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Abstract 21 

 22 

Difficult decisions typically involve mental effort, which scales with the deployment of cognitive 23 

(e.g., mnesic, attentional) resources engaged in processing decision-relevant information. But 24 

how does the brain regulate mental effort? A possibility is that the brain optimizes a resource 25 

allocation problem, whereby the amount of invested resources balances its expected cost (i.e. 26 

effort) and benefit. Our working assumption is that subjective decision confidence serves as 27 

the benefit term of the resource allocation problem, hence the “metacognitive” nature of 28 

decision control. Here, we present a computational model for the online metacognitive control 29 

of decisions or oMCD. Formally, oMCD is a Markov Decision Process that optimally solves the 30 

ensuing resource allocation problem under agnostic assumptions about the inner workings of 31 

the underlying decision system. We demonstrate how this makes oMCD a quasi-optimal 32 

control policy for a broad class of decision processes, including -but not limited to- progressive 33 

attribute integration. We disclose oMCD’s main properties (in terms of choice, confidence and 34 

response time), and show that they reproduce most established empirical results in the field of 35 

value-based decision making. Finally, we discuss the possible connections between oMCD 36 

and most prominent neurocognitive theories about decision control and mental effort 37 

regulation. 38 

 39 

  40 
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Introduction 41 

 42 

There is no such thing as a free lunch: obtaining reward typically requires investing effort. This 43 

holds even for mental tasks, which may involve mental effort for achieving success (in terms 44 

of, e.g., mnesic or attentional performance). Nevertheless, we sometimes invest very little 45 

mental effort, eventually rushing decisions and falling for all sorts of cognitive biases 1. So how 46 

does the brain regulate mental effort? Recent theoretical neuroscience work proposes to view 47 

mental effort regulation as a resource allocation problem: namely, identifying the amount of 48 

cognitive resources that optimizes a cost/benefit tradeoff 2–4. In this context, mental effort 49 

signals the subjective cost of investing resources, the aversiveness of which is balanced by 50 

the anticipated benefit. In conjunction with simple optimality principles, this idea has proven 51 

fruitful for understanding the relationship between mental effort and peoples’ performance in 52 

various cognitive tasks, in particular those that involve cognitive control 5,6. Recently, it was 53 

adapted to the specific case of value-based decision making, and framed as a self-contained 54 

computational model: the Metacognitive Control of Decisions or MCD 7. 55 

The working assumption here is that decision confidence serves as the main benefit term of 56 

the resource allocation problem 8,9, hence the “metacognitive” nature of decision control. On 57 

the one hand, this formalizes the regulating role of confidence in decision making, which has 58 

recently been empirically demonstrated in the context of perceptual evidence accumulation 59 

10,11. On the other hand, this apparently contrasts with standard treatments of value-based 60 

decision making, which insists on equating the benefit of value-based decisions with the value 61 

of the chosen option 12–14. This notion is a priori appealing, because the purpose of investing 62 

resources into decisions is reducible to approaching reward and/or avoiding 63 

losses/punishments. Nevertheless, the benefit of such resource investments may be detached 64 

from the subjective evaluation of alternative options 15. This is partly because the brain attaches 65 

subjective value to acquiring information about future rewards. In fact, this holds even when 66 

this information cannot be used to influence decision outcomes 16–18. Recall that, in Marr’s 67 

sense, any type of decision induces the same computational problem, i.e. the comparison of 68 
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alternative options. In this view, evidence-based and value-based decisions simply differ w.r.t. 69 

to the underlying comparison criterion: the former relies on truthfulness judgments while the 70 

latter involves idiosyncratic preferences 19. Hence, in both cases, the benefit of allocating 71 

resources to decisions is to raise the chance of identifying the best option, i.e. confidence. In 72 

other words, if resource allocation aims at comparing alternative options, then decision 73 

confidence can be viewed as a probe for goal achievement. This is essentially a simplifying 74 

assumption, in the sense that it enables a unique computational architecture to control 75 

resource allocations, irrespective of the nature of the underlying decision-relevant 76 

computations.  77 

In value-based decision making, confidence derives from the discriminability of uncertain value 78 

representations, which evolve over decision time as the brain processes more value-relevant 79 

information. Low confidence then induces a latent demand for mental effort: the brain refines 80 

uncertain value representations by deploying cognitive resources, until they reach an optimal 81 

confidence/effort trade-off. Interestingly, this mechanism was shown to explain the -otherwise 82 

surprising- phenomenon of choice-induced preference change 7. More importantly, the MCD 83 

model makes quantitative out-of-sample predictions about many features of value-based 84 

decisions, including decision time, subjective feeling of effort, choice confidence and changes 85 

of mind. These predictions have already been tested -and validated- in a systematic manner, 86 

using a dedicated behavioral paradigm (Lee and Daunizeau, 2021). Despite its remarkable 87 

prediction accuracy, the original derivation of the model suffers from one main simplifying but 88 

limiting approximation: it assumes that MCD operates in a purely prospective manner, i.e., the 89 

MCD controller commits to a level of mental effort investment identified prior to the decision. 90 

In principle, this early commitment would follow from anticipating the prospective benefit (in 91 

terms of confidence gain) and cost of effort, given a prior or default representation of option 92 

values that would rely on fast/automatic/effortless processes 20. The issue here, is twofold. 93 

First, it cannot explain variations in decision features (e.g., response time, choice confidence, 94 

etc.) that occur in the absence of changes in default preferences. Second, it is somehow 95 

suboptimal, as it neglects reactive processes, which enable the MCD controller to re-evaluate 96 
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– and improve on- the decision to stop or continue allocating resources, as new information is 97 

processed and value representations are updated. The current work addresses these 98 

limitations, effectively proposing an “online” variant of MCD which we coin oMCD. 99 

As we will see, oMCD reduces to identifying the optimal policy for a specific instance of a 100 

known class of stochastic control problems: namely, “optimal stopping” 21. This kind of problem 101 

can be solved using Markov Decision Processes or MDPs 22, under assumptions regarding the 102 

(stochastic) dynamics of costs and/or benefits. Although less concerned with the notion of 103 

mental effort, a similar MDP has already been derived for a specific type of “ideal” value-based 104 

decisions 14,23,24. The underlying assumption here is threefold: (i) the system that computes 105 

option values is progressively “denoising” -in a Bayesian manner- its input value signals, (ii), 106 

the system that monitors and controls the decision knows how the underlying value 107 

computation system works, and (iii) the net benefit of decisions (i.e. the benefit discounted by 108 

decision time) is the estimated reward rate. The ensuing MDP is very similar to so-called Drift-109 

Diffusion decision models 25,26, whereby the decision stops whenever the current estimate of 110 

option value differences reaches a threshold. Interestingly, the authors show that the 111 

assumptions (i), (ii) and (iii) imply that the optimal threshold is a decreasing function of time. 112 

This is not innocuous, since this predicts that decision confidence necessarily decreases with 113 

decision time, which is not always verified empirically 27. In retrospect, these assumptions may 114 

thus be deemed too restrictive. In this work, we intend to generalize this kind of approaches 115 

by relaxing these three assumptions. 116 

In particular, we will consider that the decision control system (i.e. the system that decides 117 

when to stop deliberating) has only limited information regarding the inner workings of the 118 

system that computes option values. We will show how decision confidence can serve both as 119 

an efficient titration for the benefit of resource investments and as a shortcut summary statistic 120 

for (hidden) value computations. That is, we will show that confidence monitoring is sufficient 121 

to operate quasi-optimal decision control for a wide class of value-based decision processes. 122 

We demonstrate the generalizability of the ensuing oMCD policy on two distinct decision 123 
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scenarios. In the above “Bayesian value denoising” case, it replicates existing MDPs and 124 

extends their repertoire of confidence/RT relationships. We also consider the case of value 125 

computation by progressive attribute integration 28–33. As we will see, the latter scenario cannot 126 

be reduced to the Bayesian value denoising case. This is because the main source of 127 

uncertainty in value representations derive (as is the case for, e.g., forward planning) from the 128 

arbitrary incompleteness of value computations. We demonstrate that, for both decision 129 

scenarios, oMCD’s control policy provides a close approximation to the ideal control policy, 130 

which requires complete knowledge of the underlying value computations. We also identify 131 

testable properties of oMCD control policies under both types of value computations, and show 132 

that they are reminiscent of empirical value-based decisions.  133 

 134 

  135 
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Methods 136 

 137 

As we will see below, deriving an optimal reactive variant of MCD requires specific 138 

mathematical developments, which falls under the frame of Markov decision processes 22. But 139 

before we describe the oMCD model, let us first recall the prospective variant of MCD 7. 140 

Note on ethics (see data re-analysis in the Results section): This work complies with all 141 

relevant ethical regulations and received formal approval from the INSERM Ethics Committee 142 

(CEEI-IRB00003888, decision no 16–333). All participants gave informed consent. 143 

 144 

 145 

1. The prospective MCD model 146 

Note: this section is a summary of the mathematical derivation of the MCD model, which has 147 

already been published 7. 148 

Let z  be the amount of cognitive (e.g., executive, mnemonic, or attentional) resources that 149 

serve to process value-relevant information. Allocating these resources will be associated 150 

with both a benefit  B z , and a cost  C z . As we will see, both are increasing functions 151 

of z :  B z  derives from the refinement of internal representations of subjective values of 152 

alternative options or actions that compose the choice set, and  C z  quantifies how 153 

aversive engaging cognitive resources is (mental effort). In line with the framework of 154 

expected value of control 2,4, we assume that the brain chooses to allocate the amount of 155 

resources ẑ  that optimizes the following cost-benefit trade-off: 156 

   ˆ arg max
z

z E B z C z            (1) 157 

where the expectation accounts for the anticipated impact of allocating resources into decision 158 

deliberation (this will be clarified below). Here, the benefit term is simply given by 159 

   cB z R P z  , where  cP z  is choice confidence and its weight R  quantifies the 160 
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importance of making a confident decision. As we will see,  cP z  plays a pivotal role in the 161 

model, in that it captures the efficacy of allocating resources for processing value-relevant 162 

information. So, how do we define choice confidence? 163 

We assume that the subjective evaluation of alternative options in the choice set is uncertain. 164 

