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During visually guided behavior, the prefrontal cortex plays a pivotal role in mapping sensory inputs onto5

appropriate motor plans [1]. When the sensory input is ambiguous, this involves deliberation. It is not6

known whether the deliberation is implemented as a competition between possible stimulus interpretations7

[2, 3] or between possible motor plans [4, 5, 6]. Here we study neural population activity in prefrontal cortex8

of macaque monkeys trained to flexibly report categorical judgments of ambiguous visual stimuli. Our9

task design allowed for the dissociation of neural predictors of the upcoming categorical choice and the10

upcoming motor response used to report this choice. We find that the population activity initially represents11

the formation of a categorical choice before transitioning into the stereotypical representation of the motor12

plan. We show that stimulus strength and prior expectations both bear on the formation of the categorical13

choice, but not on the formation of the action plan. These results suggest that prefrontal circuits involved14

in action selection are also used for the deliberation of abstract propositions divorced from a specific motor15

plan, thus providing a crucial mechanism for abstract reasoning.16

Our perceptual interpretation of the environment guides our actions. Actions are constrained by the affordances of particular17

environmental contexts. In a given context, perceptual interpretations may be stereotypically linked to specific actions. For18

example, when a driver in congested traffic sees the car ahead slow down, she will lift her foot from the gas pedal. When19

she sees the car speed up, she will instead press the gas pedal more firmly. Perceptual estimates of car speed are imperfect.20

Deciding how to act in traffic therefore requires deliberation, especially when the changes in car speed are subtle. Deliberation21

here refers to the computational process of weighing evidence in favor of different choice options. Under static contextual22

circumstances, brain regions involved in action selection appear to represent such deliberation processes as a competition23

among possible action plans [7, 8, 9]. But natural behavior occurs under many different contexts and therefore generally24

requires a flexible association between perceptual interpretation and motor response. It has been hypothesized that when such25

flexibility is required, deliberation may consist of a competition among possible interpretations of the sensory environment26

rather than among possible action plans [10, 11, 12, 13].27

Here we test this hypothesis using a task requiring flexible reporting of categorical perceptual decisions. We trained two28

macaque monkeys (F and J) to judge whether a visual stimulus presented near the central visual field was oriented clockwise or29

counterclockwise from vertical (Fig. 1a-d). The monkeys communicated their judgment with a saccade to one of two peripheral30

visual targets. The meaning of each response option was signaled by the target’s orientation (clockwise vs counterclockwise),31

and was unrelated to its spatial position (one target was placed in the neurons’ estimated motor response field, the other on32

the opposite side of the fixation mark; see Methods). Because the spatial configuration of the choice targets varied randomly33

from trial-to-trial, the task requires subjects to flexibly switch between two stimulus-response mapping rules (Fig. 1a). While34

the animals performed this task, we recorded extracellular responses from neural ensembles in the pre-arcuate gyrus, an area35

of prefrontal cortex (PFC) involved in the selection of saccadic eye movements [14] that represents visuomotor deliberation36

[8, 15].37

We found that the activity of many units was not only predictive of the upcoming motor response, but also of the categorical38

meaning of the choice. Decoding the population activity offered further insight into the evolving decision state of the monkeys.39

We demonstrate that, following stimulus onset, population activity initially represents the formation of a categorical choice40

before transitioning into the stereotypical representation of the upcoming motor response. As predicted by theoretical models41

of decision-making, the formation of the categorical choice reflected a graded representation of evidence, informed by both the42

current sensory input and stimulus expectations. This was not true of the evolving representation of the motor plan. Our results43

suggest that prefrontal circuits involved in action selection also support deliberation among abstract propositions.44

Behavior and single unit responses45

Both monkeys successfully learned to categorize stimulus orientation under the two mapping rules. Their perceptual choices46

were evenly distributed among both response alternatives (Fig. 1b), and lawfully depended on stimulus orientation (Fig. 1c).47

They made few errors in the easiest stimulus conditions (monkey F = ±3.75 deg, median performance = 96.25% correct;48

monkey J = ±3.3 deg, median performance = 94.38% correct; Extended Data Fig. 1a). The spatial location of the choice49
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targets varied across recording sessions, impacting the animals’ orientation sensitivity. It did so in similar fashion under both50

mapping rules (median difference in orientation sensitivity: Monkey J = 4.4%, P = 0.45; Monkey F = 4.7%, P = 0.38; Wilcoxon51

signed-rank test; Fig. 1d). This pattern was also evident in the animals’ response times (Extended Data Fig. 1b). Together,52

these results suggest that, within each session, the quality and duration of the decision process did not meaningfully vary across53

the two mapping rules.54

What is the nature of the decision process that underlies this flexible behavior? One viable strategy would be to evaluate55

which saccadic eye movement is more likely to be correct (the “intentional” hypothesis; Extended Data Fig. 2). In principle,56

this strategy can be instantiated by oculomotor neural circuits. Alternatively, the deliberation may concern which categorical57

choice option is most likely to be correct (the “abstract” hypothesis; Extended Data Fig. 2). However, it is not clear which58

neural circuits would instantiate this computation. Finally, the deliberation process might involve joint consideration of the59

stimulus category and the corresponding motor plan (the "mixture" hypothesis; Extended Data Fig. 2). We designed the task60

such that each of these strategies produces a qualitatively distinct ‘motif’ of population activity which represents the unfolding61

visuomotor deliberation process. The motifs are defined by the joint evolution of activity related to the upcoming categorical62

choice and the upcoming saccade direction (Fig. 1e–g). We thus set out to characterize the dynamic structure of population63

activity in PFC while the animals generated this behavior.64

Consider the activity of four simultaneously recorded units. We targeted neurons whose motor response field was likely to65

overlap with one of the choice target locations (see Methods). Grouping trials by saccade direction confirmed that the activity66

of many units was predictive of the upcoming motor response (Fig. 2a, top, dark vs light orange). Grouping the same trials67

instead by saccade meaning revealed that the activity of many units was also predictive of the categorical choice (Fig. 2a,68

top, dark vs light purple). The temporal evolution of choice-related activity differed across units, complicating a functional69

interpretation (Fig. 2a, bottom). But note that in the majority of cases, categorical selectivity peaked before the go cue (monkey70

