

1 **Genomics of the “tumorigenes” clade of the family *Rhizobiaceae* and description of**
2 ***Rhizobium rhododendri* sp. nov.**

3

4 **Nemanja Kuzmanović¹, George C. diCenzo², Boyke Bunk³, Cathrin Spröer³, Anja**
5 **Frühling³, Meina Neumann-Schaal³, Jörg Overmann^{3,4}, Kornelia Smalla⁵**

6

7 ¹Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant
8 Protection in Horticulture and Urban Green, Braunschweig, Germany

9 ²Department of Biology, Queen’s University, Kingston, Ontario, Canada

10 ³Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures,
11 Braunschweig, Germany

12 ⁴Microbiology, Technical University of Braunschweig, Germany

13 ⁵Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for
14 Epidemiology and Pathogen Diagnostics, Braunschweig, Germany

15

16 **Correspondence:**

17 Nemanja Kuzmanović, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated
18 Plants, Institute for Plant Protection in Horticulture and Urban Green, 38104 Braunschweig,
19 Germany.

20 E-mail: nemanja.kuzmanovic@julius-kuehn.de, kuzmanovic1306@gmail.com

21

22

23 **Funding information**

24 Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project number
25 429677233; Natural Sciences and Engineering Research Council of Canada.

26

27

28

29 **Abstract**

30 Tumorigenic members of the family *Rhizobiaceae*, known as agrobacteria, are responsible for
31 crown and cane gall diseases of various agricultural crops worldwide. Tumorigenic
32 agrobacteria are commonly found in the genera *Agrobacterium*, *Allorhizobium*, and
33 *Rhizobium*. In this study, we analyzed a distinct “tumorigenes” clade of the genus *Rhizobium*,
34 which includes the tumorigenic species *Rhizobium tumorigenes*, as well as strains causing
35 crown gall disease on rhododendron. Here, high quality, closed genomes of representatives of
36 the “tumorigenes” clade were generated, followed by comparative genomic and
37 phylogenomic analyses. Additionally, phenotypic characteristics of representatives of the
38 “tumorigenes” clade were analyzed. Our results showed that the tumorigenic strains isolated
39 from rhododendron represent a novel species of the genus *Rhizobium* for which the name
40 *Rhizobium rhododendri* sp. nov. is proposed. This species also includes additional strains
41 originating from blueberry and Himalayan blackberry in USA, whose genome sequences were
42 retrieved from GenBank. Both *R. tumorigenes* and *R. rhododendri* contain multipartite
43 genomes, including a chromosome, putative chromids, and megaplasmids. Synteny and
44 phylogenetic analyses indicated that a large putative chromid of *R. rhododendri* resulted from
45 the cointegration of an ancestral megaplasmid and two putative chromids, following its
46 divergence from *R. tumorigenes*. Moreover, gene clusters specific for both species of the
47 “tumorigenes” clade were identified, and their biological functions and roles in ecological
48 diversification of *R. rhododendri* and *R. tumorigenes* were predicted and discussed.

49

50 **KEYWORDS**

51 crown gall, rhododendron, blackberry, taxonomy, genomics, pan-genome analysis

52 **1 | INTRODUCTION**

53

54 The family *Rhizobiaceae* contains genetically and phenotypically diverse bacteria isolated
55 from various environments. Accordingly, *Rhizobiaceae* members exhibit remarkably diverse
56 lifestyles, ranging from plant symbionts (rhizobia) and pathogens (agrobacteria), to
57 opportunistic human pathogens, to free-living species in soils, sediments and water (Carareto
58 Alves et al. 2014). In this respect, the general term “agrobacteria” refers to a polyphyletic
59 group of *Rhizobiaceae* that are able to cause neoplastic diseases on plants (de Lajudie et al.
60 2019).

61 Agrobacteria are remarkable plant pathogens, as the infection process represents an
62 interkingdom genetic exchange involving integration of a fragment of bacterial plasmid DNA
63 (transferred DNA or T-DNA) into plant host cells (Gelvin 2017). Consequently, agrobacteria
64 cause crown and cane gall (Escobar and Dandekar 2003; Puławska 2010), and hairy root
65 (Bosmans et al. 2017) diseases, depending on whether they carry a tumor-inducing (Ti) or
66 root-inducing (Ri) plasmid. Hence, Ti and Ri plasmids code for functions essential for
67 pathogenicity. Ti and Ri plasmids are related, although the former plasmid group has been
68 studied more extensively.

69 Ti plasmids are transmissible and self-conjugal (reviewed in (Farrand 1998)).
70 However, the natural host range of Ti plasmids is relatively narrow and restricted to members
71 of the family *Rhizobiaceae*. To date, strains carrying Ti plasmids and able to cause crown gall
72 and hairy root diseases (agrobacteria) have been primarily identified within the genera
73 *Agrobacterium*, *Allorhizobium*, and *Rhizobium*. Additionally, a *Neorhizobium* strain carrying
74 a Ti plasmid and able to cause tumors on multiple host plants was identified recently
75 (Haryono et al. 2018). Historically, *Rhizobium rhizogenes* (i.e. *Agrobacterium* biovar
76 2/*Agrobacterium rhizogenes*) was the only tumorigenic *Rhizobium* species. However, another
77 member of this genus, *Rhizobium tumorigenes*, was recently isolated from cane gall tumors on
78 thornless blackberry (Kuzmanović et al. 2018). In addition, genomic analyses now suggest
79 that the tumorigenic strain AB2/73 (Anderson and Moore 1979), initially identified as a
80 biovar 2 strain (*R. rhizogenes*) (Unger et al. 1985), actually belongs to a novel, so far
81 undescribed *Rhizobium* species (Hooykaas and Hooykaas 2021).

82 In our previous work, we identified a novel group of tumorigenic agrobacteria
83 associated with crown gall disease of rhododendron (Kuzmanović et al. 2019). Phylogenetic
84 and genomic analyses suggested that these strains are most closely related *R. tumorigenes*, but
85 represent a separate species. Collectively, we named this distinct *Rhizobium* clade comprising
86 *R. tumorigenes* and novel rhododendron strains as “tumorigenes”. In this study, we generated
87 high quality, closed genomes of representatives of the “tumorigenes” clade, and performed
88 thorough comparative genomic and phylogenomic analyses. Moreover, we phenotypically
89 characterized rhododendron strains and described them as a novel species, *Rhizobium*
90 *rhododendri*.

91

92 **2 | MATERIALS AND METHODS**

93

94 **2.1 | Bacterial strains**

95

96 *Rhizobium* strain rho-6.2^T (= DSM 110655^T = CFBP 9067^T) used in this study was isolated in
97 2017 from crown gall tumors on rhododendron originating from a nursery in Lower Saxony,
98 Germany (Kuzmanović et al. 2019). In addition, we used *R. tumorigenes* strains 1078^T (=
99 DSM 104880^T = CFBP 8567^T) and 932 (= DSM 104878 = CFBP 8566) reported in our
100 previous study (Kuzmanović et al. 2018). For whole genome sequencing, bacteria were grown
101 in tryptone-yeast (TY) broth (tryptone 5 g/l, yeast extract 3 g/l, CaCl₂×2H₂O 0.9 g/l) at 28°C
102 for 48 h. Cultures were stored in a -80°C freezer in nutrient broth with 20% glycerol for long-
103 term preservation.

104

105 **2.2 | Phenotypic characterization and fatty acid methyl ester (FAME) analysis**

106

107 The growth of bacterial strains rho-6.2^T and 1078^T was assessed on different agar media:
108 yeast mannitol agar (YMA) (Kuzmanović et al. 2015), TY, R2A (DSMZ medium 830), potato
109 dextrose agar supplemented with 0.08% CaCO₃ (PDA-CaCO₃) (Bouzar et al. 1995), and
110 King's medium B (King et al. 1954). Their motility was examined microscopically. The Gram
111 reaction was determined by KOH (Ryu 1939) and aminopeptidase (Cerny 1976) (Bactident
112 Aminopeptidase, Merck, Cat. No.113301, Germany) tests. Oxidase activity was tested by the
113 method of Kovacs (1956). Catalase tests were performed by mixing freshly grown bacterial
114 cells with 10% H₂O₂, followed by examination of gas bubble formation. Growth at 5, 10, 15,
115 20, 25, 30, 35, and 40°C was determined in R2A broth for up to 9 days. Tests for 3-
116 ketolactose production, and acid clearing on PDA-CaCO₃ were performed as described before
117 (Moore et al. 2001). Additionally, the strains rho-6.2^T and 1078^T were phenotypically
118 characterized using the API 20NE system (bioMérieux, Marcv LEtoile, France) following the
119 instructions provided by the manufacturer.

120

121 For the fatty acid methyl esters (FAME) analysis, strains were cultured on R2A
122 medium at 25°C for three days. The cellular fatty acids were analyzed using the Microbial
123 Identification System (MIDI; Sherlock version 6.1, TSBA40 method), according to
124 instructions provided by the manufacturer (Sasser 1990). A combined analysis by gas
125 chromatography coupled to a mass spectrometer was used to confirm the identity of the fatty
126 acids based on retention time and mass spectral data (Vieira et al. 2021).

127

128 **2.3 | DNA extraction**

129

130 Genomic DNA was extracted from bacterial strains using a Qiagen Genomic DNA Buffer Set
131 (Qiagen, Germany; Cat. No. 19060) and Qiagen genomic tip 100/G gravity-flow, anion
132 exchange columns (Cat. No. 10243). The purity and approximate concentration of DNA was
133 determined by spectrophotometry using the NanoDrop instrument. Genomic DNA integrity
134 was assessed by agarose gel electrophoresis.

135

136 **2.4 | Eckhardt-type gel electrophoresis**

137

138 Plasmid content of *Rhizobium* strains rho-6.2^T, 1078^T and 932 was analyzed by the modified
139 method of Eckhardt (1978). This method can also allow visualization of other
140 extrachromosomal replicons, such as smaller chromids. Separation and visualization of
replicons was performed in a 0.7% (w/v) agarose gel (5 mm thick) prepared in 1× Tris-borate-

141 EDTA (TBE) buffer using the following procedure. Bacteria were grown in TY medium for
142 24 h at 28°C. Approximately 0.5-1 mL of bacterial culture was centrifuged at 8,000 rcf (g) for
143 10 min, and the pellet was resuspended in 0.5 mL sterile distilled water. One mL of 0.3%
144 (m/v) sodium lauroylsarcosinate was added, after which the cell suspension was gently mixed
145 and centrifuged at 8,000 rcf for 5 min. The pellet was resuspended in 40 µL 20% Ficoll 400
146 (w/v) in TE buffer (10 mmol L⁻¹ Tris-HCl, 1 mmol L⁻¹ EDTA, pH 8.0) and samples were
147 incubated for 15 min on ice. An agarose gel was prepared during the previous incubation
148 steps by loading 25 µL of 10% sodium dodecyl sulfate (SDS; w/v) into empty wells, followed
149 by gently flooding the gel with 1x TBE buffer and running electrophoresis at 4 V cm⁻¹ for 15
150 min from positive to negative polarity (opposite direction to standard DNA gel
151 electrophoresis). Next, 10 µL lysing solution in TE buffer containing 0.4 mg mL⁻¹ RNase A,
152 1 mg mL⁻¹ bromophenol blue, and 1.5 mg mL⁻¹ lysozyme (freshly prepared aqueous solution)
153 was added to each cell sample after incubation on ice. A 30 µL aliquot of the mixture was
154 loaded immediately into wells in the gel. Electrophoresis was run first at 1.5 V cm⁻¹ for 1h
155 and then at 4 V cm⁻¹ for 20h (standard DNA gel electrophoresis from negative to positive
156 polarity). The gel was stained in ethidium bromide solution (1 µg/mL) and the plasmids were
157 visualized under UV light. As markers, “*Agrobacterium fabrum*” C58^T, *Allorhizobium*
158 *ampelinum* S4^T, and *R. rhizogenes* K84 carrying replicons of known size were used.

159

160 **2.5 | Illumina library preparation and sequencing**

161

162 Libraries for Illumina sequencing were prepared using a Nextera XT DNA Library
163 Preparation Kit (Illumina, San Diego, USA) with modifications according to Baym (Baym et
164 al. 2015). Genome sequencing of strains 1078^T and 932 was performed using an Illumina
165 NextSeq 500 platform in PE75 mode. For strain rho-6.2^T, paired-end 151 bp reads previously
166 generated on an Illumina NextSeq 500 platform (Kuzmanović et al. 2019) were used for error-
167 correction of the PacBio assembly (see below).

168

169 **2.6 | PacBio library preparation and sequencing**

170

171 SMRTbell template libraries were prepared according to the instructions from Pacific
172 Biosciences (Menlo Park, CA, USA), following the Procedure & Checklist – Greater Than 10
173 kb Template Preparation document. Briefly, for preparation of 15 kb libraries, 8 µg genomic
174 DNA was sheared using g-tubes from Covaris (Woburn, MA, USA) according to the
175 manufacturer’s instructions. DNA was end-repaired and ligated overnight to hairpin adapters
176 applying components from the DNA/Polymerase Binding Kit P6 from Pacific Biosciences.
177 Reactions were carried out according to the instructions of the manufacturer. BluePippin Size-
178 Selection to greater than 4 kb was performed according to the manufacturer’s instructions
179 (Sage Science, Beverly, MA, USA). Conditions for annealing of the sequencing primers and
180 binding of polymerase to purified SMRTbell template were assessed with the Calculator in
181 RS Remote (Pacific Biosciences). Single-molecule real-time (SMRT) sequencing was carried
182 out on the PacBio RSII (PacificBiosciences) taking one 240-minutes movie on one SMRT cell
183 per sample using the P6 Chemistry.

184

185 **2.7 | Genome assembly, error-correction and annotation**

186

187 SMRT Cell data were assembled using the “RS_HGAP_Assembly.3” protocol included in
188 SMRT Portal version 2.3.0 using default parameters. Assembled replicons were circularized
189 and adjusted to *dnaA* (chromosomes) or *repA* (chromids and megaplasmids) as the first gene.

190

191 Error-correction was performed by mapping Illumina paired-end reads (2x150 bp for
192 rho-6.2^T, and 2x75 bp for strains 932 and 1078^T) onto the PacBio assemblies using BWA
193 0.6.2 (Li and Durbin 2009) with subsequent variant and consensus calling using VarScan
194 2.3.7 (Koboldt et al. 2012). Moreover, to visually inspect and manually correct the remaining
195 errors, long and short reads were mapped to the assembled sequences with minimap2 (Galaxy
196 Version 2.17+galaxy0) (Li 2018) and Bowtie2 (Galaxy Version 2.4.5+galaxy0) (Langmead
197 and Salzberg 2012), respectively. Consensus concordances of QV60 were confirmed for all
198 three genomes.

199

200 Finally, genome sequences were annotated. For all analyses reported in this study,
201 annotations produced by Prokka (Galaxy Version 1.13) (Seemann 2014) were used.
202 Annotation of particular sequences of interest and metabolic pathway prediction were
203 performed using eggNOG-mapper (version emapper-2.1.9) (Cantalapiedra et al. 2021) based
204 on eggNOG orthology data (Huerta-Cepas et al. 2018), as well as with BlastKOALA (last
205 accessed on November, 2022) (Kanehisa et al. 2016). For eggNOG-mapper, sequence
206 searches were performed using DIAMOND version 2.0.11 (Buchfink et al. 2021). Moreover,
207 to aid functional annotation of some loci, BLASTp comparison against the NCBI non-
208 redundant (nr) protein database (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>; last accessed on
209 November, 2022) (Johnson et al. 2008) was conducted. Prophage prediction was done using
210 PHASTER web server (<https://phaster.ca/>; last accessed on November, 2022) (Arndt et al.
211 2016). Insertion sequence (IS) elements were identified using ISEscan version 1.7.2.3 (Xie
212 and Tang 2017).

213

214 **2.8 | Classification, synteny and phylogeny of DNA replicons**

215

216 Bacterial replicons were classified using an approach similar to that described previously
217 (diCenzo and Finan 2017; diCenzo et al. 2019), except that a size threshold was not used in
218 defining megaplasmids or chromids (Hall et al. 2022). The largest replicon in a genome was
219 classified as the chromosome. The remaining replicons were considered putative chromids if
220 both their %GC content and dinucleotide relative abundance (DRA) distance differed by not
221 more than approximately 1% and 0.4, respectively, compared to the chromosome. DRA
222 distances were computed as described by diCenzo and Finan (2017). The replicons that failed
223 to meet one of the two criteria (%GC- and DRA distance-based) for chromid classification
224 were further analyzed by means of comparative genomic and phylogenetic analysis to
225 reconstruct their evolutionary history, as described in the following paragraphs. The
226 remaining replicons that did not meet any of above-mentioned criteria were classified as
227 megaplasmids.

