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Abstract 
Alzheimer’s disease (AD) is a looming public health disaster with limited interventions. Progress in therapeutic 
development requires a more detailed understanding of molecular pathogenesis. Most data for AD pathogenesis in 
humans is from standard neuropathologic assessments, e.g., neuritic plaques and neurofibrillary tangles or 
biochemical measurement of a limited number of analytes related to neuropathologic features, e.g., amyloid-β 
peptides and hyperphosphorylated tau. Standard neuropathologic evaluation is highly valuable as it provides 
assessment of diseases that afflict an individual brain, but it also is limited in its ability to investigate molecular 
pathogenesis. Modern mass spectrometry-based proteomics enable quantitative insight into the protein phenotype 
in brains with AD neuropathology. Careful selection of specimens enabled us to investigate protein signatures 
specific to autosomal dominant AD dementia (ADD), sporadic ADD with minimal comorbidities, individuals without 
dementia who had high histopathologic burden of AD, and cognitively normal individuals with no or minimal AD 
histopathologic burden. All data are deposited in the ProteomeXchange proteomic data repositories (ID: 
PXD034525).  
 

Background & Summary 
Alzheimer’s disease (AD) is a major global public health problem. In the US, AD is the seventh most common cause of 
death for all ages and sexes. In contrast to ischemic heart disease, stroke and several forms of cancer, AD is 
increasing as a cause of death, of years lived with disability, and of disability-adjusted life years1. Success in limiting 
acute illnesses in the developing world is shifting the burden to non-communicable diseases, with an expected 
dramatic rise in AD globally by 20252. Existence of forms of AD with known genetic causes or risk, and forms without 
known genetic underpinnings, highlight the potential for multiple molecular drivers and perhaps multiple pathogenic 
pathways involved in disease onset and progression. Moreover, longitudinal population-based cohort studies have 
repeatedly observed that AD is commonly comorbid with pathologic changes of vascular brain injury (VBI), Lewy 
body disease (LBD), limbic-associated TDP-43 encephalopathy (LATE), and/or hippocampal sclerosis3,4. AD is a 
chronic illness whose ultimate clinical expression as dementia follows years, if not decades, of injury, response to 
injury, consumption of reserve, and exhaustion of compensation. Determining the molecular profile of its various 
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forms independent of comorbidities will be fundamental to efforts to develop tailored therapies that specifically 
target the molecular mechanism(s) of AD.  
 
Thus, a primary focus of this data resource was the selection of tissue specimens based on current guidelines for AD 
neuropathologic change (ADNC)3,4 and specific exclusion for the presence of alternative potential causes of 
dementia, resulting in the carefully annotated examples of AD and controls free of medically significant 
comorbidities. Additionally, the specimens selected spanned the range of disease severity from the categories 
designated as high cognitive function (HCF) with no or low ADNC, HCF with intermediate or high ADNC, sporadic AD 
dementia (ADD, with intermediate or high ADNC), and autosomal dominant ADD (with causal mutations in PSEN1, 
PSEN2, or APP, and high ADNC). All research participants whose brains were used for this study underwent detailed, 
research quality, longitudinal cognitive assessments. For individuals without dementia, all had their last evaluation 
within 2 years of death and had neuropsychological test results in the upper quartile of the cohort to minimize 
interval conversion. All samples were obtained using a rapid autopsy protocol with postmortem interval less than 8 
hours (except autosomal dominant AD due to practical limitations), flash frozen in liquid nitrogen, and kept frozen at 
-80°C prior to analysis. All samples were matched for age and sex except for those from individuals with autosomal 
dominant AD who experienced earlier onset.    
 
Due to this careful specimen selection, we now have a unique sample set that can be used to study the molecular 
underpinnings of autosomal dominant ADD, sporadic ADD, and high burden ADNC with HCF without the confounding 
comorbidities faced in similar molecular profiling experiments. While previous studies have investigated the 
molecular profile of AD without excluding comorbidities, the high prevalence of these diseases, each of which can 
cause dementia on its own when present at high level, likely underlines the specificity of these profiles for AD. 
Likewise, because autosomal dominant AD is rare, typical molecular profiling studies have focused only on 
individuals with sporadic ADD, thereby limiting perspective on this heterogeneous disease. These points emphasize 
the uniqueness of this proteomics dataset for a more comprehensive assessment of the different forms of AD.  
 
