradation,
468  as metformin concentrations remained high during the course of experiment (Supplementary
469  Figure 10). Similarly, niclosamide was expected to cause a depletion of most of the members
470  of the synthetic community, except for E. coli and B. wadsworthia (Maier et al. 2018), which
471 was not observed in this study, also pointing to community-related protection effects. Our
472  metatranscriptomic data revealed an upregulation of genes related to nitrogen metabolism,
473  while niclosamide concentration decreased during incubation, which was not observed in the
474  non-bacterial controls. Therefore, we believe that certain species are capable of degrading
475  niclosamide, which ultimately protected the whole community against possible inhibitory

476 effects of niclosamide treatment.

477  For chlorpromazine, the observed depletion of Bacteroidota species was in concordance with
478  single species experiments (Maier et al, 2018). The antibiotic activity of chlorpromazine was

479  reported relatively soon after its first usage in the nineteen-fifties (Dinan & Cryan, 2018;
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480  Kristiansen & Vergmann, 1986). Its antibiotic mechanism of action is described to be multifold
481  and includes effects on the cell membrane, energy generation and interference with cell
482  replication due to DNA intercalation in E. coli (Grimsey et al, 2020). In our study, several genes
483 and proteins related to protein aggregation were upregulated in metatranscriptomic and
484  metaproteomic datasets in E. coli and other community members. One study already reported
485  protein aggregation of bovine insulin after chlorpromazine treatment (Bhattacharyya & Das,
486  2001). However, it remains unclear whether chlorpromazine can cause protein aggregation in
487  microbes either directly or indirectly, a hypothesis that should be followed-up in future

488  experiments.

489  Finally, we identified upregulation of RND-type efflux pumps in the Gram-negative bacteria,
490  even in the Bacteroidota species that were severely depleted. It was recently shown that in S.
491 enterica and E. coli, chlorpromazine is both a substrate and an inhibitor of AcrB, the inner
492  membrane transporter of the tripartite system AcrAB-TolC, which is an RND-type efflux pump
493  (Grimsey et al, 2020; Bailey et al, 2008a). Based on our data, we hypothesise that BmeB, the
494  AcrB homologue in Bacteroidota, is also susceptible to chlorpromazine inhibition as we found
495  upregulation of this and related genes, similar to what has been described by others in single
496  species experiments (Grimsey et al, 2020). The suggested mechanism could be of
497  significance in the battle against the rising multidrug resistance of Bacteroides fragilis, a
498  commensal bacterium that can act as a virulent pathogen when it escapes its normal niche
499  (Wexler, 2007, 2012; Niestepski et al, 2019). However, chlorpromazine’s antimicrobial activity
500  generally occurs at concentrations higher than those clinically achievable (Grimsey & Piddock,
501  2019). Therefore it is possible that, similarly as suggested for S. enterica, chlorpromazine
502  could act as an antimicrobial adjuvant for Bacteroidota where its inhibition of RND-type efflux
503  pumps prevents the extrusion of administered antibiotics (Grimsey et al, 2020). From the
504  perspective of human health, these results underline the detrimental effect of antipsychotics
505 on the gut microbiome reported before (Dinan & Cryan, 2018). However, the revealed phylum-
506  specific differences provide an opportunity to explore whether complementation of
507  antipsychotic therapy with Bacteroidota-promoting dietary interventions could improve mental
508 health and increase patients’ quality of life by restoring a healthy microbiota (Patnode et al,
509  2019).

510  In conclusion, we directly compared data from multiple omics methods and showed that they
511 agree on species abundance estimation of a defined and drug-perturbed microbial community
512  in vitro. Those methods that are able to detect functional information also correlate with each
513  other, albeit to a lower degree. We could also confirm expected time delays between
514  transcriptional and translational responses to perturbations, underlining that these methods

515  reveal biological insights that happen at different time scales. Although multi-omics analysis
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516  of natural communities is hampered by their increasing complexity, combining multiple omics
517  measurements allows to measure the response of the community to perturbations across

518  molecular layers and provides information that is not achievable by any method alone.