In other words, the internal representations of values of alternative options are probabilistic. 165 

Such a probabilistic representation of value can be understood in terms of, for example, an 166 

uncertain prediction regarding the to-be-experienced value of a given option. In what follows, 167 

the probabilistic representation of option value iV  takes the form of Gaussian probability 168 

density functions    ,i i ip V N   , where i  and i  are the mode and the variance of the 169 

probabilistic value representation, respectively (and i  indexes alternative options in the choice 170 

set). This allows us to define choice confidence cP  as the probability that the (predicted) 171 

experienced value of the (to be) chosen item is higher than that of the (to be) unchosen item. 172 

When the choice set is composed of two alternatives, cP  is given by: 173 

 1 23
cP s

 

 

 
 
  

         (2) 174 

where   1 1 xs x e   is the standard sigmoid mapping, and we assume that the choice 175 

follows the sign of the preference 1 2     . Equation (2) simply derives from a moment-176 

matching approximation to the Gaussian cumulative density function 34. Note that Equation 2 177 

implicitly assumes that the option with the highest value estimate is chosen. This satisfies the 178 

same formal criteria as for choice confidence in the context of evidence-based decisions 35. 179 

We assume that the brain valuation system may, in some contexts, automatically generate 180 

uncertain estimates of options' value 36,37, before cognitive effort is invested in decision making. 181 

In what follows, 
0

i  and 
0

i  are the mode and variance of the ensuing prior value 182 

representations. They yield an initial confidence level 
0

cP . Importantly, this prior or default 183 
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preference neglects existing value-relevant information that would require cognitive effort to 184 

be retrieved and processed 20. 185 

Now, how can a decision control system anticipate the benefit of allocating resources to the 186 

decision process without knowing the details of the underlying value computations? Recall that 187 

the purpose of allocating resources is to process (yet unavailable) value-relevant information. 188 

The critical issue is thus to predict how both the uncertainty i  and the modes i  of value 189 

representations will eventually change, before having actually allocated the resources (i.e., 190 

without having processed the information). In brief, allocating resources essentially has two 191 

impacts: (i) it decreases the uncertainty i , and (ii) it perturbs the modes i  in a stochastic 192 

manner. 193 

The former impact (i) derives from assuming that the amount of information that will be 194 

processed increases with the amount of allocated resources. This implies that the precision 195 

 1 i z  of a given probabilistic value representation necessarily increases with the amount 196 

of allocated resources, i.e.: 197 

  01 1i iz z              (3) 198 

where 
01 i  is the prior precision of the representation (before any effort has been allocated), 199 

and   controls the efficacy with which resources increase the precision of the value 200 

representation. More precisely,   is the precision increase that follows from allocating a 201 

unitary amount of resources z . In what follows, we will refer to   as "type #1 effort efficacy". 202 

Note that if 0  , then mental effort brings no improvement in the precision of value 203 

representations. 204 

The latter impact (ii) follows from acknowledging the fact that the control system cannot know 205 

how processing more value-relevant information will affect its preference before having 206 

allocated the corresponding resources. Let i  be the change in the position of the mode of 207 
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the i th value representation, having allocated an amount z  of resources. The direction of the 208 

mode's perturbation i  cannot be predicted because it is tied to the information that is yet to 209 

be processed. However, a tenable assumption is to consider that the magnitude of the 210 

perturbation increases with the amount of information that will be processed. This reduces to 211 

stating that the variance of i  increases with z , i.e.: 212 

 

 

0

0,

i i i

i

z

N z

  

 

 
          (4) 213 

where 
0

i  is the mode of the value representation before any effort has been allocated, and 214 

  controls the relationship between the amount of allocated resources and the variance of the 215 

perturbation term  . The higher  , the greater the expected perturbation of the mode for a 216 

given amount of allocated resources. In what follows, we will refer to   as "type #2 effort 217 

efficacy". Note that Equation 4 treats the impact of future information processing as some form 218 

of random perturbation on the mode of the prior value representation. Importantly, Equation 4 219 

is not specific to the type of value computations that eventually perturbs the value modes. Our 220 

justification for this assumption is twofold: it is simple, and it captures the idea that the MCD 221 

controller is agnostic about how the allocated resources will be used by the underlying 222 

valuation/decision system. We will see that, in spite of this, the MCD controller can still make 223 

quasi-optimal predictions regarding the expected benefit of allocating resources, under very 224 

different value computation schemes. 225 

Now, predicting the net effect of resource investment onto choice confidence (from Equations 226 

(3) and (4)) is not entirely trivial. On the one hand, allocating effort will increase the precision 227 

of value representations, which mechanically increases choice confidence, all other things 228 

being equal. On the other hand, allocating effort can either increase or decrease the absolute 229 

difference  z  between the modes (and hence increase or decrease choice confidence). 230 

This depends upon the direction of the perturbation term  , which is a priori unknown. Having 231 
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said this, it is possible to derive the expected absolute mode difference (as well as its variance) 232 

that would follow from allocating an amount z  of resources: 233 

 

   

2
0 0

0

22
0

2 exp 2 1
4 6

2

z
E z s

z z

V z z E z

  
 

  

   

                            

            

  (5) 234 

where we have used the expression for the first-order moment of the so-called "folded normal 235 

distribution". Importantly,  E z    is always greater than 
0  and increases 236 

monotonically with z  - as is  V z   . In other words, allocating resources is expected 237 

to increase the value difference, even though the impact of the perturbation term can go either 238 

way. 239 

Equation 5 now enables us to derive the expected confidence level    c cP z E P  that 240 

would result from allocating the amount of resource z : 241 

 
 

  
3

2 41
1

2

c

E z
P z s

V z

 

 

 
    
 
      

      (6) 242 

where     1 21 3 z z    . Of course,   00c cP P , i.e., investing no resources yields no 243 

confidence gain. Moreover, the expected choice confidence  cP z  always increase with z , 244 

irrespective of the efficacy parameters, as long as 0   or 0  . Equation 6 is important, 245 

because it quantifies the expected benefit of resource allocation, before having processed the 246 

ensuing value-relevant information. 247 

To complete the cost-benefit model, we simply assume that the cost of allocating resources to 248 

the decision process increases monotonically with the amount of resources, i.e.: 249 
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 C z z           (7) 250 

where   determines the effort cost of allocating a unitary amount of resources z  (we refer to 251 

  as the "unitary effort cost"), and   effectively controls the range of resource investments 252 

that result in noticeable cost variations (we refer to   as the "cost power"). 253 

Finally, the MCD-optimal resource allocation ẑ  is identified by replacing Equations (5), (6) and 254 

(7) into Equation (1). This can be done before any resource has been invested, hence the 255 

prospective nature of metacognitive control, here. 256 

 257 

 258 

2. Online MCD: optimal control policy 259 

We now augment this model, by assuming that the MCD controller re-evaluates the decision 260 

to stop or continue allocating resources, as value representations are being updated and online 261 

confidence is changing. This makes the ensuing oMCD model a reactive extension of the 262 

above "purely prospective" MCD model, which relieves the system from the constraint of effort 263 

investment pre-commitment. 264 

Let t  be the current time within a decision. For simplicity, we assume that there is a linear 265 

relationship between deliberation time and resource investment, i.e.: z t , where   is the 266 

amount of resources that is spent per unit of time. We refer to   as “effort intensity”. By 267 

convention, the maximal decision time T  (the so-called temporal horizon) corresponds to the 268 

exhaustion of all available resources. This implies that 1T  because we consider 269 

normalized resources amounts.  270 

Now, at time t , the system holds probabilistic value representations with modes  t  and 271 

variance  t . This yields the confidence level   cP t  given in Equation 2 above, where 272 

we have made confidence an explicit function of  t  for mathematical convenience (see 273 

below).  274 
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This confidence level can be greater or smaller than the initial confidence level 
0

cP , because 275 

new information regarding option values has been assimilated since the start of the 276 

deliberation. Of course, the system will anticipate that investing additional resources will 277 

increase its confidence (on average). But this may not always overcompensate the cost of 278 

spending more resources on the decision. Thus, how should the system determine whether to 279 

stop or to continue, in order to maximize the expected cost-benefit tradeoff? It turns out that 280 

this problem is one of optimal stopping, which is a special case of Markov Decision Processes 281 

22,38. As we will see, it can be solved recursively (backward in time) using Bellman’s optimality 282 

principle 39. 283 

Let    0,1a t   be the action that is taken at time t , where   0a t   (resp.   1a t  ) means 284 

that the system stops (resp. continues) deliberating. Let     ,Q a t t  be the net benefit 285 

that the decision system would obtain at time t : 286 

    
  

 

 
 

   if 0

,

0  otherwise

c

C zB z

R P t t a t

Q a t t


  



    


  



     (8) 287 

where both the benefits  B z  and costs  C z  of resource investments have been rewritten 288 

in terms of decision time. Without loss of generality, Equation 9 states that the net benefit of 289 

resource allocation is only realized when the system decides to stop (   0a t  ). Note that 290 

    ,Q a t t  is also a function of time (through the precision of value representations and 291 

effort cost), but we have ignored this dependency for the sake of notational conciseness. 292 

A time t , the optimal control policy derives from a comparison between the net benefit of 293 

stopping now - i.e.,   0,Q t  - and some -yet undefined- threshold  t , which may 294 

depend upon time. Let  t  be the control policy (i.e., the temporal sequence of continue/stop 295 

decisions) that is induced by the threshold  t : 296 
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 
    0 if 0,

1 otherwise

Q t t
t

 


  
 


