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Abstract 

 

The neonatal period represents a critical phase of human brain development. During this 

time, the brain shows a dramatic increase in size, but it remains largely unclear how the 

morphology of the human brain develops in early post-partum life. Here we show that human 

newborns undergo a rapid formation of brain shape, beyond the expected growth in brain 

size. Using fractal analysis of structural neuroimaging data, we show that brain shape (i) 

strongly reflects infant maturity beyond differences in brain size, (ii) significantly outperforms 

brain size in predicting infant age at scan (mean error ~4 days), (iii) detects persistent 

alterations in prematurely born infants that are not captured by brain size, (iv) is consistently 

more sensitive to genetic similarity among neonates, and (v) is superior in predicting which 

newborns are twin siblings, with up to 97% accuracy. These findings identify the formation 

of brain shape as a fundamental maturational process in human brain development. 
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MAIN 

Introduction 

The human brain undergoes profound morphological changes over the lifespan (1–3), 

developing from a small and smooth structure in utero to the complex, highly convoluted 

structure that characterizes mature brains. Non-invasive studies with structural magnetic 

resonance imaging (MRI) have facilitated great progress in understanding these age-related 

changes of brain morphology, aided by the increasing availability of large open-access 

datasets of human MRI recordings (4, 5). 

These advances in structural neuroimaging have recently led to the first description of 

normative trajectories of human brain structure over the lifespan, similar to growth charts of 

body weight or height (1). In a complementary approach, a recent line of research uses 

structural neuroimaging data to predict brain age from modeled trajectories of healthy brain 

ageing, revealing clinically meaningful discrepancies between apparent brain age and true 

chronological age in a variety of developmental and adult disorders (6). 

While these advances have yielded significant insights into structural brain changes from 

childhood to senescence, large-scale investigations of perinatal brain development have 

remained limited, not least owing to the technical and ethical challenges of acquiring MRI 

data from human fetuses and newborns (1, 3, 7). Such investigations are vital, however, as 

perinatal brain maturation is fundamental for the neurotypical development of cognitive 

capacities and, in turn, aberrant development during this time represents a critical window 

of vulnerability for later cognitive deficits and neurodevelopmental disorders (3, 8–10). 

To overcome this gap, recent collaborative efforts such as the developing Human 

Connectome Project (dHCP; www.developingconnectome.org) now provide the opportunity 

to study early-life brain development in curated datasets of unprecedented size, quality, and 

accessibility (11). These resources are met by parallel advances in the processing of early-

life neuroimaging data, including neonatal brain atlases (12–14) and the adaptation of well-
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established processing pipelines to the specificities of the newborn brain regarding size 

variability and tissue contrasts (15). 

 

Furthermore, regarding the analytical description of brain morphology, powerful new 

methodologies have emerged that capture the shape of the human brain, moving beyond 

the information reflected by measures of brain size, such as volume or cortical thickness. 

To illustrate why shape-related measures can capture additional features of brain 

morphology, consider the example of a fictitious structure of 10000 voxels. By definition, the 

volume of this structure is given by the voxels it consists of (and yields 10 ml, if voxels are 

1 mm3 isotropic). Clearly, however, there are many ways in which these voxels could be 

arranged in space, resulting in different outlines of their borders or ‘shapes’ of the structure. 

Capturing such differences in topology, a recent line of research has shown that the shape 

of brain structures can be reliably described by their fractal dimensionality (FD) (16–18) – a 

measure of topological complexity that expresses the irregularity of a geometric shape in a 

single scalar number (19–21). 

On the technical side, FD is robustly calculated from MRI segmentations of various 

modalities (16, 17), shows better test-retest reliability than volumetric measures of brain 

morphology (18), and is applicable to all tissue compartments of the brain, including cortical 

gray matter (GM), white matter (WM), and subcortical regions (17, 22, 23). This also 

distinguishes FD from other shape-related measures such as gyrification (24), which is only 

meaningfully applicable to the cortical sheet. Importantly, FD has proven highly sensitive not 

only to age-related changes of brain morphology in healthy individuals (17, 22, 25–27) but 

also to pathological alterations of brain morphology in a variety of clinical conditions 

including neurodegenerative, vascular, inflammatory, psychiatric, and neurodevelopmental 

disorders (28–30). 
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Here, we combine these recent advances of topological neuroimaging with the newly 

available dHCP data from newborn infants to reveal how the shape of the human brain first 

develops in very early life. To this end, we assess (i) the cross-sectional, longitudinal, and 

predictive capacity of brain shape to reflect neonatal age at the time of scanning, (ii) the 

impact of key neurodevelopmental factors on brain shape, including sex, singleton vs 

multifetal pregnancy, and premature birth, and (iii) the relationship between brain shape and 

genetic similarity in individual neonates. Finally, systematic comparisons between FD and 

volume show that brain shape complements and consistently outperforms brain size in 

capturing the early-life brain development of human newborns.  

 
 
 
 
 
Results 

Quantifying brain shape in human newborns 

We analyze structural MRI recordings from the third dHCP release (11). This dataset 

includes 782 human neonates and covers a wide range of infant maturity – from very preterm 

to well post-term at the time of scanning (27-45 weeks post-menstrual age). Figure 1A 

illustrates the profound differences in brain shape over these varying degrees of maturity, 

where the latter are defined by the age criteria of the World Health Organization (WHO) (31) 

and the American College of Obstetricians and Gynecologists (ACOG) (32). 

To quantify these shape differences, we apply a spherical dilation procedure to calculate the 

FD of each brain region, which rests on an estimation of the power law relationship between 

sphere size and sphere count and yields the complexity estimate as the slope of this 

relationship in log-log space (16–18). Figure 1B illustrates this procedure for the left parietal 

cortex of an exemplary infant scanned shortly after birth at 34 weeks and once again at 44 

weeks of age. Over this ten-week interval of brain development, the change in shape that is 
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visible from the surface renderings (left panel) is reflected by an increase in the topological 

complexity of that region from baseline to follow-up (right panel). 

With this approach, we thus obtain one complexity estimate for every brain region (n=70) in 

every scan (n=884 including follow-up recordings), allowing for an in-depth evaluation of 

brain shape in human newborns and enabling systematic comparisons with volume as a 

measure of brain size. 