519

s20 Methods

521 Species and drug selection

522  The species used in this study represent a subset of abundant and prevalent species from the
523  human gut. In total, 32 species were selected based on our previous work (Tramontano et al,
524  2018; Maier et al, 2018). The bacterial isolates were received from DSMZ, BEI Resources or
525 ~ ATCC and Dupont Health & Nutrition. The drugs were chosen because of their antimicrobial

526  activity (Maier et al, 2018) and diversity in therapeutic usage.
527 Reference genomes

528 Reference genomes were downloaded from RefSeq on March 2019 (release 92) and
529  reannotated using Prokka v1.14.0 (Seemann, 2014). Taxonomic classification was based on
530  GTDB taxonomy release 95 (Parks et al, 2018) and inferred using GTDB-Tk v1.3.0 (Chaumeil
531 et al, 2020; Matsen et al, 2010; Jain et al, 2018; Hyatt et al, 2010; Price et al, 2010; Eddy,
532  2011; Ondov et al, 2016). Further functional annotations (e.g. KEGG orthology and eggNOG
533  orthologous group) were retrieved using eggNOG-mapper v2.0.1 which is based on eggNOG
534  v5.0 (Huerta-Cepas et al, 2017). A cladogram was built by pruning the species cladogram
535 from GTDB (bac120.tree, release 95) using the ETE toolkit (Huerta-Cepas et al, 2016).

53 Medium and drug preparation

537 mGAM medium was prepared according to manufacturer's instructions (HyServe GmbH &
538 Co0.KG, Germany, produced by Nissui Pharmaceuticals) and all the single species were grown
539 in this medium except V. parvula (Todd-Hewitt Broth (Sigma-Aldrich) + 0.6% sodium lactate)
540 and B. wadsworthia (MGAM + 60 mM sodium formate + 10 mM taurine). All media were placed
541  in anaerobic chamber 1 day before use under anoxic conditions (Coy Laboratory Products
542 Inc.) (2% H2, 12% CO2, rest N2). Chlorpromazine (TCI Chemicals) and niclosamide (Santa
543  Cruz Biotechnology) were added from DMSO stock solution. Metformin (Sigma) was added
544 as powder directly into the medium after which the medium was filter-sterilized. Final
545  concentrations of each drug were chosen based on previous work (Maier et al. 2018) with
546  concentrations of 5 mM for metformin and 20 uM for chlorpromazine and niclosamide. The

547  higher concentration for metformin is motivated by previously published data, which showed
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548  that a concentration of 20 uM was not sufficient to impair growth of gut microbiome members
549  in vitro ((Maier et al, 2018); Extended Data Figure 4).

550 EXperimental set-up and sample collection

551  Species were pre-inoculated in isolation on liquid mMGAM medium from pure stocks and
552 incubated at 37 C under anaerobic conditions for a period of 3 or 5 days, depending on the
553  growth rate of each species (see Figure 1). The monocultures were subsequently mixed in
554  equal proportions based on their optical density (OD) and then inoculated in 100 mL of mGAM
555  liquid medium. To allow species to reach a stable state (stabilization phase), the mixed culture
556  was grown for 48 hours after which 1 mL was transferred to fresh medium. In total, 3 passages
557  were performed and after the second transfer OD measurements were taken to determine the

558  start of the exponential phase.

559  Following the stabilization phase, the mixed community was inoculated in medium prepared
560  with one single drug or DMSO (control) as soon as the community reached the exponential
561  phase (OD roughly equal to 2-3). The cultures were subsequently sampled (3 mL) at fixed
562  time intervals (O minutes, 15 minutes, 30 minutes, 1 hour, 3 hours, 48 hours), transferred to
563  fresh medium (with drugs or DMSO) after 48 hours and then sampled again 48 hours later (or
564 96 hours after the start of the experiment). The whole experiment was performed twice
565  (labelled as run A and run B).

566 1.5 mL of each collected sample was centrifuged (30 seconds at max speed) after which the
567  supernatant was removed and the cell pellet was stored at -80 °C until further processing for
568  DNA and RNA extraction. For protein and metabolite extraction, again 1 mL of each collected
569  sample was centrifuged (30 seconds at max speed) and 450 pL of supernatant was used for
570  metabolite extraction or protein extraction (secreted proteins) while the cell pellet was used
571  for protein extraction (proteins in the cells). The remainder of the samples was frozen at -80
572 °C as backup.

