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Abstract

Difficult decisions typically involve mental effort, which scales with the deployment of cognitive
(e.g., mnesic, attentional) resources engaged in processing decision-relevant information. But
how does the brain regulate mental effort? A possibility is that the brain optimizes a resource
allocation problem, whereby the amount of invested resources balances its expected cost (i.e.
effort) and benefit. Our working assumption is that subjective decision confidence serves as
the benefit term of the resource allocation problem, hence the “metacognitive” nature of
decision control. Here, we present a computational model for the online metacognitive control
of decisions or oMCD. Formally, oMCD is a Markov Decision Process that optimally solves the
ensuing resource allocation problem under agnostic assumptions about the inner workings of
the underlying decision system. We demonstrate how this makes oMCD a quasi-optimal
control policy for a broad class of decision processes, including -but not limited to- progressive
attribute integration. We disclose oMCD’s main properties (in terms of choice, confidence and
response time), and show that they reproduce most established empirical results in the field of
value-based decision making. Finally, we discuss the possible connections between oMCD
and most prominent neurocognitive theories about decision control and mental effort

regulation.
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Introduction

There is no such thing as a free lunch: obtaining reward typically requires investing effort. This
holds even for mental tasks, which may involve mental effort for achieving success (in terms
of, e.g., mnesic or attentional performance). Nevertheless, we sometimes invest very little
mental effort, eventually rushing decisions and falling for all sorts of cognitive biases *. So how
does the brain regulate mental effort? Recent theoretical neuroscience work proposes to view
mental effort regulation as a resource allocation problem: namely, identifying the amount of
cognitive resources that optimizes a cost/benefit tradeoff 2. In this context, mental effort
signals the subjective cost of investing resources, the aversiveness of which is balanced by
the anticipated benefit. In conjunction with simple optimality principles, this idea has proven
fruitful for understanding the relationship between mental effort and peoples’ performance in
various cognitive tasks, in particular those that involve cognitive control 56. Recently, it was
adapted to the specific case of value-based decision making, and framed as a self-contained
computational model: the Metacognitive Control of Decisions or MCD .

The working assumption here is that decision confidence serves as the main benefit term of
the resource allocation problem &°, hence the “metacognitive” nature of decision control. On
the one hand, this formalizes the regulating role of confidence in decision making, which has
recently been empirically demonstrated in the context of perceptual evidence accumulation
1011 On the other hand, this apparently contrasts with standard treatments of value-based
decision making, which insists on equating the benefit of value-based decisions with the value
of the chosen option *?-14, This notion is a priori appealing, because the purpose of investing
resources into decisions is reducible to approaching reward and/or avoiding
losses/punishments. Nevertheless, the benefit of such resource investments may be detached
from the subjective evaluation of alternative options 5. This is partly because the brain attaches
subjective value to acquiring information about future rewards. In fact, this holds even when
this information cannot be used to influence decision outcomes 16-18. Recall that, in Marr’'s

sense, any type of decision induces the same computational problem, i.e. the comparison of
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alternative options. In this view, evidence-based and value-based decisions simply differ w.r.t.
to the underlying comparison criterion: the former relies on truthfulness judgments while the
latter involves idiosyncratic preferences '°. Hence, in both cases, the benefit of allocating
resources to decisions is to raise the chance of identifying the best option, i.e. confidence. In
other words, if resource allocation aims at comparing alternative options, then decision
confidence can be viewed as a probe for goal achievement. This is essentially a simplifying
assumption, in the sense that it enables a unique computational architecture to control
resource allocations, irrespective of the nature of the underlying decision-relevant
computations.

In value-based decision making, confidence derives from the discriminability of uncertain value
representations, which evolve over decision time as the brain processes more value-relevant
information. Low confidence then induces a latent demand for mental effort: the brain refines
uncertain value representations by deploying cognitive resources, until they reach an optimal
confidence/effort trade-off. Interestingly, this mechanism was shown to explain the -otherwise
surprising- phenomenon of choice-induced preference change 7. More importantly, the MCD
model makes quantitative out-of-sample predictions about many features of value-based
decisions, including decision time, subjective feeling of effort, choice confidence and changes
of mind. These predictions have already been tested -and validated- in a systematic manner,
using a dedicated behavioral paradigm (Lee and Daunizeau, 2021). Despite its remarkable
prediction accuracy, the original derivation of the model suffers from one main simplifying but
limiting approximation: it assumes that MCD operates in a purely prospective manner, i.e., the
MCD controller commits to a level of mental effort investment identified prior to the decision.
In principle, this early commitment would follow from anticipating the prospective benefit (in
terms of confidence gain) and cost of effort, given a prior or default representation of option
values that would rely on fast/automatic/effortless processes 2°. The issue here, is twofold.
First, it cannot explain variations in decision features (e.g., response time, choice confidence,
etc.) that occur in the absence of changes in default preferences. Second, it is somehow

suboptimal, as it neglects reactive processes, which enable the MCD controller to re-evaluate
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97 —and improve on- the decision to stop or continue allocating resources, as new information is

98 processed and value representations are updated. The current work addresses these

99 limitations, effectively proposing an “online” variant of MCD which we coin oMCD.
100  As we will see, oMCD reduces to identifying the optimal policy for a specific instance of a
101  known class of stochastic control problems: namely, “optimal stopping” 2. This kind of problem
102  can be solved using Markov Decision Processes or MDPs 22, under assumptions regarding the
103  (stochastic) dynamics of costs and/or benefits. Although less concerned with the notion of
104 mental effort, a similar MDP has already been derived for a specific type of “ideal” value-based
105  decisions #2324 The underlying assumption here is threefold: (i) the system that computes
106  option values is progressively “denoising” -in a Bayesian manner- its input value signals, (ii),
107 the system that monitors and controls the decision knows how the underlying value
108  computation system works, and (iii) the net benefit of decisions (i.e. the benefit discounted by
109 decision time) is the estimated reward rate. The ensuing MDP is very similar to so-called Drift-
110 Diffusion decision models 2526, whereby the decision stops whenever the current estimate of
111  option value differences reaches a threshold. Interestingly, the authors show that the
112 assumptions (i), (ii) and (iii) imply that the optimal threshold is a decreasing function of time.
113 This is not innocuous, since this predicts that decision confidence necessarily decreases with
114  decision time, which is not always verified empirically 2. In retrospect, these assumptions may
115  thus be deemed too restrictive. In this work, we intend to generalize this kind of approaches

116 by relaxing these three assumptions.

117  In particular, we will consider that the decision control system (i.e. the system that decides
118  when to stop deliberating) has only limited information regarding the inner workings of the
119  system that computes option values. We will show how decision confidence can serve both as
120  an efficient titration for the benefit of resource investments and as a shortcut summary statistic
121 for (hidden) value computations. That is, we will show that confidence monitoring is sufficient
122  to operate quasi-optimal decision control for a wide class of value-based decision processes.

123  We demonstrate the generalizability of the ensuing oMCD policy on two distinct decision
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scenarios. In the above “Bayesian value denoising” case, it replicates existing MDPs and
extends their repertoire of confidence/RT relationships. We also consider the case of value
computation by progressive attribute integration 22-33, As we will see, the latter scenario cannot
be reduced to the Bayesian value denoising case. This is because the main source of
uncertainty in value representations derive (as is the case for, e.g., forward planning) from the
arbitrary incompleteness of value computations. We demonstrate that, for both decision
scenarios, oMCD’s control policy provides a close approximation to the ideal control policy,
which requires complete knowledge of the underlying value computations. We also identify
testable properties of oMCD control policies under both types of value computations, and show

that they are reminiscent of empirical value-based decisions.
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136  Methods

137

138 As we will see below, deriving an optimal reactive variant of MCD requires specific
139  mathematical developments, which falls under the frame of Markov decision processes 22. But
140  before we describe the oMCD model, let us first recall the prospective variant of MCD .

141  Note on ethics (see data re-analysis in the Results section): This work complies with all
142  relevant ethical regulations and received formal approval from the INSERM Ethics Committee

143  (CEEI-IRB00003888, decision no 16—333). All participants gave informed consent.

144

145

146 1. The prospective MCD model

147  Note: this section is a summary of the mathematical derivation of the MCD model, which has
148  already been published “.

149 Let Z be the amount of cognitive (e.g., executive, mnemonic, or attentional) resources that

150  serve to process value-relevant information. Allocating these resources will be associated

151  with both a benefit B(Z), and a cost C(Z) . As we will see, both are increasing functions
152 of Z: B(Z) derives from the refinement of internal representations of subjective values of

153 alternative options or actions that compose the choice set, and C(Z) quantifies how

154  aversive engaging cognitive resources is (mental effort). In line with the framework of

155 expected value of control 2*, we assume that the brain chooses to allocate the amount of

156  resources ! that optimizes the following cost-benefit trade-off:

157 Z=arg mng[B(z)—C(z)] (1)
158  where the expectation accounts for the anticipated impact of allocating resources into decision
159  deliberation (this will be clarified below). Here, the benefit term is simply given by

160 B(Z):RXPC(Z), where PC(Z) is choice confidence and its weight R quantifies the


https://doi.org/10.1101/2023.01.02.522463
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.02.522463; this version posted February 15, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

161 importance of making a confident decision. As we will see, PC(Z) plays a pivotal role in the

162  model, in that it captures the efficacy of allocating resources for processing value-relevant
163 information. So, how do we define choice confidence?