228

229 Synteny between genomes of the “tumorigenes” clade was explored using circos.
First, blast bidirectional best hits (Blast-BBHS) were identified using BLASTn version
2.10.1+ (Camacho et al. 2009) and a custom Matlab script, limiting Blast-BBHS to those with
pairs where at least 50% of each protein was aligned with e-values $\leq 1e-100$. The parsed

230 output was then used to prepare a “links” file, which was provided to circos 0.69-8
231 (Krzywinski et al. 2009). The scripts are available at https://github.com/diCenzo-Lab/007_2023_Rhizobium_rhododendri. Furthermore, BRIG (BLAST Ring Image Generator)
232 program version 0.95 (Alikhan et al. 2011) was used for visual representation of replicons of
233 strain rho-6.2^T (reference sequences) with the orthologous replicons of related strains (query
234 sequences). The BRIG analysis was done by using the BLASTn option.
235

236 To assess the evolutionary relationships among the extrachromosomal replicons of the
237 “tumorigenes” clade, phylogenetic analysis based on the RepA and RepB protein sequences
238 was conducted. Protein sequence alignments for each set of orthologs were generated using
239 MAFFT version 7 (Katoh et al. 2017). Maximum likelihood (ML) phylogenies based on
240 individual RepA and RepB sequences and their concatenation were inferred using IQ-TREE
241 1.6.12 (Nguyen et al. 2015) available through the IQ-TREE web server
242 (<http://iqtree.cibiv.univie.ac.at/>) (Trifinopoulos et al. 2016). Model selection was conducted
243 using IQ-TREE ModelFinder (Kalyaanamoorthy et al. 2017) based on Bayesian Information
244 Criterion (BIC) (Schwarz 1978). Branch supports were assessed by ultrafast bootstrap
245 analysis (UFBoot) (Hoang et al. 2017) and the SH-aLRT test (Guindon et al. 2010) using
246 1000 replicates. The trees were visualized using FigTree, version 1.4.4
247 (<https://github.com/rambaut/figtree>) and edited using Inkscape version 1.2.1
248 (<https://inkscape.org/>).

249 To examine potential relationships between the extrachromosomal replicons of the
250 “tumorigenes” clade and other members of the family *Rhizobiaceae*, a previously described
251 pipeline was adapted (diCenzo et al. 2019) and is available at https://github.com/diCenzo-Lab/007_2023_Rhizobium_rhododendri. Shortly, putative RepA proteins were identified in
252 each of the *Rhizobiaceae* proteomes using the hmmsearch function of HMMER version 3.3
253 (Eddy 2009) and the Pfam ParA hidden Markov model (HMM). All hits were then searched
254 against the complete Pfam version 34.0 and TIGERFAM version 15.0 databases (Finn et al.
255 2016; Haft et al. 2013), and proteins were classified as RepA if the top was either the ParA
256 (Pfam) or TIGR03453 (TIGRFAM) HMM. All RepA proteins were aligned with MAFFT
257 version 7.471 (Katoh and Standley 2013) with the ‘localpair’ option, and then trimmed with
258 trimAl version 1.4.rev22 (Capella-Gutiérrez et al. 2009) with the ‘automated1’ option. A
259 maximum likelihood phylogeny was constructed using RAxML version 8.2.12 (Stamatakis
260 2014) with the LG amino acid substitution model with empirical base frequencies and the
261 final tree represents the bootstrap best tree following 500 bootstrap replicates. In addition,
262 RepA proteins were clustered using CD-HIT version 4.8.1 (Li and Godzik 2006) with a 90%
263 identity threshold.
264

265 2.9 | Genome-based phylogenetic analyses 266

268 The dataset comprised of 119 genomes, including 116 *Rhizobiaceae* strains and three
269 *Mesorhizobium* spp. that were used as an outgroup (Table A1). In particular, finished
270 genomes of *Rhizobium* strain rho-6.2^T and *R. tumorigenes* strains 1078^T and 932 obtained in
271 this study were used. We also included the previously-reported draft genome sequences of
272 two additional *Rhizobium* strains associated with rhododendron crown gall, rho-1.1 and rho-
273 13.1 (Kuzmanović et al. 2019). Genome sequences of related *Rhizobium* strains, as well as
274 representatives of various *Rhizobiaceae* genera, were retrieved from GenBank. The genomes

275 closely related to the “tumorigenes” clade representatives were identified by NCBI BLASTn
276 (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>) searches against the nucleotide collection (nr/nt) and
277 whole-genome shotgun contigs (wgs) databases using 16S rRNA and *recA* housekeeping gene
278 sequences as a query, with default parameters (last accessed on November, 2022).

279 Core-genome- and pan-genome-based phylogenies were inferred using
280 GET_HOMOLOGUES Version 11042019 (Contreras-Moreira and Vinuesa 2013) and
281 GET_PHYLOMARKERS Version 2.2.8_18Nov2018 (Vinuesa et al. 2018) as described
282 before (Kuzmanović et al. 2022b). For core-genome-based phylogenetic analyses, the latter
283 pipeline was run using both DNA and protein sequences, thus generating core-genome and
284 core-proteome phylogenies, respectively. The protein alignment generated by the cpAAI
285 pipeline (see below) was also used as input for phylogenetic analysis. A ML phylogeny was
286 inferred under the best-fitting substitution model by employing IQ-TREE Version 2.1.3
287 (Nguyen et al. 2015) and ModelFinder (integrated in IQ-TREE) (Kalyaanamoorthy et al.
288 2017), following the same approach as implemented in the GET_PHYLOMARKERS
289 package.

290

291 **2.10 | Genome and proteome relatedness indices**

292

293 For calculation of genome and proteome relatedness indices, we used the same dataset as for
294 phylogenetic analysis (see above; Table A1). For delineation of species, we computed overall
295 genome relatedness indices (OGRIs), in particular, average nucleotide identity (ANI) (Goris
296 et al. 2007; Richter and Rossello-Mora 2009) and digital DNA-DNA hybridization (dDDH)
297 (Meier-Kolthoff et al. 2013). The ANI calculations were performed using PyANI Version
298 0.2.11, with scripts employing BLAST+ (ANIb) to align the input sequences
299 (<https://github.com/widdowquinn/pyani>) (Pritchard et al. 2016), OrthoANIu Version 1.2
300 (calculates orthologous ANI using USEARCH algorithm) (Yoon et al. 2017), and FastANI
301 Version 1.2 (estimates ANI using Mashmap as its MinHash-based alignment-free sequence
302 mapping engine) (Jain et al. 2018). The dDDH values were computed by the Genome-to-
303 Genome Distance Calculator (GGDC 3.0) implemented in the Type (Strain) Genome Server
304 (TYGS) (Meier-Kolthoff et al. 2021; Meier-Kolthoff and Göker 2019). The dDDH values
305 calculated under the formula 2 (GBDP formula d_4 : identities/HSP length) were considered
306 (Meier-Kolthoff et al. 2013).

307 For delineation of genera, we computed whole-proteome average amino-acid identity
308 (wpAAI; more commonly known as AAI) (Goris et al. 2007; Konstantinidis et al. 2017;
309 Konstantinidis and Tiedje 2005) and core-proteome average amino-acid identity (cpAAI)
310 (Kuzmanović et al. 2022a). The wpAAI values were computed using the CompareM software
311 (github.com/dparks1134/CompareM) using the aai_wf command with default parameters. For
312 calculation of cpAAI, the cpAAI_Rhizobiaceae pipeline
313 (github.com/flass/cpAAI_Rhizobiaceae) was employed to generate a concatenated protein
314 alignment of a reference set of 170 marker proteins from 97 reference strains, using the pre-
315 aligned reference protein files (option –A) as described in Kuzmanović et al. (Kuzmanović et
316 al. 2022a). Nucleotide FASTA files of all CDSs predicted by Prokka were used as input files.
317 The cpAAI values were computed from the resulting alignment using a custom R script (see
318 github.com/flass/cpAAI_Rhizobiaceae) that relied on the “dist.aa” function from the “ape”
319 package (Paradis and Schliep 2018). Additionally, we calculated cpAAI values using the core

320 protein markers inferred from the 119 strains included in the present study, which were
321 identified and selected using the GET_HOMOLOGUES and GET_PHYLOMARKERS tools,
322 respectively (see above).

323 Heatmaps representing genome (OGRIs) and proteome (cpAAI and wpAAI)
324 relatedness values were generated and plotted onto the reference core-proteome phylogenetic
325 tree by the “phylo.heatmap” function in the R package phytools (Revell 2012).

326

327 **2.11 | Identification of species-specific genes**

328

329 In order to identify genes specific for each of the two species comprising the “tumorigenes”
330 clade, the pan-genome of the “tumorigenes” clade was explored. The dataset included two *R.*
331 *tumorigenes* strains (1078^T and 932) and 12 strains comprising the new species *Rhizobium*
332 *rhododendri* (see below) (Table A1). The analysis was performed using the
333 GET_HOMOLOGUES software and its auxiliary scripts as described before (Kuzmanović et
334 al. 2020).

335 To determine if the function of the species-specific gene or gene cluster of interest is
336 compensated by isoenzymes or by a divergent homologous gene(s) in the other species, we
337 performed BLASTp (Johnson et al. 2008) comparisons, and examined annotations of pan-
338 genome genes of species comprising the “tumorigenes” clade that were generated by
339 GhostKOALA (Kanehisa et al. 2016) and eggNOG-mapper (Cantalapiedra et al. 2021).

340

341 **3 | RESULTS**

342

343 **3.1 | Genome sequences and rRNA operon diversity**

344

345 The finished genome sequences of three representative members of the *Rhizobium* clade
346 “tumorigenes” (rho-6.2^T, 1078^T and 932) were generated using a combination of long-
347 (PacBio) and short-read (Illumina) sequencing technologies (see Table A2 for summary
348 statistics of the generated sequencing data). Genome assembly and polishing resulted in
349 gapless, circular replicons for all sequenced strains, with high average sequencing depths
350 (>200×, >140× for long read data) (Table 2). The genome of strain rho-6.2^T was composed of
351 four replicons, while six replicons were identified in each of the strains 1078^T and 932. The
352 presence of smaller replicons (approximately <1.5 Mb) was confirmed by a modified
353 Eckhardt agarose gel electrophoresis technique, although some of the replicons of similar size
354 could not be clearly differentiated (Figure A1). The total genome size of the three strains was
355 similar, ranging from 5.96 to 5.98 Mb (Table 1). The GC content was approximately 60% for
356 all strains (Table 1).

357 For all three strains, four rRNA operons (5S, 16S, and 23S rRNA) were identified on
358 the largest replicon. Unlike strains rho-6.2^T and 1078^T, we did not observe intragenomic
359 heterogeneity between multiple rRNA operons in strain 932. In strain rho-6.2^T, one of the
360 variants of the rRNA operon differed by only one SNP in the 5S rRNA gene from the
361 remaining three copies. For strain 1078^T, we identified three different variants of the rRNA
362 operons. The first variant encompassed two rRNA copies and differed by one SNP from the
363 second variant, whereas several INDELs and SNPs were identified when compared to the
364 third variant. The sequence variations were located in the 23S rRNA gene and 16S-23S ITS

365 region. The 16S rRNA gene sequences were identical across both *R. tumorigenes* strains
366 (1078^T and 932), and differed by 10 SNPs from those of strain rho-6.2^T.

367

368 | **3.2 | Genome organization**

369

370 Whole-genome sequencing revealed that all strains in the “tumorigenes” clade contain
371 multipartite genomes (Figure 1; Table 2). The largest replicon in all sequenced genomes,
372 which also carried all four copies of the rRNA operon, was classified as the chromosome.
373 Chromosomes were highly conserved across all strains of the “tumorigenes” clade (Figure 2;
374 Figure A2a).

375

376 In accordance with our previous work demonstrating the pathogenicity of the
377 “tumorigenes” clade (Kuzmanović et al. 2019; Kuzmanović et al. 2018), all three strains
378 harbored a Ti megaplasmid. In addition, each of *R. tumorigenes* strains 1078^T and 932 carried
379 an additional megaplasmid (756-835 kb) and three putative chromids (302 to 433 kb) (Tables
380 2 and A3), whose gene contents were highly conserved between strains 1078^T and 932
381 (Figure 2a). Interestingly, we also detected evidence of DNA exchange between replicons. In
382 particular, a 41-gene cluster of putative chromid 1 of strain 1078^T (orthologous to putative
383 chromid 1 of strain 932) was found on putative chromid 2 of strain 932 (orthologous to
384 putative chromid 3 of strain 1078^T). Likewise, a 25-gene cluster of putative chromid 3 of
385 strain 1078 was found on putative chromid 1 of strain 932 (Figure 2a). Based on the location
386 of these gene clusters in the more distantly related strain rho-6.2^T (Figure 2b), the observed
387 translocations likely occurred in the lineage leading to strain 1078^T following divergence from
388 strain 932.

389

390 Unlike *R. tumorigenes* strains 1078^T and 932 that carried five extrachromosomal
391 replicons, strain rho-6.2^T carried only three: a Ti plasmid and two putative chromids.
392 Surprisingly, synteny analysis suggested that putative chromid 1 of rho-6.2^T resulted from the
393 cointegration of an ancestral megaplasmid (orthologous to pRt1078 of strain 1078^T) and two
394 putative chromids (orthologous to putative chromids 1 and 3 of 1078^T) (Figure 2b). Consistent
395 with the proposed cointegration scenario, the cointegrand of strain rho-6.2^T (putative chromid
396 1) contains three *repABC* cassettes, which are orthologous to the *repABC* cassettes of
397 pRt1078 and putative chromids 1 and 3 of strain 1078^T (Figure A3). However, only one *repC*
398 copy on the cointegrand is complete, with the other two copies appearing to be truncated and
399 thus non-functional. The orthologous cointegrand replicon was also carried by other *R.*
400 *rhododendri* strains, showing a high degree of synteny (Figure A2b).

401

402 Putative chromid 2 of rho-6.2^T displayed high conservation with putative chromid 2 of
403 strain 1078^T (Figure A2c), whereas poor conservation was observed when comparing the Ti
404 plasmids of these strains (Figure 2b). Orthologous replicons of putative chromid 2 are also
405 present in other *R. rhododendri* strains, with all exhibiting a high degree of synteny (Figure
406 A2c). On the other hand, the RepA proteins of each of the three *R. tumorigenes* chromids
407 formed their own cluster in the RepA phylogeny (Figure A4) and they shared less than 92%
408 identity with all other RepA protein from the family *Rhizobiaceae*. Comparison of the *R.*
409 *tumorigenes* chromids with the most closely related replicons from other *Rhizobiaceae*
410 species using D-Geneies (Cabanettes and Klopp 2018) identified no obvious stretches of
411 synteny. Overall, these results suggest that the three chromids of *R. tumorigenes* are specific
412 to the “tumorigenes” clade.

410 We could not identify genes associated with mobilization or conjugation on the
411 chromids of strains 1078^T and 932. On the other hand, megaplasmids pRt932 and pRt1078
412 carried gene clusters involved in conjugative transfer, including genes coding for conjugative
413 relaxase (*traA/virD2*), coupling protein (*traG/virD4*), and T4SS proteins (VirB/Trb).
414 Likewise, the large cointegarnt of rho-6.2^T carries genes for conjugation. Interestingly,
415 however, these genes were divergent to those carried on pRt932 and pRt1078. For instance,
416 the VirB4 protein sequences of pRt1078 and the cointegarnt of rho-6.2's shared only 40.8%
417 identity.

418

419 3.3 | Phylogeny of the clade “tumorigenes”

420

421 The core genome of the 119 strains included in the analysis was identified using
422 GET_HOMOLOGUES and comprised 364 homologous gene clusters. Phylogeny was
423 inferred from 253 DNA and 191 protein markers that were selected using the
424 GET_PHYLOMARKERS software. Moreover, we also inferred phylogeny from the protein
425 alignment outputted by the cpAAI pipeline, which represented the concatenated sequence of a
426 reference set of 169 protein markers. Although the original dataset included 170 protein
427 markers, one marker gene was missing in *Onobrychidicola muellerharveyae* TH2^T, and we
428 therefore excluded this marker from the analysis.

429

430 All the resulting phylogenies were highly congruent, showing almost identical
431 phylogenetic relationships between *Rhizobiaceae* genera and major *Rhizobiaceae* clades (data
432 not shown). The only difference was the position of the genus *Xaviernesmea*, which was an
433 outgroup of the clade containing the genera *Ensifer*, *Pararhizobium*, and *Sinorhizobium* in the
434 DNA-based phylogenetic tree, while it was grouped with *Pararhizobium* spp. in the protein-
435 based phylogenetic trees. Additionally, the phylogenetic position of several taxa within some
436 sub-clades differed slightly between trees. Regardless, the phylogenetic positions of the taxa
437 that are the subject of this work were identical across trees, and we therefore show only the
438 core-proteome phylogenetic tree based on 191 protein markers (Figures 3 and A5). *R.*
439 *tumorigenes* (1078^T and 932) and strains isolated from rhododendron in Germany (rho-6.2^T,
440 rho-1.1, and rho-13.1) clustered within two sister sub-clades in the clade we previously
441 defined as “tumorigenes” (Kuzmanović et al. 2019) (Figures 3 and A5). The sub-clade
442 containing the three rhododendron strains also included nine other *Rhizobium* strains whose
443 genomes were available in GenBank. The rhododendron clade could be further divided into
444 two clusters. The first cluster comprised our three rhododendron strains and strain L51/94
445 isolated from blueberry in Oregon (USA), while the second clade consisted of eight
446 *Rhizobium* strains isolated from Himalayan blackberry in Oregon (Weisberg et al. 2022). The
447 “tumorigenes” clade falls within the so-called core *Rhizobium* species complex, although it
448 was distantly related to other *Rhizobium* species. *R. tubonense* was the closest relative of the
449 “tumorigenes” representatives, while other *Rhizobium* species grouped within the “tropici-
450 rhizogenes” clade and the more distantly related “leguminosarum-etli” clade (Figures 3 and
451 A5).

