

1 **Siderophore-mediated iron partition promotes dynamical coexistence between**
2 **cooperators and cheaters**

3

4 Jiqi Shao¹, Nan Rong¹, Zhenchao Wu², Beibei Liu², Ning Shen², and Zhiyuan Li^{1,3*}

5 ¹ Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking
6 University, Beijing, 100871, China

7 ² Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital,
8 Beijing 100191, China

9 ³ Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary
10 Studies, Peking University, Beijing, 100871, China

11 * To whom correspondence should be addressed. Tel: +86 10 62750190; Email:
12 zhiyuanli@pku.edu.cn

13

14 **Abstract**

15 Microbes shape their habitats through consuming resources, as well as actively producing
16 and secreting diverse chemicals. These chemicals serve various niche-construction
17 functions and can be considered “public good” for the community. Most microorganisms,
18 for instance, release small molecules known as siderophores to scavenge irons from the
19 extracellular environment. Despite being exploitable by cheaters, biosynthetic genes
20 producing such molecules widely exist in nature, invoking active investigation on the
21 possible mechanisms for producers to survive cheater invasion. In this work, we utilized
22 the chemostat-typed model to demonstrate that the division of the iron by private and
23 public siderophores can promote stable or dynamical coexistence between the cheater
24 and “partial cooperators”, an adaptive strategy with the production of both public and
25 private siderophores. Further, our analysis revealed that when microbes not only consume
26 but also produce resources, this type of “resource partition model” exhibit different stability
27 criteria than that of the classical consumer resource model, allowing more complex
28 systems dynamics.

29

30 **Keywords:** siderophore, oscillation, cheaters and cooperators, resource competition and
31 partition

32

33 **Introduction**

34 Microbes interact by shaping their microhabitats (Bajić, Rebolleda-Gómez et al. 2021).
35 Essential to this intricate ecological loop is the “chemical environment”: the substances in
36 the local inhabitants that directly influence and are influenced by microbes(Ley, Peterson
37 et al. 2006, Delmont, Robe et al. 2011). Common examples of such substances include
38 “resources” such as carbon, nitrogen, and oxygen, which are supplied into the
39 extracellular environment and are consumed by microorganisms for their own
40 growth(Boyd and Ellwood 2010, Miransari 2013, Dutkiewicz, Cermeno et al. 2020). In
41 theoretical ecology, the consumer resource model has been utilized for decades to
42 explore the feedback between species and resources(Lafferty, DeLeo et al. 2015),
43 whereby the dimension of the chemical space has been demonstrated to be of key
44 relevance: MacArthur et al. validated the so-called competitive exclusion principle (CEP)
45 that the number of stably coexisting species cannot exceed the number of resources for
46 which they are competing(Hardin and G. 1960, Macarthur and Levins 1964); In the
47 chemical space of dimension two, Tilman et al. demonstrated that the zero-net growth
48 isoclines and the vector of consumption determine the outcome of competition(Tilman
49 1982); And in a multi-species resource competition system with a minimal chemical
50 dimension of three, Huisman et al. proved that oscillatory and even chaotic dynamics
51 could emerge to permit dynamical coexistence that exceeds the upper bounds of
52 CEP(Huisman and Weissing 1999, Huisman and Weissing 2001). Actually, numerous
53 research efforts have been devoted to conciliating the conflicts between CEP and the
54 apparent biodiversity in nature, most of which incorporate additional factors such as
55 spatial or temporal heterogeneity(Erez, Lopez et al. 2020, Ho, Good et al. 2022). No
56 definitive answer has yet been achieved (Roy and Chattopadhyay 2007, Gupta, Garlaschi
57 et al. 2021).

58
59 Microorganisms have their means of lifting the upper limit of competitive exclusion. By
60 leaking metabolic byproducts or actively producing and secreting secondary metabolites,
61 cells can expand the chemical diversity of their habitats(Schmidt, Ulanova et al. 2019).
62 Such activities, in which microorganisms generate new chemical dimensions, have
63 profound implications for microbial ecology (Fischbach and Segre 2016, Estrela,
64 Diaz-Colunga et al. 2022). For example, pervasive cross-feeding through metabolic
65 byproducts has been shown suggested to promote stable coexistence even under a
66 single carbon source(Goldford, Lu et al. 2018). Meanwhile, the vast variety of bacteriocins
67 and antibiotics escalates microbial chemical warfare (Czaran, Hoekstra et al. 2002,
68 Granato, Meiller-Legrand et al. 2019, Niehus, Oliveira et al. 2021). For microbial
69 cooperation, various quorum sensing molecules coordinate the collective decision-making
70 (Ross-Gillespie and Kümmerli 2014), and niche-construction molecules such as
71 siderophores or secretory proteases serve as “public goods” that improve the
72 microenvironment for the whole population(Leventhal, Ackermann et al. 2019, Smith and
73 Schuster 2019). In ecological theories, however, the production of secondary metabolites
74 confronts the same dilemma as public goods in “the tragedy of the commons” (Hardin
75 1968): if a cheater strain can always take advantage of public goods without paying for

76 them, how can the cooperator strains accountable for these extra chemical dimensions
77 remain competitive?

78

79 Big questions in biology may find diverse solutions in particular systems. Siderophore, a
80 diverse family of microbial secondary metabolites for iron-scavenging, serves as a nice
81 model system to study the self-generated chemical dimensions and the game between
82 cooperators and cheaters (Cremer, Melbinger et al. 2019). Iron is among one of the most
83 limiting resources for microbes(Andrews, Robinson et al. 2003). It is necessary for
84 processes like energy metabolism and DNA synthesis(Andrews, Robinson et al. 2003),
85 yet the concentration of bioavailable iron is orders of magnitude lower than what is
86 required for normal microbial growth in most environments (Boyd and Ellwood 2010,
87 Emerson, Roden et al. 2012). Most microorganisms acquire iron via siderophores, a type
88 of small molecule with a strong iron-binding affinity (Buckling, Harrison et al. 2010).
89 Previous research suggested that siderophores are secreted into the extracellular
90 environment to chelate trivalent iron, and that the iron-siderophore complex is then
91 acquired by membrane receptors so that cells can absorb iron (Kramer, Özkaya et al.
92 2020). The production of siderophores, on the other hand, comes at a considerable
93 metabolic burden and slows down microbial growth (Lv, Hung et al. 2014, Sexton and
94 Schuster 2017). Therefore, siderophore acts as a costly public good that invokes intricate
95 ecological games. Many theories have been proposed to explain the prevalence of
96 siderophore synthesis pathways (Butaité, Baumgartner et al. 2017, Gu, Wei et al. 2020),
97 most of which entail spatial factors that facilitate kin selection or group selection (Allison
98 2005, Ross-Gillespie, Gardner et al. 2007, Julou, Mora et al. 2013). Yet, in well-mixing
99 environments such as the ocean, microorganisms continue to actively produce
100 siderophores of various types (Cordero, Ventouras et al. 2012, Hagstrom and Levin
101 2017).

102

103 Recent experiments indicated that private siderophores, which are solely accessible to
104 their cooperators, may be crucial to the survival of siderophore-producing microorganisms
105 (Scholz and Greenberg 2015). In some organisms, during the multi-step process of
106 producing siderophores, certain modifications can transform the secretory molecules into
107 a membrane-attached form (Martinez, Carter-Franklin et al. 2003, Scholz and Greenberg
108 2015, Niehus, Picot et al. 2017). Such privatization avoids diffusion losses and cheater
109 exploration, resembling the “snowdrift” scenario in game theory (Souza, Pacheco et al.
110 2009): Despite that cheaters continue to take advantage of public goods without paying,
111 cooperators have prioritized access to the goods to preserve coexistence (Gore, Youk et
112 al. 2009). Nevertheless, membrane-attached siderophores suffer a considerably lower
113 diffusion radius in scavenging iron (Leventhal, Ackermann et al. 2019, Kramer, Özkaya et
114 al. 2020). Whether the marginal benefits conferred by membrane-attached siderophores
115 are adequate to provide cooperators with a sufficient advantage over cheaters has not
116 been quantitatively assessed by ecological models. Many questions remain to be
117 systematically explored by mathematical formulation, such as whether and how
118 cooperators and cheaters coexist, how different allocation strategies between

119 membrane-attached and public-shareable secretory siderophores change the system
120 dynamics, and which strategies might be “optimal” considering within species and
121 between species. Further, may this siderophore-mediated iron competition helps address
122 a deeper question in ecology, namely whether such self-generated resource dimensions
123 change the properties of the system fundamentally?

124

125 In this work, we utilized the chemostat-type “resource partition model” to examine the
126 siderophore-mediated iron competition, taking into account the allocation of limited
127 cellular resources between the biomass accumulation and the production of
128 membrane-attached (private) and public-shareable (public) siderophores. With the
129 inclusion of private siderophores into the resource allocation strategies, new classes of
130 strategies emerge, such as “partial cooperators” that produce both types of siderophores,
131 and “self-seekers” that produce only membrane-attached siderophores. We confirmed
132 mathematically that private siderophores play a vital role in coexistence: private
133 siderophores provide partial cooperators with an advantageous growth zone over
134 cheaters to enable coexistence, in contrast to pure cooperators who always lose to
135 cheater invasion. Interestingly, such two-species coexistence can occur via dynamical
136 oscillation. Further stability analysis revealed that the action of species creating new
137 resource dimensions, i.e. the production of siderophores in our model, modifies the
138 stability criteria of the classical consumer resource model, allowing for rich dynamics in
139 the parameter regions of stable equilibrium for the classical model. In summary, our model
140 in iron competition suggested that the division of the iron resource by siderophores raises
141 the upper-bounds of coexistence, and the privatization of siderophores in cellular
142 strategies provides advantages to partial cooperators to realize coexistence. Our analysis
143 of the stability criteria revealed that the microbial niche-construction by creating new
144 resource dimensions adds more dynamics than the classical model, which may contribute
145 to the diversity and complexity of the microbial world.