 

 

Figure 1. Quantifying brain shape in human newborns. A, Differences in brain shape 
over infant age at the time of scanning, illustrated for left cortical gray matter. Surface 
renderings correspond to the age-specific group averages of the dHCP data. The indication 
of infant maturity (lower arrow) follows the 2013 criteria of preterm age by the World Health 
Organization (31) and the categorization of term age by the American College of 
Obstetricians and Gynecologists (ACOG) (32). B, Describing the shape of a brain region by 
quantifying its topological complexity. The complexity estimate is calculated from spherical 
dilation of a region (17, 18), yielding its fractal dimensionality (FD) as the slope of the power 
law relationship between sphere size and sphere count in log-log space. This procedure 
measures the irregularity of a shape and is illustrated for the left parietal cortex of an 
exemplary infant scanned at week 34 and 44 of age. Over this ten-week interval, the change 
in shape (left) is reflected in an increase of topological complexity (right).     
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Brain shape reflects infant maturity beyond differences in brain size 

First, we related cross-sectional age differences among newborns to the topological 

complexity of each brain region (measured by FD) and to the size of those regions 

(measured by volume). Older infants showed significantly higher topological complexity 

across both cortical GM and subcortical areas, with large effect sizes (Fig. 2A, left). These 

effects were paralleled by strong negative age-complexity correlations across widespread 

WM areas, such that older infants showed significantly less complex WM shapes. This GM-

WM dichotomy in age-complexity correlations was further supported by an estimation of 

topological covariance across infants (Fig. S1), which illustrated that age-complexity effects 

covaried in the same direction for homologous regions across hemispheres but were 

strongly inversely related in GM and WM regions. 

In contrast, age-volume associations were strictly positive (Fig. 2A, right), such that brain 

structures were universally larger in older neonates, as would be expected from a 

continuous postnatal growth in brain size. While effect sizes were also large for brain 

volumes, a direct comparison between age-complexity and age-volume effects revealed a 

complementary spatial pattern, in which FD tracked infant age more strongly across most 

cortical GM and WM areas (Fig. 2B, left), while volume showed larger effect sizes in 

temporal, cingulate, and some subcortical areas (Fig. 2B, right). 

Given these strong links to age, we furthermore investigated the degree to which neonatal 

brain shape is influenced by the sex of the infant and by pregnancy status (singleton vs 

multifetal). Region-wise hierarchical regression confirmed the strong age-complexity effects 

across the entire brain (Fig. S2A), but also revealed a significant additional impact of sex 

and pregnancy status on variance in FD, albeit on a much smaller scale (up to 5% additional 

variance explained). Notably, these effects were most pronounced in WM areas and showed 

spatial clusters, with infant sex primarily influencing parietal, occipital, and insular WM as 
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well as the hippocampus (Fig. S2B), and pregnancy effects clustering in frontal, temporal, 

and cingulate WM (Fig. S2C). 

 
 

 

Figure 2. Brain shape reflects infant maturity beyond differences in brain size. A, 
Cross-sectional correlations between infant age at scan and fractal dimensionality (FD) as 
a measure of brain shape (left) and volume (Vol) as a measure of brain size (right). 
Correlation coefficients were Fisher z-transformed and thresholded to pFDR < 0.05 after 
correction over brain regions. B, Region-wise comparison of age effect strength. For colored 
regions, the null hypothesis that fractal dimensionality and volume are equally strongly 
correlated with age was rejected at pFDR < 0.05. Higher age correlations for brain shape are 
shown on the left, higher age correlations for brain size on the right. Note that in some 
regions such as the thalamus, infant age was reflected equally strongly by both measures.  
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Longitudinal development of brain shape in individual newborns  

Given these cross-sectional age-complexity associations, we next investigated how brain 

shape develops longitudinally within individual newborns. To this end, we analyzed the 

longitudinal trajectories of brain topology in all infants for whom repeated measurements 

were available (n=100). Figure 3A illustrates these individual trajectories for the occipital GM 

and WM of the right hemisphere. All infants showed a pronounced increase in FD from 

baseline to follow-up for occipital GM (paired t-test: t(99) = 25.9, p<0.001), paralleled by a 

simultaneous decrease in FD in the corresponding WM region (t(99)= -22.6, p<0.001; Fig. 

3A), with strong effect sizes for both (Cohen’s d = 3.2 for occipital GM; d = -2.2 for occipital 

WM). Mapping these longitudinal developments across the whole brain revealed 

widespread increases in complexity across cortical GM (strongest effects in frontal and 

occipital lobes) as well as subcortical areas (strongest effects in the basal ganglia and 

thalamus), with simultaneous decreases in complexity across most WM areas (strongest 

effects in frontal and parietal lobes; Fig. 3B).  

This spatial pattern of longitudinal age effects thus strongly paralleled the brain-wide 

distribution of cross-sectional age effects (Fig. 2A), including further evidence of a GM-WM 

dichotomy in the postnatal development of brain morphology. Indeed, explicitly comparing 

the distribution of cross-sectional and longitudinal estimates showed that the spatial pattern 

of age-complexity associations was virtually identical across individual newborns and within 

individual newborns (r=0.97, p<0.001; Fig. 3C). 

Moreover, to characterize the spatial specificity of these longitudinal dynamics, we estimated 

the speed of topological development as the relative change that a brain region exhibits per 

additional week of age. The upper-left inset of Figure 3D illustrates this rate of change for 

the right occipital GM of individual infants, such that the mean of this distribution describes 

the average speed of development as summarized in the brain map (Fig. 3D, right). Notably, 

the speed of shape development showed significant differences across tissue classes 
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(Kruskal-Wallis: χ2(2) = 50.9, p<0.001; lower-left inset), with cortical GM developing fastest, 

followed by an intermediate speed of change in subcortical areas, and WM areas showing 

the slowest change with age (all pairwise comparisons pFDR<0.002). 

These dynamics furthermore raised the question of how developmental factors influence the 

speed of longitudinal trajectories in individual infants, such that we analyzed the total weekly 

brain change for each newborn (Fig. 3E). Therein, we observed no difference in the speed 

of development between female and male neonates (t=1.16, p=0.25), nor between singleton 

and multifetal pregnancies (t=-1.91, p=0.06). Interestingly, however, total weekly brain 

change was negatively associated with age at birth (r = -0.36, p<0.001), such that more 

prematurely born infants showed an accelerated development of brain topology (Fig. 3E, 

right). 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2023.01.01.521756doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.01.521756
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

11 
 

 

Figure 3. Longitudinal development of brain shape in individual newborns. A, 
Estimating longitudinal changes in brain shape. Illustration of within-infant developments for 
occipital GM and WM of the right hemisphere. Follow-up data were available for n=100 
newborns. T-statistics derived from paired t-tests between baseline and follow-up scans. B, 
Whole-brain distribution of longitudinal age effects. Cohen’s d derived from the region-wise 
t-tests, FDR adjustment over regions. C, Correlation between cross-sectional age effects 
(Fisher’s z, Fig. 2) and longitudinal age effect sizes over individual brain regions. D, 
Quantifying the speed of topological development. The upper left panel illustrates the 
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change per additional week of age for right occipital GM, where the histogram reflects 
individual infants. The brain map displays the mean weekly change derived from these 
distributions for all brain regions. The lower-left image shows the distributions of weekly 
change over tissue classes. Χ2 statistic from Kruskal-Wallis test. Pairwise comparisons 
between tissue classes with Dunn’s test are significant at pFDR<0.002. E, Total weekly 
change of brain shape in individual newborns, compared by sex, pregnancy status, and age 
at birth.  
 