164  We assume that the subjective evaluation of alternative options in the choice set is uncertain.
165 In other words, the internal representations of values of alternative options are probabilistic.
166  Such a probabilistic representation of value can be understood in terms of, for example, an

167  uncertain prediction regarding the to-be-experienced value of a given option. In what follows,

168  the probabilistic representation of option value V, takes the form of Gaussian probability
169  density functions p(V;)=N(z4,0;), where 4 and o, are the mode and the variance of the
170  probabilistic value representation, respectively (and | indexes alternative options in the choice

171  set). This allows us to define choice confidence Pc as the probability that the (predicted)

172 experienced value of the (to be) chosen item is higher than that of the (to be) unchosen item.

173 When the choice set is composed of two alternatives, Pc is given by:

7z|A,u|

174 P.=S

c

3(01+0'2) @

175  where S(X)=I|/1+e_X is the standard sigmoid mapping, and we assume that the choice

176  follows the sign of the preference Ay = 1, — 1, . Equation (2) simply derives from a moment-

177  matching approximation to the Gaussian cumulative density function 34. Note that Equation 2
178  implicitly assumes that the option with the highest value estimate is chosen. This satisfies the
179  same formal criteria as for choice confidence in the context of evidence-based decisions .

180  We assume that the brain valuation system may, in some contexts, automatically generate

181  uncertain estimates of options' value 3637, before cognitive effort is invested in decision making.

182  In what follows, ,uio and Jio are the mode and variance of the ensuing prior value

183  representations. They yield an initial confidence level PCO. Importantly, this prior or default
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184  preference neglects existing value-relevant information that would require cognitive effort to
185  be retrieved and processed 2°.

186  Now, how can a decision control system anticipate the benefit of allocating resources to the
187  decision process without knowing the details of the underlying value computations? Recall that

188  the purpose of allocating resources is to process (yet unavailable) value-relevant information.

189  The critical issue is thus to predict how both the uncertainty 0; and the modes [ of value

190 representations will eventually change, before having actually allocated the resources (i.e.,

191  without having processed the information). In brief, allocating resources essentially has two

192  impacts: (i) it decreases the uncertainty O;, and (ii) it perturbs the modes £ in a stochastic

193  manner.
194 The former impact (i) derives from assuming that the amount of information that will be

195  processed increases with the amount of allocated resources. This implies that the precision
196 ]/ O; (Z) of a given probabilistic value representation necessarily increases with the amount
197  of allocated resources, i.e.:

108 1o (z)=1/o7 +pz 3)
199  where 1/O'i0 is the prior precision of the representation (before any effort has been allocated),
200 and ﬁ controls the efficacy with which resources increase the precision of the value
201  representation. More precisely, ﬂ is the precision increase that follows from allocating a
202  unitary amount of resources Z . In what follows, we will refer to ﬂ as "type #1 effort efficacy".

203  Note that if ﬂ=0, then mental effort brings no improvement in the precision of value

204  representations.
205  The latter impact (ii) follows from acknowledging the fact that the control system cannot know

206  how processing more value-relevant information will affect its preference before having

207  allocated the corresponding resources. Let 5i be the change in the position of the mode of
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208 the i™ value representation, having allocated an amount Z of resources. The direction of the

209 mode's perturbation 5i cannot be predicted because it is tied to the information that is yet to

210 be processed. However, a tenable assumption is to consider that the magnitude of the

211  perturbation increases with the amount of information that will be processed. This reduces to

212 stating that the variance of 5, increases with Z ,i.e.:

Hi (Z):ﬂio +0,

5 UN(0,y2)

(4)

214  where ,Llio is the mode of the value representation before any effort has been allocated, and
215 Y controls the relationship between the amount of allocated resources and the variance of the
216  perturbation term o . The higher 7, the greater the expected perturbation of the mode for a
217  given amount of allocated resources. In what follows, we will refer to } as "type #2 effort

218  efficacy". Note that Equation 4 treats the impact of future information processing as some form
219  of random perturbation on the mode of the prior value representation. Importantly, Equation 4
220 is not specific to the type of value computations that eventually perturbs the value modes. Our
221  justification for this assumption is twofold: it is simple, and it captures the idea that the MCD
222 controller is agnostic about how the allocated resources will be used by the underlying
223 valuation/decision system. We will see that, in spite of this, the MCD controller can still make
224  quasi-optimal predictions regarding the expected benefit of allocating resources, under very
225  different value computation schemes.

226 Now, predicting the net effect of resource investment onto choice confidence (from Equations
227  (3) and (4)) is not entirely trivial. On the one hand, allocating effort will increase the precision
228  of value representations, which mechanically increases choice confidence, all other things

229  being equal. On the other hand, allocating effort can either increase or decrease the absolute

230 difference ‘A,u(z)‘ between the modes (and hence increase or decrease choice confidence).

231  This depends upon the direction of the perturbation term & , which is a priori unknown. Having
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said this, it is possible to derive the expected absolute mode difference (as well as its variance)

that would follow from allocating an amount Z of resources:

0

2
| LA 2xs| EAE | g

[z 2y
EDAy(z)H_Z\/;exp yy NGz

v [[au(2)]]=2rz-+|an’] ~E[Jau(2)|]

(%)

where we have used the expression for the first-order moment of the so-called "folded normal

distribution". Importantly, EDA,U(Z)H is always greater than ‘A,UO‘ and increases

monotonically with Z - asis \ UA,U(Z)H . In other words, allocating resources is expected

to increase the value difference, even though the impact of the perturbation term can go either

way.
Equation 5 now enables us to derive the expected confidence level PC (Z)D E[PC] that

would result from allocating the amount of resource Z:

2E||Au(z) ]

F_’C(Z)zs ) 3
1+2(/12v [[au(z)])

(6)

where 4 :]7/\/3(0'1(2)4-02 (Z)) .Of course, P.(0)=P?, i.e., investing no resources yields no

confidence gain. Moreover, the expected choice confidence |5C(Z) always increase with Z,

irrespective of the efficacy parameters, as long as 8 # 0ory#0. Equation 6 is important,

because it quantifies the expected benefit of resource allocation, before having processed the
ensuing value-relevant information.
To complete the cost-benefit model, we simply assume that the cost of allocating resources to

the decision process increases monotonically with the amount of resources, i.e.:
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250 C(Z) =z’ @)
251  where o determines the effort cost of allocating a unitary amount of resources Z (we refer to
252 « as the "unitary effort cost"), and v effectively controls the range of resource investments
253  that result in noticeable cost variations (we refer to v as the "cost power").

254  Finally, the MCD-optimal resource allocation { is identified by replacing Equations (5), (6) and
255  (7) into Equation (1). This can be done before any resource has been invested, hence the
256  prospective nature of metacognitive control, here.

257

258

259 2. Online MCD: optimal control policy

260  We now augment this model, by assuming that the MCD controller re-evaluates the decision
261  to stop or continue allocating resources, as value representations are being updated and online
262  confidence is changing. This makes the ensuing oMCD model a reactive extension of the
263 above "purely prospective" MCD model, which relieves the system from the constraint of effort

264  investment pre-commitment.
265 Let [ be the current time within a decision. For simplicity, we assume that there is a linear

266 relationship between deliberation time and resource investment, i.e.: Z=kt, where K is the
267 amount of resources that is spent per unit of time. We refer to K as “effort intensity”. By

268  convention, the maximal decision time T (the so-called temporal horizon) corresponds to the

269 exhaustion of all available resources. This implies that T :ZI/K because we consider

270 normalized resources amounts.

271 Now, at time 1, the system holds probabilistic value representations with modes ,u(t) and
272 variance G(t). This yields the confidence level P, (A,u(t)) given in Equation 2 above, where

273  we have made confidence an explicit function of A,u(t) for mathematical convenience (see

274  below).
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275  This confidence level can be greater or smaller than the initial confidence level PCO, because

276  new information regarding option values has been assimilated since the start of the
277  deliberation. Of course, the system will anticipate that investing additional resources will
278 increase its confidence (on average). But this may not always overcompensate the cost of
279  spending more resources on the decision. Thus, how should the system determine whether to
280  stop or to continue, in order to maximize the expected cost-benefit tradeoff? It turns out that
281  this problem is one of optimal stopping, which is a special case of Markov Decision Processes
282 2238 As we will see, it can be solved recursively (backward in time) using Bellman’s optimality

283  principle *.

284  Let a(t)e{O,l} be the action that is taken at time {, where a(t) =0 (resp. a(t):l) means
285  that the system stops (resp. continues) deliberating. Let Q(a(t),A,u(t)) be the net benefit
286 that the decision system would obtain at time 1:

RxP (Au(t))-a(xt) ifa(t)=0

287 Q(a(t),Au(t))= 52) o) (8)
0 otherwise

288  where both the benefits B(Z) and costs C(Z) of resource investments have been rewritten
289 in terms of decision time. Without loss of generality, Equation 9 states that the net benefit of

290  resource allocation is only realized when the system decides to stop (a(t):O). Note that

291 Q(a(t),A,u(t)) is also a function of time (through the precision of value representations and

292  effort cost), but we have ignored this dependency for the sake of notational conciseness.

