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Abstract 28 

Multi-omics analyses are increasingly employed in microbiome studies to obtain a holistic view 29 

of molecular changes occurring within microbial communities exposed to different conditions. 30 

However, it is not always clear to what extent each omics data type contributes to our 31 

understanding of the community dynamics and whether they are concordant with each other. 32 

Here we map the molecular response of a synthetic community of 32 human gut bacteria to 33 

three non-antibiotic drugs by using five omics layers, namely 16S rRNA gene profiling, 34 

metagenomics, metatranscriptomics, metaproteomics, and metabolomics. Using this 35 

controlled setting, we find that all omics methods with species resolution in their readouts are 36 

highly consistent in estimating relative species abundances across conditions. Furthermore, 37 

different omics methods complement each other in their ability to capture functional changes 38 

in response to the drug perturbations. For example, while nearly all omics data types captured 39 

that the antipsychotic drug chlorpromazine selectively inhibits Bacteroidota representatives in 40 

the community, the metatranscriptome and metaproteome suggested that the drug induces 41 

stress responses related to protein quality control and metabolomics revealed a decrease in 42 

polysaccharide uptake, likely caused by Bacteroidota depletion. Taken together, our study 43 

provides insights into how multi-omics datasets can be utilised to reveal complex molecular 44 

responses to external perturbations in microbial communities.  45 
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Introduction 46 

The human gut microbiota is a complex community of microorganisms, which is affected by 47 

endogenous and environmental factors such as host genotype, diet, drug treatment, and 48 

disease status, and in turn influences host health and disease progression (Kau et al, 2011; 49 

Cho & Blaser, 2012; Cani, 2018; Durack & Lynch, 2018; Schmidt et al, 2018; Lindell et al, 50 

2022). Currently, insights into structure and function of the microbiota community mainly come 51 

from 16S rRNA gene profiling and shotgun metagenomics. While 16S rRNA amplicon 52 

sequencing offers a cost-efficient way to assess bacterial abundance at a higher taxonomic 53 

level, whole-genome shotgun metagenomics resolves abundance of species and strains, 54 

together with the functional potential they encode (Quince et al, 2017; Almeida et al, 2019; 55 

Pasolli et al, 2019). In addition, gene and protein expression and metabolite abundance in the 56 

community can be quantified with metatranscriptomics (Bashiardes et al, 2016), 57 

metaproteomics (Zhang & Figeys, 2019) and metabolomics (Zierer et al, 2018; Han et al, 58 

2021), respectively. Ultimately, the combination of these methods should enable integration 59 

of the major molecular layers of the cell, resulting in a more complete picture of the microbiome 60 

(Jansson & Baker, 2016; Heintz-Buschart & Wilmes, 2018). Several studies have shown how 61 

a combination of two or more of these omics methods could lead to novel insights regarding 62 

the dynamics and inner workings of a microbial community (Heintz-Buschart et al, 2016; Lloyd-63 

Price et al, 2017; Salazar et al, 2019; Taylor et al, 2020). While multi-omics measurements 64 

provide information across molecular layers, their comprehensive integration remains 65 

challenging. One challenge is the limited knowledge about the concordance of different 66 

measurements in complex in natura settings in the absence of ground truth. Another challenge 67 

in comparing and integrating multi-omics datasets is the difference in their dynamics in 68 

response to perturbations. Whereas metabolite changes occur on a time scale of seconds, 69 

transcriptional changes usually occur on a time scale of minutes, while protein abundance 70 

changes take the longest to respond to a perturbation (Gerosa & Sauer, 2011; Choi et al, 71 

2020). 72 

Synthetic microbial communities have been increasingly used to obtain a better understanding 73 

of the dynamics and species–species interactions (Goldford et al, 2018; Cheng et al, 2021). 74 

Compared to a natural gut microbiota, these synthetic communities have lower complexity, 75 

higher controllability and reproducibility, and a well-defined composition at the strain level, at 76 

the cost of being simplified representations of natural ecosystems (Roy et al, 2014; Weiss et 77 

al, 2022; Aranda-Díaz et al, 2022). Yet, they do offer advantages over single species studies, 78 

as single species’ behaviour can significantly differ in mono-culture compared to co-culture 79 

(D’hoe et al, 2018).  80 
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The complex interactions between the gut microbiota and non-antibiotic drugs have been 81 

elucidated from large-scale human studies and high-throughput laboratory experiments 82 

(Rizkallah & Aziz, 2010; Forslund et al, 2015; Spanogiannopoulos et al, 2016; Wilson & 83 

Nicholson, 2017; Zimmermann et al, 2021; Forslund et al, 2021). This relationship is 84 

bidirectional, as drugs can influence microbiome composition (Maier et al, 2018; Jackson et 85 

al, 2018; Vich Vila et al, 2020; Vieira-Silva et al, 2020), while the gut microbiota can have an 86 

impact on a drug’s efficacy and toxicity by altering its chemical structure (Zimmermann et al, 87 

2019a, 2019b; Javdan et al, 2020; Klünemann et al, 2021). The emerging knowledge on drug–88 

microbiota interactions has the potential to influence the future of drug development and 89 

personalized medicine (Doestzada et al, 2018; Weersma et al, 2020; Maier et al, 2021; 90 

Zimmermann et al, 2021). 91 

To systematically assess and compare how multi-omics measurements capture dynamic 92 

changes in microbial communities in response to perturbations, we designed a controlled time-93 

course experiment with a synthetic community of 32 human gut representatives (Tramontano 94 

et al, 2018) in response to three drugs from diverse indication areas: chlorpromazine 95 

(antipsychotic), metformin (antidiabetic) and niclosamide (anthelmintic), which were previously 96 

reported to impair growth of several gut bacteria (Maier et al, 2018). We followed the response 97 

of the defined community to the three non-antibiotic drugs over four days on the structural and 98 

functional levels across multi-omics layers, based on 16S rRNA gene, metagenome, 99 

metatranscriptome, metaproteome and untargeted metabolome profiling.  100 

Results 101 

Establishment of a synthetic community for drug perturbations 102 

To investigate microbial community response to drug perturbations in a controlled system 103 

across five omics layers, we combined 32 human gut microbiome representatives 104 

(Tramontano et al, 2018) and exposed this community to three different non-antibiotic drugs 105 

(Figure 1A). The complete experiment was performed twice (run A and run B) as biological 106 

replicates, starting from the initial community assembly step from single bacterial cultures. 107 

More specifically, seven slow-growing species (inoculated on day 1) were combined with 25 108 

fast-growing species (inoculated on day 3) on day 5 to form a synthetic community (Figure 1A, 109 

B). In order to ensure stable community composition, we performed three culture passages 110 

by growing the mixed culture for 48 hours and transferring 1% of total volume to a fresh culture 111 

medium. Samples for 16S rRNA amplicon sequencing were taken immediately after combining 112 

the strains (Inoculum mix) and after each passage (Transfer 1 - 3) to evaluate the stabilisation 113 

of the community (Figure 1A; top row). We found that in both runs of the experiment the 114 
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community reached a stable composition with four highly abundant species after three 115 

transfers (relative abundance >10% for Escherichia coli, Clostridium perfringens, Veillonella 116 

parvula and Bacteroides thetaiotaomicron, Supplementary Figure 1A). Bray-Curtis 117 

dissimilarity index showed that both runs were highly similar after the third transfer 118 

(Supplementary Figure 1B, C). 119 

 120 

Figure 1. Experimental design and species used in this study. A) Schematic overview of the experimental design. B) Species 121 
cladogram constructed by pruning the relevant species from the GTDB species cladogram (release 95). 122 

