

1 Consistency across multi-omics layers

2 in a drug-perturbed gut microbial

3 community

4 Sander Wuyts^{1*}, Renato Alves^{1*}, Maria Zimmermann-Kogadeeva^{1*}, Suguru Nishijima^{1*},
5 Sonja Blasche^{1,2}, Marja Driesssen¹, Philipp E. Geyer³, Rajna Hercog¹, Ece Kartal¹, Lisa Maier¹,
6 Johannes B. Müller³, Sarela Garcia Santamarina^{1,a}, Thomas Sebastian B. Schmidt¹, Daniel C.
7 Sevin⁴, Anja Telzerow¹, Peter V. Treit³, Tobias Wenzel^{1,b}, Athanasios Typas¹, Kiran R. Patil^{1,2},
8 Matthias Mann^{3,5}, Michael Kuhn^{1#}, Peer Bork^{1,6,7,8#}

9

10 ¹ European Molecular Biology Laboratory, Heidelberg, Germany.

11 ² Medical Research Council Toxicology Unit, Cambridge, UK.

12 ³ Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry,
13 Martinsried, Germany.

14 ⁴ Cellzome, GlaxoSmithKline R&D, Heidelberg, Germany.

15 ⁵ Proteomics Program, NNF Center for Protein Research, Faculty of Health Sciences,
16 University of Copenhagen, Copenhagen, Denmark.

17 ⁶ Max Delbrück Centre for Molecular Medicine, Berlin, Germany.

18 ⁷ Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea.

19 ⁸ Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.

20 ^a Current address: MOSTMICRO Unit, Instituto de Tecnologia Quimica e Biologica,
21 Universidade Nova de Lisboa, Oeiras, Portugal.

22 ^b Current address: Institute for Biological and Medical Engineering, Schools of Engineering,
23 Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile.

24

25 *These authors contributed equally: Sander Wuyts, Renato Alves, Maria Zimmermann-
26 Kogadeeva, Suguru Nishijima

27 [#]Co-corresponding authors: mkuhn@embl.de, peer.bork@embl.org

28 Abstract

29 Multi-omics analyses are increasingly employed in microbiome studies to obtain a holistic view
30 of molecular changes occurring within microbial communities exposed to different conditions.
31 However, it is not always clear to what extent each omics data type contributes to our
32 understanding of the community dynamics and whether they are concordant with each other.
33 Here we map the molecular response of a synthetic community of 32 human gut bacteria to
34 three non-antibiotic drugs by using five omics layers, namely 16S rRNA gene profiling,
35 metagenomics, metatranscriptomics, metaproteomics, and metabolomics. Using this
36 controlled setting, we find that all omics methods with species resolution in their readouts are
37 highly consistent in estimating relative species abundances across conditions. Furthermore,
38 different omics methods complement each other in their ability to capture functional changes
39 in response to the drug perturbations. For example, while nearly all omics data types captured
40 that the antipsychotic drug chlorpromazine selectively inhibits Bacteroidota representatives in
41 the community, the metatranscriptome and metaproteome suggested that the drug induces
42 stress responses related to protein quality control and metabolomics revealed a decrease in
43 polysaccharide uptake, likely caused by Bacteroidota depletion. Taken together, our study
44 provides insights into how multi-omics datasets can be utilised to reveal complex molecular
45 responses to external perturbations in microbial communities.

46 Introduction

47 The human gut microbiota is a complex community of microorganisms, which is affected by
48 endogenous and environmental factors such as host genotype, diet, drug treatment, and
49 disease status, and in turn influences host health and disease progression (Kau *et al*, 2011;
50 Cho & Blaser, 2012; Cani, 2018; Durack & Lynch, 2018; Schmidt *et al*, 2018; Lindell *et al*,
51 2022). Currently, insights into structure and function of the microbiota community mainly come
52 from 16S rRNA gene profiling and shotgun metagenomics. While 16S rRNA amplicon
53 sequencing offers a cost-efficient way to assess bacterial abundance at a higher taxonomic
54 level, whole-genome shotgun metagenomics resolves abundance of species and strains,
55 together with the functional potential they encode (Quince *et al*, 2017; Almeida *et al*, 2019;
56 Pasolli *et al*, 2019). In addition, gene and protein expression and metabolite abundance in the
57 community can be quantified with metatranscriptomics (Bashiardes *et al*, 2016),
58 metaproteomics (Zhang & Figeys, 2019) and metabolomics (Zierer *et al*, 2018; Han *et al*,
59 2021), respectively. Ultimately, the combination of these methods should enable integration
60 of the major molecular layers of the cell, resulting in a more complete picture of the microbiome
61 (Jansson & Baker, 2016; Heintz-Buschart & Wilmes, 2018). Several studies have shown how
62 a combination of two or more of these omics methods could lead to novel insights regarding
63 the dynamics and inner workings of a microbial community (Heintz-Buschart *et al*, 2016; Lloyd-
64 Price *et al*, 2017; Salazar *et al*, 2019; Taylor *et al*, 2020). While multi-omics measurements
65 provide information across molecular layers, their comprehensive integration remains
66 challenging. One challenge is the limited knowledge about the concordance of different
67 measurements in complex *in natura* settings in the absence of ground truth. Another challenge
68 in comparing and integrating multi-omics datasets is the difference in their dynamics in
69 response to perturbations. Whereas metabolite changes occur on a time scale of seconds,
70 transcriptional changes usually occur on a time scale of minutes, while protein abundance
71 changes take the longest to respond to a perturbation (Gerosa & Sauer, 2011; Choi *et al*,
72 2020).

73 Synthetic microbial communities have been increasingly used to obtain a better understanding
74 of the dynamics and species–species interactions (Goldford *et al*, 2018; Cheng *et al*, 2021).
75 Compared to a natural gut microbiota, these synthetic communities have lower complexity,
76 higher controllability and reproducibility, and a well-defined composition at the strain level, at
77 the cost of being simplified representations of natural ecosystems (Roy *et al*, 2014; Weiss *et*
78 *al*, 2022; Aranda-Díaz *et al*, 2022). Yet, they do offer advantages over single species studies,
79 as single species' behaviour can significantly differ in mono-culture compared to co-culture
80 (D'hoe *et al*, 2018).

81 The complex interactions between the gut microbiota and non-antibiotic drugs have been
82 elucidated from large-scale human studies and high-throughput laboratory experiments
83 (Rizkallah & Aziz, 2010; Forsslund *et al*, 2015; Spanogiannopoulos *et al*, 2016; Wilson &
84 Nicholson, 2017; Zimmermann *et al*, 2021; Forsslund *et al*, 2021). This relationship is
85 bidirectional, as drugs can influence microbiome composition (Maier *et al*, 2018; Jackson *et*
86 *al*, 2018; Vich Vila *et al*, 2020; Vieira-Silva *et al*, 2020), while the gut microbiota can have an
87 impact on a drug's efficacy and toxicity by altering its chemical structure (Zimmermann *et al*,
88 2019a, 2019b; Javdan *et al*, 2020; Klünemann *et al*, 2021). The emerging knowledge on drug–
89 microbiota interactions has the potential to influence the future of drug development and
90 personalized medicine (Doestzada *et al*, 2018; Weersma *et al*, 2020; Maier *et al*, 2021;
91 Zimmermann *et al*, 2021).

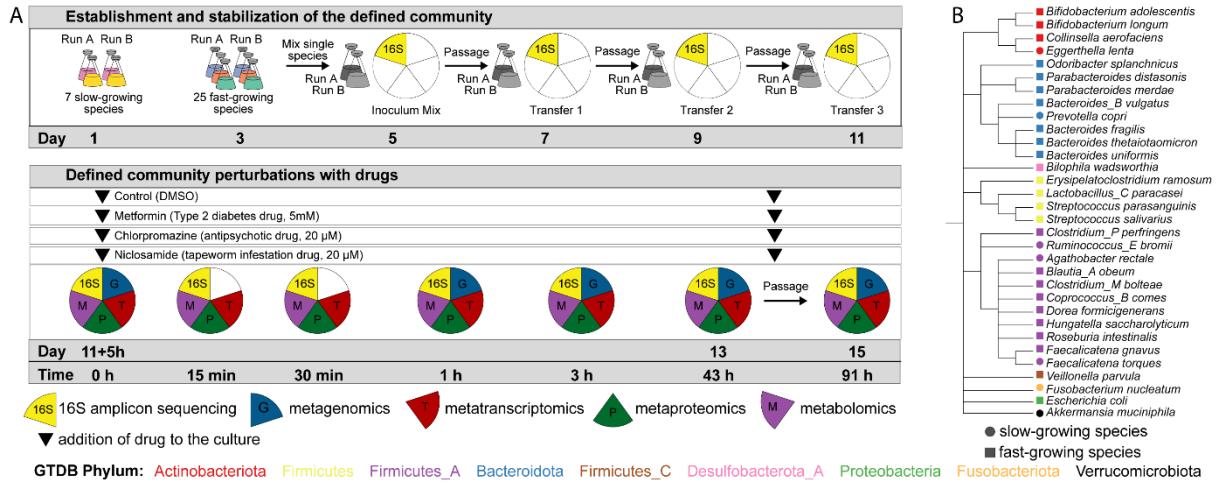
92 To systematically assess and compare how multi-omics measurements capture dynamic
93 changes in microbial communities in response to perturbations, we designed a controlled time-
94 course experiment with a synthetic community of 32 human gut representatives (Tramontano
95 *et al*, 2018) in response to three drugs from diverse indication areas: chlorpromazine
96 (antipsychotic), metformin (antidiabetic) and niclosamide (anthelmintic), which were previously
97 reported to impair growth of several gut bacteria (Maier *et al*, 2018). We followed the response
98 of the defined community to the three non-antibiotic drugs over four days on the structural and
99 functional levels across multi-omics layers, based on 16S rRNA gene, metagenome,
100 metatranscriptome, metaproteome and untargeted metabolome profiling.

101 Results

102 Establishment of a synthetic community for drug perturbations

103 To investigate microbial community response to drug perturbations in a controlled system
104 across five omics layers, we combined 32 human gut microbiome representatives
105 (Tramontano *et al*, 2018) and exposed this community to three different non-antibiotic drugs
106 (Figure 1A). The complete experiment was performed twice (run A and run B) as biological
107 replicates, starting from the initial community assembly step from single bacterial cultures.
108 More specifically, seven slow-growing species (inoculated on day 1) were combined with 25
109 fast-growing species (inoculated on day 3) on day 5 to form a synthetic community (Figure 1A,
110 B). In order to ensure stable community composition, we performed three culture passages
111 by growing the mixed culture for 48 hours and transferring 1% of total volume to a fresh culture
112 medium. Samples for 16S rRNA amplicon sequencing were taken immediately after combining
113 the strains (Inoculum mix) and after each passage (Transfer 1 - 3) to evaluate the stabilisation
114 of the community (Figure 1A; top row). We found that in both runs of the experiment the

115 community reached a stable composition with four highly abundant species after three
 116 transfers (relative abundance >10% for *Escherichia coli*, *Clostridium perfringens*, *Veillonella*
 117 *parvula* and *Bacteroides thetaiotaomicron*, Supplementary Figure 1A). Bray-Curtis
 118 dissimilarity index showed that both runs were highly similar after the third transfer
 119 (Supplementary Figure 1B, C).



120 **Figure 1. Experimental design and species used in this study.** A) Schematic overview of the experimental design. B) Species
 121 122 cladogram constructed by pruning the relevant species from the GTDB species cladogram (release 95).