F: 83 of 126 units; monkey J: 243 of 363 units), while motor selectivity peaked after the go cue (monkey F: 79 of 126 units;71

monkey J: 239 of 363 units; Fig. 2b). This pattern suggests that these predictive signals may be separated in time. The same72

units tended to exhibit both types of choice selectivity. Specifically, the larger the peak motor selectivity was, the larger the73

peak categorical selectivity tended to be (Fig. 2c; Spearman rank correlation: Monkey J = 0.55, P < 0.001; Monkey F = 0.36,74

P < 0.001). However, there was no obvious relationship between the units’ preferred saccade direction and their preferred75

stimulus category (Extended Data Fig. 3). Such mixed selectivity is thought to offer significant computational advantage over76

specialized responses for implementing flexible input-output mappings as required for our task [16, 17, 18].77

Dynamic population representation motifs78

To obtain a perspective on neural population activity during flexible visual categorization, we decoded a time-varying decision79

variable (DV) from jointly recorded responses (see Methods). This decoded DV indicates how well the subject’s upcoming80

choice can be predicted from a 50 ms bin of neural ensemble activity [19]. Each behavioral choice is summarized by two81

independent binary variables: the chosen saccade direction and the corresponding categorical meaning. Likewise, the DV is82

composed of two independent dimensions. Its temporal structure defines the population representation motif and may thus83

disambiguate the nature of the decision process (Fig. 1e-g).84

Consider the DV trajectories of three example ensembles. To a first approximation, an initial excursion along the categorical85

dimension is followed by an excursion in the motor dimension (Fig. 2d, top, symbols). Quantitatively, these trajectories are well86

captured by a model that describes an abstract decision strategy (Fig. 2d, top, curves). In contrast, a model commensurate with87

an intentional decision strategy provides a poorer fit to the same data as it cannot capture temporal structure in the categorical88

dimension (Extended Data Fig. 4). This pattern held true for each recorded ensemble (Fig. 2d, bottom; see Methods). To89

further disambiguate between the abstract and mixture hypotheses, we studied the temporal relationship between the two DV90

dimensions. Key to the mixture hypothesis is the simultaneous evolution of decision-related activity in both dimensions (Fig.91

1f). However, the categorical DV systematically preceded the motor DV. This can be seen in the average unsigned observed DV92

trajectories, obtained by inverting the trajectories associated with “counter-clockwise” and “left” choices and grouping these93

with the “clockwise” and “right” trajectories, respectively. In both monkeys, the average unsigned categorical DV begins rising94

within 150 ms following stimulus onset, well before the average unsigned motor DV begins to rise (Fig. 2e). To investigate95

whether this pattern was also evident at the level of individual DV trajectories, we fit an unconstrained version of the descriptive96

model to the data (see Methods). The resulting fits closely resembled the observed data (Extended Data Fig. 5a), allowing us97

to estimate the onset time of each DV’s rise in a systematic manner (see Methods). In the overwhelming majority of individual98

model-predicted trajectories, the categorical DV began rising well before the motor DV (Fig. 2f). Restricting these analyses of99

the DV trajectories to the fully ambiguous stimulus condition (stimulus orientation = 0 deg) yielded similar results, suggesting100

that these patterns of neural activity are intimately related to the unfolding decision process, rather than to underlying physical101

stimulus differences as such (Fig. 3).102
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Neural signatures of deliberation103

We have shown that the temporal structure of population activity in PFC is incompatible with the hypothesis that intentional104

deliberation underlies the monkeys’ flexible behavior. It is also incompatible with a task-specific variant of this hypothesis (a105

spatial match-to-sample strategy, see Extended Data Fig. 6), and offers little support for the mixture hypothesis. Instead, our106

analysis favors the hypothesis that abstract deliberation underlies the monkeys’ flexible behavior. If this interpretation is correct,107

then the categorical DV ought to exhibit key signatures of deliberation. Moreover, these signatures should not be present in108

the motor DV. This prediction is unique to the abstract hypothesis (Fig. 1e-g), and thus offers a strong test of our proposed109

interpretation.110

The simplest theoretical models of decision-making hold that subjects solve binary decision-making tasks by comparing the111

evidence that favors one response alternative over the other with a fixed criterion [20]. Due to noise, repeated presentations112

of the same stimulus elicit different evidence estimates and may therefore result in different decision outcomes (Fig. 4a, left).113

When averaged across many trials, this deliberation process gives rise to a graded representation of relative evidence that varies114

with stimulus strength and differs for correct and incorrect decisions (Fig. 4a, right). For this reason, evidence estimates are115

thought to not only inform decision outcome, but also determine a subject’s commitment to an evolving decision [8, 9] and116

factor into their confidence in a decision [21, 22]. If the neural populations we recorded from are involved in the deliberation117

process, their activity should thus reflect a graded representation of evidence. The issue at stake is whether this representation118

manifests in the motor DV, the categorical DV, or both.119

Consider the temporal evolution of the average unsigned DVs, split by stimulus strength and choice accuracy (Fig. 4b). Dividing120

trials across this many conditions dilutes the statistical power of the analysis. To compensate for this, we pooled data of both121

monkeys (see Methods). As can be seen, approximately 150 ms after stimulus onset, the sign and amplitude of the categorical122