After stabilisation, in each run the community perturbation was performed in duplicate during 123 

exponential growth (i.e., five hours after passaging, as determined by optical density 124 

measurements on the previous transfer; Supplementary Figure 1D) by addition of one of the 125 

following drugs: i) 5 mM metformin, a type 2 diabetes drug, ii) 20 µM chlorpromazine, an 126 

antipsychotic drug, or iii) 20 µM niclosamide, an anthelmintic drug (Figure 1A), while DMSO 127 

was used as a control. The higher concentration for metformin was based on reported 128 

intestinal concentrations, and previous data on metformin amounts sufficient to impair growth 129 

of gut microbiota members in vitro (Maier et al, 2018; Bailey et al, 2008b). The communities 130 

were sampled right before the addition of the drugs and 15 min, 30 min, 1 h, and 3 h following 131 

the drug perturbation (Figure 1A, Supplementary Table 1). These time points were chosen to 132 

elucidate the early response of the bacterial community to drug treatment. After 43 h, an 133 

additional sample was taken, and the communities were transferred into a fresh culture 134 

medium containing the drugs at initial concentrations. A final sample was taken 48 h after this 135 

passage (91 hours after the initial drug addition). In general, high correlation was evident 136 

between technical replicates within the same omics dataset (Supplementary Figure 2). 137 
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Consistency of community composition across omics 138 

measurements 139 

We first evaluated similarities and differences between the omics measurements in their ability 140 

to estimate species abundance. For sequencing-based omics methods, we performed both 141 

naïve analyses with commonly used computational pipelines that do not use the information 142 

about synthetic community composition (DADA2 for 16S rRNA amplicon sequencing 143 

(Callahan et al, 2016), mOTUS v2.5 for metagenomics and metatranscriptomics (Milanese et 144 

al, 2019)), and targeted analyses based on mapping to the 32 reference genomes of species 145 

comprising our community (Materials and methods). Within each omics method, both 146 

computational approaches produced highly similar results (Supplementary Figure 3). As the 147 

composition-naïve approach only yields genus-level resolution for 16S rRNA sequencing data 148 

(Knight et al, 2018), we used the reference genome mapping approach that yields higher 149 

resolution for all methods for comparison of community composition across omics types. For 150 

consistency, the same methodology (reference genome mapping) was used for 151 

metagenomics and metatranscriptomics. For metaproteomics data, we estimated species 152 

abundance by summing protein intensities for all proteins assigned to each species and 153 

dividing these values by the total protein intensity in each sample, as suggested previously 154 

(Kleiner et al, 2017). 155 

We compared relative species abundances between all pairs of omics methods except for 156 

metabolomics, which by nature represents total metabolite measurements in the community 157 

and does not allow to separate compounds by species. Based on correlation analysis, we 158 

found the abundance estimates to be highly similar (minimum Spearman correlation coefficient 159 

ρ = 0.78). Congruence was more pronounced for highly abundant species (Figure 2A). 160 

Specifically, metagenomics and metatranscriptomics were the most similar of all pairwise 161 

comparisons (ρ = 0.92). Further, 16S rRNA amplicon sequencing showed high similarity with 162 

metagenomics for species with relative abundances higher than 0.001% (ρ = 0.89). However, 163 

for several species with low relative abundances, 16S rRNA sequencing provided higher 164 

relative abundance estimates compared to metagenomics, while other species, detected by 165 

metagenomics, were not detected with 16S rRNA sequencing. For this observation, no clear 166 

taxon-specific or condition-specific effect was found (Supplementary Figure 4), indicating that 167 

the differences at these low relative abundances are most likely a result of differences in 168 

sequencing depth per sample, as has been previously reported (Pereira-Marques et al, 2019; 169 

Durazzi et al, 2021). Although metaproteomics is not yet widely used for species abundance 170 

estimation, we found the corresponding estimates in good agreement with the other omics 171 

methods, but only for species with relative abundance above 1% (ρ = 0.78 – 0.84; 16 out of 172 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 3, 2023. ; https://doi.org/10.1101/2023.01.03.519475doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.03.519475
http://creativecommons.org/licenses/by/4.0/


 

6 
 

29 species detected across all samples). This indicates that metaproteomics is less sensitive 173 

than sequencing-based methodologies for species abundance estimation, as has also been 174 

observed for in natura metaproteomics studies (Zhang & Figeys, 2019). Our results show 175 

generally high consistency between omics data types in relative species abundance 176 

estimations, and underline that metaproteomics can, in principle, provide robust species 177 

abundance estimates, at least for synthetic microbial communities, albeit with lower sensitivity. 178 

 179 

Figure 2. Comparison of species and feature abundances and functional coverage across omics methods. (A) Scatter 180 
plots representing species abundance defined as relative abundance of corresponding omics measurement in each sample. Each 181 
dot represents single species abundance in one sample. ρ - Spearman correlation coefficient. (B) Scatter plots representing gene, 182 
transcript or protein abundance linked through KEGG orthology. Each dot represents a single KEGG ortholog in one sample. (C) 183 
Left: Genome coverage of each of the omics datasets across samples for each species, right: relative species abundance 184 
estimated by metagenomics. The fraction of coverage is defined as the number of genes to which at least one read was mapped 185 
(for metagenomics and metatranscriptomics), or the number of detected proteins for metaproteomics divided by the total number 186 
of genes in the corresponding genome. (Metagenomics n = 75 samples, metatranscriptomics n = 101 samples and 187 
metaproteomics n = 112 samples) (D) KEGG pathway coverage. For the metabolomics dataset, pathway coverage is defined as 188 
the number of unique pathway metabolites detected in at least one sample, divided by the total number of metabolites in the 189 
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pathway. For metagenomics, metatranscriptomics and metaproteomics, KEGG orthologs are used instead of pathway 190 
metabolites. (E) Heatmap of Mantel correlations across omics methods and Spearman correlation between replicates within each 191 
omics method. 192 

Consistency of functional profiles across omics measurements  193 

For each protein-coding gene of each species, we can compare relative abundances across 194 

the three molecular layers: gene (metagenomics), transcript (metatranscriptomics), and 195 

protein (metaproteomics). We performed such pairwise comparisons both for individual genes 196 

across all species (Supplementary Figure 5) and for genes grouped based on KEGG orthology 197 

(Kanehisa et al, 2017) (Figure 2B). The correlation between metagenomic and metaproteomic 198 

estimates of gene and protein abundances was moderate (ρ = 0.5 for KEGG grouped features 199 

and ρ = 0.48 for all non-zero genes and proteins). Metatranscriptomics and metaproteomics 200 

were the most similar (ρ = 0.73 for KEGG orthologs and ρ = 0.60 for transcripts and proteins), 201 

followed by metagenomics and metatranscriptomics (ρ = 0.7 for KEGG orthologs and ρ = 0.61 202 

for genes and transcripts). 203 

To systematically assess how much information on the functional level is captured by 204 

metagenomics, metatranscriptomics and metaproteomics for different species, we estimated 205 

gene and pathway coverage by calculating the proportion of genes or pathways that were 206 

detected by each method (Figure 2C and D). We found that 18 out of 32 species had an almost 207 

complete coverage (> 90%) in metagenomics, indicating that for these species most of the 208 

genes were recovered in all samples measured in this experiment (Figure 2C; in total 101,559 209 

out of 103,921 possible protein-coding genes were detected at least once in the 210 

metagenomics dataset). This was not the case for 14 low abundant species, for which the 211 

average gene content coverage was < 20%. For metatranscriptomics, the coverage was 212 

generally lower than for metagenomics (91,094 out of 103,921 possible transcripts detected 213 

at least once). This is however expected as not all genes are expressed in any given condition. 214 