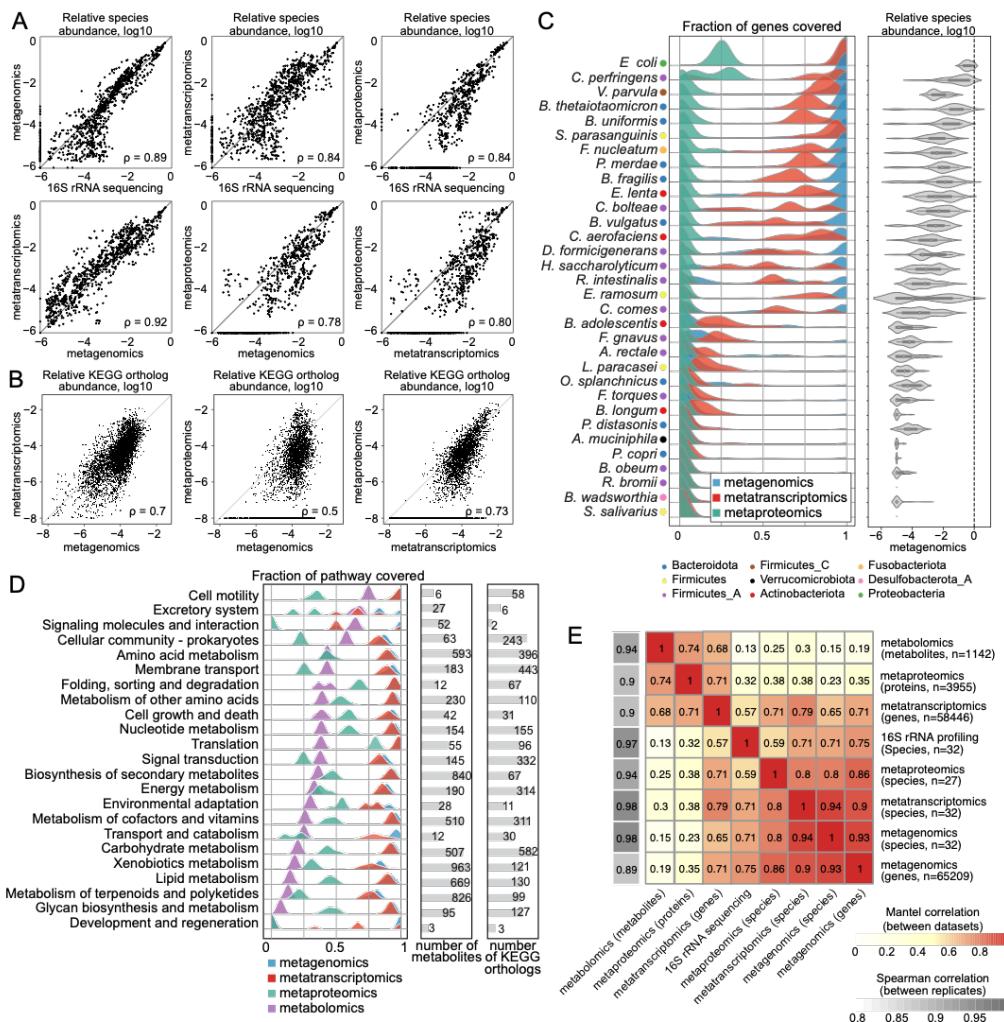
123 After stabilisation, in each run the community perturbation was performed in duplicate during
 124 exponential growth (i.e., five hours after passaging, as determined by optical density
 125 measurements on the previous transfer; Supplementary Figure 1D) by addition of one of the
 126 following drugs: i) 5 mM metformin, a type 2 diabetes drug, ii) 20 μ M chlorpromazine, an
 127 antipsychotic drug, or iii) 20 μ M niclosamide, an anthelmintic drug (Figure 1A), while DMSO
 128 was used as a control. The higher concentration for metformin was based on reported
 129 intestinal concentrations, and previous data on metformin amounts sufficient to impair growth
 130 of gut microbiota members *in vitro* (Maier *et al*, 2018; Bailey *et al*, 2008b). The communities
 131 were sampled right before the addition of the drugs and 15 min, 30 min, 1 h, and 3 h following
 132 the drug perturbation (Figure 1A, Supplementary Table 1). These time points were chosen to
 133 elucidate the early response of the bacterial community to drug treatment. After 43 h, an
 134 additional sample was taken, and the communities were transferred into a fresh culture
 135 medium containing the drugs at initial concentrations. A final sample was taken 48 h after this
 136 passage (91 hours after the initial drug addition). In general, high correlation was evident
 137 between technical replicates within the same omics dataset (Supplementary Figure 2).

138 Consistency of community composition across omics 139 measurements

140 We first evaluated similarities and differences between the omics measurements in their ability
141 to estimate species abundance. For sequencing-based omics methods, we performed both
142 naïve analyses with commonly used computational pipelines that do not use the information
143 about synthetic community composition (DADA2 for 16S rRNA amplicon sequencing
144 (Callahan *et al*, 2016), mOTUS v2.5 for metagenomics and metatranscriptomics (Milanese *et*
145 *al*, 2019)), and targeted analyses based on mapping to the 32 reference genomes of species
146 comprising our community (Materials and methods). Within each omics method, both
147 computational approaches produced highly similar results (Supplementary Figure 3). As the
148 composition-naïve approach only yields genus-level resolution for 16S rRNA sequencing data
149 (Knight *et al*, 2018), we used the reference genome mapping approach that yields higher
150 resolution for all methods for comparison of community composition across omics types. For
151 consistency, the same methodology (reference genome mapping) was used for
152 metagenomics and metatranscriptomics. For metaproteomics data, we estimated species
153 abundance by summing protein intensities for all proteins assigned to each species and
154 dividing these values by the total protein intensity in each sample, as suggested previously
155 (Kleiner *et al*, 2017).

156 We compared relative species abundances between all pairs of omics methods except for
157 metabolomics, which by nature represents total metabolite measurements in the community
158 and does not allow to separate compounds by species. Based on correlation analysis, we
159 found the abundance estimates to be highly similar (minimum Spearman correlation coefficient
160 $\rho = 0.78$). Congruence was more pronounced for highly abundant species (Figure 2A).
161 Specifically, metagenomics and metatranscriptomics were the most similar of all pairwise
162 comparisons ($\rho = 0.92$). Further, 16S rRNA amplicon sequencing showed high similarity with
163 metagenomics for species with relative abundances higher than 0.001% ($\rho = 0.89$). However,
164 for several species with low relative abundances, 16S rRNA sequencing provided higher
165 relative abundance estimates compared to metagenomics, while other species, detected by
166 metagenomics, were not detected with 16S rRNA sequencing. For this observation, no clear
167 taxon-specific or condition-specific effect was found (Supplementary Figure 4), indicating that
168 the differences at these low relative abundances are most likely a result of differences in
169 sequencing depth per sample, as has been previously reported (Pereira-Marques *et al*, 2019;
170 Durazzi *et al*, 2021). Although metaproteomics is not yet widely used for species abundance
171 estimation, we found the corresponding estimates in good agreement with the other omics
172 methods, but only for species with relative abundance above 1% ($\rho = 0.78 – 0.84$; 16 out of

173 29 species detected across all samples). This indicates that metaproteomics is less sensitive
 174 than sequencing-based methodologies for species abundance estimation, as has also been
 175 observed for *in natura* metaproteomics studies (Zhang & Figgeys, 2019). Our results show
 176 generally high consistency between omics data types in relative species abundance
 177 estimations, and underline that metaproteomics can, in principle, provide robust species
 178 abundance estimates, at least for synthetic microbial communities, albeit with lower sensitivity.



179

180 **Figure 2. Comparison of species and feature abundances and functional coverage across omics methods.** (A) Scatter
 181 plots representing species abundance defined as relative abundance of corresponding omics measurement in each sample. Each
 182 dot represents single species abundance in one sample. p - Spearman correlation coefficient. (B) Scatter plots representing gene,
 183 transcript or protein abundance linked through KEGG orthology. Each dot represents a single KEGG ortholog in one sample. (C)
 184 Left: Genome coverage of each of the omics datasets across samples for each species, right: relative species abundance
 185 estimated by metagenomics. The fraction of coverage is defined as the number of genes to which at least one read was mapped
 186 (for metagenomics and metatranscriptomics), or the number of detected proteins for metaproteomics divided by the total number
 187 of genes in the corresponding genome. (Metagenomics n = 75 samples, metatranscriptomics n = 101 samples and
 188 metaproteomics n = 112 samples) (D) KEGG pathway coverage. For the metabolomics dataset, pathway coverage is defined as
 189 the number of unique pathway metabolites detected in at least one sample, divided by the total number of metabolites in the

190 pathway. For metagenomics, metatranscriptomics and metaproteomics, KEGG orthologs are used instead of pathway
191 metabolites. (E) Heatmap of Mantel correlations across omics methods and Spearman correlation between replicates within each
192 omics method.

193 Consistency of functional profiles across omics measurements

194 For each protein-coding gene of each species, we can compare relative abundances across
195 the three molecular layers: gene (metagenomics), transcript (metatranscriptomics), and
196 protein (metaproteomics). We performed such pairwise comparisons both for individual genes
197 across all species (Supplementary Figure 5) and for genes grouped based on KEGG orthology
198 (Kanehisa *et al*, 2017) (Figure 2B). The correlation between metagenomic and metaproteomic
199 estimates of gene and protein abundances was moderate ($\rho = 0.5$ for KEGG grouped features
200 and $\rho = 0.48$ for all non-zero genes and proteins). Metatranscriptomics and metaproteomics
201 were the most similar ($\rho = 0.73$ for KEGG orthologs and $\rho = 0.60$ for transcripts and proteins),
202 followed by metagenomics and metatranscriptomics ($\rho = 0.7$ for KEGG orthologs and $\rho = 0.61$
203 for genes and transcripts).

204 To systematically assess how much information on the functional level is captured by
205 metagenomics, metatranscriptomics and metaproteomics for different species, we estimated
206 gene and pathway coverage by calculating the proportion of genes or pathways that were
207 detected by each method (Figure 2C and D). We found that 18 out of 32 species had an almost
208 complete coverage ($> 90\%$) in metagenomics, indicating that for these species most of the
209 genes were recovered in all samples measured in this experiment (Figure 2C; in total 101,559
210 out of 103,921 possible protein-coding genes were detected at least once in the
211 metagenomics dataset). This was not the case for 14 low abundant species, for which the
212 average gene content coverage was $< 20\%$. For metatranscriptomics, the coverage was
213 generally lower than for metagenomics (91,094 out of 103,921 possible transcripts detected
214 at least once). This is however expected as not all genes are expressed in any given condition.
215 Metaproteomics coverage was found to be much lower than metagenomics and
216 metatranscriptomics (9,144 out of 103,921 predicted proteins). This may be due to the limited
217 dynamic range: In contrast to mass-spectrometry-based measurements, sequencing-based
218 methods include an amplification step that increase the amount of material and makes it
219 possible to cover rare transcripts and genes. For *Escherichia coli*, the most abundant species
220 in our synthetic community, the maximum coverage of proteins across all samples did not
221 exceed 30% (1,428 proteins out of 4,978 (29%) predicted proteins compared to 4,978 genes
222 out of 4,978 predicted genes (100%) for metagenomics and 4,962 transcripts out of 4,978
223 transcripts (99%) for metatranscriptomics). This result is lower than state-of-the-art single
224 species proteomics experiments where around $\sim 62\%$ (2,586 detected proteins out of 4,189
225 predicted proteins) of bacterial proteins are captured (Mateus *et al*, 2020), likely due to

226 increased sample complexity in the community context, the increased search space of
227 proteins, and the presence of highly similar protein sequences in homologous proteins (where
228 peptides cannot be unambiguously mapped to one protein).

229 Since metabolomics data reflects the total pools of metabolites in the sample and cannot be
230 analysed at the species level, we assessed the coverage of metabolic pathways defined in
231 the KEGG database and compared it to pathway coverages by other omics methods (Figure
232 2D). For metabolic pathways annotated in bacterial genomes, we observed an average
233 pathway coverage of 35% for metabolomics, as compared to 44% for metaproteomics and
234 86% for metatranscriptomics. Even though direct comparison of both methods is challenging,
235 we believe that the lower coverage for metabolomics has several explanations. First, we
236 measured metabolites in supernatant samples, where rich medium components mask the
237 signal (e.g. amino acids, peptides and polysaccharides), and extracellular products of bacterial
238 metabolism, especially produced by only one or few species, may therefore not be detected.
239 Second, only a subset of all metabolites present in the bacterial cell will be secreted outside
240 of the cell. Third, to calculate metabolic pathway coverage, we assumed that each pathway
241 consists of metabolites that are produced or consumed by metabolic enzymes annotated in
242 bacterial genomes, which is likely an overestimation of pathway sizes, since presence of an
243 enzyme in the genome does not necessarily imply that this enzyme is expressed, and that the
244 corresponding metabolite will be produced and measured extracellularly.

245 To further compare the samples measured with different omics methods, we performed a
246 Mantel test, which measures a correlation coefficient between sample similarity matrices
247 calculated based on each omics data type individually (Figure 2E). For example, while it is not
248 possible to directly compare matrices of species and protein abundances, it is possible to
249 calculate sample similarity matrices for these two methods that can then be compared with
250 each other. Hierarchical clustering of Mantel correlation coefficients revealed two clusters: one
251 containing species abundance data (from metagenomics, metatranscriptomics, and
252 metaproteomics) and gene abundance (metagenomics); and a second cluster containing
253 transcript abundance data (metatranscriptomics), protein abundance data (metaproteomics),
254 and metabolite abundances. The emergence of these clusters can be explained by the nature
255 of data used to calculate sample distance matrices: species and gene abundances in one
256 cluster, and functional feature abundances in the other cluster. Notably, transcript abundance
257 as measured by metatranscriptomics showed a high correlation (≥ 0.57) with sample distance
258 matrices of all other omics measurements, underlining that this method captures both species
259 abundance and functional information in our experiment. Altogether, metatranscriptomics was
260 found to be the most universal and versatile readout, as it can both provide robust and

261 sensitive estimates of species abundance, and at the same time reflects functional changes,
262 which are in concordance with protein changes detected by metaproteomics.