DV begin to match the theoretical prediction of evidence representation. Specifically, the categorical DV achieves more extreme123

values for correct decisions based on stronger stimuli but exhibits the opposite order for incorrect decisions (Fig. 4b, left).124

This pattern becomes increasingly prominent over the next 200 ms. The categorical DV trajectories appear to reach their125

most extreme value more quickly for correct than for incorrect decisions (Fig. 4b, left), consistent with dynamical models126

of decision-making in which evidence is integrated over time until it reaches a bound [23, 24]. This visual impression was127

validated by a quantitative analysis (Fig. 4c, Extended Data Fig. 5b; see Methods). In contrast, the amplitude and timing of the128

motor DV do not appear to reflect the strength of the evidence supporting the choice that informed the upcoming saccade (Fig.129

4b, right). The stereotypical nature of the motor DV suggests that it represents a “pure” motor plan.130

Impact of statistical regularities in the environment131

Perceptual decisions are not only determined by the present sensory input. They are also shaped by expectations that reflect132

previously experienced statistical regularities in the environment [25, 26]. Knowledge of such regularities (“prior knowledge”)133

provides evidence that bears on challenging visual categorization problems. In theory, it can therefore be leveraged to improve134

the quality of uncertain decisions. Ample empirical evidence demonstrates that humans and other animals heavily exploit prior135

knowledge for perception [26, 27], action [28, 29], and cognition [30, 31].136

We wondered how prior knowledge impacts PFC population representations during flexible visual categorization. To investigate137

this, we designed the task such that blocks of trials in which clockwise stimuli were over-represented alternated with blocks in138

which counterclockwise stimuli were over-represented (see Methods). We additionally varied stimulus contrast. The current139

latent state of each trial was cued to the monkey through the shape of the fixation mark (see Methods). When the stimulus140

contrast was high, perceptual orientation estimates were more certain, and the impact of the prior on the choice behavior was141

often small (Fig. 5a, top). When the stimulus contrast was low, perceptual orientation estimates were less certain, as evidenced142

by the shallowing of the psychometric function (Fig. 5a, bottom; median reduction in orientation sensitivity: Monkey J =143

46.4%, P < 0.001; Monkey F = 40.7%, P < 0.001; Wilcoxon signed-rank test). As a consequence, the impact of the prior on the144

decision grew, giving rise to increased separation between the prior-specific psychometric functions, hereafter termed “decision145

bias” (Fig. 5a, top vs bottom; median increase in decision bias: Monkey J = 63.3%, P = 0.0013; Monkey F = 68.6%, P =146

0.04). In general, both monkeys tended to make more biased decisions under task conditions associated with lower orientation147

sensitivity (Fig. 5b; Spearman rank correlation: Monkey J = –0.42, P = 0.017; Monkey F = –0.60, P = 0.0015). This trend148

naturally arises when subjects use the available evidence in a statistically optimal fashion [32, 33].149

To isolate the effects of the monkeys’ prior knowledge on the neural representation, we compared DV trajectories of trials150

that resulted in the same categorical choice but that were either congruent or incongruent with the prior expectation (see151

Methods). As can be seen from an example recording session, congruent and incongruent categorical DV trajectories could152

differ substantially (Fig. 5c, top left). This difference, which we term DV bias, was often present before stimulus onset and was153

more prominent during blocks of low-contrast trials (Fig 5c, bottom left). This suggests that it may provide a neural measure of154
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the impact of prior expectations on ensuing perceptual decisions. To test this idea, we calculated the DV bias around the time155

when the categorical DV first begins to reflect stimulus information (i.e., 500 ms before saccade initiation, Fig. 5c, bottom left,156

red arrows). For every recording session, we thus obtained two neural measures of “expectation”, one for high contrast trials,157

and one for low contrast trials. For both monkeys, expectation calculated from the categorical DV predicted the behaviorally158

measured decision bias (Fig. 5d, left, Spearman rank correlation: Monkey J = 0.59, P < 0.001; Monkey F = 0.61, P = 0.0011).159

For the motor DV, this was not the case (Fig. 5d, right, Monkey J = 0.025, P = 0.89; Monkey F = –0.067, P = 0.74). Calculating160

neural expectation from slightly earlier or later moments in time yielded similar results (Extended data Fig. 7). These results161

further corroborate the hypothesis that deliberation occurred in an abstract stimulus representation space. They also imply that162

during categorical deliberation, PFC activity is not only shaped by input from visual cortex, but also by signals representing163

prior knowledge retrieved from memory.164

Discussion165

In this study, we have investigated neural population activity in PFC during flexible visual categorization. We sought to probe166

the nature of the decision process that underlies the flexible relationship between perception and action demanded by many167

of the real-world problems we face. We suggest that behavioral reports arise from a decision process in which evaluating168

the sensory environment and planning to act on that interpretation are supported by the same populations of neurons, but169

unfold in separate representational spaces and different moments in time. This view explains three distinct observations. First,170

during sensory stimulation, an initial population representation of the upcoming categorical choice precedes an orthogonal171

representation of the motor action used to communicate that choice (Fig. 2–3). Second, neural activity patterns predictive of172

the upcoming categorical choice reflect a graded representation of evidence, while activity patterns predictive of the upcoming173

motor response do not (Fig. 4). And third, prior stimulus expectations shape the formation of the categorical choice but not the174

formation of the action plan (Fig. 5).175

Our investigation is the first to offer unequivocal evidence that circuits involved in action selection can also reflect deliberation176

among abstract propositions in a representational space that is uncoupled from specific motor plans [13]. Previous attempts177

to determine whether action-planning circuits in the macaque brain also support abstract deliberation were inconclusive for178

a variety of reasons. Some studies used a temporal match-to-sample task [34, 2, 35]. In these tasks, the decision variable179

consists of a comparison of two stimulus representations. As a consequence, such tasks allow for the identification of abstract180

perceptual representations [34, 2, 35], but not for the identification of neural deliberation signals. Some other studies used a181

task design similar to ours, but found that animals appeared to adopt an intentional strategy and that neural activity did not182

reflect categorical choice formation [36, 37]. Finally, in most previous studies, neural signals were recorded from one unit at183

a time and could thus not reveal the structure of population activity [12, 38]. As such, our experimental paradigm opens new184

possibilities to further investigate the neural basis of abstract perceptual reasoning.185