Metaproteomics coverage was found to be much lower than metagenomics and 215 

metatranscriptomics (9,144 out of 103,921 predicted proteins). This may be due to the limited 216 

dynamic range: In contrast to mass-spectrometry-based measurements, sequencing-based 217 

methods include an amplification step that increase the amount of material and makes it 218 

possible to cover rare transcripts and genes. For Escherichia coli, the most abundant species 219 

in our synthetic community, the maximum coverage of proteins across all samples did not 220 

exceed 30% (1,428 proteins out of 4,978 (29%) predicted proteins compared to 4,978 genes 221 

out of 4,978 predicted genes (100%) for metagenomics and 4,962 transcripts out of 4,978 222 

transcripts (99%) for metatranscriptomics). This result is lower than state-of-the-art single 223 

species proteomics experiments where around ~62% (2,586 detected proteins out of 4,189 224 

predicted proteins) of bacterial proteins are captured (Mateus et al, 2020), likely due to 225 
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increased sample complexity in the community context, the increased search space of 226 

proteins, and the presence of highly similar protein sequences in homologous proteins (where 227 

peptides cannot be unambiguously mapped to one protein). 228 

Since metabolomics data reflects the total pools of metabolites in the sample and cannot be 229 

analysed at the species level, we assessed the coverage of metabolic pathways defined in 230 

the KEGG database and compared it to pathway coverages by other omics methods (Figure 231 

2D). For metabolic pathways annotated in bacterial genomes, we observed an average 232 

pathway coverage of 35% for metabolomics, as compared to 44% for metaproteomics and 233 

86% for metatranscriptomics. Even though direct comparison of both methods is challenging, 234 

we believe that the lower coverage for metabolomics has several explanations. First, we 235 

measured metabolites in supernatant samples, where rich medium components mask the 236 

signal (e.g. amino acids, peptides and polysaccharides), and extracellular products of bacterial 237 

metabolism, especially produced by only one or few species, may therefore not be detected. 238 

Second, only a subset of all metabolites present in the bacterial cell will be secreted outside 239 

of the cell. Third, to calculate metabolic pathway coverage, we assumed that each pathway 240 

consists of metabolites that are produced or consumed by metabolic enzymes annotated in 241 

bacterial genomes, which is likely an overestimation of pathway sizes, since presence of an 242 

enzyme in the genome does not necessarily imply that this enzyme is expressed, and that the 243 

corresponding metabolite will be produced and measured extracellularly. 244 

To further compare the samples measured with different omics methods, we performed a 245 

Mantel test, which measures a correlation coefficient between sample similarity matrices 246 

calculated based on each omics data type individually (Figure 2E). For example, while it is not 247 

possible to directly compare matrices of species and protein abundances, it is possible to 248 

calculate sample similarity matrices for these two methods that can then be compared with 249 

each other. Hierarchical clustering of Mantel correlation coefficients revealed two clusters: one 250 

containing species abundance data (from metagenomics, metatranscriptomics, and 251 

metaproteomics) and gene abundance (metagenomics); and a second cluster containing 252 

transcript abundance data (metatranscriptomics), protein abundance data (metaproteomics), 253 

and metabolite abundances. The emergence of these clusters can be explained by the nature 254 

of data used to calculate sample distance matrices: species and gene abundances in one 255 

cluster, and functional feature abundances in the other cluster. Notably, transcript abundance 256 

as measured by metatranscriptomics showed a high correlation (≥0.57) with sample distance 257 

matrices of all other omics measurements, underlining that this method captures both species 258 

abundance and functional information in our experiment. Altogether, metatranscriptomics was 259 

found to be the most universal and versatile readout, as it can both provide robust and 260 
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sensitive estimates of species abundance, and at the same time reflects functional changes, 261 

which are in concordance with protein changes detected by metaproteomics. 262 

Chlorpromazine treatment strongly affects community 263 

composition  264 

After testing the technical consistency between omics measurements in a synthetic microbial 265 

community, we explored the impact of drug perturbations on the community composition and 266 

the respective responses at species, gene, transcript, protein and metabolite levels. For the 267 

control condition and all perturbations (chlorpromazine, metformin and niclosamide), similar 268 

dynamic changes in alpha diversity were observed over time. In general, the alpha diversity 269 

(inverse Simpson index) increased as the community grew over time after inoculation, 270 

however, this increase was lower for chlorpromazine compared to the other drugs and the 271 

control condition (Supplementary Figure 6A, B). We observed different community dynamics 272 

between runs A and B during the exponential phase: E. coli and C. perfringens were the most 273 

abundant species in all conditions in run A (Fig. 3A, Supplementary Figure 6C), while E. coli 274 

dominated community composition during exponential phase in run B. However, community 275 

compositions became more similar between the runs at 43 h after drug treatment 276 

(Supplementary Figure 7). These analyses revealed that the addition of metformin and 277 

niclosamide had negligible effects on the community composition, while chlorpromazine 278 

treatment shifted the community composition in both runs.  279 

To identify differentially abundant species after drug perturbation, we analysed the 280 

composition of microbiomes by comparing species abundances in drug-treated samples 281 

against control samples estimated by each omics type (Figure 3B) (ANCOM (Mandal et al, 282 

2015)). This analysis revealed that most members of the Bacteroidota phylum (Odoribacter 283 

splanchnicus, Parabacteroides distasonis, Phocaeicola vulgatus, Bacteroides fragilis, 284 

Bacteroides thetaiotaomicron and Bacteroides uniformis) were less abundant in 285 

chlorpromazine-treated samples. This reduction in Bacteroidota abundance was detected 286 

across all four omics methods capturing community composition, indicating that each of these 287 

methods is capable of detecting strong signals of species abundance change. In addition to 288 

Bacteroidota, Fusobacterium nucleatum was found to be less abundant in chlorpromazine-289 

treated samples. In contrast, the other two drugs did not cause major shifts in relative 290 

abundances: although ANCOM test identified significant changes of abundance of several 291 

species, their relative abundance was not changing more than two-fold (Figure 3B). In 292 

summary, we found a consistent and substantial depletion of species belonging to the phylum 293 

Bacteroidota upon chlorpromazine treatment. 294 
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 295 

Figure 3. Changes in community composition upon drug perturbation. (A). Relative species abundance changes over time 296 
in the three drug conditions and control. Time 0 indicates timepoint of the drug addition 5 h after the passage in the fresh medium. 297 
Relative abundance measured from metagenomics data. (B). Left, distribution of relative species abundance for each species 298 
across all samples (all conditions and timepoints). Right, heatmap of species abundance fold changes measured by different 299 
omic methods for each drug condition versus control. Significance of changes estimated by the ANCOM test is indicated by 300 
asterisks: * changes detected at 0.7 threshold of W statistic; ** changes detected at 0.8 threshold; *** changes detected at 0.9 301 
threshold; nd – not detected. 302 

Multi-omics measurements capture functional response of the 303 

community to all three drugs 304 

As compositional shifts do not provide information on the mechanisms of response of each 305 

community member, we investigated these functional responses in more detail by performing 306 

differential analysis of metatranscriptomic, metaproteomic and metabolomic datasets after a 307 

normalization step wherein taxonomic abundance effects were reduced (see “Gene, transcript 308 

and protein counting” in the Methods section). The highest number of differentially abundant 309 
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transcripts, proteins and metabolites were found in samples treated with chlorpromazine 310 

(adjusted p-value < 0.001 and absolute fold change > 4 compared to control for 311 

metatranscriptomics, adjusted p-value < 0.05 and absolute fold change > 1.5 for 312 

metaproteomics and metabolomics; Figure 4A), which is in line with our findings that 313 

chlorpromazine caused the largest disruption to bacterial community (Figure 3B). 314 

Transcriptional response to chlorpromazine is detected already after 15 minutes of treatment 315 

across species belonging to different phyla, suggesting that, although Bacteroidota show the 316 

strongest response, other species also adapt their gene expression.   317 

In order to evaluate similarities between functional responses across omics data types, we 318 

performed pathway enrichment analysis of differentially abundant features between drug 319 

treatment and controls across all time points using KEGG pathway annotations (Figure 4B). 320 