293 A time I, the optimal control policy derives from a comparison between the net benefit of

294  stopping now - i.e., Q(O, A,u(t)) - and some -yet undefined- threshold a)(t) which may
295  dependupontime. Let 7, (t) be the control policy (i.e., the temporal sequence of continue/stop

296  decisions) that is induced by the threshold a)(t):
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297

. (t)_{o if Q(0,Au(t))> w(t) o

1 otherwise

298  Finding the optimal control policy 7Ta, (t) thus reduces to finding the optimal threshold o (t)

299 By definition, at t=T , the system stops deliberating irrespective of its current net benefit

300 Q(O, Au(T )) By convention, the optimal threshold @ (T) can thus be written as:

o (T)=minQ(0,Au(T))
301 =Q(0,0,T) (10)
=R/2-a(xT)

302 Now, at t=T —1, the net benefit Q(0,Au(T ~1)) of stopping now can be compared to the
303 expected net benefit E[Q(O, Ap(T))|Au(T —1)] of stopping at time t =T , conditional on the
304  current value mode difference Au(T —1):

305 E[Q(0,Au(T))[Au(T 1) |=RxE[ R, (Au(T))|Au(T-1)|-a(xT)’ (12)
306 where the expectation is taken under the transition probability density p(Ay(T)\Ay(T —1))

307 of the value mode difference for a unitary time increment (At =1<> Az =k). This density
308 derives from rewriting Equation 4 in terms of the instantaneous change in the moments of the

309 value representations. It is trivial to show that the corresponding first- and second-order
2
310 moments are E[ s (t)- 4 (t-1)]=0 and E[(,ui (t)- s (t-1)) }:7,(1 respectively. It

311 follows that the transition probability density of the value mode difference is stationary (i.e. it

312  does not depend upon time) and is given by:

313 p(Au(t)|Au(t-1))=N(Au(t-1),2yx) vt>1 (12)

314  which is of course valid for t =T .
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315  The optimal policy is to stop if Q(O,A,u(T —1)) > E[Q(O,A,U(T ))‘Au(T —1)} , and to continue
316  otherwise. Note that both Q(O, A,u(T —1)) and E[Q(O,A,u(T ))|A,u(T —l)] are deterministic

317  functions of A,u(T —1). More precisely, they are both monotonically increasing with A,u(T —1)
318 (see Figure 1 below), because current confidence and expected future confidence

319 monotonically increase with A,u(T —l). Critically, these functions have a different offset, i.e.:
320 Q(0,0)< E[Q(O,A,u(T ))‘A,u(T -1)= 0] as long as » > 0. In addition, they eventually reach

321 a different plateau, i.e.:

im_Q(0,Au(T-1))> lim E[Q(0,Au(T -1))[Au(T -1)] as

A,u(!l'f )0 Au(T-1)>0

322 long as a>0. This is important, because this implies that there exists a critical value mode
323 difference Ay (T —1) such that Q(O, Ap (T —1)): E[Q(O, Au(T ))‘A,u* (T —1)] The net
324 benefit at that critical point is the optimal threshold at t=T -1, i.e.:
325 @ (T-1)=Q(0,Ax (T -1)). This is exemplified in Figure 1 below.

326

327  Now, let us move one step backward in time, at t =T —2. Here again, the optimal policy is to

328  stop if the current net benefit Q(O, A,u(T —2)) is higher than the expected future net benefit
329 E [Q(a(T -1), Au(T —1))‘A,u (T —2)], conditional on Az(T —2). However, the latter now
330 depends upon a(T —1) , i.e., whether the system will later decide to stop or to continue:

E[Q(0,Au(T -1))[Au(T-2)] ifa(T-1)=0

331 E[Q(a(T -1),Au(T -1))[au(T -2)|= E[E[Q(O, A (T)) ga (T 1) | Asa (T _2)] otherwise

332 (13)
333  The optimal control policy cannot be directly identified from Equation 13. This is where we
334  resort to Bellman's optimality principle: namely, whatever the current state and action are, the

335 remaining actions of an optimal policy must also constitute an optimal policy with regard to the
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336  state resulting from the current action 3°. Practically speaking, the derivation of the optimal

337 threshold at t =T —2 is done under the constraint that oMCD’s next action follows the optimal

338  policy, i.e., a(T —1) =7Z':) (T —1).

339 Let @ (A,u(t)) EQ(ﬁ; (t),Aﬂ(t)) be the net benefit evaluated under the optimal policy at
340 time t, which we refer to as the “optimal net benefit”. Under Bellman's optimality principle, the

341  optimal policy at t =T —2 is to stop if the current net benefit Q(O,A,u(T —2)) is higher than

342 the expected optimal net benefit E[Q*<Au(T —1))‘A,u(T —2)] where the expectation is

343  again taken under the transition probability density in Equation 12.

344  Now, attime t =T —1, the optimal net benefit is given by:
35 Q" (Au(T 1)) max{Q(0, Au(T ~1)), E[Q(0, Au(T )| Au(T -1) || (14)
346  Note that Q*(A,u(T —1)) is just another function of A,LI(T —1) (cf. dotted green curve in Figure

347  1). This means that the only source of stochasticity in Q*(A,u(T —1)) comes from A,u(T —1),
348  which can nonetheless be predicted (with some uncertainty), given the current value mode

349 difference  Au(T-2). In tumn, this makes the expected optimal net benefit
350 E[Q (Au(T -1))[Au(T -2)] a deterministic function of Az(T —2). Again, as long as 7 >0
351 and a>0, there exists a critical value mode difference Aw (T—2) such that
32 Q[0 (T-2))= E[Q*(Ay(T -1))|a (T—Z)}. The net benefit at that critical point is the

353  optimal threshold ) (T —2) att=T-2.

354 Infact, the reasoning is the same for all times t <T —1:
355  First, the expected optimal net benefit obeys the following backward recurrence relationship

356  (Bellman equation for all t <T —1):
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357 E[Q (Au(t))|au(t-1)]=E [max{Q(O,Ay(t)), E[Q" (Au(t+1))[au(t) au(t -1)}

358 (15)
359 This equation is solved recursively backward in time, starting at the expected net benefit at

360 t=T -1, as given in Equation 11. Both expectations in Equation 15 are taken under the
361 transition probability density p(A,u(t)‘A,u(t—l)) of the value mode difference under a unitary

362  resource investment (cf. Equation 12).

363  Second, the optimal threshold at time { is given by:

364 o (t)=Q(0,Au (1)) (16)
365 where A,u* (t) is the critical value mode difference, i.e., A,u* (t) is such that:

366 Q(0,A(1))=E| Q" (Au(t+1))|Au(t) =ax (1) (17)
367 Since the net benefit is a deterministic function of decision confidence, the oMCD-optimal

368  threshold a)*(t) for net benefits can be transformed into an oMCD-optimal confidence
369 threshold a); (t) Replacing the net benefit with the optimal threshold o (t) and confidence
370  with a); (t) in Equation 9 yields:

. “(t t)’
371 wp(t)= o )+Ra(z<) (18)

372 At any point in time, comparing the net benefit Q(O, Au(t)) of resource allocation to @ (t) is

373 exactly equivalent to comparing the current confidence level P, (t) to a); (t) In other terms,

374  the optimal control policy (cf. Equation 10) can be rewritten as:

2 (t)= {0 if P, (t)>ap (t)

375 )
1 otherwise

(19)

376  This highlights the central role of confidence, whose monitoring (during deliberation) is a

377  sufficient condition for operating optimal decision control. In turn, this greatly simplifies the
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378 decision control architecture because knowledge about the underlying decision-relevant
379  computations is not required. As we will see later, oMCD is flexible (i.e. it encompasses many
380 kinds of decision processes) and robust to deviations from its working assumptions (i.e. it
381  provides a tight approximation to optimal control under alternative settings of the resource
382  allocation problem).

383  This closes the derivation of oMCD's optimal control policy.

384

385  Although the derivation of oMCD’s optimal control policy is agnostic w.r.t. the underlying value
386  computations, it still requires some prior information regarding the upcoming information
387  processing: namely, prior moments of value representations, type #1 and #2 effort efficacies,
388 decision importance, unitary effort cost and cost power. This means that oMCD implicitly
389 includes a prospective component, which is used to decide how to optimally react to a
390 particular (stochastic) internal state of confidence. In other terms, one can think of oMCD as a
391 mixed prospective/reactive policy, whose prospective component is the shape of the
392  confidence threshold temporal dynamics.

393  Figure 2 below shows a representative instance of oMCD's optimal control policy, from 1000
394  Monte-Carlo simulations (using decision parameters R=1, 0=0.2, =1, y=4, «=1/100, v=0.5, 5o=1).

395

396  First, one can see that oMCD’s optimal confidence threshold a):, (t) lies above the average

397 confidence level |3C(t) of its prospective variant (cf. Equation 6, whose Monte-Carlo estimate

398 is depicted by the blue line in panel B). This means that oMCD’s control policy would, in most
399 cases, demand higher confidence than prospective MCD. Importantly however, oMCD’s policy
400 is sensitive to unpredictable fluctuations in the trajectory of value modes, which will induce
401  variations in resource investments (or, equivalently, response times). This enables oMCD to
402  exploit favorable variations in confidence if they eventually reach the threshold sooner than

403  expected.
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404  Note that the confidence threshold a); (t) is, by construction, the confidence level that the

405  system achieves when committing to its decision. This means that, under oMCD’s policy, the
406  relationship between reported confidence levels and response times is entirely determined by
407  the shape of the optimal threshold dynamics. In this example, this relationship will be mostly

408 negative, i.e. reported confidence levels tend to decrease when response times increase. This

409 is despite the fact that average confidence lsc(t) always increases as decision time unfolds,

410 as long as effort efficacy parameters are nonzero. In other words, the overt relationship
411  between response times and reported confidence levels (across trials) may be qualitatively
412  different from the covert temporal dynamics of confidence during decision deliberation.

413  So what is the impact of decision parameter on oMCD’s confidence threshold dynamics? This
414  is summarized in Figure 3 below, where we systematically vary each parameter in turn (when
415  setting all the others to unity).

