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ABSTRACT 
Discovering genomic variation in the absence of information about transcriptional consequence of that variation 

or, conversely, a transcriptional signature without understanding underlying genomic contributions, hinders 

understanding of molecular mechanisms of disease. To assess this genomic and transcriptomic coordination, we 

developed a new chemistry and method, ResolveOME, to extract this information out of the individual cell. The 

workflow unifies template-switching full-transcript RNA-Seq chemistry and whole genome amplification (WGA), 

followed by affinity purification of first-strand cDNA and subsequent separation of the RNA/DNA fractions for 

sequencing library preparation. In the ResolveOME methodology we leverage the attributes of primary template-

directed amplification (PTA)1 to enable accurate assessment of single-nucleotide variation as a DNA feature—not 

achieved with existing workflows to assess DNA + RNA information in the same cell.    

We demonstrated the validity of the technique in the context of two major phenomena in oncology: tumor 

heterogeneity (leading to cancer progression) and treatment resistance.  Material from a primary patient breast cancer 

and an acute myeloid leukemia (AML) cell line, MOLM-13, was used to highlight multiomic biomarker paradigms enabled 

by this chemistry.  Performance of the PTA-enabled genome amplification was largely unaffected by addition of RNA 

enrichment, with control WGS results showing > 95% genome coverage, precision > 0.99 and allele drop out < 15%.  In 

the RNA fraction of the chemistry, we were able to routinely retrieve full-length transcripts that demonstrate a ratio of 1 

for 5’/3’ bias, with increased coverage of intronic regions and 5’ regions that are indicative of novel transcripts, showing 

strength of the template switching mechanism to capture isoform information with sparsity rates < 75%.  We find 

remarkable cellular variability of revealed biomarkers at both in the genome and transcriptome despite employing a 

relatively small number of individual cells. In our primary patient sample of ductal carcinoma in situ (DCIS)/invasive 

ductal carcinoma (IDC) we observed oncogenic PIK3CA driver mutations and prototypical DCIS copy number alterations 

binned into heterogenous single-cell classes of genomic lesions.  Within our quizartinib-treated MOLM-13 cells, we 

identified multiple potential mechanisms of resistance within seemingly sporadic changes and were able to associate 

specific mutation, copy number and expression significantly correlated to treatment.  In this latter scenario, the DNA 

arm of our combined workflow uncovered a secondary FLT3 (non-internal tandem duplication (ITD)) mutation as a 

candidate primary driver of resistance to drug while the RNA arm showed matched transcript upregulation of AXL signal 

transduction as well as enhancer factor modulation.  Importantly, proximal candidate regulatory SNVs, outside of the 
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CDS, were identified and associated to upregulated transcripts in cis.  The study highlights that both the genome and 

transcriptome are dynamic, leading to a set of combinatorial alterations that affect cellular evolution and that fate can 

be identified through ResolveOME application to individual cells. 

INTRODUCTION 
Cancer is a disease of remarkable variation and heterogeneity between the individual cells comprising the bulk 

tumor tissue. While a multitude of studies have described these changes across the evolution of cancer, etiology is still 

driven by speculation in most cancers. This is borne out in the molecular complexity underlying the resiliency of cancer 

cells in drug resistance, whereby single nucleotide variation (SNV) and copy number variation (CNV) at the genomic level 

contributes to resistance in concert with transcriptional adaptation2. While one of these modes can be a dominant 

driver, there is increasing evidence that the modes are not mutually exclusive and instead can synergize to change cell 

state leading to resistance3. It will therefore become paramount to assay these multiple “-omic” tiers (genomic and 

transcriptomic) in single cells, as bulk sequencing provides an incomplete view of the inherent heterogeneity in each of 

these tiers. Cancer’s evolution is driven through a complex molecular orchestration, where the interdependence of 

genomic and transcriptomic changes occurring in each cell convey some of the major fitness advantages that drive 

expansion and drug resistance. The nature of current genomic and transcriptomic assays muddle the underlying clonal 

structure by reducing genomic data to tissue-based averages.  Recent methods aimed at simultaneously monitoring 

both RNA and DNA in single cells have made this linking possible, but contain uneven genome coverage and low allelic 

balance, limiting the ability to assess single nucleotide variation genome-wide with accuracy4,5. 

To overcome this challenge, we enhanced our previously-characterized PTA1 workflow and extended a second 

modality of transcriptome enrichment. The method is differentiated through enhanced genome coverage and 

uniformity, along with allelic balance, wherein both copies of the genome are equivalently and uniformly amplified.  This 

is an underlying attribute that allows both CNV and SNV detection from an amplified genome of a sample as finite as a 

single cell with high accuracy1. The ability of PTA to provide this degree of uniformity and accuracy stems from the 

unfavored recopying of synthesized strands, driven by nucleotide terminators that limit the size of the amplicons, and 

coincidentally this amplicon-size distribution (500-1500bp) is suitable for the natural distribution of transcript lengths. 
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We present a single-well integration of single-cell transcriptome and genome amplification where a standard 

PTA reaction was modified to include a reverse transcription (RT) step prior to single-cell genome amplification and we 

designate this multiomic enrichment ResolveOME. In this workflow, PTA amplifies the genomes of single cells 

immediately after the RT reaction is concluded in a single-well reaction.  Using template switch-based reverse 

transcription, we created first-strand cDNA molecules that could be affinity purified and pre-amplified prior to RNA-Seq 

sequencing library creation.  The net result from the combined amplification reaction is a biotin labeled cDNA pool 

derived primarily from the cytosolic transcripts, available for streptavidin purification, and a pool of amplified genomic 

material from the single cell.  At the conclusion of the genome amplification reaction the cDNA fraction is separated 

from the amplified genome material whereby libraries from each pool are created.  The resulting sequencing data offers 

the ability to define both genomic and transcriptomic plasticity at single-cell resolution. Specifically, the delineation of 

isoform expression, combined with ability to annotate the underlying structural variation and single nucleotide changes 

from the genome of the same cell (Figure 1a), allows the assessment of genomic “penetrance”, and the definition of 

mechanisms that drive single-cell fate.  