263 Chlorpromazine treatment strongly affects community 264 composition

265 After testing the technical consistency between omics measurements in a synthetic microbial
266 community, we explored the impact of drug perturbations on the community composition and
267 the respective responses at species, gene, transcript, protein and metabolite levels. For the
268 control condition and all perturbations (chlorpromazine, metformin and niclosamide), similar
269 dynamic changes in alpha diversity were observed over time. In general, the alpha diversity
270 (inverse Simpson index) increased as the community grew over time after inoculation,
271 however, this increase was lower for chlorpromazine compared to the other drugs and the
272 control condition (Supplementary Figure 6A, B). We observed different community dynamics
273 between runs A and B during the exponential phase: *E. coli* and *C. perfringens* were the most
274 abundant species in all conditions in run A (Fig. 3A, Supplementary Figure 6C), while *E. coli*
275 dominated community composition during exponential phase in run B. However, community
276 compositions became more similar between the runs at 43 h after drug treatment
277 (Supplementary Figure 7). These analyses revealed that the addition of metformin and
278 niclosamide had negligible effects on the community composition, while chlorpromazine
279 treatment shifted the community composition in both runs.

280 To identify differentially abundant species after drug perturbation, we analysed the
281 composition of microbiomes by comparing species abundances in drug-treated samples
282 against control samples estimated by each omics type (Figure 3B) (ANCOM (Mandal *et al*,
283 2015)). This analysis revealed that most members of the Bacteroidota phylum (*Odoribacter*
284 *splanchnicus*, *Parabacteroides distasonis*, *Phocaeicola vulgatus*, *Bacteroides fragillis*,
285 *Bacteroides thetaiotaomicron* and *Bacteroides uniformis*) were less abundant in
286 chlorpromazine-treated samples. This reduction in Bacteroidota abundance was detected
287 across all four omics methods capturing community composition, indicating that each of these
288 methods is capable of detecting strong signals of species abundance change. In addition to
289 Bacteroidota, *Fusobacterium nucleatum* was found to be less abundant in chlorpromazine-
290 treated samples. In contrast, the other two drugs did not cause major shifts in relative
291 abundances: although ANCOM test identified significant changes of abundance of several
292 species, their relative abundance was not changing more than two-fold (Figure 3B). In
293 summary, we found a consistent and substantial depletion of species belonging to the phylum
294 Bacteroidota upon chlorpromazine treatment.

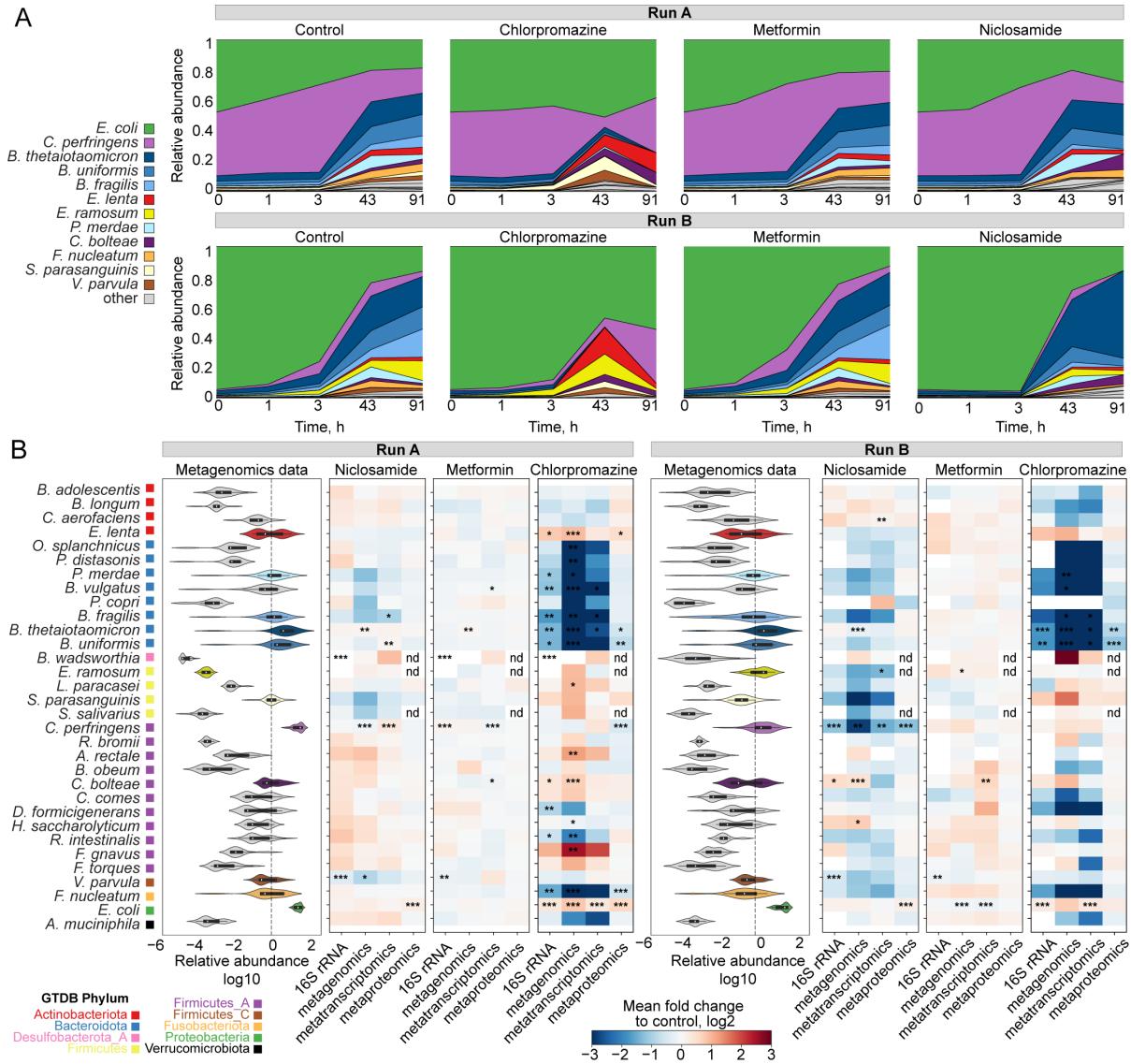


Figure 3. Changes in community composition upon drug perturbation. (A). Relative species abundance changes over time in the three drug conditions and control. Time 0 indicates timepoint of the drug addition 5 h after the passage in the fresh medium. Relative abundance measured from metagenomics data. (B). Left, distribution of relative species abundance for each species across all samples (all conditions and timepoints). Right, heatmap of species abundance fold changes measured by different omic methods for each drug condition versus control. Significance of changes estimated by the ANCOM test is indicated by asterisks: * changes detected at 0.7 threshold of W statistic; ** changes detected at 0.8 threshold; *** changes detected at 0.9 threshold; nd – not detected.

Multi-omics measurements capture functional response of the community to all three drugs

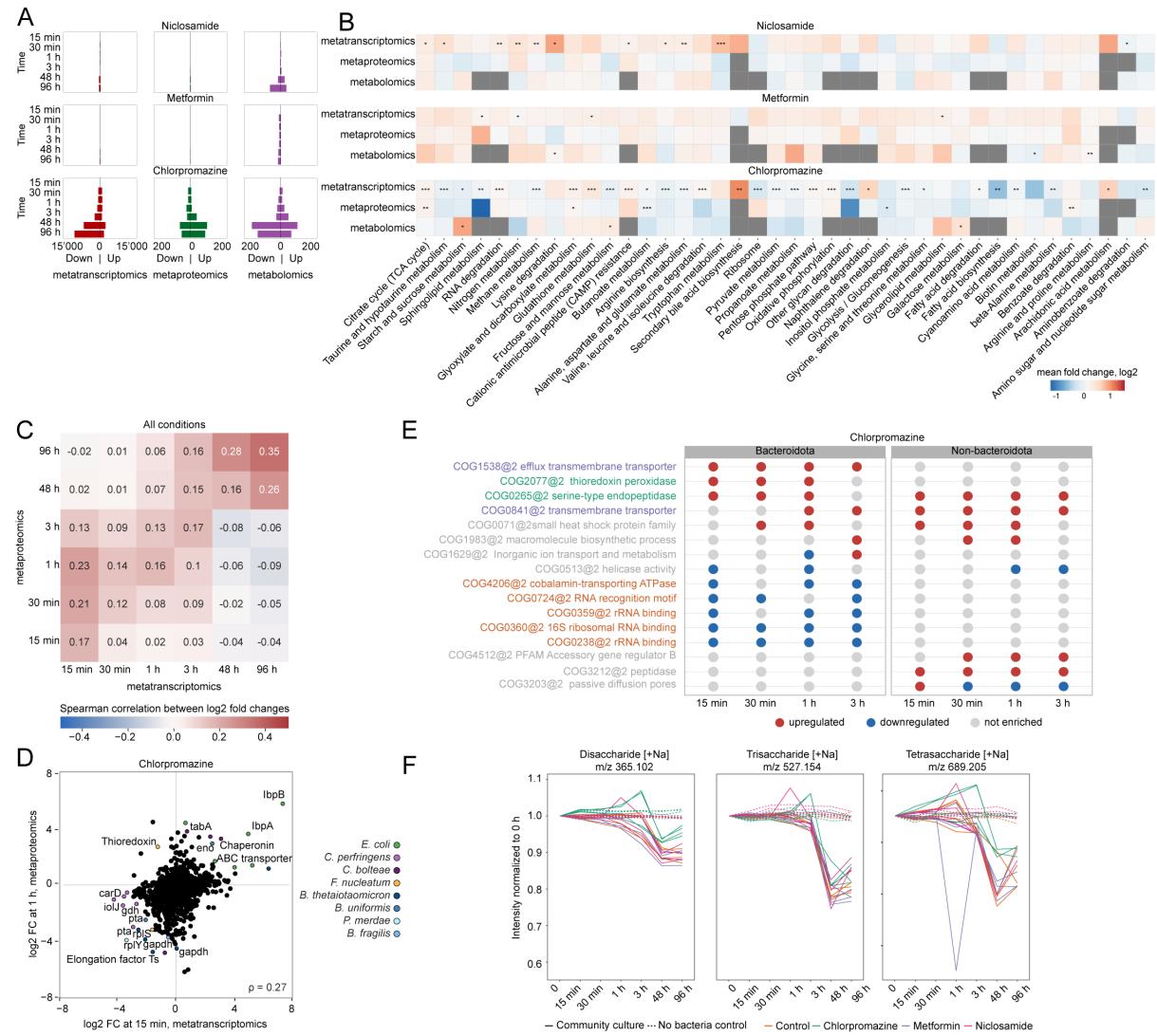
305 As compositional shifts do not provide information on the mechanisms of response of each
306 community member, we investigated these functional responses in more detail by performing
307 differential analysis of metatranscriptomic, metaproteomic and metabolomic datasets after a
308 normalization step wherein taxonomic abundance effects were reduced (see “Gene, transcript
309 and protein counting” in the Methods section). The highest number of differentially abundant

310 transcripts, proteins and metabolites were found in samples treated with chlorpromazine
311 (adjusted p-value < 0.001 and absolute fold change > 4 compared to control for
312 metatranscriptomics, adjusted p-value < 0.05 and absolute fold change > 1.5 for
313 metaproteomics and metabolomics; Figure 4A), which is in line with our findings that
314 chlorpromazine caused the largest disruption to bacterial community (Figure 3B).
315 Transcriptional response to chlorpromazine is detected already after 15 minutes of treatment
316 across species belonging to different phyla, suggesting that, although Bacteroidota show the
317 strongest response, other species also adapt their gene expression.