452

453 A ML pan-genome phylogeny was estimated from a presence/absence matrix of
454 71,538 orthologous gene clusters. All *Rhizobiaceae* genera and major clades were resolved on
455 the resulting tree (Figures 4 and A6), although their phylogenetic relationships differed from
456 that determined from the core-proteome phylogeny (Figures 3 and A5). Nevertheless, the pan-

455 genome phylogeny also contained the same two sub-clades within the “tumorigenes” clade:
456 one comprising *R. tumorigenes*, and another with the rhododendron strains and those whose
457 genomes were retrieved from the GenBank.

458

459 3.4 | Species delineation

460

461 For species delineation, we relied on ANI and dDDH computations. The threshold for species
462 delineation was set at ~95-96% for ANI (Richter and Rossello-Mora 2009), consistent with
463 previous recommendations (Goris et al. 2007). As for the conventional version of DDH, the
464 generally accepted species boundary for dDDH values is 70% (Meier-Kolthoff et al. 2013;
465 Stackebrandt and Goebel 1994). In this study, delineations of strains achieved by ANIb,
466 OrthoANIu, FastANI, and dDDH were highly congruent. Several differences observed are
467 discussed below. In any case, the OGRIs were consistent for the strains of the “tumorigenes”
468 clade, which are the primary subject of this study (Table A4, Figures A7 and A8). The sub-
469 clade containing *Rhizobium* strains isolated from rhododendron (strains rho-6.2^T, rho-1.1 and
470 rho-13.1) (Kuzmanović et al. 2019), blueberry (L51/94), and Himalayan blackberry (B21/90,
471 B209b/85, B230/85, E27B/91, K1/93, K15/93, L51/94, L58/93 and L245/93) (Weisberg et al.
472 2022), and the sub-clade comprising species *R. tumorigenes* (1078^T and 932) (Kuzmanović et
473 al. 2018) were clearly separated (Figures A7 and A8). When comparing members within the
474 former sub-clade, they showed OGRIs >96.8% for ANIb and >75.1% for dDDH, indicating
475 that they belong to the single species. In contrast, when compared to each other, the two sub-
476 clades showed values <94.4% for ANIb and <57.3% for dDDH (Table A4). These results
477 suggest that the two “tumorigenes” sub-clades represent distinct species, and we propose the
478 name *Rhizobium rhododendri* (see the protologue below) for the sub-clade containing the
479 strains originating from rhododendron, blueberry and Himalayan blackberry. During the
480 writing of this manuscript, genomes of eight additional strains (VS19-DR96, VS19-DR104.1,
481 VS19-DR104.2, VS19-DR121, VS19-DR129.2, VS19-DR181, VS19-DR183, and VS19-
482 DRK62.2) became available in GenBank (BioProject Accession No. PRJNA762915) that also
483 belong to the species *R. rhododendri*, based on ANIb comparisons (>99% ANI with rho-6.2^T).
484 These strains were isolated from cane galls of blueberry in Oregon (USA) in 2019. However,
485 as these genomes were unpublished, they were not included in further analyses.

486

487 Phenotypic characteristics of strains *R. rhododendri* rho-6.2^T and *R. tumorigenes*
488 1078^T are listed in Table A5. As expected, these two strains showed almost identical
489 phenotypic characteristics, and we were unable to identify clear differential characteristics.
490 For the strain rho-6.2^T, phenotypic characteristics are summarized in the protologue for the
new species *R. rhododendri* (see below).

491

492 The results of the fatty acid analysis are summarized in Table A6. Similar to the other
493 phenotypic characteristics that were measured, strains *R. rhododendri* rho-6.2^T and *R.*
494 *tumorigenes* 1078^T exhibited highly similar FAME profiles. The only notable difference was
495 in C_{18:1} w7c 11-methyl, which was ~2.5-fold more abundant in rho-6.2^T than in 1078^T.
496 Overall, the major fatty acids (>5%) identified in each of these strains are C_{18:1} w7c (~50%),
497 C_{19:0} cyclo w7c (~18-22%), and C_{16:0} (~5-7%).

498

499 Moreover, our results suggested that *Rhizobium anhuiense* CCBAU 23252^T and
500 *Rhizobium sophoriradicis* CCBAU 03470^T represent the same species (Table A4, Figures A7

499 and A8). Likewise, the following pairs of strains represent the same species based on our
500 results (Table A4, Figures A7 and A8): *Rhizobium indigoferae* CCBAU 71042^T and
501 *Rhizobium leguminosarum* USDA 2370^T, *Rhizobium aethiopicum* HBR26^T and *Rhizobium*
502 *aegyptiacum* 950, and *Rhizobium pisi* DSM 30132^T and *Rhizobium yanglingense* LMG
503 19592^T. Additionally, ANIb and orthoANIu comparisons suggested that *Rhizobium*
504 *favelukesii* LPU83^T and *Rhizobium tibeticum* CCBAU 85039^T also belong to the same
505 species, although pairwise fastANI and dDDH values were at or slightly below the threshold
506 for species delineation, respectively. For strains *Rhizobium dioscoreae* S-93^T and *Rhizobium*
507 sp. AB2/73, and for *Rhizobium changzhiense* WYCCWR 11279^T and *Rhizobium sophorae*
508 CCBAU 03386^T, ANI values fell within the threshold of ~95-96%, while the dDDH values
509 were slightly below the threshold of 70% (Table A4, Figures A7 and A8).

510 Furthermore, computed OGRIs suggested the existence of two new *Rhizobium* species
511 within the clade “tropici-rhizogenes”. The first species comprised strains AC27/96 and
512 Y79/96 isolated from Japanese pieris and rhododendron, respectively, and that were not
513 designated as tumor inducing (Weisberg et al. 2020). The second potential new species
514 included strains 17-2069-2b and 17-2069-2c isolated from blackberry, which were reported to
515 carry Ti plasmids (Weisberg et al. 2022).

516

517 3.5 | Genus demarcation

518

519 Differentiation of *Rhizobiaceae* strains at the genus level was conducted using cpAAI and
520 wpAAI indices (Table A7). Primarily, we relied on cpAAI calculated on the marker proteins
521 selected in our former work (Kuzmanović et al. 2022a). As noted above, one marker was
522 missing in *O. muellerharveyae* TH2^T, and thus the comparison was based on 169 marker
523 proteins. We used a cpAAI threshold of ~86%, combined with the core-proteome phylogeny
524 shown in Figures 3 and A5, in considering genus delineation. As expected, genus
525 demarcations (Figure 5) were generally consistent with our previous study (Kuzmanović et al.
526 2022a). However, the present dataset included a larger number of strains belonging to the core
527 *Rhizobium* superclade compared to our previous analysis. Consistent with the core-proteome
528 phylogeny, *Rhizobium* clades “tropici-rhizogenes”, “leguminosarum-etli” and “tumorigenes”
529 were differentiated using a cpAAI threshold of 86%. Accordingly, these clades represent
530 candidates for new *Rhizobiaceae* genera. However, delineation of *R. tubonense* was less clear.
531 *R. tubonense* exhibited cpAAI values >86% with strains from both “tumorigenes” (86.79-
532 86.93%) and “tropici-rhizogenes” (86.81-87.51%) clades, although this taxon was
533 phylogenetically more closely related to the former clade. The wpAAI-based approach
534 suggested the same unclear delineation of *R. tubonense* (Figure A9). On the other hand, based
535 on cpAAI computed from 191 marker proteins selected in this study, *R. tubonense* exhibited
536 cpAAI values slightly below 86% with “tumorigenes” and some “tropici-rhizogenes” clade
537 members (Figure A10). For other *Rhizobiaceae* genera, all three methods (two cpAAI and
538 wpAAI) were highly congruent, with a few differences observed within the genera *Hoeflea*,
539 *Martelella*, and *Pararhizobium* (Figures 5, A9 and A10).

540

541 3.6 | Species-specific genes

542

543 3.6.1 | *R. rhododendri*

544

545 Based on pan-genome analysis, 272 genes specific to *R. rhododendri* (*Rr*-specific) were
546 identified. These genes were present in all 12 strains of *R. rhododendri* and absent in both *R.*
547 *tumorigenes* strains. More than half (138) of these genes were located on putative chromid 1.
548 Of the remaining genes, 108 were located on the chromosome, 27 on putative chromid 2, and
549 1 on pTi6.2 (Figure 1a). Most of the *Rr*-specific genes were annotated as hypothetical proteins
550 or their function could not be clearly determined (Table A8a). Among those that were
551 functionally annotated, based on COG categories, the most represented functional categories
552 were K (Transcription), G (Carbohydrate metabolism and transport) and M (Cell
553 wall/membrane/envelop biogenesis), comprising 32, 31, and 15 genes, respectively (Table
554 A8a). Among the *Rr*-specific genes or gene clusters with predicted biological functions was
555 the gene cluster Rr62_02696-Rr62_02698, predicted to be involved in production of cellulose
556 (Table A8a); however, homologous, but divergent gene clusters with the same predicted
557 function were also present in both *R. tumorigenes* strains (At1078_03513-At1078_03517 in
558 strain 1078^T), and in another copy also in strain rho-6.2^T (Rr62_03520-Rr62_03524). All
559 putative gene clusters putatively associated with cellulose synthesis were located on
560 chromosomes. Furthermore, the *Rr*-specific gene clusters Rr62_04000-Rr62_04012 and
561 Rr62_05395-Rr62_05405 are annotated as being involved in the processing of various simple
562 sugars (D-psicose/D-tagatose/L-ribulose) and sugar alcohols (galactitol, glucitol/sorbitol),
563 respectively (Table A8a).

564

565 3.6.2 | *R. tumorigenes*

566

567 Exploration of the pan-genome of the “*tumorigenes*” clade resulted in 322 genes that are
568 specific to *R. tumorigenes* (*Rt*-specific), meaning they are present in both *R. tumorigenes*
569 strains and absent from all *R. rhododendri* strains. In strain 1078^T, one of these 322 genes was
570 present in three copies, while there were two copies of five other genes. In strain 932, nine
571 genes were present in two copies. Of the 326 genes specific for *R. tumorigenes* strain 1078^T,
572 including genes present in multiple copies, 159 were located on pRt1078, 58 on the
573 chromosome, 57 on putative chromid 1, 31 on pTi1078, 3 on putative chromid 2, and 21 on
574 putative chromid 3 (Figure 1b). Of the 331 genes in strain 932, 164 are located on pRt932, 59
575 on the chromosome, 54 on putative chromid 1, 30 on pTi1078, 21 on putative chromid 2, and
576 3 on putative chromid 3 (Figure 1c). Differences in the number of *Rt*-specific genes on each
577 replicon may be explained by inter-replicon rearrangements as described above (see
578 subsection “Genome organization”). As for the *Rr*-specific genes, the function of the majority
579 of the *Rt*-specific genes could not be precisely determined (Table A8b). Based on COG
580 classification, annotated *Rt*-specific genes of strain 1078^T were primarily annotated as
581 belonging to the functional categories P (Inorganic ion transport and metabolism; 25 genes), L
582 (Replication and repair; 24 genes), K (Transcription; 23 genes) and E (Amino Acid
583 metabolism and transport; 23 genes) (Table A8b).

584

585 Most interestingly, *R. tumorigenes* strains carried a gene cluster (*imp*; At1078_04796-
586 At1078_04811) associated with the type VI secretion system (T6SS). This gene cluster was
587 encoded on putative chromid 1 of strains 1078^T and 932 (Table A8b). Although they were not
588 identified as species-specific by GET_HOMOLOGUES, *R. tumorigenes* strains carried
multiple copies of *vgrG* and single copies of *paar* genes, which are also associated with T6SS

589 machinery (data not shown). *R. tumorigenes* strains also carried a gene cluster
590 (At1078_04243-At1078_04247) annotated as being involved in the synthesis of pseudaminic
591 acid.

592 On putative chromid 3 of strain 1078^T, or on putative chromid 2 of strain 932, a
593 putative gene encoding polygalacturonase (glycoside hydrolase family 28) was identified
594 (Table A8b). Polygalacturonase protein sequence of *R. tumorigenes* 1078^T shared only 20.7%
595 amino acid identity (69% of query coverage) with polygalacturonase protein of *A. ampelinum*
596 S4^T (Avi_1489), which was previously described (Herlache et al. 1997). On the other hand,
597 orthologous protein sequences showing relatively high amino acid identity (>74%) with the
598 polygalacturonase protein sequence of strain 1078^T were identified in various members of
599 *Agrobacterium* clade “rubi”, e.g. in *Agrobacterium vaccinii* (84.12% amino acid identity)
600 (Puławska et al. 2022).

601

602 4 | DISCUSSION

603

604 4.1 | Novel insights into the taxonomic diversity of agrobacteria

605

606 In this study, we conducted polyphasic characterization of “tumorigenes” clade
607 representatives and described a novel species *R. rhododendri* (see below the protologue). The
608 species *R. rhododendri* comprised tumorigenic strains isolated from aerial tumors on
609 rhododendron (Kuzmanović et al. 2019), but also additional strains originating from blueberry
610 and Himalayan blackberry in Oregon (USA) (Weisberg et al. 2022) whose genome sequences
611 were retrieved from GenBank. *R. rhododendri* represents an additional *Rhizobium* species
612 associated with crown/cane gall disease, which further expands our understanding of
613 taxonomic diversity of agrobacteria. By searching the NCBI GenBank (nr/nt and wgs
614 databases), we could not identify additional strains belonging to “tumorigenes” clade.
615 Nevertheless, we assume that members of this clade are distributed more widely and their
616 genetic diversity still remains to be explored.

617 Apart from *R. rhizogenes* and the “tumorigenes” clade, agrobacteria also occur within
618 other *Rhizobium* clades. In particular, “tropici-rhizogenes” clade comprises at least two
619 additional species that include tumorigenic strains. The first one corresponds to *Rhizobium* sp.
620 AB2/73 which was isolated from *Lippia canescens* in USA (Anderson and Moore 1979).
621 Recently, Hooykaas and Hooykaas (2021) suggested that this strain belongs to a novel
622 *Rhizobium* species. However, our results suggested that this strain most likely belongs to
623 *Rhizobium dioscoreae*, although further taxonomic analysis would help resolve this issue. The
624 second putative species includes Ti plasmid carrying strains 17-2069-2b and 17-2069-2c
625 isolated from blackberry (Weisberg et al. 2022). The closest relative of this potentially novel
626 species is *Rhizobium hainanense* (Figure A5, Table A4).

627

628 4.2 | Genome architecture of the “tumorigenes” clade

629

630 The large number of extrachromosomal elements in members of the “tumorigenes” clade is
631 not surprising as the genomes of nearly all members of the family *Rhizobiaceae* consist of a
632 multipartite architecture (Geddes et al. 2020), with *R. leguminosarum* Rlv3841 containing six
633 extrachromosomal replicons between 151 and 870 kb (Young et al. 2006). Non-chromosomal

634 replicons vary in size and essentiality. While classification systems exist to classify replicons
635 into distinct classes (i.e., plasmid, megaplasmid, chromid), it has been argued that these
636 groups of replicons belong to a spectrum with blurred boundaries (diCenzo and Finan 2017;
637 Hall et al. 2022). We agree with this perspective; yet, we also consider that classification of
638 replicons into distinct groups can nevertheless be useful, in some circumstances, to quickly
639 convey general properties of a replicon of interest.

640 The genomes of both *R. tumorigenes* strains are split across six replicons: one
641 chromosome, three putative chromids, and two megaplasmids that includes a Ti plasmid.
642 Phylogenetic analysis indicated that the five extrachromosomal replicons of *R. tumorigenes*
643 1078^T had a corresponding replicon in strain 932, as well as corresponding replicons or
644 regions in *R. rhododendri* rho-6.2^T. In contrast, the related organism *R. tubonense* CCBAU
645 85046^T appears to have two extrachromosomal replicons based on our RepA analysis (Figure
646 S4); however, neither appeared to be orthologous to any of the extrachromosomal replicons of
647 *R. tumorigenes* 1078^T. We thus conclude that the five extrachromosomal replicons of *R.*
648 *tumorigenes* were acquired by an ancestor after the split from *R. tubonense* but prior to the
649 split from *R. rhododendri*.

650 Of the five extrachromosomal replicons of *R. tumorigenes*, three were classified as
651 putative chromids according to the sequence-based classification scheme of diCenzo and
652 Finan (diCenzo and Finan 2017). Chromids generally display higher conservation of gene
653 content than to megaplasmids (diCenzo and Finan 2017). Indeed, compared to the
654 megaplasmids, the putative chromids of *R. tumorigenes* displayed higher conservation both
655 between *R. tumorigenes* strains and with the corresponding replicons or regions of *R.*
656 *rhododendri* rho-6.2. In addition, as is common for chromids (diCenzo and Finan 2017), the
657 putative chromids appeared to lack conjugation machinery unlike the megaplasmids. Thus,
658 several lines of evidence are consistent with the three putative chromids of *R. tumorigenes*
659 representing true chromids. However, as the defining feature of chromids is that they are
660 essential for cell viability (diCenzo and Finan 2017; Harrison et al. 2010), experimental
661 follow-up is required to definitely classify these replicons as chromids.