        (9) 297 

Finding the optimal control policy  * t  thus reduces to finding the optimal threshold  * t . 298 

By definition, at t T , the system stops deliberating irrespective of its current net benefit 299 

  0,Q T . By convention, the optimal threshold  * T  can thus be written as: 300 

 
 

  

 

 

* min 0,

0,0,

2

T
T Q T

Q T

R T





 

 


 



 

         (10) 301 

Now, at 1t T  , the net benefit   0, 1Q T   of stopping now can be compared to the 302 

expected net benefit     0, 1E Q T T       of stopping at time t T , conditional on the 303 

current value mode difference  1T  : 304 

           0, 1 1cE Q T T R E P T T T


                       (11) 305 

where the expectation is taken under the transition probability density     1p T T     306 

of the value mode difference for a unitary time increment ( 1t z     ). This density 307 

derives from rewriting Equation 4 in terms of the instantaneous change in the moments of the 308 

value representations. It is trivial to show that the corresponding first- and second-order 309 

moments are    1 0i iE t t       and     
2

1i iE t t     
 

, respectively. It 310 

follows that the transition probability density of the value mode difference is stationary (i.e. it 311 

does not depend upon time) and is given by: 312 

       1 1 ,2 1p t t N t t                 (12) 313 

which is of course valid for t T .  314 
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The optimal policy is to stop if        0, 1 0, 1Q T E Q T T          , and to continue 315 

otherwise. Note that both   0, 1Q T   and     0, 1E Q T T       are deterministic 316 

functions of  1T  . More precisely, they are both monotonically increasing with  1T   317 

(see Figure 1 below), because current confidence and expected future confidence 318 

monotonically increase with  1T  . Critically, these functions have a different offset, i.e.: 319 

      0,0 0, 1 0Q E Q T T         as long as 0  . In addition, they eventually reach 320 

a different plateau, i.e.: 
 

  
 

    
1 1

lim 0, 1 lim 0, 1 1
T T

Q T E Q T T
 

  
     

          as 321 

long as 0  . This is important, because this implies that there exists a critical value mode 322 

difference  * 1T   such that        * *0, 1 0, 1Q T E Q T T        
  . The net 323 

benefit at that critical point is the optimal threshold at 1t T  , i.e.: 324 

    * *1 0, 1T Q T     . This is exemplified in Figure 1 below. 325 

 326 

Now, let us move one step backward in time, at 2t T  . Here again, the optimal policy is to 327 

stop if the current net benefit   0, 2Q T   is higher than the expected future net benefit 328 

      1 , 1 2E Q a T T T        , conditional on  2T  . However, the latter now 329 

depends upon  1a T  , i.e., whether the system will later decide to stop or to continue: 330 

      
      

      

0, 1 2   if 1 0
1 , 1 2

0, 1 2   otherwise

E Q T T a T
E Q a T T T

E E Q T T T

 
 

  

        
                  

331 

            (13) 332 

The optimal control policy cannot be directly identified from Equation 13. This is where we 333 

resort to Bellman's optimality principle: namely, whatever the current state and action are, the 334 

remaining actions of an optimal policy must also constitute an optimal policy with regard to the 335 
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state resulting from the current action 39. Practically speaking, the derivation of the optimal 336 

threshold at 2t T   is done under the constraint that oMCD’s next action follows the optimal 337 

policy, i.e.,    *1 1a T T   . 338 

Let        * * ,Q t Q t t      be the net benefit evaluated under the optimal policy at 339 

time t , which we refer to as the “optimal net benefit”. Under Bellman's optimality principle, the 340 

optimal policy at 2t T   is to stop if the current net benefit   0, 2Q T   is higher than 341 

the expected optimal net benefit     * 1 2E Q T T       , where the expectation is 342 

again taken under the transition probability density in Equation 12. 343 

Now, at time 1t T  , the optimal net benefit is given by: 344 

           * 1 max 0, 1 , 0, 1Q T Q T E Q T T               (14) 345 

Note that   * 1Q T   is just another function of  1T   (cf. dotted green curve in Figure 346 

1). This means that the only source of stochasticity in   * 1Q T   comes from  1T  , 347 

which can nonetheless be predicted (with some uncertainty), given the current value mode 348 

difference  2T  . In turn, this makes the expected optimal net benefit 349 

    * 1 2E Q T T        a deterministic function of  2T  . Again, as long as 0   350 

and 0  , there exists a critical value mode difference  * 2T   such that 351 

       * * *0, 2 1 2Q T E Q T T         
  . The net benefit at that critical point is the 352 

optimal threshold  * 2T   at 2t T  . 353 

In fact, the reasoning is the same for all times 1t T  : 354 

First, the expected optimal net benefit obeys the following backward recurrence relationship 355 

(Bellman equation for all 1t T  ): 356 
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               * *1 max 0, , 1 1E Q t t E Q t E Q t t t                       
 357 

            (15) 358 

This equation is solved recursively backward in time, starting at the expected net benefit at 359 

1t T  , as given in Equation 11. Both expectations in Equation 15 are taken under the 360 

transition probability density     1p t t     of the value mode difference under a unitary 361 

resource investment (cf. Equation 12). 362 

Second, the optimal threshold at time t  is given by: 363 

    * *0,t Q t            (16) 364 

where  * t  is the critical value mode difference, i.e.,  * t  is such that: 365 

         * * *0, 1Q t E Q t t t          
       (17) 366 

Since the net benefit is a deterministic function of decision confidence, the oMCD-optimal 367 

threshold  * t  for net benefits can be transformed into an oMCD-optimal confidence 368 

threshold  *

P t . Replacing the net benefit with the optimal threshold  * t  and confidence 369 

with  *

P t  in Equation 9 yields: 370 

 
   *

*

P

t t
t

R


  




          (18) 371 

At any point in time, comparing the net benefit   0,Q t  of resource allocation to  * t  is 372 

exactly equivalent to comparing the current confidence level  cP t  to  *

P t . In other terms, 373 

the optimal control policy (cf. Equation 10) can be rewritten as: 374 

 
   *

*
0 if 

1 otherwise

c PP t t
t




 
 


        (19) 375 

This highlights the central role of confidence, whose monitoring (during deliberation) is a 376 

sufficient condition for operating optimal decision control. In turn, this greatly simplifies the 377 
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decision control architecture because knowledge about the underlying decision-relevant 378 

computations is not required. As we will see later, oMCD is flexible (i.e. it encompasses many 379 

kinds of decision processes) and robust to deviations from its working assumptions (i.e. it 380 

provides a tight approximation to optimal control under alternative settings of the resource 381 

allocation problem).   382 

This closes the derivation of oMCD's optimal control policy. 383 

 384 

Although the derivation of oMCD’s optimal control policy is agnostic w.r.t. the underlying value 385 

computations, it still requires some prior information regarding the upcoming information 386 

processing: namely, prior moments of value representations, type #1 and #2 effort efficacies, 387 

decision importance, unitary effort cost and cost power. This means that oMCD implicitly 388 

includes a prospective component, which is used to decide how to optimally react to a 389 

particular (stochastic) internal state of confidence. In other terms, one can think of oMCD as a 390 

mixed prospective/reactive policy, whose prospective component is the shape of the 391 

confidence threshold temporal dynamics. 392 

Figure 2 below shows a representative instance of oMCD's optimal control policy, from 1000 393 

Monte-Carlo simulations (using decision parameters R=1, α=0.2, β=1, γ=4, κ=1/100, υ=0.5, σ0=1).  394 

 395 

First, one can see that oMCD’s optimal confidence threshold  *

P t  lies above the average 396 

confidence level  cP t  of its prospective variant (cf. Equation 6, whose Monte-Carlo estimate 397 

is depicted by the blue line in panel B). This means that oMCD’s control policy would, in most 398 

cases, demand higher confidence than prospective MCD. Importantly however, oMCD’s policy 399 

is sensitive to unpredictable fluctuations in the trajectory of value modes, which will induce 400 

variations in resource investments (or, equivalently, response times). This enables oMCD to 401 

exploit favorable variations in confidence if they eventually reach the threshold sooner than 402 

expected. 403 
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Note that the confidence threshold  *

P t  is, by construction, the confidence level that the 404 

system achieves when committing to its decision. This means that, under oMCD’s policy, the 405 

relationship between reported confidence levels and response times is entirely determined by 406 

the shape of the optimal threshold dynamics. In this example, this relationship will be mostly 407 

negative, i.e. reported confidence levels tend to decrease when response times increase. This 408 

is despite the fact that average confidence  cP t  always increases as decision time unfolds, 409 

as long as effort efficacy parameters are nonzero. In other words, the overt relationship 410 

between response times and reported confidence levels (across trials) may be qualitatively 411 

different from the covert temporal dynamics of confidence during decision deliberation. 412 

So what is the impact of decision parameter on oMCD’s confidence threshold dynamics? This 413 

is summarized in Figure 3 below, where we systematically vary each parameter in turn (when 414 

setting all the others to unity). 415 

 416 

The net effect of increasing effort efficacy (either type #1 or type #2) is to increase the absolute 417 

confidence threshold. In other terms, the demand for confidence increases with effort efficacy. 418 

In contrast, the demand for confidence decreases with unitary effort cost. Note that the effect 419 

of increasing decision importance (not shown) is exactly the same as that of decreasing unitary 420 

effort cost. Importantly, the shape of the confidence threshold dynamics is approximately 421 

invariant to changes in effort efficacy or unitary effort cost.  422 

The only parameter that eventually changes the qualitative dynamics of oMCD’s optimal 423 

confidence threshold is the effort cost power (panel D). In brief, increasing the cost power 424 

tends to decrease the initial slope of oMCD’s confidence threshold dynamics. Here, the latter 425 

eventually falls below zero (i.e., the confidence threshold decreases with decision time) when 426 

the effort cost becomes superlinear (ν>1). This is because, in this case, late resource 427 

investments are comparatively more costly than early ones. 428 

Note that, in contrast to effort efficacies, effort cost parameters can be altered without changing 429 

the dynamics of expected confidence. In other terms, the shape of the relationship between 430 
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decision time and confidence is, for the most part, independent from the inner workings of the 431 

underlying decision system. 432 

Let us now relate the MCD framework to standard decision processes, which differ in terms of 433 

their respective value computations. 434 

 435 

3. How does MCD relate to standard decision processes? 436 

By itself, the MCD framework does not commit to any specific assumption regarding how value-437 

relevant information is processed. Nevertheless, the properties of decisions that are controlled 438 

through MCD actually depend upon how probabilistic value representations change over time. 439 