416

417  The net effect of increasing effort efficacy (either type #1 or type #2) is to increase the absolute
418  confidence threshold. In other terms, the demand for confidence increases with effort efficacy.
419 In contrast, the demand for confidence decreases with unitary effort cost. Note that the effect
420  ofincreasing decision importance (not shown) is exactly the same as that of decreasing unitary
421  effort cost. Importantly, the shape of the confidence threshold dynamics is approximately
422  invariant to changes in effort efficacy or unitary effort cost.

423  The only parameter that eventually changes the qualitative dynamics of oMCD’s optimal
424  confidence threshold is the effort cost power (panel D). In brief, increasing the cost power
425  tends to decrease the initial slope of oMCD’s confidence threshold dynamics. Here, the latter
426  eventually falls below zero (i.e., the confidence threshold decreases with decision time) when
427 the effort cost becomes superlinear (v>1). This is because, in this case, late resource
428 investments are comparatively more costly than early ones.

429  Note that, in contrast to effort efficacies, effort cost parameters can be altered without changing

430 the dynamics of expected confidence. In other terms, the shape of the relationship between
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decision time and confidence is, for the most part, independent from the inner workings of the
underlying decision system.
Let us now relate the MCD framework to standard decision processes, which differ in terms of

their respective value computations.

3. How does MCD relate to standard decision processes?

By itself, the MCD framework does not commit to any specific assumption regarding how value-
relevant information is processed. Nevertheless, the properties of decisions that are controlled
through MCD actually depend upon how probabilistic value representations change over time.
In what follows, we focus on two specific scenarios of value computations, and disclose their

connection with MCD.

¢ Bayesian value denoising.

Let us first consider the Bayesian value denoising case, in which value representations are
updated Bayesian beliefs on a hidden value signal. Note that, in this case, the optimal control
rule - for maximizing expected reward rate - reduces to a specific instance of so-called drift-

diffusion decision models with decaying bounds on the estimated value difference 1424,

Assume that, at each time point, the decision system receives an unreliable copy y(t) of the
(hidden) value V of each alternative option. More precisely, y(t) is a noisy input signal that

is centered on V , i.e.: y(t):V +8(t) , where the random noise term e(t) is i.i.d. Gaussian

with zero mean and variance 2 (and we have dropped the option indexing for notational

simplicity). One may think of 2 as measuring the (lack of) reliability of the input value signal.
This induces the following likelihood function for the hidden value: p(y(t)[\/)= N (V,Z).

Finally, assume that the decision system holds a Gaussian prior belief about the hidden
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options’ value, i.e.: p(V)z N (,uO,O'O), where [, and O, are the corresponding prior mean
and variance. At time t, a Bayesian observer would assimilate the series of noisy signals to
derive a probabilistic (posterior) representation p(V \y(l),..., y(t)) =N (ﬂ(t),d(t)) of

hidden options’ values with the following mean and variance 4°:

O'(t) :ﬁ (20)

5(t)=5—2(y(t)- ) (21)

Equation 21 specifies what the perturbation to the value mode would be, if the underlying value

computation was a process of Bayesian value denoising, whose outcome is the posterior

estimate 4 (t)=E [V \y(l) ooy y(t)] of value. In brief, Equation 21 states that the value mode

changes in proportion to prediction errors (i.e., y(t)—,uo), which the Bayesian observer
accumulates while sampling more input value signals. The stochasticity of the value mode’s
perturbation O is driven by the random noise term & in the incoming noisy value signal.

Conditioned on the hidden value V , it is easy to show that E[5‘|V} ocV — 1, This implies

that the random walk in Equation 21 actually has a nonzero drift that is proportional to the
hidden value. Importantly however, the Bayesian observer does not know what the hidden

value V is. Prior to observing noisy value signals, its expectation is simply that
E[y]: E[V]=ﬂ0 and therefore E[5~]=0. In fact, this holds true at any time t: the Bayesian

observer's expectation about the future change in its value belief mode, i.e.
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474 E[,u(t+1)—,u(t)‘y(1),...,y(t)] is always zero, because its expectation about the next

475  value signal reduces to her current value mode, i.e. E [y(t +1)\y(1) oo y(t)] = 4(t). In other

~

476  words, although the modes’ perturbation o0 actually have a nonzero mean (as long as V
477  deviates from the mode of the observer’s belief), the Bayesian observer's expectation about

478 its future realizations is always zero.

479  Nevertheless, the Bayesian observer can accurately predict how the precision of its belief will

480 change with time. Comparing Equations 3 and 20 suggests that, under the Bayesian value
481  denoising scenario, type #1 effort efficacy reduces to: ﬂz]/KE. This means that type #1 effort

482  efficacy simply increases with the reliability of the input value signal.

483 In addition, although the Bayesian observer cannot anticipate in what direction the to-be-
484  sampled signal y(t) will modify the mode of its posterior belief, it can derive a prediction over

485  the magnitude of the perturbation:

TRY X +1io,
486 E[(S(t) }=t><—°2 (22)
)y
—+t
Oy
487  where the expectation is derived under the agent’s prior belief about the hidden value. Now,
488  Equation 4 defines type #2 effort efficacy in terms of the ratio E[S(t)z }/Kt of expected change

489  magnitude over effort investment (where z = kt). Note that, under Equation 22, this quantity

490 varies as a function of decision time. Thus, under the Bayesian value denoising scenario, type

491  #2 effort efficacy can be approximated as its sample average over all admissible decision

492 times, i.e.. yrYT Z::l(ZthO'O)/(E/aOH)ZK. This is only an approximation of course, since

JRY:
493 E [5(0 } eventually tails off as time increases, because noisy value signals that are sampled

494 later in time have a smaller effect on the posterior mode. In other words, were the MCD
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495  controller to know about the inner computations of the underlying value updating system, it
496  would rely on Equation 22 rather than on Equation 4. The ensuing ideal control policy is

497  summarized in the Supplementary Methods 1 in the Supplementary Information.
498
499 e The progressive attribute integration case.

500 Second, let us consider another type of value computation, which essentially proceeds from
501  progressively integrating the value-relevant attributes of choice options. This typically happens
502  when choice options can be decomposed into multiple dimensions that may conflict with each

503  other (cf., e.g., tastiness versus healthiness for food items).

504 Let X,..., X, be the set of k such value-relevant attributes, the combination of which is specific

505 to each option. Assume that the decision system constructs the value of alternative options

506  according to a weighted sum of attributes, i.e.. V = kak X X, , where the attribute weights
507 W, are the same for all options. Assume that each attribute is sampled from a Gaussian

508 distribution with mean 7}, and variance &, i.e. p(Xk)= N(nk,gk). Finally, assume that

509 attributes are available to the decision system one at a time, i.e. decision time steps co-occur
510 with attribute-disclosing events. For the sake of simplicity, we set the decision’s temporal
511  horizonto T =k, i.e. we focus on the decision to stop (potentially prematurely) the integration
512 of all available value-relevant attributes. In what follows, we refer to this scenario as the
513  progressive attribute integration model.

514 In the absence of default preferences, the system holds a prior representation about the
515  options’ value that is maximally uninformative. This is because, prior to any value computation,
516  any combination of value-relevant attributes is admissible, and the system did not disclose the

517 options’ attributes yet. The first two moments of the system’s prior value representation

518 p(V) =N (,uo,ao) are thus given by:
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K
Hy = zwk' X1y
k-1

519 (23)

k
_ 2
O = Zwk' X6k
=1

520 where of K is the number of value-relevant attributes.

521 Now, as time unfolds and the decision system discloses the value-relevant attributes, it
522  progressively removes sources of uncertainty about the value of alternative options. In
523  principle, if the system reaches the temporal horizon, then it knows all the attributes and can

524  evaluate the alternative options with infinite precision. However, as long as some attributes are
525  missing, value representations remain uncertain. Let K(t) be the set of attribute indices that

526  have been available to the decision system up until time t. At time t, the decision system thus
527  holds an updated probabilistic representation of value p(V‘XK(t))= N (,U(t),O'(t)) with the

528 following mean and variance:

u(t)=p+5(t)
529 \o(t)=0,~ . W2xg, (24)
)

k'eK(t

530 where the change in the value mode is simply given by:

531 g(t): Z Wk'x(xk'_nk') (25)

k'eK(t)
532  As before, Equation 25 specifies what the perturbation to the value mode would be, if the
533  underlying value computation was a process of progressive attribution integration, whose

534  outcome is the value estimate ,u(t). Note that here, variability in mode perturbations does not

535 arise from some form of stochasticity or unreliability of input signals, as is the case for the
536 Bayesian value denoising scenario above. Rather, it derives from the arbitrariness of the

537 permutation order with which attributes become available for options’ evaluation. However,
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538 should the full set of attributes eventually be disclosed, the estimated value would be
k

539 ,u(T) = Zk,wk. X X, , with full certainty (O'(T) =0).

540 Here again, the decision system cannot anticipate in which direction the future value mode will

541 change, i.e. its expectation over future mode changes always is E [S(t)] =0 atany pointin

542  time (because E[Xk] =1, ). Nevertheless, it can derive a prediction over the magnitude of

543  the perturbation, by averaging over all possible permutation orders:

~ t &
E[5(t)1 = Ekz_;wk,z XG,.

=1o,

544 (26)

545  Comparing Equations 4 and 26 suggests that, under the progressive attribute integration

546  scenario, type #2 effort efficacy simplifies to: } = o, . This means that type #2 effort efficacy

547  simply scales with the expected range of attributes’ variation. This also implies that, in contrast
548 to the above value denoising case, the transition probability density of value modes under the
549  progressive attribute integration scenario is stationary and complies with oMCD’s assumption

550  (cf. Equation 12).