662 *R. rhododendri* rho-6.2^T contains two fewer extrachromosomal replicons than do *R.*
663 *tumorigenes* strains 1078^T and 932. Synteny and phylogenetic analyses indicated that this is
664 due to a co-integration of the megaplasmid and two putative chromids in the *R. rhododendri*
665 lineage following divergence from *R. tumorigenes*. Interestingly, two of the three copies of
666 the *repC* gene, encoding plasmid replication proteins, are truncated. The loss of the extra *repC*
667 copies may have helped to stabilize the cointegrand. Although the cointegrand did not fully
668 meet our definition of a chromid (while it exhibited a chromid-like DRA distance from the
669 chromosome of 0.29, the GC content difference compared to the chromosome was >1%), we
670 classified this replicon as a putative chromid as parts of the cointegrand are derived from
671 chromid-like replicons. Although not feasible to test experimentally, it would be interesting to
672 observe whether the megaplasmid portion of the cointegrand evolves chromid-like properties
673 over time.

674

675 4.3 | Diversification of “tumorigenes” clade

676

677 In this study, we identified genes specific for each of the two species the *R. rhododendri* and
678 *R. tumorigenes* by examining the pan-genome of the “tumorigenes” clade. Our objective was

679 to identify potentially adaptive features among species-specific genes, in order to gain a better
680 understanding of the ecological differentiation of these species. We recognize, however, that
681 the availability of genomes for only two *R. tumorigenes* strains is a limitation of this analysis,
682 and that the number of species-specific genes will likely decrease as more genomes become
683 available. Nevertheless, based on the available genomes, the majority of species-specific
684 genes are encoded on putative chromids and megaplasmids, which is in line with previous
685 studies analyzing the *A. tumefaciens* species complex (Lassalle et al. 2017) and *All. vitis*
686 species complex (Kuzmanović et al. 2022b) strains. Although most of the species-specific
687 genes are annotated as encoding hypothetical or poorly described proteins, we could
688 determine putative functions for several genes and gene clusters.

689 Both *R. rhododendri* and *R. tumorigenes* strains carried a putative gene cluster
690 involved in production of cellulose; however, the former species carried an additional cluster
691 with the same putative function. Both clusters were homologous, but divergent in sequence.
692 *Agrobacterium* and *Rhizobium* spp. were reported to synthesize cellulose (reviewed in
693 (Augimeri et al. 2015; Ross et al. 1991). In *Agrobacterium* spp., production of the
694 exopolysaccharide cellulose is associated with attachment of bacteria to plant surfaces
695 (Matthysse et al. 1981). Although cellulose synthesis was not required for virulence of
696 *Agrobacterium*, cellulose mutants could not firmly attach to host plant, which reduced tumor
697 formation (Matthysse 1983). Similarly, in *R. leguminosarum*, cellulose production is involved
698 in rhizobial attachment to plant roots (Smit et al. 1987). As *R. rhododendri* carries two
699 distinct clusters for cellulose synthesis, if both of them are functional, this species might show
700 enhanced ability to colonize different plant hosts.

701 Unlike *R. tumorigenes*, *R. rhododendri* carried putative genes associated with the
702 uptake of simple sugars, as well as sugar alcohols, such galactitol and sorbitol. These two
703 sugar alcohols, in addition to mannitol, are widely distributed in angiosperms where they may
704 be involved in response to abiotic and biotic stresses (Moing 2000). The potential ability of *R.*
705 *rhododendri* to process these compounds could contribute to its environmental adaptation and
706 association with higher plants.

707 On putative chromid 1, *R. tumorigenes* carried a putative gene cluster associated with
708 T6SS. Homologues genes were not identified in any of the *R. rhododendri* strains. The T6SS
709 is commonly found in plant-associated bacteria and can have diverse genetic architecture
710 (Bernal et al. 2018). A putative gene cluster encoding T6SS in *R. tumorigenes* had identical or
711 similar organization as in other *Rhizobiaceae* strains (Wu et al. 2021). In *A. fabrum*, T6SS is
712 involved in interbacterial competition (Ma et al. 2014; Wu et al. 2019). Accordingly, a T6SS
713 in *R. tumorigenes* might contribute to its competitiveness in plant tissue or rhizosphere.

714 Furthermore, *R. tumorigenes* strains carried a putative gene cluster implicated in the
715 synthesis of pseudaminic acid. Pseudaminic acid is a microbially produced sialic acid-like
716 sugar involved in glycosylation of flagellin, which plays an essential role in flagella assembly
717 of human pathogenic bacteria such as *Campylobacter jejuni* and *Helicobacter pylori*
718 (reviewed in (Salah Ud-Din and Roujeinikova 2018). In *Sinorhizobium fredii*, pseudaminic
719 acid is a component of the capsular polysaccharide (K antigen) associated with nodulation
720 efficiency on some hosts (Le Quéré et al. 2006; Margaret et al. 2012). Therefore, it is
721 tempting to speculate that the synthesis of pseudaminic acid might be involved in
722 tumorigenesis of *R. tumorigenes* and plant host invasion.

723 *R. tumorigenes* strains carried putative chromid-borne gene coding for
724 polygalacturonase, one of the most important enzymes associated with cell wall degradation.
725 It has been reported that *All. vitis* species complex strains are able to produce this enzyme,
726 which plays a role in grapevine root decay (McGuire et al. 1991; Rodriguez-Palenzuela et al.
727 1991). Different rhizobia (*R. leguminosarum* and *Sinorhizobium meliloti*) were also reported
728 to produce polygalacturonase, for which it was postulated to be involved in the root invasion
729 process (Jiménez-Zurdo et al. 1996). Accordingly, this putative feature in *R. tumorigenes*
730 could also have a role in degradation of the pectin network that comprises plant cell walls and
731 colonization of particular plant hosts.

732

733 4.4 | Differentiation of novel *Rhizobiaceae* genera

734

735 Based on genus demarcation thresholds defined in our previous study (Kuzmanović et al.
736 2022a), the core *Rhizobium* superclade should be split in at least three genera. Besides the
737 clade “leguminosarum-eti” (*Rhizobium sensu stricto*), which includes the type species of the
738 genus *Rhizobium* (*R. leguminosarum*), clades “tropici-rhizogenes”, and “tumorigenes”
739 represent candidates for new *Rhizobiaceae* genera. In our opinion, such a division of
740 *Rhizobium* species would require additional genomic or phenotypic evidences, thus revealing
741 factors relevant for biological and ecological diversification of these clades. However, this
742 taxonomic revision was not an objective of this work, and we followed the taxonomic scheme
743 preserving the current structure of the genus *Rhizobium*.

744

745 The taxonomic position of *R. tubonense* was not completely clear. This species has
746 relatively high proteome relatedness with both “tumorigenes” and “tropici-rhizogenes” clade
747 representatives. For instance, cpAAI comparisons based on 169 marker proteins yielded
748 values slightly above the threshold for genus demarcation (~86%) in both cases (Kuzmanović
749 et al. 2022a). In core-proteome and pan-genome phylogenetic trees, *R. tubonense* was located
750 on a distant branch, although the “tumorigenes” clade was its closest relative. Taken together,
751 *R. tubonense* might represent an additional candidate for a separate *Rhizobium* genus.
752 Nonetheless, this requires further study, including additional phylogenetic lineages more
753 closely related to *R. tubonense*, which are expected to be discovered in the future.

754

755 5 | CONCLUSIONS

756

757 This study revealed additional genomic and taxonomic diversity of tumorigenic agrobacteria.
758 OGRIs and phylogenomic analyses clearly showed that tumorigenic strains isolated from
759 rhododendron represent a novel species of the genus *Rhizobium* for which the name
760 *Rhizobium rhododendri* sp. nov. is proposed. By searching GenBank, additional *R.*
761 *rhododendri* strains isolated from blueberry and Himalayan blackberry in USA were
762 identified. Both species of the “tumorigenes” clade (*R. rhododendri* and *R. tumorigenes*),
763 contain multipartite genomes, including a chromosome, putative chromids, and
764 megaplasmids. Interestingly, these two species showed distinct genome architecture. Our
765 investigation indicated that the large putative chromid of *R. rhododendri* is a cointegrand of a
766 *R. tumorigenes*-like ancestral megaplasmid and two putative chromids. Moreover, evidence of
767 inter-replicon DNA exchange between putative chromids of one *R. tumorigenes* lineage was
768 detected. Furthermore, we examined the pan-genome of members of the “tumorigenes” clade

769

768 and identified genes specific to each of the species *R. rhododendri* and *R. tumorigenes*. For
769 some of the genes and gene clusters, it was possible to determine the putative function and
770 possible role in the ecological adaptation of the studied bacterial species. The predicted
771 functions are found to be primarily associated with plant-bacterial interactions, bacterial
772 competitiveness in plant tissue or rhizosphere, and uptake of specific nutrient sources.
773

774 **Description of *Rhizobium rhododendri* sp. nov.**

775
776 *Rhizobium rhododendri* (rho.do.den'dri. N.L. gen. n. *rhododendri*, of *Rhododendron*, the plant
777 genus from which the type strain was isolated).

778 Bacterial cells are Gram-negative, motile and non-spore forming. They are aerobic,
779 and oxidase and catalase positive. Bacteria grow well on YMA, TY, PDA-CaCO₃, and R2A
780 media, whereas weak growth was observed on King's medium B. Colonies on YMA medium
781 had a diameter of 1-2 mm after 72 h of growth at 28°C. They were white to cream colored,
782 circular, convex and glistening. Growth was observed at a temperature range between 5 and
783 30°C. Nitrate reduction, indole production, and glucose fermentation are negative. Arginine
784 dihydrolase and gelatin hydrolysis tests are negative. Esculin hydrolysis and b-galactosidase
785 tests are positive. D-glucose, D-mannose, and D-mannitol are assimilated. A weak
786 assimilation was observed for L-arabinose and D-maltose. Potassium gluconate, caprate,
787 adipate, malate, trisodium citrate, and phenylacetate are not assimilated. Strain forms clear
788 zones on PDA-CaCO₃, but do not produce 3-ketolactose from lactose. The major fatty acids
789 (>5%) are C_{18:1} ω7c (~50%), C_{19:0} cyclo ω7c (~19%), C_{16:0} (~7%), and C_{18:1} ω7c 11-methyl
790 (~6%).

791 *R. rhododendri* strains rho-6.2^T, rho-1.1 and rho-13.1 caused tumors on inoculated
792 rhododendron, sunflower and tomato plants, and were proven to carry a Ti plasmid
793 ((Kuzmanović et al. 2019), this study).

794 The genome size of the type strain (rho-6.2^T) is 5.96 Mb. The genome is composed of
795 a circular chromosome (3.71 Mb) and 3 extrachromosomal replicons that are 1.53 Mb, 382
796 kb, and 337 kb in size. The GC content of the total genomic DNA is 59.98%.

797 *R. rhododendri* can be distinguished from other *Rhizobium* spp. based on OGIs (e.g.
798 ANI and dDDH) calculations.

799 The type strain, rho-6.2^T (= DSM 110655^T = CFBP 9067^T) was isolated from an aerial
800 tumor on *Rhododendron* sp. in Germany in 2017. The DDBJ/ENA/GenBank accession
801 numbers for the genome sequence are XX000000 to XX000000 (NCBI submission is
802 undergoing processing and accession numbers will be added when available).

803
804 **DATA AVAILABILITY STATEMENT**

805 The whole-genome sequences have been deposited at DDBJ/ENA/GenBank under the
806 accessions XXX (NCBI submission is undergoing processing and accession numbers will be
807 added when available), within the BioProject PRJNA910953.

808 The raw sequencing reads were deposited in the Sequence Read Archive (SRA) under the
809 same BioProject PRJNA910953.

810 Other relevant data, including .fasta and .gbk files used for core-genome and pan-genome
811 analyses are available through Figshare (<https://figshare.com/>) at

812 <https://doi.org/10.6084/m9.figshare.21785609>, <https://doi.org/10.6084/m9.figshare.21785456>,
813 <https://doi.org/10.6084/m9.figshare.21785570>, <https://doi.org/10.6084/m9.figshare.21785573>,
814 and <https://doi.org/10.6084/m9.figshare.21785600>. (DOIs will be published upon manuscript
815 acceptance).

816

817 AUTHOR CONTRIBUTIONS

818 **Nemanja Kuzmanović:** Conceptualization (lead); investigation (leading); formal analysis
819 (lead); data curation (lead); writing – original draft (lead); writing – review and editing
820 (equal); funding acquisition (lead), visualization (equal). **George C. diCenzo:**
821 Conceptualization (equal); formal analysis (equal); data curation (equal); writing – original
822 draft (equal); writing – review and editing (equal); visualization (equal). **Boyke Bunk:** formal
823 analysis (supporting); data curation (supporting); writing – review and editing (equal).
824 **Cathrin Spröer:** investigation (supporting). **Anja Frühling:** investigation (supporting).
825 **Meina Neumann-Schaal:** investigation (equal); writing – review and editing (equal); **Jörg**
826 **Overmann:** Resources (supporting); writing – review and editing (equal), **Kornelia Smalla:**
827 Conceptualization (supporting); resources (equal); supervision (supporting); writing – review
828 and editing (equal); funding acquisition (supporting).

829

830 ACKNOWLEDGEMENTS

831 The authors would like to thank Prof. Aharon Oren (The Hebrew University of Jerusalem,
832 Israel) for helpful advice on nomenclatural aspects. This research was enabled, in part,
833 through computational resources provided by BMBF-funded de.NBI Cloud within the
834 German Network for Bioinformatics Infrastructure (de.NBI) (031A537B, 031A533A,
835 031A538A, 031A533B, 031A535A, 031A537C, 031A534A, 031A532B). We thank Simone
836 Severitt, Jolanthe Swiderski, Nicole Heyer, Anika Wasner and Gesa Martens for excellent
837 technical assistance.

838

839 CONFLICT OF INTEREST

840 None declared.

841

842 ETHICS STATEMENT

843 None required.

844

845 ORCID

846 Nemanja Kuzmanović 0000-0002-3635-6813

847 George diCenzo 0000-0003-3889-6570

848 Boyke Bunk 0000-0002-8420-8161

849 Meina Neumann-Schaal 0000-0002-1641-019X

850 Jörg Overmann 0000-0003-3909-7201

851 Kornelia Smalla 0000-0001-7653-5560

852

853 REFERENCES

854

855 Alikhan, N.-F., Petty, N. K., Ben Zakour, N. L., and Beatson, S. A. 2011. BLAST Ring Image Generator
856 (BRIG): simple prokaryote genome comparisons. *BMC Genomics* 12:1-10.

857 Anderson, A. R., and Moore, L. W. 1979. Host specificity in the genus *Agrobacterium*. *Phytopathology*
858 69:320-323.

859 Arndt, D., Grant, J. R., Marcu, A., Sajed, T., Pon, A., Liang, Y., and Wishart, D. S. 2016. PHASTER: a
860 better, faster version of the PHAST phage search tool. *Nucleic Acids Res* 44:W16-21.

861 Augimeri, R. V., Varley, A. J., and Strap, J. L. 2015. Establishing a role for bacterial cellulose in
862 environmental interactions: Lessons learned from diverse biofilm-producing Proteobacteria.
863 *Front. Microbiol.* 6.

864 Baym, M., Kryazhimskiy, S., Lieberman, T. D., Chung, H., Desai, M. M., and Kishony, R. 2015.
865 Inexpensive multiplexed library preparation for megabase-sized genomes. *PLOS ONE*
866 10:e0128036.

867 Bernal, P., Llamas, M. A., and Filloux, A. 2018. Type VI secretion systems in plant-associated bacteria.
868 *Environ. Microbiol.* 20:1-15.

869 Bosmans, L., Moerkens, R., Wittemans, L., De Mot, R., Rediers, H., and Lievens, B. 2017. Rhizogenic
870 agrobacteria in hydroponic crops: epidemics, diagnostics and control. *Plant Pathol.* 66:1043-
871 1053.

872 Bouzar, H., Jones, J. B., and Bishop, A. L. 1995. Simple cultural tests for identification of
873 *Agrobacterium* biovars. Pages 9-13 in: *Agrobacterium Protocols*. K. M. A. Gartland and M. R.
874 Davey, eds. Springer New York, Totowa, NJ, USA.

875 Buchfink, B., Reuter, K., and Drost, H.-G. 2021. Sensitive protein alignments at tree-of-life scale using
876 DIAMOND. *Nat. Methods* 18:366-368.

877 Cabanettes, F., and Klopp, C. 2018. D-GENIES: dot plot large genomes in an interactive, efficient and
878 simple way. *6:e4958*.

879 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. 2009.
880 BLAST+: architecture and applications. *BMC Bioinformatics* 10.

881 Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P., and Huerta-Cepas, J. 2021. eggNOG-
882 mapper v2: functional annotation, orthology assignments, and domain prediction at the
883 metagenomic scale. *Mol. Biol. Evol.* 38:5825-5829.

884 Capella-Gutiérrez, S., Silla-Martínez, J. M., and Gabaldón, T. 2009. trimAl: a tool for automated
885 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* 25:1972-1973.

886 Carareto Alves, L. M., de Souza, J. A. M., Varani, A. d. M., and Lemos, E. G. d. M. 2014. The family
887 *Rhizobiaceae*. Pages 419-437 in: *The Prokaryotes: Alphaproteobacteria and*
888 *Betaproteobacteria*. E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt and F. Thompson,
889 eds. Springer Berlin Heidelberg, Berlin, Heidelberg.