Decision-related activity has been found in many different brain areas [39]. It has been challenging to ascribe a unique role186

to each of these areas. This requires experimental paradigms that are simple enough to invite well-controlled, reliable behav-187

ior, but complex enough to engage higher cognitive mechanisms. Our paradigm revealed dissociable signatures of stimulus188

strength, perceptual uncertainty, prior knowledge, and action plans within a single area. Our approach therefore holds promise189

to disambiguate the functional roles of brain areas within the decision-making network, and more generally, to characterize the190

cascade of neural operations that collectively transform sensory inputs into perceptual interpretations and context-appropriate191

action plans.192
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METHODS366

0.1 Subjects367

Our experiments were performed on two adult male macaque monkeys (Macaca mulatta, ages 8-9 years old over the course368

of the experiments). The animals were trained to perform a memory-guided saccade task and an orientation discrimination369

task with saccadic eye movements as operant responses. They had not previously participated in research studies. All training,370

surgery, and recording procedures conformed to the National Institute of Health Guide for the Care and Use of Laboratory371

Animals and were approved by The University of Texas at Austin Institutional Animal Care and Use Committee. Under372

general anesthesia, both animals were implanted with three custom-designed titanium head posts and a titanium recording373

chamber [40].374

0.2 Apparatus375

The subjects were seated in a custom-designed primate chair in front of a CRT monitor (Sony Trinitron, model GDM-FW900),376

with their heads restrained using three surgical implants. Stimuli were shown on the CRT monitor which was positioned ap-377

proximately 64 cm away from the monkeys’ heads. Eye position was continuously tracked with an infrared eye tracking system378

at 1 kHz (Eyelink 1000, SR Research, Canada). Stimuli were generated using the Psychophysics Toolbox [41] in MATLAB379

(MathWorks). Neural activity was recorded using the Plexon OmniPlex System (Plexon). Precise temporal registration of task380

events and neural activity was obtained through a Datapixx system (Vpixx). All of these systems were integrated using the381

PLDAPS software package [42].382

0.3 Memory-guided saccade task383

We used a variation of the classical memory-guided saccade task [43] to identify recording sites where neurons exhibited neural384

activity indicative of an upcoming eye movement. Each trial began when the subject fixated a small white square at the center385

of the screen. After 100 ms, a small response target briefly appeared in one of 24 possible locations (3 radii x 8 directions).386

The subject needed to keep this location in memory while maintaining fixation for 500 ms. After this delay period, the fixation387

mark disappeared and the subject needed to make a saccade to the remembered location. Correct choices were followed by a388

juice reward. Each location was presented multiple times per recording session.389

0.4 Estimating response field locations390

During the memory-guided saccade task, extracellular recordings were made with dura-penetrating glass-coated tungsten mi-391

croelectrodes (Alpha Omega), advanced mechanically into the brain. We made recordings from multiple sites in the pre-arcuate392

gyrus. After data collection was completed, we studied spiking activity in a 100 ms window preceding saccade initiation. We393

compared the strength of the response preceding an eye movement to the neuron’s apparent preferred spatial location with the394

responses preceding eye movements to all other locations. We deemed a neuron to have a well-defined motor response field if395

this difference fell outside the expected difference distribution predicted by a null-model that assumes Poisson spiking statis-396

tics. Following identification of a suitable recording site, we conducted several additional orientation discrimination training397

sessions with one choice target placed within the estimated response field location and one on the opposite site of the fixation398

mark. Once psychophysical performance reached a high level, physiological data collection begun.399

0.5 Orientation discrimination task400

The orientation-discrimination task is a variant of classical visual categorization tasks in which the subject uses a saccadic eye401

movement as operant response [44, 45, 46]. We used a flexible version of this task in which the stimulus-response mapping rule402

varied from trial to trial. Each trial began when the subject fixated a small white square at the center of the screen (0.6 degrees403

in diameter). Upon fixation, the square was replaced by either a triangular or a circular fixation mark, indicating the latent404

prior context of the trial. The experiment involved two distinct prior contexts, associated with differently skewed distributions405

of stimulus orientation (see inset of Fig. 5a). Blocks of both priors alternated randomly (80 trials per block). 500 ms + 0-406

65 ms after the onset of the fixation mark, two choice targets appeared, one on each side of the fixation mark. One choice407

target was placed within the presumed motor response field, the other on the opposite side of the fixation mark. The choice408

targets were white lines (2.5 deg x 0.5 deg), rotated –22.5 deg and 22.5 deg from vertical. 250 ms + 0-65 ms later, a circularly409

vignetted drifting grating appeared in the near periphery (eccentricity: 1.12 degrees). The grating measured 2.7 degrees in410

diameter, had a spatial frequency of 1 cycle/deg, and a temporal frequency of 1 cycle/s. The stimulus remained on for 500 ms411

+ 0-65 ms. Subjects judged the orientation of the stimulus relative to vertical. The stimulus then disappeared along with the412

fixation mark and subjects reported their decision with a saccadic eye movement to the appropriately oriented choice target.413
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Trials in which the monkey did not saccade to either of the choice targets within 2 s were aborted. Auditory feedback about414

the accuracy of the monkey’s response was given at the end of each trial. Correct choices were followed by a liquid reward415

delivered via a solenoid-operated reward system (New Era). Stimulus orientation varied over a small range, tailored to each416

monkey’s orientation sensitivity (monkey F: -3.75 deg to 3.75 deg, monkey J: -3.3 deg to 3.3 deg). Vertically oriented stimuli417

received random feedback. Stimuli were presented at either high or low contrast (Michelson contrast: 100% or 4%). Blocks418

of high and low contrast stimuli alternated randomly (trials per block: monkey F = 100, monkey J = 80). We conducted 13419

successful recordings from monkey F and 16 from monkey J (average number of trials per session, monkey J = 3,171; monkey420