To make the most of this unique sample cohort, we used mass spectrometry proteomics methods that give 
reproducible and highly quantitative data. Most of the large-scale proteomics experiments studying the human brain 
have been performed using a mass spectrometry approach known as data-dependent acquisition (DDA). This 
approach is extremely powerful for building lists of proteins present in brain tissue and has been useful when 
combined with tandem mass tags for modest numbers of samples that can be performed within a “plex”.  However, 
irregular sampling by DDA makes it challenging to provide robust and quantitative measurements across more 
samples than can fit in a plex. When using DDA, the number of peptides sampled is limited by the MS/MS sampling 
speed despite the dynamic range and peak capacity of the mass analyzer. A single MS spectrum can contain over one 
hundred different molecular species, of which only a handful are analyzed by MS/MS prior to the next full scan5. This 
general approach has become extremely powerful for cataloging proteins and modifications, but its irregular 
sampling results in missing data, requires extensive fractionation to sample low abundance peptides, and results in 
variable peptide sampling between runs of the same sample. Recently, Lamond, et al., assessed the missing values 
from performing quantitative proteomics using 10-plex tandem mass tags (TMT) across multiple batches6. They 
showed that by integrating data from different 10-plex TMT batches that >50% of the peptides had missing values – 
making quantitation on the peptide level between batches challenging to impossible. On the protein level, they 
showed that after 5 different 10-plex TMT batches, the median number of missing proteins was reduced to ~10% – 
but required using different peptides to bridge the batches for quantification. While 10% missing protein values is an 
improvement over 50% missing peptides, the approach constrained the use of TMT to reporting on protein 
quantities, losing important resolution known to occur in AD that can only be assessed on the peptide level7. 
 
An alternative to DDA is an acquisition approach known as data independent acquisition (DIA) that acquires 
comprehensive MS/MS information in a single LC-MS/MS run using a repeated cycle of wide-window MS/MS scans. 
The computational analysis of DIA spectra can be performed in the same “targeted” manner as fully targeted data; 
i.e., fragment ion chromatograms for each peptide can be extracted and used for quantification.  However, unlike 
fully targeted data acquisition, DIA analysis can be done for any peptide in the sampled range (e.g., between 400 and 
1000 m/z), rather than just for a subset of pre-specified peptides. Thus, the reproducible targeting and confident 
MS/MS-based quantification of parallel reaction monitoring (PRM) can be combined with DDA’s ability to detect and 
measure thousands of proteins.  
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Typically, tens to hundreds of biological samples are processed and analyzed using LC-MS/MS in quantitative 
proteomics experiments. The regularity of DIA enables researchers to make peptide detections in one sample and 
use that information to inform the detection of the same peptides in other samples. DIA offers four key 
improvements over DDA. 1) Because peptides are sampled systematically, more peptides are detected in a DIA 
analysis than a DDA analysis in an equivalent length analysis. 2) The same precursor m/z range is sampled, at the 
same RT, in all runs – eliminating the issues associated with stochastically sampled DDA data.  3) DIA analysis can 
make use of previously measured information to improve peptide measurement (e.g. known retention time, known 
fragmentation patterns, and which peptides provide stable and precise quantitative measurements). 4) Peptide 
detection can be assessed directly from DIA data, simplifying downstream analysis. These data provide an archive of 
all detectable molecular species within the measured mass range of the instrument. This methodology benefits from 
the reproducible and comprehensive sampling of the latest DIA methodology with an innovative approach used to 
improve peptide precursor selectivity5. The combination of the unique specimens with systematically collected mass 
spectrometry data creates a resource for the scientific community to test new hypotheses about the molecular 
features of different forms of AD dementia. 
 

Methods 
Human Brain Samples.   
Brain tissue samples were stratified into 4 groups based on clinical, pathological and genetic data and four brain 
regions (superior and middle temporal gyri or SMTG, hippocampus at the level of the lateral geniculate nucleus, 
inferior parietal lobule or IPL and caudate nucleus at the level of the anterior commissure). Cognitive status was 
determined as dementia or not dementia by DSM-IVR criteria. Individuals diagnosed as not dementia were from the 
Adult Changes in Thought (ACT) study and were included only if the last research evaluation was within 2 years of 
death and the last cognitive testing score using the cognitive abilities screening instrument (CASI) was in the upper 
quartile for the ACT cohort (>90); our definition of HCF. Brains from individuals with HCF who had no or low ADNC 
were designated “HCF/low ADNC” and those with intermediate or high ADNC were designated “HCF/high ADNC''. All 
individuals diagnosed with ADD had intermediate or high level ADNC and were further subclassified as sporadic 
(“Sporadic ADD”) or ADD caused by a mutation in PSEN1, PSEN2, or APP (“Autosomal Dominant ADD”). Sporadic AD 
cases were from the ACT study and the University of Washington (UW) AD Research Center (ADRC), and Autosomal 
Dominant ADD cases were from the UW ADRC and the Dominantly Inherited Alzheimer Network (DIAN).  Excluded 
was any case with LBD or LATE-NC other than involving amygdala, territorial infarcts, more than 2 cerebral 
microinfarcts, or hippocampal sclerosis. Time from death to cryopreservation of tissue, postmortem interval (PMI), 
was <8 hr in all cases except for those in the Autosomal Dominant ADD group. Details of sample stratification for the 
four brain regions (SMTG, Hippocampus, IPL and Caudate) are provided in Tables 1-4. 
 

Ethics oversight 
All study cohort participants were collected and provided informed consent under protocols approved by the 
Institutional Review Board (IRB) at University of Washington, Kaiser Permanente Washington, and Stanford University. 
 