890 Cerny, G. 1976. Method for the distinction of gramnegative from gram positive bacteria. *European*
891 *journal of applied microbiology and biotechnology* 3:223-225.

892 Contreras-Moreira, B., and Vinuesa, P. 2013. GET_HOMOLOGUES, a versatile software package for
893 scalable and robust microbial pangenome analysis. *Appl. Environ. Microbiol.* 79:7696-7701.

894 de Lajudie, P. M., Andrews, M., Ardley, J., Eardly, B., Jumas-Bilak, E., Kuzmanović, N., Lassalle, F.,
895 Lindström, K., Mhamdi, R., Martínez-Romero, E., Moulin, L., Mousavi, S. A., Nesme, X., Peix,
896 A., Puławska, J., Steenkamp, E., Stępkowski, T., Tian, C.-F., Vinuesa, P., Wei, G., Willems, A.,
897 Zilli, J., and Young, P. 2019. Minimal standards for the description of new genera and species
898 of rhizobia and agrobacteria. *Int. J. Syst. Evol. Microbiol.* 69:1852-1863.

899 diCenzo, G. C., and Finan, T. M. 2017. The divided bacterial genome: structure, function, and
900 evolution. *Microbiol. Mol. Biol. Rev.* 81.

901 diCenzo, G. C., Mengoni, A., and Perrin, E. 2019. Chromids aid genome expansion and functional
902 diversification in the family *Burkholderiaceae*. *Mol. Biol. Evol.* 36:562-574.

903 Eckhardt, T. 1978. A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria.
904 *Plasmid* 1:584-588.

905 Eddy, S. R. 2009. A new generation of homology search tools based on probabilistic inference.
906 *Genome informatics. International Conference on Genome Informatics* 23:205-211.

907 Escobar, M. A., and Dandekar, A. M. 2003. *Agrobacterium tumefaciens* as an agent of disease. *Trends Plant Sci.* 8:380-386.

909 Farrand, S. K. 1998. Conjugal plasmids and their transfer. Pages 199-233 in: *The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria*. H. P. Spalink, A. Kondorosi and P. J. J. Hooykaas, eds. Springer Netherlands, Dordrecht.

912 Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., Potter, S. C., Punta, M., Qureshi, M., Sangrador-Vegas, A., Salazar, G. A., Tate, J., and Bateman, A. 2016. The Pfam protein families database: towards a more sustainable future. *Nucl. Acids Res.* 44:D279-D285.

916 Geddes, B. A., Kearsley, J., Morton, R., diCenzo, G. C., and Finan, T. M. 2020. Chapter Eight - The genomes of rhizobia. Pages 213-249 in: *Adv. Bot. Res.*, vol. 94. P. Frendo, F. Frugier and C. Masson-Boivin, eds. Academic Press.

919 Gelvin, S. B. 2017. Integration of *Agrobacterium* T-DNA into the plant genome. *Annu. Rev. Genet.* 51:195-217.

921 Goris, J., Konstantinidis, K., Klappenbach, J., Coenye, T., Vandamme, P., and Tiedje, J. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. *Int. J. Syst. Evol. Microbiol.* 57.

924 Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Syst. Biol.* 59:307-321.

927 Haft, D. H., Selengut, J. D., Richter, R. A., Harkins, D., Basu, M. K., and Beck, E. 2013. TIGRFAMs and Genome Properties in 2013. *Nucleic Acids Res* 41:D387-395.

929 Hall, J. P. J., Botelho, J., Cazares, A., and Baltrus, D. A. 2022. What makes a megaplasmid? *Philosophical Transactions of the Royal Society B: Biological Sciences* 377:20200472.

931 Harrison, P. W., Lower, R. P., Kim, N. K., and Young, J. P. 2010. Introducing the bacterial 'chromid': not a chromosome, not a plasmid. *Trends Microbiol.* 18:141-148.

933 Haryono, M., Tsai, Y. M., Lin, C. T., Huang, F. C., Ye, Y. C., Deng, W. L., Hwang, H. H., and Kuo, C. H. 2018. Presence of an *Agrobacterium*-type tumor-inducing plasmid in *Neorhizobium* sp. NCHU2750 and the link to phytopathogenicity. *Genome Biol. Evol.* 10:3188-3195.

936 Herlache, T. C., Hotchkiss, A. T., Burr, T. J., and Collmer, A. 1997. Characterization of the *Agrobacterium vitis* *pehA* gene and comparison of the encoded polygalacturonase with the homologous enzymes from *Erwinia carotovora* and *Ralstonia solanacearum*. *Appl. Environ. Microbiol.* 63:338-346.

940 Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., and Vinh, L. S. 2017. UFBoot2: improving the ultrafast bootstrap approximation. *Mol. Biol. Evol.* 35:518-522.

942 Hooykaas, M. J. G., and Hooykaas, P. J. J. 2021. Complete genomic sequence and phylogenomics analysis of *Agrobacterium* strain AB2/73: a new *Rhizobium* species with a unique mega-Ti plasmid. *BMC Microbiol.* 21:295.

945 Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forsslund, S. K., Cook, H., Mende, D. R., Letunic, I., Rattei, T., Jensen, Lars J., von Mering, C., and Bork, P. 2018. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. *Nucl. Acids Res.* 47:D309-D314.

949 Jain, C., Rodriguez-R, L. M., Phillippe, A. M., Konstantinidis, K. T., and Aluru, S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat. Commun.* 9:5114.

952 Jiménez-Zurdo, J., Mateos, P. F., Dazzo, F. B., and Martínez-Molina, E. 1996. Cell-bound cellulase and polygalacturonase production by *Rhizobium* and *Bradyrhizobium* species. *Soil Biol. Biochem.* 28:917-921.

955 Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., and Madden, T. L. 2008. NCBI BLAST: a better web interface. *Nucl. Acids Res.* 36:W5-W9.

957 Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin, L. S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods* 14:587-589.

960 Kanehisa, M., Sato, Y., and Morishima, K. 2016. BlastKOALA and GhostKOALA: KEGG tools for
961 functional characterization of genome and metagenome sequences. *J. Mol. Biol.* 428:726-
962 731.

963 Katoh, K., and Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7:
964 improvements in performance and usability. *Mol. Biol. Evol.* 30:772-780.

965 Katoh, K., Rozewicki, J., and Yamada, K. D. 2017. MAFFT online service: multiple sequence alignment,
966 interactive sequence choice and visualization. *Brief. Bioinform.* :bbx108-bbx108.

967 King, E. O., Ward, M. K., and Raney, D. E. 1954. Two simple media for the demonstration of
968 pyocyanin and fluorescin. *J. Lab. Clin. Med.* 44:301-307.

969 Koboldt, D. C., Zhang, Q., Larson, D. E., Shen, D., McLellan, M. D., Lin, L., Miller, C. A., Mardis, E. R.,
970 Ding, L., and Wilson, R. K. 2012. VarScan 2: somatic mutation and copy number alteration
971 discovery in cancer by exome sequencing. *Genome Res.* 22:568-576.

972 Konstantinidis, K. T., and Tiedje, J. M. 2005. Towards a genome-based taxonomy for prokaryotes. *J.*
973 *Bacteriol.* 187:6258-6264.

974 Konstantinidis, K. T., Rossello-Mora, R., and Amann, R. 2017. Uncultivated microbes in need of their
975 own taxonomy. *The ISME journal* 11:2399-2406.

976 Kovacs, N. 1956. Identification of *Pseudomonas pyocyanea* by the oxidase reaction. *Nature* 178:703-
977 703.

978 Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J., and Marra, M.
979 A. 2009. Circos: an information aesthetic for comparative genomics. *Genome Res.* 19:1639-
980 1645.

981 Kuzmanović, N., Biondi, E., Bertaccini, A., and Obradović, A. 2015. Genetic relatedness and
982 recombination analysis of *Allorhizobium vitis* strains associated with grapevine crown gall
983 outbreaks in Europe. *J. Appl. Microbiol.* 119:786-796.

984 Kuzmanović, N., Smalla, K., Gronow, S., and Puławska, J. 2018. *Rhizobium tumorigenes* sp. nov., a
985 novel plant tumorigenic bacterium isolated from cane gall tumors on thornless blackberry.
986 *Scientific Reports* 8:9051.

987 Kuzmanović, N., Fagorzi, C., Mengoni, A., Lassalle, F., and diCenzo, G. C. 2022a. Taxonomy of
988 *Rhizobiaceae* revisited: proposal of a new framework for genus delimitation. *Int. J. Syst. Evol.*
989 *Microbiol.* 72.

990 Kuzmanović, N., Biondi, E., Overmann, J., Puławska, J., Verbarg, S., Smalla, K., and Lassalle, F. 2020.
991 Revisiting the taxonomy of *Allorhizobium vitis* (i.e. *Agrobacterium vitis*) using genomics -
992 emended description of *All. vitis sensu stricto* and description of *Allorhizobium ampelinum*
993 sp. nov. *bioRxiv*:2020.2012.2019.423612.

994 Kuzmanović, N., Biondi, E., Overmann, J., Puławska, J., Verbarg, S., Smalla, K., and Lassalle, F. 2022b.
995 Genomic analysis provides novel insights into diversification and taxonomy of *Allorhizobium*
996 *vitis* (i.e. *Agrobacterium vitis*). *BMC Genomics* 23:462.

997 Kuzmanović, N., Behrens, P., Idczak, E., Wagner, S., Goetz, M., Sproer, C., Bunk, B., Overmann, J., and
998 Smalla, K. 2019. A novel group of *Rhizobium tumorigenes*-like agrobacteria associated with
999 crown gall disease of rhododendron and blueberry. *Phytopathology*.

1000 Langmead, B., and Salzberg, S. L. 2012. Fast gapped-read alignment with Bowtie 2. *Nat. Methods*
1001 9:357-359.

1002 Lassalle, F., Planel, R., Penel, S., Chapulliot, D., Barbe, V., Dubost, A., Calteau, A., Vallenet, D.,
1003 Mornico, D., Bigot, T., Guéguen, L., Vial, L., Muller, D., Daubin, V., and Nesme, X. 2017.
1004 Ancestral genome estimation reveals the history of ecological diversification in
1005 *Agrobacterium*. *Genome Biol. Evol.* 9:3413-3431.

1006 Le Quéré, A. J., Deakin, W. J., Schmeisser, C., Carlson, R. W., Streit, W. R., Broughton, W. J., and
1007 Forsberg, L. S. 2006. Structural characterization of a K-antigen capsular polysaccharide
1008 essential for normal symbiotic infection in *Rhizobium* sp. NGR234: deletion of the rkpMNO
1009 locus prevents synthesis of 5,7-diacetamido-3,5,7,9-tetradeoxy-non-2-ulosonic acid. *J. Biol.*
1010 *Chem.* 281:28981-28992.

1011 Li, H. 2018. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* 34:3094-3100.

1012 Li, H., and Durbin, R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform.
1013 *Bioinformatics* 25:1754-1760.

1014 Li, W., and Godzik, A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein
1015 or nucleotide sequences. *Bioinformatics* 22:1658-1659.

1016 Ma, L. S., Hachani, A., Lin, J. S., Filloux, A., and Lai, E. M. 2014. *Agrobacterium tumefaciens* deploys a
1017 superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in
1018 *planta*. *Cell host & microbe* 16:94-104.

1019 Margaret, I., Crespo-Rivas, J. C., Acosta-Jurado, S., Buendía-Clavería, A. M., Cubo, M. T., Gil-Serrano,
1020 A., Moreno, J., Murdoch, P. S., Rodríguez-Carvajal, M. A., Rodríguez-Navarro, D. N., Ruiz-
1021 Sainz, J. E., Sanjuán, J., Soto, M. J., and Vinardell, J. M. 2012. *Sinorhizobium fredii* HH103 *rkp-3*
1022 genes are required for k-antigen polysaccharide biosynthesis, affect lipopolysaccharide
1023 structure and are essential for infection of legumes forming determinate nodules. *Molecular*
1024 *Plant-Microbe Interactions*® 25:825-838.

1025 Matthysse, A. G. 1983. Role of bacterial cellulose fibrils in *Agrobacterium tumefaciens* infection. *J.*
1026 *Bacteriol.* 154:906-915.

1027 Matthysse, A. G., Holmes, K. V., and Gurlitz, R. H. 1981. Elaboration of cellulose fibrils by
1028 *Agrobacterium tumefaciens* during attachment to carrot cells. *J. Bacteriol.* 145:583-595.

1029 McGuire, R. G., Rodriguez-Palenzuela, P., Collmer, A., and Burr, T. J. 1991. Polygalacturonase
1030 production by *Agrobacterium tumefaciens* biovar 3. *Appl. Environ. Microbiol.* 57:660-664.

1031 Meier-Kolthoff, J. P., and Göker, M. 2019. TYGS is an automated high-throughput platform for state-
1032 of-the-art genome-based taxonomy. *Nat. Commun.* 10:2182.

1033 Meier-Kolthoff, J. P., Auch, A. F., Klenk, H.-P., and Göker, M. 2013. Genome sequence-based species
1034 delimitation with confidence intervals and improved distance functions. *BMC Bioinformatics*
1035 14:1-14.

1036 Meier-Kolthoff, J. P., Carbasse, J. S., Peinado-Olarte, R. L., and Göker, M. 2021. TYGS and LPSN: a
1037 database tandem for fast and reliable genome-based classification and nomenclature of
1038 prokaryotes. *Nucl. Acids Res.* 50:D801-D807.

1039 Moing, A. 2000. Sugar alcohols as carbohydrate reserves in some higher plants. Pages 337-358 in:
1040 Dev. Crop Sci., vol. 26. A. K. Gupta and N. Kaur, eds. Elsevier.

1041 Moore, L. W., Bouzar, H., and Burr, T. J. 2001. *Agrobacterium*. Pages 17-35 in: Laboratory Guide for
1042 Identification of Plant Pathogenic Bacteria. N. W. Schaad, J. B. Jones and W. Chun, eds. APS
1043 Press, St Paul, Minnesota.

1044 Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. 2015. IQ-TREE: a fast and effective
1045 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.* 32:268-
1046 274.

1047 Paradis, E., and Schliep, K. 2018. ape 5.0: an environment for modern phylogenetics and evolutionary
1048 analyses in R. *Bioinformatics* 35:526-528.

1049 Pritchard, L., Glover, R. H., Humphris, S., Elphinstone, J. G., and Toth, I. K. 2016. Genomics and
1050 taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens.
1051 *Analytical Methods* 8:12-24.

1052 Puławska, J. 2010. Crown gall of stone fruits and nuts, economic significance and diversity of its
1053 causal agents: tumorigenic *Agrobacterium* spp. *J. Plant Pathol.* 92:S1.87-S81.98.

1054 Puławska, J., Kuzmanović, N., and Trzciński, P. 2022. *Agrobacterium vaccinii* sp. nov. isolated from
1055 galls on blueberry plants (*Vaccinium corymbosum*). *Syst. Appl. Microbiol.* 45:126319.

1056 Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things).
1057 *Methods in Ecology and Evolution* 3:217-223.

1058 Richter, M., and Rossello-Mora, R. 2009. Shifting the genomic gold standard for the prokaryotic
1059 species definition. *Proc. Natl. Acad. Sci. U.S.A.* 106:19126-19131.

1060 Rodriguez-Palenzuela, P., Burr, T. J., and Collmer, A. 1991. Polygalacturonase is a virulence factor in
1061 *Agrobacterium tumefaciens* biovar 3. *J. Bacteriol.* 173:6547-6552.

1062 Ross, P., Mayer, R., and Benziman, M. 1991. Cellulose biosynthesis and function in bacteria. *Microbiol*
1063 *Rev* 55:35-58.

1064 Ryu, E. 1939. On the Gram-differentiation of bacteria by the simplest method. II. The caustic potash
1065 method.

1066 Salah Ud-Din, A. I. M., and Roujeinikova, A. 2018. Flagellin glycosylation with pseudaminic acid in
1067 *Campylobacter* and *Helicobacter*: prospects for development of novel therapeutics. *Cell. Mol.*
1068 *Life Sci.* 75:1163-1178.

1069 Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. *USFCC News*
1070 20:1-6.

1071 Schwarz, G. 1978. Estimating the dimension of a model. *The Annals of Statistics* 6:461-464, 464.

1072 Seemann, T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30:2068-2069.

1073 Smit, G., Kijne, J. W., and Lugtenberg, B. J. 1987. Involvement of both cellulose fibrils and a Ca²⁺-
1074 dependent adhesin in the attachment of *Rhizobium leguminosarum* to pea root hair tips. *J.*
1075 *Bacteriol.* 169:4294-4301.

1076 Stackebrandt, E., and Goebel, B. M. 1994. Taxonomic note: a place for DNA-DNA reassociation and
1077 16S rRNA sequence analysis in the present species definition in bacteriology. *Int. J. Syst.*
1078 *Bacteriol.* 44.

1079 Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
1080 phylogenies. *Bioinformatics* 30:1312-1313.

1081 Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A., and Minh, B. Q. 2016. W-IQ-TREE: a fast online
1082 phylogenetic tool for maximum likelihood analysis. *Nucl. Acids Res.* 44:W232-W235.