In what follows, we focus on two specific scenarios of value computations, and disclose their 440 

connection with MCD. 441 

 442 

 Bayesian value denoising. 443 

Let us first consider the Bayesian value denoising case, in which value representations are 444 

updated Bayesian beliefs on a hidden value signal. Note that, in this case, the optimal control 445 

rule - for maximizing expected reward rate - reduces to a specific instance of so-called drift-446 

diffusion decision models with decaying bounds on the estimated value difference 14,24. 447 

Assume that, at each time point, the decision system receives an unreliable copy  y t  of the 448 

(hidden) value V  of each alternative option. More precisely,  y t   is a noisy input signal that 449 

is centered on V , i.e.:    y t V t  , where the random noise term  t  is i.i.d. Gaussian 450 

with zero mean and variance   (and we have dropped the option indexing for notational 451 

simplicity). One may think of   as measuring the (lack of) reliability of the input value signal. 452 

This induces the following likelihood function for the hidden value:     ,p y t V N V  . 453 

Finally, assume that the decision system holds a Gaussian prior belief about the hidden 454 
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options’ value, i.e.:    0 0,p V N   , where 0  and 0  are the corresponding prior mean 455 

and variance. At time t, a Bayesian observer would assimilate the series of noisy signals to 456 

derive a probabilistic (posterior) representation          1 ,..., ,p V y y t N t t   of 457 

hidden options’ values with the following mean and variance 40: 458 

   

 

0

0

1

1 1

t t

t

t

  





  


 
  
 

          (20) 459 

where the perturbation   of the value mode is given by: 460 

    0

' 1

0

1 t

t

t y t

t

 




 


          (21) 461 

Equation 21 specifies what the perturbation to the value mode would be, if the underlying value 462 

computation was a process of Bayesian value denoising, whose outcome is the posterior 463 

estimate      1 ,...,t E V y y t      of value. In brief, Equation 21 states that the value mode 464 

changes in proportion to prediction errors (i.e.,   0y t  ), which the Bayesian observer 465 

accumulates while sampling more input value signals. The stochasticity of the value mode’s 466 

perturbation   is driven by the random noise term   in the incoming noisy value signal. 467 

Conditioned on the hidden value V , it is easy to show that 0E V V      . This implies 468 

that the random walk in Equation 21 actually has a nonzero drift that is proportional to the 469 

hidden value. Importantly however, the Bayesian observer does not know what the hidden 470 

value V  is. Prior to observing noisy value signals, its expectation is simply that 471 

    0E y E V    and therefore 0E     . In fact, this holds true at any time t: the Bayesian 472 

observer’s expectation about the future change in its value belief mode, i.e. 473 
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       1 1 ,...,E t t y y t     , is always zero, because its expectation about the next 474 

value signal reduces to her current value mode, i.e.        1 1 ,...,E y t y y t t    . In other 475 

words, although the modes’ perturbation   actually have a nonzero mean (as long as V  476 

deviates from the mode of the observer’s belief), the Bayesian observer’s expectation about 477 

its future realizations is always zero.  478 

Nevertheless, the Bayesian observer can accurately predict how the precision of its belief will 479 

change with time. Comparing Equations 3 and 20 suggests that, under the Bayesian value 480 

denoising scenario, type #1 effort efficacy reduces to: 1   . This means that type #1 effort 481 

efficacy simply increases with the reliability of the input value signal. 482 

In addition, although the Bayesian observer cannot anticipate in what direction the to-be-483 

sampled signal  y t  will modify the mode of its posterior belief, it can derive a prediction over 484 

the magnitude of the perturbation: 485 

 
2 0

2

0

t
E t t

t






    
 

 
 

 

         (22) 486 

where the expectation is derived under the agent’s prior belief about the hidden value. Now, 487 

Equation 4 defines type #2 effort efficacy in terms of the ratio  
2

E t t  
 

 of expected change 488 

magnitude over effort investment (where z t ). Note that, under Equation 22, this quantity 489 

varies as a function of decision time. Thus, under the Bayesian value denoising scenario, type 490 

#2 effort efficacy can be approximated as its sample average over all admissible decision 491 

times, i.e.:    
2

0 01
1

T

t
T t t   


    . This is only an approximation of course, since 492 

 
2

E t 
   eventually tails off as time increases, because noisy value signals that are sampled 493 

later in time have a smaller effect on the posterior mode. In other words, were the MCD 494 
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controller to know about the inner computations of the underlying value updating system, it 495 

would rely on Equation 22 rather than on Equation 4. The ensuing ideal control policy is 496 

summarized in the Supplementary Methods 1 in the Supplementary Information. 497 

 498 

 The progressive attribute integration case. 499 

Second, let us consider another type of value computation, which essentially proceeds from 500 

progressively integrating the value-relevant attributes of choice options. This typically happens 501 

when choice options can be decomposed into multiple dimensions that may conflict with each 502 

other (cf., e.g., tastiness versus healthiness for food items).  503 

Let 1,..., kx x  be the set of k such value-relevant attributes, the combination of which is specific 504 

to each option. Assume that the decision system constructs the value of alternative options 505 

according to a weighted sum of attributes, i.e.: k kk
V w x  , where the attribute weights 506 

kw  are the same for all options. Assume that each attribute is sampled from a Gaussian 507 

distribution with mean k  and variance k , i.e.    ,k k kp x N   . Finally, assume that 508 

attributes are available to the decision system one at a time, i.e. decision time steps co-occur 509 

with attribute-disclosing events. For the sake of simplicity, we set the decision’s temporal 510 

horizon to T k , i.e. we focus on the decision to stop (potentially prematurely) the integration 511 

of all available value-relevant attributes. In what follows, we refer to this scenario as the 512 

progressive attribute integration model. 513 

In the absence of default preferences, the system holds a prior representation about the 514 

options’ value that is maximally uninformative. This is because, prior to any value computation, 515 

any combination of value-relevant attributes is admissible, and the system did not disclose the 516 

options’ attributes yet. The first two moments of the system’s prior value representation 517 

   0 0,p V N    are thus given by: 518 
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          (23) 519 

where of k  is the number of value-relevant attributes. 520 

Now, as time unfolds and the decision system discloses the value-relevant attributes, it 521 

progressively removes sources of uncertainty about the value of alternative options. In 522 

principle, if the system reaches the temporal horizon, then it knows all the attributes and can 523 

evaluate the alternative options with infinite precision. However, as long as some attributes are 524 

missing, value representations remain uncertain. Let  K t  be the set of attribute indices that 525 

have been available to the decision system up until time t. At time t, the decision system thus 526 

holds an updated probabilistic representation of value        ,
K t

p V x N t t   with the 527 

following mean and variance: 528 

   

 
 

0

2

0 ' '

'

k k

k K t

t t

t w

  

  


  

   



          (24) 529 

where the change in the value mode is simply given by: 530 

   
 

' ' '

'

k k k

k K t

t w x 


            (25) 531 

As before, Equation 25 specifies what the perturbation to the value mode would be, if the 532 

underlying value computation was a process of progressive attribution integration, whose 533 

outcome is the value estimate  t . Note that here, variability in mode perturbations does not 534 

arise from some form of stochasticity or unreliability of input signals, as is the case for the 535 

Bayesian value denoising scenario above. Rather, it derives from the arbitrariness of the 536 

permutation order with which attributes become available for options’ evaluation. However, 537 
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should the full set of attributes eventually be disclosed, the estimated value would be 538 

  ' ''

k

k kk
T w x   , with full certainty (   0T  ). 539 

Here again, the decision system cannot anticipate in which direction the future value mode will 540 

change, i.e. its expectation over future mode changes always is   0E t     at any point in 541 

time (because  k kE x  ). Nevertheless, it can derive a prediction over the magnitude of 542 

the perturbation, by averaging over all possible permutation orders: 543 
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2 2
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 




         (26) 544 

Comparing Equations 4 and 26 suggests that, under the progressive attribute integration 545 

scenario, type #2 effort efficacy simplifies to: 0  . This means that type #2 effort efficacy 546 

simply scales with the expected range of attributes’ variation. This also implies that, in contrast 547 

to the above value denoising case, the transition probability density of value modes under the 548 

progressive attribute integration scenario is stationary and complies with oMCD’s assumption 549 

(cf. Equation 12). 550 

What about type #1 effort efficacy? Note that one cannot directly compare Equation 24 to 551 

Equation 4, because of the arbitrariness of the order of attribute-disclosing events. In fact, this 552 

arbitrariness implies that the dynamics of value variances is decreasing with time but 553 

stochastic. Although oMCD is neglecting this stochasticity, type #1 efficacy can be derived 554 

from the first-order moment of value variance dynamics. Accordingly, averaging over all 555 

possible permutations yields the following expected change in precision: 556 

   0 01 1 1E t t k t        . Using the same logic as above, this suggests that type 557 

#1 effort efficacy can now be approximated as:    
1

01
1 1 1

k

t
k k t 




   . Note that 558 
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we have removed the time horizon from averaging over admissible decision times, since it 559 

induces a singularity (infinite precision).  560 

Importantly, the progressive attribute integration scenario implies that both first- and second-561 

order moments of value representations follow stochastic dynamics. This means that the ideal 562 

control policy does not reduce to a single threshold (on either net benefits or confidence), but 563 

rather unfolds onto the bidimensional space spanned by both moments of value 564 

representations. This makes the progressive attribute integration scenario qualitatively 565 

different from the Bayesian value denoising case. We refer the interested reader to the 566 