318 In order to evaluate similarities between functional responses across omics data types, we
319 performed pathway enrichment analysis of differentially abundant features between drug
320 treatment and controls across all time points using KEGG pathway annotations (Figure 4B).
321 In general, we detected less overlap between omics layers on the functional level compared
322 to species abundance analysis, as no single pathway was statistically significant in the
323 enrichment analysis of all three functional omics datasets. Across all conditions, five pathways
324 were found to be significantly enriched upon drug treatment compared to the control condition
325 in two omics data types, while 35 pathways were statistically significantly enriched in only one
326 omics dataset. The largest number of significantly enriched pathways was found in
327 chlorpromazine-treated samples for metatranscriptomics data.

328 Several pathways were significantly overrepresented ($pFDR < 0.001$ for metatranscriptomics
329 and $pFDR < 0.05$ for metaproteomics and metabolomics) within the set of up- and
330 downregulated features (transcripts/proteins/metabolites) in metformin-treated samples. For
331 example, three pathways, i) lysine degradation, ii) biotin metabolism and iii) arginine and
332 proline metabolism, were enriched in differentially abundant metabolites. Further inspection of
333 metabolites involved in these pathways showed that their abundance also decreased upon
334 addition of metformin in the non-bacterial control samples (Supplementary Figure 8). This
335 indicates that metformin primarily interferes with the measurement of these metabolites,
336 probably due to their chemical similarity, underlining the importance of including non-bacterial
337 control samples to study drug response. However, we cannot exclude that metformin also
338 interacts with lysine and arginine metabolism pathways in bacteria, as reported before (Pryor
339 *et al*, 2019; Forslund *et al*, 2015). In general, we did not observe substantial effects of
340 metformin neither on community composition nor on transcript or protein abundance in our
341 study, at least at the concentrations used. In previous experiments, metformin at the same
342 concentration had an effect on several of the tested species grown in single culture (Maier *et
343 al*, 2018), however it is possible that these species show a different behaviour in a community
344 setting (D'hoe *et al*, 2018).

345 For niclosamide-treated samples, ten pathways were significantly enriched ($p\text{FDR}<0.001$)
346 among regulated transcripts, including amino acid and nitrogen metabolism. Transcripts of
347 nitrogen metabolism pathway upregulated in the early time points (15 min, 30 min, 1 h, 3 h)
348 were annotated as NAD-specific glutamate dehydrogenase (belonging to the Cluster of
349 Orthologous Groups COG0334 from the EggNOG database present in *B. thetaiotaomicron*,
350 *P. vulgatus*, *B. fragilis*), hydroxylamine reductase (COG1151 in *C. perfringens*, *B. uniformis*)
351 and carbamate kinase (COG0549 in *Eggerthella lenta*) (Supplementary Figure 9). Previously,
352 NAD-specific glutamate dehydrogenase was found to be upregulated in response to nitrogen
353 availability in *Mycobacterium smegmatis*, where it is assumed to have a de-aminating activity
354 (Harper *et al*, 2010). Furthermore, hydroxylamine reductase and carbamate kinase are
355 enzymes belonging to the family of oxidoreductases which both act on nitrogenous
356 compounds. Therefore, the upregulated pathway and its transcripts suggest an increased
357 metabolism of nitrogen in niclosamide-treated samples. Further examination of our
358 metabolomic dataset revealed that niclosamide gets degraded in both runs of the experiment
359 (Supplementary Figure 10). Additional follow-up experiments are needed to elucidate the
360 mechanisms underlying the microbial degradation of niclosamide and the roles of individual
361 community members.



362

363 **Figure 4.** Functional analysis of transcript, protein and metabolite response after niclosamide, metformin or chlorpromazine
364 treatment. A) Number of differentially abundant transcripts, proteins and metabolites. B) Pathway enrichment analysis across all
365 conditions and time points. C) Heatmap representing Spearman correlation between fold changes (relative to control) detected
366 by metatranscriptomics and metaproteomics across all drug perturbations. D) Scatterplot depicting protein fold changes (relative
367 to control) detected after 15 min of chlorpromazine exposure by metaproteomics versus after 1 h of exposure by
368 metatranscriptomics. E) COG enrichment analysis differentiating between species susceptible to chlorpromazine treatment
369 (Bacteroidota) and non-susceptible species (non-Bacteroidota). COGs that are enriched in upregulated genes are coloured in
370 red, while COGs that are enriched in downregulated genes are coloured in blue. Only COGs that were found to be significantly
371 enriched in at least three out of four early time points are shown. COG names that are coloured are discussed in more detail in
372 the main text. F) Di-, tri- and tetra-saccharide abundances as measured by untargeted metabolomics (metabolite annotation is
373 based on m/z values indicated in the panel titles). The lines are coloured according to the experimental conditions
374 (chlorpromazine, metformin, niclosamide and control), and the line type represents whether these are community culture or non-
375 bacterial controls.

376

377 Chlorpromazine induces stress response and metabolic 378 changes in the community

379 Since the number of differentially abundant features and pathways was high in
380 chlorpromazine-treated samples (Figure 4A and 4B), we tested whether there are features
381 that change concordantly across omics layers. We first compared transcript and protein fold
382 changes upon perturbation, which revealed general agreement between relative changes in
383 gene expression and protein abundance, with transcript fold changes at each time point
384 correlating more strongly with protein changes at later time points (Figure 4C, Supplementary
385 Figure 11), likely reflecting the delay between transcription and translation processes. Based
386 on this analysis, we assessed the most prominent and concordant changes between
387 metatranscriptomics and metaproteomics 15 min and 1 h after chlorpromazine addition,
388 respectively (Figure 4D). Consistent with the observed relative species abundance changes,
389 the most concordantly downregulated features were proteins and genes of Bacteroidota
390 species and *F. nucleatum*, including ribosomal proteins, elongation factors, and central carbon
391 metabolism enzymes *gldA* (glycerol dehydrogenase), *gapdh* (glyceraldehyde 3-phosphate
392 dehydrogenase), and *pta* (phosphate acetyltransferase), the latter two being downregulated
393 in several species (Figure 4D). Furthermore, the most upregulated features found both in
394 metatranscriptomics and metaproteomics were stress response genes in *E. coli*, such as the
395 small heat shock proteins *IbpA* and *IbpB* (Inclusion body-associated protein A and B), other
396 chaperones, and ABC transporters. *IbpA* and *IbpB* serve as a first line of defence against
397 protein aggregation (Miwa *et al*, 2021). In addition to *ibpA* and *ibpB*, we found upregulation of
398 the transcriptional regulator *rpoH* and the chaperones *dnaK* and *groEL*, which are also
399 involved in heat shock response (Yura, 2019) (Supplementary Figure 12). Together, these
400 results show that chlorpromazine causes the activation of a stress response in *E. coli*, probably
401 due to induction of protein aggregation either directly or indirectly.

402 We then tested whether genes associated with stress response were differently regulated
403 between chlorpromazine-susceptible and non-susceptible species. Two COGs related to the
404 stress response were enriched in upregulated genes in at least two of the four early time points
405 in the depleted (susceptible) species (Figure 4E, annotated in green, Supplementary Figure
406 13). One of them, COG0265, is upregulated by both susceptible and non-susceptible species
407 and encompasses serine proteases (e.g., HtrA proteins such as *DegP* and *DegQ*), which
408 represent an important class of chaperones and heat-shock-induced serine proteases,
409 protecting periplasmic proteins. Furthermore, two COGs enriched in upregulated genes were
410 related to (multidrug) transporter activity. COG1538, which contains genes annotated as
411 membrane protein *OprM*, was the only COG enriched in upregulated genes by Bacteroidota

412 in all four early time points (Fig 4F, annotated in purple). In *Pseudomonas aeruginosa*, OprM
413 is part of MexAB-OprM, a multidrug efflux pump of the resistance-nodulation-cell division
414 (RND) superfamily, where it plays a central role in multidrug resistance by transporting drugs
415 from the cytoplasm across the inner and outer membranes outside the cell envelope (Tsutsumi
416 *et al*, 2019; Alekshun & Levy, 2007). RND-efflux pumps are found in a number of Gram-
417 negative bacteria, for example, AcrAB-TolC is found in *E. coli* (Du *et al*, 2018) while
418 *Bacteroides fragilis* harbours multiple copies of RND pumps BmeABC (Ghotaslou *et al*, 2018).
419 Further, in addition to COG1538 (OprM homologues), also COG0841 containing homologues
420 of the MexB/AcrB/bmeB protein (Figure 4E, also annotated in purple) was found to be enriched
421 in upregulated genes, both in Bacteroidota and non-Bacteroidota species. These observations
422 suggest an important role of the AcrAB-TolC/MexAB-OprM/bmeABC efflux pumps in
423 determining chlorpromazine susceptibility. Indeed, a recent study showed that chlorpromazine
424 is both a substrate and an inhibitor of the AcrB multidrug efflux pump in *Salmonella enterica*
425 and *E. coli* (Grimsey *et al*, 2020). Together, our results suggest that chlorpromazine could also
426 be an inhibitor of BmeB, the AcrB/MexB homologue in Bacteroidota species and that this,
427 potentially in combination with protein aggregation, could be one of the reasons explaining
428 why Bacteroidota are affected by chlorpromazine treatment.

429 Finally, depletion of Bacteroidota and downregulation of their genes involved in polysaccharide
430 uptake might explain the enrichment of “Starch and sucrose” and “Fructose and mannose
431 metabolism” pathways among metabolites increased upon chlorpromazine treatment (Figure
432 4B). As *Bacteroides* species are known to be capable of metabolizing a wide variety of
433 polysaccharides (Schwalm & Groisman, 2017), we believe that the higher abundance of
434 polysaccharides after chlorpromazine treatment (Figure 4F) measured by metabolomics is a
435 result of their reduced consumption by these species.

436 Taken together, by integrating multi-omics measurements, we propose that a series of events
437 happens upon treatment by chlorpromazine i) a stress response is induced across several
438 bacterial species with overexpression of *ibpA* and *ibpB* chaperones being the most
439 pronounced response in *E. coli*; ii) this stress response involves upregulation of AcrB/BmeB
440 type of RND pumps, which may be bound and blocked by chlorpromazine in a species-specific
441 manner; iii) Bacteroidota species are more susceptible to chlorpromazine and are quickly
442 depleted from the community, which results in iv) increase in polysaccharide levels in the
443 culture medium due to the inability of the remaining community members to utilize them.

444

445 Discussion

446 In this study we evaluated the impact of drug perturbations on a synthetic gut microbial
447 community by analysing five different omics data types in a highly controlled *in vitro*
448 experiment. In general, we found concordance between all omics data types regarding the
449 estimation of community composition (taxonomic profiling). To our knowledge, this is the first
450 study to systematically compare taxonomic profiles obtained by four omics data types and can
451 thus serve as a baseline for integrating different data types in “*in natura*” settings. Using the
452 synthetic community, we could show a high correlation between metagenomics and
453 metatranscriptomics ($p = 0.92$), similar to a previous study that used only these two omics
454 methods ($p = 0.81$, (Heintz-Buschart & Wilmes, 2018)). The taxonomic profiles obtained from
455 our metaproteomics dataset, which is increasingly used in microbiome studies (e.g. Kleiner *et*
456 *al*, 2017; Kleikamp *et al*, 2021), showed correlations between $p = 0.78$ and $p = 0.84$ with all
457 other omics for species with a relative abundance higher than 1%. Although the number of
458 detected proteins and the detection limits remain to be improved, we showed that species
459 abundance estimates can be derived from metaproteomics in a relatively simple, defined
460 microbial community.

461 Of the three drugs used for perturbation, only chlorpromazine caused a large disturbance in
462 the community composition. Surprisingly, metformin, which has been shown to alter the gut
463 microbiome in patients (Forslund *et al*, 2015; Wu *et al*, 2017), did not perturb the community
464 in our study, even though our earlier study suggested that the growth of at least four different
465 species is inhibited by metformin at the concentration used in monocultures (*F. nucleatum*, *B.*
466 *longum*, *P. copri* and *P. merdae*, (Maier *et al*, 2018)). This observation hints at a protective
467 effect from the community, although this protective effect is not caused by drug degradation,
468 as metformin concentrations remained high during the course of experiment (Supplementary
469 Figure 10). Similarly, niclosamide was expected to cause a depletion of most of the members
470 of the synthetic community, except for *E. coli* and *B. wadsworthia* (Maier *et al*. 2018), which
471 was not observed in this study, also pointing to community-related protection effects. Our
472 metatranscriptomic data revealed an upregulation of genes related to nitrogen metabolism,
473 while niclosamide concentration decreased during incubation, which was not observed in the
474 non-bacterial controls. Therefore, we believe that certain species are capable of degrading
475 niclosamide, which ultimately protected the whole community against possible inhibitory
476 effects of niclosamide treatment.