Sample Metadata, Batch Design and References  
Each human brain region was divided into batches of 14 individual samples and 2 pooled references for a total of 16. 
The first batch of each region was also used to create a region-specific reference pool to be used as a “common 
reference” and/or single point calibrant, which was homogenized, aliquoted, frozen, and used to compare between 
batches within a brain region. Human cerebellum and occipital lobe tissue was homogenized, pooled, aliquoted and 
frozen to be used as a “batch reference” for comparison between batches and other brain regions. Batch design was 
randomly balanced based on group ratios. For example, batches from the SMTG brain region contained 5 “Sporadic 
ADD”, 4 “Autosomal Dominant ADD”, 2 “HCF/low ADNC”, and 3 “HCF/high ADNC” samples (Supplementary Table 1). 
Metadata for the samples from the Hippocampus, IPL and Caudate brain regions is provided in Supplementary Tables 
2-4. 
 

Sample Homogenization and Protein Digestion   
Two 25 μm frozen sections of brain tissue were resuspended in 120 μl of lysis buffer of 5% SDS, 50mM 
triethylammonium bicarbonate (TEAB), 2mM MgCl2, 1X HALT phosphatase and protease inhibitors, vortexed and 
briefly sonicated at setting 3 for 10 s with a Fisher sonic dismembrator model 100. A microtube was loaded with 30 μl 
of lysate and capped with a micropestle for homogenization with a Barocycler 2320EXT (Pressure Biosciences Inc.) for 
a total of 20 minutes at 35°C with 30 cycles of 20 seconds at 45,000 psi followed by 10 seconds at atmospheric pressure. 
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Protein concentration was measured with a BCA assay. Homogenate of 50 μg was added to a process control of 800 
ng of yeast enolase protein (Sigma) which was then reduced with 20 mM DTT and alkylated with 40 mM IAA. Lysates 
were then prepared for S-trap column (Protifi) binding by the addition of 1.2% phosphoric acid and 350 μl of binding 
buffer (90% Methanol, 100 mM TEAB). The acidified lysate was bound to column incrementally, followed by 3 wash 
steps with binding buffer to remove SDS and 3 wash steps with 50:50 methanol:chloroform to remove lipids and a 
final wash step with binding buffer. Trypsin (1:10) in 50mM TEAB was then added to the S-trap column for digestion 
at 47°C for one hour. Hydrophilic peptides were then eluted with 50 mM TEAB and hydrophobic peptides were eluted 
with a solution of 50% acetonitrile in 0.2% formic acid. Elutions were pooled, speed vacuumed and resuspended in 
0.1% formic acid. 
 
Injection of samples are one ug of total protein (16 ng of enolase process control) and 150 fmol of a heavy labeled 
Peptide Retention Time Calibrant (PRTC) mixture (Pierce). The PRTC is used as a peptide process control. Library pools 
are an equivalent amount of every sample (including references) in the batch. For example, a batch library pool 
consists of the 14 samples from the batch and two references. System suitability (QC) injections are 150 fmol of PRTC 
and BSA. 
 

Liquid Chromatography and Mass Spectrometry   
One µg of each sample with 150 femtomole of PRTC was loaded onto a 30 cm fused silica picofrit (New Objective) 75 
µm column and 3.5 cm 150 µm fused silica Kasil1 (PQ Corporation) frit trap loaded with 3 µm Reprosil-Pur C18 (Dr. 
Maisch) reverse-phase resin analyzed with a Thermo Easy-nLC 1200. The PRTC mixture is used to assess system 
suitability before and during analysis. Four of these system suitability runs are analyzed prior to any sample analysis 
and then after every six sample runs another system suitability run is analyzed. Buffer A was 0.1% formic acid in water 
and buffer B was 0.1% formic acid in 80% acetonitrile. The 40-minute system suitability gradient consists of a 0 to 16% 
B in 5 minutes, 16 to 35% B in 20 minutes, 35 to 75% B in 1 minute, 75 to 100% B in 5 minutes, followed by a wash of 
9 minutes and a 30-minute column equilibration. The 110-minute sample LC gradient consists of a 2 to 7% for 1 
minutes, 7 to 14% B in 35 minutes, 14 to 40% B in 55 minutes, 40 to 60% B in 5 minutes, 60 to 98% B in 5 minutes, 
followed by a 9 minute wash and a 30-minute column equilibration. Peptides were eluted from the column with a 50°C 
heated source (CorSolutions) and electrosprayed into a Thermo Orbitrap Fusion Lumos Mass Spectrometer with the 
application of a distal 3 kV spray voltage. For the system suitability analysis, a cycle of one 120,000 resolution full-scan 
mass spectrum (350-2000 m/z) followed by a data-independent MS/MS spectra on the loop count of 76 data-
independent MS/MS spectra using an inclusion list at 15,000 resolution, AGC target of 4e5, 20 millisecond (ms) 
maximum injection time, 33% normalized collision energy with a 8 m/z isolation window. For the sample digest, first 
a chromatogram library of 6 independent injections is analyzed from a pool of all samples within a batch. For each 
injection a cycle of one 120,000 resolution full-scan mass spectrum with a mass range of 100 m/z (400-500 m/z, 500-
600 m/z, 600-700 m/z, 700-800 m/z, 800-900 m/z, 900-1000 m/z) followed by a data-independent MS/MS spectra on 
the loop count of 26 at 30,000 resolution, AGC target of 4e5, 60 ms maximum injection time, 33% normalized collision 
energy with a 4 m/z overlapping isolation window. The chromatogram library data is used to quantify proteins from 
individual sample runs. These individual runs consist of a cycle of one 120,000 resolution full-scan mass spectrum with 
a mass range of 350-2000 m/z, AGC target of 4e5, 100 ms maximum injection time followed by a data-independent 
MS/MS spectra on the loop count of 76 at 15,000 resolution, AGC target of 4e5, 20 ms maximum injection time, 33% 
normalized collision energy with an overlapping 8 m/z isolation window. Application of the mass spectrometer and LC 
solvent gradients are controlled by the ThermoFisher Xcalibur (version 3.1.2412.24) data system. Mass spectrometry 
run order for all samples is provided in Supplementary Tables 5-8. 
 