Prior multi-omic efforts have pioneered the pairing of genomic and transcriptomic information from the same 

single cell but have the primary shortcoming of incomplete genome coverage and associated non-uniformity of 

coverage—leaving uncovered genomic valleys that may harbor deleterious single nucleotide variants that would remain 

undetected.  Indeed, multiple displacement amplification (MDA)6 drives the genomic amplification of G&T-seq and DR-

Seq has genomic amplification uniformity comparable to that of MALBAC7, both of which are outperformed by PTA1 in 

terms of genomic coverage, allelic balance and SNV calling metrics.  Definition of clonal evolution at the SNV/CNV level 

in a primary patient sample has been accomplished utilizing G&T-seq, yet was limited to a candidate gene survey of 

exome-level data whereby clusters where defined by 59 oncogenes8 and another studying employing G&T-seq limited 

their analysis to the RNA workflow of the method to take advantage of the low input requirement, without assessment 

of genomic level data9 .  Thus, we address here an unmet need to add genome-wide, high sensitivity and high precision 

SNV calling capability to a joint DNA/RNA single-cell methodology.  Further, we demonstrate the criticality of these 

measurements, whereby single nucleotide variation fundamentally affects cell state10 and tumor progression11,12.  
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We describe here the utility of these unified “-omic” layers, highlighting heterogenous genomic variation and 

consequential phenotypic alterations in single cells that both are correlated with the development of resistance to a 

targeted therapeutic in a cell line model of acute myeloid leukemia, and in oncogenic mechanisms in primary breast 

cancer cells whereby the insights gained could not be inferred by a single dataset (genome or transcriptome) alone. 

RESULTS 
Amplification product yield of ResolveOME workflow 

Prior to demonstrating biological utility of ResolveOME in a cell line drug resistance model and in a primary 

patient sample, we sought to demonstrate technical performance of the methodology using a benchmark cell line 1000 

Genomes cell line, NA1287813. The RNA and DNA arms of the protocol were first assessed using metrics from the 

template-switching RNA-Seq chemistry or PTA chemistry in isolation to compare to the metrics when the chemistries 

were unified in the combined ResolveOME protocol.   

We first generated ResolveOME data with FACS-sorted NA12878 single cells and with purified total NA12878 

RNA or genomic DNA as amplification controls using the workflow shown in Figure 1a.  Efficiency of the yield of the PTA 

product and cDNA products from the unified protocol are shown in Figure 1b.  We obtained approximately 1-1.5 µg of 

DNA amplification product from single cell genomes and approximately 100-200 ng of cDNA product representing the 

single cell transcriptome.   Importantly, no-template control (NTC) reactions showed lack of detectable product and 

additionally there was negligible (<50 ng) yield in the DNA fraction from control RNA input using Qubit fluorometer 

(ThermoFisher).  We did detect low-level background amplification of the genomic DNA control input in the cDNA 

fraction, due to known promiscuity of reverse transcriptase in the absence of mRNA template14. By contrast, this 

background amplification does not occur in reactions with single cells as the genome material is sequestered in the non-

lysed nucleus during the reverse transcription workflow of ResolveOME. 

Comparative genomic performance of ResolveOME 
As default practice prior to passing single cell samples to deep sequencing for SNV analysis we performed low-

pass QC sequencing, and as part of the analysis pipeline, determined an estimation of library complexity with the PreSeq 

count algorithm15.  QC standards set for ResolveDNA (product solution for PTA) are >3.0E9 PreSeq count value upon low-

pass sequencing, an empirically-defined proxy for genomic coverage and uniformity that predicts high-depth sequencing 

will yield strong allelic balance and high sensitivity and precision of single nucleotide variant calling.  The average PreSeq 
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count of ResolveOME single cells from Supplementary Table 1a was 3.76E9 with a standard deviation of +/- 2.27E8.  The 

overall robust performance of single cells and genomic DNA controls warranted subsequent deep sequencing for metric 

comparison of classical PTA (ResolveDNA) to PTA from the ResolveOME multi-omic workflow. 

Upon high-depth sequencing (2X150bp, down-sampling to 4.5E8 total reads, ~20x genome depth) and 

processing through our pipeline, we initially reviewed allelic balance, (ability to represent both alleles through 

enrichment and a strength of our ResolveDNA methodology1,16).  The inverse of allelic drop out (ADO) is allelic balance, 

which is the proportion of known heterozygous loci that are called heterozygous following sequencing. Variants within 

these loci have allele frequencies between 10% and 90% at each locus. A review of allelic balance of ResolveOME 

showed 85.5% (+/-3.4%), which is closely comparable to the 88.2% (+/-4%) for ResolveDNA, across 10 replicates each 

(Figure 2a).   We then confirmed that genomic coverage at a range of depths did not significantly differ (Figure 2b) 

between the workflows.  Lastly, it was critical to demonstrate that the allelic balance and coverage obtained from the 

ResolveOME workflow culminated in the ability to call SNVs with confidence.  Figure 2c highlights individual 

ResolveOME NA12878 cells with a SNV calling sensitivity range of 0.90-0.95 and with precision >0.99, akin to 

ResolveDNA data1.  Collectively, these data suggest that, despite the upstream reverse transcription chemistry 

modifications to generate transcriptome data, amplification performance of single-cell genomes by PTA persists in 

performance. 