477 For chlorpromazine, the observed depletion of Bacteroidota species was in concordance with
478 single species experiments (Maier *et al*, 2018). The antibiotic activity of chlorpromazine was
479 reported relatively soon after its first usage in the nineteen-fifties (Dinan & Cryan, 2018;

480 Kristiansen & Vergmann, 1986). Its antibiotic mechanism of action is described to be multifold
481 and includes effects on the cell membrane, energy generation and interference with cell
482 replication due to DNA intercalation in *E. coli* (Grimsey *et al*, 2020). In our study, several genes
483 and proteins related to protein aggregation were upregulated in metatranscriptomic and
484 metaproteomic datasets in *E. coli* and other community members. One study already reported
485 protein aggregation of bovine insulin after chlorpromazine treatment (Bhattacharyya & Das,
486 2001). However, it remains unclear whether chlorpromazine can cause protein aggregation in
487 microbes either directly or indirectly, a hypothesis that should be followed-up in future
488 experiments.

489 Finally, we identified upregulation of RND-type efflux pumps in the Gram-negative bacteria,
490 even in the Bacteroidota species that were severely depleted. It was recently shown that in *S.*
491 *enterica* and *E. coli*, chlorpromazine is both a substrate and an inhibitor of AcrB, the inner
492 membrane transporter of the tripartite system AcrAB-TolC, which is an RND-type efflux pump
493 (Grimsey *et al*, 2020; Bailey *et al*, 2008a). Based on our data, we hypothesise that BmeB, the
494 AcrB homologue in Bacteroidota, is also susceptible to chlorpromazine inhibition as we found
495 upregulation of this and related genes, similar to what has been described by others in single
496 species experiments (Grimsey *et al*, 2020). The suggested mechanism could be of
497 significance in the battle against the rising multidrug resistance of *Bacteroides fragilis*, a
498 commensal bacterium that can act as a virulent pathogen when it escapes its normal niche
499 (Wexler, 2007, 2012; Niestępski *et al*, 2019). However, chlorpromazine's antimicrobial activity
500 generally occurs at concentrations higher than those clinically achievable (Grimsey & Piddock,
501 2019). Therefore it is possible that, similarly as suggested for *S. enterica*, chlorpromazine
502 could act as an antimicrobial adjuvant for Bacteroidota where its inhibition of RND-type efflux
503 pumps prevents the extrusion of administered antibiotics (Grimsey *et al*, 2020). From the
504 perspective of human health, these results underline the detrimental effect of antipsychotics
505 on the gut microbiome reported before (Dinan & Cryan, 2018). However, the revealed phylum-
506 specific differences provide an opportunity to explore whether complementation of
507 antipsychotic therapy with Bacteroidota-promoting dietary interventions could improve mental
508 health and increase patients' quality of life by restoring a healthy microbiota (Patnode *et al*,
509 2019).

510 In conclusion, we directly compared data from multiple omics methods and showed that they
511 agree on species abundance estimation of a defined and drug-perturbed microbial community
512 *in vitro*. Those methods that are able to detect functional information also correlate with each
513 other, albeit to a lower degree. We could also confirm expected time delays between
514 transcriptional and translational responses to perturbations, underlining that these methods
515 reveal biological insights that happen at different time scales. Although multi-omics analysis

516 of natural communities is hampered by their increasing complexity, combining multiple omics
517 measurements allows to measure the response of the community to perturbations across
518 molecular layers and provides information that is not achievable by any method alone.

519

520 Methods

521 Species and drug selection

522 The species used in this study represent a subset of abundant and prevalent species from the
523 human gut. In total, 32 species were selected based on our previous work (Tramontano *et al*,
524 2018; Maier *et al*, 2018). The bacterial isolates were received from DSMZ, BEI Resources or
525 ATCC and Dupont Health & Nutrition. The drugs were chosen because of their antimicrobial
526 activity (Maier *et al*, 2018) and diversity in therapeutic usage.

527 Reference genomes

528 Reference genomes were downloaded from RefSeq on March 2019 (release 92) and
529 reannotated using Prokka v1.14.0 (Seemann, 2014). Taxonomic classification was based on
530 GTDB taxonomy release 95 (Parks *et al*, 2018) and inferred using GTDB-Tk v1.3.0 (Chaumeil
531 *et al*, 2020; Matsen *et al*, 2010; Jain *et al*, 2018; Hyatt *et al*, 2010; Price *et al*, 2010; Eddy,
532 2011; Ondov *et al*, 2016). Further functional annotations (e.g. KEGG orthology and eggNOG
533 orthologous group) were retrieved using eggNOG-mapper v2.0.1 which is based on eggNOG
534 v5.0 (Huerta-Cepas *et al*, 2017). A cladogram was built by pruning the species cladogram
535 from GTDB (bac120.tree, release 95) using the ETE toolkit (Huerta-Cepas *et al*, 2016).

536 Medium and drug preparation

537 mGAM medium was prepared according to manufacturer's instructions (HyServe GmbH &
538 Co.KG, Germany, produced by Nissui Pharmaceuticals) and all the single species were grown
539 in this medium except *V. parvula* (Todd-Hewitt Broth (Sigma-Aldrich) + 0.6% sodium lactate)
540 and *B. wadsworthia* (mGAM + 60 mM sodium formate + 10 mM taurine). All media were placed
541 in anaerobic chamber 1 day before use under anoxic conditions (Coy Laboratory Products
542 Inc.) (2% H₂, 12% CO₂, rest N₂). Chlorpromazine (TCI Chemicals) and niclosamide (Santa
543 Cruz Biotechnology) were added from DMSO stock solution. Metformin (Sigma) was added
544 as powder directly into the medium after which the medium was filter-sterilized. Final
545 concentrations of each drug were chosen based on previous work (Maier *et al*. 2018) with
546 concentrations of 5 mM for metformin and 20 µM for chlorpromazine and niclosamide. The
547 higher concentration for metformin is motivated by previously published data, which showed

548 that a concentration of 20 μ M was not sufficient to impair growth of gut microbiome members
549 *in vitro* ((Maier *et al*, 2018); Extended Data Figure 4).

550 Experimental set-up and sample collection

551 Species were pre-inoculated in isolation on liquid mGAM medium from pure stocks and
552 incubated at 37 °C under anaerobic conditions for a period of 3 or 5 days, depending on the
553 growth rate of each species (see Figure 1). The monocultures were subsequently mixed in
554 equal proportions based on their optical density (OD) and then inoculated in 100 mL of mGAM
555 liquid medium. To allow species to reach a stable state (stabilization phase), the mixed culture
556 was grown for 48 hours after which 1 mL was transferred to fresh medium. In total, 3 passages
557 were performed and after the second transfer OD measurements were taken to determine the
558 start of the exponential phase.

559 Following the stabilization phase, the mixed community was inoculated in medium prepared
560 with one single drug or DMSO (control) as soon as the community reached the exponential
561 phase (OD roughly equal to 2-3). The cultures were subsequently sampled (3 mL) at fixed
562 time intervals (0 minutes, 15 minutes, 30 minutes, 1 hour, 3 hours, 48 hours), transferred to
563 fresh medium (with drugs or DMSO) after 48 hours and then sampled again 48 hours later (or
564 96 hours after the start of the experiment). The whole experiment was performed twice
565 (labelled as run A and run B).

566 1.5 mL of each collected sample was centrifuged (30 seconds at max speed) after which the
567 supernatant was removed and the cell pellet was stored at -80 °C until further processing for
568 DNA and RNA extraction. For protein and metabolite extraction, again 1 mL of each collected
569 sample was centrifuged (30 seconds at max speed) and 450 μ L of supernatant was used for
570 metabolite extraction or protein extraction (secreted proteins) while the cell pellet was used
571 for protein extraction (proteins in the cells). The remainder of the samples was frozen at -80
572 °C as backup.

573 DNA and RNA extraction

574 Genomic DNA and total RNA were extracted from the same flash-frozen samples using
575 Allprep Powerfecal DNA/RNA kit (Qiagen, Hilden Germany) following the manufacturer's
576 protocol but an additional phenol-chloroform extraction step of 700 μ L was performed after
577 lysis. DNA yield was measured by using Qubit™ dsDNA HS Assay Kit (Qubit, Waltham,
578 Massachusetts, USA), split into two aliquots for ribosomal 16S rRNA amplicon sequencing
579 and metagenomic shotgun sequencing and was stored at -20°C. RNA yield was measured
580 via Bioanalyzer (Agilent, Santa Clara, California, USA) with Pico and Nano chips depending
581 on the sample concentration and stored at -80°C for further analysis.

582 16S rRNA amplicon, metagenomic and metatranscriptomic 583 sequencing

584 For 16S rRNA amplicon sequencing, extracted DNA was amplified using primers targeting the
585 V4 region of the 16S rRNA gene on the F515 and R806 primer pair (Caporaso *et al*, 2011).
586 PCR was performed according to the manufacturer's instructions of the KAPA HiFi HotStart
587 PCR Kits (Roche, Basel Switzerland) using barcoded primers and a two-step PCR protocol
588 (NEXTflex™ 16S V4 Amplicon-Seq Kit, Bioo Scientific, Austin, Texas, USA). PCR products
589 were pooled and purified using size-selective SPRIselect magnetic beads (0.8 left-sized,
590 Beckman Coulter, Brea, CA, USA). The library was then diluted to 6pM for sequencing. The
591 library was sequenced on an Illumina (San Diego, USA) MiSeq platform using 2 x 250 bp
592 paired-end reads at Genomics Core Facility (European Molecular Biology Laboratory (EMBL),
593 Heidelberg, Germany).

594 Metagenomic libraries for all samples were prepared using the NEB Ultra II and SPRI HD kits
595 with a targeted insert size of 350, and sequenced on an Illumina HiSeq 4000 platform (Illumina,
596 San Diego, CA, USA) in 2x150bp paired-end with the aim of 1.5 Gbp average setup at the
597 Genomics Core Facility (EMBL, Heidelberg, Germany).

598 RNA samples were depleted for ribosomal RNA using the NEBNext Bacteria rRNA Depletion
599 Kit (New England Biolabs, Ipswich, Massachusetts, USA). Samples were pooled into a library
600 using the NEBNext Ultra II Directional RNA Library Prep Kit (New England Biolabs) and
601 subsequently sequenced on Illumina NextSeq500 platform (75 bp; single end) at Genomics
602 Core Facility (EMBL, Heidelberg, Germany).

603 Quality control of raw reads was performed using NGLess (Coelho *et al*, 2019). For
604 metagenomics, reads were trimmed to the longest subread where each base had a Phred
605 score of at least 25. For metatranscriptomics, a sliding window approach was used and reads
606 were trimmed to the longest subread with an average Phred score of 20 (window size: 4 bp).
607 Resulting reads shorter than 45 bp were discarded. To remove possible human contamination,
608 all reads were mapped against a human reference database (release GRCh38.p10, Ensembl
609 (Zerbino *et al*, 2018)) using NGLess and samtools (Li *et al*, 2009). Reads with an identity
610 threshold $\geq 90\%$ were discarded. For metatranscriptomics specifically, rRNA reads were also
611 removed from the dataset using SortMeRNA (Kopylova *et al*, 2012) with default parameters.

612 Protein extraction

613 Sample preparation, including protein extraction, digestion and peptide purification was
614 performed according to the in-StageTip protocol (Kulak *et al*, 2014, 20) with automation on an

615 Agilent Bravo liquid handling platform according to (Geyer *et al*, 2016). In brief, samples were
616 incubated in the PreOmics lysis buffer (P.O. 00001, PreOmics GmbH) for reduction of disulfide
617 bridges, cysteine alkylation and protein denaturation at 95°C for 10 min. Samples were
618 sonicated using a Bioruptor Plus from Diagenode (15 cycles of 30 s). The protein
619 concentration was measured using a tryptophan assay. In total, 200 µg protein of each
620 organism were further processed on the Agilent Bravo liquid handling platform by adding
621 trypsin and LysC (1:100 ratio - µg of enzyme to µg of sample protein). Digestion was performed
622 at 37 °C for 4 h.

623 The peptides were purified in consecutive steps according to the PreOmics iST protocol
624 (www.preomics.com). After elution from the solid phase extraction material, the peptides were
625 completely dried using a SpeedVac centrifuge at 60°C (Eppendorf, Concentrator plus).
626 Peptides were suspended in buffer A* (2% acetonitrile (v/v), 0.1% trifluoroacetic acid (v/v))
627 and sonicated for 30 min (Branson Ultrasonics, Ultrasonic Cleaner Model 2510).