Peptide Detection and Quantitative Signal Processing  
Thermo RAW files were converted to mzML format using Proteowizard (version 3.0.20064) using vendor peak picking 
and demultiplexing with the settings of “overlap_only” and Mass Error = 10.0 ppm5. On column chromatogram 
libraries were created using the data from the six gas phase fractionated “narrow window” DIA runs of the pooled 
reference as described previously8. These narrow windows were analyzed using EncyclopeDIA (version 1.4.10) with 
the default settings (10 ppm tolerances, trypsin digestion, HCD b- and y-ions) of a Prosit predicted spectra library based 
the Uniprot human canonical FASTA (January 2021). The results from this analysis from each brain region were saved 
as a “Chromatogram Library'' in EncyclopeDIA’s eLib format where the predicted intensities and iRT of the Prosit library 
were replaced with the empirically measured intensities and RT from the gas phase fractionated LC-MS/MS data. The 
“wide window” DIA runs were analyzed using EncyclopeDIA (version 1.4.10) requiring a minimum of 3 quantitative 
ions and filtering peptides with q-value ≤ 0.01 using Percolator 3.01. After analyzing each file individually, EncyclopeDIA 
was used to generate a “Quant Report'' which stores all the detected peptides, integration boundaries, quantitative 
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transitions, and statistical metrics from all runs in an eLib format. The Quant Report eLib library is imported into Skyline 
(daily version 22.2.1.278) with the human uniprot FASTA as the background proteome to map peptides to proteins, 
perform peak integration, manual evaluation, and report generation. A csv file of peptide level total area fragments 
(TAFs) for each replicate was exported from Skyline using the custom reporting capabilities of the document grid9. 
 

Quantitative Data Post-Processing, Normalization, and Batch Correction 
Despite precautions taken to ensure equivalent sample preparation, handling and acquisition, additional post-
processing was performed to normalize, and batch adjust the quantitative data to remove residual technical noise. 
Modeling the proportional changes of peptide/protein group intensities, log2 transformation is applied followed by a 
Median Deviation (MD) normalization to the peptide total area fragment values (level 2 data) across instrument runs 
within a brain region (Equation 1) under the assumption that median total area fragment values should be equal sans 
batch effect from known and unknown sources of variability.  
 
MD Normalization, by calculating the deviation from the median of the sample total area fragment, should neither 
remove scale information nor de-weigh outlier signals that may be of biological relevance10. Here, the MD normalized 
peptide F of each sample is given by the following. The peak areas (Ai) for each peptide i are first log2 transformed and 
then normalized by equalizing the median peak areas across all samples using the equation: 
 

Equation 1.  Fi=log2Ai -[log2Am -log2Aj].  
Where:      Ai = sum of product ion transition area for peptide i 

Am = median of areas within LC-MS run m 
Aj = median of areas between the LC-MS runs. 

 
The effectiveness and validity of the normalization approach is then assessed by evaluating the comparability of the 
peptide abundance distribution across samples (Figure 2B), and by the reproducibility of those peptide abundances 
across replicate samples (Figure 3A). Peptide abundances are then adjusted for batch effect by fitting a linear model 
and “regressing” out the factors with known unwanted sources of variation to return a matrix of residuals. The 
detection of the presence of batch effect pre- and post-adjustment is assessed by exploring the data variance structure 
through Principal Variance Component Analysis (PVCA)11 (Supplementary Figure 4) and Principal component Analysis 
(PCA) using projections onto the first three principal components. The normalization and batch adjusted peptide 
abundances are available as the level 3A data file. Using DIA, all observable peptides in one sample will be sampled in 
all of the other biological replicates12,13,14. Due to the comprehensive sampling nature of DIA we can extract 
information for the same transitions across all samples in an experiment. The resulting zeros in our peptide abundance 
data therefore represent signals below our limit of detection and are not treated as missing data. After protein group 
inference, protein abundances are batch corrected using the same method as the peptide data.  
 

Protein Grouping and Inference 
The processing and ‘roll-up’ of DIA data borrows from the established strategies adopted in the DDA field in which the 
quantification of peptides and their corresponding protein groups is inferred through the modification of IDPicker 
algorithm15. In summary, to quantify the peptide/protein groups, a bipartite graph of peptide-protein interactions is 
constructed to generate groupings through the parsimony reduction of the graph as it is implemented in MSDaPl16. 
Then, the peptide abundances at the nodes are summed to estimate the abundance of the peptide groups and proteins 
that match the same set of peptide groups are merged into a single node in the graph, forming an indistinguishable 
protein group.   
 