573 DNA and RNA extraction

574  Genomic DNA and total RNA were extracted from the same flash-frozen samples using
575  Allprep Powerfecal DNA/RNA kit (Qiagen, Hilden Germany) following the manufacturer's
576  protocol but an additional phenol-chloroform extraction step of 700 yuL was performed after
577  lysis. DNA vyield was measured by using Qubit™ dsDNA HS Assay Kit (Qubit, Waltham,
578  Massachusetts, USA), split into two aliquots for ribosomal 16S rRNA amplicon sequencing
579  and metagenomic shotgun sequencing and was stored at —20°C. RNA yield was measured
580 via Bioanalyzer (Agilent, Santa Clara, California, USA) with Pico and Nano chips depending

581  on the sample concentration and stored at -80°C for further analysis.
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552 16S rRNA amplicon, metagenomic and metatranscriptomic
583 Sequencing

584  For 16S rRNA amplicon sequencing, extracted DNA was amplified using primers targeting the
585 V4 region of the 16S rRNA gene on the F515 and R806 primer pair (Caporaso et al, 2011).
586 PCR was performed according to the manufacturer’s instructions of the KAPA HiFi HotStart
587 PCR Kits (Roche, Basel Switzerland) using barcoded primers and a two-step PCR protocol
588 (NEXTflex™ 16S V4 Amplicon-Seq Kit, Bioo Scientific, Austin, Texas, USA). PCR products
589  were pooled and purified using size-selective SPRIselect magnetic beads (0.8 left-sized,
500 Beckman Coulter, Brea, CA, USA). The library was then diluted to 6pM for sequencing. The
591 library was sequenced on an lllumina (San Diego, USA) MiSeq platform using 2 x 250 bp
592  paired-end reads at Genomics Core Facility (European Molecular Biology Laboratory (EMBL),

593  Heidelberg, Germany).

594  Metagenomic libraries for all samples were prepared using the NEB Ultra Il and SPRI HD kits
595  with a targeted insert size of 350, and sequenced on an lllumina HiSeq 4000 platform (lllumina,
506  San Diego, CA, USA) in 2x150bp paired-end with the aim of 1.5 Gbp average setup at the
597  Genomics Core Facility (EMBL, Heidelberg, Germany).

598 RNA samples were depleted for ribosomal RNA using the NEBNext Bacteria rRNA Depletion
599  Kit (New England Biolabs, Ipswich, Massachusetts, USA). Samples were pooled into a library
600 using the NEBNext Ultra Il Directional RNA Library Prep Kit (New England Biolabs) and
601  subsequently sequenced on lllumina NextSeq500 platform (75 bp; single end) at Genomics
602  Core Facility (EMBL, Heidelberg, Germany).

603  Quality control of raw reads was performed using NGLess (Coelho et al, 2019). For
604  metagenomics, reads were trimmed to the longest subread where each base had a Phred
605  score of at least 25. For metatranscriptomics, a sliding window approach was used and reads
606  were trimmed to the longest subread with an average Phred score of 20 (window size: 4 bp).
607  Resulting reads shorter than 45 bp were discarded. To remove possible human contamination,
608 all reads were mapped against a human reference database (release GRCh38.p10, Ensembl
609  (Zerbino et al, 2018)) using NGLess and samtools (Li et al, 2009). Reads with an identity
610  threshold >=90% were discarded. For metatranscriptomics specifically, rRNA reads were also

611 removed from the dataset using SortMeRNA (Kopylova et al, 2012) with default parameters.
s12  Protein extraction

613  Sample preparation, including protein extraction, digestion and peptide purification was

614  performed according to the in-StageTip protocol (Kulak et al, 2014, 20) with automation on an
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615  Agilent Bravo liquid handling platform according to (Geyer et al, 2016). In brief, samples were
616  incubated in the PreOmics lysis buffer (P.O. 00001, PreOmics GmbH) for reduction of disulfide
617  bridges, cysteine alkylation and protein denaturation at 95°C for 10 min. Samples were
618  sonicated using a Bioruptor Plus from Diagenode (15 cycles of 30 s). The protein
619  concentration was measured using a tryptophan assay. In total, 200 pg protein of each
620 organism were further processed on the Agilent Bravo liquid handling platform by adding
621  trypsin and LysC (1:100 ratio - ug of enzyme to ug of sample protein). Digestion was performed
622 at37 °Cfor4 h.