Supplementary Methods 2 in the Supplementary Information for details regarding the 567 

mathematical derivation of the ideal control policy under progressive attribute integration. 568 

 569 

One can see that the definition of type #1 and type #2 effort efficacies depends upon the way 570 

in which the decision process perturbs the value representations (the above scenarios are just 571 

two examples out of many possible forms of value computations). In principle, optimal control 572 

would thus require variants of MCD controllers that are tailored to the underlying decision 573 

system. For the sake of completeness, the derivation of such ideal control policies are 574 

summarized in Appendices 1 and 2. In this context, the MCD architecture that we propose 575 

provides an efficient alternative, which generalizes across decision processes and still 576 

operates quasi-optimal decision control (see below). The only requirement here, is to calibrate 577 

the MCD controller over a few decision trials to learn effort efficacy parameters. Note that such 578 

calibration is expected to be very quick (at the limit: only one decision trial), because effort 579 

efficacies can be learned on within-trial dynamics (of value representations). This is effectively 580 

what we have done here, in an analytical manner, when deriving approximations for the effort 581 

efficacy parameters under distinct decision scenarios. 582 

  583 
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Results 584 

 585 

In the previous section of this manuscript, we derived the online, dual prospective/reactive 586 

variant of MCD (and disclosed its connection with two exemplar decision systems). We now 587 

wish to illustrate its properties.  588 

 589 

1. How do prospective MCD and oMCD differ? 590 

Formally speaking, online/reactive and prospective MCD policies are solving the same 591 

resource allocation problem, i.e. they both aim at stopping resource investment when its net 592 

benefits are maximal. At this point, one may thus ask whether oMCD produces better decisions 593 

than prospective MCD, which operates by committing to a predefined resource investment. 594 

More precisely, under prospective MCD, the decision stops when the expected net benefit is 595 

maximal, which is evaluated at the onset of the decision (this corresponds to the red vertical 596 

line in Figure 2). But does oMCD yield higher net benefits than prospective MCD (on average)? 597 

To answer this question, we resort to Monte-Carlo simulations. In brief, we simulate a particular 598 

decision trial in terms of the stochastic dynamics of value representations, according to 599 

Equations (3) and (4), using the same decision parameters as for Figure 2. At each time step, 600 

oMCD’s policy proceeds by comparing the ensuing confidence level to the optimal confidence 601 

threshold. When the confidence threshold is reached, we store the resource investment, as 602 

well as the ensuing confidence level and net benefit. We proceed similarly for prospective 603 

MCD, except that resource investment is defined according to Equation (1). We then repeat 604 

the procedure to evaluate the average confidence levels, amounts of invested resources, and 605 

net benefits induced by both MCD variants. These are summarized in Figure 4 below, where 606 

the averages are taken over 500 sample path trajectories of value modes. Note: as a reference, 607 

we also compare MCD control policies to a so-called "oracle" dummy policy, which 608 

retrospectively identifies the net benefit apex, i.e. the time at which the stochastic trajectory of 609 
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net benefits is maximal. This provides an upper (though unachievable) bound to the expected 610 

net benefit of any online control policy. 611 

 612 

One can see that oMCD tends to invest fewer resources and yet achieves higher confidence 613 

than prospective MCD (on average). In turn, the ensuing average net benefit is lower for 614 

prospective MCD than for oMCD (which is closer to the oracle). Unsurprisingly, under oMCD, 615 

the statistical relationship between resource investments and reported confidence levels 616 

unfolds along the dynamics of the optimal confidence threshold. In this setting, decisions that 617 

take longer eventually yield lower confidence (although this actually depends upon decision 618 

parameters, see Figure 3). For prospective MCD, there is no such relationship because 619 

resource investment is fixed once decision parameters are set. 620 

 621 

So do these observations generalize over decision parameter settings? To answer this 622 

question, we repeat the same analysis as above, under 200 random settings of all decision 623 

parameters. Figure 5 below summarizes the results of this Monte-Carlo simulations series. 624 

 625 

One can see that the impact of decision parameters on resource investment and confidence 626 

is very similar under both MCD variants. This is important, because this means that the known 627 

properties of prospective MCD 7 generalize to oMCD. In addition, oMCD's optimal control policy 628 

tends to yield lower resource investments and higher confidence levels than prospective MCD. 629 

Both effects almost compensate each other, but oMCD tends to provide a small but systematic 630 

improvement on the ensuing net benefit, which typically increases with type #2 effort efficacy 631 

( ). This is because increasing   increases the stochasticity of value mode dynamics, which 632 

provides oMCD with more opportunities to exploit favorable variations in confidence (cf. panel 633 

B). 634 

 635 

Now, when compared to prospective MCD, oMCD possesses a unique feature: the potentially 636 

nontrivial statistical relationship between decision confidence and resource investments (as 637 
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proxied using, e.g., response times), across trials with identical decision parameters. This was 638 

already exemplified in Figure 4 above (cf. panel D). 639 

To make this distinction clearer, we performed another set of simulations aiming at evaluating 640 

the impact of decision difficulty. Note that difficult decisions can be defined as those decisions 641 

where the reliability of value representations improve very slowly. Within the MCD framework, 642 

increasing decision difficulty can thus be modelled by decreasing type #1 effort efficacy. We 643 

systematically varied β from 2 to 8 (having set all the other decision parameters to 4), simulated 644 

500 sample path trajectories of value mode dynamics for each difficulty level, and evaluated 645 

the ensuing effort investments and achieved confidence levels. Figure 6 below summarizes 646 

the simulation results. 647 

 648 

One can see that the net effect of increasing decision difficulty (or equivalently, decreasing 649 

type #1 effort efficacy) is to increase resource investment and decrease confidence. This holds 650 

for both oMCD and its prospective variant. This means that, on average, reported confidence 651 

levels will tend to correlate negatively with resource investments, across difficulty levels (at 652 

least for this setting of decision parameters). However, for oMCD, this negative relationship 653 

between resource investments and reported confidence levels is also true within each difficulty 654 

level (across trials). This has no equivalent under prospective MCD. In addition, the shape of 655 

this relationship is preserved across difficulty levels. This is because type #1 effort efficacy 656 

induces rather small distortions on oMCD's confidence thresholds (cf. Figure 3 above).  657 

 658 

 659 

Figure 6 also reveals how oMCD's optimal control policy prospectively anticipates the impact 660 

of decision difficulty. In brief, the decay rate of oMCD's confidence threshold increases with 661 

decision difficulty, because expected confidence gains become more costly. However, this is 662 

overcompensated by the corresponding decrease in the ascent rate of expected confidence, 663 

which will delay the time at which confidence eventually reaches the optimal threshold. This 664 
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eventually determines the way oMCD trades effort against confidence: difficult decisions are 665 

given more deliberation time than easy decisions (this is also true for prospective MCD). 666 

Note that the effect of difficulty on resource investment, as well as the shape of the 667 

effort/confidence relationship, depends on the setting of decision parameters. In other words, 668 

these effects do not generalize to all decision parameter settings. For example, increasing 669 

decision difficulty will eventually decrease resource investments. Also, the sign of the 670 

correlation between confidence and resource investments across difficulty levels may not 671 

always align with the sign of this correlation within each difficulty level. 672 

 673 

 674 

2. How optimal is oMCD’s policy? 675 

One of oMCD’s main claims is that it is possible to derive a quasi-optimal decision control 676 

policy, without detailed knowledge of the underlying value computations. But how well does 677 

oMCD perform, when compared to ideal policies that rely on such detailed knowledge? To 678 

address this question, we compare both resource investments and achieved confidence levels 679 

under either oMCD or the ideal control policy, for both decision scenarios (see Supplementary 680 

Methods 1 and 2 in the Supplementary Information for mathematical details regarding the 681 

derivation of the corresponding ideal policies). 682 

We thus conducted the two following sets of Monte-Carlo simulations series. For each decision 683 

scenario, we simulate sample path trajectories of moments of value representations, under the 684 

corresponding type of value computations. Each trajectory effectively corresponds to a dummy 685 

decision trial, given some setting of the relevant decision parameters. Note that only a subset 686 

of these parameters is common to all decision scenarii (cost/benefit parameters, i.e.: 𝑅, 𝛼 and 687 

𝜈), whereas other parameters are typically decision-specific (bayesian value denoising: signal 688 

reliability Σ and prior variance 𝜎0, progressive attribute integration: attribute moments 𝜂 and 𝜁 689 

as well as attribute weights 𝑤). For each decision parameter setting, we derive both the ideal 690 
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control policy and oMCD’s control policy (by approximating the effort efficacy parameters that 691 

correspond to the decision-specific parameters). We then collect the resource investments and 692 

achieved confidence that are induced by these policies, when applied on sample path 693 

trajectories of value representation moments. Now, how do ideal and oMCD policies compare 694 

across different settings of decision parameters? 695 

Figure 7 below summarizes the comparison of ideal and oMCD policies under the Bayesian 696 

value denoising scenario. This comparison is made across 200 sets of randomly drawn 697 

decision parameters 𝛼, 𝜈, Σ and 𝜎0. For parameter setting, we derive the average effort 698 

investment and achieved confidence level across 500 sample path trajectories of moments of 699 

value representations.  700 

 701 

One can see that variations in decision-relevant parameter settings induce very similar 702 

variations in average resource investments, achieved confidence and net benefits under both 703 

decision control policies. Also, although oMCD’s policy yields both more effort costs (in terms 704 

of resource investments) and more benefits (in terms of achieved confidence), these effects 705 

compensate each other and oMCD’s ensuing net benefits are comparable to those of the ideal 706 

control policy. Moreover, despite oMCD’s approximation of type #2 effort efficacy, it does not 707 

seem to have a systematic impact on the similarity between the two policies. These results 708 

imply that oMCD provides a tight approximation to the ideal policy for Bayesian value 709 

denoising. 710 

Now Figure 8 below summarizes the comparison of ideal and oMCD control policies under the 711 

progressive attribute integration scenario (200 sets of randomly drawn decision parameters 𝛼, 712 