In general, we detected less overlap between omics layers on the functional level compared 321 

to species abundance analysis, as no single pathway was statistically significant in the 322 

enrichment analysis of all three functional omics datasets. Across all conditions, five pathways 323 

were found to be significantly enriched upon drug treatment compared to the control condition 324 

in two omics data types, while 35 pathways were statistically significantly enriched in only one 325 

omics dataset. The largest number of significantly enriched pathways was found in 326 

chlorpromazine-treated samples for metatranscriptomics data.  327 

Several pathways were significantly overrepresented (pFDR<0.001 for metatranscriptomics 328 

and pFDR<0.05 for metaproteomics and metabolomics) within the set of up- and 329 

downregulated features (transcripts/proteins/metabolites) in metformin-treated samples. For 330 

example, three pathways, i) lysine degradation, ii) biotin metabolism and iii) arginine and 331 

proline metabolism, were enriched in differentially abundant metabolites. Further inspection of 332 

metabolites involved in these pathways showed that their abundance also decreased upon 333 

addition of metformin in the non-bacterial control samples (Supplementary Figure 8). This 334 

indicates that metformin primarily interferes with the measurement of these metabolites, 335 

probably due to their chemical similarity, underlining the importance of including non-bacterial 336 

control samples to study drug response. However, we cannot exclude that metformin also 337 

interacts with lysine and arginine metabolism pathways in bacteria, as reported before (Pryor 338 

et al, 2019; Forslund et al, 2015). In general, we did not observe substantial effects of 339 

metformin neither on community composition nor on transcript or protein abundance in our 340 

study, at least at the concentrations used. In previous experiments, metformin at the same 341 

concentration had an effect on several of the tested species grown in single culture (Maier et 342 

al, 2018), however it is possible that these species show a different behaviour in a community 343 

setting (D’hoe et al, 2018).  344 
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For niclosamide-treated samples, ten pathways were significantly enriched (pFDR<0.001) 345 

among regulated transcripts, including amino acid and nitrogen metabolism. Transcripts of 346 

nitrogen metabolism pathway upregulated in the early time points (15 min, 30 min, 1 h, 3 h) 347 

were annotated as NAD-specific glutamate dehydrogenase (belonging to the Cluster of 348 

Orthologous Groups COG0334 from the EggNOG database present in B. thetaiotaomicron, 349 

P. vulgatus, B. fragilis), hydroxylamine reductase (COG1151 in C. perfringens, B. uniformis) 350 

and carbamate kinase (COG0549 in Eggerthella lenta) (Supplementary Figure 9). Previously, 351 

NAD-specific glutamate dehydrogenase was found to be upregulated in response to nitrogen 352 

availability in Mycobacterium smegmatis, where it is assumed to have a de-aminating activity 353 

(Harper et al, 2010). Furthermore, hydroxylamine reductase and carbamate kinase are 354 

enzymes belonging to the family of oxidoreductases which both act on nitrogenous 355 

compounds. Therefore, the upregulated pathway and its transcripts suggest an increased 356 

metabolization of nitrogen in niclosamide-treated samples. Further examination of our 357 

metabolomic dataset revealed that niclosamide gets degraded in both runs of the experiment 358 

(Supplementary Figure 10). Additional follow-up experiments are needed to elucidate the 359 

mechanisms underlying the microbial degradation of niclosamide and the roles of individual 360 

community members. 361 
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 362 

Figure 4. Functional analysis of transcript, protein and metabolite response after niclosamide, metformin or chlorpromazine 363 
treatment. A) Number of differentially abundant transcripts, proteins and metabolites. B) Pathway enrichment analysis across all 364 
conditions and time points. C) Heatmap representing Spearman correlation between fold changes (relative to control) detected 365 
by metatranscriptomics and metaproteomics across all drug perturbations. D) Scatterplot depicting protein fold changes (relative 366 
to control) detected after 15 min of chlorpromazine exposure by metatranscriptomics versus after 1 h of exposure by 367 
metaproteomics. E) COG enrichment analysis differentiating between species susceptible to chlorpromazine treatment 368 
(Bacteroidota) and non-susceptible species (non-Bacteroidota). COGs that are enriched in upregulated genes are coloured in 369 
red, while COGs that are enriched in downregulated genes are coloured in blue. Only COGs that were found to be significantly 370 
enriched in at least three out of four early time points are shown. COG names that are coloured are discussed in more detail in 371 
the main text. F) Di-, tri- and tetra-saccharide abundances as measured by untargeted metabolomics (metabolite annotation is 372 
based on m/z values indicated in the panel titles). The lines are coloured according to the experimental conditions 373 
(chlorpromazine, metformin, niclosamide and control), and the line type represents whether these are community culture or non-374 
bacterial controls.  375 

376 
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Chlorpromazine induces stress response and metabolic 377 

changes in the community 378 

Since the number of differentially abundant features and pathways was high in 379 

chlorpromazine-treated samples (Figure 4A and 4B), we tested whether there are features 380 

that change concordantly across omics layers. We first compared transcript and protein fold 381 

changes upon perturbation, which revealed general agreement between relative changes in 382 

gene expression and protein abundance, with transcript fold changes at each time point 383 

correlating more strongly with protein changes at later time points (Figure 4C, Supplementary 384 

Figure 11), likely reflecting the delay between transcription and translation processes. Based 385 

on this analysis, we assessed the most prominent and concordant changes between 386 

metatranscriptomics and metaproteomics 15 min and 1 h after chlorpromazine addition, 387 

respectively (Figure 4D). Consistent with the observed relative species abundance changes, 388 

the most concordantly downregulated features were proteins and genes of Bacteroidota 389 

species and F. nucleatum, including ribosomal proteins, elongation factors, and central carbon 390 

metabolism enzymes gldA (glycerol dehydrogenase), gapdh (glyceraldehyde 3-phosphate 391 

dehydrogenase), and pta (phosphate acetyltransferase), the latter two being downregulated 392 

in several species (Figure 4D). Furthermore, the most upregulated features found both in 393 

metatranscriptomics and metaproteomics were stress response genes in E. coli, such as the 394 

small heat shock proteins IbpA and IbpB (Inclusion body-associated protein A and B), other 395 

chaperones, and ABC transporters. IbpA and IbpB serve as a first line of defence against 396 

protein aggregation (Miwa et al, 2021). In addition to ibpA and ibpB, we found upregulation of 397 

the transcriptional regulator rpoH and the chaperones dnaK and groEL, which are also 398 

involved in heat shock response (Yura, 2019) (Supplementary Figure 12). Together, these 399 

results show that chlorpromazine causes the activation of a stress response in E. coli, probably 400 

due to induction of protein aggregation either directly or indirectly. 401 

We then tested whether genes associated with stress response were differently regulated 402 

between chlorpromazine-susceptible and non-susceptible species. Two COGs related to the 403 

stress response were enriched in upregulated genes in at least two of the four early time points 404 

in the depleted (susceptible) species (Figure 4E, annotated in green, Supplementary Figure 405 

13). One of them, COG0265, is upregulated by both susceptible and non-susceptible species 406 

and encompasses serine proteases (e.g., HtrA proteins such as DegP and DegQ), which 407 

represent an important class of chaperones and heat-shock-induced serine proteases, 408 

protecting periplasmic proteins. Furthermore, two COGs enriched in upregulated genes were 409 

related to (multidrug) transporter activity. COG1538, which contains genes annotated as 410 

membrane protein OprM, was the only COG enriched in upregulated genes by Bacteroidota 411 
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in all four early time points (Fig 4F, annotated in purple). In Pseudomonas aeruginosa, OprM 412 

is part of MexAB-OprM, a multidrug efflux pump of the resistance-nodulation-cell division 413 