146

147 **Result**

148 **A resource partition model with trade-offs between growth and**
149 **siderophore-production**

150 In the field of theoretical ecology, the consumer resource model mimics ecosystems with
151 constant nutrient supplies and extensive mixings, such as lakes and oceans, where
152 species compete by consuming the supplied resources. Nonetheless, in the microbial
153 world, species not only consume but also produce resources that can be shared by the
154 community, such as siderophores for iron scavenging. To examine the ecological
155 consequences of siderophore production and privatization, we developed a mathematical
156 model resembling a chemostat with trade-offs between growth and siderophore
157 production, with the following three assumptions:

- 158 1. Chemostat-typed resource partition: we used a chemostat-type model, in which
159 the volume is maintained constant by maintaining the same rate of in-and-out
160 fluxes. Parameters about the concentration of iron in the influx $R_{\text{iron, supply}}$,
161 together with the dilution rate d , are referred to as “chemostat conditions” (Fig.
162 1A). Within the chemostat, the chemical environment cells directly facing can be
163 quantified by two variables: concentration of the iron (R_{iron}) and of the public
164 siderophores (R_{sid}). They serve as both “resources” for microbial growth;
165 meanwhile, the public siderophore is also a “product” released by bacteria. We
166 coined the term “resource partition model” to refer to models in which organisms
167 generate more chemical dimensions than are supplied from the external influx,
168 and partition the externally supplied resources by these secondary metabolites.
- 169 2. The growth rate linearly scales with the iron uptake rate: Assuming iron was the
170 limiting resource, we set the growth rate to a value that linearly scales the total
171 iron fluxes obtained via two types of siderophores: the flux from secretive public
172 siderophores (J_{public} , depicted on the left side of Fig. 1B) and the flux from
173 membrane-bounded private siderophore (J_{private} , depicted on the right side of Fig.
174 1B).
- 175 3. Trade-offs in resource allocation between growth and siderophore-production:
176 Given the limited amount of proteins and energies in a microorganism, we
177 assumed that there are trade-offs between different biological processes. In an
178 iron-limited environment, we focused on resource partitioning into biomass
179 accumulation and production of private and public siderophores. Each partition
180 corresponds to an allocation strategy $\vec{\alpha} = (\alpha_{\text{growth}}, \alpha_{\text{private}}, \alpha_{\text{public}})$, where
181 α_{private} and α_{public} denote the percentage of resources used to produce private
182 and public siderophores, respectively, and α_{growth} donates the percentage of
183 resources devoted to biomass accumulation. The summation of all allocations
184 was fixed as $\alpha_{\sigma, \text{growth}} + \alpha_{\sigma, \text{private}} + \alpha_{\sigma, \text{public}} = 1$. Various species may differ in
185 their abilities to produce and scavenge siderophores, but different strains σ only

186 differ in their resource allocation strategies $\vec{\alpha}$.

187

188 Under this trade-off, all possible strategies of a species can be located in a ternary
189 graph (Fig. 1C). There are four types of typical strategies (Fig. 1C-D): pure
190 cooperators, the pure cheater, partial cooperators, and self-seekers. Pure
191 cooperators produce public siderophores but not private siderophores ($\alpha_{\text{private}} =$
192 $0, \alpha_{\text{public}} > 0$), while the pure cheater allocates all resources to growth and
193 exploits only the public siderophores ($\alpha_{\text{growth}} = 1$). On the other hand, partial
194 cooperators ($\alpha_{\text{public}} > 0, \alpha_{\text{private}} > 0$) and self-seekers ($\alpha_{\text{public}} = 0, \alpha_{\text{private}} > 0$)
195 have access to both public and private siderophores due to non-zero α_{private} . The
196 difference between the two strategies is that partial cooperators still produce
197 public siderophores while self-seekers do not. In the ternary graph (Fig. 1C), pure
198 cooperators' strategies span the triangle's base, while the pure cheater's strategy
199 locates on the right-vertex. The right side is occupied by self-seekers, and each
200 strategy contained within the triangle can be considered a partial cooperator.

201

202 With the three assumptions above, the microbe σ with biomass concentration m_σ and
203 strategy $\vec{\alpha}_\sigma$ shapes its chemical environment in two ways:

204 1. Producing public siderophore with the out flux $\epsilon \frac{m_\sigma}{r} \alpha_{\sigma, \text{public}}$, where ϵ is the
205 production coefficient of public siderophores, and the constant r represents the
206 biomass per cell volume (Details in SI). Assuming the public siderophores can be
207 fully recycled for simplicity, the changing rate for R_{sid} can be written as:

$$\frac{dR_{\text{sid}}}{dt} = -dR_{\text{sid}} + \sum_{\sigma} \epsilon \frac{m_\sigma}{r} \alpha_{\sigma, \text{public}}. \quad (1)$$

208

209 2. Consuming iron by public siderophores and private siderophores.

210

211 For iron-uptake, the fluxes of $J_{\sigma, \text{private}}$ and $J_{\sigma, \text{public}}$ take the Monod form with the
212 environmental iron concentration R_{iron} . We also assumed that both fluxes linearly
scale with the concentration of corresponding siderophores. Taken together, there
are:

$$J_{\sigma, \text{private}} = \frac{v_m \beta \alpha_{\sigma, \text{private}} R_{\text{iron}}}{K_m + R_{\text{iron}}}, \quad (2)$$

$$J_{\sigma, \text{public}} = \frac{v_l R_{\text{sid}} R_{\text{iron}}}{K_l + R_{\text{iron}}}. \quad (3)$$

213

214 In the equations above, v_m and v_l are the rate coefficients for the two fluxes; K_m
215 and K_l are the affinity coefficients of the two kinds of siderophores for intaking
216 iron; β is the efficiency coefficient of the private siderophores. In total, the
changing rate for iron is written as:

$$\frac{dR_{\text{iron}}}{dt} = d(R_{\text{iron, supply}} - R_{\text{iron}}) - \sum_{\sigma} \frac{m_\sigma}{r} (J_{\sigma, \text{private}} + J_{\sigma, \text{public}}), \quad (4)$$

217

218 It can be proved that other forms of iron uptake-fluxes do not qualitatively affect
219 the result of this work (See Supplementary Material, Section 4.2).

220

Meanwhile, the microbe σ has its growth rate affected by its chemical environment

221 $[R_{\text{iron}}, R_{\text{sid}}]$ and allocation strategy $\vec{\alpha}_\sigma$ as:

$$g(R_{\text{iron}}, R_{\text{sid}}, \vec{\alpha}_\sigma) = \gamma \alpha_{\sigma, \text{growth}} (J_{\sigma, \text{private}} + J_{\sigma, \text{public}}), \quad (5)$$

222 where γ here represents the growth coefficient.

223 In this iron-partition model, the changing rate for the biomass for microbe σ can be
224 written as:

$$\frac{dm_\sigma}{dt} = m_\sigma \cdot (g(R_{\text{sid}}, R_{\text{iron}}, \vec{\alpha}_\sigma) - d). \quad (6)$$

225 **Privatization of siderophore enables the coexistence between partial cooperators**

226 **and pure cheaters**

227 The graphical approaches developed for consumer resource models enabled an intuitive
228 assessment of ecological consequences in the chemical space (Tilman 1982) (Fig. S1).
229 This approach consists of two elements: the growth contour, i.e. the zero net growth
230 isoclines (ZNGI), and the consumption vector. After setting Eq. (6) to zero for a single
231 subpopulation, we obtained the growth contours. The growth contour shows all possible
232 chemical environments $[R_{\text{iron}}, R_{\text{sid}}]$ that the microbe could reach the steady-state growth
233 as the dilution rate. Any environment above the growth contour belongs to the “invasive
234 zone” where the microbe can invade (Li, Liu et al. 2020).

235

236 This graphical approach demonstrates intuitively why a pure cooperator cannot coexist
237 with a pure cheater. For two strains, the possible chemical environment allowing for stable
238 coexistence must locate at the intersection of their growth contours, indicated by the “**”.
239 As illustrated in Figure 1E, the growth contour of the pure cheater entirely encloses the
240 growth contour of the pure cooperators without an intersection. Intuitively, it is due to that
241 the pure cheater grows faster than the pure cooperator in any chemical environment: they
242 have the same iron-influx by public siderophores J_{public} , yet the cooperator invests less in
243 α_{growth} (See rigorous proof in the Supplementary Material, Section 2.2). However,
244 because the pure cheater can only utilize public siderophores and cannot survive
245 independently, it can be observed in the simulation that the pure cheater eventually takes
246 the entire population and becomes extinct due to a lack of public siderophores. This
247 approach resembles “the tragedy of the commons”.

248

249 Investing in private siderophores can change the game. The transition from pure
250 cooperators to partial cooperators enables the growth contours to intersect with those of
251 pure cheaters, hence enabling coexistence (Fig. 1F). In regions where the public
252 siderophore is abundant but iron is scarce (upper-left region of Figure 1F filled in white),
253 the cheater still retains a growth advantage over the partial cooperator; however, in
254 regions where the public siderophore is scarce but free iron is abundant (lower-right
255 region of Figure 1F filled in blue-green color), the partial cooperator gains a growth
256 advantage over the pure cheater because their membrane siderophores sustain
257 iron-dependent growth. Under this model setting, the game enters the regime of “snowdrift”
258 (Souza, Pacheco et al. 2009): despite the fact that producing siderophores incurs costs,

259 cooperators gain by holding portions of them as private goods, particularly in
260 environments where public siderophores are scarce. The fact that the superior strategy
261 varies according to the chemical environment enables the intersection of their growth
262 contours, which is necessary for coexistence.

263 Mathematically, it can be analytically proven that the presence of intersection between
264 growth contours of strain 1 and strain 2, under the setting that strain 1 invests less in its
265 own growth $\alpha_{1,growth} < \alpha_{2,growth}$, requires:

$$\alpha_{1,private} > \alpha_{2,private}. \quad (7)$$

266 Equation (7) shows that for any two strains to coexist, the strain that invests fewer
267 resources in growth must invest more in private siderophores (Details can be found in
268 Supplementary Material, Section 2.3).

269 Meanwhile, the non-zero biomass of two strains imposes constraints on the iron supply
270 concentration $R_{iron,Supply}$ in that

$$R_{iron}^* + \frac{1}{k_2} R_{sid}^* > R_{iron,Supply} > R_{iron}^* + \frac{1}{k_1} R_{sid}^*. \quad (8)$$

271 with $k_1 = \frac{\epsilon\gamma}{d} \alpha_{1,public} \alpha_{1,growth}$, $k_2 = \frac{\epsilon\gamma}{d} \alpha_{2,public} \alpha_{2,growth}$.