Data Records 
The Skyline documents, raw files for quality control and DIA data are available at Panorama Public. 
ProteomeXchange ID: PXD034525. Access URL:  https://panoramaweb.org/ADBrainCleanDiagDIA.url.  
 
DIA data is available in 5 different categories based on the level of post-processing (Figure 1e) for each brain region. 
Level 0 represents the raw data in two different formats - the raw format is directly from the Thermo mass 
spectrometer and the mzML format is the demultiplexed version of the raw data (Proteowizard version 3.0.20064). 
Level 1 describes the zipped Skyline document grouped by batch. Level 2 is a csv file grouped by batch of the Skyline 
output with the integrated peak area for each peptide (row) in each replicate (column). Level 3A is a csv file of the 
normalized peptide abundance across all batches. Level 3B is a csv file of the normalized protein abundance across 
all batches. 
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Quality control Skyline documents, peptide QC plots and instrument raw files for system suitability runs are provided 
by brain region. The Skyline documents and peptide QC plots for enolase and PRTC process controls are provided by 
brain region. The instrument raw files for process controls are the same as DIA sample raw files by brain region.  
 

Technical Validation 
Balanced and Controlled Experiment Design 
We have designed our experiment to perform quantitative, peptide-centric proteomics using brain tissue from four 
different brain regions selected specifically because they represent distinct anatomical regions with varying 
pathological involvement by AD (Figure 1).  The experimental design was intended to compare individual samples from 
the four different categorical disease groups within each brain region. Samples were prepared in batches of 16 samples 
which consisted of 14 brain tissue samples and two external control samples. The batch size was determined by the 
number of samples, 16, that could be prepared within a Barocycler (Pressure Biosciences, Inc.). For each batch, the 
samples were randomized in a balanced block design (Supplementary Table 1).   
 
Within each batch we included both internal and external controls. Internal controls were added to each sample to 
provide a QC check of the sample preparation and LC-MS data collection process. These “Process Controls” consisted 
of the addition of yeast enolase protein after lysis and prior to digestion and the Pierce Retention Time Calibration 
(PRTC; 15 synthetic stable isotope labeled peptides) peptide mixture following digestion. The “Protein Internal 
Control” was used to assess the protein digest and peptide recovery and the “Peptide Internal Control” was used to 
distinguish between sample preparation and measurement issues post-digestion.  
 
The two external controls were different brain lysates that were prepared, measured, and analyzed with the rest of 
the samples in the batch. One of the controls was a brain region specific pool used to assess between batch quality 
control. This inter-batch quality control is composed of a randomized balanced pooled sample set for each respective 
brain region. For example, the inter-batch quality control “TRPR” is composed of 3 HCF/high ADNC samples, 3 HCF/low 
ADNC samples, 3 AutoDom ADD samples and 5 Sporadic ADD samples from the SMTG. The same inter-batch quality 
control is run in every batch of the experiment from the SMTG and was used to assess data quality post-normalization. 
The second control was an inter-brain region quality control (“HAD” samples) and composed of a homogenate of a 
mix of cerebellum and occipital lobe tissue and the same pool was prepared and run in every batch across all brain 
regions.  
 
We can determine when our sample preparation and system is not functioning as expected with a combination of 
system suitability checks, inter-batch quality controls, inter-experiment quality controls and process controls (Figure 
1b). Our system suitability consists of a mixture of a BSA tryptic digest and PRTC prior to sample analysis and 
throughout sample collection at a frequency of once every six to eight samples.  
  

Run Level and Experiment Level Peptide and Protein Detections 
For each sample in each brain region several tryptic peptides can be detected at a 1% FDR cut-off. IPL samples ranged 
from 37840-73168, SMTG ranged from 51582-69590, hippocampus from 32995-59853, and caudate nucleus ranged 
from 31426-58105 (Table 5). To integrate data across all individual samples within each brain region we control with 
an experiment level error rate. This leads to the same peptides quantified in all samples within a brain region; 48271 
in IPL, 40346 in SMTG, 31863 in hippocampus, and 26135 in caudate nucleus. These peptides map to 6497 quantified 
proteins in IPL, 5851 in SMTG, 5117 in hippocampus, and 4636 in caudate nucleus (Table 5). The distribution of peptide 
abundances is aligned with median normalization, as demonstrated with the SMTG data (Figure 2B) as well as all brain 
regions (Supplementary Figures 1 and 2).  
 

Inter-batch Precision and Reproducibility 
The inclusion of inter-batch quality control samples allows us to assess the impact of normalization and batch 
correction on peptide and protein quantitative reproducibility. For example, the SMTG experiment was split into 5 
batches for processing and acquisition. Using the inter-batch control replicate samples, the coefficient of variation can 
be calculated for all peptides quantified in the SMTG. The distribution of peptide coefficient of variation improves with 
normalization and batch correction, with the mean decreasing about 8.2%. Likewise, the protein coefficient of 
variation also improves following batch correction, with the mean decreasing by about 1.25% (Figure 3). Peptide and 
protein quantities are highly correlated across inter-batch replicates. Inter-batch control replicate samples in SMTG 
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have peptide Pearson correlation coefficients ranging from 0.867 to 0.950, and protein correlations ranging from 0.894 
to 0.960 (Figure 4).  
 