(RND) superfamily, where it plays a central role in multidrug resistance by transporting drugs 414 

from the cytoplasm across the inner and outer membranes outside the cell envelope (Tsutsumi 415 

et al, 2019; Alekshun & Levy, 2007). RND-efflux pumps are found in a number of Gram-416 

negative bacteria, for example, AcrAB-TolC is found in E. coli (Du et al, 2018) while 417 

Bacteroides fragilis harbours multiple copies of RND pumps BmeABC (Ghotaslou et al, 2018). 418 

Further, in addition to COG1538 (OprM homologues), also COG0841 containing homologues 419 

of the MexB/AcrB/bmeB protein (Figure 4E, also annotated in purple) was found to be enriched 420 

in upregulated genes, both in Bacteroidota and non-Bacteroidota species. These observations 421 

suggest an important role of the AcrAB-TolC/MexAB-OprM/bmeABC efflux pumps in 422 

determining chlorpromazine susceptibility. Indeed, a recent study showed that chlorpromazine 423 

is both a substrate and an inhibitor of the AcrB multidrug efflux pump in Salmonella enterica 424 

and E. coli (Grimsey et al, 2020). Together, our results suggest that chlorpromazine could also 425 

be an inhibitor of BmeB, the AcrB/MexB homologue in Bacteroidota species and that this, 426 

potentially in combination with protein aggregation, could be one of the reasons explaining 427 

why Bacteroidota are affected by chlorpromazine treatment. 428 

Finally, depletion of Bacteroidota and downregulation of their genes involved in polysaccharide 429 

uptake might explain the enrichment of “Starch and sucrose” and “Fructose and mannose 430 

metabolism” pathways among metabolites increased upon chlorpromazine treatment (Figure 431 

4B). As Bacteroides species are known to be capable of metabolizing a wide variety of 432 

polysaccharides (Schwalm & Groisman, 2017), we believe that the higher abundance of 433 

polysaccharides after chlorpromazine treatment (Figure 4F) measured by metabolomics is a 434 

result of their reduced consumption by these species.  435 

Taken together, by integrating multi-omics measurements, we propose that a series of events 436 

happens upon treatment by chlorpromazine i) a stress response is induced across several 437 

bacterial species with overexpression of ibpA and ipbB chaperones being the most 438 

pronounced response in E. coli; ii) this stress response involves upregulation of AcrB/BmeB 439 

type of RND pumps, which may be bound and blocked by chlorpromazine in a species-specific 440 

manner; iii) Bacteroidota species are more susceptible to chlorpromazine and are quickly 441 

depleted from the community, which results in iv) increase in polysaccharide levels in the 442 

culture medium due to the inability of the remaining community members to utilize them. 443 

  444 
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Discussion 445 

In this study we evaluated the impact of drug perturbations on a synthetic gut microbial 446 

community by analysing five different omics data types in a highly controlled in vitro 447 

experiment. In general, we found concordance between all omics data types regarding the 448 

estimation of community composition (taxonomic profiling). To our knowledge, this is the first 449 

study to systematically compare taxonomic profiles obtained by four omics data types and can 450 

thus serve as a baseline for integrating different data types in “in natura” settings. Using the 451 

synthetic community, we could show a high correlation between metagenomics and 452 

metatranscriptomics (ρ = 0.92), similar to a previous study that used only these two omics 453 

methods (ρ = 0.81, (Heintz-Buschart & Wilmes, 2018)). The taxonomic profiles obtained from 454 

our metaproteomics dataset, which is increasingly used in microbiome studies (e.g. Kleiner et 455 

al, 2017; Kleikamp et al, 2021), showed correlations between ρ = 0.78 and ρ = 0.84 with all 456 

other omics for species with a relative abundance higher than 1%. Although the number of 457 

detected proteins and the detection limits remain to be improved, we showed that species 458 

abundance estimates can be derived from metaproteomics in a relatively simple, defined 459 

microbial community. 460 

Of the three drugs used for perturbation, only chlorpromazine caused a large disturbance in 461 

the community composition. Surprisingly, metformin, which has been shown to alter the gut 462 

microbiome in patients (Forslund et al, 2015; Wu et al, 2017), did not perturb the community 463 

in our study, even though our earlier study suggested that the growth of at least four different 464 

species is inhibited by metformin at the concentration used in monocultures (F. nucleatum, B. 465 

longum, P. copri and P. merdae, (Maier et al, 2018)). This observation hints at a protective 466 

effect from the community, although this protective effect is not caused by drug degradation, 467 

as metformin concentrations remained high during the course of experiment (Supplementary 468 

Figure 10). Similarly, niclosamide was expected to cause a depletion of most of the members 469 

of the synthetic community, except for E. coli and B. wadsworthia (Maier et al. 2018), which 470 

was not observed in this study, also pointing to community-related protection effects. Our 471 

metatranscriptomic data revealed an upregulation of genes related to nitrogen metabolism, 472 

while niclosamide concentration decreased during incubation, which was not observed in the 473 

non-bacterial controls. Therefore, we believe that certain species are capable of degrading 474 

niclosamide, which ultimately protected the whole community against possible inhibitory 475 

effects of niclosamide treatment. 476 

For chlorpromazine, the observed depletion of Bacteroidota species was in concordance with 477 

single species experiments (Maier et al, 2018). The antibiotic activity of chlorpromazine was 478 

reported relatively soon after its first usage in the nineteen-fifties (Dinan & Cryan, 2018; 479 
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Kristiansen & Vergmann, 1986). Its antibiotic mechanism of action is described to be multifold 480 

and includes effects on the cell membrane, energy generation and interference with cell 481 

replication due to DNA intercalation in E. coli (Grimsey et al, 2020). In our study, several genes 482 

and proteins related to protein aggregation were upregulated in metatranscriptomic and 483 

metaproteomic datasets in E. coli and other community members. One study already reported 484 

protein aggregation of bovine insulin after chlorpromazine treatment (Bhattacharyya & Das, 485 

2001). However, it remains unclear whether chlorpromazine can cause protein aggregation in 486 

microbes either directly or indirectly, a hypothesis that should be followed-up in future 487 

experiments. 488 

Finally, we identified upregulation of RND-type efflux pumps in the Gram-negative bacteria, 489 

even in the Bacteroidota species that were severely depleted. It was recently shown that in S. 490 

enterica and E. coli, chlorpromazine is both a substrate and an inhibitor of AcrB, the inner 491 

membrane transporter of the tripartite system AcrAB-TolC, which is an RND-type efflux pump 492 

(Grimsey et al, 2020; Bailey et al, 2008a). Based on our data, we hypothesise that BmeB, the 493 

AcrB homologue in Bacteroidota, is also susceptible to chlorpromazine inhibition as we found 494 

upregulation of this and related genes, similar to what has been described by others in single 495 

species experiments (Grimsey et al, 2020). The suggested mechanism could be of 496 

significance in the battle against the rising multidrug resistance of Bacteroides fragilis, a 497 

commensal bacterium that can act as a virulent pathogen when it escapes its normal niche 498 

(Wexler, 2007, 2012; Niestępski et al, 2019). However, chlorpromazine’s antimicrobial activity 499 

generally occurs at concentrations higher than those clinically achievable (Grimsey & Piddock, 500 

2019). Therefore it is possible that, similarly as suggested for S. enterica, chlorpromazine 501 

could act as an antimicrobial adjuvant for Bacteroidota where its inhibition of RND-type efflux 502 

pumps prevents the extrusion of administered antibiotics (Grimsey et al, 2020). From the 503 

perspective of human health, these results underline the detrimental effect of antipsychotics 504 

on the gut microbiome reported before (Dinan & Cryan, 2018). However, the revealed phylum-505 

specific differences provide an opportunity to explore whether complementation of 506 

antipsychotic therapy with Bacteroidota-promoting dietary interventions could improve mental 507 

health and increase patients’ quality of life by restoring a healthy microbiota (Patnode et al, 508 