623  The peptides were purified in consecutive steps according to the PreOmics iST protocol
624  (www.preomics.com). After elution from the solid phase extraction material, the peptides were
625 completely dried using a SpeedVac centrifuge at 60°C (Eppendorf, Concentrator plus).
626  Peptides were suspended in buffer A* (2% acetonitrile (v/v), 0.1% trifluoroacetic acid (v/v))

627  and sonicated for 30 min (Branson Ultrasonics, Ultrasonic Cleaner Model 2510).
e28 Metaproteomics

629 Samples were analyzed using a liquid chromatography (LC) system coupled to a mass
630  spectrometer (MS). The LC was an EASY-nLC 1200 ultra-high pressure system (Thermo
631  Fisher Scientific) and was coupled to a Q Exactive HFX Orbitrap mass spectrometer (Thermo
632  Fisher Scientific) using a nano-electrospray ion source (Thermo Fisher Scientific). Purified
633  peptides were separated on 50 cm HPLC-columns (ID: 75 um; in-house packed into the tip
634  with ReproSil-Pur C18-AQ 1.9 ym resin (Dr. Maisch GmbH)). For each LC-MS/MS analysis

635 about 500 ng peptides were separated on 100 min gradients.

636  Peptides were separated with a two-buffer-system consisting of buffer A (0.1% (v/v) formic
637  acid) and buffer B (0.1% (v/v) formic acid, 80% (v/v) acetonitrile). Peptides were eluted with a
638  linear 70 min gradient of 2-24% buffer B, followed stepwise by a 21 min increase to 40% buffer
639 B, a 4 min increase to 98% buffer B and a 5 min wash of 98% buffer B. The flow rate was
640  constant at 350 nl/min. The temperature of the column was kept at 60°C by an in-house-
641  developed oven containing an Peltier element, and parameters were monitored in real time by
642  the SprayQC software (Scheltema & Mann, 2012).

643  First, data dependent acquisition (DDA) was performed of each single organism to establish
644  a library for the data independent acquisition (DIA) of the community culture samples. The
645 DDA scans consisted of a Top15 MS/MS scan method. Target values for the full scan MS
646  spectra were 3e6 charges in the 300-1650 m/z range with a maximum injection time of 25 ms
647  and a resolution of 60,000 at m/z 200. Fragmentation of precursor ions was performed by
648  higher-energy C-trap dissociation (HCD) with a normalized collision energy of 27 eV. MS/MS

649  scans were performed at a resolution of 15,000 at m/z 200 with an ion target value of 5e4 and
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650 a maximum injection time of 120 ms. Dynamic exclusion was set to 30 s to avoid repeated

651  sequencing of identical peptides.

652  MS data for the community culture samples were acquired with the DIA scan mode. Full MS
653  scans were acquired in the range of m/z 300-1650 at a resolution of 60,000 at m/z 200 and
654  the automatic gain control (AGC) set to 3e6. The full MS scan was followed by 32 MS/MS
655  windows per cycle in the range of m/z 300—-1650 at a resolution of 30,000 at m/z 200. A higher-
656  energy collisional dissociation MS/MS scans was acquired with a stepped normalized collision
657  energy of 25/27.5/30 eV and ions were accumulated to reach an AGC target value of 3e6 or

658  for a maximum of 54 ms.

659  The MS data of the single organisms and of the community cultures were used to generate a
660  DDA-library and the direct-DIA-library, respectively, which were computationally merged into
661  a hybrid library using the Spectronaut software (Biognosys AG). All searches were performed
662  against a merged protein FASTA file of our reference genomes annotated using Prokka (see
663 above). Searches used carbamidomethylation as fixed modification and acetylation of the
664  protein N-terminus and oxidation of methionines as variable modifications. Trypsin/P
665  proteolytic cleavage rule was used, permitting a maximum of 2 missed cleavages and a
666  minimum peptide length of 7 amino acids. The Q-value cutoffs for both library generation and