272 Graphically, inequality Eq. (8) requires the supply point $[R_{iron,Supply}, 0]$, locating within the
273 region bounded by the reverse extensions of the consumption vectors in the chemical
274 space (See Supplementary Material, Section 2 for detailed proofs)

275 However, the presence of the intersection of growth contours is only one of the necessary
276 conditions for coexistence; the feasibility of coexistence is further determined by how each
277 strategy shapes the chemical environment for the whole community (Li, Liu et al. 2020). In
278 the system illustrated in Figure 1F, where the partial cooperator coexists stably with the
279 pure cheater (competition dynamics shown in insert), the partial cooperator creates a
280 public-siderophore-rich environment in the upper-left area of the chemical space where
281 the cheater can invade. Meanwhile, the pure cheater cannot survive on its own and has
282 no corresponding stable point, but its competition for iron reduces the abundance of the
283 partial cooperator, causing an environment deficient in public siderophores to favor the

284 partial cooperator. This interaction between the partial cooperator and the pure cheater

285 resembles mutual invasion and allows for stable coexistence.

286 Such stable coexistence does, however, occur under a specific chemostat condition
287 (quantified as the iron influx $R_{iron,Supply}$ and the dilution rate d). The presence of an area
288 in the chemical space in which the partial cooperator thrives prompted us to wonder
289 whether other chemostat conditions would allow for even more interesting ecological
290 dynamics.

291 **The partial cooperators and cheaters can generate rich ecological dynamics**

292 In classical consumer resource models, oscillatory dynamics can be generated among a
293 minimum of three species that preferentially consume the resources for which they have
294 intermediate requirements (Huisman and Weissing 1999, Huisman and Weissing 2001).
295 To our surprise, oscillations between the partial cooperator and the pure cheater can be

296 detected in this resource partition model at intermediate levels of iron supply (Fig. 2A).
297 In comparison to the steady coexistence depicted in Figure 1F, the partial cooperator
298 generates an environment susceptible to cheater invasion. The intersection of the two
299 growth contours, on the other hand, becomes unstable.
300
301 Figure 2C explains the oscillation visually with a phase diagram. In the diagram's
302 upper-left quadrant, where the public siderophore concentration is high and the iron
303 concentration is low, the rapid proliferation of cheaters effectively eliminates partial
304 cooperators (cooperator-, cheater+). The decline in partial cooperators results in a
305 decrease of public siderophores, which forces the system into the lower-left quadrant,
306 where the abundance of both partial cooperators and cheaters falls (cooperator-,
307 cheater-). Reduced total population promotes iron concentration recovery, allowing the
308 system to enter the advantageous growth zone of partial cooperators, where public
309 siderophores remain low but iron is abundant. Iron influx through private siderophores
310 causes partial cooperators to resume positive growth in this lower-right quadrant, whereas
311 pure cheaters continue to fall (cooperator+, cheater-). The rise of partial cooperators
312 increases the concentration of public siderophores, hence inhibiting the decrease of pure
313 cheaters and restoring their growth, as shown in the upper-right quadrant (cooperator+,
314 cheater+). However, the continued growth of pure cheaters depletes iron, forcing partial
315 cooperators into negative net growth again (cooperator-, cheater+). The preceding
316 process generates oscillations, mostly owing to the private siderophores providing an
317 advantageous growth zone for partial cooperators in the absence of public siderophores.
318
319 When the partial cooperator is more capable of establishing a high-iron,
320 low-public-siderophores environment, the dynamics become even more skewed in favor
321 of partial cooperators. For instance, if the steady-state environment formed by partial
322 cooperators goes outside the development contour of pure cheaters, the partial
323 cooperators can effectively exclude the pure cheater (Fig. 2B).
324
325 Scanning across the chemostat conditions revealed the bifurcation into and out of
326 oscillation. In the system with one pure cheater and one partial cooperator, as the dilution
327 rate increases, a Hopf bifurcation drives the transition from stable coexistence into
328 oscillation (Fig. 2D-E). Similarly, by increasing the iron supply concentration, the
329 oscillation shifted into stable coexistence. The phase diagram of chemostat conditions
330 (Fig. S2) demonstrates that a "better" environment (low dilution rate or high iron supply)
331 reduces the relative difference in growth between partial cooperators and cheaters,
332 thereby increasing the tendency of coexistence; on the other hand, a harsher environment
333 (high dilution rate or low iron supply) increases the relative difference in growth between
334 the two, thereby increasing the likelihood of oscillations.
335
336 Oscillatory dynamics demand a minimum of three species in a classical consumer
337 resource model (Huisman and Weissing 1999, Huisman and Weissing 2001). The
338 observed oscillation between the pure cheater and the partial cooperator not only sheds
339 light on the stability of cooperation in an iron-related snowdrift game, but also motivates us

340 to dig deeper into the effect of the self-generated chemical dimension on the resource
341 partition models.

342 **The self-generated chemical dimension changes the stability criteria of classical
343 consumer resource models.**

344 Similar to a classical consumer resource model (represented by Tilman's model (Tilman
345 1982)), the generalized form of microbes interacting with two resources R_1 and R_2 can
346 be represented as:

$$\frac{dm_i}{dt} = m_i(g_i(R_1, R_2) - d), \text{ for } i = 1, 2 \quad (9)$$

$$\frac{dR_j}{dt} = d(R_{j, \text{supply}} - R_j) - \sum_{i=1}^2 m_i h_{ij}(R_1, R_2) g_i(R_1, R_2), \text{ for } j = 1, 2, \quad (10)$$

347 where $R_{j, \text{supply}}$ is the supply concentration of resource j , and h_{ij} is the function
348 describing the amount of resource j impacted by microbe i per-biomass.

349 When h_{ij} describes resource uptake and has a positive sign. Eq. (9)-(10) above
350 represent the classical consumer resource model. When at least one of the h_{ij} describes
351 resource production and exhibits a negative sign, these equations represent the broader
352 "resource partition model" and exhibit different criteria for the stability of coexistence.

353
354 The stability of the fixed point (*) can be deduced from the Routh-Hurwitz (RH) criterion
355 (May and Allen 1977). From the Jacobian matrix of the model:

$$J = \begin{bmatrix} 0 & 0 & v_{11} & v_{12} \\ 0 & 0 & v_{21} & v_{22} \\ -w_{11} & -w_{12} & -x_{11} & -x_{12} \\ -w_{21} & -w_{22} & -x_{21} & -x_{22} \end{bmatrix}, \quad (11)$$

356 with

$$v_{ij} = \left(\frac{\partial m_i}{\partial R_j} \right)^*, w_{ij} = - \left(\frac{\partial R_i}{\partial m_j} \right)^*, x_{ij} = - \left(\frac{\partial R_i}{\partial R_j} \right)^*,$$

357 For simplicity, we set the abbreviation as:

$$P_1 = (\partial_{R_1} g_1)^*, P_2 = (\partial_{R_2} g_1)^*,$$

$$P_3 = (\partial_{R_1} g_2)^*, P_4 = (\partial_{R_2} g_2)^*, \quad (12)$$

$$c_{11} = (h_{11})^*, c_{12} = (h_{21})^*, \\ c_{21} = (h_{12})^*, c_{22} = (h_{22})^*.$$

358 Here, P can be interpreted as the growth rate dependency on "resources" at the fixed
359 point, and c_{ij} represents how microbe i impacts resource j at the fixed point.

360 So we have elements in the Jacobian matrix expressed as:

$$v_{11} = m_1^* P_1, \quad v_{12} = m_1^* P_2, \\ v_{21} = m_2^* P_3, \quad v_{22} = m_2^* P_4 \quad (13)$$

$$\begin{aligned}
 w_{11} &= c_{11}d, & w_{12} &= c_{12}d, \\
 w_{21} &= c_{21}d, & w_{22} &= c_{22}d, \\
 x_{11} &= d, x_{12} &= 0, \\
 x_{21} &= m_1^* c_{21} P_1 + m_2^* c_{22} P_3, x_{22} &= d + m_1^* c_{21} P_2 + m_2^* c_{22} P_4
 \end{aligned}$$

361 At the steady state, $g_1^* = g_2^* = d$. With definitions in Eq.(12)-(13), the characteristic
 362 equation of eigenvalue λ for the Jacobian matrix can be expressed as:

$$\begin{aligned}
 \lambda^4 + (x_{11} + x_{22})\lambda^3 + (q_1 + q_4 + x_{11}x_{22} - x_{12}x_{21})\lambda^2 \\
 + (x_{11}q_4 + x_{22}q_1 - x_{12}q_3 - x_{21}q_2)\lambda \\
 + (q_1q_4 - q_2q_3) = 0,
 \end{aligned} \tag{14}$$

363 the coefficients of this quartic equation are: $a_0 = 1$, $a_1 = x_{11} + x_{22}$, $a_2 = q_1 + q_4 -$
 364 $x_{12}x_{21} + x_{11}x_{22}$, $a_3 = q_4x_{11} - q_3x_{12} - q_2x_{21} + q_1x_{22}$, $a_4 = -q_2q_3 + q_1q_4$, with q_i defined
 365 as:

$$\begin{aligned}
 q_1 &= w_{11}v_{11} + w_{12}v_{21}, \\
 q_2 &= w_{11}v_{12} + w_{12}v_{22}, \\
 q_3 &= w_{21}v_{11} + w_{22}v_{21}, \\
 q_4 &= w_{21}v_{12} + w_{22}v_{22}.
 \end{aligned} \tag{15}$$

366 The Routh-Hurwitz (RH) criterion states the necessary and sufficient condition for the
 367 stability of a dynamical system (May and Allen 1977): for a quartic equation for the
 368 eigenvalue λ , $a_0\lambda^4 + a_1\lambda^3 + a_2\lambda^2 + a_3\lambda + a_4 = 0$, if the fixed point for coexistence is
 369 stable, then the coefficients must satisfy: (1) $a_1 > 0$, (2) $a_4 > 0$, (3) $a_3 > 0$, (4)
 370 $a_1a_2a_3 - a_1^2a_4 - a_3^2 > 0$.

371 Based on the four RH criteria, we compared the difference between the classical
 372 consumer resource model and the resource partition model on its stability. Details on the
 373 comparison can be found in Supplementary Material Section 3.1.

374

375 First, the criteria (1) $a_1 > 0$ holds for both the classical consumer resource model and the
 376 iron-partition model.