Comparative transcriptomic performance of ResolveOME 
In choosing a transcriptomic scheme to unite with PTA our goal was to be as comprehensive as possible in 

capturing the diversity of RNA-based modes of oncogenic and drug resistance mechanisms, and, equally as importantly, 

to enable the ascertainment of genomic lesions manifesting at the RNA level.  We therefore designed a template-

switching reverse transcription scheme for ResolveOME that captured full-transcript information as opposed to either 5’ 

or 3’ end counting to enhance ability to detect isoforms and identify fusions.  This chemistry enables even coverage 

across transcripts and as shown in Figure 3a, where increased coverage of the 5’ region (top) which typically is affected 

by degradation (or reverse transcriptase performance) proportional to the distance from 3’-polyA, is shown.  This 

confirms expected behavior of the template-switching chemistry in the RNA arm workflow.   The distribution of read 

depth across gene bodies of a set of housekeeping genes is presented in Figure 3a (bottom), with all exons equally 

represented.  Feature quantification in the across our defined transcriptome is shown in Figure 3b, highlighting the 
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ability to identify a variety of transcript types and components.  Progression of the performance is shown in this figure 

from what is observed in a bulk dataset (bar 1, aggregated datasets listed in Supplementary Data 1) vs. features such as 

bulk RNA isolation (bars 2 and 4) or single cell (bars 3 and 5) against standalone BioSkryb mRNA-seq (bars 2 and 3) or the 

ResolveOME combined workflow (bars 4 and 5).  Notably, intergenic background was routinely below 5% of aligned 

reads, providing a broader space for isoform detection. 

As further performance benchmarking of cell quality post mapping to reference transcriptome, we established 

performance patterns of common metrics with well characterized Human Brain Reference RNA (HBRR) and Universal 

Human Reference RNA (UHRR) as additions to the NA12878 cell line and displayed composite features in Figure 3c. We 

identified read and genomic feature mapping percentages, as well as total genes discovered, as criteria for 

evaluating sequencing quality.  We also examined the dynamic range of expression and expression patterns in well-

known housekeeping genes.  We computed various markers of DNA contamination, sample degradation, and/or bias as 

a percentage of exonic (more than 55%), and intergenic mapping (less than 5 %) as characteristics of the ResolveOME 

RNA fraction. Another important metric for measuring the quality of single cell experiments is the number of genes 

found (>0 counts) per cell. For NA12878 cells there was an average of over 3000, whereas the average number of HBRR 

and UHRR genes discovered was around 6 and 7 thousand, respectively.  Lastly, median absolute deviation (MAD) and 

percent coefficient of variation (CV) scores were calculated on normalized CPM values for general use housekeeping 

genes for cross-tissue studies17. These metrics measure reproducibility and are robust approaches to measuring sample 

variability. Overall, we observe comparable monotonous expression metrics across our housekeeping genes of choice, as 

well as MAD values ranging from 0.25 to 1 for our HBRR and UHRR benchmarks, suggesting that these genes exhibit little 

variability in expression across cells. With NA12878, we saw a bit more irregularity, which might imply higher variability 

or unsuitable housekeeping genes. Correspondingly, CV rates varied from 14 to 30 percent, despite NA12878 exhibiting 

more variation. For each cell, the dynamic range of expressed genes was around 1300 (HBRR), 1400 (UHRR), and 1900 

(NA12878) CPM.  In all single cells analyzed, mitochondrial read percentage was <10%, with most cells averaging less 

than 5%, indicating that single-cell lysis was optimal for capturing mRNA and other polyadenylated transcripts and that 

the amplified cells were healthy18.   
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In addition to NA12878 cells, which are relatively transcriptionally quiescent, we also assessed uniquely 

expressed protein coding genes in single cells from our DCIS and MOLM-13 material, Figure 3d.  MOLM-13 AML cells 

averaged ~5000-5500, while FACS-enriched single cells from a primary DCIS/IDC tumor specimen yielded less expressed 

genes than the cell line models, averaging ~3500, potentially owing to sample integrity of the primary singulated cells 

and the increased number of workflow steps from surgical resection to FACS. 

Generation of a drug resistance model in MOLM-13 acute myeloid leukemia cells 
We then expanded from the DNA and RNA performance metrics of ResolveOME on control cells, and moved to 

generate unified genomic and transcriptomic information from a model of drug resistance.  Prior to looking at 

heterogenous effects of drug resistance, we wanted to make sure the chemistry could regenerate MOLM-13’s known 

genomic features.  We started by karyotypically assessing the cell to match published reports and provide context for 

interpreting CNV analysis.  The combined copy number analysis of all MOLM-13 cells used in this study can be found in 

Figure 4a.  Prior to drug resistance modeling, our MOLM-13 line exhibited hallmarks of the initial cell line establishment 

including trisomies of Chr.6 and Chr. 13 (49,,2n.,XY,+6,+8,+13, 49,,2n., XY, +6,+8, ins(11;9)(q23;p22p23), 

ins(11;9)(q23;p22p23),del(14)(q23.3;q31.3)19.  Our MOLM-13 line exhibited (Figure 4b) additional gains including the 

presentation of trisomy 5 and pentasomy 8 concomitant with other translocations 

(52,XY,+5,+6,+8,+8,+del(8p),add(11q),+13,add(17p)). 

 To demonstrate the utility of concurrent genomic and transcriptomic information in single cells in the context of 

drug resistance, we created a model by exploiting the presence of an internal tandem duplication (ITD) mutation in 

MOLM-13 cells 19.  Since the ITD mutation, found in ~20% of AML patients, hyperactivates FLT3 signaling and results in 

poor prognosis and relapse20, we treated non-resistant, drug-sensitive cells with a continual dose of 2 nM quizartinib.  

This drug is a selective type II kinase inhibitor targeting FLT3. We found resistance emerged following initial marked 

growth inhibition/apoptosis (See Methods, Supplementary Figure 1). 

 

Distinction in single-cell CNV profiles among parental and quizartinib-resistant MOLM-13 cells 
As an initial assessment of single-cell genomic variation in the MOLM-13 quizartinib resistance model we 

performed CNV analysis following the ResolveOME workflow on 9 parental “P” and 10 quizartinib-resistant “R” cells.   