628 Metaproteomics

629 Samples were analyzed using a liquid chromatography (LC) system coupled to a mass
630 spectrometer (MS). The LC was an EASY-nLC 1200 ultra-high pressure system (Thermo
631 Fisher Scientific) and was coupled to a Q Exactive HF-X Orbitrap mass spectrometer (Thermo
632 Fisher Scientific) using a nano-electrospray ion source (Thermo Fisher Scientific). Purified
633 peptides were separated on 50 cm HPLC-columns (ID: 75 µm; in-house packed into the tip
634 with ReproSil-Pur C18-AQ 1.9 µm resin (Dr. Maisch GmbH)). For each LC-MS/MS analysis
635 about 500 ng peptides were separated on 100 min gradients.

636 Peptides were separated with a two-buffer-system consisting of buffer A (0.1% (v/v) formic
637 acid) and buffer B (0.1% (v/v) formic acid, 80% (v/v) acetonitrile). Peptides were eluted with a
638 linear 70 min gradient of 2-24% buffer B, followed stepwise by a 21 min increase to 40% buffer
639 B, a 4 min increase to 98% buffer B and a 5 min wash of 98% buffer B. The flow rate was
640 constant at 350 nl/min. The temperature of the column was kept at 60°C by an in-house-
641 developed oven containing an Peltier element, and parameters were monitored in real time by
642 the SprayQC software (Scheltema & Mann, 2012).

643 First, data dependent acquisition (DDA) was performed of each single organism to establish
644 a library for the data independent acquisition (DIA) of the community culture samples. The
645 DDA scans consisted of a Top15 MS/MS scan method. Target values for the full scan MS
646 spectra were 3e6 charges in the 300-1650 m/z range with a maximum injection time of 25 ms
647 and a resolution of 60,000 at m/z 200. Fragmentation of precursor ions was performed by
648 higher-energy C-trap dissociation (HCD) with a normalized collision energy of 27 eV. MS/MS
649 scans were performed at a resolution of 15,000 at m/z 200 with an ion target value of 5e4 and

650 a maximum injection time of 120 ms. Dynamic exclusion was set to 30 s to avoid repeated
651 sequencing of identical peptides.

652 MS data for the community culture samples were acquired with the DIA scan mode. Full MS
653 scans were acquired in the range of m/z 300–1650 at a resolution of 60,000 at m/z 200 and
654 the automatic gain control (AGC) set to 3e6. The full MS scan was followed by 32 MS/MS
655 windows per cycle in the range of m/z 300–1650 at a resolution of 30,000 at m/z 200. A higher-
656 energy collisional dissociation MS/MS scans was acquired with a stepped normalized collision
657 energy of 25/27.5/30 eV and ions were accumulated to reach an AGC target value of 3e6 or
658 for a maximum of 54 ms.

659 The MS data of the single organisms and of the community cultures were used to generate a
660 DDA-library and the direct-DIA-library, respectively, which were computationally merged into
661 a hybrid library using the Spectronaut software (Biognosys AG). All searches were performed
662 against a merged protein FASTA file of our reference genomes annotated using Prokka (see
663 above). Searches used carbamidomethylation as fixed modification and acetylation of the
664 protein N-terminus and oxidation of methionines as variable modifications. Trypsin/P
665 proteolytic cleavage rule was used, permitting a maximum of 2 missed cleavages and a
666 minimum peptide length of 7 amino acids. The Q-value cutoffs for both library generation and
667 DIA analyses were set to 0.01.

668 Metabolomics measurements

669 Untargeted metabolomics analysis was performed as described previously (Fuhrer *et al*,
670 2011). Briefly, samples were analyzed on a LC/MS platform consisting of a Thermo Scientific
671 Ultimate 3000 liquid chromatography system with autosampler temperature set to 10° C
672 coupled to a Thermo Scientific Q-Exactive Plus Fourier transform mass spectrometer
673 equipped with a heated electrospray ion source and operated in negative or positive ionization
674 mode. The isocratic flow rate was 150 µL/min of mobile phase consisting of 60:40% (v/v)
675 isopropanol:water buffered with 1 mM ammonium fluoride at pH 9 for negative ionization mode
676 or 60:40% (v/v) methanol:water buffered with 0.1% formic acid at pH 2 for positive ionization
677 mode, in both cases containing 10 nM taurocholic acid and 20 nM homotaurine as lock
678 masses. Mass spectra were recorded in profile mode from 50 to 1,000 m/z with the following
679 instrument settings: sheath gas, 35 a.u.; aux gas, 10 a.u.; aux gas heater, 200° C; sweep gas,
680 1 a.u.; spray voltage, -3 kV (negative mode) or 4 kV (positive mode); capillary temperature,
681 250° C; S-lens RF level, 50 a.u; resolution, 70k @ 200 m/z; AGC target, 3x10⁶ ions, max.
682 inject time, 120 ms; acquisition duration, 60 s. Spectral data processing including peak
683 detection and alignment was performed using an automated pipeline in R analogous to
684 previously published pipelines (Fuhrer *et al*, 2011). Detected ions were tentatively annotated

685 as metabolites based on accurate mass within a dynamic tolerance depending on local
686 instrument resolving power ranging from 1 mDa at $m/z = 50$ to 5 mDa at $m/z = 1,000$ using
687 the Human Metabolome database (Wishart *et al*, 2018) as reference considering [M-H] and
688 [M-2H] ions in negative mode or [M+], [M+H], [M+Na] and [M+K] ions in positive mode and up
689 to two ^{12}C to ^{13}C substitutions. Of note, this approach precludes the resolution of isomers, of
690 metabolites mapping to the same ion using different adduct assumptions, of unaccounted
691 neutral gains or losses, or of metabolites with slightly distinct masses that nevertheless map
692 to the same ion within the respective local matching tolerance.

693 Metabolomics data analysis

694 Raw intensity values were quantile-normalized separately for ions acquired in positive and
695 negative modes. For further analysis, the data from the two acquisition polarity modes were
696 combined in one table and filtered as follows: only annotated ions were retained; ions
697 annotated to ^{13}C -compounds only were removed; for each metabolite, only the ion with the
698 annotation considered most likely was retained (either the ion with highest correlation with the
699 total ion current, or the ion with the largest mean intensity across samples).

700 Gene, transcript and protein counting

701 Metagenomic and metatranscriptomic reads were mapped against a database of reference
702 genomes containing only the species used in this study, using NGLess and samtools, with a
703 minimum match size of 45 and minimum identity of 97. Abundance estimates were produced
704 by counting the number of reads mapping to each genome included in the study. If a read
705 mapped to multiple genes, the count was distributed to each of the genes (e.g. if a read maps
706 to gene X and gene Y, gene X and gene Y each get a count of 0.5).

707 Proteins quantification and filtering. Proteins were filtered based on the information from the
708 DDA experiment on which peptides are detected in which single species. Metaproteomics
709 report with protein and peptide quantification obtained from Spectronaut software applied to
710 DIA samples was used as input. For each peptide in the community peptide report file, number
711 of exact protein and species matches was calculated. For each protein, only unique peptides
712 that match to one species were left for quantification. For each protein, the peptides were
713 sorted according to the number of samples in which they were detected. Protein abundance
714 was calculated as the mean of three most commonly measured peptides as suggested before
715 . If the number of peptides was less than three, the protein was discarded.

716 To reduce taxonomic abundance effects in downstream analyses, taxon-specific scaling was
717 performed on metagenomics, metatranscriptomics and metaproteomics as described by
718 (Klingenberg & Meinicke, 2017).

719 Species abundance estimation

720 Multiple computational strategies were used to estimate species abundance. Unless stated
721 otherwise, for all analyses the species abundances resulting from read mapping were used.
722 For this approach, first a database of 16S rRNA regions was constructed by manually querying
723 the SILVA rRNA database (Quast *et al*, 2013) and extracting the representative sequence
724 from each of our 32 species. Amplicon sequencing reads were then mapped against this
725 database using MAPseq v1.2.4 (Matias Rodrigues *et al*, 2017). Paired reads were mapped
726 independently and assignments were only considered upon agreement. Abundance estimates
727 were then produced by counting the number of reads mapping to each genome included in
728 the study. For metagenome derived estimates, total counts were normalized by the size of the
729 genome (number of base-pairs). For metatranscriptome derived estimates, additional steps
730 were required. Gene predictions by Prokka/Prodigal were used to calculate the total number
731 of coding bases per genome, after exclusion of rRNA regions. Finally, total read counts were
732 normalized by the number of coding bases on each genome.

733 Species abundance was estimated from metaproteomic data by summing up all filtered protein
734 intensities detected per each species, and dividing the sum by the total summed protein
735 intensity in a given sample.

736 In addition, to the approaches based on read mapping, several popular tools were used to
737 estimate species abundance. For amplicon sequencing, DADA2 v1.10 (Callahan *et al*, 2016)
738 was used with the GTDB database release 86 (Parks *et al*, 2018) for sequence classification
739 which was limited to genus level classification. Metagenomic and metatranscriptomic species
740 abundances were estimated using mOTUs v2.5 (Milanese *et al*, 2019) and MetaPhiAn v3
741 (Beghini *et al*, 2021).

742 Coverage analyses

743 Gene, transcript and protein coverage were defined as the number of
744 genes/transcripts/proteins that showed a count higher than 0, divided by the total number of
745 predicted genes per species. For pathway coverage, the same approach was used, but
746 genes/transcripts/proteins were grouped by KEGG pathways instead and thus divided by the
747 number of KEGG orthologs in one single pathway. The same procedure was repeated for
748 metabolites, but using the number of metabolites per pathway as predicted by KEGG instead
749 of the number of KEGG orthologs.

750 Mantel test

751 Mantel test was performed to compare two different kinds of omics datasets and evaluate the
752 similarity between them. Abundance tables of each omics were transformed into distance
753 matrices using 1 - Spearman's correlation coefficient, and the matrices were compared using
754 the mantel function in the vegan package (version 2.5.5) with the default option. Sixty-one
755 samples that were common among all the omics datasets were used in this analysis.

756 Differential species abundance analysis

757 Differential analysis of species abundance across conditions was performed with ANCOM v.
758 2.1. Tables of species abundances calculated from each omics measurements were
759 preprocessed with feature_table_pre_process with sample names used as sample variables,
760 condition used as group variable, and parameters out_cut = 0.05; zero_cut = 0.90; lib_cut =
761 0; neg_lb = TRUE. The ANCOM function was applied to each preprocessed table with
762 condition used as the main variable and time used as the formula for adjustment. P-values
763 were adjusted with Benjamini-Hochberg method (p_adj_method = "BH"). The cutoff of 0.7 for
764 the W statistic was used to identify significantly differentially abundant species
765 (detected_0.7=TRUE).

766 Differential transcript, protein and metabolite abundance 767 analysis

768 Differential transcript analysis was performed using DESeq2 v1.26.0 (Love *et al*, 2014) after
769 taxon-specific scaling (see above). The design formula included the factors run, drug, time
770 point and the interaction term drug:timepoint. Statistical testing was performed with the Wald-
771 test and IHW (Ignatiadis *et al*, 2016) to control the false discovery rate.

772 Differential protein and metabolite analysis were performed using repeated measures analysis
773 of variance using the lmer function in the ade4 package. The same formula used in the
774 differential transcript analysis was also used in the analysis. To exclude low abundant
775 features, those that have 0 or NA in at least half of the samples were removed prior to the
776 analysis. P-values were adjusted by the IHW method. Fold changes of proteins and
777 metabolites compared to those of controls were calculated based on raw values.

778 Pathway and COG enrichment analysis

779 Pathway enrichment was performed on differentially abundant features (cutoff for
780 metatranscriptomics $\text{abs}(\text{log2(fold change)}) > 2$, $\text{pFDR} < 0.001$, cutoff for metabolomics and
781 metaproteomics $\text{abs}(\text{log2(fold change)}) > \text{log2}(1.5)$, $\text{pFDR} < 0.05$) with Fisher exact test using

782 stats.fisher_exact in Python 3.7.7. P-values were adjusted with Benjamini-Hochberg
783 procedure with multipletests function from statsmodels. COG enrichment was performed in
784 the R environment using ClusterProfiler (Wu *et al*, 2021).

785 Data and code availability

786 The MS-based proteomics data have been deposited to the ProteomeXchange Consortium
787 via the PRIDE partner repository and are available via ProteomeXchange with identifier
788 PXD036445. Metabolomic data has been submitted to MetaboLights under accession number
789 MTBLS3129. Sequencing data is deposited at the European Nucleotide Archive (ENA):
790 PRJEB46619. Preprocessed data files and tables are available on Figshare at
791 <https://doi.org/10.6084/m9.figshare.21667763>, and code to generate all figures is available at
792 https://github.com/grp-bork/multiomics_Wuyts_2022.