1083 Unger, L., Ziegler, S. F., Huffman, G. A., Knauf, V. C., Peet, R., Moore, L. W., Gordon, M. P., and
1084 Nester, E. W. 1985. New class of limited-host-range *Agrobacterium* mega-tumor-inducing
1085 plasmids lacking homology to the transferred DNA of a wide-host-range, tumor-inducing
1086 plasmid. *J. Bacteriol.* 164:723-730.

1087 Vieira, S., Huber, K. J., Neumann-Schaal, M., Geppert, A., Luckner, M., Wanner, G., and Overmann, J.
1088 2021. *Usitatibacter rugosus* gen. nov., sp. nov. and *Usitatibacter palustris* sp. nov., novel
1089 members of *Usitatibacteraceae* fam. nov. within the order *Nitrosomonadales* isolated from
1090 soil. *Int. J. Syst. Evol. Microbiol.* 71.

1091 Vinuesa, P., Ochoa-Sánchez, L. E., and Contreras-Moreira, B. 2018. GET_PHYLOMARKERS, a software
1092 package to select optimal orthologous clusters for phylogenomics and inferring pan-genome
1093 phylogenies, used for a critical geno-taxonomic revision of the genus *Stenotrophomonas*.
1094 *Front. Microbiol.* 9.

1095 Weisberg, A. J., Miller, M., Ream, W., Grünwald, N. J., and Chang, J. H. 2022. Diversification of
1096 plasmids in a genus of pathogenic and nitrogen-fixing bacteria. *Philosophical Transactions of*
1097 *the Royal Society B: Biological Sciences* 377:20200466.

1098 Weisberg, A. J., Davis, E. W., Tabima, J., Belcher, M. S., Miller, M., Kuo, C.-H., Loper, J. E., Grünwald,
1099 N. J., Putnam, M. L., and Chang, J. H. 2020. Unexpected conservation and global transmission
1100 of agrobacterial virulence plasmids. *Science* 368:eaba5256.

1101 Wu, C.-F., Weisberg, A. J., Davis, E. W., Chou, L., Khan, S., Lai, E.-M., Kuo, C.-H., and Chang, J. H. 2021.
1102 Diversification of the type VI secretion system in agrobacteria. *mBio* 12:e01927-01921.

1103 Wu, C. F., Santos, M. N. M., Cho, S. T., Chang, H. H., Tsai, Y. M., Smith, D. A., Kuo, C. H., Chang, J. H.,
1104 and Lai, E. M. 2019. Plant-pathogenic *Agrobacterium tumefaciens* strains have diverse type VI
1105 effector-immunity pairs and vary in in-planta competitiveness. *Molecular plant-microbe*
1106 *interactions* : MPMI 32:961-971.

1107 Xie, Z., and Tang, H. 2017. ISEScan: automated identification of insertion sequence elements in
1108 prokaryotic genomes. *Bioinformatics* 33:3340-3347.

1109 Yoon, S.-H., Ha, S.-m., Lim, J., Kwon, S., and Chun, J. 2017. A large-scale evaluation of algorithms to
1110 calculate average nucleotide identity. *Antonie Van Leeuwenhoek* 110:1281-1286.

1111 Young, J. P., Crossman, L. C., Johnston, A. W., Thomson, N. R., Ghazoui, Z. F., Hull, K. H., Wexler, M.,
1112 Curson, A. R., Todd, J. D., Poole, P. S., Mauchline, T. H., East, A. K., Quail, M. A., Churcher, C.,
1113 Arrowsmith, C., Cherevach, I., Chillingworth, T., Clarke, K., Cronin, A., Davis, P., Fraser, A.,
1114 Hance, Z., Hauser, H., Jagels, K., Moule, S., Mungall, K., Norbertczak, H., Rabbinowitsch, E.,
1115 Sanders, M., Simmonds, M., Whitehead, S., and Parkhill, J. 2006. The genome of *Rhizobium*
1116 *leguminosarum* has recognizable core and accessory components. *Genome Biol* 7:R34.

1118 **Tables:**

1119

1120 **Table 1.** General features of the genome sequences obtained in this study.

	Strains		
	<i>Rhizobium rhododendri</i> rho-6.2 ^T	<i>Rhizobium tumorigenes</i> 1078 ^T	<i>Rhizobium tumorigenes</i> 932
Replicons	4	6	6
Size (Mb)	5.96	5.98	5.97
GC content (%)	59.98	59.96	60.03
Genes ^a	5,649	5,685	5,705
CDSs ^a	5,582	5,619	5,637
rRNA operons (5S, 23S, 16S)	4	4	4
Genome coverage	209×	329×	285×

1121 ^aNumbers based on Prokka annotation.

1122

1123

1124 **Table 2.** Classification of replicons and their general features. All replicons were circular.

Replicon	Size (bp)	GC%	Accession Number ^a
<i>Rhizobium rhododendri</i> rho-6.2^T			
Chromosome	3,709,686	60.92	X
Putative chromid 1	1,530,638	58.41	X
Megaplasmid pTi6.2	381,845	56.14	X
Putative chromid 2	336,962	60.98	X
<i>Rhizobium tumorigenes</i> 1078^T			
Chromosome	3,664,408	60.77	X
Megaplasmid pRt1078	834,411	57.79	X
Megaplasmid pTi1078	439,071	56.21	X
Putative chromid 1	432,998	60.2	X
Putative chromid 2	304,572	61.07	X
Putative chromid 3	302,267	60.24	X
<i>Rhizobium tumorigenes</i> 932			
Chromosome	3,816,680	60.66	X
Megaplasmid pRt932	756,443	58.29	X
Megaplasmid pTi932	430,508	56.05	X
Putative chromid 1	339,618	60.61	X
Putative chromid 2	319,653	60.41	X
Putative chromid 3	304,177	61.03	X

1125 ^aNCBI submission is undergoing processing and accession numbers will be added when available.

1126 **Figure legends:**

1127

1128 **Figure 1.** Circular maps of the complete genomes of strain *Rhizobium rhododendri* rho-6.2^T
1129 (a), and strains of *Rhizobium tumorigenes* 1078^T (b) and 932 (c). Each replicon is presented
1130 by a circular plot containing five rings. Genetic coordinates of the reference sequences are
1131 shown within the thin inner ring. The next two rings portray GC content (black ring) and GC
1132 skew (purple/green). The next ring shows core (red) and species-specific (blue) genes. Core
1133 genes (364) were identified from a dataset of 119 strains using GET_HOMOLOGUES
1134 software. The accessory genes (*R. rhododendri* vs. *R. tumorigenes*) were identified with the
1135 same software. The outermost ring highlights prophage regions identified with PHASTER
1136 (intact prophages are shown in green and incomplete in orange) and insertion sequence (IS)
1137 elements identified using ISEscan (shown in gray). As in some cases IS elements were
1138 identified within the prophage regions, borders of the latter regions are highlighted with the
1139 corresponding color. The Figure was generated using BRIG software and edited with
1140 Inkscape (see M&M for details).

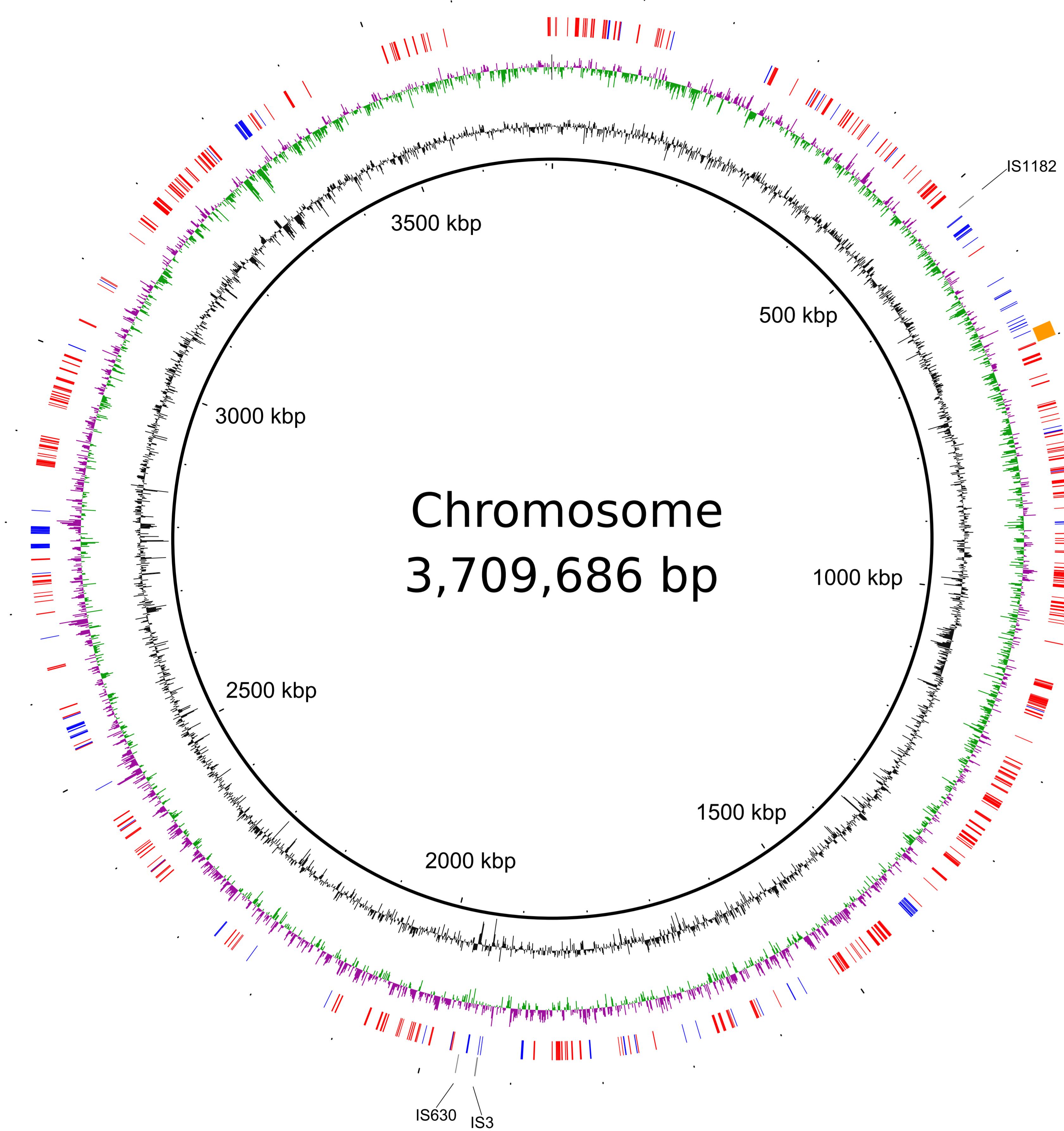
1141

1142 **Figure 2.** Synteny analysis of the genomes of the “tumorigenes” clade representatives. The
1143 *Rhizobium tumorigenes* 1078^T genome was compared with the genome of *R. tumorigenes* 932
1144 (a) and *Rhizobium rhododendri* rho-6.2^T (b). Putative orthologous genes between strains were
1145 identified by performing BLAST bidirectional best-hit analyses using the proteomes. BLAST
1146 bidirectional best hits with an E value of $\leq 1 \times 10^{-100}$ and $\geq 50\%$ identity were linked to the
1147 corresponding gene, and their position was mapped on the genome. Each putative ortholog
1148 between genomes is connected by a line and color coded based on the location of the gene in
1149 the *R. tumorigenes* 1078^T genome. The Figure was generated using circos software and edited
1150 with Inkscape (see M&M for details).

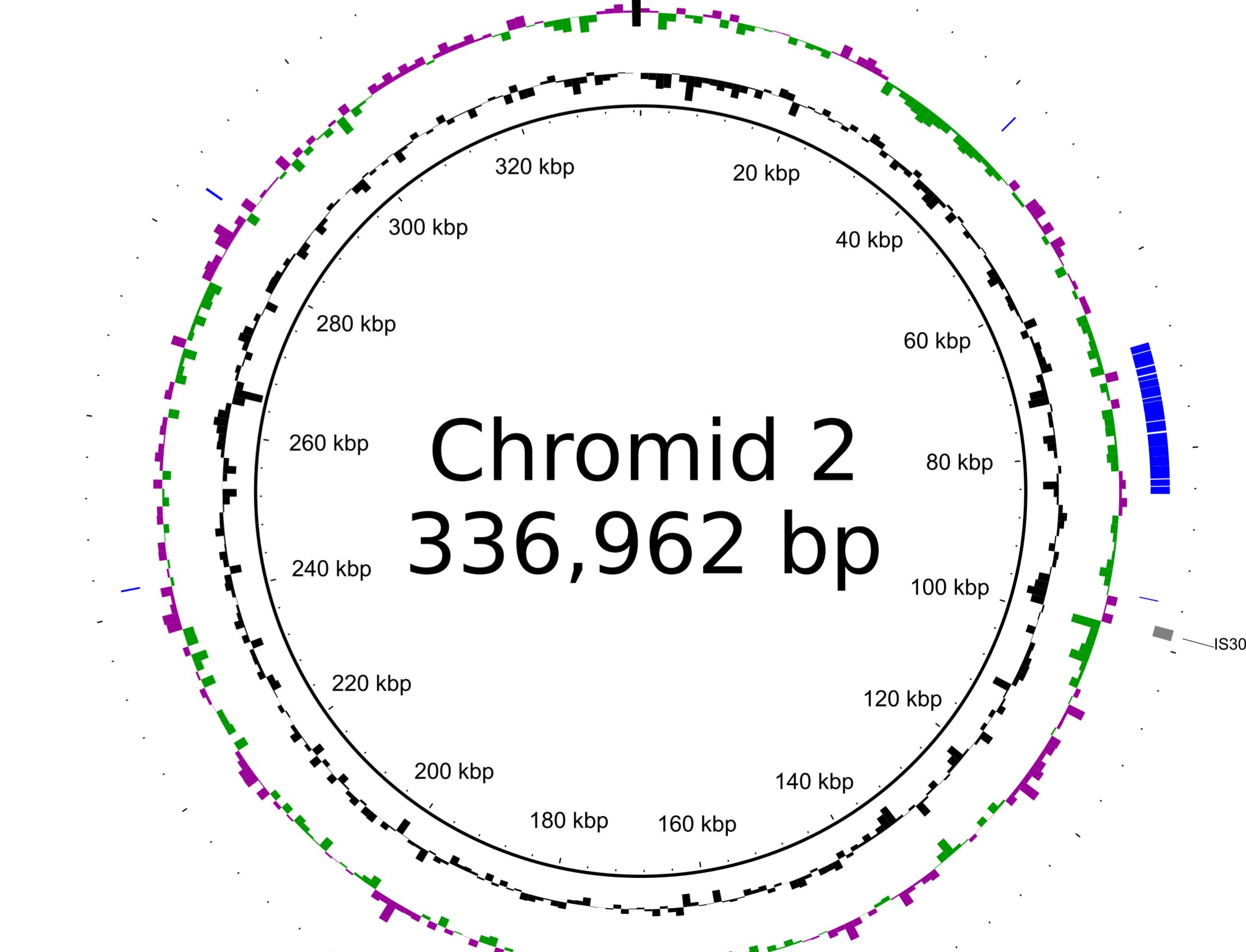
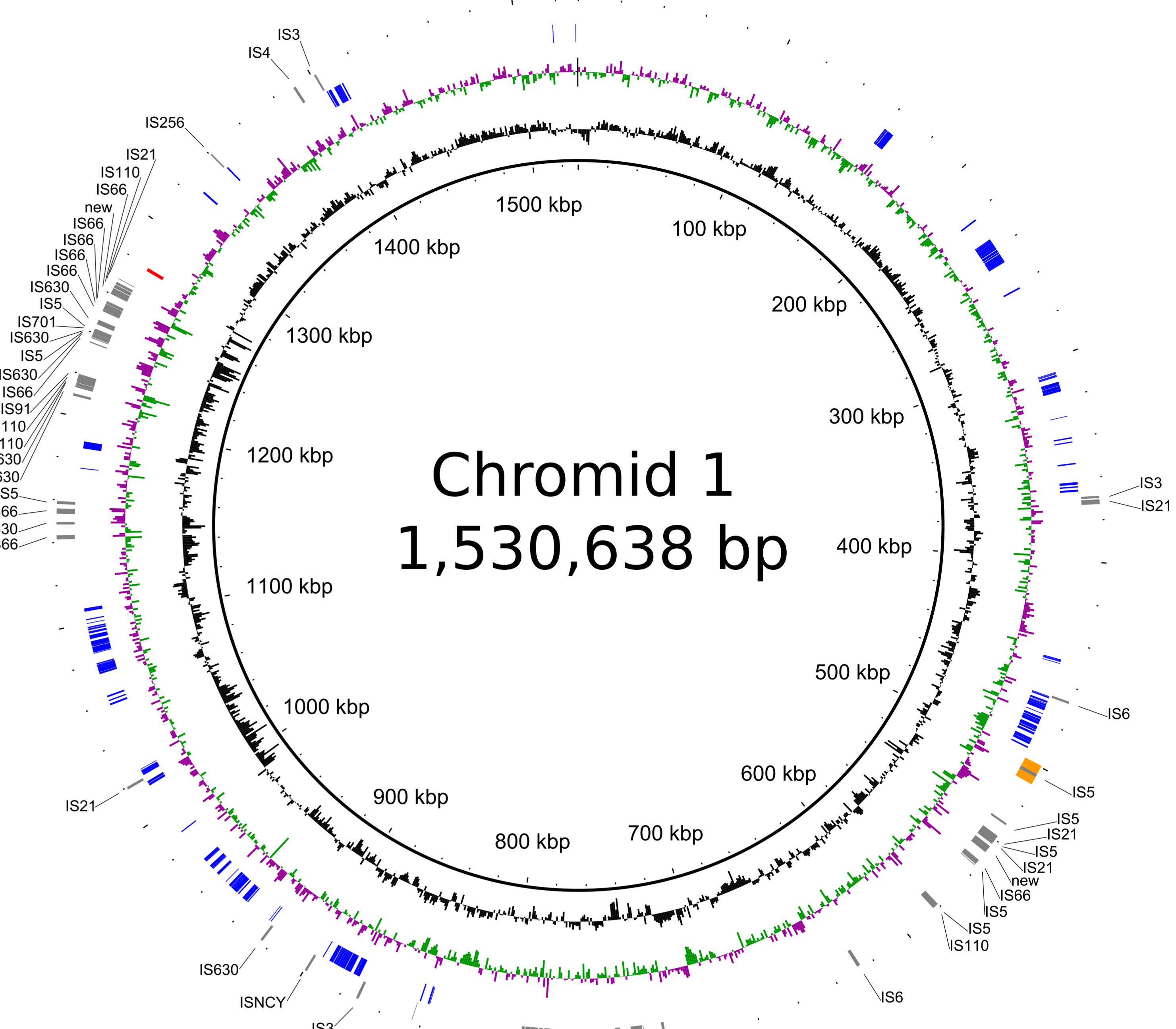
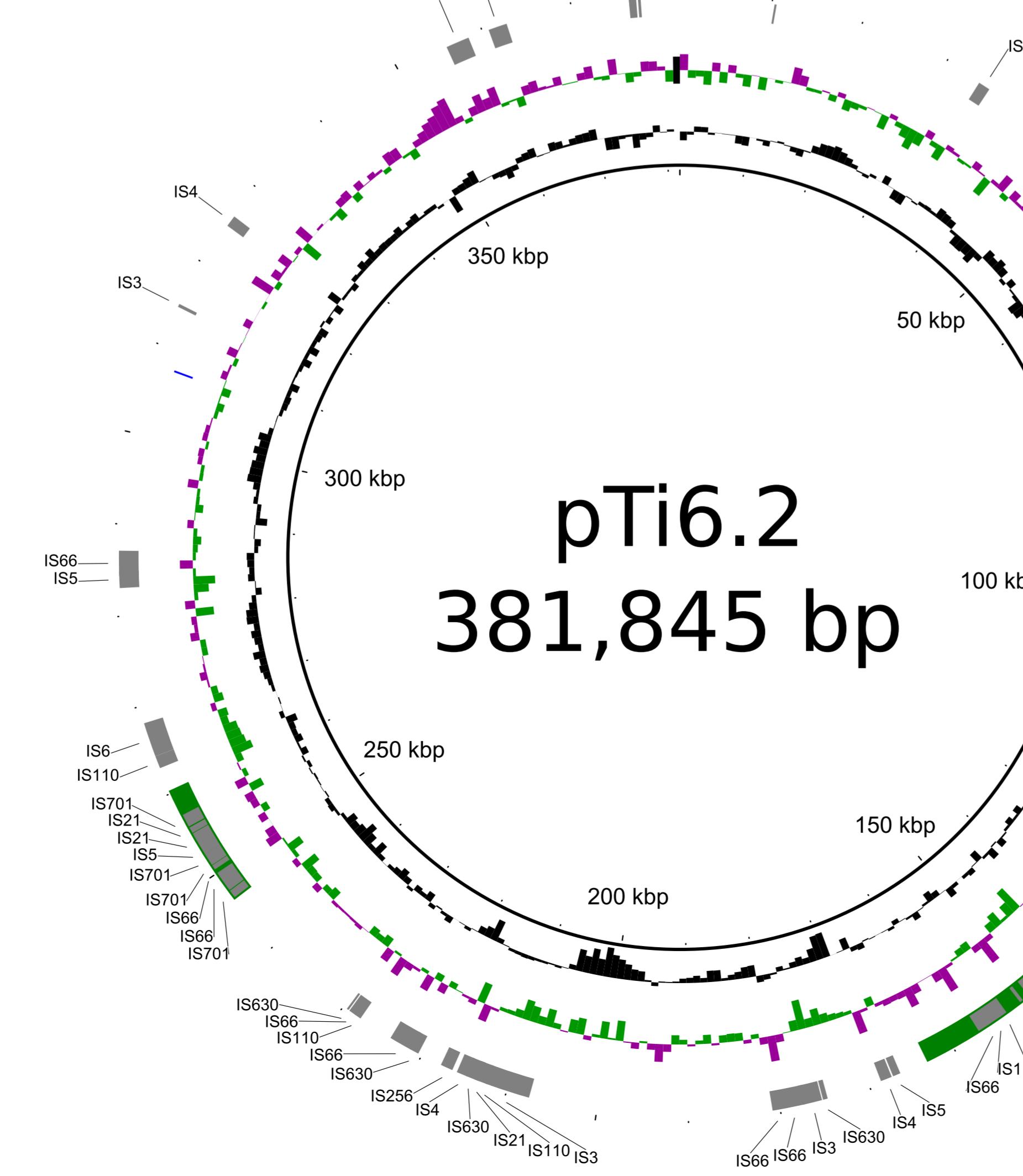
1151