551  What about type #1 effort efficacy? Note that one cannot directly compare Equation 24 to
552 Equation 4, because of the arbitrariness of the order of attribute-disclosing events. In fact, this
553  arbitrariness implies that the dynamics of value variances is decreasing with time but
554  stochastic. Although oMCD is neglecting this stochasticity, type #1 efficacy can be derived
555 from the first-order moment of value variance dynamics. Accordingly, averaging over all

556  possible permutations yields the following expected change in precision:

557 E I:]/G(t) —]/00] ~tx1/o,(k—t). Using the same logic as above, this suggests that type

558  #1 effort efficacy can now be approximated as: z]/(k —1) Z;l]/lcao (k —t). Note that
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559  we have removed the time horizon from averaging over admissible decision times, since it

560 induces a singularity (infinite precision).

561 Importantly, the progressive attribute integration scenario implies that both first- and second-
562  order moments of value representations follow stochastic dynamics. This means that the ideal
563  control policy does not reduce to a single threshold (on either net benefits or confidence), but
564 rather unfolds onto the bidimensional space spanned by both moments of value
565 representations. This makes the progressive attribute integration scenario qualitatively
566  different from the Bayesian value denoising case. We refer the interested reader to the
567  Supplementary Methods 2 in the Supplementary Information for details regarding the

568 mathematical derivation of the ideal control policy under progressive attribute integration.

569

570  One can see that the definition of type #1 and type #2 effort efficacies depends upon the way
571 in which the decision process perturbs the value representations (the above scenarios are just
572  two examples out of many possible forms of value computations). In principle, optimal control
573  would thus require variants of MCD controllers that are tailored to the underlying decision
574  system. For the sake of completeness, the derivation of such ideal control policies are
575 summarized in Appendices 1 and 2. In this context, the MCD architecture that we propose
576  provides an efficient alternative, which generalizes across decision processes and still
577  operates quasi-optimal decision control (see below). The only requirement here, is to calibrate
578  the MCD controller over a few decision trials to learn effort efficacy parameters. Note that such
579 calibration is expected to be very quick (at the limit: only one decision trial), because effort
580 efficacies can be learned on within-trial dynamics (of value representations). This is effectively
581  what we have done here, in an analytical manner, when deriving approximations for the effort

582  efficacy parameters under distinct decision scenarios.

583
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584  Results

585

586 In the previous section of this manuscript, we derived the online, dual prospective/reactive
587  variant of MCD (and disclosed its connection with two exemplar decision systems). We now
588  wish to illustrate its properties.

589

590 1. How do prospective MCD and oMCD differ?

591 Formally speaking, online/reactive and prospective MCD policies are solving the same
592  resource allocation problem, i.e. they both aim at stopping resource investment when its net
593  benefits are maximal. At this point, one may thus ask whether oMCD produces better decisions
594  than prospective MCD, which operates by committing to a predefined resource investment.
595  More precisely, under prospective MCD, the decision stops when the expected net benefit is
596  maximal, which is evaluated at the onset of the decision (this corresponds to the red vertical
597 line in Figure 2). But does oMCD yield higher net benefits than prospective MCD (on average)?
598  To answer this question, we resort to Monte-Carlo simulations. In brief, we simulate a particular
599 decision trial in terms of the stochastic dynamics of value representations, according to
600 Equations (3) and (4), using the same decision parameters as for Figure 2. At each time step,
601  oMCD’s policy proceeds by comparing the ensuing confidence level to the optimal confidence
602 threshold. When the confidence threshold is reached, we store the resource investment, as
603  well as the ensuing confidence level and net benefit. We proceed similarly for prospective
604  MCD, except that resource investment is defined according to Equation (1). We then repeat
605  the procedure to evaluate the average confidence levels, amounts of invested resources, and
606  net benefits induced by both MCD variants. These are summarized in Figure 4 below, where
607 the averages are taken over 500 sample path trajectories of value modes. Note: as a reference,
608 we also compare MCD control policies to a so-called "oracle” dummy policy, which

609  retrospectively identifies the net benefit apex, i.e. the time at which the stochastic trajectory of
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610 net benefits is maximal. This provides an upper (though unachievable) bound to the expected
611  net benefit of any online control policy.

612

613  One can see that oMCD tends to invest fewer resources and yet achieves higher confidence
614  than prospective MCD (on average). In turn, the ensuing average net benefit is lower for
615  prospective MCD than for oMCD (which is closer to the oracle). Unsurprisingly, under oMCD,
616  the statistical relationship between resource investments and reported confidence levels
617  unfolds along the dynamics of the optimal confidence threshold. In this setting, decisions that
618 take longer eventually yield lower confidence (although this actually depends upon decision
619  parameters, see Figure 3). For prospective MCD, there is no such relationship because
620  resource investment is fixed once decision parameters are set.

621

622 So do these observations generalize over decision parameter settings? To answer this
623  question, we repeat the same analysis as above, under 200 random settings of all decision
624  parameters. Figure 5 below summarizes the results of this Monte-Carlo simulations series.
625

626  One can see that the impact of decision parameters on resource investment and confidence
627 is very similar under both MCD variants. This is important, because this means that the known
628  properties of prospective MCD 7 generalize to oMCD. In addition, oMCD's optimal control policy
629 tends to yield lower resource investments and higher confidence levels than prospective MCD.
630 Both effects almost compensate each other, but oMCD tends to provide a small but systematic
631 improvement on the ensuing net benefit, which typically increases with type #2 effort efficacy

632 (¥ ). Thisis because increasing y increases the stochasticity of value mode dynamics, which

633  provides oMCD with more opportunities to exploit favorable variations in confidence (cf. panel
634 B).

635

636  Now, when compared to prospective MCD, oMCD possesses a unique feature: the potentially

637  nontrivial statistical relationship between decision confidence and resource investments (as
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638  proxied using, e.g., response times), across trials with identical decision parameters. This was
639 already exemplified in Figure 4 above (cf. panel D).

640  To make this distinction clearer, we performed another set of simulations aiming at evaluating
641  the impact of decision difficulty. Note that difficult decisions can be defined as those decisions
642  where the reliability of value representations improve very slowly. Within the MCD framework,
643 increasing decision difficulty can thus be modelled by decreasing type #1 effort efficacy. We
644  systematically varied g from 2 to 8 (having set all the other decision parameters to 4), simulated
645 500 sample path trajectories of value mode dynamics for each difficulty level, and evaluated
646  the ensuing effort investments and achieved confidence levels. Figure 6 below summarizes
647  the simulation results.

648

649  One can see that the net effect of increasing decision difficulty (or equivalently, decreasing
650 type #1 effort efficacy) is to increase resource investment and decrease confidence. This holds
651  for both oMCD and its prospective variant. This means that, on average, reported confidence
652 levels will tend to correlate negatively with resource investments, across difficulty levels (at
653  least for this setting of decision parameters). However, for oMCD, this negative relationship
654  between resource investments and reported confidence levels is also true within each difficulty
655 level (across trials). This has no equivalent under prospective MCD. In addition, the shape of
656  this relationship is preserved across difficulty levels. This is because type #1 effort efficacy
657 induces rather small distortions on oMCD's confidence thresholds (cf. Figure 3 above).

658

659

660  Figure 6 also reveals how oMCD's optimal control policy prospectively anticipates the impact
661  of decision difficulty. In brief, the decay rate of oMCD's confidence threshold increases with
662  decision difficulty, because expected confidence gains become more costly. However, this is
663  overcompensated by the corresponding decrease in the ascent rate of expected confidence,

664  which will delay the time at which confidence eventually reaches the optimal threshold. This
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665 eventually determines the way oMCD trades effort against confidence: difficult decisions are
666  given more deliberation time than easy decisions (this is also true for prospective MCD).

667 Note that the effect of difficulty on resource investment, as well as the shape of the
668  effort/confidence relationship, depends on the setting of decision parameters. In other words,
669  these effects do not generalize to all decision parameter settings. For example, increasing
670 decision difficulty will eventually decrease resource investments. Also, the sign of the
671  correlation between confidence and resource investments across difficulty levels may not
672  always align with the sign of this correlation within each difficulty level.

673

674

675 2. How optimal is oMCD’s policy?

676  One of oMCD’s main claims is that it is possible to derive a quasi-optimal decision control
677  policy, without detailed knowledge of the underlying value computations. But how well does
678 oMCD perform, when compared to ideal policies that rely on such detailed knowledge? To
679  address this question, we compare both resource investments and achieved confidence levels
680  under either oMCD or the ideal control policy, for both decision scenarios (see Supplementary
681 Methods 1 and 2 in the Supplementary Information for mathematical details regarding the

682  derivation of the corresponding ideal policies).

683  We thus conducted the two following sets of Monte-Carlo simulations series. For each decision
684  scenario, we simulate sample path trajectories of moments of value representations, under the
685  corresponding type of value computations. Each trajectory effectively corresponds to a dummy
686  decision trial, given some setting of the relevant decision parameters. Note that only a subset
687  of these parameters is common to all decision scenarii (cost/benefit parameters, i.e.: R, a and
688  v), whereas other parameters are typically decision-specific (bayesian value denoising: signal
689  reliability ¥ and prior variance g, progressive attribute integration: attribute moments n and ¢

690 as well as attribute weights w). For each decision parameter setting, we derive both the ideal
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691  control policy and oMCD’s control policy (by approximating the effort efficacy parameters that
692  correspond to the decision-specific parameters). We then collect the resource investments and
693 achieved confidence that are induced by these policies, when applied on sample path
694 trajectories of value representation moments. Now, how do ideal and oMCD policies compare

695  across different settings of decision parameters?