667  DIA analyses were set to 0.01.
s Metabolomics measurements

669  Untargeted metabolomics analysis was performed as described previously (Fuhrer et al,
670  2011). Briefly, samples were analyzed on a LC/MS platform consisting of a Thermo Scientific
671  Ultimate 3000 liquid chromatography system with autosampler temperature set to 10° C
672 coupled to a Thermo Scientific Q-Exactive Plus Fourier transform mass spectrometer
673  equipped with a heated electrospray ion source and operated in negative or positive ionization
674 mode. The isocratic flow rate was 150 puL/min of mobile phase consisting of 60:40% (v/v)
675  isopropanol:water buffered with 1 mM ammonium fluoride at pH 9 for negative ionization mode
676  or 60:40% (v/v) methanol:water buffered with 0.1% formic acid at pH 2 for positive ionization
677 mode, in both cases containing 10 nM taurocholic acid and 20 nM homotaurine as lock
678 masses. Mass spectra were recorded in profile mode from 50 to 1,000 m/z with the following
679  instrument settings: sheath gas, 35 a.u.; aux gas, 10 a.u.; aux gas heater, 200° C; sweep gas,
680 1 a.u.; spray voltage, -3 kV (negative mode) or 4 kV (positive mode); capillary temperature,
681  250° C; S-lens RF level, 50 a.u; resolution, 70k @ 200 m/z; AGC target, 3x10° ions, max.
682 inject time, 120 ms; acquisition duration, 60 s. Spectral data processing including peak
683  detection and alignment was performed using an automated pipeline in R analogous to

684  previously published pipelines (Fuhrer et al, 2011). Detected ions were tentatively annotated
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685 as metabolites based on accurate mass within a dynamic tolerance depending on local
686  instrument resolving power ranging from 1 mDa at m/z = 50 to 5 mDa at m/z = 1,000 using
687  the Human Metabolome database (Wishart et al, 2018) as reference considering [M-H] and
688  [M-2H] ions in negative mode or [M+], [M+H], [M+Na] and [M+K] ions in positive mode and up
689  to two '?C to 3C substitutions. Of note, this approach precludes the resolution of isomers, of
690  metabolites mapping to the same ion using different adduct assumptions, of unaccounted
691 neutral gains or losses, or of metabolites with slightly distinct masses that nevertheless map

692 to the same ion within the respective local matching tolerance.
eo3 Metabolomics data analysis

694 Raw intensity values were quantile-normalized separately for ions acquired in positive and
695 negative modes. For further analysis, the data from the two acquisition polarity modes were
696 combined in one table and filtered as follows: only annotated ions were retained; ions
697  annotated to *C-compounds only were removed; for each metabolite, only the ion with the
698  annotation considered most likely was retained (either the ion with highest correlation with the

699  total ion current, or the ion with the largest mean intensity across samples).
700 Gene, transcript and protein counting

701 Metagenomic and metatranscriptomic reads were mapped against a database of reference
702  genomes containing only the species used in this study, using NGLess and samtools, with a
703 minimum match size of 45 and minimum identity of 97. Abundance estimates were produced
704 by counting the number of reads mapping to each genome included in the study. If a read
705  mapped to multiple genes, the count was distributed to each of the genes (e.g. if a read maps

706  togene X and gene Y, gene X and gene Y each get a count of 0.5).

707 Proteins quantification and filtering. Proteins were filtered based on the information from the
708 DDA experiment on which peptides are detected in which single species. Metaproteomics
709  report with protein and peptide quantification obtained from Spectronaut software applied to
710  DIA samples was used as input. For each peptide in the community peptide report file, number
711 of exact protein and species matches was calculated. For each protein, only unique peptides
712 that match to one species were left for quantification. For each protein, the peptides were
713 sorted according to the number of samples in which they were detected. Protein abundance
714  was calculated as the mean of three most commonly measured peptides as suggested before

715 . If the number of peptides was less than three, the protein was discarded.

716 To reduce taxonomic abundance effects in downstream analyses, taxon-specific scaling was
717 performed on metagenomics, metatranscriptomics and metaproteomics as described by
718 (Klingenberg & Meinicke, 2017).
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719 Species abundance estimation

720  Multiple computational strategies were used to estimate species abundance. Unless stated
721 otherwise, for all analyses the species abundances resulting from read mapping were used.
722 For this approach, first a database of 16S rRNA regions was constructed by manually querying
723  the SILVA rRNA database (Quast et al, 2013) and extracting the representative sequence
724  from each of our 32 species. Amplicon sequencing reads were then mapped against this
725  database using MAPseq v1.2.4 (Matias Rodrigues et al, 2017). Paired reads were mapped
726  independently and assignments were only considered upon agreement. Abundance estimates
727 were then produced by counting the number of reads mapping to each genome included in
728  the study. For metagenome derived estimates, total counts were normalized by the size of the
729  genome (number of base-pairs). For metatranscriptome derived estimates, additional steps
730  were required. Gene predictions by Prokka/Prodigal were used to calculate the total number
731 of coding bases per genome, after exclusion of rRNA regions. Finally, total read counts were

732  normalized by the number of coding bases on each genome.