 
 
 
Brain shape outperforms brain size in predicting infant age 

Given these inferential age-complexity effects, we next asked how closely infant age at the 

time of scanning could be predicted from brain shape in unseen data. To this end, we 

employed a supervised age prediction scheme that has been previously applied for age 

prediction in adults and rests on a combination of least-squares splines, dimensionality 

reduction, and relevance vector regression (25, 33). Herein, fractal dimensionality values 

constituted the predictor matrix, and the quality of age prediction in unseen data was 

assessed as the mean absolute prediction error in days (MAE) and the variance explained 

in the test set (R2), evaluated using a 10-fold cross-validation scheme (Fig. 4A). 

Out-of-sample performance of age prediction yielded very high accuracy, with a mean 

prediction error of 4.2 ± 0.3 days and a substantial amount of variance explained in the test 

data (R2 = 0.95 ± 0.01; Fig. 4B). Furthermore, we explicitly compared shape-based age 

prediction with FD to size-based age prediction with volume, showing that prediction from 

shape significantly outperformed prediction from size both in terms of lower prediction errors 

(z = -3.6, p<0.001) and more variance explained over individual folds (z = 3.3, p<0.001; Fig. 

4B). Moreover, to estimate the generalizability of prediction performance over random 

variations in the data, we repeated the cross-validation procedure over n=500 random splits 

of the dataset into the ten respective folds (i.e., 5000 unique test sets) and evaluated the 

resulting distributions of the performance metrics for differences in location and variance. 

This approach not only corroborated the superior performance of FD in terms of both 

prediction errors (z = -83.0, p<0.001) and variance explained (z = 70.5, p<0.001), but also 
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yielded significantly lower variance of the performance metrics for FD than for volume (MAE: 

F = 277, p<0.001; R2: F = 219, p<0.001), showing that age prediction from brain shape 

generalized substantially better over random fluctuations in the data (Fig. 4C). 

Finally, we conducted two additional control analyses: First, age prediction from both FD 

and volume together performed on par with age prediction from FD alone (MAE: 4.1 ± 0.4 

days, ΔMAE = 0.15 ± 0.25 days vs FD; R2 = 0.95 ± 0.02, ΔR2 = 0.5 ± 0.6 % vs FD). Second, 

the superior performance of age prediction from FD over age prediction from volume was 

equivalently observed in two alternative control models of lower model complexity (multiple 

linear regression and support vector regression), with virtually identical results (Fig. S2). 
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Figure 4. Brain shape outperforms brain size in predicting infant age. A, Schematic of 
the age prediction pipeline, resting on a combination of least-squares splines, principal 
component analysis (PCA) and relevance vector regression (RVR). Model performance in 
unseen data was evaluated by mean absolute error (MAE) of age prediction in days and 
variance explained in test data (R2), employing a 10-fold cross-validation scheme. B, Out-
of-sample performance of predicting infant age from fractal dimensionality (left) and fold-
wise comparisons between fractality-based and volume-based age prediction (right) using 
rank sum tests. C, Repetitions of cross validation procedure over random data splits to 
estimate the distribution of performance metrics with respect to variance and location. 
Differences in location between fractality- and volume-based prediction were assessed with 
rank sum tests, differences in variance with Levene’s test.  
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Brain shape detects signatures of prematurity not captured by brain size 

These pronounced relationships between infant age and brain shape furthermore raise an 

important general question: what normative brain shape is to be expected in infants of full-

term maturity? To address this question, we estimated a reference topology at full term and 

quantified how much the brains of individual infants departed from this reference topology. 

To this end, we computed the average FD values over those infants that were both born and 

scanned within the full-term window, which applied to n=116 infants (Fig. 5A; full-term ACOG 

definition: 39 0/7 to 40 6/7 weeks; size reference was calculated in analogy from volumes). 

This approach subsequently allowed us to relate each individual scan to the full-term 

reference by computing a whole-brain index of departure from reference, based on the 

spatial correlation between individual topology and reference topology. Figure 5B illustrates 

this procedure for one infant that was born and scanned at full term and shows low departure 

from reference (left). Conversely, another infant that was born and scanned preterm shows 

higher departure from the reference topology (right). The distribution of departure indices 

over all scans is shown in Figure 5C and revealed that (i) departure from normative shape 

is significantly stronger than departure from normative size (rank sum test: z = 28.2, 

p<0.001), that (ii) departure indices across individual scans are significantly more variable 

for shape than for size (F-test: F(883,883) = 5.6, p<0.001), and that (iii) both distributions 

show a local minimum around term age at scan, which is expected since this is the age 

window on which the respective reference values were defined. Furthermore, these 

distributions subsequently allowed for explicit comparisons among three infant groups: (1) 

those born preterm and scanned preterm (preterm-preterm, n=161), (2) those born preterm 

but later scanned at term age (preterm-term, n=41), and (3) those born at term and scanned 

at term (i.e., the reference group; term-term, n=116). Consistent with the previously 

observed age effects, group 1 (preterm-preterm) showed significantly higher departure from 

the normative reference than both group 2 (preterm-term) and group 3 (term-term), and this 
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held true for both FD and volume (Fig. 5D). In contrast, the comparison between group 2 

(preterm-term) and group 3 (term-term) was only significant for FD, but not for volume (Fig. 

5D), showing that brain shape captured persistent alterations in prematurely born infants, 

even when those infants were later scanned in the full-term age window, while such 

signatures of prematurity were not detected with brain size. 

 

 

 
 

Figure 5. Brain shape captures persistent alterations in prematurely born infants that 
are not detected by brain size. A, Reference topology derived as the mean fractal 
dimensionality (FD) per region over all infants that were both born and scanned at full term 
(n=116). Term is defined as 39 0/7 weeks to 40 6/7 weeks of age based on the ACOG 
criteria (32). B, Quantifying the departure from this reference topology with a departure index 
d, computed from the spatial rank correlation between each infant’s individual topology and 
the reference values of panel A. Illustration for two infants with a lower-departure scan (left; 
born term, scanned term) and a higher-departure scan (right; born preterm, scanned 
preterm). Reference brain size was computed in analogy using regional volumes. C, 
Departure from reference over all n=884 scans in the dataset for brain shape (top) and brain 
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size (bottom). The shaded areas display the ACOG definitions of preterm age (< 37 0/7 
weeks = 259 days) and term age (273 to 286 days). Note the local minimum of both scatter 
clouds around the term window. Departure indices were significantly higher for FD than for 
volume (p<0.001, rank-sum test). D, Departure from reference for three infant groups: (1) 
born preterm and scanned preterm, (2) born preterm and scanned term, and (3) born term 
and scanned term. Kruskal-Wallis omnibus tests yielded significant results for both FD (χ2(2) 
= 197.2, p<0.001) and volume (χ2(2) = 194.6, p<0.001). Pairwise comparisons correspond 
to Dunn’s tests with FDR adjustment.  
 