2019).   509 

In conclusion, we directly compared data from multiple omics methods and showed that they 510 

agree on species abundance estimation of a defined and drug-perturbed microbial community 511 

in vitro. Those methods that are able to detect functional information also correlate with each 512 

other, albeit to a lower degree. We could also confirm expected time delays between 513 

transcriptional and translational responses to perturbations, underlining that these methods 514 

reveal biological insights that happen at different time scales. Although multi-omics analysis 515 
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of natural communities is hampered by their increasing complexity, combining multiple omics 516 

measurements allows to measure the response of the community to perturbations across 517 

molecular layers and provides information that is not achievable by any method alone.  518 

 519 

Methods 520 

Species and drug selection 521 

The species used in this study represent a subset of abundant and prevalent species from the 522 

human gut. In total, 32 species were selected based on our previous work (Tramontano et al, 523 

2018; Maier et al, 2018). The bacterial isolates were received from DSMZ, BEI Resources or 524 

ATCC and Dupont Health & Nutrition. The drugs were chosen because of their antimicrobial 525 

activity (Maier et al, 2018) and diversity in therapeutic usage.  526 

Reference genomes 527 

Reference genomes were downloaded from RefSeq on March 2019 (release 92) and 528 

reannotated using Prokka v1.14.0 (Seemann, 2014). Taxonomic classification was based on 529 

GTDB taxonomy release 95 (Parks et al, 2018) and inferred using GTDB-Tk v1.3.0 (Chaumeil 530 

et al, 2020; Matsen et al, 2010; Jain et al, 2018; Hyatt et al, 2010; Price et al, 2010; Eddy, 531 

2011; Ondov et al, 2016). Further functional annotations (e.g. KEGG orthology and eggNOG 532 

orthologous group) were retrieved using eggNOG-mapper v2.0.1 which is based on eggNOG 533 

v5.0 (Huerta-Cepas et al, 2017). A cladogram was built by pruning the species cladogram 534 

from GTDB (bac120.tree, release 95) using the ETE toolkit (Huerta-Cepas et al, 2016). 535 

Medium and drug preparation 536 

mGAM medium was prepared according to manufacturer's instructions (HyServe GmbH & 537 

Co.KG, Germany, produced by Nissui Pharmaceuticals) and all the single species were grown 538 

in this medium except V. parvula (Todd-Hewitt Broth (Sigma-Aldrich) + 0.6% sodium lactate) 539 

and B. wadsworthia (mGAM + 60 mM sodium formate + 10 mM taurine). All media were placed 540 

in anaerobic chamber 1 day before use under anoxic conditions (Coy Laboratory Products 541 

Inc.) (2% H2, 12% CO2, rest N2). Chlorpromazine (TCI Chemicals) and niclosamide (Santa 542 

Cruz Biotechnology) were added from DMSO stock solution. Metformin (Sigma) was added 543 

as powder directly into the medium after which the medium was filter-sterilized. Final 544 

concentrations of each drug were chosen based on previous work (Maier et al. 2018) with 545 

concentrations of 5 mM for metformin and 20 µM for chlorpromazine and niclosamide. The 546 

higher concentration for metformin is motivated by previously published data, which showed 547 
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that a concentration of 20 µM was not sufficient to impair growth of gut microbiome members 548 

in vitro ((Maier et al, 2018); Extended Data Figure 4). 549 

Experimental set-up and sample collection 550 

Species were pre-inoculated in isolation on liquid mGAM medium from pure stocks and 551 

incubated at 37 ̊C under anaerobic conditions for a period of 3 or 5 days, depending on the 552 

growth rate of each species (see Figure 1). The monocultures were subsequently mixed in 553 

equal proportions based on their optical density (OD) and then inoculated in 100 mL of mGAM 554 

liquid medium. To allow species to reach a stable state (stabilization phase), the mixed culture 555 

was grown for 48 hours after which 1 mL was transferred to fresh medium. In total, 3 passages 556 

were performed and after the second transfer OD measurements were taken to determine the 557 

start of the exponential phase.  558 

Following the stabilization phase, the mixed community was inoculated in medium prepared 559 

with one single drug or DMSO (control) as soon as the community reached the exponential 560 

phase (OD roughly equal to 2-3). The cultures were subsequently sampled (3 mL) at fixed 561 

time intervals (0 minutes, 15 minutes, 30 minutes, 1 hour, 3 hours, 48 hours), transferred to 562 

fresh medium (with drugs or DMSO) after 48 hours and then sampled again 48 hours later (or 563 

96 hours after the start of the experiment). The whole experiment was performed twice 564 

(labelled as run A and run B). 565 

1.5 mL of each collected sample was centrifuged (30 seconds at max speed) after which the 566 

supernatant was removed and the cell pellet was stored at -80 °C until further processing for 567 

DNA and RNA extraction. For protein and metabolite extraction, again 1 mL of each collected 568 

sample was centrifuged (30 seconds at max speed) and 450 µL of supernatant was used for 569 

metabolite extraction or protein extraction (secreted proteins) while the cell pellet was used 570 

for protein extraction (proteins in the cells). The remainder of the samples was frozen at -80 571 

°C as backup.  572 

DNA and RNA extraction 573 

Genomic DNA and total RNA were extracted from the same flash-frozen samples using 574 

Allprep Powerfecal DNA/RNA kit (Qiagen, Hilden Germany) following the manufacturer’s 575 

protocol but an additional phenol-chloroform extraction step of 700 µL was performed after 576 

lysis. DNA yield was measured by using Qubit™ dsDNA HS Assay Kit (Qubit, Waltham, 577 

Massachusetts, USA), split into two aliquots for ribosomal 16S rRNA amplicon sequencing 578 

and metagenomic shotgun sequencing and was stored at −20°C. RNA yield was measured 579 

via Bioanalyzer (Agilent, Santa Clara, California, USA) with Pico and Nano chips depending 580 

on the sample concentration and stored at -80°C for further analysis.! 581 
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16S rRNA amplicon, metagenomic and metatranscriptomic 582 

sequencing 583 

For 16S rRNA amplicon sequencing, extracted DNA was amplified using primers targeting the 584 

V4 region of the 16S rRNA gene on the F515 and R806 primer pair (Caporaso et al, 2011). 585 

PCR was performed according to the manufacturer’s instructions of the KAPA HiFi HotStart 586 

PCR Kits (Roche, Basel Switzerland) using barcoded primers and a two-step PCR protocol 587 

(NEXTflex™ 16S V4 Amplicon-Seq Kit, Bioo Scientific, Austin, Texas, USA). PCR products 588 

were pooled and purified using size-selective SPRIselect magnetic beads (0.8 left-sized, 589 

Beckman Coulter, Brea, CA, USA). The library was then diluted to 6pM for sequencing. The 590 

library was sequenced on an Illumina (San Diego, USA) MiSeq platform using 2 x 250 bp 591 

paired-end reads at Genomics Core Facility (European Molecular Biology Laboratory (EMBL), 592 

Heidelberg, Germany). 593 

Metagenomic libraries for all samples were prepared using the NEB Ultra II and SPRI HD kits 594 

with a targeted insert size of 350, and sequenced on an Illumina HiSeq 4000 platform (Illumina, 595 

San Diego, CA, USA) in 2x150bp paired-end with the aim of 1.5 Gbp average setup at the 596 

Genomics Core Facility (EMBL, Heidelberg, Germany). 597 

RNA samples were depleted for ribosomal RNA using the NEBNext Bacteria rRNA Depletion 598 