Utilizing sequencing data to yield ~25x coverage and a 500 kb window size, copy number gain was evident for 
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chromosomes 5,6,8, and 13 (Figure 4a) and concordant with our karyotypic data for the parental cells (Figure 4b).  

Single-cell CNV heterogeneity immediately emerged from the data.  Within the “P” cohort, gain to 3N was observed for 

9/9 cells for Chr. 5, yet 5/9 cells showed additional 5p gains.  Most relevant, we observed heterogenous copy number 

variation between “P” and “R” single cells.  No resistant cells exhibited the additional 5p gain found in the parental 

cohort, and furthermore, 7/10 resistant cells did not have any amplification of Chr. 5 as a diploid 2n state, suggesting 

that this was selected for to mediate drug resistance in part by expression consequences on multiple Chr.5-resident 

genes.  In addition to this general implication of Chr. 5 as a candidate contributor to quizartinib resistance, we observed 

19q gain uniquely in 4/10 resistance cells.   Taken together, we defined a CNV paradigm for the MOLM-13 resistance 

model that could now be used as context for the SNV and transcriptional layers to be subsequently defined by 

ResolveOME. 

 

Acquisition of a secondary FLT3 mutation as a key driver of drug resistance 
We next sought to determine candidate key drivers of quizartinib resistance beyond gross CNV at the increased 

level of genomic resolution of the SNV.  Expectedly, all parental and resistant single cells harbored FLT3 ITD (Figure 5a).  

In contrast, a missense mutation N841K was detected in all quizartinib resistant cells (Figure 5b).  FLT3 N841K has 

previously been detected in AML patients21, resides in the activation loop of FLT322, and furthermore, mutation of the 

residue corresponding to N841 in the closely-related receptor tyrosine kinase KIT is activating23. This strongly suggests 

that N841K is a chief secondary mutation to ITD and is plausibly contributing to quizartinib resistance in this model by 

preventing efficiency of drug binding.   

To assess whether the N841K FLT3 secondary mutation may have arisen de novo or was an existing genetic 

variant clone in the parental population we employed a custom quantitative PCR-based genotyping assay to distinguish 

between the two scenarios.  This probe set, emitting fluorescence of differing wavelengths for allelic discrimination 

between N841 and K841 upon probe binding and dequenching, was employed in qPCR assays of genomic DNA isolated 

from either parental or quizartinib-resistant MOLM-13 cells.  In parental cells, while amplification of N841 dominated, a 

low but detectable level of K841 presented (Figure 5c).  Resistant cells displayed a contrasting scenario, whereby there 

was equal signal from N841 and K841.  These data suggest that FLT3 K841 existed as an extremely rare clone in the 

original MOLM-13 cell line which upon the selective pressure of quizartinib was enriched to domination of the resistant 
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cell line likely due to its ability to affect drug binding—thus highlighting our cell line model’s emulation of clonal 

selection in patient tumors.  While this variation independently makes a compelling case, with the increased biomarker 

resolution, we have very well-defined groups, identified by the heatmap in Figure 6 that showcases differential 

genotypes across the 2 groups. 

Heterogenous SNV in MOLM-13 quizartinib resistance 
We also interrogated a candidate list of genes representing multiple functional classes—signaling, epigenetic, 

tumor suppressor, spliceosome, cohesion complex genes—previously implicated in AML pathogenesis24 for SNV.  With 

no resistant-specific coding sequence changes in single cells identified with this candidate approach other than the FLT3 

secondary mutation, we began an unbiased search for mutations that may be contributing to quizartinib resistance and 

for those mutations representing subclones and not found in all resistant cells (Supplementary Tables 2 and 3).  We first 

sought to stratify the variant call file by rarer functional class of mutation, stop codon gain and frameshift mutation, due 

to the increased likelihood of deleterious functional consequences.  We identified a heterozygous nonsense mutation in 

the splicing and mRNA stability factor CELF4 in 7/10 quizartinib-resistant cells where the change was not identified in 

any single cells of the parental cohort.  Frameshift mutations were identified in the metabolic enzyme ADSS1 at K291 

(c.870dupC) in 8/10 quizartinib resistant and 0/9 parental cells and in the GTP-binding protein RRAGC at A57 

(c.167dupG) in 5/10 resistant cells and in 0/9 parental cells.  While we initially prioritized these variants, we were unable 

to detect expression of their cognate transcripts (Figure 7b).  This suggested that either these genes were lowly 

expressed in MOLM-13 cells, unexpressed at the time of cell capture and extraction, and/or beyond our limit of 

detection with ResolveOME.  These findings motivated us to more comprehensively quantify the single nucleotide 

variation in our model, as well as to prioritize genomic variants associated with gene expression, which ResolveOME 

uniquely enables for single cells. 

We thus subsequently employed a variant filtering/prioritization strategy to identify single nucleotide variation 

present in quizartinib-resistant single cells but not in parental single cells.  From this analysis (see Methods), we used 

multinomial logistic regression analysis and a Wald test to yield 6444 SNVs that were differentially prevalent between 

parental and resistant single cells (p <0.05).  Figure 6 presents this statistically significant genotypic variation in a heat 

map and allows visualization of conversion of homozygous reference (0/0) to heterozygous (1/0, 0/1) or homozygous 

alternate (1/1) alleles in the resistant cells, and, conversely, loss of heterozygous genotypes in the resistant cells to 
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homozygous reference (Supplementary Table 2, coding-related and Supplementary Table 3 intergenic-related).  

Additional filtration by allowed us to focus on missense variations differing in parental vs resistant line in Supplementary 

Figure 2.  As a prioritized missense mutation of biological interest with validated mRNA expression, we report A109V in 

the E3 ubiquitin ligase gene RNF167, found in all 10 quizartinib-resistant cells but not present in cells of the parental 

cohort. 