377 Second, The criteria (2) $a_4 > 0$ is central to the classical model. By definitions in Eq. (12),
 378 the original form $a_4 = -q_2q_3 + q_1q_4$ expands into:

$$a_4 = dm_1^*m_2^*(c_{12}c_{21} - c_{11}c_{22})(P_2P_3 - P_1P_4), \tag{16}$$

379 There are two possible situations for $(c_{12}c_{21} - c_{11}c_{22})(P_2P_3 - P_1P_4) > 0$:

situation 1:

$$\frac{P_2}{P_1} > \frac{P_4}{P_3}, \frac{c_{11}}{c_{21}} < \frac{c_{12}}{c_{22}}, \tag{17}$$

or situation 2:

$$\frac{P_2}{P_1} < \frac{P_4}{P_3}, \frac{c_{11}}{c_{21}} > \frac{c_{12}}{c_{22}}. \tag{18}$$

380 In the classical consumer resource model, these two inequalities can be interpreted as
 381 "each species must consume more of the one resource which more limits its own growth
 382 rate."

383 In the resource partition model, using the iron-partition model at Eq. (1)-(6) as the
 384 example, parameters in Eq.(12) can be specified into:

$$\begin{aligned}
 P_1 &= (\partial_{R_{\text{sid}}} g_1)^*, & P_2 &= (\partial_{R_{\text{iron}}} g_1)^*, \\
 P_3 &= (\partial_{R_{\text{sid}}} g_2)^*, & P_4 &= (\partial_{R_{\text{iron}}} g_2)^*.
 \end{aligned} \tag{19}$$

$$c_{11} = -\alpha_{1,\text{public}} \epsilon/r, \quad c_{12} = -\alpha_{2,\text{public}} \epsilon/r, \\ c_{21} = 1/(\alpha_{1,\text{growth}} \gamma r), \quad c_{22} = 1/(\alpha_{2,\text{growth}} \gamma r).$$

385 Then it can be proven that under the setting of $\alpha_{1,\text{growth}} < \alpha_{2,\text{growth}}$, the criteria (2) $a_4 > 0$
 386 requires that:

$$\alpha_{1,\text{public}} > \alpha_{2,\text{public}} \quad (20)$$

387 In the iron-partition model, Eq. (7) and Eq. (20) suggest that, if two strains should stably
 388 coexist, not only the strain that invests fewer resources in growth must invest more in
 389 private siderophores, but also play a more cooperative role.

390

391 The remaining two criteria, (3) $a_3 > 0$ and (4) $a_1 a_2 a_3 - a_1^2 a_4 - a_3^2 > 0$, differentiate
 392 between the classical model and the iron-partition model. By definitions in Eq. (12)-(15),
 393 equations for these two criteria are the additive or multiplicative combination of a_4 with
 394 other positive definite terms involving c_{11} and c_{12} (details in Supplementary Material,
 395 Section 3):

$$a_3 = d(m_1^*(c_{11}P_1 + c_{21}dP_2) + m_2^*(c_{12}P_3 + c_{22}dP_4)) + \frac{a_4}{d}. \quad (21)$$

$$a_1 a_2 a_3 - a_1^2 a_4 - a_3^2 \\ = (2d^3 + a_3) \left(m_1^*(c_{11}P_1 + dc_{21}P_2)(d + c_{21}P_2 m_1^*) \right. \\ \left. + m_2^*(c_{12}(dP_3 + c_{21}P_1 P_4 m_1^*) \right. \\ \left. + c_{22}(d^2 P_4 + P_2(c_{11}P_3 + 2dc_{21}P_4)m_1^*) \right) \\ + m_1^{*2} c_{22} P_4 (c_{12}P_3 + dc_{22}P_4). \quad (22)$$

396

397 In the classical consumer resource model, c_{ij} describes the consumption of species i on
 398 resource j , which is always positive. Consequently, once the criteria (2) $a_4 > 0$ holds,
 399 criteria (3) $a_3 > 0$ and criteria (4) $a_1 a_2 a_3 - a_1^2 a_4 - a_3^2 > 0$ are satisfied automatically.
 400 Actually, the determination of the fixed point stability only depends on the tangent slope of
 401 growth contours $(\frac{P_1}{P_2}, \frac{P_3}{P_4})$ and the slope of the consumption vector $(\frac{c_{21}}{c_{11}}, \frac{c_{22}}{c_{12}})$. If the criteria in

402 Eq.17-18 are satisfied, the coexistence is stable as long as the supply vector locates
 403 within the sector area formed by the reverse extension of the two consumption vectors.

404 However, in the iron-partition model, the fulfillment of criteria (2) no longer guarantees the
 405 satisfaction of criteria (3) and (4). Even when Eq.(17)-(18) are satisfied and the supply
 406 vector locates within the sector formed by consumption vectors, changes in the
 407 iron-supply can still change the stability of the growth contour intersection, driving the
 408 system into other forms of dynamics instead of stable coexistence. As shown in Figure 3A,
 409 in the chemical space, the growth contours of a partial cooperator and the pure cheater
 410 intersect. At the crossing point, the consumption vector of the partial cooperators points to
 411 the upper-left direction, suggesting it consumes iron while creating public siderophores.
 412 The consumption vector of the pure cheater horizontally points to the left, as it solely
 413 consumes iron but does not contribute to public siderophore. These sectors formed by two
 414 consumption vectors overlap a region on the iron-supply axis (x-axis). Nevertheless,
 415 within this region of iron-supply, the stability of the fixed point changes: when the iron

416 supply is low, the system will still collapse to extinction even if the supply (black circles,
417 Fig. 3C) locates within the sector zone; oscillation begins as the iron supply increases
418 (yellow circles, Fig. 3D); and eventually, stable coexistence can be reached when the iron
419 supply is high (blue circles, Fig. 3E).
420 The collapse of the system in Figure 3C can be attributed to the changes in criteria (3)
421 $a_3 > 0$. Due to the negative signs of c_{11} and c_{12} , the first term of a_3 , $d(m_1^*(c_{11}P_1 +$
422 $c_{21}dP_2) + m_2^*(c_{12}P_3 + c_{22}dP_4))$ now has an uncertain sign. If $P_1 = (\partial_{R_1}g_1)^*$ or $P_3 =$
423 $(\partial_{R_1}g_2)^*$ are sufficiently large, indicating that strains are highly sensitive to free iron, the
424 first term might be negative, and is able to drive the whole equation of a_3 into the
425 negative regime. Moreover, the sign of the first term also relies on m_1^* and m_2^* , both of
426 which are dependent on the iron-supply concentration. As shown in Region 2 in Figure 3B,
427 the sign of a_3 remains negative when a_4 is positive, which contributes to the extinction
428 of both species even when the iron supply falls within the sector formed by the reverse
429 extension of consumption vectors (Fig. 3C).
430 Similarly (See Supplementary Materials, Section 3.2), with negative c_{11} and c_{12} , criteria
431 (4) in the iron-partition model now has an uncertain sign, with complex dependence on
432 m_1^* and m_2^* . When criteria (4) remains negative (Region 3) while the other criteria are
433 fulfilled (Region 3, Fig. 3B), the fixed point remains unstable, and the system oscillates.
434 In the classical model, due to the positive sign of c_{11} and c_{12} , Region 2 and Region 3 in
435 Figure 3F would not exist. As the existence of Region 2 and Region 3 is the result of
436 negative c_{11} and c_{12} , such extinction and oscillation dynamics are not exceptional. Two
437 partial cooperators with distinct allocation strategies may also undergo similar transitions,
438 with the dynamics experiencing extinction, oscillation, coexistence, and exclusion as the
439 iron supply increases (Fig. S3).

440 **Comprehensive assessment of strategies under within-species and**
441 **between-species competitions.**

442 In our model, distinct strains within the same species are distinguished by distinct
443 resource allocation strategies, and their public siderophores can be shared. Parameters
444 such as the cost of siderophores and the growth coefficient can vary between species. In
445 addition, we assumed that siderophores produced by different species can not be shared.
446 We systematically evaluated the competitiveness of strategies within and between
447 species based on these assumptions.
448

449 First, the competition between all potential strategies against the pure cheater of the same
450 species exhibits complex dynamics (as illustrated in the ternary plot of Fig. 4A): the pure
451 cheater does trigger extinction for highly cooperative strains (high in α_{public} and low in
452 α_{growth}). However, over a broad range of strategy space, partial cooperator strategies can
453 coexist stably or dynamically with pure cheater strategies. Moreover, this coexistence can
454 exist in a wide range of different parameters and public siderophore production and

455 recycling sets (Fig. S5, S6). Self-seeker strategies can even result in the exclusion of the
456 pure cheater. In terms of coexistence, increasing investment in public siderophores
457 increases the likelihood of oscillations with the cheater, whereas increasing investment in
458 private siderophores increases the tendency of stable coexistence.

459

460 We evaluated a species' "non-invasive strategy" by employing the invasion chain
461 method(Taillefumier, Posfai et al. 2017): starting with one of the arbitrarily chosen
462 strategies, we added strains with the highest growth rate in the existing chemical
463 environment into the environment until no species could be added. A typical invasion
464 chain is depicted in Figure 4B: the pure cheater has the highest growth rate in the
465 environment shaped by the initial partial cooperator, but in the environment co-created by
466 these two strains, the self-seekers ($\alpha_{\text{public}} = 0, \alpha_{\text{private}} > 0$) have a growth advantage,
467 allowing them to invade and create an environment devoid of public siderophores. In such
468 an environment, only self-seekers can survive, which brings the invasion chain to an end.
469 In summary, within the same species, the self-seeker strategy is the most resistant
470 against pure cheater strains and is "evolutionarily optimal", because it generates a
471 chemical environment that cannot be invaded by other strategies. Also, the self-seeker
472 strategy can establish a community with a lower initial population, which benefits the start
473 of colonization (Fig. S7).

474

475 However, when evaluating a species' overall competitiveness, the self-seeker strategy is
476 not always superior. For example, in evaluating the steady-state size of the population
477 composed of a single strain (Fig. 4C), strategies that are close to the pure cheater have a
478 larger overall population size. Meanwhile, in terms of resilience to harsher external
479 environments, pure cooperators are more resistant to increased dilution (Fig. 4D).