Kit (New England Biolabs, Ipswich, Massachusetts, USA). Samples were pooled into a library 599 

using the NEBNext Ultra II Directional RNA Library Prep Kit (New England Biolabs) and 600 

subsequently sequenced on Illumina NextSeq500 platform (75 bp; single end) at Genomics 601 

Core Facility (EMBL, Heidelberg, Germany). 602 

Quality control of raw reads was performed using NGLess (Coelho et al, 2019). For 603 

metagenomics, reads were trimmed to the longest subread where each base had a Phred 604 

score of at least 25. For metatranscriptomics, a sliding window approach was used and reads 605 

were trimmed to the longest subread with an average Phred score of 20 (window size: 4 bp). 606 

Resulting reads shorter than 45 bp were discarded. To remove possible human contamination, 607 

all reads were mapped against a human reference database (release GRCh38.p10, Ensembl 608 

(Zerbino et al, 2018)) using NGLess and samtools (Li et al, 2009). Reads with an identity 609 

threshold >= 90% were discarded. For metatranscriptomics specifically, rRNA reads were also 610 

removed from the dataset using SortMeRNA (Kopylova et al, 2012) with default parameters. 611 

Protein extraction 612 

Sample preparation, including protein extraction, digestion and peptide purification was 613 

performed according to the in-StageTip protocol (Kulak et al, 2014, 20) with automation on an 614 
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Agilent Bravo liquid handling platform according to (Geyer et al, 2016). In brief, samples were 615 

incubated in the PreOmics lysis buffer (P.O. 00001, PreOmics GmbH) for reduction of disulfide 616 

bridges, cysteine alkylation and protein denaturation at 95°C for 10 min. Samples were 617 

sonicated using a Bioruptor Plus from Diagenode (15 cycles of 30 s). The protein 618 

concentration was measured using a tryptophan assay. In total, 200 µg protein of each 619 

organism were further processed on the Agilent Bravo liquid handling platform by adding 620 

trypsin and LysC (1:100 ratio - µg of enzyme to µg of sample protein). Digestion was performed 621 

at 37 °C for 4 h. 622 

The peptides were purified in consecutive steps according to the PreOmics iST protocol 623 

(www.preomics.com). After elution from the solid phase extraction material, the peptides were 624 

completely dried using a SpeedVac centrifuge at 60°C (Eppendorf, Concentrator plus). 625 

Peptides were suspended in buffer A* (2% acetonitrile (v/v), 0.1% trifluoroacetic acid (v/v)) 626 

and sonicated for 30 min (Branson Ultrasonics, Ultrasonic Cleaner Model 2510). 627 

Metaproteomics 628 

Samples were analyzed using a liquid chromatography (LC) system coupled to a mass 629 

spectrometer (MS). The LC was an EASY-nLC 1200 ultra-high pressure system (Thermo 630 

Fisher Scientific) and was coupled to a Q Exactive HFX Orbitrap mass spectrometer (Thermo 631 

Fisher Scientific) using a nano-electrospray ion source (Thermo Fisher Scientific). Purified 632 

peptides were separated on 50 cm HPLC-columns (ID: 75 µm; in-house packed into the tip 633 

with ReproSil-Pur C18-AQ 1.9 µm resin (Dr. Maisch GmbH)). For each LC-MS/MS analysis 634 

about 500 ng peptides were separated on 100 min gradients. 635 

Peptides were separated with a two-buffer-system consisting of buffer A (0.1% (v/v) formic 636 

acid) and buffer B (0.1% (v/v) formic acid, 80% (v/v) acetonitrile). Peptides were eluted with a 637 

linear 70 min gradient of 2-24% buffer B, followed stepwise by a 21 min increase to 40% buffer 638 

B, a 4 min increase to 98% buffer B and a 5 min wash of 98% buffer B. The flow rate was 639 

constant at 350 nl/min. The temperature of the column was kept at 60°C by an in-house-640 

developed oven containing an Peltier element, and parameters were monitored in real time by 641 

the SprayQC software (Scheltema & Mann, 2012). 642 

First, data dependent acquisition (DDA) was performed of each single organism to establish 643 

a library for the data independent acquisition (DIA) of the community culture samples. The 644 

DDA scans consisted of a Top15 MS/MS scan method. Target values for the full scan MS 645 

spectra were 3e6 charges in the 300-1650 m/z range with a maximum injection time of 25 ms 646 

and a resolution of 60,000 at m/z 200. Fragmentation of precursor ions was performed by 647 

higher-energy C-trap dissociation (HCD) with a normalized collision energy of 27 eV. MS/MS 648 

scans were performed at a resolution of 15,000 at m/z 200 with an ion target value of 5e4 and 649 
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a maximum injection time of 120 ms. Dynamic exclusion was set to 30 s to avoid repeated 650 

sequencing of identical peptides. 651 

MS data for the community culture samples were acquired with the DIA scan mode. Full MS 652 

scans were acquired in the range of m/z 300–1650 at a resolution of 60,000 at m/z 200 and 653 

the automatic gain control (AGC) set to 3e6. The full MS scan was followed by 32 MS/MS 654 

windows per cycle in the range of m/z 300–1650 at a resolution of 30,000 at m/z 200. A higher-655 

energy collisional dissociation MS/MS scans was acquired with a stepped normalized collision 656 

energy of 25/27.5/30 eV and ions were accumulated to reach an AGC target value of 3e6 or 657 

for a maximum of 54 ms. 658 

The MS data of the single organisms and of the community cultures were used to generate a 659 

DDA-library and the direct-DIA-library, respectively, which were computationally merged into 660 

a hybrid library using the Spectronaut software (Biognosys AG). All searches were performed 661 

against a merged protein FASTA file of our reference genomes annotated using Prokka (see 662 

above). Searches used carbamidomethylation as fixed modification and acetylation of the 663 

protein N-terminus and oxidation of methionines as variable modifications. Trypsin/P 664 

proteolytic cleavage rule was used, permitting a maximum of 2 missed cleavages and a 665 

minimum peptide length of 7 amino acids. The Q-value cutoffs for both library generation and 666 

DIA analyses were set to 0.01. 667 

Metabolomics measurements 668 

Untargeted metabolomics analysis was performed as described previously (Fuhrer et al, 669 

2011). Briefly, samples were analyzed on a LC/MS platform consisting of a Thermo Scientific 670 

Ultimate 3000 liquid chromatography system with autosampler temperature set to 10° C 671 

coupled to a Thermo Scientific Q-Exactive Plus Fourier transform mass spectrometer 672 

equipped with a heated electrospray ion source and operated in negative or positive ionization 673 

mode. The isocratic flow rate was 150 μL/min of mobile phase consisting of 60:40% (v/v) 674 

isopropanol:water buffered with 1 mM ammonium fluoride at pH 9 for negative ionization mode 675 

or 60:40% (v/v) methanol:water buffered with 0.1% formic acid at pH 2 for positive ionization 676 

mode, in both cases containing 10 nM taurocholic acid and 20 nM homotaurine as lock 677 

masses. Mass spectra were recorded in profile mode from 50 to 1,000 m/z with the following 678 

instrument settings: sheath gas, 35 a.u.; aux gas, 10 a.u.; aux gas heater, 200° C; sweep gas, 679 

1 a.u.; spray voltage, -3 kV (negative mode) or 4 kV (positive mode); capillary temperature, 680 

250° C; S-lens RF level, 50 a.u; resolution, 70k @ 200 m/z; AGC target, 3x106 ions, max. 681 

inject time, 120 ms; acquisition duration, 60 s. Spectral data processing including peak 682 

detection and alignment was performed using an automated pipeline in R analogous to 683 

previously published pipelines (Fuhrer et al, 2011). Detected ions were tentatively annotated 684 
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as metabolites based on accurate mass within a dynamic tolerance depending on local 685 

instrument resolving power ranging from 1 mDa at m/z = 50 to 5 mDa at m/z = 1,000 using 686 

the Human Metabolome database (Wishart et al, 2018) as reference considering [M-H] and 687 