696  Figure 7 below summarizes the comparison of ideal and oMCD policies under the Bayesian
697 value denoising scenario. This comparison is made across 200 sets of randomly drawn
698 decision parameters «, v, ¥ and g,. For parameter setting, we derive the average effort
699 investment and achieved confidence level across 500 sample path trajectories of moments of

700 value representations.

701

702  One can see that variations in decision-relevant parameter settings induce very similar
703  variations in average resource investments, achieved confidence and net benefits under both
704  decision control policies. Also, although oMCD’s policy yields both more effort costs (in terms
705  of resource investments) and more benefits (in terms of achieved confidence), these effects
706  compensate each other and oMCD’s ensuing net benefits are comparable to those of the ideal
707  control policy. Moreover, despite oMCD’s approximation of type #2 effort efficacy, it does not
708 seem to have a systematic impact on the similarity between the two policies. These results
709 imply that oMCD provides a tight approximation to the ideal policy for Bayesian value

710 denoising.

711 Now Figure 8 below summarizes the comparison of ideal and oMCD control policies under the
712 progressive attribute integration scenario (200 sets of randomly drawn decision parameters «,

713 v, n, { and w, with k = 10).

714
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715  As before, one can see that variations in decision-relevant parameter settings induce very
716 similar variations in average resource investments, achieved confidence and net benefits
717  under both control policies. Moreover, despite oMCD’s approximation of type #1 effort efficacy,
718 it does not seem to have a systematic impact on the similarity between the two policies. These
719  results imply that oMCD provides an accurate approximation to the ideal control policy for

720  progressive attribute integration.

721  Taken together, these results mean that the MCD architecture operates a quasi-optimal
722  decision control that generalizes across decision processes without requiring detailed

723  knowledge about underlying value computations.
724
725 3. How critical is the definition of MCD’s benefit term?

726  The working assumption of MCD is that decision confidence serves as the main benefit term
727  of the resource allocation problem (cf. Equations 1-2). The advantage of this assumption is
728 that it applies to any kind of decision process, irrespective of the underlying computations.
729  However, as we hinted in the introduction, for the specific case of value-based decisions, there
730 exists another natural candidate definition of the benefit term, i.e.: the value of the chosen
731  option. One may argue that changing the definition of the benefit term effectively changes the
732 nature of the resource allocation problem. So how critical is MCD’s working assumption? Is

733  oMCD robust to such alternative setting of the resource allocation problem?

734  Onthe computational side of things, the derivation of the ensuing optimal control policy is very
735  similar to that of oMCD. Since the value of the chosen option is, by definition, the maximum
736  value over the choice set, we refer to this policy as max(value). It is relatively easy to show

737  that oMCD and max(value) share one common important feature, i.e.: the critical quantity that
738  triggers decisions is the absolute difference ‘A,u (t)‘ in value modes. However, in contrast to

739 oMCD, max(value) is insensitive to the variance of value representations (and hence to type


https://doi.org/10.1101/2023.01.02.522463
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.02.522463; this version posted February 15, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

740 #1 effort efficacy). We refer the interested reader to the Supplementary Methods 3 in the
741  Supplementary Information for mathematical details regarding the derivation of max(value)’s

742  policy.

743  So do max(value) and oMCD policies respond similarly to variations in MCD parameters? To
744  address this question, we performed the following series of Monte-Carlo simulations. First, we
745  sample a set of MCD parameters (a, S, y, v and k) randomly. Second, we derive the optimal
746  control threshold dynamics under both max(value) and oMCD policies. Third, we extract the
747  mean response time, confidence, and net benefits over 500 random simulations of moments
748  of value representations sample paths (according to Equation 1). We then repeat the three

749  steps above 200 times. The results of this analysis are summarized in Figure 9 below.

750

751  Although oMCD tends to invest fewer resources than max(value) on average, it also achieves
752  smaller confidence levels. This is essentially because the confidence mapping (cf. Equation 8)
753  enforces an upper bound on oMCD’s benefit term. Comparatively, max(value) thus tolerates
754  stronger effort costs. Nevertheless, both effects compensate each other and both control
755  policies eventually yield very similar outcomes in terms of net benefits. Unsurprisingly, each
756  policy is (slightly) better than the other at maximizing its own benefit on average. More
757  importantly, variations in decision parameter settings induce very similar variations in average
758  resource investments, achieved confidence levels and net benefits. This result suggests that
759  both frameworks are much less different than intuitively thought of, at least in terms of
760  empirically observable decision features (choice, deliberation time, confidence). Moreover,
761  type #1 effort efficacy, which induces variations in oMCD'’s policy that have no equivalent in
762  max(value), does not seem to have a systematic impact on the similarity between the two
763  policies. In conclusion, oMCD can be thought of as providing a quasi-optimal policy for
764  maximizing the value of the chosen option. In other terms, oMCD is robust to violations of its

765  working assumptions.
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766

767 4. Does MCD reproduce established empirical results?

768  As we highlighted before, MCD is agnostic about the underlying decision process. However,
769  what eventually determines the choice that is made is the inner workings of value
770  representation updates. This is important, since some of the decision features may depend
771  upon, e.g., whether the system eventually arrives at a choice that is consistent with the
772  comparison of options’ values or not. Inspecting these kinds of effects thus requires performing
773  Monte-Carlo simulations under distinct decision processes (here: Bayesian value denoising
774  and progressive attribute integration).

775

776  Let us first consider the Bayesian value denoising scenario. First, we simulated 10* stochastic
777  dynamics of Bayesian value belief updates according to Equations 20-21, having set the
778  decision parameters as follows: R=1, a=0.1, v=2, 60o=10, Ho=0, 2=100, and randomly sampling
779  trial-specific hidden value signals V under the ideal observer’s prior belief. Note that we chose
780 this parameter setting because it reproduces the empirically observed rate of value-
781  consistent/value-inconsistent decisions (see Figure 12 below). Second, we identified the
782  oMCD-optimal confidence threshold dynamics, having set the effort efficacy parameters to
783  their analytical approximation (cf. Equation 23 and related derivations). We then store the
784  ensuing resource investments and achieved confidence levels, as well as the choices of the
785  decision system (as given by the comparison of value modes at decision time). Figure 10 below
786  summarizes the results of this Monte-Carlo simulations series.

787

788  First, one can see that the MCD approximation of within-trial choice confidence dynamics is
789  reasonably accurate (panel A), and smoothly trades errors at early and late decision times.
790  Second, on average, resource investment decreases with the absolute difference in hidden
791  option values (cf. black line in panel B). Third, above and beyond the effect of option value

792  difference, resource investment decreases when choice confidence increases (cf. blue and
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793 redlines in panel B). This derives from the shape of the oMCD confidence threshold dynamics
794  (cf. Figure 3). Fourth, the consistency of choice with value is higher for high-confidence choices
795  than for low-confidence choices (panel C). This observation derives from performing a logistic
796  regression of choice against hidden value, when splitting trials according to whether they yield
797  ahigh or a low level of confidence #1. Fifth, on average, choice confidence decreases with the
798  absolute difference in hidden option values (cf. black line in panel D). Note that the oMCD
799 framework also predicts that confidence is higher for choices that are consistent with the
800 comparison of hidden values than for inconsistent choices (cf. red and blue lines in panel D).
801  This suggests that MCD possesses some level of metacognitive sensitivity 42, i.e., it reports
802 lower confidence when making a decision that is at odds with the hidden (unknown) value.
803  Under the assumption that decision time proxies resource investment, these are standard
804 results in empirical studies of value-based decision making 7134343  Interestingly, when
805  focusing on choices that are inconsistent with the comparison of hidden values, the impact of
806 value difference on confidence reverses, i.e., choice confidence decreases with the absolute
807 difference in hidden values. This relates to known results in the context of perceptual decision
808 making #4. We note that these results depend upon effort cost parameters. In particular,
809 metacognitive sensitivity tends to decrease in parameter regimes where the dynamics of
810 oMCD confidence thresholds stop the decisions very early (e.g. low cost power and/or high
811 unitary effort cost). This may explain the loss of metacognitive sensitivity that concurs with
812  mental fatigue, which effectively increases one’s sensitivity to cognitive effort .

813

814  Let us now consider the progressive attribute integration scenario. We essentially reproduced
815 the same analysis as above, while simulating stochastic dynamics of value computations by

816  attribute integration according to Equations 24-25, and setting the model parameters to yield
817  asimilar rate of value-consistent choices (R=1, a=3, v=4, k=20, T, =1, Sk =1). Figure 11 below

818 summarizes the results of this Monte-Carlo simulations series.

819
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820 In brief, one can see that we qualitatively reproduce the above relationships between effort
821 investment, confidence and choice consistency. This is important, since this means that these
822  relationships tend to generalize across different decision processes. However, this
823  equivalence is only qualitative, and does not always hold. For example, reducing the unitary
824  effort cost eventually renders the oMCD confidence threshold dynamics concave. For
825  progressive attribute integration, this reverses the impact of the difference in option values
826  onto confidence for value-inconsistent choices back again. This does not seem to happen

827 under Bayesian value denoising.

828

829  For completeness, we re-analyzed the data reported in our previous investigation of (the
830  prospective variant of) the metacognitive control of decisions . In brief, participants were native
831  French speakers, with no reported history of psychiatric or neurological illness. A total of 41
832  people (28 women; age: mean = 28, SD =5, min = 20, max = 40) participated in this study (no
833  participant was excluded). All participants rated the pleasantness of a series of food items, and
834  performed two-alternative forced choices between pairs of (pseudo-randomly selected) items.
835 In addition to participants’ value ratings and choice, we also collected choice confidence,
836  decision time, and subjective effort rating. We note that in this context, within-decision value
837  computations may rely either on retrieving previously experienced food samples from episodic
838 memory 4547 or on integrating value-relevant attributes (e.g., tastiness and healthiness)
839  derived from cognitive decompositions of choice options 3948, Both cognitive scenarios map
840  onto Bayesian value denoising (which would average over memory samples) and progressive

841  attribute integration processes, respectively.