 

Brain shape reflects genetic similarity among individual newborns 

Having shown a principled link between infant age and brain shape on the group level, we 

lastly sought to move beyond age effects and study the relationship between genetic factors 

and the variability of brain shape on the level of individual newborns.  

To this end, we computed the pairwise age differences for all infant-to-infant comparisons 

in the dataset and measured the topological dissimilarity of any two children (i.e., the ‘shape 

difference’) as the distance between their whole-brain fractality profiles (Fig. 6A). As 

expected from the group-level age effects, the shape difference between any two infants 

strongly increased with the age difference between them (ρ=0.83, p<0.001; Fig. 6B). 

However, the granularity of individual brain-to-brain comparisons subsequently allowed us 

to threshold the pairwise age difference to obtain only those comparisons in which both 

infants were within 1 day of age at the time of scanning. The inset of Figure 6B shows that, 

even within this subset of age-matched comparisons, there is considerable variance in the 

dissimilarity of individual brain topologies. Importantly, however, these shape differences 

are not attributable to age because the respective infants were the same age at the time of 

scanning, allowing us to evaluate if sharing genetic information —beyond sharing the same 

age—would be linked to a higher similarity in brain shape. 

To test this idea, we first compared the brains of twin siblings to all matched infants that 

were the same age as these twins but were biologically unrelated to them. Figure 6C 

illustrates the resulting dissimilarity distribution for one of the 35 twin pairs for whom 

unrelated matches were available. Herein, the difference between the exemplary infant and 
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its twin sibling was substantially lower than the difference to any of the unrelated children, 

such that the two twin brains were the most alike in shape within this age-matched group. 

Critically, this observation generalized over all twin-to-unrelated comparisons — brain 

shapes of twin siblings were generally more similar to each other than to the brains of 

unrelated infants, with large effect size (one sample t-test: t(69) = -17.1, p<0.001, Cohen’s 

d = -2.1; Fig. 6D). 

As this finding strongly suggested a link between brain shape and genetic similarity, we 

performed two additional analyses to test the idea that similarity in brain shape may reflect 

similarity in genetic information. 

First, we stratified the dissimilarity scores by the sex of the compared infants (Fig. S4). This 

revealed that infants of the same sex exhibit significantly more similar brain shapes than 

infants of different sexes, and this was true both in twin siblings and in biologically unrelated 

infants. Interestingly, for infants of the same sex, brain topologies were even more similar 

when both newborns were female compared to when both newborns were male (z = -6.2, 

pFDR<0.001 for unrelated, tendency in twins; Fig. S4), suggesting an additional effect of 

homologuous sex chromosomes that share the same genes (i.e., an XX karyotype in both 

infants) compared to heterologuous sex chromosomes (i.e., an XY karyotype) that do not. 

Second, we hypothesized that, even among individual twin pairs, sharing more genetic 

information would be expressed in more similar topologies still. Accordingly, we stratified 

twin pairs into dizygotic siblings (i.e., fraternal twins with ~50% shared genes) and 

monozygotic siblings (i.e., identical twins with ~100% shared genes). Critically, we indeed 

observed that brain shapes are significantly more similar in identical twins than in fraternal 

twins (t(29.5) = 6.6, p<0.001, d = 2.3; Fig. 6E). 

Notably, analogous control analyses with volume again showed that genetically related 

infants exhibit much stronger similarity in brain shape than in brain size (Fig. S5). 
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Twingerprinting – identifying the brain of one twin from the brain of the other twin 

Given these links between brain topology and genetic similariy, we lastly asked if the 

similarity of brain shape would enable the prediction of twin siblings out of the set of matched 

unrelated infants (Fig. 6F). This approach pertains to the idea of ‘connectome fingerprinting’ 

(34), in which the unique variability of brain activity signatures (‘fingerprints’) enables the 

identification of single individuals out of large samples with high accuracy. Importantly, 

however, here we do not aim to identify the same individual, but its twin silbing 

(‘twingerprinting’). To this end, the dissimilarity scores of individual twin-to-unrelated 

comparisons were ranked, and the infant with the lowest-ranking shape difference was 

predicted to be the twin sibling of the target infant (i.e., the other twin). In the example of 

Figure 6C, the twin sibling was thus correctly identified, but not so in the analogous analysis 

with volume (Fig. S5). To assess the predictive power of this approach, three metrics were 

evaluated: (i) we computed the ‘rank loss’ over individual predictions, defined as the 

proportion of unrelated infants whose brain shapes were more similar to the target infant 

than its twin (i.e., rank loss = 0: correct identification; rank loss = 1: all unrelated more similar 

than twin; Fig. 6F, left), (ii) we computed the accuracy of twin predictions as the proportion 

of correction identifications, and (iii) we estimated the null distribution of correct twin 

identifications that happen by chance. The latter was implemented by randomly permuting 

the ranks within individual predictions, yielding the permuted p-value on the prediction 

accuracy as the proportion of randomly obtained accuracies that surpass the empircially 

observed value (lower-right inset). On average, ~11% of twin identifications are thus 

expected to happen by chance.   

Critically, Figure 6F shows that brain shape correctly identified the target twin in 77.1% over 

all predictions (pperm<0.001). Notably, however, predictive power again mirrored the effect 

of genetic similarity on brain shape: while the accuracy of identifying fraternal twins was 
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considerably lower (46.4%), if still far from chance (pperm<0.001), prediction accuracy was 

near-perfect in the case of identical twins (97.4%, pperm<0.001; Fig. 6F). 

Finally, analogous analyses with volume again showed that predictive power of brain size 

was markedly lower, resulting in a consistent 25-30% drop in identification accuracy and 

approaching chance levels in the case of fraternal twins (Fig. S6).             

 

 
 
Figure 6. Brain shape reflects genetic similarity among newborns and enables the 
prediction of one twin from the brain of the other twin (‘twingerprinting’). A, Pairwise 
age differences and topological dissimilarity (‘shape difference’) between any two infant 
brains in the dataset. B, Correlation between age difference and topological dissimilarity for 
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all infant-to-infant comparisons. Age-matched dissimilarity distribution after thresholding the 
age difference to ±1 day. C, Dissimilarity scores between an exemplary infant and its twin 
sibling (left) and all unrelated infants of the same age (right). The dissimilarity of the twin 
sibling was z-scored with regard to all age matches and collected for each twin-to-unrelated 
comparison (n=70). D, Distribution of the twin dissimilarites from panel C over all twin-to-
unrelated comparisons. One-sample t-test against zero. e, Dissimilarity scores across 
fraternal and identical twin pairs (Welch’s t-test). F, Identification of twin siblings from 
unrelated infants of the same age. For each twin-to-unrelated comparison (see panel C), 
the infant with the lowest-ranking disimilarity was predicted to be the target twin. The ROC-
like curve shows the proportion of infants over increasing rank loss (0: correct identification; 
1: all unrelated infants more similar than target twin). The null distribution of twin predictions 
was estimated by randomly permuting the rank structure and recording the correct twin 
identifications that happen by chance. 
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Discussion 

These findings show that human newborns undergo a rapid formation of brain shape, 

beyond the expected growth in brain size. By providing a principled account of the brain’s 

morphological changes over the first few weeks after birth, we show that this early-life 

formation of brain shape represents a fundamental maturational process in human brain 

development. 