1152 **Figure 3.** Maximum-likelihood core-proteome phylogeny showing the evolutionary
1153 relationships between and within the clade “tumorigenes” and other *Rhizobiaceae* clades (part
1154 collapsed). Three *Mesorhizobium* spp. strains were included as the outgroup to root the tree.
1155 The phylogeny was estimated from the concatenated alignments of 191 protein sequences
1156 selected as top-scoring markers using the GET_PHYLOMARKERS software. The numbers
1157 on the nodes indicate the approximate Bayesian posterior probabilities support values (first
1158 value) and ultra-fast bootstrap values (second value), as implemented in IQ-TREE. The scale
1159 bar represents the number of expected substitutions per site under the best-fitting LG+F+R6
1160 model. The same tree, but without collapsing clades, is presented in the Figure A5.

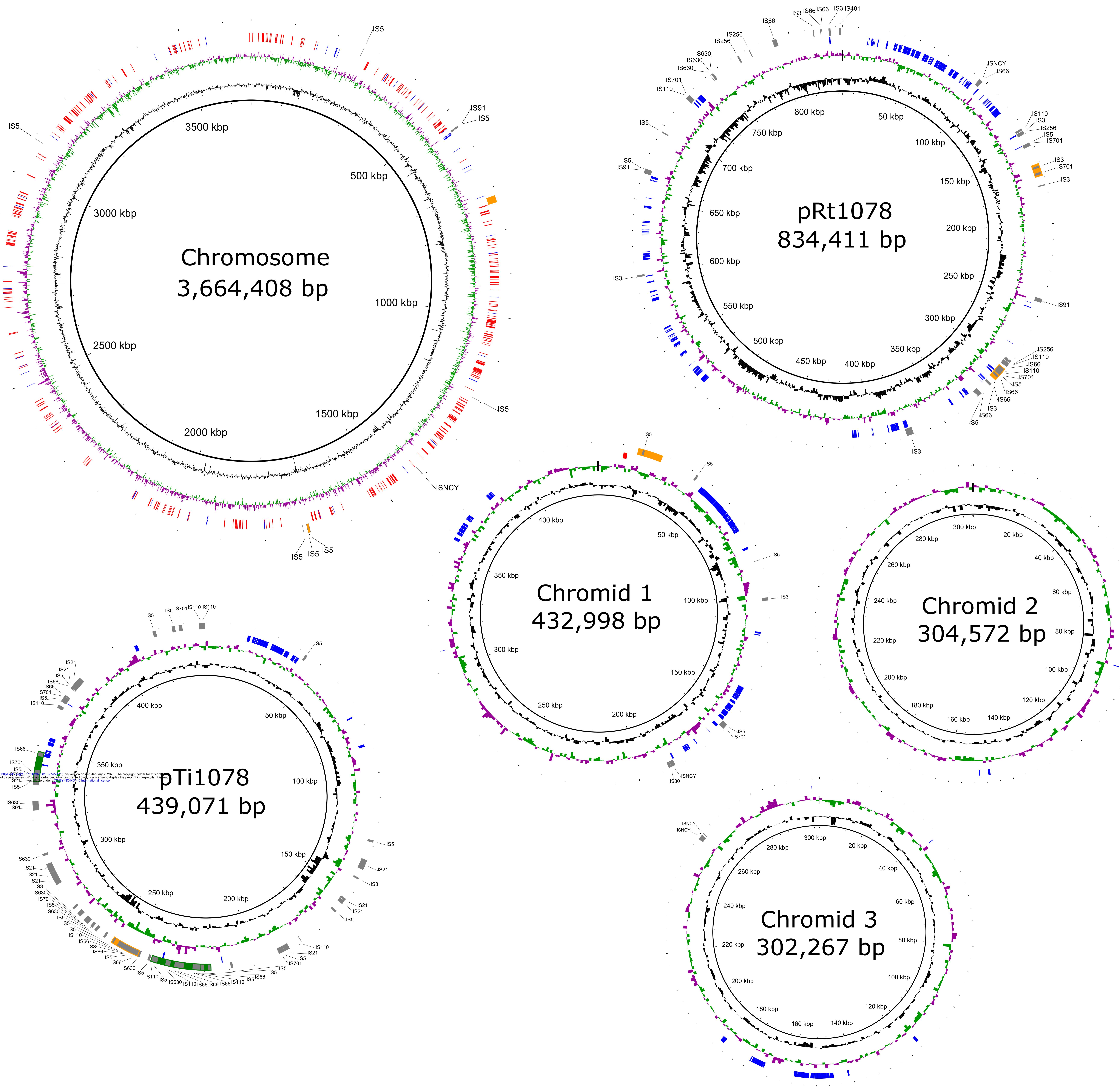
1161

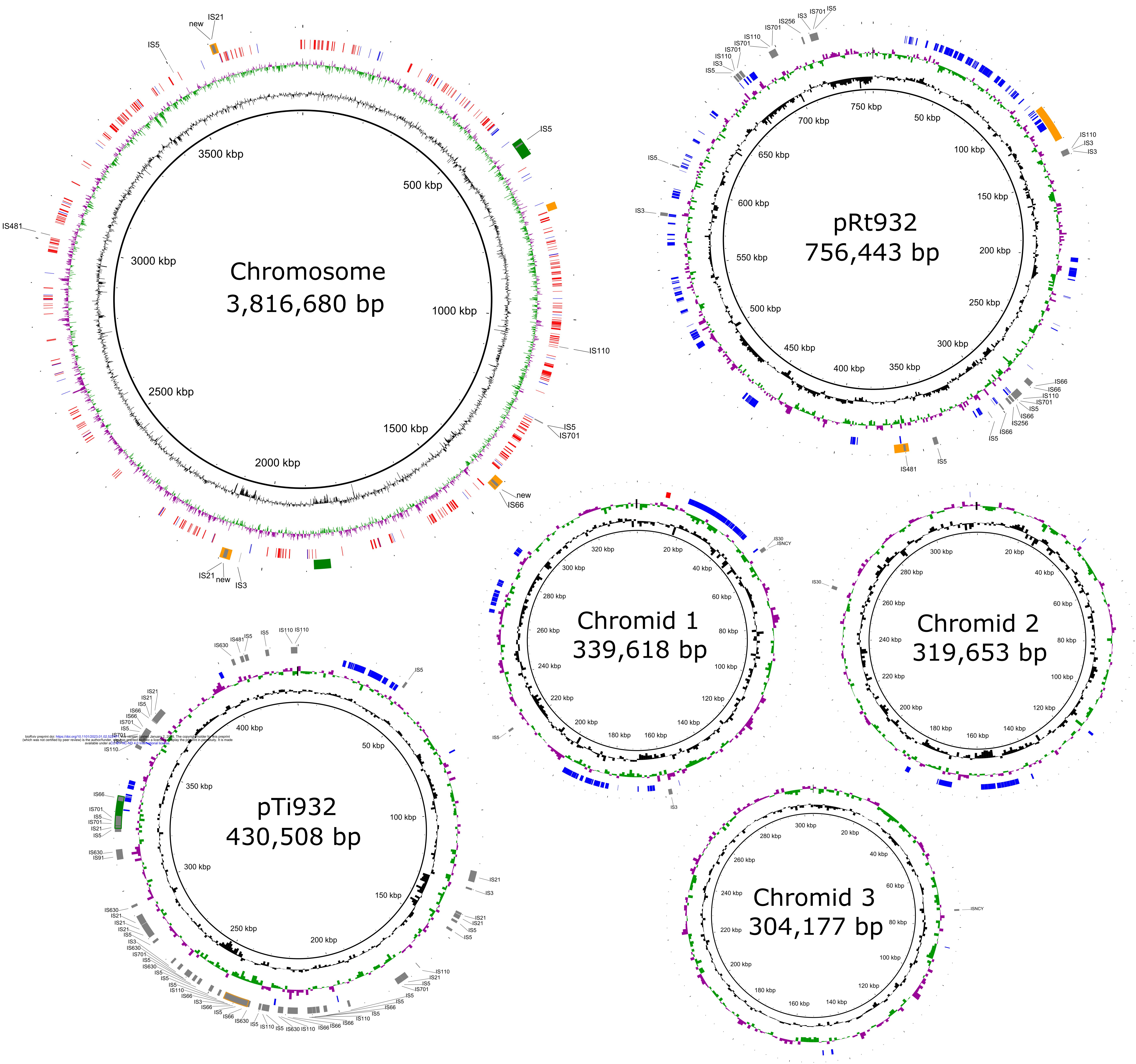

1162 **Figure 4.** Maximum-likelihood pan-genome phylogeny showing the relationships between
1163 and within the clade “tumorigenes” and other *Rhizobiaceae* clades (part collapsed). Three
1164 *Mesorhizobium* spp. strains were included as the outgroup to root the tree. The tree was
1165 estimated with IQ-TREE from the consensus (COGtriangles and OMCL clusters) gene
1166 presence/absence matrix containing 71,538 clusters obtained using GET_HOMOLOGUES
1167 software. The numbers on the nodes indicate the approximate Bayesian posterior probabilities
1168 support values (first value) and ultra-fast bootstrap values (second value), as implemented in
1169 IQ-TREE. The scale bar represents the number of expected substitutions per site under the