480

481 Regarding the competition between species using different public siderophores, strains
482 that invest more in public siderophores are more capable of invading another species (Fig.
483 S4A), whereas strains that invest less in private siderophores are more resistant to
484 invasion by another species (Fig. S4C). Self-seeker strategies, on the other hand, are not
485 effective both in invasion and resistance(Fig. S4B, D).

486

487

488 **Discussion**

489 Understanding diversity has long been a cornerstone of microbial ecology (Delmont, Robe
490 et al. 2011). While the number of species may be limited by chemical dimensions,
491 microorganisms are capable of expanding this limit by actively generating chemical
492 diversity in their microhabitat. In this work, we modeled the specific system of
493 siderophore-mediated iron competition in order to investigate more general questions: first,
494 how could cooperators responsible for chemical diversity resist extinction induced by
495 cheaters; and second, what is the ecological consequence of microbes creating new
496 chemical dimensions. For the first question, we suggested the privatization of
497 siderophores acting as a “game changer” to allow partial cooperators advantage over
498 pure cheaters, and derived that a necessary condition for coexistence is that the
499 cooperators who invest more in public siderophores also need to invest more in private
500 siderophores. Concerning the second question, we analytically compared the difference in
501 stability criteria between the traditional consumer resource models and the “resource
502 partition model,” in which organisms not only consume but also produce resources. In
503 addition, the public siderophore does not become a “resource” until it forms an association
504 with ferric iron, the actual resource that microorganisms require. This is an additional layer
505 of meaning for the term “resource-partition models”: externally supplied resources (iron)
506 and microbe-generated resources (siderophore) interact to form the actual resources
507 (iron-associated siderophores) taken up by the microorganisms.

508

509 Microbes interact via influencing their shared environment (McGill, Enquist et al. 2006).
510 Classical ecological models emphasize the “consumption” aspect of such influences
511 (Tikhonov and Monasson 2017, Altieri and Franz 2019). With the rapid development of
512 microbiology, it has become increasingly apparent that bacteria have enormous potential
513 for introducing new chemicals into their microhabitats(Gavriilidou, Kautsar et al. 2022).
514 Siderophore is just one of the many secondary metabolites that microbes actively
515 produce for their own benefit. Antibiotics, bacteriocins, signaling molecules, and even
516 bacterial vesicles can all be considered “chemical dimensions” generated by microbes
517 themselves (Bajić, Rebolleda-Gómez et al. 2021, Niehus, Oliveira et al. 2021). Regarding
518 these “self-generated dimensions,” a general ecological framework has yet to be
519 established. The conventional consumer resource model provides intuitive coexistence
520 criteria (i.e. species should preferentially consume the resource that limits their growth),
521 with consumption vectors clearly segregating supply conditions into zones of
522 the same stability (Tilman 1982, Koffel, Daufresne et al. 2016). In this “resource partition
523 model”, however, due to the reversed direction of consumption vectors, there are
524 additional parameter areas where the RH criterion can change signs. Consequently, in the
525 regions of steady-state equilibrium in the classical model, non-equilibrium dynamics
526 become possible. In general, our analysis suggested that an ecosystem with
527 “self-generated dimensions” tends to be more dynamic and complex.

528

529 Oscillation usually bridges two distinctive states and often plays critical roles in various
530 biological systems (Goldbeter 2008). Notably, the oscillation in our model differs from the
531 oscillation in the work of Huisman et al. where the oscillation bridges between the stable
532 equilibrium and the chaos with higher-than-CEP dynamical coexistence (Huisman and
533 Weissing 1999, Huisman and Weissing 2001). In our model, the parameter region of
534 oscillation locates between total extinction and stable coexistence between partial
535 cooperators and cheaters. Oscillation here is more of a “danger zone” indicating that the
536 system is on the verge of collapse, similar to the early warning signatures of ecosystems
537 (Carpenter, Cole et al. 2011). Indeed, our continuous equations assume that organisms
538 can recover from arbitrarily small values, but the troughs of oscillatory dynamics increase
539 the probability of stochastic extinction in real systems (Reichenbach, Mobilia et al. 2006,
540 Ovaskainen and Meerson 2010). Recent studies in the field of game theory, however,
541 have detected oscillations when the environment is made explicit and have shown that
542 oscillatory dynamics prevent the extinction of cooperators (Weitz, Eksin et al. 2016, Hilbe,
543 Šimsa et al. 2018, Tilman, Plotkin et al. 2020). Given the specificity of oscillatory dynamics
544 in ecology and the propensity of resource partition models to enter the oscillation zone, it
545 would be intriguing to explore the facilitative or destructive functions of oscillations in
546 diverse ecological systems with chemical innovations.

547
548 In the specific game of microbial iron competition, the pervasiveness of siderophore
549 production remains the subject of continuing investigation (Barber and Elde 2015, Kramer,
550 Özkaya et al. 2020, Lee, Eldakar et al. 2021). Our work emphasized that private
551 siderophores only provide possible solutions in some species, such as marine microbes
552 or mycobacterium, where the siderophores can be modified into membrane-attached
553 form.
554 Other kinds of siderophore privatization, such as keeping siderophores intracellularly for
555 relieving oxidative stress, have been proposed to confer cheater resistance (Jin, Li et al.
556 2018). Actually, we hypothesize that the division of the iron resource by siderophores
557 provides a universal mechanism for “resource privatization”: numerous siderophores exist
558 in the natural world, each with their own specific receptors (Cornelis and Matthijs 2002, Jin,
559 Li et al. 2018). For a given type of siderophore, microorganisms with corresponding
560 receptors can share it as a public good, whereas microbes without comparable receptors
561 perceive it as inaccessible “private goods” (Leventhal, Ackermann et al. 2019).
562 Theoretical models suggested that the populations of different cooperators utilizing
563 distinct siderophores can be regulated by their cheaters, similar to how parasites impose
564 negative frequency selection (Lee, van Baalen et al. 2012). In addition, a model with
565 different types of siderophores suggested that coexistence between cooperators and
566 cheaters is possible if a “loner” uses a kind of relatively inefficient siderophores (Inglis,
567 Biernaskie et al. 2016). In the future, it would be exciting to investigate iron interactions in
568 a more realistic biological setting and systematically investigate the ecological
569 consequences of microbial chemical innovation.

570
571

572 **Data Availability**

573 The source code and parameters used are available in the supplementary material.

574

575 **Acknowledgements**

576 This work was supported by grants from Peking-Tsinghua Center for Life Sciences.

577

578 **Funding**

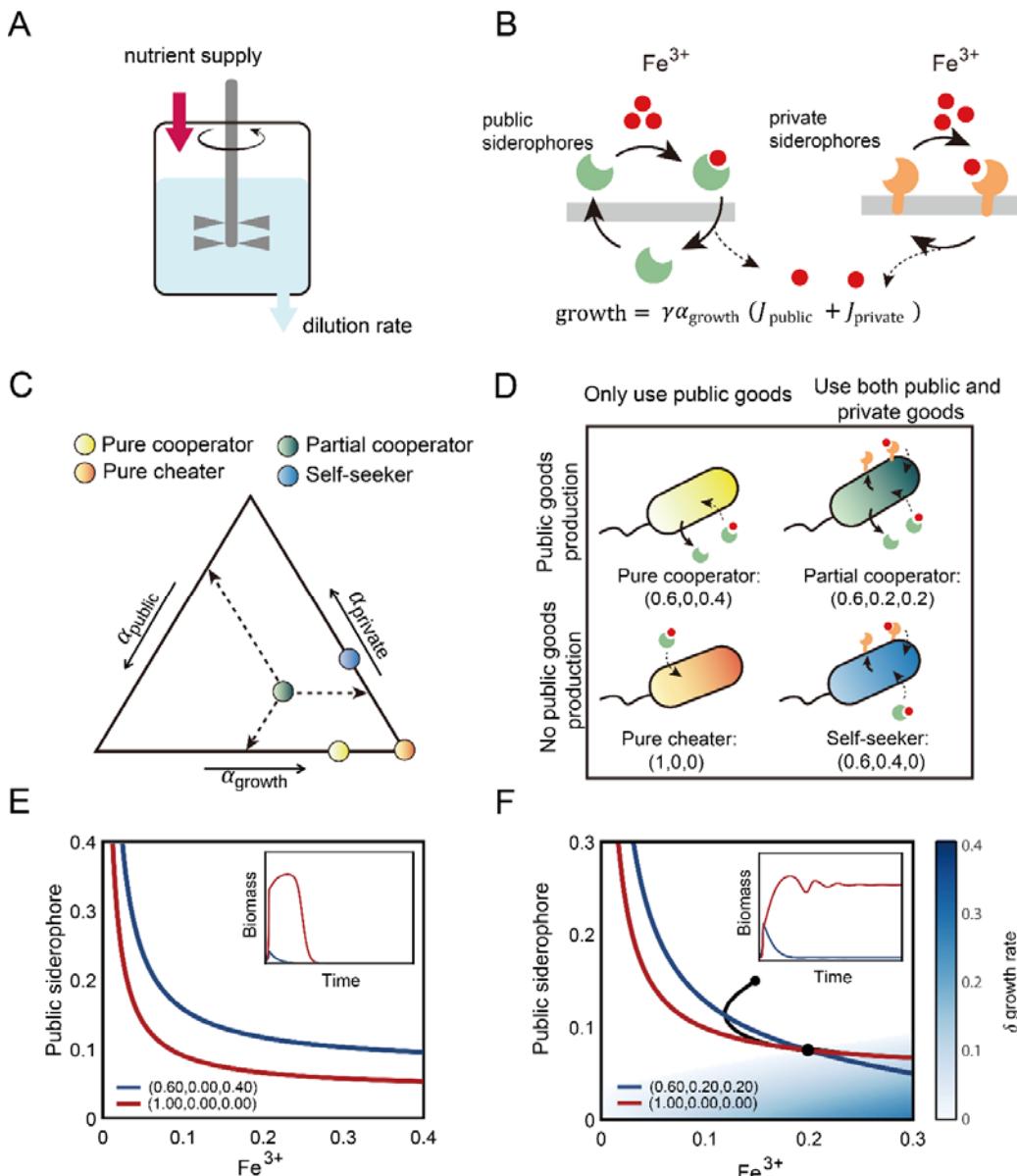
579 This work was supported by the National Natural Science Foundation of China (No. 580 32071255) and Clinical Medicine Plus X - Young Scholars Project, Peking University, the 581 Fundamental Research Funds for the Central Universities (No. PKU2022LCXQ009).