To this end, we analyze structural neuroimaging data from the developing Human 

Connectome Project – one of the largest datasets of human newborns ever collected (11). 

Therein, we describe neonatal brain shape with fractal dimensionality —a geometric 

measure of topological complexity which complemented and systematically outperformed 

purely size-based accounts of early-life brain development. In particular, we find that (i) brain 

shape strongly reflects infant maturity beyond size differences, both cross-sectionally and 

longitudinally, (ii) brain shape consistently outperforms brain size in predicting infant age in 

unseen data, with high accuracy (mean error ~4 days), (iii) brain shape detects persistent 

alterations in prematurely born infants that are not captured by brain size, (iv) brain shape 

is consistently more sensitive to genetic similarity among newborns, assessed by comparing 

infant sex, related vs unrelated infants, and fraternal vs identical twins, and (v) brain shape 

enables the identification of one twin from the brain of the other twin (‘twingerprinting’) with 

high accuracy (~77% overall, ~97% in identical twins), again outperforming twin predictions 

from brain size.  

Below, we turn to the implications of these findings, which advance our understanding of 

early-life brain development in five key directions. 

 

First, brain shape is inextricably linked to infant age. The topological complexity of neonatal 

brains strongly reflected age at the time of scanning, capturing differences in infant maturity 
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based on international consensus criteria. Notably, this held true both for developmental 

differences across individual newborns (i.e., cross-sectional variation) and for 

developmental differences within individual newborns (i.e., longitudinal variation, as 

individual infants mature). Therein, the direction of shape development was highly consistent 

across both, showing a dichotomy between cortical GM that grows increasingly more 

complex with brain maturation and WM regions that grow increasingly less complex as the 

brain matures. In contrast, brain volumes showed strictly positive associations with age, as 

would be expected from a continuous postnatal growth in brain size. Notably, the inverse 

age-complexity associations in WM were strong, wide-spread, and ubiquitously observed 

across individual newborns. This increasing WM regularity is thus likely to reflect early-life 

myelination, which is thought to start in the second half of pregnancy and last well into 

adolescence (7). Given that higher myelin content shifts voxel intensity gradients to a more 

WM-like spectrum, lower WM complexity in more mature newborns may thus be an 

expression of increasingly smoother WM boundaries with ongoing myelination. Moreover, 

this spatial dichotomy in GM and WM development was paralleled by a temporal dichotomy, 

in which cortical GM showed the most rapid change over time, while WM topology showed 

a much more protracted evolution. 

These findings in neonates align remarkably well with pioneering work on brain growth 

trajectories over the first two years of life, which reported a much slower development of 

WM compared to cortical GM (35). Here we not only corroborate the different speeds of 

development in GM and WM, but also show that such tissue-specific dynamics are already 

present right after birth. Notably, these perinatal dynamics also converge with a recent 

account of normative brain growth over the larger lifespan (1), which suggested that 

developmental trajectories may be steeper for GM than for WM around birth. 
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Second, it is particularly worth focusing on the early-life development of cortical topology, 

which constituted some of the strongest effects throughout our study. Overall, our results 

suggest that the dynamic increases of topological complexity in the cortex are an expression 

of early-life cortical folding. This folding process accelerates markedly around 26 weeks of 

gestational age, when the brain begins a rapid change from a near-lissencephalic to a highly 

convoluted structure in utero (36–38). Here we show that this morphological development 

naturally extends into the neonatal period, where the increasing cortical convolution (Fig. 1) 

becomes apparent as a highly canonical increase in topological complexity (Fig. 2-3). 

Interestingly, recent evidence from statistical physics suggests that the cortical topologies 

observed across a variety of primate species may be an expression of the same archetypal 

fractal shape (39). Given the highly canonical shape developments observed here, this 

raises the intriguing possibility that the early-life formation of cortical complexity is not only 

a key process in human brain development but may rather be the result of a more general, 

evolutionarily conserved mechanism of cortical expansion. 

 

Third, we show that differences in age do not only explain differences in brain shape, but 

that this relationship can be inverted to predict the age of an infant from the shape of its 

brain with high accuracy (mean error ~4 days). Here again, brain shape significantly 

outperformed brain size, and this was consistently observed across performance metrics, 

data splits, and three different prediction models. Notably, this high accuracy was 

homogeneously observed across the whole age range in the dataset, from very premature 

(~28 weeks) to well after term (~44 weeks). Together with the group-level age effects, this 

shows that brain shape closely reflects infant maturity over all stages of neonatal 

development and identifies shape development as a highly canonical process of early-life 

brain maturation. 
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Fourth, we show that brain shape captures persistent morphological alterations in 

prematurely born infants that remained undetected by brain size. Specifically, even when 

premature infants were subsequently scanned in the full-term age window, their brain 

topologies still deviated significantly from a reference topology of term-born infants, whereas 

this was not the case for a normative reference of brain size. While these findings reveal a 

persistent developmental lag in the spatial organization of brain morphology, we additionally 

observed significant differences in the temporal trajectories of preterm infants, where the 

most prematurely born children exhibited an accelerated development of brain topology.  

These findings show that brain shape reflects altered developmental trajectories of preterm 

infants already at a very early stage of postnatal life. While this is —to the best of our 

knowledge— the earliest account of altered topological dynamics in human brain 

development, one previous study applied fractal analysis to global GM and WM 

segmentations in infants at 12 months and found that prematurely born infants with 

intrauterine growth restriction showed persistent reductions in GM complexity that were 

related to language and motor scores (40). Moreover, a recent study has reported persistent 

reductions of cortical complexity at adult age in those participants that had been born 

prematurely: these alterations clustered in temporoparietal areas, were related to the 

severity of prematurity at birth, and correlated with reduced cognitive performance in 

adulthood (41). These findings not only align well with the topological alterations that we 

observe here early on in preterm neonates, but also suggest that these changes may carry 

important functional significance for the neurocognitive development in later life.  

Importantly, about 11% of infants are born prematurely word-wide (31), bearing an increased 

risk for early-life mortality (31, 42), later-life cognitive deficits (8), and neuropsychiatric 

disorders (43). This risk profile has motivated the application of advanced neuroimaging 

techniques in search for prognostic biomarkers of neurodevelopmental outcomes after 

premature birth (10). Although large-scale follow-up will be necessary to evaluate the 
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prognostic value of shape alterations systematically, our findings suggest that brain topology 

measures such as fractal dimensionality represent highly promising candidates for early-life 

imaging markers of at-risk neurocognitive development. Therefore, long-term longitudinal 

efforts are urgently needed to follow up neonates into infancy and adulthood when 

neurodevelopmental disorders are manifest. 