[M-2H] ions in negative mode or [M+], [M+H], [M+Na] and [M+K] ions in positive mode and up 688 

to two 12C to 13C substitutions. Of note, this approach precludes the resolution of isomers, of 689 

metabolites mapping to the same ion using different adduct assumptions, of unaccounted 690 

neutral gains or losses, or of metabolites with slightly distinct masses that nevertheless map 691 

to the same ion within the respective local matching tolerance. 692 

Metabolomics data analysis 693 

Raw intensity values were quantile-normalized separately for ions acquired in positive and 694 

negative modes. For further analysis, the data from the two acquisition polarity modes were 695 

combined in one table and filtered as follows: only annotated ions were retained; ions 696 

annotated to 13C-compounds only were removed; for each metabolite, only the ion with the 697 

annotation considered most likely was retained (either the ion with highest correlation with the 698 

total ion current, or the ion with the largest mean intensity across samples). 699 

Gene, transcript and protein counting 700 

Metagenomic and metatranscriptomic reads were mapped against a database of reference 701 

genomes containing only the species used in this study, using NGLess and samtools, with a 702 

minimum match size of 45 and minimum identity of 97. Abundance estimates were produced 703 

by counting the number of reads mapping to each genome included in the study. If a read 704 

mapped to multiple genes, the count was distributed to each of the genes (e.g. if a read maps 705 

to gene X and gene Y, gene X and gene Y each get a count of 0.5).  706 

Proteins quantification and filtering. Proteins were filtered based on the information from the 707 

DDA experiment on which peptides are detected in which single species. Metaproteomics 708 

report with protein and peptide quantification obtained from Spectronaut software applied to 709 

DIA samples was used as input. For each peptide in the community peptide report file, number 710 

of exact protein and species matches was calculated. For each protein, only unique peptides 711 

that match to one species were left for quantification. For each protein, the peptides were 712 

sorted according to the number of samples in which they were detected. Protein abundance 713 

was calculated as the mean of three most commonly measured peptides as suggested before 714 

. If the number of peptides was less than three, the protein was discarded. 715 

To reduce taxonomic abundance effects in downstream analyses, taxon-specific scaling was 716 

performed on metagenomics, metatranscriptomics and metaproteomics as described by 717 

(Klingenberg & Meinicke, 2017).  718 
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Species abundance estimation 719 

Multiple computational strategies were used to estimate species abundance. Unless stated 720 

otherwise, for all analyses the species abundances resulting from read mapping were used. 721 

For this approach, first a database of 16S rRNA regions was constructed by manually querying 722 

the SILVA rRNA database (Quast et al, 2013) and extracting the representative sequence 723 

from each of our 32 species. Amplicon sequencing reads were then mapped against this 724 

database using MAPseq v1.2.4 (Matias Rodrigues et al, 2017). Paired reads were mapped 725 

independently and assignments were only considered upon agreement. Abundance estimates 726 

were then produced by counting the number of reads mapping to each genome included in 727 

the study. For metagenome derived estimates, total counts were normalized by the size of the 728 

genome (number of base-pairs). For metatranscriptome derived estimates, additional steps 729 

were required. Gene predictions by Prokka/Prodigal were used to calculate the total number 730 

of coding bases per genome, after exclusion of rRNA regions. Finally, total read counts were 731 

normalized by the number of coding bases on each genome.  732 

Species abundance was estimated from metaproteomic data by summing up all filtered protein 733 

intensities detected per each species, and dividing the sum by the total summed protein 734 

intensity in a given sample.  735 

In addition, to the approaches based on read mapping, several popular tools were used to 736 

estimate species abundance. For amplicon sequencing, DADA2 v1.10 (Callahan et al, 2016) 737 

was used with the GTDB database release 86 (Parks et al, 2018) for sequence classification 738 

which was limited to genus level classification. Metagenomic and metatranscriptomic species 739 

abundances were estimated using mOTUs v2.5 (Milanese et al, 2019) and MetaPhlAn v3 740 

(Beghini et al, 2021). 741 

Coverage analyses 742 

Gene, transcript and protein coverage were defined as the number of 743 

genes/transcripts/proteins that showed a count higher than 0, divided by the total number of 744 

predicted genes per species. For pathway coverage, the same approach was used, but 745 

genes/transcripts/proteins were grouped by KEGG pathways instead and thus divided by the 746 

number of KEGG orthologs in one single pathway. The same procedure was repeated for 747 

metabolites, but using the number of metabolites per pathway as predicted by KEGG instead 748 

of the number of KEGG orthologs. 749 
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Mantel test 750 

Mantel test was performed to compare two different kinds of omics datasets and evaluate the 751 

similarity between them. Abundance tables of each omics were transformed into distance 752 

matrices using 1 - Spearman’s correlation coefficient, and the matrices were compared using 753 

the mantel function in the vegan package (version 2.5.5) with the default option. Sixty-one 754 

samples that were common among all the omics datasets were used in this analysis.  755 

Differential species abundance analysis 756 

Differential analysis of species abundance across conditions was performed with ANCOM v. 757 

2.1. Tables of species abundances calculated from each omics measurements were 758 

preprocessed with feature_table_pre_process with sample names used as sample variables, 759 

condition used as group variable, and parameters out_cut = 0.05; zero_cut = 0.90; lib_cut = 760 

0; neg_lb = TRUE. The ANCOM function was applied to each preproccessed table with 761 

condition used as the main variable and time used as the formula for adjustment. P-values 762 

were adjusted with Benjamini-Hochberg method (p_adj_method = "BH"). The cutoff of 0.7 for 763 

the W statistic was used to identify significantly differentially abundant species 764 

(detected_0.7=TRUE).  765 

Differential transcript, protein and metabolite abundance 766 

analysis 767 

Differential transcript analysis was performed using DESeq2 v1.26.0 (Love et al, 2014) after 768 

taxon-specific scaling (see above). The design formula included the factors run, drug, time 769 

point and the interaction term drug:timepoint. Statistical testing was performed with the Wald-770 

test and IHW (Ignatiadis et al, 2016) to control the false discovery rate. 771 

Differential protein and metabolite analysis were performed using repeated measures analysis 772 

of variance using the lmer function in the ade4 package. The same formula used in the 773 

differential transcript analysis was also used in the analysis. To exclude low abundant 774 

features, those that have 0 or NA in at least half of the samples were removed prior to the 775 

analysis. P-values were adjusted by the IHW method. Fold changes of proteins and 776 

metabolites compared to those of controls were calculated based on raw values.  777 

Pathway and COG enrichment analysis 778 

Pathway enrichment was performed in on differentially abundant features (cutoff for 779 

metatranscriptomics abs(log2(fold change))>2, pFDR<0.001, cutoff for metabolomics and 780 

metaproteomics abs(log2(fold change))>log2(1.5), pFDR<0.05) with Fisher exact test using 781 
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stats.fisher_exact in Python 3.7.7. P-values were adjusted with Benjamini-Hochberg 782 

procedure with multipletests function from statsmodels. COG enrichment was performed in 783 

the R environment using ClusterProfiler (Wu et al, 2021). 784 

Data and code availability 785 

The MS-based proteomics data have been deposited to the ProteomeXchange Consortium 786 

via the PRIDE partner repository and are available via ProteomeXchange with identifier 787 

PXD036445. Metabolomic data has been submitted to MetaboLights under accession number 788 

MTBLS3129. Sequencing data is deposited at the European Nucleotide Archive (ENA): 789 

PRJEB46619. Preproccessed data files and tables are available on Figshare at 790 

https://doi.org/10.6084/m9.figshare.21667763, and code to generate all figures is available at 791 

https://github.com/grp-bork/multiomics_Wuyts_2022. 792 
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