793 Acknowledgements

794 We acknowledge Vladimir Benes, Matthew Hayward, Melanie Tramontano, Thea Van
795 Rossum, Camille Goemans, Carlos Voogdt and Michael Zimmermann for helpful discussions.

796 Funding

797 The work was supported by the European Molecular Biology Laboratory and has received
798 funding from the European Union's Horizon 2020 research and innovation programme under
799 grant agreement number 668031 (to RA, SN, SW). KRP: UK Medical Research Council
800 (project number MC_UU_00025/11). MZ-K: Postdoc Mobility Fellowship from the Swiss
801 National Science Foundation (P400PB_186795) and a postdoctoral fellowship from the AXA
802 Research Fund. LM, SGS and TW were supported by the EMBL Interdisciplinary Postdoc
803 (EIPOD) program under Marie Skłodowska-Curie Actions COFUND (grant numbers 291772
804 and 664726).

805 Author Contributions

806 Experiment design: RA, MD, EK, LM, ATy, KRP, MK, PB. Data analysis: SW, RA, MZ-K, SN,
807 TSBS, MK. *In vitro* pilot studies: MD, EK, TW. *In vitro* experiments: SB, EK, SGS.
808 Metabolomics measurements: DCS. Metagenomic and metatranscriptomic sequencing: EK,
809 RH, ATe. Metaproteomics measurements: PEG, JBM, PVT, MM. Manuscript writing and
810 editing: SW, RA, MZ-K, SN, ATy, KRP, MK, PB.

811

812 References

813 Alekshun MN & Levy SB (2007) Molecular Mechanisms of Antibacterial Multidrug
814 Resistance. *Cell* 128: 1037–1050

815 Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, Lawley TD & Finn
816 RD (2019) A new genomic blueprint of the human gut microbiota. *Nature* 568: 499–
817 504

818 Aranda-Díaz A, Ng KM, Thomsen T, Real-Ramírez I, Dahan D, Dittmar S, Gonzalez CG,
819 Chavez T, Vasquez KS, Nguyen TH, *et al* (2022) Establishment and characterization
820 of stable, diverse, fecal-derived *in vitro* microbial communities that model the
821 intestinal microbiota. *Cell Host & Microbe* 30: 260–272.e5

822 Bailey AM, Paulsen IT & Piddock LJV (2008a) RamA Confers Multidrug Resistance in
823 *Salmonella enterica* via Increased Expression of acrB, Which Is Inhibited by
824 Chlorpromazine. *Antimicrob Agents Chemother* 52: 3604–3611

825 Bailey CJ, Wilcock C & Scarpello JHB (2008b) Metformin and the intestine. *Diabetologia* 51:
826 1552–1553

827 Bashiardes S, Zilberman-Schapira G & Elinav E (2016) Use of Metatranscriptomics in
828 Microbiome Research. *Bioinform Biol Insights* 10: BBI.S34610

829 Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, Mailyan A, Manghi
830 P, Scholz M, Thomas AM, *et al* (2021) Integrating taxonomic, functional, and strain-
831 level profiling of diverse microbial communities with bioBakery 3. *eLife* 10: e65088

832 Bhattacharyya J & Das KP (2001) Aggregation of insulin by chlorpromazine. *Biochemical
833 Pharmacology* 62: 1293–1297

834 Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA & Holmes SP (2016) DADA2:
835 High-resolution sample inference from Illumina amplicon data. *Nat Methods* 13: 581–
836 583

837 Cani PD (2018) Human gut microbiome: hopes, threats and promises. *Gut* 67: 1716–1725

838 Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer
839 N & Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of
840 sequences per sample. *Proc Natl Acad Sci U S A* 108: 4516–4522

841 Chaumeil P-A, Mussig AJ, Hugenholtz P & Parks DH (2020) GTDB-Tk: a toolkit to classify
842 genomes with the Genome Taxonomy Database. *Bioinformatics* 36: 1925–1927

843 Cheng AG, Aranda-Díaz A, Jain S, Yu F, Iakiviak M, Meng X, Weakley A, Patil A, Shiver AL,
844 Deutschbauer A, *et al* (2021) Systematic dissection of a complex gut bacterial
845 community. *bioRxiv*: 2021.06.15.448618

846 Cho I & Blaser MJ (2012) The human microbiome: at the interface of health and disease.
847 *Nat Rev Genet* 13: 260–270

848 Choi B, Cheng Y-Y, Cinar S, Ott W, Bennett MR, Josić K & Kim JK (2020) Bayesian
849 inference of distributed time delay in transcriptional and translational regulation.
850 *Bioinformatics* 36: 586–593

851 Coelho LP, Alves R, Monteiro P, Huerta-Cepas J, Freitas AT & Bork P (2019) NG-meta-
852 profiler: fast processing of metagenomes using NGLess, a domain-specific language.
853 *Microbiome* 7: 84

854 D'hoe K, Vet S, Faust K, Moens F, Falony G, Gonze D, Lloréns-Rico V, Gelens L, Danckaert
855 J, De Vuyst L, *et al* (2018) Integrated culturing, modeling and transcriptomics
856 uncovers complex interactions and emergent behavior in a three-species synthetic
857 gut community. *eLife* 7: e37090

858 Dinan TG & Cryan JF (2018) Schizophrenia and the microbiome: Time to focus on the
859 impact of antipsychotic treatment on the gut microbiota. *The World Journal of
860 Biological Psychiatry* 19: 568–570

861 Doestzada M, Vila AV, Zhernakova A, Koonen DPY, Weersma RK, Touw DJ, Kuipers F,
862 Wijmenga C & Fu J (2018) Pharmacomicobiomics: a novel route towards
863 personalized medicine? *Protein Cell* 9: 432–445

864 Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM, Piddock LJV & Luisi BF (2018)
865 Multidrug efflux pumps: structure, function and regulation. *Nat Rev Microbiol* 16:
866 523–539

867 Durack J & Lynch SV (2018) The gut microbiome: Relationships with disease and
868 opportunities for therapy. *Journal of Experimental Medicine* 216: 20–40

869 Durazzi F, Sala C, Castellani G, Manfreda G, Remondini D & De Cesare A (2021)
870 Comparison between 16S rRNA and shotgun sequencing data for the taxonomic
871 characterization of the gut microbiota. *Sci Rep* 11: 3030

872 Eddy SR (2011) Accelerated Profile HMM Searches. *PLoS Comput Biol* 7: e1002195

873 Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-
874 Silva S, Gudmundsdottir V, Krogh Pedersen H, *et al* (2015) Disentangling type 2
875 diabetes and metformin treatment signatures in the human gut microbiota. *Nature*
876 528: 262–266

877 Forslund SK, Chakaroun R, Zimmermann-Kogadeeva M, Markó L, Aron-Wisnewsky J,
878 Nielsen T, Moitinho-Silva L, Schmidt TSB, Falony G, Vieira-Silva S, *et al* (2021)
879 Combinatorial, additive and dose-dependent drug-microbiome associations. *Nature*
880 600: 500–505

881 Fuhrer T, Heer D, Begemann B & Zamboni N (2011) High-throughput, accurate mass
882 metabolome profiling of cellular extracts by flow injection-time-of-flight mass
883 spectrometry. *Anal Chem* 83: 7074–7080

884 Gerosa L & Sauer U (2011) Regulation and control of metabolic fluxes in microbes. *Current
885 Opinion in Biotechnology* 22: 566–575

886 Geyer PE, Kulak NA, Pichler G, Holdt LM, Teupser D & Mann M (2016) Plasma Proteome
887 Profiling to Assess Human Health and Disease. *Cell Syst* 2: 185–195

888 Ghotaslou R, Yekani M & Memar MY (2018) The role of efflux pumps in *Bacteroides fragilis*
889 resistance to antibiotics. *Microbiological Research* 210: 1–5

890 Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, Segrè D, Mehta
891 P & Sanchez A (2018) Emergent simplicity in microbial community assembly.
892 *Science* 361: 469–474

893 Grimsey EM, Fais C, Marshall RL, Ricci V, Ciusa ML, Stone JW, Ivens A, Malloci G,
894 Ruggerone P, Vargiu AV, et al (2020) Chlorpromazine and Amitriptyline Are
895 Substrates and Inhibitors of the AcrB Multidrug Efflux Pump. *mBio* 11

896 Grimsey EM & Piddock LJV (2019) Do phenothiazines possess antimicrobial and efflux
897 inhibitory properties? *FEMS Microbiology Reviews* 43: 577–590

898 Han S, Van Treuren W, Fischer CR, Merrill BD, DeFelice BC, Sanchez JM, Higginbottom
899 SK, Guthrie L, Fall LA, Dodd D, et al (2021) A metabolomics pipeline for the
900 mechanistic interrogation of the gut microbiome. *Nature* 595: 415–420

901 Harper CJ, Hayward D, Kidd M, Wiid I & van Helden P (2010) Glutamate dehydrogenase
902 and glutamine synthetase are regulated in response to nitrogen availability in
903 *Mycobacterium smegmatis*. *BMC Microbiology* 10: 138

904 Heintz-Buschart A, May P, Laczny CC, Lebrun LA, Bellora C, Krishna A, Wampach L,
905 Schneider JG, Hogan A, De Beaufort C, et al (2016) Integrated multi-omics of the
906 human gut microbiome in a case study of familial type 1 diabetes. *Nature
907 Microbiology* 2

908 Heintz-Buschart A & Wilmes P (2018) Human Gut Microbiome: Function Matters. *Trends in
909 Microbiology* 26: 563–574

910 Huerta-Cepas J, Forsslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C & Bork P
911 (2017) Fast Genome-Wide Functional Annotation through Orthology Assignment by
912 eggNOG-Mapper. *Molecular Biology and Evolution* 34: 2115–2122

913 Huerta-Cepas J, Serra F & Bork P (2016) ETE 3: Reconstruction, Analysis, and Visualization
914 of Phylogenomic Data. *Molecular Biology and Evolution* 33: 1635–1638

915 Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW & Hauser LJ (2010) Prodigal:
916 prokaryotic gene recognition and translation initiation site identification. *BMC
917 Bioinformatics* 11: 119

918 Ignatiadis N, Klaus B, Zaugg J & Huber W (2016) Data-driven hypothesis weighting
919 increases detection power in genome-scale multiple testing. *Nat Methods* 13: 577–
920 580

921 Jackson MA, Verdi S, Maxan M-E, Shin CM, Zierer J, Bowyer RCE, Martin T, Williams FMK,
922 Menni C, Bell JT, et al (2018) Gut microbiota associations with common diseases
923 and prescription medications in a population-based cohort. *Nature Communications*
924 9: 2655

925 Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT & Aluru S (2018) High throughput
926 ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nature
927 Communications* 9: 5114

928 Jansson JK & Baker ES (2016) A multi-omic future for microbiome studies. *Nature
929 Microbiology* 1

930 Javdan B, Lopez JG, Chankhamjon P, Lee Y-CJ, Hull R, Wu Q, Wang X, Chatterjee S &
931 Donia MS (2020) Personalized Mapping of Drug Metabolism by the Human Gut
932 Microbiome. *Cell* 181: 1661-1679.e22

933 Kanehisa M, Furumichi M, Tanabe M, Sato Y & Morishima K (2017) KEGG: new
934 perspectives on genomes, pathways, diseases and drugs. *Nucleic Acids Research*
935 45: D353–D361

936 Kau AL, Ahern PP, Griffin NW, Goodman AL & Gordon JI (2011) Human nutrition, the gut
937 microbiome and the immune system. *Nature* 474: 327–336

938 Kleikamp HBC, Pronk M, Tugui C, Guedes da Silva L, Abbas B, Lin YM, van Loosdrecht
939 MCM & Pabst M (2021) Database-independent de novo metaproteomics of complex
940 microbial communities. *Cell Systems* 12: 375-383.e5

941 Kleiner M, Thorson E, Sharp CE, Dong X, Liu D, Li C & Strous M (2017) Assessing species
942 biomass contributions in microbial communities via metaproteomics. *Nat Commun* 8:
943 1558

944 Klingenberg H & Meinicke P (2017) How to normalize metatranscriptomic count data for
945 differential expression analysis. *PeerJ* 2017

946 Klünemann M, Andrejev S, Blasche S, Mateus A, Phapale P, Devendran S, Vappiani J,
947 Simon B, Scott TA, Kafkia E, et al (2021) Bioaccumulation of therapeutic drugs by
948 human gut bacteria. *Nature* 597: 533–538