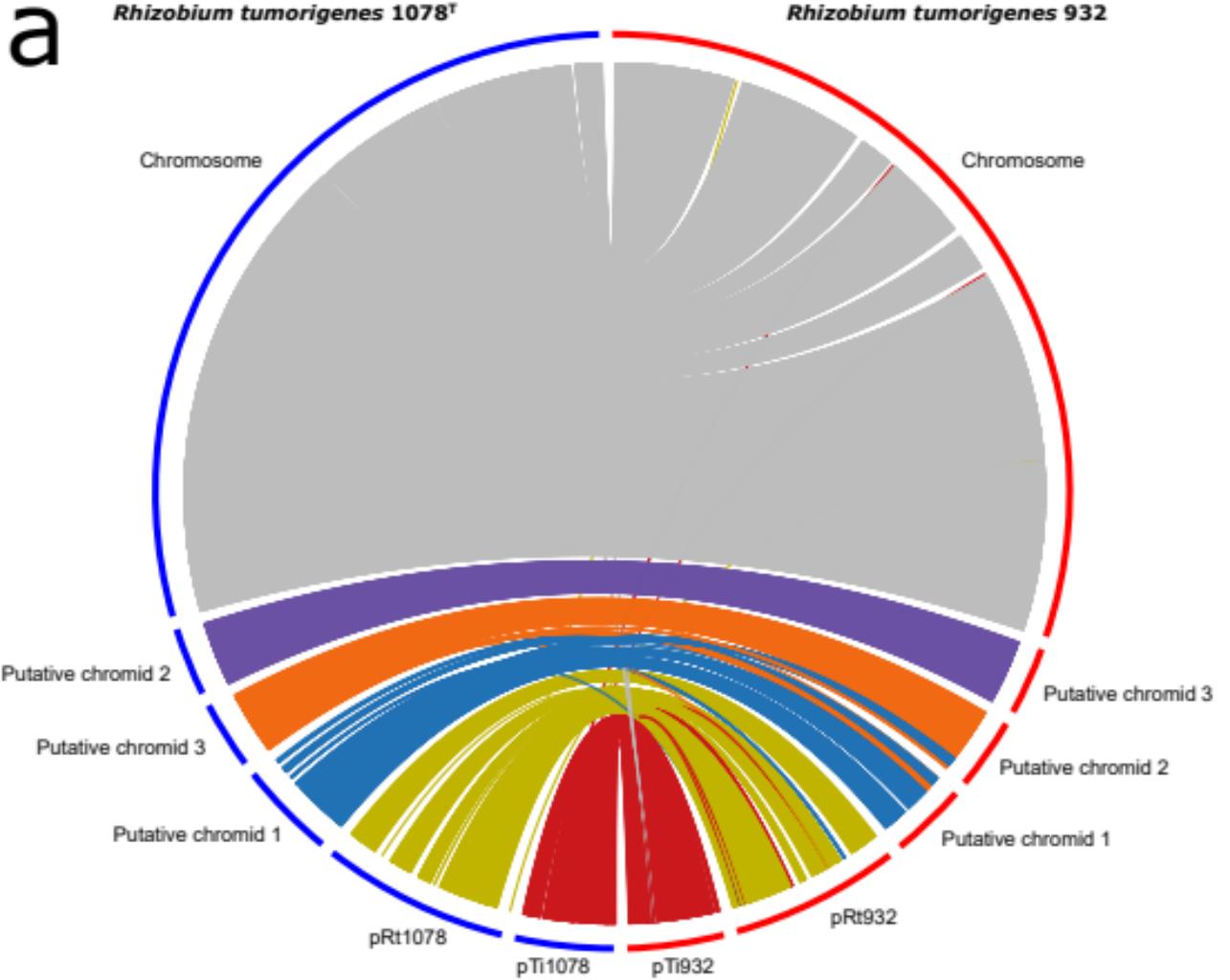
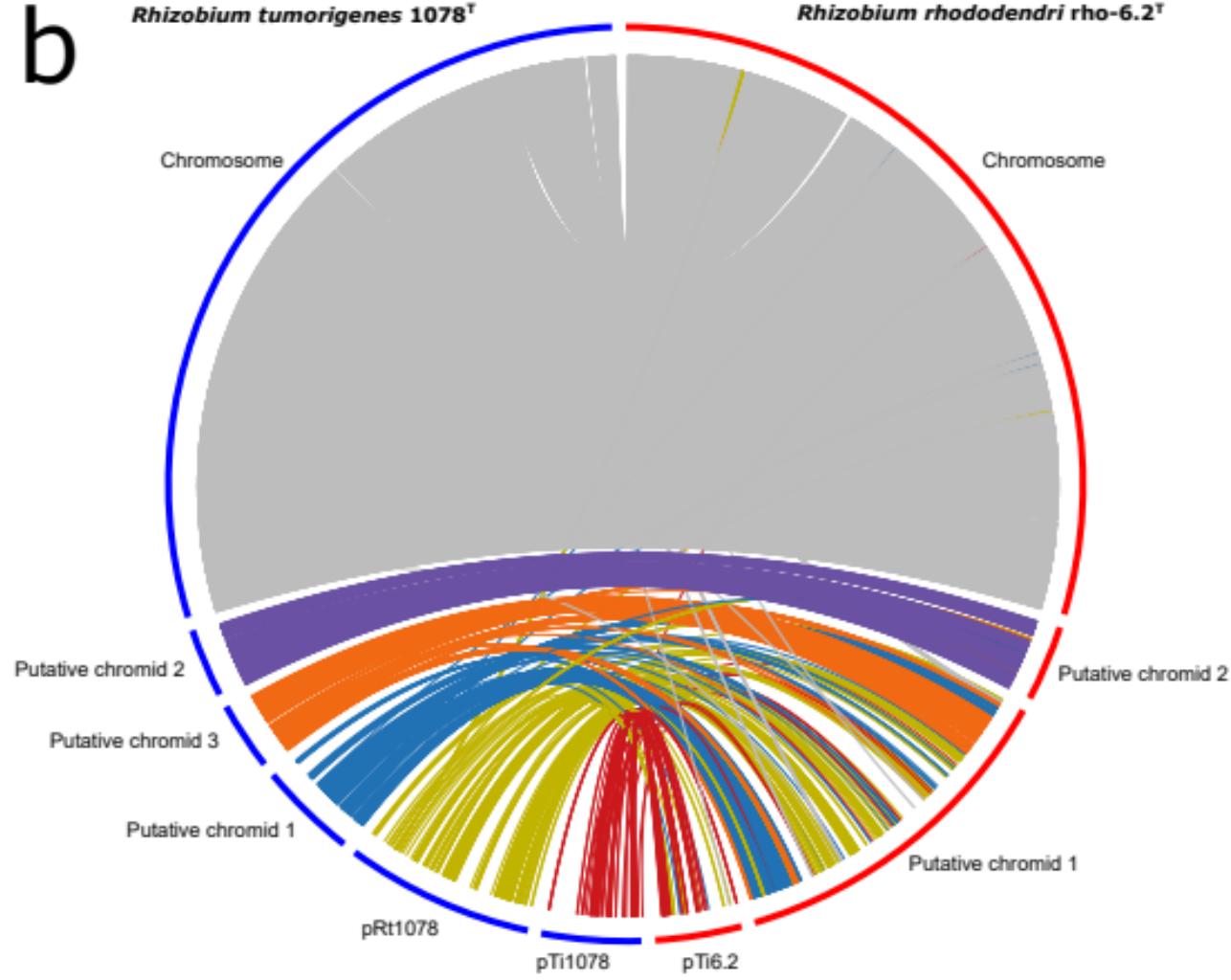
1170 best-fitting GTR2+FO+R8 model. The same tree, but without collapsing clades, is presented
1171 in the Figure A65.

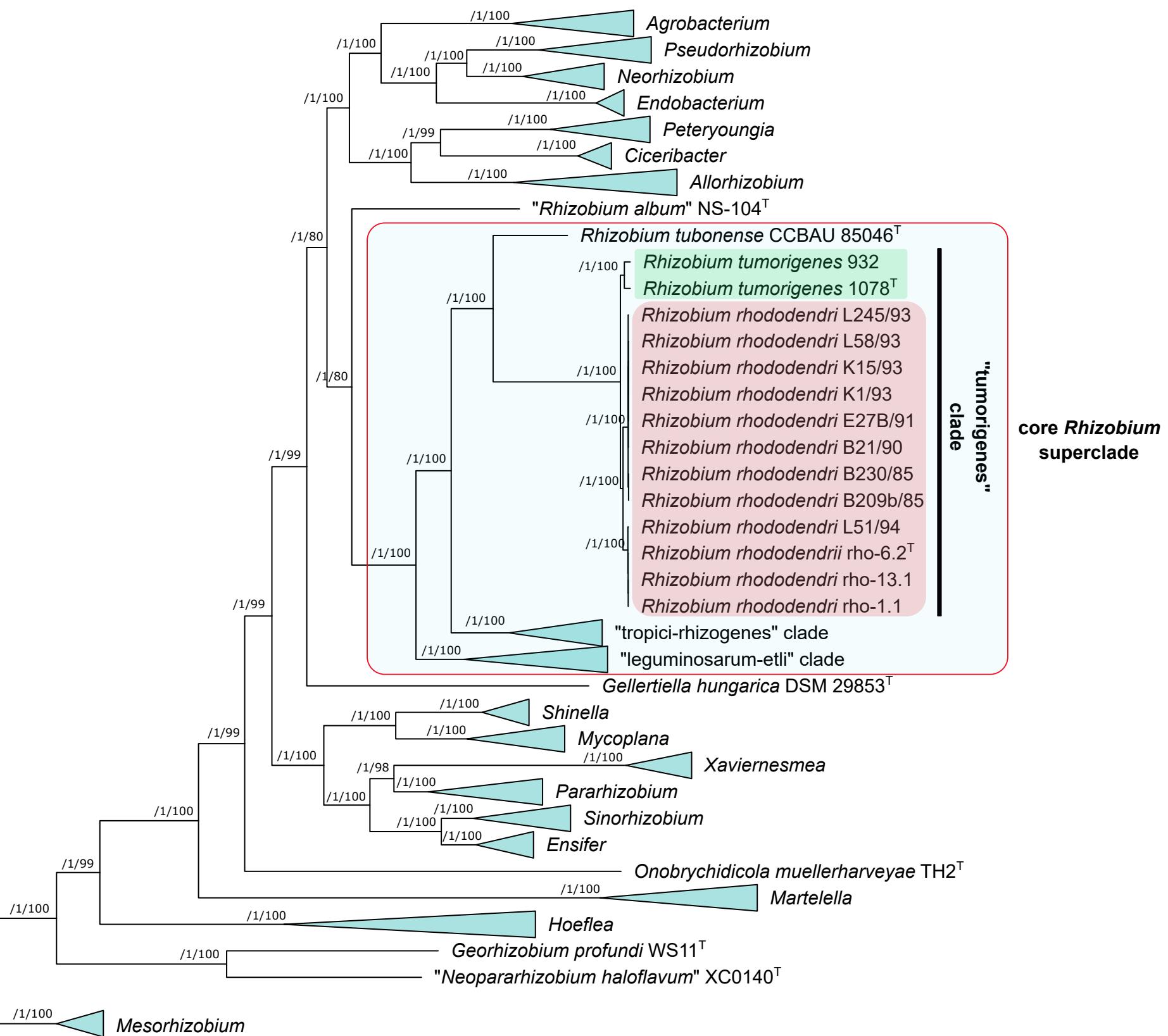



1172

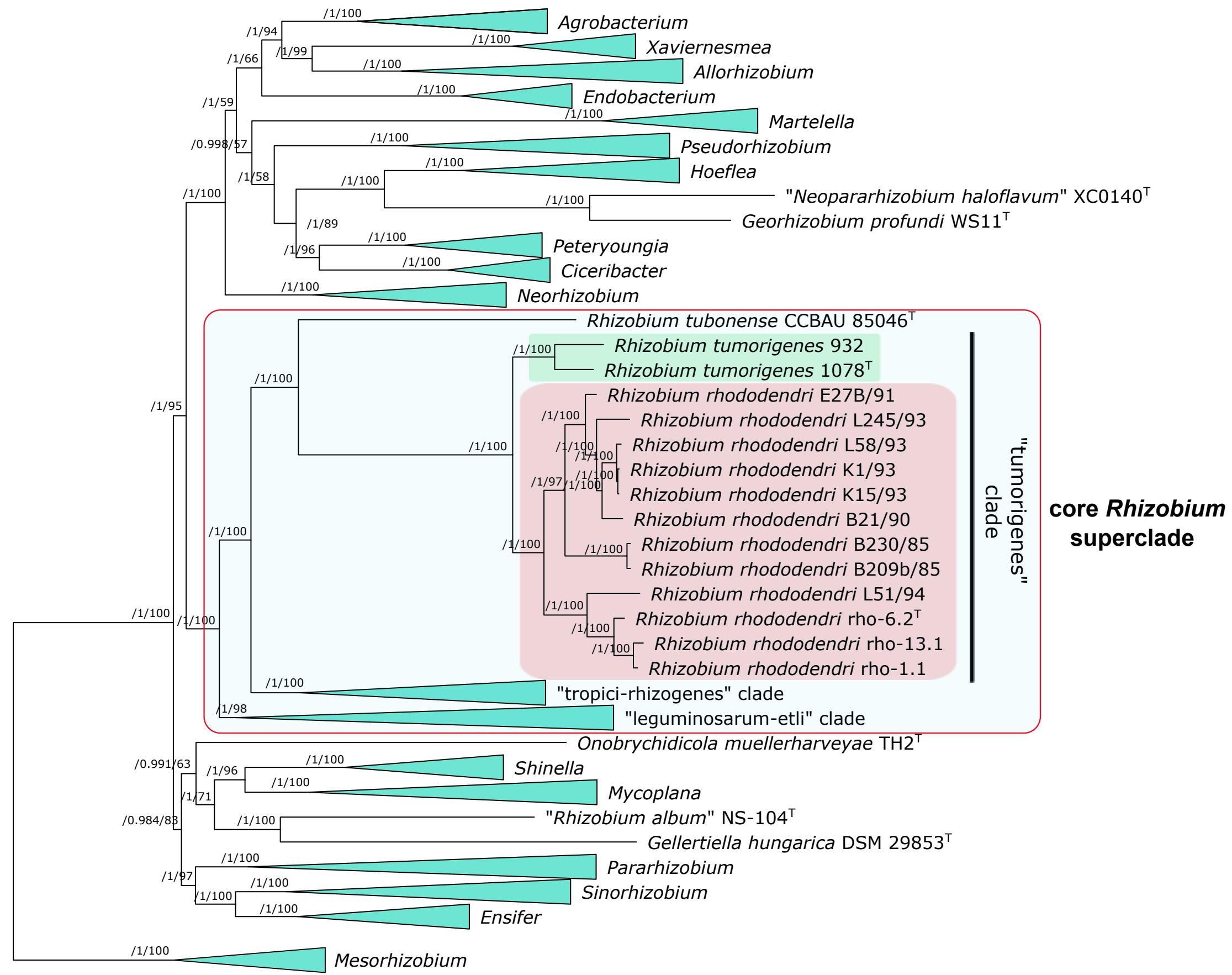
1173 **Figure 5.** Clustered heatmap of core-proteome average amino-acid identity (cpAAI) values
1174 between the members of the clade “tumorigenes” and other *Rhizobiaceae* clades. Three
1175 *Mesorhizobium* spp. strains were included as the outgroup. cpAAI values were computed
1176 from a reference set of 169 protein markers defined in our previous study (Kuzmanović et al.
1177 2022a). Although the original dataset included 170 protein markers, one marker gene was
1178 missing in *Onobrychidicola muellerharveyae* TH2^T, and we therefore excluded this marker
1179 from the analysis. cpAAI values were clustered using the core-proteome phylogeny of Figures
1180 3 and S5. The “tumorigenes” clade and other *Rhizobiaceae* clades are indicated with red
1181 boxes.

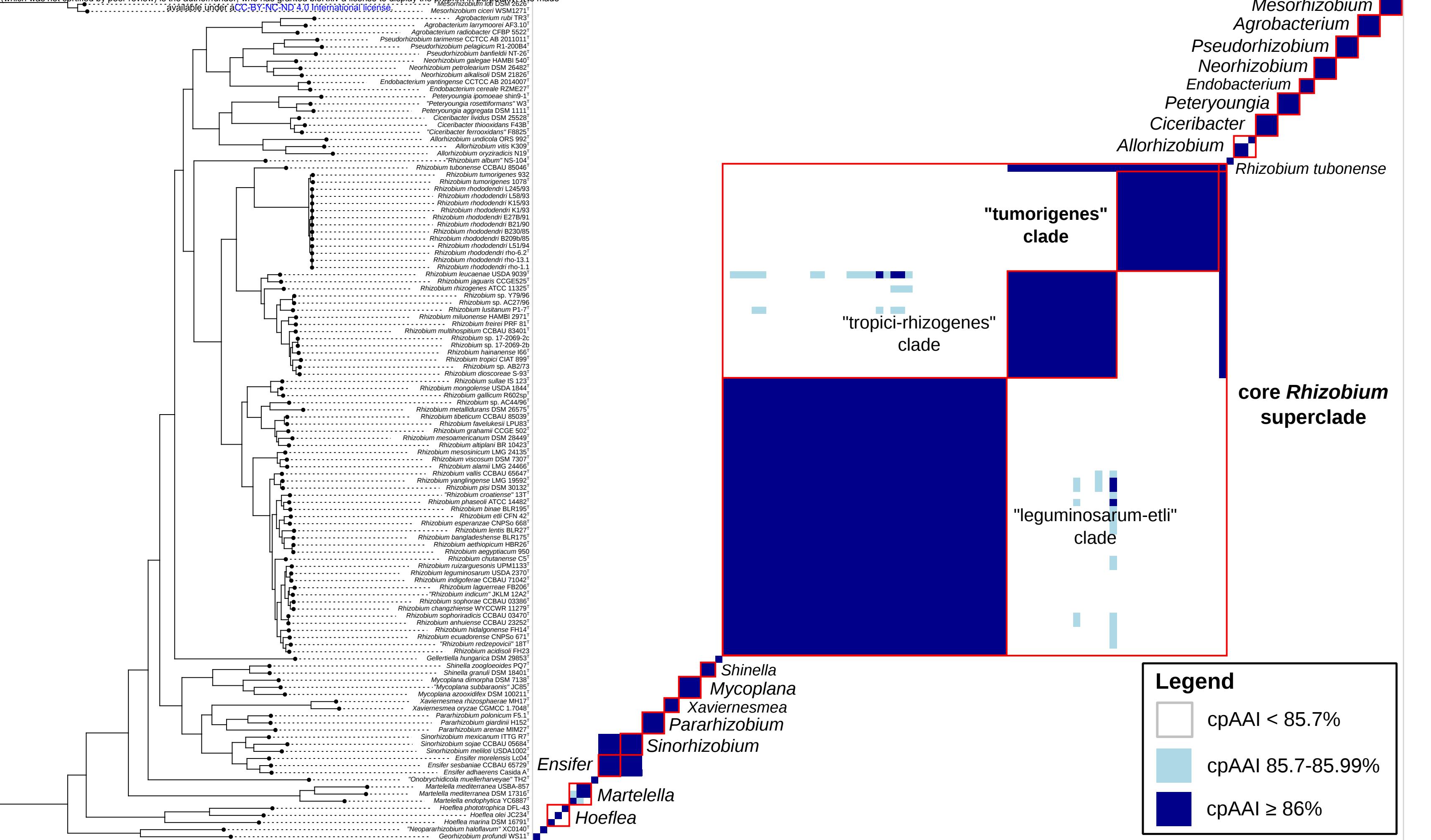

a. *Rhizobium rhododendri* rho-6.2^T


bioRxiv preprint doi: <https://doi.org/10.1101/2023.01.02.522471>; this version posted January 2, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


b. *Rhizobium tumorigenes* 1078^T




c. *Rhizobium tumorigenes* 932

a**b**