F = 1,593).421

0.6 Behavioral analysis422

We measured observers’ behavioral capability to discriminate stimulus orientation by fitting the relationship between stimulus423

orientation and probability of a “clockwise” choice with a psychometric function consisting of a lapse rate and a cumulative424

Gaussian function. Model parameters were optimized by maximizing the likelihood over the observed data, assuming responses425

arise from a Bernouilli process. Each recording session was analyzed independently. For the analysis documented in Fig. 1d, we426

fit one psychometric function per mapping rule and contrast level. We defined orientation sensitivity as the inverse of the SD of427

the cumulative Gaussian. We used a variant of this model to measure observers’ prior-induced behavioral decision bias. For this428

analysis, we fit one psychometric function per stimulus prior and contrast level (Fig. 5a). Both prior conditions shared the same429

sensitivity parameter, resulting in two psychometric functions with identical slope. We defined decision bias as the difference430

between the means of both cumulative Gaussians (i.e., the magnitude of the horizontal displacement of both psychometric431

functions). Error bars of model-based statistics are based on a 100-fold non-parametric bootstrap of the behavioral data.432

0.7 Electrophysiological recordings433

During the orientation-discrimination task, we recorded extracellular spiking activity from populations of PFC neurons through434

a chronically implanted recording chamber. Every recording session, we used a microdrive (Thomas recording) to mechanically435

advance a linear electrode array (Plexon S-probe; 32 contacts) into the brain at an angle approximately perpendicular to the436

cortical surface. We targeted recording sites that had exhibited well-defined motor response fields in a previously conducted437

memory-guided saccade task. We positioned the linear arrays so that they roughly spanned the cortical sheet and removed them438

after each recording session. Continuous neural data were acquired and saved to disk from each channel (sampling rate 30 kHz,439

Plexon Omniplex System). To extract responses of individual units, we performed offline spike sorting. We first automatically440

spike-sorted the data with Kilosort [47], followed by manual merging and splitting as needed. Given that the electrode’s position441

could not be optimized for all contact sites, most of our units likely consist of multi-neuron clusters. All units whose mean442

firing rate during the task exceeded 3 ips were included in the analysis.443

0.8 Analysis of single unit responses444

We measured the temporal evolution of each unit’s response by expressing spike times relative to the trial-specific moment of445

saccade initiation and counting spikes within non-overlapping 50 ms windows. Fig. 2a shows example response traces for446

four units, averaged across different subsets of trials. We computed neuronal selectivity for the upcoming choice behavior by447

calculating the difference between the choice-conditioned response averages, normalized by the response standard deviation448

[48]. The sign of this SNR metric depends on the unit’s preferred choice option. To facilitate comparison across the categorical449

and motor dimension, we signed each unit’s SNR-trace such that the maximal value was positive (see examples in Fig. 2a, all450

traces are shown in Fig. 2b).451

0.9 Estimating the time-varying decision variable452

For each trial, we obtained moment-to-moment measurements of the decision variable by projecting 50 ms bins of population453

activity onto a linear decoder optimized to distinguish the activity patterns associated with both choice options ("left" vs "right"454

choices for the motor DV, and "clockwise" vs "counterclockwise" choices for the categorical DV, respectively). Specifically,455

we first individually z-scored each unit’s spike counts within every time bin. We then used these z-scored responses to estimate456

the set of linear weights, w = (w1, ..., wn), that best separate the choice-conditioned z-scored response patterns, assuming a457

multivariate Gaussian response distribution:458

w =
s
Σ

(1)
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where s is the mean difference of the choice-conditioned z-scored responses and Σ is the covariance matrix of the z-scored459

responses. The decoder weights are calculated from observed trials. To avoid double-dipping, we excluded the trial under460

consideration from the calculation and solely used all other trials to estimate the weights. This way, we obtained "cross-461

validated" DV estimates for each time bin:462

DVj =
∑

wijZij , (2)

where wij and Zij are the weight and z-scored response of unit i on trial j for a given time bin. The symbols in Fig. 2d463

show DV trajectories from three example recording sessions, averaged across all choice-conditioned trials. The symbols in464

Fig. 3a show DV trajectories from the same example recording sessions for the zero-signal stimulus. The lines in Fig. 2e and465

Fig. 3b show unsigned DV trajectories, obtained by inverting the trajectories associated with “counter-clockwise” and “left”466

choices and grouping these with the “clockwise” and “right” trajectories, respectively. The lines in Fig. 4b show unsigned467

DV trajectories, split by stimulus strength and choice accuracy, and averaged across all recording sessions of both animals.468

The lines in the top panel of Fig. 5c show unsigned DV trajectories of an example recording session averaged across choice469

"congruent" and "incongruent" trials, respectively.470

0.10 Descriptive models of computational hypotheses471

We compared the observed DV trajectories with the theoretical expectations of two computational models of decision-making.472

We expressed the models’ predictions using a set of equations that describe the average evolution of the choice-conditioned473

decision variable. Under the intentional model, the categorical DV has no systematic structure while the motor DV evolves474

according to a cumulative Gaussian function. This model has four free parameters per choice-conditioned trajectory: one475

captures an initial offset in the motor DV, one specifies the dynamic range of the DV trajectory, one controls the speed of the476

rise, and one the time point at which half of the rise is completed. Under the abstract model, an initial rise in the categorical DV477

is followed by a subsequent rise of the motor DV. Following completion of the deliberation process, the categorical DV may478

decay in strength. We used nine free parameters to describe this pattern. Five of these specify the evolution of the categorical479