949 Knight R, Vrbanac A, Taylor BC, Aksanov A, Callewaert C, Debelius J, Gonzalez A,
950 Kosciolek T, McCall L-I, McDonald D, et al (2018) Best practices for analysing
951 microbiomes. *Nat Rev Microbiol* 16: 410–422

952 Kopylova E, Noé L & Touzet H (2012) SortMeRNA: Fast and accurate filtering of ribosomal
953 RNAs in metatranscriptomic data. *Bioinformatics* 28: 3211–3217

954 Kristiansen JE & Vergmann B (1986) The antibacterial effect of selected phenothiazines and
955 thioxanthenes on slow-growing mycobacteria. *Acta Pathol Microbiol Immunol Scand*
956 B 94: 393–398

957 Kulak NA, Pichler G, Paron I, Nagaraj N & Mann M (2014) Minimal, encapsulated proteomic-
958 sample processing applied to copy-number estimation in eukaryotic cells. *Nature*
959 *Methods* 11: 319–324

960 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G & Durbin
961 R (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics*
962 (Oxford, England) 25: 2078–9

963 Lindell AE, Zimmermann-Kogadeeva M & Patil KR (2022) Multimodal interactions of drugs,
964 natural compounds and pollutants with the gut microbiota. *Nat Rev Microbiol*: 1–13

965 Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, Brady A, Creasy HH,
966 McCracken C, Giglio MG, et al (2017) Strains, functions and dynamics in the
967 expanded Human Microbiome Project. *Nature* 550: 61–66

968 Love MI, Huber W & Anders S (2014) Moderated estimation of fold change and dispersion
969 for RNA-seq data with DESeq2. *Genome Biol* 15: 550

970 Maier L, Goemans CV, Wirbel J, Kuhn M, Eberl C, Pruteanu M, Müller P, Garcia-
971 Santamarina S, Cacace E, Zhang B, *et al* (2021) Unravelling the collateral damage of
972 antibiotics on gut bacteria. *Nature* 599: 120–124

973 Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, Brochado AR, Fernandez
974 KC, Dose H, Mori H, *et al* (2018) Extensive impact of non-antibiotic drugs on human
975 gut bacteria. *Nature* 555: 623–628

976 Mandal S, Treuren WV, White RA, Eggesbø M, Knight R & Peddada SD (2015) Analysis of
977 composition of microbiomes: a novel method for studying microbial composition.
978 *Microbial Ecology in Health and Disease* 26: 27663

979 Mateus A, Hevler J, Bobonis J, Kurzawa N, Shah M, Mitosch K, Goemans CV, Helm D,
980 Stein F, Typas A, *et al* (2020) The functional proteome landscape of *Escherichia coli*.
981 *Nature* 588: 473–478

982 Matias Rodrigues JF, Schmidt TSB, Tackmann J & von Mering C (2017) MAPseq: highly
983 efficient k-mer search with confidence estimates, for rRNA sequence analysis.
984 *Bioinformatics* 33: 3808–3810

985 Matsen FA, Kodner RB & Armbrust EV (2010) pplacer: linear time maximum-likelihood and
986 Bayesian phylogenetic placement of sequences onto a fixed reference tree. *BMC
987 Bioinformatics* 11: 538

988 Milanese A, Mende DR, Paoli L, Salazar G, Ruscheweyh H-J, Cuenca M, Hingamp P, Alves
989 R, Costea PI, Coelho LP, *et al* (2019) Microbial abundance, activity and population
990 genomic profiling with mOTUs2. *Nature Communications* 10: 1014

991 Miwa T, Chadani Y & Taguchi H (2021) *Escherichia coli* small heat shock protein IbpA is an
992 aggregation-sensor that self-regulates its own expression at posttranscriptional
993 levels. *Molecular Microbiology* 115: 142–156

994 Niestępski S, Harnisz M, Korzeniewska E, Aguilera-Arreola MaG, Contreras-Rodríguez A,
995 Filipkowska Z & Osińska A (2019) The emergence of antimicrobial resistance in
996 environmental strains of the *Bacteroides fragilis* group. *Environment International*
997 124: 408–419

998 Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S & Phillippy AM
999 (2016) Mash: fast genome and metagenome distance estimation using MinHash.
1000 *Genome biology* 17: 132

1001 Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A & Hugenholtz
1002 P (2018) A standardized bacterial taxonomy based on genome phylogeny
1003 substantially revises the tree of life. *Nature Biotechnology* 36: 1–35

1004 Pasolli E, Asnicar F, Manara S, Quince C, Huttenhower C, Correspondence NS, Zolfo M,
1005 Karcher N, Armanini F, Beghini F, *et al* (2019) Extensive Unexplored Human
1006 Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes
1007 Spanning Age, Geography, and Lifestyle Resource Extensive Unexplored Human
1008 Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes
1009 Spanning Ag. *Cell* 176: 1–14

1010 Patnode ML, Beller ZW, Han ND, Cheng J, Peters SL, Terrapon N, Henrissat B, Gall SL,
1011 Saulnier L, Hayashi DK, *et al* (2019) Interspecies Competition Impacts Targeted
1012 Manipulation of Human Gut Bacteria by Fiber-Derived Glycans. *Cell* 179: 59-73.e13

1013 Pereira-Marques J, Hout A, Ferreira RM, Weber M, Pinto-Ribeiro I, van Doorn L-J, Knetsch
1014 CW & Figueiredo C (2019) Impact of Host DNA and Sequencing Depth on the
1015 Taxonomic Resolution of Whole Metagenome Sequencing for Microbiome Analysis.
1016 *Front Microbiol* 10

1017 Price MN, Dehal PS & Arkin AP (2010) FastTree 2 – Approximately Maximum-Likelihood
1018 Trees for Large Alignments. *PLoS One* 5

1019 Pryor R, Norvaisas P, Marinos G, Best L, Thingholm LB, Quintaneiro LM, De Haes W, Esser
1020 D, Waschini S, Lujan C, *et al* (2019) Host-Microbe-Drug-Nutrient Screen Identifies
1021 Bacterial Effectors of Metformin Therapy. *Cell* 178: 1299-1312.e29

1022 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J & Glöckner FO
1023 (2013) The SILVA ribosomal RNA gene database project: Improved data processing
1024 and web-based tools. *Nucleic Acids Research* 41: 590–596

1025 Quince C, Walker AW, Simpson JT, Loman NJ & Segata N (2017) Shotgun metagenomics,
1026 from sampling to analysis. *Nat Biotechnol* 35: 833–844

1027 Rizkallah MR & Aziz RS and RK (2010) The Human Microbiome Project, Personalized
1028 Medicine and the Birth of Pharmacomicobiomics. *Current Pharmacogenomics and*
1029 *Personalized Medicine* 8: 182–193

1030 Roy KD, Marzorati M, Abbeele PV den, Wiele TV de & Boon N (2014) Synthetic microbial
1031 ecosystems: an exciting tool to understand and apply microbial communities.
1032 *Environmental Microbiology* 16: 1472–1481

1033 Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh H-J, Cuenca M, Field CM,
1034 Coelho LP, Cruaud C, Engelen S, *et al* (2019) Gene Expression Changes and
1035 Community Turnover Differentially Shape the Global Ocean Metatranscriptome. *Cell*
1036 179: 1068-1083.e21

1037 Scheltema RA & Mann M (2012) SprayQc: a real-time LC-MS/MS quality monitoring system
1038 to maximize uptime using off the shelf components. *J Proteome Res* 11: 3458–3466

1039 Schmidt TSB, Raes J & Bork P (2018) The Human Gut Microbiome: From Association to
1040 Modulation. *Cell* 172: 1198–1215

1041 Schwalm ND & Groisman EA (2017) Navigating the Gut Buffet: Control of Polysaccharide
1042 Utilization in *Bacteroides* spp. *Trends in Microbiology* 25: 1005–1015

1043 Seemann T (2014) Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30: 2068–
1044 2069

1045 Spanogiannopoulos P, Bess EN, Carmody RN & Turnbaugh PJ (2016) The microbial
1046 pharmacists within us: a metagenomic view of xenobiotic metabolism. *Nature*
1047 *Reviews Microbiology* 14: 273–287

1048 Taylor BC, Lejzerowicz F, Poirel M, Shaffer JP, Jiang L, Aksенov A, Litwin N, Humphrey G,
1049 Martino C, Miller-Montgomery S, *et al* (2020) Consumption of Fermented Foods Is
1050 Associated with Systematic Differences in the Gut Microbiome and Metabolome.
1051 *mSystems* 5

1052 Tramontano M, Andrejev S, Pruteanu M, Klünemann M, Kuhn M, Galardini M, Jouhten P,
1053 Zelezniak A, Zeller G, Bork P, *et al* (2018) Nutritional preferences of human gut
1054 bacteria reveal their metabolic idiosyncrasies. *Nature Microbiology* 3: 514–522

1055 Tsutsumi K, Yonehara R, Ishizaka-Ikeda E, Miyazaki N, Maeda S, Iwasaki K, Nakagawa A &
1056 Yamashita E (2019) Structures of the wild-type MexAB–OprM tripartite pump reveal
1057 its complex formation and drug efflux mechanism. *Nature Communications* 10: 1520

1058 Vich Vila A, Collij V, Sanna S, Sinha T, Imhann F, Bourgonje AR, Mujagic Z, Jonkers DMAE,
1059 Masclee AAM, Fu J, *et al* (2020) Impact of commonly used drugs on the composition
1060 and metabolic function of the gut microbiota. *Nature Communications* 11: 362

1061 Vieira-Silva S, Falony G, Belda E, Nielsen T, Aron-Wisnewsky J, Chakaroun R, Forslund SK,
1062 Assmann K, Valles-Colomer M, Nguyen TTD, *et al* (2020) Statin therapy is
1063 associated with lower prevalence of gut microbiota dysbiosis. *Nature* 581: 310–315

1064 Weersma RK, Zhernakova A & Fu J (2020) Interaction between drugs and the gut
1065 microbiome. *Gut* 69: 1510–1519

1066 Weiss AS, Burrichter AG, Durai Raj AC, von Stempel A, Meng C, Kleigrewe K, Münch PC,
1067 Rössler L, Huber C, Eisenreich W, *et al* (2022) In vitro interaction network of a
1068 synthetic gut bacterial community. *ISME J* 16: 1095–1109

1069 Wexler HM (2007) Bacteroides: the Good, the Bad, and the Nitty-Gritty. *Clinical Microbiology
1070 Reviews* 20: 593–621

1071 Wexler HM (2012) Pump it up: Occurrence and regulation of multi-drug efflux pumps in
1072 *Bacteroides fragilis*. *Anaerobe* 18: 200–208

1073 Wilson ID & Nicholson JK (2017) Gut microbiome interactions with drug metabolism,
1074 efficacy, and toxicity. *Translational Research* 179: 204–222

1075 Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson
1076 D, Li C, Karu N, *et al* (2018) HMDB 4.0: the human metabolome database for 2018.
1077 *Nucleic Acids Res* 46: D608–D617

1078 Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson
1079 LM, Serino M, Planas-Fèlix M, *et al* (2017) Metformin alters the gut microbiome of
1080 individuals with treatment-naïve type 2 diabetes, contributing to the therapeutic
1081 effects of the drug. *Nat Med* 23: 850–858

1082 Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, *et al* (2021)
1083 clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *The
1084 Innovation* 2: 100141

1085 Yura T (2019) Regulation of the heat shock response in *Escherichia coli*: history and
1086 perspectives. *Genes & Genetic Systems* 94: 103–108

1087 Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall
1088 A, Girón CG, *et al* (2018) Ensembl 2018. *Nucleic Acids Res* 46: D754–D761

1089 Zhang X & Figgeys D (2019) Perspective and Guidelines for Metaproteomics in Microbiome
1090 Studies. *J Proteome Res* 18: 2370–2380

1091 Zierer J, Jackson MA, Kastenmüller G, Mangino M, Long T, Telenti A, Mohney RP, Small
1092 KS, Bell JT, Steves CJ, et al (2018) The fecal metabolome as a functional readout of
1093 the gut microbiome. *Nat Genet* 50: 790–795

1094 Zimmermann M, Patil KR, Typas A & Maier L (2021) Towards a mechanistic understanding
1095 of reciprocal drug-microbiome interactions. *Mol Syst Biol* 17: e10116

1096 Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R & Goodman AL (2019a)
1097 Separating host and microbiome contributions to drug pharmacokinetics and toxicity.
1098 *Science* 363

1099 Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R & Goodman AL (2019b) Mapping
1100 human microbiome drug metabolism by gut bacteria and their genes. *Nature* 570:
1101 462–467

1102