𝜈, 𝜂, 𝜁 and 𝑤, with 𝑘 = 10).  713 

 714 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 15, 2024. ; https://doi.org/10.1101/2023.01.02.522463doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.02.522463
http://creativecommons.org/licenses/by-nc-nd/4.0/


As before, one can see that variations in decision-relevant parameter settings induce very 715 

similar variations in average resource investments, achieved confidence and net benefits 716 

under both control policies. Moreover, despite oMCD’s approximation of type #1 effort efficacy, 717 

it does not seem to have a systematic impact on the similarity between the two policies. These 718 

results imply that oMCD provides an accurate approximation to the ideal control policy for 719 

progressive attribute integration. 720 

Taken together, these results mean that the MCD architecture operates a quasi-optimal 721 

decision control that generalizes across decision processes without requiring detailed 722 

knowledge about underlying value computations. 723 

 724 

3. How critical is the definition of MCD’s benefit term? 725 

The working assumption of MCD is that decision confidence serves as the main benefit term 726 

of the resource allocation problem (cf. Equations 1-2). The advantage of this assumption is 727 

that it applies to any kind of decision process, irrespective of the underlying computations. 728 

However, as we hinted in the introduction, for the specific case of value-based decisions, there 729 

exists another natural candidate definition of the benefit term, i.e.: the value of the chosen 730 

option. One may argue that changing the definition of the benefit term effectively changes the 731 

nature of the resource allocation problem. So how critical is MCD’s working assumption? Is 732 

oMCD robust to such alternative setting of the resource allocation problem? 733 

On the computational side of things, the derivation of the ensuing optimal control policy is very 734 

similar to that of oMCD. Since the value of the chosen option is, by definition, the maximum 735 

value over the choice set, we refer to this policy as max(value). It is relatively easy to show 736 

that oMCD and max(value) share one common important feature, i.e.: the critical quantity that 737 

triggers decisions is the absolute difference  t  in value modes. However, in contrast to 738 

oMCD, max(value) is insensitive to the variance of value representations (and hence to type 739 
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#1 effort efficacy). We refer the interested reader to the Supplementary Methods 3 in the 740 

Supplementary Information for mathematical details regarding the derivation of max(value)’s 741 

policy. 742 

So do max(value) and oMCD policies respond similarly to variations in MCD parameters? To 743 

address this question, we performed the following series of Monte-Carlo simulations. First, we 744 

sample a set of MCD parameters (𝛼, 𝛽, 𝛾, 𝜈 and 𝜅) randomly. Second, we derive the optimal 745 

control threshold dynamics under both max(value) and oMCD policies. Third, we extract the 746 

mean response time, confidence, and net benefits over 500 random simulations of moments 747 

of value representations sample paths (according to Equation 1). We then repeat the three 748 

steps above 200 times. The results of this analysis are summarized in Figure 9 below. 749 

 750 

Although oMCD tends to invest fewer resources than max(value) on average, it also achieves 751 

smaller confidence levels. This is essentially because the confidence mapping (cf. Equation 8) 752 

enforces an upper bound on oMCD’s benefit term. Comparatively, max(value) thus tolerates 753 

stronger effort costs. Nevertheless, both effects compensate each other and both control 754 

policies eventually yield very similar outcomes in terms of net benefits. Unsurprisingly, each 755 

policy is (slightly) better than the other at maximizing its own benefit on average. More 756 

importantly, variations in decision parameter settings induce very similar variations in average 757 

resource investments, achieved confidence levels and net benefits. This result suggests that 758 

both frameworks are much less different than intuitively thought of, at least in terms of 759 

empirically observable decision features (choice, deliberation time, confidence). Moreover, 760 

type #1 effort efficacy, which induces variations in oMCD’s policy that have no equivalent in 761 

max(value), does not seem to have a systematic impact on the similarity between the two 762 

policies. In conclusion, oMCD can be thought of as providing a quasi-optimal policy for 763 

maximizing the value of the chosen option. In other terms, oMCD is robust to violations of its 764 

working assumptions. 765 
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  766 

4. Does MCD reproduce established empirical results? 767 

As we highlighted before, MCD is agnostic about the underlying decision process. However, 768 

what eventually determines the choice that is made is the inner workings of value 769 

representation updates. This is important, since some of the decision features may depend 770 

upon, e.g., whether the system eventually arrives at a choice that is consistent with the 771 

comparison of options’ values or not. Inspecting these kinds of effects thus requires performing 772 

Monte-Carlo simulations under distinct decision processes (here: Bayesian value denoising 773 

and progressive attribute integration). 774 

 775 

Let us first consider the Bayesian value denoising scenario. First, we simulated 104 stochastic 776 

dynamics of Bayesian value belief updates according to Equations 20-21, having set the 777 

decision parameters as follows: R=1, α=0.1, ν=2, σ0=10, µ0=0, Σ=100, and randomly sampling 778 

trial-specific hidden value signals V under the ideal observer’s prior belief. Note that we chose 779 

this parameter setting because it reproduces the empirically observed rate of value-780 

consistent/value-inconsistent decisions (see Figure 12 below). Second, we identified the 781 

oMCD-optimal confidence threshold dynamics, having set the effort efficacy parameters to 782 

their analytical approximation (cf. Equation 23 and related derivations). We then store the 783 

ensuing resource investments and achieved confidence levels, as well as the choices of the 784 

decision system (as given by the comparison of value modes at decision time). Figure 10 below 785 

summarizes the results of this Monte-Carlo simulations series. 786 

 787 

First, one can see that the MCD approximation of within-trial choice confidence dynamics is 788 

reasonably accurate (panel A), and smoothly trades errors at early and late decision times. 789 

Second, on average, resource investment decreases with the absolute difference in hidden 790 

option values (cf. black line in panel B). Third, above and beyond the effect of option value 791 

difference, resource investment decreases when choice confidence increases (cf. blue and 792 
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red lines in panel B). This derives from the shape of the oMCD confidence threshold dynamics 793 

(cf. Figure 3). Fourth, the consistency of choice with value is higher for high-confidence choices 794 

than for low-confidence choices (panel C). This observation derives from performing a logistic 795 

regression of choice against hidden value, when splitting trials according to whether they yield 796 

a high or a low level of confidence 41. Fifth, on average, choice confidence decreases with the 797 

absolute difference in hidden option values (cf. black line in panel D). Note that the oMCD 798 

framework also predicts that confidence is higher for choices that are consistent with the 799 

comparison of hidden values than for inconsistent choices (cf. red and blue lines in panel D). 800 

This suggests that MCD possesses some level of metacognitive sensitivity 42, i.e., it reports 801 

lower confidence when making a decision that is at odds with the hidden (unknown) value. 802 

Under the assumption that decision time proxies resource investment, these are standard 803 

results in empirical studies of value-based decision making 7,13,41,43. Interestingly, when 804 

focusing on choices that are inconsistent with the comparison of hidden values, the impact of 805 

value difference on confidence reverses, i.e., choice confidence decreases with the absolute 806 

difference in hidden values. This relates to known results in the context of perceptual decision 807 

making 44. We note that these results depend upon effort cost parameters. In particular, 808 

metacognitive sensitivity tends to decrease in parameter regimes where the dynamics of 809 

oMCD confidence thresholds stop the decisions very early (e.g. low cost power and/or high 810 

unitary effort cost). This may explain the loss of metacognitive sensitivity that concurs with 811 

mental fatigue, which effectively increases one’s sensitivity to cognitive effort 45. 812 

 813 

Let us now consider the progressive attribute integration scenario. We essentially reproduced 814 

the same analysis as above, while simulating stochastic dynamics of value computations by 815 

attribute integration according to Equations 24-25, and setting the model parameters to yield 816 

a similar rate of value-consistent choices (R=1, α=3, ν=4, k=20, 1k  , 1k  ). Figure 11 below 817 

summarizes the results of this Monte-Carlo simulations series. 818 

 819 
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In brief, one can see that we qualitatively reproduce the above relationships between effort 820 

investment, confidence and choice consistency. This is important, since this means that these 821 

relationships tend to generalize across different decision processes. However, this 822 

equivalence is only qualitative, and does not always hold. For example, reducing the unitary 823 

effort cost eventually renders the oMCD confidence threshold dynamics concave. For 824 

progressive attribute integration, this reverses the impact of the difference in option values 825 

onto confidence for value-inconsistent choices back again. This does not seem to happen 826 

under Bayesian value denoising. 827 

 828 

For completeness, we re-analyzed the data reported in our previous investigation of (the 829 

prospective variant of) the metacognitive control of decisions 7. In brief, participants were native 830 

French speakers, with no reported history of psychiatric or neurological illness. A total of 41 831 

people (28 women; age: mean = 28, SD = 5, min = 20, max = 40) participated in this study (no 832 

participant was excluded). All participants rated the pleasantness of a series of food items, and 833 

performed two-alternative forced choices between pairs of (pseudo-randomly selected) items. 834 