DV, and four that of the motor DV. For both DVs, we used cumulative Gaussians in the same way as we did for the intentional480

model. For the categorical DV, we additionally used a parameter that controls the amount of decay that follows the peak481

of the categorical DV (defined as the time at which the cumulative Gaussian reached the 99.38th percentile). We imposed482

boundaries on the model’s parameters that ensured that the motor DV could not begin to rise before the categorical DV. We fit483

both descriptive models by minimizing the sum of the square error of the choice-conditioned trajectory under consideration.484

Example fits of the abstract model are shown in Fig. 2d and Fig. 3a, example fits of the intentional model are shown in Extended485

Fig. 4.486

0.11 Estimating onset and peak time of DV trajectories487

We conducted an analysis in which we compared the estimated onset time of both DVs (Fig. 2f and Fig. 3c). We obtained488

estimates of onset time by fitting an unconstrained version of the descriptive model to the data. This model used the same set of489

equations as the abstract model, but we imposed no boundaries on the model’s parameters that would enforce a temporal order490

on the DV trajectories. The average fit of this model to the data is shown in Extended Data Fig. 5a. For each DV trajectory,491

we defined onset time as the time at which the cumulative Gaussian reached the 5th percentile. We also conducted an analysis492

in which we compared the estimated peak time of the categorical DV for different groups of trials (Fig. 4c). We obtained493

estimates of peak time by fitting the same unconstrained version of the model to each trajectory shown in Fig. 4b. The fits494

are shown in Extended Fig. 5b. Under this model, peak time is defined as the time at which the cumulative Gaussian reaches495

the 99.38th percentile (at this time, the decay begins). We obtained estimates of the standard error by repeating this analysis496

on 1,000 matching synthetic data-sets, each created by sampling the observed trials with replacement. We then performed the497

entire analysis sequence on these bootstrapped trials. The error bars in Fig. 4c show the estimate for the observed data ± one498

standard deviation of the peak time estimates of the synthetic data-sets.499

0.12 Estimating DV bias500

We obtained estimates of DV bias by first calculating the average observed unsigned DV trajectory for congruent and incon-501

gruent trials per level of stimulus strength (i.e., rotation magnitude), then taking the difference of these averages per level, and502

finally averaging across these differences. This estimation procedure ensures that stimulus strength as such does not impact the503

bias estimate (the fraction of congruent and incongruent choices differs across stimulus strengths).504
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Figure 1 Flexible visual categorization: behavior and computational hypotheses. (a) Visual categorization task, task sequence.
After the observer fixates for 500 ms, two choice targets appear, followed by the stimulus. The observer judges whether the
stimulus is rotated clockwise or counterclockwise relative to vertical and communicates this decision with a saccade towards the
matching choice target. Correct decisions are followed by a juice reward. One of the choice targets is placed in the neurons’
presumed motor response field (see Methods). The spatial organization of the choice targets varies randomly from trial-to-trial,
giving rise to two stimulus-response mapping rules. (b) Proportion of clockwise choices under both mapping rules for both
animals. Each symbol summarizes the behavior from a single recording session. (c) Psychophysical performance for monkey
J in an example recording session. Proportion ’clockwise’ choices for high contrast stimuli is shown as a function of stimulus
orientation under both mapping rules. Symbol size reflects number of trials (total: 1,707 trials). The curves are fits of a behavioral
model (see Methods). (d) Comparison of orientation sensitivity (i.e., the slope of the psychometric function) under both mapping
rules for both monkeys (see Methods). Each symbol summarizes data from a single recording session. Closed symbols: high
contrast stimuli, open symbols: low contrast stimuli. Error bars reflect the IQR of the estimate. (e-g) Computational hypotheses
(left) and associated neural representation motifs (right). There are four possible behavioral outcomes (i.e., either a clockwise or
counterclockwise choice, communicated with either a left or rightward saccade), resulting in four motifs per hypothesis.
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Figure 2 Dynamics of neural activity in PFC during flexible visual deliberation. (a) Temporal evolution of firing rate (top) and
response selectivity (bottom) of four jointly recorded units (ensemble size: 29 units). Spikes were counted using 50 ms wide
counting windows and averaged across trials that either shared the same saccade direction (dark vs light orange), or the same
categorical meaning (dark vs light purple). Vertical lines indicate the average time of critical task events. (b) Temporal evolution
of response selectivity for the categorical choice (left) and the saccade direction (right) of all units recorded from Monkey J (top)
and Monkey F (bottom). In all displays, units are ranked according to the timing of their maximal motor selectivity. Vertical
lines indicate the average time of critical task events. (c) Maximal response selectivity for saccade direction plotted against
maximal selectivity for the categorical choice on logarithmic axes. r = Spearman correlation. N = 363 units for monkey J,
and 126 units for monkey F. (d) Top: Example DV trajectories during a 750 ms epoch preceding saccade initiation for three
recording sessions. Symbols represent cross-validated data-based estimates, lines the fit of a descriptive model instantiating the
abstract hypothesis (see Methods). Bottom: comparison of goodness-of-fit of two descriptive models instantiating the abstract
and intentional hypothesis. Error bars illustrate ± one standard error of the mean, computed across each recording session’s
four trajectories. N = 16 recording sessions for monkey J, and 13 sessions for monkey F. (e) Average observed unsigned DV
trajectories. Each recording session contributes two unsigned trajectories to this plot. Error bands illustrate ± one standard error
of the mean. Vertical lines indicate the average time of critical task events. (f) Onset of the motor DV plotted against onset of the
categorical DV for all trajectories (see Methods).
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Figure 3 Dynamics of neural activity in PFC during deliberation of zero-signal stimulus. (a) Top: Example DV trajectories during
a 750 ms epoch preceding saccade initiation for three recording sessions. Only trials that involved the zero-signal stimulus
(stimulus orientation = 0 deg) were included in this analysis. Bottom: comparison of goodness-of-fit of two descriptive models
instantiating the abstract and intentional hypothesis. Same plotting conventions as Fig. 2d. (b) Average observed unsigned DV
trajectories (zero-signal trials only). Same plotting conventions as Fig. 2e. (c) Onset of the motor DV plotted against onset of the
categorical DV for all trajectories (zero-signal trials only).
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a process whereby relative evidence (i.e., the accumulated evidence that favors one response alternative over the other) is
compared to a fixed criterion. (Left) Repeated presentations of the same condition elicit variable amounts of evidence, giving rise
to an evidence distribution across many trials (four examples shown). Stronger stimuli result in a smaller overlap of the evidence
distribution with the criterion, thus yielding more correct decisions. (Right) The average relative evidence split by choice accuracy
(top: correct trials; bottom: incorrect trials) and stimulus strength. (b) Average unsigned observed DV trajectories split by choice
accuracy (top: correct trials; bottom: incorrect trials) and stimulus strength (i.e., orientation, see Methods). Data of all recording
sessions were pooled. Left: Categorical DV. Right: Motor DV. Vertical lines indicate the average time of critical task events as
in Figure 2a. (c) Comparison of peak time of the average categorical DV trajectories for incorrect and correct trials. Error bars
illustrate ± one standard error of the estimate (see Methods).