842  We already verified the main predictions of the prospective MCD model, in terms of the
843  relationship between pre-choice (default) value ratings and decision time/effort, as well as the
844  ensuing decision-related variables (i.e. change-of-mind, confidence, choice-induced

845  preference change, etc). As we already discussed, prospective and online variants of MCD


https://doi.org/10.1101/2023.01.02.522463
http://creativecommons.org/licenses/by-nc-nd/4.0/

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.02.522463; this version posted February 15, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

make very similar predictions for these kinds of relationships. We now reproduce the above
analyses (cf. Figures 10 and 11), which disclose predictions that are specific to the oMCD

framework. Figure 12 below summarizes the results of these analyses.

Note that subjective effort ratings are commensurate with response times, which suggests that
effort intensity shows little variations when compared to effort durations. We will comment on
this in the Discussion section below. In any case, one can see that the overall pattern of
relationships between resource investments (as proxied by either decision time or reported
mental effort), choice confidence and item values is qualitatively similar to that predicted from
the online MCD model (cf. Figures 10 and 11 above). Note that all the oMCD predictions

discussed above are statistically significant in our empirical data:

o Effect of DV on reported effort (all trials): t(40)=-7.6, mean r=-0.25 + 0.07 (95% CI),
p<10+

e Effect of DV on reported effort (high confidence): t(40)=-5.7, mean r=-0.18 + 0.07 (95%
Cl), p<10*

e Effect of DV on reported effort (low confidence): t(40)=-5.0, mean r=-0.14 £ 0.05 (95%
Cl), p<10*

o Effort difference (high versus low confidence): t(40)=-7.3, mean effort difference=-0.19
+ 0.05 (95% Cl), p<10

o Effect of DV on decision time (all trials): t(40)=-7.78, mean r=-0.19 + 0.05 (95% CI),
p<10+4

o Effect of DV on decision time (high confidence): t(40)=-5.9, mean r=-0.15 £ 0.05 (95%
Cl), p<10*

o Effect of DV on decision time (low confidence): t(40)=-3.9, mean r=-0.10 £ 0.05 (95%

Cl), p=0.0002
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871 e Response time difference (high versus low confidence): t(40)=-7.0, mean RT
872 difference=-0.62 + 0.17 (95% CI), p<10*

873 e Effect of DV on choice (all trials): t(40)=25.2, mean effect size=1.56 + 0.12 (logistic
874 regression, 95% CI), p<10+

875 o Effect of DV on choice (high confidence): 1(40)=32.6, mean effect size=2.02 + 0.12
876 (logistic regression, 95% CI), p<10*

877 e Effect of DV on choice (low confidence): t1(40)=10.4, mean effect size=0.84 + 0.16
878 (logistic regression, 95% Cl), p<10+

879 e Effect of DV on choice (high versus low confidence): t(40)=13.8, mean effect size
880 difference =1.17 + 0.16 (logistic regression, 95% ClI), p<10*

881 e Effect of DV on confidence (all trials): 1(40)=8.5, mean r=0.27 + 0.06 (95% ClI), p<10*
882 o Effect of DV on confidence (value-consistent): t(40)=10.6, mean r=0.27 + 0.05 (95%
883 Cl), p<10+

884 o Effect of DV on confidence (value-inconsistent): t(40)=-4.22, mean r=-0.18 + 0.09 (95%
885 Cl), p<10*

886 ¢ Confidence difference (value-consistent versus value-inconsistent): t(40)=10.8, mean
887 confidence difference =0.10 + 0.02 (95% CIl), p<10*

888  where DV stands for difference in option values, all statistical significance tests are one-sided
889 and derive from standard random effect analyses (sample size: n=41). We note that these

890 analyses were not part of a preregistration protocol.

891

892

893
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894 Discussion

895

896 Inthis work, we have presented the online/reactive metacognitive control of decisions or oMCD

897  framework.
898
899 1. Limitations

900 To begin with, recall that we have framed oMCD as a solution to a resource allocation problem.
901  More precisely, we think of decision deliberation as involving the investment of costly cognitive
902 resources, which are necessary to process decision-relevant information. The outcome of such
903 resource allocation is to override default behavioral responses, which would otherwise be
904  triggered by automatic (e.qg., reflexive, habitual or intuitive) brain processes. Under this view,
905 the brain faces the problem of adjusting the amount of resources to invest, which we equate
906  with the issue of effort regulation. This perspective is not novel: the notion of mental effort was
907 central to the early definition of automatic versus controlled processing, with the former
908 described as quick and effortless, and the latter as slower and effortful 4°. Since controlled
909 processes are slow, it is reasonable to assume that the brain may regulate effort simply by
910 adjusting its duration. This is the premise of our computational framework, which relies on the
911 theory of optimal stopping 2. However, effort actually unfolds along two dimensions: duration
912 and intensity. This means that, in principle, both decision speed and confidence may be
913  increased at the cost of increasing effort intensity. Accordingly, investing cognitive control is
914  known to speed up responses in the context of, e.g., behavioral conflict tasks 5051, This raises
915 the question: what determines the brain’s policy for trading effort intensity against effort
916  duration? A possibility is that this depends upon the nature of the cognitive resource that is
917 required for processing decision-relevant information. The issues of how to control resource
918 investment and which resource to invest are thus intertwined 2. For example, one may think of
919 resources as being composed of cognitive modules, such as working memory or attention,

920 whose neurobiological underpinnings may induce distinct costs and/or limitations on effort
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921 intensity and duration 52-%4, More generally, the effort intensity/duration tradeoff may be
922  eventually determined by the neurobiological constraints that are imposed on the neural
923  architecture that operates the processing of decision-relevant information 4. For example,
924  value-based decision making may require the active maintenance of multiple value
925 representations that tend to interfere with each other, e.g., because they involve the same
926  neural population within the orbitofrontal cortex 32. In this case, cognitive control may alter the
927  OFC neural code with the aim of temporarily dampening these interferences. In principle, the
928  associated neural mechanism may operate based on simple confidence monitoring (which
929  would proxy value conflict signals), without knowledge of the intricate architecture of value
930 coding in the OFC. We will test these ideas using artificial neural network models of MCD in

931 forthcoming publications.
932
933 2. On the generality of oMCD control policy

934  One of the main assumptions behind MCD is that mental effort investment is regulated by a
935 unique controller that operates under agnostic assumptions about the inner workings of the
936 underlying decision system. This constraint somehow culminates in the simplicity of oMCD’s
937  control architecture, which reduces to a monitoring of decision confidence. In this context, we
938  have shown that the optimal stopping policies of distinct decision processes (Bayesian value
939  denoising or progressive attribute integration) can be approximated using a simple calibration
940  of effort efficacy parameters. We have also highlighted the ensuing properties of oMCD : when
941  coupled with these different underlying decision systems, oMCD reproduces most established
942  empirical results in the field of value-based decision-making. In addition, we have shown that
943  oMCD isrobust to alternative settings of the resource allocation problem. In particular, decision
944  confidence seems to be a reasonable proxy for the value of the chosen option, which is the
945  standard candidate titration for the benefit of value-value based decisions 424, Taken together,
946 these results suggest that the architecture of oMCD control, which relies on the internal

947  monitoring of decision confidence, may generalize to most kinds of decision processes.
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948  Preliminary investigations show that this holds for yet another important kind of value-based
949  decisions, whereby value computation is the output of a forward planning process on a decision
950 tree %857, Arguably, this also holds for perceptual or evidence-based decisions. In this context,
951 decision confidence can be defined - somewhat more straightforwardly - as the subjective
952  probability of being correct . As long as effort efficacy parameters can be simply identified,
953  the MCD architecture will provide an accurate approximation to the optimal resource allocation
954  policy. This is trivial when perceptual detection or discrimination processes can be described
955 as some form of Bayesian denoising of some perceptual variable of interest 234°, This would
956 also hold for perceptual categorization processes, which may rather resemble attribute
957 integration scenarios 1°. In fact, oMCD’s potential generalizability derives from its agnostic
958 stance regarding the nature of information processing that takes place in the underlying
959  decision system. This is also why oMCD can in principle be extended to describe the
960 metacognitive control of other kinds of cognitive processes (e.g., reasoning or memory
961  encoding/retrieval). In this context, an interesting avenue of investigation would be to consider
962 the impact of metacognitive adaptation on the generalization of control policies across
963 cognitive domains. Note that, because we assume MCD’s control architecture to be invariant
964  across contexts, it requires a systematic calibration (in terms of, e.g., effort costs and/or
965  efficacies) to guaranty the quasi-optimality of resource allocation. As we highlighted before,
966  we expect such calibration to converge very quickly (e.g., over a few training trials). This is
967 because effort efficacies can be learned from within-trial confidence dynamics. Nevertheless,
968  whether this specific kind of metacognitive adaptation is sufficient to recycle and adjust MCD’s
969  control architecture to novel cognitive domains, as well as how it shapes cross-domain
970 metacognitive learning effects, is virtually unknown and would require specific empirical tests.