In addition to prioritizing coding sequence variation above, variant filtration (See details in Methods) allowed us 

to discern a remarkable degree of single nucleotide variation in intergenic space occurring in our quizartinib resistance 

model.  We catalogued 8601 intergenic SNVs in our parental cells vs 2167 in our quizartinib resistant cell cohort present 

in at least 25% of all cells within the group.  This group-specific variation shows context of both selection of existing 

genomic variation in response to drug treatment and in de novo mutation and an exemplification of the high degree of 

plasticity in the genome (Figure 6, Supplementary Table 3). 

MOLM-13 quizartinib-resistant cells exhibit a distinct transcriptional signature including adaptive bypass 
 At the SNV level, there was distinction between parental and resistant MOLM-13 single cells in principal 

coordinate analysis (p<0.05, Figure 7a).  The same trend was seen in the ResolveOME transcriptomes of the two MOLM-

13 single cell cohorts (data not shown).  We present in Figure 7b a dendrogram highlighting differentially expressed 

transcripts between the P and R single cells and labeled by biotype indicating the categorical nature of the upregulated 

or downregulated transcript.  We highlight two specific examples here that highlight both DNA and RNA-level 

contributions to drug resistance in this model.   

Firstly, from our differentially expressed gene set we noted marked upregulation of GAS6, a ligand for the 

receptor tyrosine kinase AXL.  The AXL pathway, specifically through downstream STAT3 cell proliferation and PI3K/AKT 

survival signaling, has been shown to be a bypass pathway for FLT3 inhibition25,26 (Supplementary Figure 3).   We also 

observed concurrent transcriptional upregulation of the small GTPase RAC1, which may be synergistic with upregulation 

of the AXL-STAT3 and AXL-PI3K/AKT signaling axes27,28.  Collectively, these transcriptional responses indicate a mode of 

adaptive transcriptional bypass that is occurring in the same cell harboring a DNA-level, secondary FLT3 mutation driving 

drug resistance. 
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Intriguingly, we also noted the pioneer transcription factor CEBPA CCAAT/enhancer-binding protein alpha 

(C/EBPα) transcriptional upregulation in quizartinib-resistant cells (Figure 7b). Truncating mutations in CEBPA are found 

in ~10-15% of AML patients29,30, leading to expression of an N terminal fragment of CEBPA, p30, with potential dominant 

negative31 activity.  As CEBPA resides on Chr. 19q13.11, concomitant with the transcriptional upregulation of CEBPA, we 

observed Chr.19q gain in a subset of quizartinib-resistant cells (Figure 7c) suggesting a potential genomic mechanism of 

CEBPA expression upregulation and exemplifying the power of the unification of single-cell genomic and transcriptomic 

data.   

While plausible, we did not observe a positive correlation between copy number gain at CEBPA upregulation in 

individual cells, suggesting that the mode of transcript upregulation is epigenetic in nature.  We therefore ascertained 

the relationship of ploidy to gene expression genome-wide using a zero-inflated linear model.  Ploidy and gene 

expression were not direct correlates using a 500kb window size, except for a set of genes whereby statistically 

meaningful associations were identified (p<0.05) with this model (Figure 7d). Supplementary Table 4 shows each gene 

identified and summarizes copy number and expression correlates.   This highlights the importance of concurrent 

transcriptomic assessment when interpreting copy number alterations in single cells, as well as highlights the significant 

single cell heterogeneity that occurs in terms of ploidy across sub-megabase chromosomal intervals. 

In addition to these examples of transcriptional drug resistance mechanistic hypotheses informed by combined 

single-cell genomic and transcriptomic data, we performed differential transcript usage (DTU) analysis (Figure 7e) as we 

were empowered by full-length (vs. 3’ end counting) data to make transcript isoform insights.  We identified an isoform 

of HADHA, whereby its expression was unique to the quizartinib-resistant population and absent in all but one parental 

cell—whereby the isoform with biased expression in the resistant cells was shorter (~2688 bp) than the parental isoform 

(2943 bp). Similarly, 7/10 quizartinib-resistant single cells exclusively expressed an isoform of PPP1R14B containing an 

additional 5’ exon while the majority of parental cells expressed none of the isoform.  In total, we identified 6 instances 

of isoform specificity between parental and quizartinib-resistant populations for additional genes RPS3, HSPA4, SUGT1, 

CAPNS1. 
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Identification of candidate regulatory SNVs modulating transcript levels in resistant cells 
As we identified occurrences of genomic lesions of interest that did not associate with the predicted 

transcriptional output, we sought to identify single nucleotide variation that would influence the expression of a 

proximal gene as a candidate regulatory variant in Figure 8a.   While we earlier failed to identify a correlation between 

Chr. 19q gain and CEBPA mRNA upregulation in resistant cells (Figure 7c), we identified a candidate distal 

promoter/enhancer SNV ~20kb 5’ of the CEBPA transcriptional start site with a genotypic bias between parental and 

resistant cells (Figure 8b) in the variant call file defining SNVs.  We then moved to an unbiased approach, whereby we 

performed ZLM (zero-inflated linear model) modelling of transcriptional abundance of a gene across the genotypes of 

the cohorts.  For initial analysis we limited our SNV detection to intragenic or promoter (0 to -5000 relative to the 

transcriptional start site). Upregulation of MYC expression was observed in resistant vs parental cells, and we identified 

a candidate intronic regulatory variant with a genotypic bias to the reference 0/0 allele in resistant cells while all but one 

of the parental single cells harbored the 0/1 genotype for the candidate regulatory variant (Figures 8a,c).    An additional 

example of a candidate proximal regulatory SNVs with a parental/resistant genotypic bias and concomitant expression 

dichotomy between the parental and resistant cells included a candidate promoter mutation in the PABPC4 gene, 

encoding a poly(A) binding protein, within 5’ kb upstream of the transcriptional start site (Figures 8a,d).  All variants 

identified with this analysis of course warrant functional investigation for validity but emphasize the ability of 

ResolveOME to generate candidate regulatory SNVs through the pairwise analysis of genotype shifting and 

transcriptional modulation in individual cells.  Extending this analysis to all of intergenic space and associating the SNVs 

with ENCODE ChIP-Seq data will be a powerful tool to generate larger numbers of candidates influencing drug resistance 

and oncogenesis.  