13

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2022. ; https://doi.org/10.1101/2022.12.06.519340doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519340
http://creativecommons.org/licenses/by-nd/4.0/


3 4

c

M
ea

n 
un

si
gn

ed
 D

V

–0.5

1.0

0

3 4

3 4
D

V 
bi

as

–0.5

1.0

–400–800 0–400
Time from saccade (ms)

–800 0

0

3 4

a

Pr
op

or
tio

n 
“C

W
”

0

0.5

1.0 Monkey J
J210909

0
Orientation (deg)

–5 5

Pr
op

or
tio

n 
“C

W
”

0

0.5

1.0

b

De
cis

on
 b

ia
s 

(d
eg

)

–1

1.0

3.0
De

cis
io

n 
bi

as
 (d

eg
)

–1

1.0

3.0

1.0
Slope (deg–1)

1/2 2.0

Prior probability Monkey J
Monkey F
High contrast
Low contrast

Decision
bias

d

De
cis

io
n 

bi
as

 (d
eg

)

–1

1.0

3.0

De
cis

oi
n 

bi
as

 (d
eg

)

–1

1.0

3.0

0.25–0.1 0.6 0.25
Expectation categorical DV

0.6
Expectation motor DV

r = 0.59

r = 0.61

r = 0.03

r = –0.07

IQR

Monkey J
Monkey F
High contrast
Low contrast

J210906

Congruent
Incongruent
High contrast
Low contrast

Expectation

DV bias

Figure 5 Effects of prior stimulus expectation on the DV. (a) Psychophysical performance for monkey J in an example recording
session. Proportion clockwise choices is plotted as a function of stimulus orientation under both stimulus priors (black vs grey),
split by stimulus contrast (top: high contrast trials, bottom: low contrast trials). Symbol size reflects number of trials (total: 1,707
high contrast trials and 1,875 low contrast trials). The curves are fits of a behavioral model (see Methods). (b) Decision bias
plotted as a function of orientation sensitivity for both monkeys (top: Monkey J, bottom: Monkey F). Each symbol summarizes
data from a single recording session. Closed symbols: high contrast stimuli, open symbols: low contrast stimuli. Error bars
reflect the IQR of the estimate. (c) Top: Average unsigned DV trajectories split by choice congruency for an example recording
session. Only low contrast trials are included. Bottom: DV bias in the example dataset for high and low contrast trials. The
categorical DV is shown on the left, the motor DV on the right. (d) Decision bias plotted as a function of stimulus expectation for
both monkeys. Same plotting conventions as in panel b.
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Extended Data Figure 1 Further comparison of psychophysical performance under both mapping rules. (a) Proportion correct
judgements for the easiest stimulus conditions (i.e., the two most extreme stimulus orientations). Only high contrast trials were
included in the analysis. Each symbol summarizes the behavior from a single recording session. Task performance consistently
approached the level expected from a flawless observer without attentional lapses (i.e., 100% correct) and did not differ across
both mapping rules (median difference in task performance: 1.6%, P = 1, Wilcoxon signed-rank test). The positive association
across both mapping rules indicates that the fraction of guesses may vary across sessions, but is stable across mapping rules.
(b) The average response time across all trials completed within a single recording session. Response time is measured relative
to the start of the trial. r = Spearman correlation.
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Intentional strategy

Sensory measurement Evidence evaluation Choice deliberation Action selectionVisual stimulus Motor response

M = measurement
C = category
E = evidence
R = rule
S = saccade

DV = log(E1/E2)
if DV ≥ 0 => S1
if DV < 0 => S2

E1 = P(C1 | M)
E2 = P(C2 | M)

if DV ≥ 0 & R = R1 => S1
if DV ≥ 0 & R = R2 => S2
if DV < 0 & R = R1 => S2
if DV < 0 & R = R2 => S1

if R = R1 => {E1 = P(C1 & S1 | M)
E2 = P(C2 & S2 | M)

if R = R2 => {E1 = P(C2 & S1 | M)
E2 = P(C1 & S2 | M)

DV = log(E1/E2)