971

972 3. On the difference between prospective and online/reactive variants of MCD

973  Retrospectively, prospective and online/reactive variants of MCD solve the same

974  computational problem, i.e. maximizing the expected net benefit of resource allocation. We
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have shown that their respective control policies share many common features. In particular,
they tend to respond similarly to changes in effort costs and/or efficacies. However, they differ
in at least two important aspects. First, although its algorithmic derivation is more sophisticated,
0oMCD’s control policy is computationally simpler than its prospective variant. This is because
it does not require an explicit comparison of all admissible resource investments prior to
decision deliberation. Rather, it relies on dynamical changes in decision confidence signals to
trigger a binary (yes/no) stopping decision. In other terms, the comparison between admissible
resource investments is performed implicitly, while the control system monitors the progress
of the underlying decision system. This renders the neurocomputational architecture of oMCD
very similar to basic Drift Diffusion Decision Models or DDMs, whose candidate neural
underpinnings have been partially identified 58-6°, Second, only oMCD predicts non trivial
second-order statistics on key decision features beyond those induced by changes in effort
costs and efficacies. For example, both prospective and online/reactive MCD typically predict
a negative correlation between reported confidence levels and response times across difficulty
levels (as induced by different type #1 effort efficacies), but only oMCD predicts such a
relationship within each difficulty level (across trials). The range and diversity of non trivial
second-order statistics that oMCD predicts is exemplified in Figures 10-11. We note that some
of these predicted statistical relationships are within the grasp of those existing variants of
DDMs that explicitly account for decision confidence. This holds, e.g., for the two-way
interaction between confidence and item values onto response time and choice 4. Others may
be more specific to oMCD (and related ideal control policies), e.g., the inversion of the
value/confidence relationship for value-consistent and value-inconsistent choices. In any case,
these non trivial second-order statistics are the hallmark of online/reactive control policies. In
this context, what oMCD offers is a way to predict how these relationships should change,

would effort costs and/or efficacies be experimentally manipulated.

4. On extending MCD with goal hierarchies
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1002  Whether MCD is operated online or not, it relies upon some prospective computation, which
1003  anticipates the costs and benefits of investing additional resources in the decision. In turn, the
1004  optimal cost-benefit tradeoff relies upon decision-specific features, such as decision
1005 importance and difficulty. The former is signalled by the weight parameter R that scales
1006  confidence in the benefit term (cf. Equation 1). In our previous empirical work on MCD,
1007 participants were asked to decide between pairs of food items. In this context, we manipulated
1008 decision importance by instructing participants that they would have to eat the item they
1009 eventually chose (so-called “consequential decisions”) or not. As predicted by the MCD
1010 framework, increasing decision importance systematically increases decision time, above and
1011  beyond the effect of option values 7. In other terms, increasing decision importance may

1012 overcompensate the cost of mental effort by increasing the demand for confidence. More
1013  generally, we think of R as the expected reward attached to the attainment of the

1014  superordinate goal, within which the decision is framed. Importantly, although R is analogous
1015 to areward, it is distinct from the values that are attached to the choice options. This does not
1016  mean that the values that decision systems attach to choice options are independent from the
1017 goal: recent research has demonstrated that option values are strongly influenced by how
1018  useful choice options are for achieving one’s goal 1261, However, at least in principle,
1019 alternative choice options that would be instrumental for attaining an important goal may still
1020 have low value. For example, while starving, one may only have access to low
1021  quality/palatability food items. A possibility is to conceive of goals as being organized
1022  hierarchically, whereby superordinate goals are broken down into candidate subordinate goals
1023 6263 According to MCD, the selection of subordinate goals would be under higher scrutiny
1024  when superordinate stakes increase (everything else being equal). Having said this, the
1025 urgency of attaining superordinate goals may also incur additional temporal costs for
1026  subordinate goal selection, which may overcompensate the increased demand for confidence
1027  (as would be the case for, e.g., starvation). We intend to investigate these kinds of issues in

1028  forthcoming publications.
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1197  Figure captions

1198

1199  Figure 1: derivation of oMCD’s optimal control policy. Net benefits (y-axis) are plotted
1200 against the value mode difference (x-axis). The red and green lines show the net benefit if the
1201  system were stopping at t =T —1, and the expected net benefitat t =T —1. Finally, the dotted
1202 black line shows the optimal net benefit at t=T —1, and the dotted blue line shows its

1203  expectation at t =T —2 (see main text).

1204

1205  Figure 2: oMCD's optimal control policy. A: The black dotted line shows the oMCD-optimal
1206  net benefit threshold. The blue line and shaded area depict the mean and standard deviation
1207  of net benefit dynamics (over the 1000 Monte-Carlo simulations), respectively. This reflects
1208 the possible variations of within-trial confidence dynamics. The vertical red line indicates the
1209  optimal resource allocation as obtained from the prospective variant of MCD, and the horizontal
1210  red line depicts the corresponding average net benefit level. B: The black dotted line shows
1211  the oMCD-optimal confidence threshold. The blue line and shaded area depict the mean and
1212  standard deviation of decision confidence (over the same Monte-Carlo simulations). The
1213  horizontal red line depicts the average confidence level that corresponds to the optimal
1214  resource allocation under prospective MCD.

1215

1216  Figure 3: Impact of decision parameters on oMCD’s optimal confidence threshold
1217 dynamics. A: Effect of type #1 effort efficacy. Optimal confidence threshold (y-axis, black dots)
1218 is plotted against decision time (x-axis), for different B levels (color code). B: Effect of type #2
1219 effort efficacy, same format. C: Effect of unitary effort cost, same format. D: Effect of cost
1220  power, same format.

1221

1222 Figure 4: the performance of oMCD’s optimal control policy. A: the average amount of

1223  resources invested (y-axis) is shown under oMCD (black), prospective MCD (red), or oracle
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1224  (green) policies. Errobars depict standard error around the mean (s.e.m.). B: Average
1225 confidence level at the time of decision, same format. C: The average net benefits, same
1226  format. D: Achieved confidence (y-axis) is plotted against resource investment deciles (x-axis)
1227  for all control policies (0MCD: black, MCD: red, oracle: green). The black dotted line shows
1228 oMCD’s optimal confidence threshold.

1229

1230  Figure 5: comparison between prospective MCD and oMCD. A: the amount of resources
1231  invested under the prospective variant of MCD (x-axis) is plotted against the average amount
1232 of resources invested under oMCD (y-axis). Each dot corresponds to a specific set of decision
1233  parameters (200 samples). The color code indicates type #2 effort efficacy (blue: low y, red:
1234  high y). B: decision confidence, same format. C: net benefit, same format.

1235

1236  Figure 6: Impact of difficulty level. A: oMCD’s mean resource investment (y-axis, black dots)
1237  is plotted as a function of type #1 effort efficacy (x-axis). Errorbars depict standard deviations
1238  across trials, and red diamonds show the resource investment under prospective MCD. B:
1239  Achieved confidence, same format. C: Achieved confidence (y-axis) is plotted against resource
1240 investments deciles (x-axis), for each difficulty level (color code: 8 = type #1 effort efficacy),
1241 under oMCD’s optimal policy. D: oMCD's confidence threshold (y-axis, plain lines) is plotted
1242  against decision time (x-axis), for each difficulty level (same color code as lower-left panel).
1243  Dashed lines show expected confidence, and dots show the corresponding resource
1244  investments under prospective MCD.

1245

1246  Figure 7: Bayesian value denoising: comparison of oMCD and ideal control policies. A:
1247  average resource investments under oMCD’s policy (y-axis) are plotted against average
1248  resource investments under the ideal policy (x-axis), across parameter settings (dots). The
1249  color code indicates type #2 effort efficacy (blue: low y, red: high y). B: average achieved
1250 confidence, same format. C: average net benefit, same format.

1251
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1252  Figure 8: Progressive attribute integration: comparison of oMCD and ideal control
1253  policies. Same format as Figure 7. The color code indicates type #1 effort efficacy (blue: low
1254 B, red: high ).

1255

1256  Figure 9: Comparison of max(value) and oMCD control policies. A: mean invested
1257  resources under oMCD’s control policy (y-axis) and under max(value) policy (x-axis) are
1258  plotted against each other across random MCD parameter settings. The color code indicates
1259  type #1 effort efficacy (blue: low B, red: high g). B: mean confidence, same format. C: mean
1260 MCD'’s net benefit, same format. D: mean max(value) net benefit, same format.

1261

1262  Figure 10: oMCD predictions under Bayesian value denoising. A: The blue line and
1263  shaded area depict the mean and standard deviation of confidence trajectories (across the 104
1264  Monte-Carlo simulations), respectively. The blue dashed line shows the expected confidence
1265  under the corresponding MCD approximation, and the black dashed line shows the oMCD-
1266  optimal confidence threshold. B: Resource investment (y-axis) is plotted against the difference
1267 in hidden option values (x-axis), for all trials (black), high-confidence trials (blue) and low-
1268  confidence trials (red), respectively. C: The probability of choosing the first option (y-axis) is
1269 plotted against the difference in hidden option values (x-axis), for all trials (black), high-
1270  confidence trials (blue) and low-confidence trials (red), respectively. D: Achieved choice
1271  confidence (y-axis) is plotted against the difference in hidden option values (x-axis), for all trials
1272 (black), value-consistent trials (blue) and value-inconsistent trials (red), respectively.

1273

1274  Figure 11: oMCD predictions under progressive attribute integration. Same format as

1275  Figure 10.

1276

1277  Figure 12: Re-analysis of behavioral data in a simple value-based decision making

1278  experiment 7. A: Reported mental effort (y-axis) is plotted against the difference in reported
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1279  option values (x-axis), for all trials (black), high-confidence trials (blue) and low-confidence
1280 trials (red), respectively. B: Response time, same format. C&D: same format as Figure 10.
1281

1282

1283
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