Primary DCIS/IDC single cells exhibit heterogeneous classes of chromosomal loss 
 After demonstrating the utility of ResolveOME’s unification of genomic and transcriptomic data to elucidate 

single-cell drug resistance mechanisms in a cell line model, we importantly sought to demonstrate analogous multi-omic 

utility in elucidating single-cell oncogenic mechanisms in primary human cancer.  To this end, we initiated a 

collaboration with Duke University Medical Center to elucidate genomic and transcriptomic contributions to the 

transition of premalignant ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC).  We first enriched 

dissociated single cells from tumor tissue from a mastectomy by FACS.  The tumor pathology for this patient indicated 
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ER/PR (estrogen receptor/progesterone receptor) positivity but lack of HER2 expression precluded the use of a HER2 

antibody for FACS enrichment.  As such, we proceeded with a FACS strategy to enrich for ductal epithelial cells by 

epithelial cell adhesion molecule (EpCAM) epitope enrichment, and simultaneously to capture “EpCAM low” cells as 

enrichment controls. 

 As with our MOLM-13 resistance model, we first assessed CNV in primary DCIS/IDC single cells.  We performed 

the ResolveOME workflow on 16 single cells with pronounced EpCAM expression and 4 single cells with negligible 

EpCAM expression.  Using the same genome coverage (25x) as the MOLMs, and 500 kb windows we first assessed CNV 

in the “EpCAM high” cohort of single cells.  Distinct classes of CNV emerged, whereby single cells exhibited discrete 

chromosomal losses.  As one class, 5/20 cells harbored near complete loss of Chr. 13 with concurrent loss of 16q/17p, 

Figure 9.  The most abundant class (12/20 cells) harbored these copy number alterations plus a third discrete loss of Chr. 

11q.  Two EpCAM high cells lacked any apparent copy number alteration, and one EpCAM high cell had a more aberrant 

series of genome-wide chromosomal losses.  The observed Chr.13 and 16q/17p loss is consistent with reported copy 

number alteration in multiple stages of DCIS advancement32 and coincides with the loss of the prototypical tumor 

suppressor genes BRCA2, RB1 and TP53.  Interestingly, we observed gain of Chr. 13p, a heterochromatic “stalk” devoid 

of genes in 10/20 EpCAM high cells, and Chr. X gain of unknown significance in 2 EpCAM high cells and 1 EpCAM low cell 

encompassing the centromere and flanking p and q arm segments. Even with this relatively small cohort of single cells, 

these data highlight copy number heterogeneity of the primary sample. 

Identification of an oncogenic PIK3CA mutation 
 Prior to genome-wide unbiased assessment of SNV, we assessed exons of the PIK3CA gene, one of the most 

frequently mutated genes across diverse molecular subtypes of breast cancer.  We identified the missense mutation 

N345K in 14/18 EpCAM high cells (Figure 10c).  N345K is second only to H1047R amongst PIK3CA hotspot mutations 

catalogued by TCGA33 and is known to influence the interaction of the p85 (PIK3R1) regulatory/p110 (PIK3CA) catalytic 

subunits by disruption of the C2/iSH2 domain interface34–36.  The oncogenic N345K mutation was detected only in the 

single cells where CNV was observed; initially suggesting that we stratified the relevant ductal epithelial cells with our 

FACS strategy and the two cells lacking CNV + PIK3CA N345K either harbored other genomic variation or were a different 

cell type—requiring the RNA arm of the ResolveOME protocol to further distinguish between the possibilities. 
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Single nucleotide variation in DCIS/IDC  
 We then performed variant filtering to identify novel candidate oncogenic SNVs.  As validation of our filtering 

strategy, PIK3CA N345K was identified in the 14/16 cells harboring 11q, 13, 16q/17p copy number loss.  We did not 

detect coding sequence mutation in additional candidate genes known to be influential in ER+ breast cancer37 

(Supplementary Figure 4).  We thus subsequently cataloged variation that existed in the EpCAM high cells but that was 

not present in the EpCAM low cells (Supplementary Table 5).  Analogous to our MOLM-13 model of quizartinib 

resistance, we noted extensive intergenic genomic SNV in EpCAM high vs. EpCAM low cells. 

Cell identity and transcriptional state of DCIS/IDC singulated cells 
Of noteworthy utility in a combined genomic/transcriptomic single-cell assay is the capability to link genotype to 

identity of cell type and to inference of cell state.  This was critical in the interpretation of the observed CNV and PIK3CA 

single-cell DCIS/IDC genotypes due to the difficulty in designing a FACS marker schema that unambiguously identifies the 

ductal epithelial cells of interest from surrounding stromal cells and infiltrating immune cells.  Gene expression profiles 

of EpCAM high and EpCAM low cells separated by principal component analysis (Figure 10a) using the PAM50 gene set 

of genes influential in diverse subtypes of breast cancer38 (Figure 10b).  Differential gene expression analysis highlighted 

gene signature blocks between two primary clades: a cluster of exclusively EpCAM high cells, and a cluster comprised of 

all EpCAM low cells intermixed with 4 EpCAM high cells (Figure 10c).  Initial ascertainment of transcripts defining the 