 

Fifth, our study reveals a fundamental link between neonatal brain shape and genetic 

information. By focusing on the morphological variability of individual brains, we show that 

the degree to which any two brains are similar in shape is strongly associated to the genetic 

similarity of the compared infants. Specifically, we find that (i) the brains of genetically related 

infants are more similar in shape than those of unrelated infants, (ii) infants of the same sex 

show more similar brain shapes than infants of different sexes, (iii) brain shapes are more 

similar in homologous sex chromosomes than in heterologuous sex chromosomes, and that 

(iv) brain shapes are more similar in identical twins (~100% shared genes) than in fraternal 

twins (~50% shared genes). Importantly, all these comparisons were carried out in age-

matched infants, such that these results are unlikely to be confounded by the strong age 

effects discussed above. 

These results provide a critical addition to the fast-growing literature linking neuroimaging 

phenotypes to genetic factors in human brain development (2, 44–48). In this regard, one 

recent study has shown that cortical morphology at birth reflects spatiotemporal patterns of 

gene expression in the fetal human brain (49), suggesting that the topological maturation 

observed here post-partum is a direct extension of intrauterine genetic regulation. Moreover, 

the impact of infant sex on neonatal shape similarity we observe here aligns well with recent 

reports of greater variability of brain structure in males than in females over the larger 

lifespan (50–52). Furthermore, a recent study found that deviations from normative brain 
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age in adulthood were best explained by congenital factors such as polygenetic risk, 

suggesting that early-life genetic factors exert a lifelong influence on brain structure (53). 

Finally, the strong links between genetic information and brain shape enabled us to predict 

which infants are twin siblings by identifying the brain of one twin from the brain of the other 

twin. The idea of identifying individuals from neuroimaging data pertains to the approach of 

‘connectome fingerprinting’ (34, 54), in which unique patterns of brain activity (‘fingerprints’) 

allow for the identification of single individuals with high accuracy. Importantly, however, 

here we did not aim to identify the same individual, but its twin silbing (‘twingerprinting’). 

Indeed, we were able to identify twin siblings from the similarity of their brain shapes with 

high accuracy (~77% overall, ~97% in identical twins), and here again, brain size was much 

less sensitive in detecting genetic similarity among newborns. Overall, these findings 

suggest that shape similarity is a direct expression of genetic similarity, and that the 

variability of individual brain shapes represents a genetically modulated and heritable 

phenotype in human newborns.  

In sum, our study identifies the early-life formation of brain shape as a fundamental 

maturational process in human newborns, with several immediate implications for our 

understanding of normative brain development, the study of neurodevelopmental disorders, 

and the relationship between morphological variability and genetics. 
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Methods 

Data and image processing 

All data analyzed here were obtained from the third release of the developing Human 

Connectome Project in 2021 (dHCP; www.developingconnectome.org), including cross-

sectional data for n=782 infants (360 females, 422 males). Magnetic resonance imaging of 

virtually all newborns was acquired during natural sleep (11). Mean birth age was 37.89 ± 

4.17 weeks [range: 23.0 – 43.57], and age at first scan was 39.81 ± 3.55 weeks [range: 

26.71 – 45.14]. Of these infants, 682 were born from singleton pregnancies, while 100 were 

born from multifetal pregnancies. Follow-up scans for longitudinal analyses were available 

for n=100 infants. Note that compared to adult brains, tissue contrasts in neonatal brains 

are inverted due to immature myelination (3, 55), such that T2-weighted images provide 

better quality and were hence used for image processing in the dHCP (15), including surface 

reconstruction with FreeSurfer (56).  

Brain segmentations of individual images were provided with the dHCP data and were based 

on the Draw-EM algorithm (Developing brain Region Annotation With Expectation-

Maximization) (13, 15). Therein, assignment of individual voxels (0.5 mm3 isotropic) to 

regions of interest (ROI) rests on the ALBERT atlas for neonatal brain anatomy (12). This 

atlas contains 87 regions, including 16 cortical gray matter and white matter regions for each 

hemisphere, 9 bilateral subcortical regions, the brainstem and corpus callosum as unpaired 

regions as well as unlabeled tissue, background, and cerebrospinal fluid. For topological 

analysis, we discarded these latter labels and furthermore combined some smaller and 

contiguous regions to harmonize spatial granularity across the brain. Specifically, we 

combined the medial and lateral part of the anterior temporal lobe, the anterior and posterior 

segments of the gyri parahippocampalis et ambiens, the anterior and posterior lateral 

occipitotemporal gyrus as well as high-intensity and low-intensity voxels of the thalamus, 

yielding a total of 70 ROIs assigned in each MRI. 
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Notably, the dHCP provides age-specific normative templates by week of post-menstrual 

age to account for the rapid development of neonatal brains. These age-specific group-

averages are openly available from https://brain-development.org (14, 57, 58), and the 

surface renderings of the left cortical gray matter correspond to the week-wise averages 

displayed in Figure 1A. For all visualizations of statistical tests, results were mapped onto 

the 40-week template (Fig. 2,3, 5, and S3).  

 

Estimating fractal dimensionality 

As summarized in Figure 1, the shape of a brain region was quantified by its fractal 

dimensionality (FD), using the openly available calcFD toolbox 

(https://github.com/cMadan/calcFD) for MATLAB (The MathWorks Inc., Natick, 

Massachusetts). In general, FD can be measured empirically by estimating the scaling law 

between the size of a measurement unit and the number of those units required to cover the 

object comprehensively in an embedding dimension (here: 3D voxel space). To estimate FD 

from the structural MRI segmentations, we here apply the spherical dilation algorithm from 

the calcFD toolbox (17, 22), which is computationally similar to the traditional box-counting 

method (16), but is less sensitive to object translation and rotation (17) and yields better 

test-retest reliability than box-counting (18). Computationally, empirical power law 

estimation requires a definition of the physical scales over which the estimate is computed 

(16), i.e., the range of voxel sizes, typically expressed as 2𝑘𝑘 with 𝑘𝑘 ∈ ℕ0. Here we follow 

previous applications of the toolbox in applying the canonical range of 𝑘𝑘 = 0,1, … ,4 for FD 

estimation with spherical dilation (17, 18, 22, 25). Finally, we extended the calcFD toolbox 

to process the neonatal brain parcellations described above. In brief, all voxels assigned to 

a particular region were indexed, yielding a binary 3D mask of that region which was 

subsequently passed to spherical dilation, as illustrated for the left parietal cortex in Figure 

1B. This process was iterated over all parcels to obtain the FD value of each region, yielding 
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a 1 x 70 vector for each scan. As the parcellated images contain isotropic voxels (15), the 

volume estimate of a region was computed as the sum of all voxels assigned to that region 

by the segmentation. 