733  Species abundance was estimated from metaproteomic data by summing up all filtered protein
734  intensities detected per each species, and dividing the sum by the total summed protein

735  intensity in a given sample.

736  In addition, to the approaches based on read mapping, several popular tools were used to
737  estimate species abundance. For amplicon sequencing, DADA2 v1.10 (Callahan et al, 2016)
738  was used with the GTDB database release 86 (Parks et al, 2018) for sequence classification
739  which was limited to genus level classification. Metagenomic and metatranscriptomic species
740  abundances were estimated using mOTUs v2.5 (Milanese et al, 2019) and MetaPhlAn v3
741 (Beghini et al, 2021).

742 Coverage analyses

743  Gene, ftranscript and protein coverage were defined as the number of
744  genes/transcripts/proteins that showed a count higher than 0, divided by the total number of
745  predicted genes per species. For pathway coverage, the same approach was used, but
746 genes/transcripts/proteins were grouped by KEGG pathways instead and thus divided by the
747 number of KEGG orthologs in one single pathway. The same procedure was repeated for
748  metabolites, but using the number of metabolites per pathway as predicted by KEGG instead
749  of the number of KEGG orthologs.
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750  Mantel test

751 Mantel test was performed to compare two different kinds of omics datasets and evaluate the
752 similarity between them. Abundance tables of each omics were transformed into distance
753  matrices using 1 - Spearman’s correlation coefficient, and the matrices were compared using
754  the mantel function in the vegan package (version 2.5.5) with the default option. Sixty-one

755  samples that were common among all the omics datasets were used in this analysis.
756 Differential species abundance analysis

757  Differential analysis of species abundance across conditions was performed with ANCOM v.
758  2.1. Tables of species abundances calculated from each omics measurements were
759  preprocessed with feature table pre process with sample names used as sample variables,
760  condition used as group variable, and parameters out_cut = 0.05; zero_cut = 0.90; lib_cut =
761 0; neg_Ib = TRUE. The ANCOM function was applied to each preproccessed table with
762  condition used as the main variable and time used as the formula for adjustment. P-values
763  were adjusted with Benjamini-Hochberg method (p_adj_method = "BH"). The cutoff of 0.7 for
764 the W statistic was used to identify significantly differentially abundant species
765  (detected_0.7=TRUE).

766 Differential transcript, protein and metabolite abundance
767 analysis

768  Differential transcript analysis was performed using DESeq2 v1.26.0 (Love et al, 2014) after
769  taxon-specific scaling (see above). The design formula included the factors run, drug, time
770  point and the interaction term drug:timepoint. Statistical testing was performed with the Wald-

771 test and IHW (Ignatiadis et al, 2016) to control the false discovery rate.

772  Differential protein and metabolite analysis were performed using repeated measures analysis
773 of variance using the Imer function in the ade4 package. The same formula used in the
774  differential transcript analysis was also used in the analysis. To exclude low abundant
775  features, those that have 0 or NA in at least half of the samples were removed prior to the
776  analysis. P-values were adjusted by the IHW method. Fold changes of proteins and

777  metabolites compared to those of controls were calculated based on raw values.
77 Pathway and COG enrichment analysis

779  Pathway enrichment was performed in on differentially abundant features (cutoff for
780  metatranscriptomics abs(log2(fold change))>2, pFDR<0.001, cutoff for metabolomics and

781 metaproteomics abs(log2(fold change))>log2(1.5), pFDR<0.05) with Fisher exact test using
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782  stats.fisher_exact in Python 3.7.7. P-values were adjusted with Benjamini-Hochberg
783  procedure with multipletests function from statsmodels. COG enrichment was performed in

784  the R environment using ClusterProfiler (Wu et al, 2021).
785 Data and code availability

786  The MS-based proteomics data have been deposited to the ProteomeXchange Consortium
787  via the PRIDE partner repository and are available via ProteomeXchange with identifier
788  PXD036445. Metabolomic data has been submitted to MetaboLights under accession number
789  MTBLS3129. Sequencing data is deposited at the European Nucleotide Archive (ENA):
790 PRJEB46619. Preproccessed data files and tables are available on Figshare at
791 https://doi.org/10.6084/m9.figshare.21667763, and code to generate all figures is available at

792 https://github.com/grp-bork/multiomics Wuyts 2022.
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