Expected biological differences 
Of the peptides quantified, we detect several proteins known to be involved in AD. In the SMTG data we quantify 
peptides mapping to 250 proteins found in AD-related pathways (Supplemental Figure 5). Preliminary assessment of 
peptide and protein data show we can distinguish between sample groups (Supplemental Figure 3). Differential 
abundance analysis between HCF/low ADNC and autosomal dominant ADD in SMTG captures known biology. Protein 
groups found to be significantly different between the groups include previously documented increases in Amyloid 
precursor protein (APP/A4), Apolipoprotein E (APOE), SPARC-related modular calcium-binding protein 1 (SMOC1), 
midkine (MK/MDK) and netrin-1 (NET1/NTN1)17. We detect and quantify two peptides mapping to the n- and c-
terminal sides of the alpha-secretase cleavage site in amyloid-β sequence. Both peptides have an expected difference 
in abundance across the sample groups in all four brain regions, with autosomal dominant ADD having the highest 
distribution, followed by sporadic ADD, HCF/high ADNC, and HCF/low ADNC. Peptides mapping to microtubule-
associated protein tau (MAPT) also have some expected differences between the experimental groups. In the SMTG 
brain region the seven quantified peptides spanning the microtubule binding region of MAPT (residues 243-368) are 
increased in autosomal dominant ADD, followed by sporadic AD, compared to both HCF groups. This trend has been 
observed previously and leads to the aggregated protein abundance to be differential in the same manner as the 
microtubule binding region peptides18. 
 

Usage Notes 
We provide quantitative data both for tryptic peptides directly and for protein groups derived from peptide quantities. 
Based on extensive existing knowledge of AD, we know that modified forms of the APP or amyloid-β and Tau proteins 
are important in disease progression. Historically mass spectrometry proteomics data has aggregated multiple tryptic 
peptides per protein coding sequence to arrive at a singular protein level value. This would result in a loss of important 
information regarding the status of the individual peptides7. By collecting these samples by DIA we can reproducibly 
quantify individual tryptic peptides across our entire sample set. With this peptide data we observe differentially 
abundant peptides within a protein coding gene. If aggregated to a singular value this important signal would be lost.  
 

Use Case 1. Sporadic and Autosomal dominant Alzheimer disease dementia differential peptide and 
protein abundance. 
This mass spectrometry data has typically been reported as relative protein group abundance measures, enabling 
differential abundance testing of protein groups between disease states (Figure 6). In SMTG there are proteins with 
statistically different abundance between healthy controls and AD. This type of analysis can be extended to all brain 
regions. A large portion of research investigating the molecular and pathological basis of AD has been generated using 
model systems informed by genetic causes. Studying individuals with sporadic ADD can be challenging due to the 
presence of comorbidities. Here we present data generated from both autosomal dominant ADD with minimal 
comorbidities and sporadic ADD with minimal comorbidities. These data can be used to better understand biological 
differences or similarities in these two types of ADD. 
 

Use Case 2. Differential peptide and protein abundance with neuropathologic markers and dementia. 
The HCF/high ADNC samples have classic histopathologic features of AD - amyloid-β plaques and neurofibrillary tangles 
- at levels overlapping with individuals who have Sporadic ADD. This enables analyses to measure the differences in 
protein pathology between individuals who have developed dementia and those who have not developed dementia 
despite similar levels of high amyloid-β plaques and Tau tangles. 
 

Use Case 3. Mass spectrometry data reuse and reanalysis.  
Beyond the analyses presented here, the storage of this data is done in a way that facilitates use of this data for 
informing subsequent mass spectrometry assay development. All data from this project is available on the Panorama 
server-based data repository application for targeted mass spectrometry assays19. Thus, all extracted ion 
chromatogram information from every sample across all brain regions is available in an interactive Skyline document 
format, and readily available for download and reuse. Information about fragment ions and chromatography is 
important for the development of targeted assays20,21, making this data valuable to the wider community.  
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Using DIA mass spectrometry methods allows for the data to be easily reanalyzed. This could be used to search for 
post-translational modifications or sequence variants not searched for in our current analysis. Additionally, this data 
can be reanalyzed to look at other unique features, such as isomerized peptides. The feasibility of this was recently 
shown by Hubbard et al. through reanalysis of a subset of this dataset22. Peptide-centric reanalysis is possible due to 
the comprehensive sampling by data-independent acquisition of a preset range across all samples.  
 