In addition to participants’ value ratings and choice, we also collected choice confidence, 835 

decision time, and subjective effort rating. We note that in this context, within-decision value 836 

computations may rely either on retrieving previously experienced food samples from episodic 837 

memory 46,47, or on integrating value-relevant attributes (e.g., tastiness and healthiness) 838 

derived from cognitive decompositions of choice options 30,48. Both cognitive scenarios map 839 

onto Bayesian value denoising (which would average over memory samples) and progressive 840 

attribute integration processes, respectively.  841 

We already verified the main predictions of the prospective MCD model, in terms of the 842 

relationship between pre-choice (default) value ratings and decision time/effort, as well as the 843 

ensuing decision-related variables (i.e. change-of-mind, confidence, choice-induced 844 

preference change, etc). As we already discussed, prospective and online variants of MCD 845 
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make very similar predictions for these kinds of relationships. We now reproduce the above 846 

analyses (cf. Figures 10 and 11), which disclose predictions that are specific to the oMCD 847 

framework. Figure 12 below summarizes the results of these analyses.  848 

 849 

Note that subjective effort ratings are commensurate with response times, which suggests that 850 

effort intensity shows little variations when compared to effort durations. We will comment on 851 

this in the Discussion section below. In any case, one can see that the overall pattern of 852 

relationships between resource investments (as proxied by either decision time or reported 853 

mental effort), choice confidence and item values is qualitatively similar to that predicted from 854 

the online MCD model (cf. Figures 10 and 11 above). Note that all the oMCD predictions 855 

discussed above are statistically significant in our empirical data: 856 

 Effect of DV on reported effort (all trials): t(40)=-7.6, mean r=-0.25 ± 0.07 (95% CI), 857 

p<10-4 858 

 Effect of DV on reported effort (high confidence): t(40)=-5.7, mean r=-0.18 ± 0.07  (95% 859 

CI), p<10-4 860 

 Effect of DV on reported effort (low confidence): t(40)=-5.0, mean r=-0.14 ± 0.05 (95% 861 

CI), p<10-4 862 

 Effort difference (high versus low confidence): t(40)=-7.3, mean effort difference=-0.19 863 

± 0.05 (95% CI), p<10-4 864 

 Effect of DV on decision time (all trials): t(40)=-7.78, mean r=-0.19 ± 0.05 (95% CI), 865 

p<10-4 866 

 Effect of DV on decision time (high confidence): t(40)=-5.9, mean r=-0.15 ± 0.05  (95% 867 

CI), p<10-4 868 

 Effect of DV on decision time (low confidence): t(40)=-3.9, mean r=-0.10 ± 0.05 (95% 869 

CI), p=0.0002 870 
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 Response time difference (high versus low confidence): t(40)=-7.0, mean RT 871 

difference=-0.62 ± 0.17 (95% CI), p<10-4 872 

 Effect of DV on choice (all trials): t(40)=25.2, mean effect size=1.56 ± 0.12  (logistic 873 

regression, 95% CI), p<10-4 874 

 Effect of DV on choice (high confidence): t(40)=32.6, mean effect size=2.02 ± 0.12  875 

(logistic regression, 95% CI), p<10-4 876 

 Effect of DV on choice (low confidence): t(40)=10.4, mean effect size=0.84 ± 0.16 877 

(logistic regression, 95% CI), p<10-4 878 

 Effect of DV on choice (high versus low confidence): t(40)=13.8, mean effect size 879 

difference =1.17 ± 0.16 (logistic regression, 95% CI), p<10-4 880 

 Effect of DV on confidence (all trials): t(40)=8.5, mean r=0.27 ± 0.06 (95% CI), p<10-4 881 

 Effect of DV on confidence (value-consistent): t(40)=10.6, mean r=0.27 ± 0.05 (95% 882 

CI), p<10-4 883 

 Effect of DV on confidence (value-inconsistent): t(40)=-4.22, mean r=-0.18 ± 0.09 (95% 884 

CI), p<10-4 885 

 Confidence difference (value-consistent versus value-inconsistent): t(40)=10.8, mean 886 

confidence difference =0.10 ± 0.02 (95% CI), p<10-4 887 

where DV stands for difference in option values, all statistical significance tests are one-sided 888 

and derive from standard random effect analyses (sample size: n=41). We note that these 889 

analyses were not part of a preregistration protocol. 890 

 891 

 892 

  893 
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Discussion 894 

 895 

In this work, we have presented the online/reactive metacognitive control of decisions or oMCD 896 

framework. 897 

 898 

1. Limitations 899 

To begin with, recall that we have framed oMCD as a solution to a resource allocation problem. 900 

More precisely, we think of decision deliberation as involving the investment of costly cognitive 901 

resources, which are necessary to process decision-relevant information. The outcome of such 902 

resource allocation is to override default behavioral responses, which would otherwise be 903 

triggered by automatic (e.g., reflexive, habitual or intuitive) brain processes. Under this view, 904 

the brain faces the problem of adjusting the amount of resources to invest, which we equate 905 

with the issue of effort regulation. This perspective is not novel: the notion of mental effort was 906 

central to the early definition of automatic versus controlled processing, with the former 907 

described as quick and effortless, and the latter as slower and effortful 49. Since controlled 908 

processes are slow, it is reasonable to assume that the brain may regulate effort simply by 909 

adjusting its duration. This is the premise of our computational framework, which relies on the 910 

theory of optimal stopping 21. However, effort actually unfolds along two dimensions: duration 911 

and intensity. This means that, in principle, both decision speed and confidence may be 912 

increased at the cost of increasing effort intensity. Accordingly, investing cognitive control is 913 

known to speed up responses in the context of, e.g., behavioral conflict tasks 50,51. This raises 914 

the question: what determines the brain’s policy for trading effort intensity against effort 915 

duration? A possibility is that this depends upon the nature of the cognitive resource that is 916 

required for processing decision-relevant information. The issues of how to control resource 917 

investment and which resource to invest are thus intertwined 2. For example, one may think of 918 

resources as being composed of cognitive modules, such as working memory or attention, 919 

whose neurobiological underpinnings may induce distinct costs and/or limitations on effort 920 
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intensity and duration 52–54. More generally, the effort intensity/duration tradeoff may be 921 

eventually determined by the neurobiological constraints that are imposed on the neural 922 

architecture that operates the processing of decision-relevant information 4,55. For example, 923 

value-based decision making may require the active maintenance of multiple value 924 

representations that tend to interfere with each other, e.g., because they involve the same 925 

neural population within the orbitofrontal cortex 32. In this case, cognitive control may alter the 926 

OFC neural code with the aim of temporarily dampening these interferences. In principle, the 927 

associated neural mechanism may operate based on simple confidence monitoring (which 928 

would proxy value conflict signals), without knowledge of the intricate architecture of value 929 

coding in the OFC. We will test these ideas using artificial neural network models of MCD in 930 

forthcoming publications. 931 

 932 

2. On the generality of oMCD control policy 933 

One of the main assumptions behind MCD is that mental effort investment is regulated by a 934 

unique controller that operates under agnostic assumptions about the inner workings of the 935 

underlying decision system. This constraint somehow culminates in the simplicity of oMCD’s 936 

control architecture, which reduces to a monitoring of decision confidence. In this context, we 937 

have shown that the optimal stopping policies of distinct decision processes (Bayesian value 938 

denoising or progressive attribute integration) can be approximated using a simple calibration 939 

of effort efficacy parameters. We have also highlighted the ensuing properties of oMCD : when 940 

coupled with these different underlying decision systems, oMCD reproduces most established 941 

empirical results in the field of value-based decision-making. In addition, we have shown that 942 

oMCD is robust to alternative settings of the resource allocation problem. In particular, decision 943 

confidence seems to be a reasonable proxy for the value of the chosen option, which is the 944 

standard candidate titration for the benefit of value-value based decisions 14,24. Taken together, 945 

these results suggest that the architecture of oMCD control, which relies on the internal 946 

monitoring of decision confidence, may generalize to most kinds of decision processes. 947 
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Preliminary investigations show that this holds for yet another important kind of value-based 948 

decisions, whereby value computation is the output of a forward planning process on a decision 949 

tree 56,57. Arguably, this also holds for perceptual or evidence-based decisions. In this context, 950 

decision confidence can be defined - somewhat more straightforwardly - as the subjective 951 

probability of being correct 35. As long as effort efficacy parameters can be simply identified, 952 

the MCD architecture will provide an accurate approximation to the optimal resource allocation 953 

policy. This is trivial when perceptual detection or discrimination processes can be described 954 

as some form of Bayesian denoising of some perceptual variable of interest 23,40. This would 955 

also hold for perceptual categorization processes, which may rather resemble attribute 956 

integration scenarios 19. In fact, oMCD’s potential generalizability derives from its agnostic 957 

stance regarding the nature of information processing that takes place in the underlying 958 

decision system. This is also why oMCD can in principle be extended to describe the 959 

metacognitive control of other kinds of cognitive processes (e.g., reasoning or memory 960 

encoding/retrieval). In this context, an interesting avenue of investigation would be to consider 961 

the impact of metacognitive adaptation on the generalization of control policies across 962 

cognitive domains. Note that, because we assume MCD’s control architecture to be invariant 963 

across contexts, it requires a systematic calibration (in terms of, e.g., effort costs and/or 964 

efficacies) to guaranty the quasi-optimality of resource allocation. As we highlighted before, 965 

we expect such calibration to converge very quickly (e.g., over a few training trials). This is 966 

because effort efficacies can be learned from within-trial confidence dynamics. Nevertheless, 967 

whether this specific kind of metacognitive adaptation is sufficient to recycle and adjust MCD’s 968 

control architecture to novel cognitive domains, as well as how it shapes cross-domain 969 

metacognitive learning effects, is virtually unknown and would require specific empirical tests.  970 