582

583 **Author contributions**

584 Jiqi Shao performed the majority of computational and mathematical analysis in this 585 research and drafted the manuscript. Nan Rong performed the preliminary computational 586 analysis in this research and drafted the manuscript. Zhenchao Wu, Beibei Liu, and Ning 587 Shen offered insightful comments and assisted in revising the manuscript. Zhiyuan Li 588 conceptualized and oversaw the project and revised the manuscript. All authors gave final 589 approval for publication and agreed to be held accountable for the work performed herein.

590


591 **Competing interests**

592 The authors declare no competing interests.

593

594

595 **Figures**

596

597 **Figure 1. Privatization of siderophore enables the coexistence between partial**

598 **cooperators and pure cheaters.**

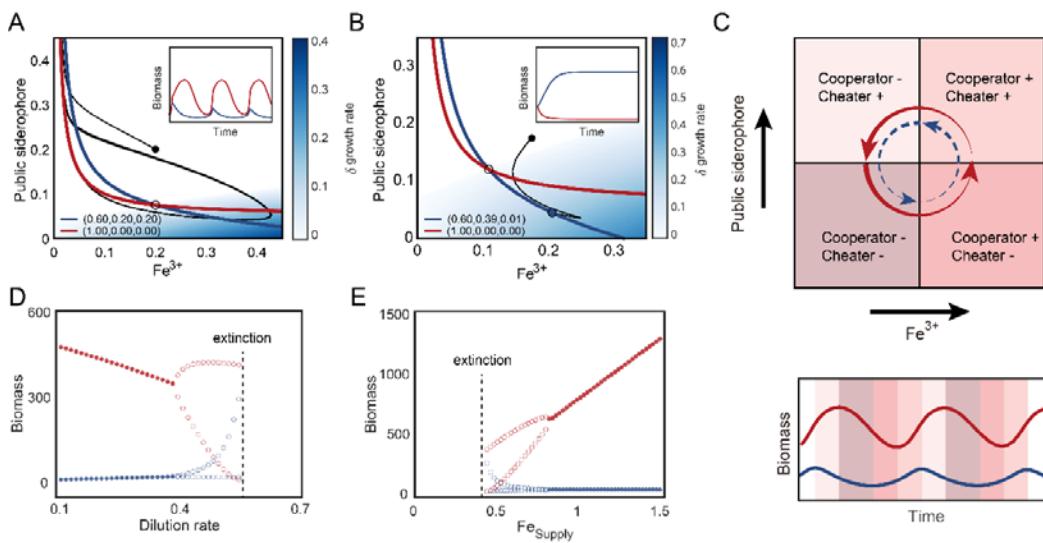
599 (A) The schematic diagram of a chemostat model.

600 (B) The schematic diagram showing two iron uptake fluxes from the public siderophores
601 (C) The strategy space (the strategic phase diagram) by ternary plot, showing all resource

602 (D) The production of siderophores by different strategies.

603 allocation strategies $\vec{\alpha} = (\alpha_{\text{growth}}, \alpha_{\text{private}}, \alpha_{\text{public}})$. The model has four typical strategies,
604 distinguished according to whether to produce public siderophores and whether to use
605 private siderophores. Pure cooperators (yellow) only produce and use public siderophores,
606 while the pure cheater (orange) only use public siderophores and put all resources into
607 α_{growth} ; partial cooperators (green) produce and use both public and private siderophores,
608 while self-seekers (blue) only produce private siderophores and use both public and
609 private siderophores.

610 (D) The schematic illustration of the four typical strategies shown in (C).


611 (E-F) The growth contours in the chemical space, with the concentration of Fe^{3+} by the
612 x-axis and the concentration of public siderophore by the y-axis. (E) shows the growth
613 contours of a pure cooperator and the pure cheater, and (F) shows the growth contours of
614 a partial cooperator and the pure cheater (color scheme same as that in (C) and (D)). The
615 blue area represents a growth-advantageous zone in which the partial cooperator
616 outperforms the pure cheater. Inserts are the biomass time-courses of species competing
617 in the chemostat.

618

619

620

621

622

623 **Figure 2. The partial cooperators and cheaters generate rich ecological dynamics**

624 (A) The partial cooperators can oscillate with the cheater. In the chemical space, the
625 intersection between the growth contours of a partial cooperator (blue) and a pure cheater
626 (red) is represented by a black circle, and the dynamical trajectory beginning is
627 represented by a black line. The background color indicates the difference in growth rate
628 between partial cooperators and cheaters. Insert shows the competition dynamics of the
629 two species.

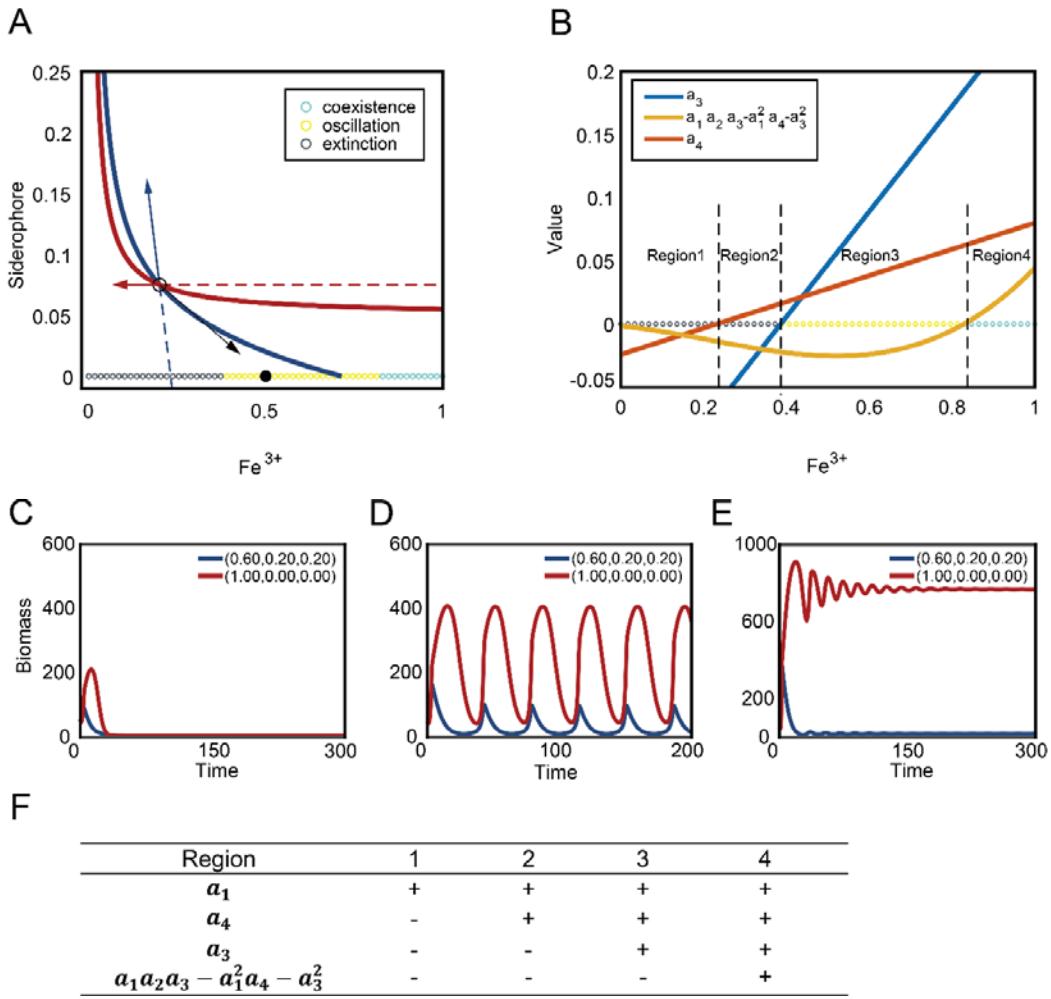
630

631 (B) The partial cooperators can exclude the cheater. Same as (A), but the partial
632 cooperators allocate more resources to private siderophores.

633

634 (C) The phase diagram illustrates the mechanism of oscillation shown in (A). In the upper
635 panel, the chemical space is divided into four regions with varying relative finesse
636 (growth rate relative to dilution rate) between the cheater and the partial cooperators,
637 denoted by the symbols + and -. The background color of the lower panel corresponds to
638 the regions in the chemical space depicted in the upper panel.

639


640 (D-E) Bifurcation diagrams for the system in (A) as the dilution rate (D) and the Fe^{3+}
641 supply changes (E). Empty circles represent the minimum and maximum of the oscillation,
642 while solid dots represent a steady state.