DV = log(E1/E2)
if DV ≥ 0 => S1
if DV < 0 => S2

E1 = P(S1 | M & R)
E2 = P(S2 | M & R)
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Extended Data Figure 2 Further comparison of candidate computational strategies. The sensorimotor transformation under-
lying flexible visual categorization in our task can be broken down into a sequence of conceptually distinct operations (top,
boxes). Common to all three candidate strategies is that information about stimulus orientation must be obtained from a sensory
measurement (left part of diagram) and that the decision must be communicated with a saccadic eye movement (right part of
diagram). The sensory measurement is likely provided by the population activity of a set of visual neurons whose responses se-
lectively depend on stimulus orientation (e.g., by the collective output of a cortical hypercolumn in primary visual cortex). Under
an intentional strategy, this activity is evaluated by converting it into evidence in favor of each possible motor response (E1 and
E2, which ideally reflect the likelihood of each response option being correct). This transformation requires taking into account
the trial-specific mapping rule. Under an abstract strategy, the sensory activity is evaluated by converting it into evidence in favor
of each possible categorical response. This transformation does not require knowledge of the mapping rule. Under a mixture
strategy, sensory activity is transformed into evidence favoring one of two possible combinations of categorical choice and as-
sociated saccade option. The mapping rule determines the trial-specific pair of combinations. Under all three strategies, choice
deliberation involves comparing the evidence in favor of each response option. The logarithm of the likelihood ratio provides a
principled metric for this operation. Under the intentional and mixture strategy, the deliberation process directly results in a motor
plan. Under the abstract strategy, following deliberation, the mapping rule must be consulted to form the appropriate motor plan.
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Extended Data Figure 3 PFC neurons exhibit mixed selectivity for stimulus category and saccade direction. (a) Maximal
unsigned response selectivity for saccade direction plotted against maximal selectivity for the categorical choice on logarithmic
axes (same as Fig 2c of the main paper). (b) Most extreme signed response selectivity for saccade direction plotted against
maximal selectivity for the categorical choice on linear axes. For both monkeys, every quadrant in the plot is occupied.
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Extended Data Figure 4 Example DV trajectories during a 750 ms epoch preceding saccade initiation for three recording ses-
sions. Symbols represent cross-validated data-based estimates, solid vertical lines the fit of a descriptive model commensurate
with an intentional strategy. This model cannot capture temporal structure in the categorical dimension and hence provides a
poor fit to the data (compare with the fit of the abstract model to the same data, shown in Fig. 2d of the paper).
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Extended Data Figure 5 Comparison of model-predicted and observed DV trajectories. (a) Lines show the average unsigned
DV trajectories predicted by an unconstrained descriptive model. Each recording session contributes two unsigned trajectories
to this plot. Symbols show the average observed values (same data as plotted in Fig 2e in the main paper). Vertical lines indicate
the average time of critical task events. These model fits were used to estimate the onset time for each trajectory (shown in Fig.
2f and 3c). (b) Lines show the fit of a descriptive model to the average unsigned DV trajectories split by choice accuracy (top:
correct trials; bottom: incorrect trials) and stimulus strength (i.e., orientation). Symbols show the average observed values (same
data as plotted in Fig. 4b in the main paper). These model fits were used to estimate the peak time of each trajectory (shown in
Fig. 4c).

Intentional strategy

Sensory measurement Evidence evaluation Choice deliberation Action selectionVisual stimulus Motor response

M = measurement
C = category
E = evidence
R = rule
S = saccade
θ = orientation estimate

DV = ∆1 – ∆2
if DV ≥ 0 => S1
if DV < 0 => S2

∆1 = |θStimulus – θTarget1 |
∆2 = |θStimulus – θTarget2 |

DV = log(E1/E2)
if DV ≥ 0 => S1
if DV < 0 => S2

E1 = P(S1 | M & R)
E2 = P(S2 | M & R)

V1

Match-to-sample strategy

Extended Data Figure 6 Further comparison of candidate computational strategies. In principle, the subject could solve the task
using a spatial match-to-sample strategy. Under this strategy, the perceived stimulus orientation is compared with the orientation
of both choice targets, and the most similarly oriented choice target is selected. This strategy is a task-specific variant of an
intentional strategy in the sense that the deliberation concerns the question of whether one possible saccade response is favored
over the other possible saccade response. Like the intentional hypothesis discussed in the paper, this strategy predicts a data
pattern incompatible with our analysis. Specifically, the same stimulus orientation should give rise to oppositely signed DV values
under both mapping rules. As documented in the paper, we only see evidence for such a pattern late in the trial, and this pattern
does not exhibit neural signatures of deliberation.

16

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2022. ; https://doi.org/10.1101/2022.12.06.519340doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519340
http://creativecommons.org/licenses/by-nd/4.0/


3 4
a

As
so

ci
at

io
n 

(S
pe

ar
m

an
’s

 r 
)

–0.5

1.0

0

3 4

3 4

–0.5

1.0

–400–800 0–400
Time from saccade (ms)

–800 0

0

3 4

As
so

ci
at

io
n 

(S
pe

ar
m

an
’s

 r 
)

–400–800 0–400
Time from saccade (ms)

–800 0

b

Monkey F
Categorical DV
Motor DV
    95% CI

Monkey J
Categorical DV
Motor DV
    95% CI

Extended Data Figure 7 Temporal evolution of the association between a neural measure of expectation and behavioral decision
bias. We performed the analysis shown in Fig. 5d of the main paper using a sliding 50 ms wide counting window. For both
monkeys, the association between neural expectation calculated from the categorical DV and the behaviorally measured bias
was substantial around the time of stimulus onset (indicated by the leftmost dotted line), but decreased as the trial progressed.
The association between neural expectation calculated from the motor DV and behavioral bias was minimal around the time
of stimulus onset, but gradually increased in strength as the trial progressed. Confidence intervals are based on a 10,000 fold
bootstrap test.
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