 

Inferential statistics and modelling 

All directional tests were two-tailed. Simple two-group comparisons were tested with t-tests 

or rank sum tests, depending on the distribution of the variables, and in analogy for 

correlational analyses with either product-moment or Spearman’s rank correlation. Two-

sample tests were unpaired except for the longitudinal analyses in Figure 3A, in which each 

newborn had a baseline and a follow-up scan, such that these distributions were considered 

paired samples. Effect sizes for parametric group tests were computed as Cohen’s d. 

Parametric correlation strengths were Fisher r-to-z-transformed to harmonize scales for the 

visualizations in Figures 1A and S1. Multiple-group omnibus tests (Fig. 3D, 5D, S4) were 

implemented with Kruskal-Wallis tests, followed up by pairwise Dunn’s tests. Formal 

significance was considered at an α-level of 0.05, and p-values of multiple pairwise tests 

were corrected after Benjamini-Hochberg (59) to control the false discovery rate (FDR). For 

the comparison of correlation coefficients in Figure 2B, the null hypothesis posits that two 

variables (FD and volume) are equally correlated with a third variable (age at scan), all 

obtained from the same individuals (60). Furthermore, for the topology covariance network 

in Figure S1, the pairwise region-to-region correlation matrix of FD values was constructed 

from the cross-sectional scans in Figure 2, and this matrix was thresholded to the top and 

bottom first percentile to obtain the strongest positive and inverse covariance across brain 

regions. Finally, the hierarchical regression in Figure S2 compared a compact model in 

which the fractal dimensionality of a brain region was explained with infant age alone (FD ~ 

age) to two augmented models which incorporated sex (FD ~ age + sex) and pregnancy 

status (FD ~ age + pregnancy), respectively. To estimate in which brain regions these factors 
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significantly explained additional variance beyond age, compact and augmented models 

were compared with F-tests for nested models, using the lmSupport package for R 

(https://rdrr.io/cran/lmSupport). 

 

Predicting infant age 

The age prediction pipeline in Figure 4 rests on the openly available PRISM toolbox 

(https://github.com/cMadan/prism) for MATLAB, which was developed for age prediction 

from brain features and includes a combination of least-squares splines, dimensionality 

reduction, and relevance vector regression (25, 33). Herein, the smoothing parameter for 

spline regression was set to zero, enforcing near least-squares cubic spline to counteract 

overfitting; all other parameters were left to default, including the application of principal 

component analysis and relevance vector regression within a sparse Bayesian framework 

(61). The predictor matrix was of the form [observations x brain features] and contained 

either fractal dimensionality values, volumes, or both. All predictors were standardized. To 

evaluate prediction performance, we applied a standard 10-fold cross-validation scheme, 

such that the model was trained on ~90% of the data and predicted age at scan in the 

remaining 10% of the data in each iteration. Note that we here limited the dataset to the 782 

unique baseline scans (i.e., excluding the follow-up sessions) to ensure that every infant 

contributed exactly one scan to the data. Prediction quality for each iteration was then 

assessed as the mean absolute prediction error (|predicted age - true age|) and the variance 

explained in the test set (1 – residual sum of squares / total sum of squares), as shown in 

Figure 4B. For the random repetitions of the cross-validation procedure (Fig. 4C), we 

computed 500 unique permutations of the data that were subsequently split into ten folds, 

resulting in 5000 predictions on unique test sets. Finally, to assess the impact of different 

model types, we applied the same prediction pipeline using simple multiple linear regression 
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and Support Vector Regression with a linear kernel with MATLAB-inbuilt functions (fitlm and 

fitrsvm), as shown in Figure S3.       

 

Departure from normative reference 

For the analyses in Figure 5, we estimated reference values of brain shape and size in 

infants of full-term maturity. This approach is conceptually related to the hub disruption index 

(62) in functional neuroimaging, in that data points from single individuals are compared to 

normative data points obtained from a reference population. Here, the reference population 

consisted of those infants that were both born and scanned within the full-term window, 

where the latter was defined based on the ACOG definitions (39 0/7 weeks to 40 6/7 weeks). 

This criterion was fulfilled by n=116 newborns in the dataset. For each brain region, the full-

term reference value was then computed as the average over those 116 infants, once for 

FD values (shape reference; Fig. 5A) and once for volumes (size reference). This approach 

subsequently allowed for a comparison between the reference values across all brain 

regions and the corresponding values computed from individual scans, as shown in the 

scatter plots of Figure 5B. To estimate how much these individual scans deviated from the 

full-term reference, we computed a departure index defined as 𝑑𝑑 = 1 −  𝜚𝜚, that is, the 

nonparametric spatial correlation distance between the individual scan and the reference. 

Therein, Spearman’s rank correlation was chosen because (i) we aimed to obtain an 

estimate of the relative spatial organization across the whole brain and because (ii) the 

speed of development varied over the different tissue classes (Fig. 3D), such that the 

deviations from reference were not uniform but showed clustering effects (e.g., deviations 

cluster below the identity line in Fig. 3B). For each scan, we thus obtain one index of 

departure from full-term shape reference (FD) and another for the departure from full-term 

size reference (volume). These indices were subsequently compared across all scans (Fig. 

5C) and among infants that were born preterm and scanned preterm and those that were 
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born preterm but scanned later at term-equivalent age based on the ACOG definitions (Fig. 

5D). Finally, note that infants who met the full-term criterion are expected to follow the 

reference closely because they formed part of the group on which this reference was 

defined, thus providing an estimate of variability within the full-term group itself. This close 

adherence to reference was indeed observed for both FD and volume in full-term infants 

(Fig. 5B-D).     

 

Comparing individual infant brains 

Apart from the above group-level inferences, we furthermore conducted comprehensive 

pairwise comparisons of individual neonatal brains (Fig. 6). For any two given infants, we 

thus quantified the overall ‘shape difference’ of their brains by taking the vectors of their 

regional FD values and computing the dissimilarity between these two vectors. To this end, 

we here apply the L1 norm (‘Manhattan distance’), as this measure weights all vector 

components equally and is less sensitive to single-dimension deviations compared to the 

Euclidean distance, since the individual terms are left unsquared. For every infant-to-infant 

comparison, this approach yields a scalar measure of overall dissimilarity (Fig. 6A), such 

that higher values indicate more pronounced shape differences and lower values indicate 

that the compared brains are more similar in shape. Moreover, the identical approach was 

applied to regional volumes to compute the overall dissimilarity in size between any two 

brains (Fig. S5). 