643

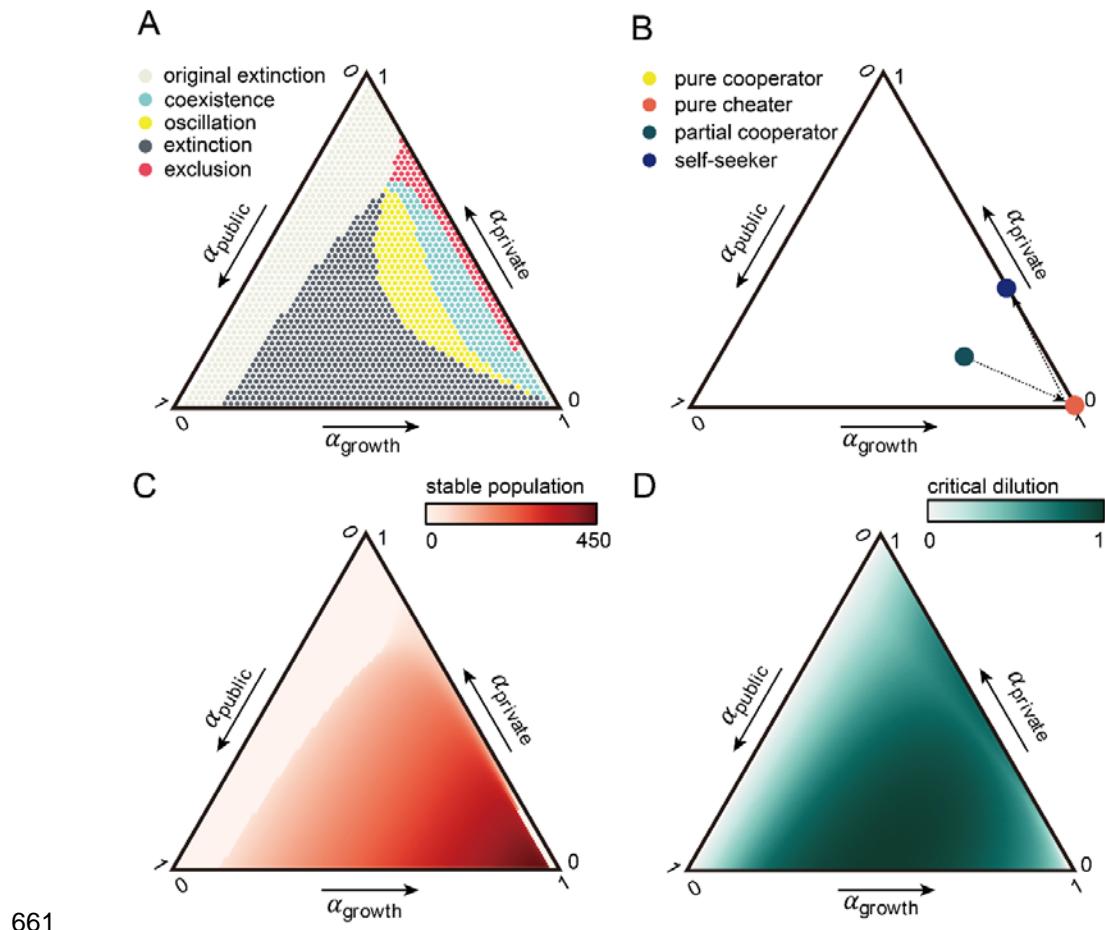
644

645

646

648 **Figure 3. The self-created dimension enables oscillation and coexistence.**

649 (A) The growth contours of a partial cooperator (blue) and the cheater (red), and their
 650 consumption vectors at the intersection. Different types of dynamics induced by different
 651 supplies of Fe^{3+} are indicated by the colors of circles along the x-axis. Black indicates the
 652 extinction of both species; Yellow indicates oscillatory dynamics; Blue indicates
 653 steady-state coexistence.


654 (B) The values of three stability criteria as the iron supply increases along the x-axis. The
 655 signs of three stability criteria divide the x-axis into four regions, as indicated by the text.

656 (C-E) Exemplary time-courses of the three types of dynamics induced by different
 657 supplies of Fe^{3+} , such as extinction (C), oscillation (D), and coexistence (E).

658 (F) The signs of all four stability criteria in four regions shown in (B).

659

660

661

662 **Figure 4. Assessment of all possible strategies, by their interplay with cheaters,**
 663 **evolutionary stability, stable population, and critical dilution rate.**

664 (A) How different strategies interact with the pure cheater. Each strategy's competition
 665 outcomes with the pure cheater are indicated by dot color in the ternary plot (light gray:
 666 non-viable by itself; deep gray: viable by itself but extinct with the cheater; yellow: oscillate
 667 with the cheater; blue: stably coexist with the cheater; red: exclude the cheater).
 668 (B) The chain of invasion in the strategy space. For each arrow, the dot at the beginning of
 669 the arrow is the initial strategy that creates the steady-state environment, and the dot at
 670 the endpoint of the arrow indicates the strategy with the maximal growth rate in the formal
 671 environment. The endpoint of the whole invasion chain is the evolutionarily stable strategy
 672 that can not be invaded by any other strategies. The path starts with a partial cooperator
 673 strategy(green dot, $\vec{\alpha} = (0.6, 0.2, 0.2)$), then directs to the pure cheater strategy(orange
 674 dot), and ends at the self-seeker strategy(blue dots, $\vec{\alpha} = (0.65, 0.35, 0)$).
 675 (C) The stable population for different strategies when existing alone.
 676 (D) The maximal dilution rate for non-zero biomass in a steady-state chemostat.
 677

678 **Reference**

679 Allison, S. D. (2005). "Cheaters, diffusion and nutrients constrain decomposition by
680 microbial enzymes in spatially structured environments." *Ecology Letters* **8**(6): 626-635.
681
682 Altieri, A. and S. Franz (2019). "Constraint satisfaction mechanisms for marginal stability
683 and criticality in large ecosystems." *Physical Review E* **99**(1): 010401.
684
685 Andrews, S. C., et al. (2003). "Bacterial iron homeostasis." *FEMS Microbiology Reviews*
686 **27**(2-3): 215–237.
687
688 Bajić, D., et al. (2021). "The macroevolutionary consequences of niche construction in
689 microbial metabolism." *Frontiers in Microbiology*: 2641.
690
691 Barber, M. F. and N. C. Elde (2015). "Buried Treasure: Evolutionary Perspectives on
692 Microbial Iron Piracy." *Trends in Genetics* **31**(11): 627–636.
693
694 Boyd, P. W. and M. J. Ellwood (2010). "The biogeochemical cycle of iron in the ocean."
695 *Nature Geoscience*.
696
697 Buckling, A., et al. (2010). "Siderophore-mediated cooperation and virulence in
698 *Pseudomonas aeruginosa*." *Fems Microbiology Ecology* **62**(2): 135-141.
699
700 Butaitė, E., et al. (2017). "Siderophore cheating and cheating resistance shape
701 competition for iron in soil and freshwater *Pseudomonas* communities." *Nature
702 Communications* **8**(1): 414.
703
704 Carpenter, S. R., et al. (2011). "Early warnings of regime shifts: a whole-ecosystem
705 experiment." *Science* **332**(6033): 1079-1082.
706
707 Cordero, O. X., et al. (2012). "Public good dynamics drive evolution of iron acquisition
708 strategies in natural bacterioplankton populations." *Proceedings of the National Academy
709 of Sciences* **109**(49): 20059–20064.
710
711 Cornelis, P. and S. Matthejs (2002). "Diversity of siderophore-mediated iron uptake
712 systems in fluorescent pseudomonads: not only pyoverdines." *Environ Microbiol* **4**(12):
713 787-798.
714 Fluorescent pseudomonads are gamma-proteobacteria known for their capacity to
715 colonize various ecological niches. This adaptability is reflected by their
716 sophisticated and diverse iron uptake systems. The majority of fluorescent
717 pseudomonads produce complex peptidic siderophores called pyoverdines or
718 pseudobactins, which are very efficient iron scavengers. A tremendous variety of
719 pyoverdines has been observed, each species producing a different pyoverdine.
720 This variety can be used as an interesting tool to study the diversity and taxonomy

721 of fluorescent pseudomonads. Other siderophores, including newly described
722 ones, are also produced by pseudomonads, sometimes endowed with interesting
723 properties in addition to iron scavenging, such as formation of complexes with
724 other metals or antimicrobial activity. Factors other than iron limitation, and
725 different regulatory proteins also seem to influence the production of siderophores
726 in pseudomonads and are reviewed here as well. Another peculiarity of
727 pseudomonads is their ability to use a large number of heterologous siderophores
728 via different TonB-dependent receptors. A first genomic analysis of receptors in
729 four different fluorescent pseudomonads suggests that their siderophore ligand
730 repertoire is likely to overlap, and that not all receptors recognize siderophores as
731 ligands.

732

733 Cremer, J., et al. (2019). "Cooperation in microbial populations: theory and experimental
734 model systems." *Journal of molecular biology* **431**(23): 4599-4644.

735

736 Czaran, T. L., et al. (2002). "Chemical warfare between microbes promotes biodiversity."
737 *Proceedings of the National Academy of Sciences*.

738

739 Delmont, T. O., et al. (2011). "Accessing the soil metagenome for studies of microbial
740 diversity." *Applied and environmental microbiology* **77**(4): 1315-1324.

741

742 Dutkiewicz, S., et al. (2020). "Dimensions of marine phytoplankton diversity."
743 *Biogeosciences* **17**(3): 609-634.

744

745 Emerson, D., et al. (2012). "The microbial ferrous wheel: iron cycling in terrestrial,
746 freshwater, and marine environments." *Frontiers in Microbiology* **3**: 383.

747

748 Erez, A., et al. (2020). "Nutrient levels and trade-offs control diversity in a serial dilution
749 ecosystem." *Elife* **9**: e57790.

750

751 Estrela, S., et al. (2022). "Diversity begets diversity under microbial niche construction."
752 *bioRxiv*.

753

754 Fischbach, M. A. and J. A. Segre (2016). "Signaling in host-associated microbial
755 communities." *Cell* **164**(6): 1288-1300.

756

757 Gavriilidou, A., et al. (2022). "Compendium of specialized metabolite biosynthetic diversity
758 encoded in bacterial genomes." *Nature Microbiology* **7**(5): 726-735.

759

760 Goldbeter, A. (2008). "Biological rhythms: clocks for all times." *Current biology* **18**(17):
761 R751-R753.

762

763 Goldford, J. E., et al. (2018). "Emergent simplicity in microbial community assembly."
764 *Science* **361**(6401): 469-474.

765

766 Gore, J., et al. (2009). "Snowdrift game dynamics and facultative cheating in yeast." *Nature* **459**(7244): 253-256.

768 The origin of cooperation is a central challenge to our understanding of evolution.
769 The fact that microbial interactions can be manipulated in ways that animal
770 interactions cannot has led to a growing interest in microbial models of
771 cooperation and competition. For the budding yeast *Saccharomyces cerevisiae* to
772 grow on sucrose, the disaccharide must first be hydrolysed by the enzyme
773 invertase. This hydrolysis reaction is performed outside the cytoplasm in the
774 periplasmic space between the plasma membrane and the cell wall. Here we
775 demonstrate that the vast majority (approximately 99 per cent) of the
776 monosaccharides created by sucrose hydrolysis diffuse away before they can be
777 imported into the cell, serving to make invertase production and secretion a
778 cooperative behaviour. A mutant cheater strain that does not produce invertase is
779 able to take advantage of and invade a population of wild-type cooperator cells.
780 However, over a wide range of conditions, the wild-type cooperator can also
781 invade a population of cheater cells. Therefore, we observe steady-state
782 coexistence between the two strains in well-mixed culture resulting from the fact
783 that rare strategies outperform common strategies-the defining features of what
784 game theorists call the snowdrift game. A model of the cooperative interaction
785 incorporating nonlinear benefits explains the origin of this coexistence. We are
786 able to alter the outcome of the competition by varying either the cost of
787 cooperation or the glucose concentration in the media. Finally, we note that
788 glucose repression of invertase expression in wild-type cells produces a strategy
789 that is optimal for the snowdrift game-wild-type cells cooperate only when
790 competing against cheater cells.