EpCAM low cells revealed enrichment of in IL-2 and CD4 T cell-defining gene sets, suggesting that these cells may be 

tumor infiltrating lymphocytes present in this patient’s singulated tumor sample.  However, further rigor into 

transcriptome-based cellular annotation with Human Cell Atlas data (See Methods) parsed the EpCAM low cells into 

stem-cell like, endothelial, fibroblastic and monocyte identities/states (Figures 10b-e) which was independent of 

transcript count (Figure 10a).  Four outlier EpCAM high cells exhibited a gene expression signature such that they were 

placed in the same root clade of the dendrogram as the EpCAM low cells.  We identified these cells as having two 

distinct identities/states: epithelial and monocytic.  Intriguingly, while all EpCAM low cells lacked PIK3CA N345K or 

characteristic DCIS copy number loss, the EpCAM high cell in the EpCAM low gene expression signature clade with 

epithelial identity harbored both of these genomic alterations. This is suggestive of a plasticity of cell state of a ductal 

epithelial cell and the acquisition of phenotype with stemness attributes as suggested by cell annotation profiles more 

closely matching tissue stem cell or fibroblast identities (Figure 10d).  One outlier EpCAM high cell in the EpCAM low 
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clade lacked oncogenic PIK3CA mutations and the prototypical DCIS chromosomal losses and displayed a monocytic 

gene expression profile.  For this instance, it is suggestive of infiltration of monocytes in the sample, although we cannot 

formally exclude the possibility of cell state change of a malignant or benign ductal epithelial cell or infiltration of 

monocytes in the sample. Furthermore, one putative epithelial cell in this outlier EpCAM high class, although differing 

from the prototypical DCIS chromosome losses observed in the main EpCAM high clade, harbored a grossly aberrant 

CNV profile and may represent a malignant cell.  Our examples of putative plasticity of phenotypic cell state with regard 

to oncogenicity warrant ResolveOME analysis of additional cells to determine the frequency of this cell state in the 

sample or whether it represents stochastic genomic variation that did not persist or was not selected for in the 

population.  Collectively, these data suggest profiling a cell at the transcriptome level only could lead to an incorrect cell 

classification and underscores that understanding both RNA and DNA -omic tiers is critical to provide proper 

classification.  

Holistic view of MOLM-13 and DCIS/IDC single-cell molecular signatures 
Having in succession determined CNV, SNV and transcriptional insights in both the MOLM-13 model of drug 

resistance and in primary DCIS/IDC it was critical to begin to amass and graphically present interrelationships between 

the “-omic” layers of data.  For MOLM-13, we identified a secondary driver mutation likely affecting drug binding in all 

single cells yet provided evidence for concurrent transcriptional bypass of FLT3 signaling, highlighting the importance of 

ascertaining both DNA and RNA-driven mechanisms of resistance in the same cells.   

For primary DCIS/IDC, unification of DNA-level and RNA-level data allows the interpretation of genotypes in the 

context of expression signatures defining cell type and cell state.  Harnessing these layers of molecular information in a 

heat map/dendrogram quickly conveys the finding that EpCAM expressing ductal epithelial cells harbor both 

prototypical copy number losses and an oncogenic PIK3CA mutation while EpCAM low cells with alternative identities by 

transcriptomic profile from the same singulated cell sample lack chromosomal loss and this mutation (Figure 10d).  Yet, 

cell identification cannot be unambiguously assessed solely by EpCAM FACS protein levels but in leveraging more 

contemporary cellular annotation methods, we see that IDs can be objectively identified that match the cell’s known 

biological origin or reflect a cell state transition. 
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DISCUSSION 
Each “-omic” tier of molecular information allows a greater ability to comprehensively define the molecular 

mechanisms of oncogenesis and drug resistance in a tumor.  In the single cell tumor biology arena, most work to date 

has been performed at the transcriptome level, owing to the large-scale adoption of droplet-based methodology 

facilitating workflow ease and single-cell throughput.  While there has been unquestionable advance from droplet-based 

RNA-Seq studies defining diversity and heterogeneity in transcriptional states including those states defined 

longitudinally, a gap remains in that there have been few studies providing concurrent genomic data with the gene 

expression data.  This is critical for multiple reasons.  Firstly, in the absence of DNA-level information, genomic 

contributions to the transcriptional or phenotypic state cannot be discerned, such as genomic mutation or variation in 

regulatory elements, in transcription factors, or in chromosomal copy number, each of which has the potential to define 

transcriptional state. Thus, prior studies have had obvious limitations in resolving the critical link between DNA and 

transcriptional changes.  Secondly, while transcript-level information is frequently employed for molecular subtyping of 

a tumor38,39, pharmacological decisions are primarily driven by genomic variation, due to technical and informatics 

challenges with ascertainment by transcriptional status40.  This may, in part, explain why tumor DNA molecular data 

provides imperfect prediction of treatment sensitivity.    

Coupling single-cell genomic and transcriptomic information has been hitherto limited due to technical 

challenges of integrating the RNA and DNA amplification steps.  Additionally, in instances where this incompatibility has  

been overcome, existing methodologies for the amplification of single cell genomes have been employed and thus the 

shortcomings of incomplete genome coverage, poor coverage uniformity, and less optimal allelic balance have 

accompanied these joint RNA/DNA protocols.  G&Tseq, for example, empowered researchers with transcriptional data 

of single cells paired with multiple displacement amplification for DNA level information5.  This has facilitated multi-omic 

insights at primarily the transcriptome + copy number alteration level due to the incomplete genome amplification 

inherent with MDA or PicoPLEX, precluding SNV analysis.  We designed the ResolveOME chemistry to overcome this 

limitation by unifying primary template-directed amplification with RNA sequencing in single cells and show its utility by 

cataloging putative regulatory SNVs affecting gene expression. 
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The ability to define cell identity and cell state at the single cell level is one chief strength of ResolveOME.  While 

some FACS strategies may sufficiently stratify cell types within a heterogenous sample, one does not always a priori have 

this biomarker knowledge, and even in the presence of this knowledge we have observed outlier sorted cells where we 

fail to detect concordant mRNA levels despite the cells being gated on high levels of the corresponding protein 

biomarker.  Thus, joint RNA/DNA single-cell profiling has enabled us here to spotlight instances of diverse, non-epithelial 

cell types in our primary breast cancer sample, preventing the false interpretation of a ductal epithelial cell lacking 

prototypical copy number alteration or key oncogenic missense mutations when in fact the lack of genomic variation is 

due to the cell type being assayed.  When armed with joint genomic and transcriptomic information, cell type tumor 

heterogeneity manifesting in FACS can now be exploited, for example, to understand the contributions of the genome 

variation of a monocyte to the interaction of the malignant epithelial cell in the given microenvironment, as opposed to 

considering the monocytes as contaminating the epithelial population of interest in this instance. 