Code Availability 
The MSConvert installer and documentation is available from https://proteowizard.sourceforge.io/.  
EncyclopeDIA is available at https://bitbucket.org/searleb/encyclopedia/. The Skyline-daily installer and 
documentation are available from https://skyline.ms/skyline.url. The source code for both the MSConvert and Skyline 
projects are available as part of the Proteowizard project https://github.com/ProteoWizard/pwiz 
 
All code used for the analysis of the data matrix including data QC, normalization, pre-processing, visualization, and 
figure generation is available online at https://github.com/uw-maccosslab/ADBrainCleanDiagDIA. 
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Figure Legends 
Figure 1:  Experimental scheme for the collection of the proteomics data using data independent acquisition-mass 
spectrometry. A)  Brain tissue sections from 4 regions were analyzed for all groups. B) Samples were prepared and 
analyzed in batches of 16, with 14 individual samples per batch selected by balanced randomization. Each batch 
contained an inter-experiment quality control sample generated from pooling portions of several individual samples 
from across all 4 brain regions sampled. Each batch also contained an inter-batch quality control sample generated 
from pooling portions of individual samples within that brain region. C) In addition to quality control samples, both 
protein and peptide sample processing controls were included in all samples to track system suitability. D) For each 
batch an on-column data-independent acquisition chromatogram library is generated from overlapping, narrow 
window gas-phase fractionation of an inter-batch QC. Individual samples are acquired by a single injection wider 
window data-independent acquisition method. Peptide detection and scoring is performed using EncyclopeDIA and 
extracted ion chromatograms integrated with Skyline. E) The proteomics data is publicly available on the Panorama 
web server in 5 different states, each corresponding to the level of post-processing.  
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Figure 2: Peptides detected in individual runs and across the entire dataset for SMTG. A) To make comparisons across 
individual runs we enforce an experiment level false discovery rate (FDR) cutoff. Although zeros exist in this remaining 
data, these represent a lack of signal above background. B) Kernel density plots and box plots for each individual show 
the distribution of peptide abundances before and after log2 transformation and median normalization. Condition 
groups are highlighted with different colors in the log2 transformation and median normalization box plots. 
 
Figure 3:  Effect of normalization and batch correction on the inter-batch variance for SMTG.  A) The effect of median 
normalization and batch correction on the inter-batch peptide coefficient of variance.  B) Effect of batch correction on 
the inter-batch protein coefficient of variance. The relationship between coefficient of variation and the log2 median 
abundance is visualized with a loess fit of a contoured density plot (red line). 
 
Figure 4: Correlation of the quantitative results from five different sample preparation and analysis batches 
following normalization and batch correction for SMTG.  A) Pearson correlation of the data between the batches on 
the peptide level.  B) Pearson correlation of the same data on the protein group level between all batches. Log2 
intensity for peptides and proteins. 
 
Figure 5: Summary data of quantitative changes observed for SMTG. A) Volcano plot showing proteins that are 
statistically different between the autosomal dominant Alzheimer’s disease (AD) dementia (ADD) and the high 
cognitive function (HCF)/low AD neuropathologic change (ADNC) SMTG.  B) Protein groups with the greatest 
differences between the extreme autosomal dominant ADD and the HCF/low ADNC SMTG. C) Heatmap showing the 
clustering of 33 SMTG samples using the 115 proteins that displayed a significant difference between ADD and the 
HCF/low ADNC samples. Significance cutoffs are p<0.05, logFC>0.5. 
 
Figure 6: Amyloid-β and tau peptide abundances recapitulate known molecular changes for the SMTG. A) Two tryptic 
peptides mapping to amyloid-β (6-16: HDSGYEVHHQK, 17-28: LVFFAEDVGSNK) are quantified across all four brain 
regions. B) Tryptic peptides mapping to tau demonstrate some common signatures within protein domains. These 
signatures are lost if aggregated to a protein level. Tryptic peptides are labeled based on their first and last amino acid 
residues. Mean + se of z-score. 
 
Supplementary Figure 1. Raw peptide quantities from all brain regions and batch density. The top panel of box plots 
shows the distribution of log2 peptide abundances for each individual in each brain region. The bottom panel of 
density plots shows the distribution of log2 peptide abundances by batch in each brain region. 
 
Supplementary Figure 2. Peptide quantities and batch density following MD Normalization. The top panel of box 
plots shows the distribution of log2 peptide abundances after MD normalization for each individual in each brain 
region. The bottom panel of density plots shows the distribution of log2 peptide abundances after MD normalization 
by batch in each brain region. 
 
Supplementary Figure 3. Plot of first two principal component scores of the SMTG data set after controlling for batch 
factor. The scores are colored by biological replicate, donor age, experimental batch and condition group factors. 
Confidence ellipses are shown for cofactors of interest. 
 
Supplementary Figure 4. Principal variance component analysis (PVCA) of protein group abundance from the SMTG 
samples. Estimated contribution of proportional variance by age, batch condition, and sex effects are shown. The 
confounding batch cofactor present in unadjusted data set (A) is “regressed out” using a simple linear regression model 
(B) prior to hypothesis testing.  
 
Supplementary Figure 5: Known Alzheimer’s disease proteins shown in a Kegg pathway.  Proteins quantified in the 
SMTG experiments map to protein groups highlighted in red on pathway hsa05010.   
 

Tables 
Table 1. Brain donor characteristics for the superior and middle temporal gyri (SMTG). 