 971 

3.  On the difference between prospective and online/reactive variants of MCD 972 

Retrospectively, prospective and online/reactive variants of MCD solve the same 973 

computational problem, i.e. maximizing the expected net benefit of resource allocation. We 974 
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have shown that their respective control policies share many common features. In particular, 975 

they tend to respond similarly to changes in effort costs and/or efficacies. However, they differ 976 

in at least two important aspects. First, although its algorithmic derivation is more sophisticated, 977 

oMCD’s control policy is computationally simpler than its prospective variant. This is because 978 

it does not require an explicit comparison of all admissible resource investments prior to 979 

decision deliberation. Rather, it relies on dynamical changes in decision confidence signals to 980 

trigger a binary (yes/no) stopping decision. In other terms, the comparison between admissible 981 

resource investments is performed implicitly, while the control system monitors the progress 982 

of the underlying decision system. This renders the neurocomputational architecture of oMCD 983 

very similar to basic Drift Diffusion Decision Models or DDMs, whose candidate neural 984 

underpinnings have been partially identified 58–60. Second, only oMCD predicts non trivial 985 

second-order statistics on key decision features beyond those induced by changes in effort 986 

costs and efficacies. For example, both prospective and online/reactive MCD typically predict 987 

a negative correlation between reported confidence levels and response times across difficulty 988 

levels (as induced by different type #1 effort efficacies), but only oMCD predicts such a 989 

relationship within each difficulty level (across trials). The range and diversity of non trivial 990 

second-order statistics that oMCD predicts is exemplified in Figures 10-11. We note that some 991 

of these predicted statistical relationships are within the grasp of those existing variants of 992 

DDMs that explicitly account for decision confidence. This holds, e.g., for the two-way 993 

interaction between confidence and item values onto response time and choice 41. Others may 994 

be more specific to oMCD (and related ideal control policies), e.g., the inversion of the 995 

value/confidence relationship for value-consistent and value-inconsistent choices. In any case, 996 

these non trivial second-order statistics are the hallmark of online/reactive control policies. In 997 

this context, what oMCD offers is a way to predict how these relationships should change, 998 

would effort costs and/or efficacies be experimentally manipulated. 999 

 1000 

4. On extending MCD with goal hierarchies  1001 
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Whether MCD is operated online or not, it relies upon some prospective computation, which 1002 

anticipates the costs and benefits of investing additional resources in the decision. In turn, the 1003 

optimal cost-benefit tradeoff relies upon decision-specific features, such as decision 1004 

importance and difficulty. The former is signalled by the weight parameter R  that scales 1005 

confidence in the benefit term (cf. Equation 1). In our previous empirical work on MCD, 1006 

participants were asked to decide between pairs of food items. In this context, we manipulated 1007 

decision importance by instructing participants that they would have to eat the item they 1008 

eventually chose (so-called “consequential decisions”) or not. As predicted by the MCD 1009 

framework, increasing decision importance systematically increases decision time, above and 1010 

beyond the effect of option values 7. In other terms, increasing decision importance may 1011 

overcompensate the cost of mental effort by increasing the demand for confidence. More 1012 

generally, we think of R  as the expected reward attached to the attainment of the 1013 

superordinate goal, within which the decision is framed. Importantly, although R  is analogous 1014 

to a reward, it is distinct from the values that are attached to the choice options. This does not 1015 

mean that the values that decision systems attach to choice options are independent from the 1016 

goal: recent research has demonstrated that option values are strongly influenced by how 1017 

useful choice options are for achieving one’s goal 12,61. However, at least in principle, 1018 

alternative choice options that would be instrumental for attaining an important goal may still 1019 

have low value. For example, while starving, one may only have access to low 1020 

quality/palatability food items. A possibility is to conceive of goals as being organized 1021 

hierarchically, whereby superordinate goals are broken down into candidate subordinate goals 1022 

62,63. According to MCD, the selection of subordinate goals would be under higher scrutiny 1023 

when superordinate stakes increase (everything else being equal). Having said this, the 1024 

urgency of attaining superordinate goals may also incur additional temporal costs for 1025 

subordinate goal selection, which may overcompensate the increased demand for confidence 1026 

(as would be the case for, e.g., starvation). We intend to investigate these kinds of issues in 1027 

forthcoming publications. 1028 
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Figure captions 1197 

 1198 

Figure 1: derivation of oMCD’s optimal control policy. Net benefits (y-axis) are plotted 1199 

against the value mode difference (x-axis). The red and green lines show the net benefit if the 1200 

system were stopping at 1t T  , and the expected net benefit at 1t T  . Finally, the dotted 1201 

black line shows the optimal net benefit at 1t T  , and the dotted blue line shows its 1202 

expectation at 2t T   (see main text). 1203 

 1204 

Figure 2: oMCD's optimal control policy. A: The black dotted line shows the oMCD-optimal 1205 

net benefit threshold. The blue line and shaded area depict the mean and standard deviation 1206 

of net benefit dynamics (over the 1000 Monte-Carlo simulations), respectively. This reflects 1207 

the possible variations of within-trial confidence dynamics. The vertical red line indicates the 1208 

optimal resource allocation as obtained from the prospective variant of MCD, and the horizontal 1209 

red line depicts the corresponding average net benefit level. B: The black dotted line shows 1210 

the oMCD-optimal confidence threshold. The blue line and shaded area depict the mean and 1211 

standard deviation of decision confidence (over the same Monte-Carlo simulations). The 1212 

horizontal red line depicts the average confidence level that corresponds to the optimal 1213 

resource allocation under prospective MCD. 1214 

 1215 

Figure 3: Impact of decision parameters on oMCD’s optimal confidence threshold 1216 

dynamics. A: Effect of type #1 effort efficacy. Optimal confidence threshold (y-axis, black dots) 1217 

is plotted against decision time (x-axis), for different β levels (color code). B: Effect of type #2 1218 

effort efficacy, same format. C: Effect of unitary effort cost, same format. D: Effect of cost 1219 

power, same format. 1220 

 1221 

Figure 4: the performance of oMCD’s optimal control policy. A: the average amount of 1222 

resources invested (y-axis) is shown under oMCD (black), prospective MCD (red), or oracle 1223 
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(green) policies. Errobars depict standard error around the mean (s.e.m.). B: Average 1224 

confidence level at the time of decision, same format. C: The average net benefits, same 1225 

format. D: Achieved confidence (y-axis) is plotted against resource investment deciles (x-axis) 1226 

for all control policies (oMCD: black, MCD: red, oracle: green). The black dotted line shows 1227 

oMCD’s optimal confidence threshold. 1228 

 1229 

Figure 5: comparison between prospective MCD and oMCD. A: the amount of resources 1230 

invested under the prospective variant of MCD (x-axis) is plotted against the average amount 1231 

of resources invested under oMCD (y-axis). Each dot corresponds to a specific set of decision 1232 

parameters (200 samples). The color code indicates type #2 effort efficacy (blue: low 𝛾, red: 1233 

high 𝛾). B: decision confidence, same format. C: net benefit, same format. 1234 

 1235 

Figure 6: Impact of difficulty level. A: oMCD’s mean resource investment (y-axis, black dots) 1236 

is plotted as a function of type #1 effort efficacy (x-axis). Errorbars depict standard deviations 1237 

across trials, and red diamonds show the resource investment under prospective MCD. B: 1238 

Achieved confidence, same format. C: Achieved confidence (y-axis) is plotted against resource 1239 

investments deciles (x-axis), for each difficulty level (color code: β = type #1 effort efficacy), 1240 

under oMCD’s optimal policy. D: oMCD's confidence threshold (y-axis, plain lines) is plotted 1241 

against decision time (x-axis), for each difficulty level (same color code as lower-left panel). 1242 

Dashed lines show expected confidence, and dots show the corresponding resource 1243 

investments under prospective MCD. 1244 

 1245 

Figure 7: Bayesian value denoising: comparison of oMCD and ideal control policies. A: 1246 

average resource investments under oMCD’s policy (y-axis) are plotted against average 1247 

resource investments under the ideal policy (x-axis), across parameter settings (dots). The 1248 

color code indicates type #2 effort efficacy (blue: low 𝛾, red: high 𝛾). B: average achieved 1249 

confidence, same format. C: average net benefit, same format. 1250 

 1251 
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Figure 8: Progressive attribute integration: comparison of oMCD and ideal control 1252 

policies. Same format as Figure 7. The color code indicates type #1 effort efficacy (blue: low 1253 

𝛽, red: high 𝛽). 1254 

 1255 

Figure 9: Comparison of max(value) and oMCD control policies. A: mean invested 1256 

resources under oMCD’s control policy (y-axis) and under max(value) policy (x-axis) are 1257 

plotted against each other across random MCD parameter settings. The color code indicates 1258 

type #1 effort efficacy (blue: low 𝛽, red: high 𝛽). B: mean confidence, same format. C: mean 1259 

MCD’s net benefit, same format. D: mean max(value) net benefit, same format. 1260 

 1261 

Figure 10: oMCD predictions under Bayesian value denoising. A: The blue line and 1262 

shaded area depict the mean and standard deviation of confidence trajectories (across the 104 1263 

Monte-Carlo simulations), respectively. The blue dashed line shows the expected confidence 1264 

under the corresponding MCD approximation, and the black dashed line shows the oMCD-1265 

optimal confidence threshold. B: Resource investment (y-axis) is plotted against the difference 1266 

in hidden option values (x-axis), for all trials (black), high-confidence trials (blue) and low-1267 

confidence trials (red), respectively. C: The probability of choosing the first option (y-axis) is 1268 

plotted against the difference in hidden option values (x-axis), for all trials (black), high-1269 

confidence trials (blue) and low-confidence trials (red), respectively. D: Achieved choice 1270 

confidence (y-axis) is plotted against the difference in hidden option values (x-axis), for all trials 1271 

(black), value-consistent trials (blue) and value-inconsistent trials (red), respectively.  1272 

 1273 

Figure 11: oMCD predictions under progressive attribute integration. Same format as 1274 

Figure 10. 1275 

 1276 

Figure 12: Re-analysis of behavioral data in a simple value-based decision making 1277 

experiment 7. A: Reported mental effort (y-axis) is plotted against the difference in reported 1278 
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option values (x-axis), for all trials (black), high-confidence trials (blue) and low-confidence 1279 

trials (red), respectively. B: Response time, same format. C&D: same format as Figure 10. 1280 

 1281 

 1282 

 1283 
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