 

Genetic similarity 

These brain-to-brain comparisons subsequently allowed us to relate the shape similarity of 

any two brains to the genetic similarity of the compared infants. The latter was formalized in 

three different sets of comparisons: (i) infants of the same sex vs infants of different sexes 

(Fig. S4), (ii) twin siblings vs unrelated infants (Fig. 6C-D), and (iii) identical twins vs fraternal 
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twins (Fig. 6E-F). Overall, there were 42 twin pairs in the dataset. For the age-matched 

analyses in Figure 6, however, a total of seven twin pairs had to be discarded, one because 

no unrelated infants of the same age were available, and six because the two twin siblings 

themselves were scanned more than one day apart, leaving 35 twin pairs. Moreover, the 

genetic similarity among those twin pairs was further assessed by categorizing them into 

identical twins (i.e., monozygotic siblings) and fraternal twins (i.e., dizygotic siblings). This 

information on twin status was provided by the dHCP consortium (Dr Harriet Cullen, King’s 

College London) and was derived from single nucleotide polymorphisms (SNP) array 

genotype data, which were used to confirm whether the twins were monozygotic, sharing 

100% of their genetic variation (PI_HAT = 1), or dizygotic, sharing approximately 50% of 

their genetic variation (PI_HAT ~ 0.5) (63). These data on twin sibling status were available 

for 33 twin pairs. 

 

Twin predictions 

Apart from the inferential effects of sex and twin status reported in Figure 6C-E and Figure 

S4, we furthermore predicted twin siblings out of the set of age-matched unrelated infants 

(Fig. 6F). To this end, we iterated over all individual twins-to-unrelated comparisons and 

predicted the lowest-ranking dissimilarity score (i.e., the most similar brain in shape) to 

belong to the twin of the target infant, as detailed in the main text and Figure 6C. Note that 

although the set of unrelated matches was the same for any two twins, the dissimilarity 

scores between twin A and the unrelated infants and twin B and the unrelated infants 

naturally differed, as all these comparisons were individual pairwise measures. In 

consequence, every twin pair resulted in two predictions –once identifying twin B from twin 

A and once identifying twin A from twin B— yielding 70 twin predictions in total. Furthermore, 

note that the number 𝑛𝑛 of unrelated matches varied across the individual twin pairs, such 

that the chance level of individual twin predictions varied in parallel as 1 𝑛𝑛⁄ . For illustration, 
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the example of Figure 6C features 13 age-matched infants (of whom one was the twin to be 

identified), resulting in a chance level of 1 13⁄ ≈ 7.7 %. As such, chance levels for individual 

predictions were higher if fewer unrelated matches were available in the dataset (maximum 

50% if only one unrelated match was present). To account for this variability, we 

implemented a permutation approach in which the rank structure within individual predictions 

was randomly shuffled 5000 times and the proportion of chance identifications was recorded 

over all individual predictions. In consequence, we obtain a null distribution of correct twin 

identifications that happen by chance, which yields the p-value of the empirically observed 

identification accuracy was the proportion of permuted accuracies that surpass the empirical 

value. The inset of Figure 6F shows this null distribution, which yielded a mean accuracy of 

11.4 ± 3.7 % of correct twin identifications that happen by chance.   

Finally, the identical approach was applied to twin prediction from brain volumes, allowing 

for an explicit comparison between shape-based and size-based twin prediction (Fig. S6).    
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Figure S1. Covariance network of brain topology. The network displays the region-to-
region covariance of topological complexity values across individual newborns (n=782, as 
in Fig. 2A). The left-hand side displays the direction of how brain regions covary each other, 
showing primarily positive associations within regions of the same tissue compartment as 
well as for cortical gray matter and subcortical areas, while white matter regions show 
widespread inverse associations to subcortical areas and cortical gray matter. The right-
hand side shows this network in brain space, thresholded to the strongest 1% of positive 
and inverse associations, respectively. Here, the strongest positive associations (top) are 
observed between areas of the same tissue class and homologous areas, and the strongest 
inverse associations (bottom) between cortical gray matter and white matter areas.         
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Figure S2. Explaining variance in brain shape with age, sex, and pregnancy status. A, 
Variance in fractal dimensionality explained by age at scan in a compact linear regression 
model. B, Hierarchical regression results showing the additional variance explained (ΔR2) 
by including the sex of the infant into the age model. C, Hierarchical regression results 
showing the additional variance explained by including the pregnancy status (singleton or 
multifetal) into the age model. 
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Figure S3. The superior performance of age prediction from fractal dimensionality 
over age prediction from volume is equivalently observed in two alternative control 
models. A, Results of running the age prediction pipeline outlined in Figure 4A with simple 
multiple linear regression. The distributions of the performance metrics (MAE: mean 
absolute prediction error in days; R2: variance explained in test data) are obtained from 500 
random repetitions of the 10-fold cross validation procedure, as in Figure 4C. B, Running 
the age prediction pipeline with Support Vector Regression (linear kernel). Across both these 
simpler modelling approaches, shape-based age prediction with fractal dimensionality (FD) 
consistently outperforms size-based age prediction with volume (Vol). 
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Figure S4. The shape similarity of any two brains depends on the sex of the compared 
infants. Dissimilarity scores of all comparisons between newborns that were within 1 day of 
age at the time of scanning (left: unrelated infants, right: twin siblings). Dissimilarity is 
displayed on a binary logarithmic scale and is stratified by the sex of the compared infants 
(XX-XX: both infants female; XY-XY: both infants male; XX-XY: one female, one male). 
Omnibus tests correspond to Kruskal-Wallis tests, and pairwise comparisons to Dunn’s tests 
with FDR adjustment. 
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Figure S5. Brain size is less sensitive to genetic similarity than brain shape. A, 
Dissimilarity of brain volumes (Vol). Comparisons of the exemplary infant in main figure 6C 
to its twin sibling and the set of age-matched unrelated infants. Note that in contrast to the 
results with fractal dimensionality (FD), two unrelated newborns are more similar to the 
exemplary infant than its twin sibling in terms of brain size. Consequently, with volume, an 
unrelated infant is incorrectly predicted to be the twin of the exemplary infant, as twin 
prediction is based on the lowest-ranking dissimilarity score (see Fig. S6 for a 
comprehensive comparison of shape-based vs. size-based twin prediction). The right panel 
compares the dissimilarity scores for all twin-to-unrelated comparisons between volume and 
fractality (Welch’s two-sample t-test), where the latter corresponds to the distribution of main 
Figure 6D. B, Standardized dissimilarity scores for volume and fractal dimensionality. While 
both measures yield lower differences for identical twin pairs compared to fraternal twins, 
the strength of this effect is higher for fractal dimensionality than for volume (error bars: 95% 
confidence interval).   
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Figure S6. Brain size is less predictive than brain shape in identifying twin siblings. 
The figure relates the predictive capacity of identifying twin siblings with volume (Vol) instead 
of fractal dimensionality (FD). Compared to twin prediction from shape (see Fig. 6F in main 
text), twin prediction from brain size showed a consistent 25-30% drop in identification 
accuracy for all twin predictions (top row), the subgroup of fraternal twins (middle), and the 
subgroup of identical twins (bottom). Gray histograms correspond to the null distribution of 
correct twin identifications that happen by chance, as in Figure 6F.     
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