 HCF/low ADNC HCF/high ADNC Sporadic 
ADD 

Autosomal Dominant 
ADD 
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N 9 11 18 24 

Age (mean ± sd) 88 + 5 90 + 5 82 + 13 51 + 11 

Sex (M:F) 4:5 5:6 11:7 15:9 

Post mortem interval 
hr (mean ± sd) 

3.9 + 0.9 4.9 + 1.5 4.5 + 1.2 15.7 + 9.3 

APOE ε4 alleles (n (%)) 2 (11.1%) 6 (27.3%) 7 (19.4%) 6 (17.6%)* 

ε3:ε4 (n) 2 4 5 4 

ε4:ε4 (n) 0 1 1 1 

missing 0 0 0 7 

Mutations (n x gene) NA NA NA 17 x PSEN1, 6 x PSEN2, 
1 X APP 

Braak Stage     

B1 (n) 4 0 0 0 

B2 (n) 5 5 0 0 

B3 (n) 0 6 18 24 

CERAD Score     

C0 (n) 9 0 0 0 

C2 (n) 0 5 3 1 

C3 (n) 0 6 15 23 

*For these; if there were missing genotypes the percentage is of the reported genotypes 

Abbreviations: Alzheimer’s disease (AD), AD dementia (ADD), AD neuropathologic change (ADNC), high cognitive 

function (HCF)  

 
Table 2. Brain donor characteristics for the hippocampus. 

 HCF/low 
ADNC 

HCF/high ADNC Sporadic 
ADD 

Autosomal Dominant 
ADD 

N 10 11 20 3 

Age (mean ± sd) 87 + 6 90 + 5 81 + 12 53 + 7 

Sex (M:F) 5:5 5:6 12:8 2:1 

Post mortem interval hr 
(mean ± sd) 

3.9 + 0.9 5.1 + 1.3 4.2 + 1.4 8.5 + 5.4 

APOE ε4 alleles (n (%)) 2 (10.1%) 6 (27.3%) 10 (25.0%) 2 (33.3%) 
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ε3:ε4 (n) 2 4 6 0 

ε4:ε4 (n) 0 1 2 1 

missing 0 0 0 0 

Mutations (n x gene) NA NA NA 2 x PSEN1, 1 X APP 

Braak Stage     

B1 (n) 5 0 0 0 

B2 (n) 5 5 0 0 

B3 (n) 0 6 20 3 

CERAD Score     

C0 (n) 10 0 0 0 

C2 (n) 0 5 4 0 

C3 (n) 0 6 16 3 

 

Table 3. Brain donor characteristics for the inferior parietal lobule (IPL). 

 HCF/low 
ADNC 

HCF/high ADNC Sporadic 
ADD 

Autosomal Dominant 
ADD 

N 8 12 18 23 

Age (mean ± sd) 89 + 4 89 + 6 80 + 13 50 + 10 

Sex (M:F) 4:4 6:6 11:7 15:8 

Post mortem interval hr 
(mean ± sd) 

3.9 + 0.9 4.9 + 1.5 4.5 + 1.2 15.7 + 9.3 

APOE ε4 alleles (n (%)) 2 (12.5%) 6 (20.8%) 10 (27.8%) 6 (18.8%)* 

ε3:ε4 (n) 2 4 6 4 

ε4:ε4 (n) 0 1 2 1 

missing 0 0 0 7 

Mutations (n x gene) NA NA NA 17 x PSEN1, 5 x PSEN2, 
1 X APP 

Braak Stage     

B1 (n) 3 0 0 0 

B2 (n) 5 6 0 0 
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B3 (n) 0 6 18 23 

CERAD Score     

C0 (n) 8 0 0 0 

C2 (n) 0 6 4 1 

C3 (n) 0 6 14 22 

*For these; if there were missing genotypes the percentage is of the reported genotypes 

 

Table 4. Brain donor characteristics for the caudate nucleus. 

 HCF/low 
ADNC 

HCF/high ADNC Sporadic 
ADD 

Autosomal Dominant 
ADD 

N 10 10 18 20 

Age (mean ± sd) 85 + 6 90 + 5 81 + 11 51 + 11 

Sex (M:F) 6:4 5:5 10:8 13:7 

Post mortem interval hr 
(mean ± sd) 

3.9 + 0.8 5.2 + 1.4 4.4 + 1.3 15.2 + 9.8 

APOE ε4 alleles (n (%)) 2 (10.0%) 5 (25.0%) 9 (25.0%) 5 (17.9%)* 

ε3:ε4 (n) 2 3 5 3 

ε4:ε4 (n) 0 1 2 1 

missing 0 0 0 6 

Mutations (n x gene) NA NA NA 17 x PSEN1, 6 x PSEN2, 
1 X APP 

Braak Stage     

B1 (n) 6 0 0 0 

B2 (n) 4 5 0 0 

B3 (n) 0 5 18 20 

CERAD Score     

C0 (n) 10 0 0 0 

C2 (n) 0 5 4 1 

C3 (n) 0 5 14 19 

*For these; if there were missing genotypes the percentage is of the reported genotypes 

 

Table 5. Run Level and Experiment Level Peptide and Protein Detections 
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Brain Tissue 

Region 

Run Level FDR Peptide 

Detection Range 

Experiment Level 

Peptide Detections 

Experiment Level 

Protein Detections 

SMTG 51582-69590 40346 5851 

Hippocampus 32995-59853 31863 5117 

IPL 37840-73168 48271 6497 

Caudate 31426-58105 26135 4636 
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Figure 3 
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Figure 4 
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Figure 6 
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Supplementary Figure 2 
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Supplementary Figure 3 
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