791

792 Granato, E. T., et al. (2019). "The evolution and ecology of bacterial warfare." *Current*
793 *biology* **29**(11): R521-R537.

794

795 Gu, S., et al. (2020). "Competition for iron drives phytopathogen control by natural
796 rhizosphere microbiomes." *Nature Microbiology* **5**(8): 1002-1010.

797

798 Gupta, D., et al. (2021). "Effective Resource Competition Model for Species Coexistence."
799 *Physical review letters* **127**(20): 208101.

800

801 Hagstrom, G. I. and S. A. Levin (2017). "Marine ecosystems as complex adaptive systems:
802 emergent patterns, critical transitions, and public goods." *Ecosystems* **20**(3): 458-476.

803

804 Hardin and G. (1960). "The Competitive Exclusion Principle." *Science* **131**(3409):
805 1292-1297.

806

807 Hardin, G. (1968). "The Tragedy of the Commons." *Science* **162**(3859): 1243-1248.

808

809 Hilbe, C., et al. (2018). "Evolution of cooperation in stochastic games." *Nature* **559**(7713):
810 246-249.
811
812 Ho, P.-Y., et al. (2022). "Competition for fluctuating resources reproduces statistics of
813 species abundance over time across wide-ranging microbiotas." *Elife* **11**: e75168.
814
815 Huisman, J. and F. J. Weissing (1999). "Biodiversity of plankton by species oscillations
816 and chaos." *Nature* **402**(6760): 407–410.
817
818 Huisman, J. and F. J. Weissing (2001). "Biological conditions for oscillations and chaos
819 generated by multispecies competition." *Ecology* **82**(10): 2682-2695.
820
821 Inglis, R. F., et al. (2016). "Presence of a loner strain maintains cooperation and diversity
822 in well-mixed bacterial communities." *Proceedings. Biological sciences* **283**(1822).
823
824 Jin, Z., et al. (2018). "Conditional privatization of a public siderophore enables
825 *Pseudomonas aeruginosa* to resist cheater invasion." *Nature Communications* **9**(1): 1-11.
826
827 Julou, T., et al. (2013). "Cell-cell contacts confine public goods diffusion inside
828 *Pseudomonas aeruginosa* clonal microcolonies." *Proceedings of the National Academy of
829 Sciences* **110**(31): 12577–12582.
830
831 Koffel, T., et al. (2016). "Geometrical envelopes: Extending graphical contemporary niche
832 theory to communities and eco-evolutionary dynamics." *J Theor Biol* **407**: 271-289.
833 Contemporary niche theory is a powerful structuring framework in theoretical
834 ecology. First developed in the context of resource competition, it has been
835 extended to encompass other types of regulating factors such as shared
836 predators, parasites or inhibitors. A central component of contemporary niche
837 theory is a graphical approach popularized by Tilman that illustrates the different
838 outcomes of competition along environmental gradients, like coexistence and
839 competitive exclusion. These food web modules have been used to address
840 species sorting in community ecology, as well as adaptation and coexistence on
841 eco-evolutionary time scales in adaptive dynamics. Yet, the associated graphical
842 approach has been underused so far in the evolutionary context. In this paper, we
843 provide a rigorous approach to extend this graphical method to a continuum of
844 interacting strategies, using the geometrical concept of the envelope. Not only
845 does this approach provide community and eco-evolutionary bifurcation diagrams
846 along environmental gradients, it also sheds light on the similarities and
847 differences between those two perspectives. Adaptive dynamics naturally merges
848 with this ecological framework, with a close correspondence between the
849 classification of singular strategies and the geometrical properties of the envelope.
850 Finally, this approach provides an integrative tool to study adaptation between
851 levels of organization, from the individual to the ecosystem.
852

853 Kramer, J., et al. (2020). "Bacterial siderophores in community and host interactions." *Nature Reviews Microbiology* **18**(3): 152–163.

855

856 Lafferty, K. D., et al. (2015). "A general consumer-resource population model." *Science* **349**(6250): 854-857.

858

859 Lee, I. P. A., et al. (2021). "Bacterial cooperation through horizontal gene transfer." *Trends in ecology & evolution*.

860

861

862 Lee, W., et al. (2012). "An evolutionary mechanism for diversity in siderophore-producing bacteria." *Ecology Letters* **15** 2: 119-125.

863

864

865 Leventhal, G. E., et al. (2019). "Why microbes secrete molecules to modify their environment: the case of iron-chelating siderophores." *Journal of the Royal Society Interface* **16**(150): 20180674.

866

867

868 Ley, R. E., et al. (2006). "Ecological and evolutionary forces shaping microbial diversity in the human intestine." *Cell* **124**(4): 837-848.

869

870

871

872 Li, Z., et al. (2020). "Modeling microbial metabolic trade-offs in a chemostat." *PLoS Computational Biology* **16**(8): e1008156.

873

874

875 Lv, H., et al. (2014). "Metabolomic analysis of siderophore cheater mutants reveals metabolic costs of expression in uropathogenic *Escherichia coli*." *Journal of Proteome Research* **13**(3): 1397–1404.

876

877

878

879 MacArthur, R. and R. Levins (1964). "Competition, Habitat Selection, and Character Displacement in a Patchy Environment." *Proc Natl Acad Sci U S A* **51**: 1207-1210.

880

881

882 Martinez, J. S., et al. (2003). "Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium." *Proceedings of the National Academy of Sciences of the United States of America* **100**(7): 3754–3759.

883

884

885

886 May, R. and P. Allen (1977). "Stability and Complexity in Model Ecosystems." *Systems, Man and Cybernetics, IEEE Transactions on* **44**: 887-887.

887

888

889 McGill, B. J., et al. (2006). "Rebuilding community ecology from functional traits." *Trends in ecology & evolution* **21**(4): 178-185.

890

891

892 Miransari, M. (2013). "Soil microbes and the availability of soil nutrients." *Acta physiologiae plantarum* **35**(11): 3075-3084.

893

894

895 Niehus, R., et al. (2021). "The evolution of strategy in bacterial warfare via the regulation of bacteriocins and antibiotics." *Elife* **10**: e69756.

896

897

898 Niehus, R., et al. (2017). "The evolution of siderophore production as a competitive trait." *Evolution: international journal of organic evolution* **71**(6): 1443–1455.

900

901 Ovaskainen, O. and B. Meerson (2010). "Stochastic models of population extinction." *Trends in ecology & evolution* **25**(11): 643-652.

903

904 Reichenbach, T., et al. (2006). "Coexistence versus extinction in the stochastic cyclic *Lotka-Volterra* model." *Physical Review E* **74**(5): 051907.

906

907 Ross-Gillespie, A., et al. (2007). "Frequency dependence and cooperation: theory and a test with bacteria." *The American Naturalist* **170**(3): 331–342.

909

910 Ross-Gillespie, A. and R. Kümmerli (2014). "Collective decision-making in microbes." *Frontiers in Microbiology* **5**: 54.

912

913 Roy, S. and J. Chattopadhyay (2007). "The stability of ecosystems: a brief overview of the paradox of enrichment." *Journal of biosciences* **32**(2): 421-428.

915

916 Schmidt, R., et al. (2019). "Microbe-driven chemical ecology: past, present and future." *The ISME journal* **13**(11): 2656-2663.

918

919 Scholz, R. L. and E. P. Greenberg (2015). "Sociality in *Escherichia coli*: Enterochelin Is a Private Good at Low Cell Density and Can Be Shared at High Cell Density." *Journal of Bacteriology* **197**(13): 2122–2128.

922

923 Sexton, D. J. and M. Schuster (2017). "Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation." *Nature Communications* **8**(1): 230.

925

926 Smith, P. and M. Schuster (2019). "Public goods and cheating in microbes." *Current biology* **29**(11): R442-R447.

928

929 Souza, M. O., et al. (2009). "Evolution of cooperation under N-person snowdrift games." *Journal of Theoretical Biology* **260**(4): 581-588.

931

932 Taillefumier, T., et al. (2017). "Microbial consortia at steady supply." *Elife* **6**: e22644.

933

934 Tikhonov, M. and R. Monasson (2017). "Collective phase in resource competition in a highly diverse ecosystem." *Physical review letters* **118**(4): 048103.

936

937 Tilman, A. R., et al. (2020). "Evolutionary games with environmental feedbacks." *Nature Communications* **11**(1): 1-11.

939

940 Tilman, D. (1982). *Resource competition and community structure*. Princeton; Guildford,

941 Princeton University Press.

942

943 Weitz, J. S., et al. (2016). "An oscillating tragedy of the commons in replicator dynamics
944 with game-environment feedback." Proc Natl Acad Sci U S A **113**(47): E7518-E7525.

945 A tragedy of the commons occurs when individuals take actions to maximize their
946 payoffs even as their combined payoff is less than the global maximum had the
947 players coordinated. The originating example is that of overgrazing of common
948 pasture lands. In game-theoretic treatments of this example, there is rarely
949 consideration of how individual behavior subsequently modifies the commons and
950 associated payoffs. Here, we generalize evolutionary game theory by proposing a
951 class of replicator dynamics with feedback-evolving games in which
952 environment-dependent payoffs and strategies coevolve. We initially apply our
953 formulation to a system in which the payoffs favor unilateral defection and
954 cooperation, given replete and depleted environments, respectively. Using this
955 approach, we identify and characterize a class of dynamics: an oscillatory tragedy
956 of the commons in which the system cycles between deplete and replete
957 environmental states and cooperation and defection behavior states. We
958 generalize the approach to consider outcomes given all possible rational choices
959 of individual behavior in the depleted state when defection is favored in the replete
960 state. In so doing, we find that incentivizing cooperation when others defect in the
961 depleted state is necessary to avert the tragedy of the commons. In closing, we
962 propose directions for the study of control and influence in games in which
963 individual actions exert a substantive effect on the environmental state.

964

965

966

967

968

969

970

971