Beyond characterizing cell identity with ResolveOME, we identified a continuum and heterogeneity of cell state 

within a breast tumor specimen at unprecedented resolution. An intermediate transcriptional profile emerged between 

that of the EpCAM low single cell cohort and that of the core cohort of EpCAM high epithelial cells.  This profile was 

intriguingly observed in an EpCAM high cell that harbored PIK3CA N345K and DCIS-characteristic chromosomal losses, 

thus having the core genomic changes of the main epithelial cell cohort.  Nevertheless, it manifested with a different 

transcriptional stem-like state—indicating a potential state conversion41 as well as highlighting inherent transcriptional 

single-cell heterogeneity even within a relatively small sampling of a singulated tumor sample. It will be crucial to 

determine the prevalence of this cell state as more cells of this sample are sequenced, as well as to define the diversity 

of additional novel transcriptional states that may be contributing to the advancement of DCIS to invasive cancer.  

ResolveOME importantly provides the ability to link these diverse transcriptional cell states to genotype (Figure 8a). 

A second chief strength of ResolveOME is to provide the attributes of primary template-directed amplification to 

allow comprehensive genomic assessment vs. the sole ascertainment of a small number of candidate loci or copy 

number alterations of a broad level of resolution.  This enablement of SNV detection with high sensitivity and precision 

over >95%1 of the genome opens a new realm of discovery.  PTA in the ResolveOME workflow opens up a new source of 

pharmacological targets with genome-wide data and non-exonic space not possible with existing WGA methodologies 
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with low genomic coverage and uniformity. We were struck by the single nucleotide variation present in our parental vs. 

quizartinib resistant MOLM-13 cells (6444 differentially prevalent SNVs, Figure 6, Supplementary Tables 2-3), which 

further underscores that, while transcriptional plasticity is dogmatic, it is equally as important to recognize genome 

plasticity observed in this model.  Furthermore, while there will be a background of passenger mutation or mutation 

currently not pharmacologically targetable; we put forth that this diversity must be ultimately ascertained and represent 

a co-evolution of variants for a functional, biologically relevant phenotypic output.  Efforts to estimate intergenic 

variation at putative functional elements—promoters, enhancers, splicing enhancers—is a frontier and an 

underappreciated aspect of drug resistance studies.  The candidate regulatory single nucleotide variation we identified 

proximal to differentially expressed genes of interest in our parental vs. resistant cells will require obligate functional 

characterization, but as the cost of genome sequencing begins to plummet, these data and their associated biological 

insights will necessarily begin to accumulate.  For discovery, dual genome/transcriptome ascertainment from single cells 

not only expedites the generation of candidate regulatory SNV links to transcript modulation but unveils connections 

obscured by bulk sequencing data. 

Both our engineered model of drug resistance in AML and analysis of a primary DCIS/IDC sample have yielded 

single nucleotide variation that would be predicted, at the outset, to have a deleterious effect on protein function.  

Frameshift and stop codon gain mutations observed in the single cell genomes of our samples represented an unbiased 

starting point for the discovery of novel oncogenic and drug resistance loci beyond ascertainment of known candidate 

genes.  Yet, coupling transcriptional information from the same cell revealed that, for some of these novel genomic 

variants of purported deleterious effect, the single cells did not express the corresponding transcript—indicating the 

genomic change was passenger or stochastic in nature and not functional. Understanding this genomic variant 

“penetrance” in terms of manifesting at the transcriptional level is a fundamental capability of ResolveOME, and in our 

initial sample sets redirected or nullified multiple hypotheses.   

In addition to binary “expressed or not expressed” decisions, dual DNA/RNA information assisted in directing 

hypotheses of molecular mechanism.  CEBPA, an enhancer factor42 significantly upregulated in our quizartinib-resistant 

single MOLM-13 cohort, resides on Chr. 19q, where four resistant cells harbored 2n to 3n genomic gain of 19q.  A 

parsimonious initial hypothesis is that genomic amplification of 19q contributed to the observed transcript upregulation, 
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however the CEBPA transcript upregulation was observed in all resistant cells, and did not show a correlation with the 

single cells that harbored genomic amplification of 19q (Figure 7c).  This suggests that an alternative mechanism of 

epigenetic control was at play for this upregulated gene, perhaps via modulation of a transcription factor or an 

enhancer-level phenomenon that was purported by the SNV between parental and resistant cells proximal to the CEBPA 

gene.  More broadly, while we identified statistically significant associations between ploidy and expression of a specific 

cohort of genes (Figure 7d), we found that there was no such association for most loci.  Collectively, these examples 

illustrate the criticality of paired RNA information when positing mechanisms based on genomic data alone and caution 

that the “penetrance” of the change needs to be ascertained.  Conversely, we have identified important correlations 

between SNV and the expression of a proximal gene, as with the oncogenic driver MYC (Figures 8a,c), highlighting 

instances whereby DNA and RNA information are likely to be functionally linked.   

The enablement of simultaneous genomic and transcriptomic data from the same individual cell vastly increases 

the complexity of putative mechanisms of drug resistance and oncogenesis.  This will only increase as additional “-omic” 

tiers of layers are added, including ascertainment of extracellular protein expression as the nature of ResolveOME 

template-switching cDNA chemistry allows for the incorporation of CITE-seq-like43 oligo-tagged antibodies.  These data 

will be complex, requiring development of novel sophisticated bioinformatics tools.  However, we envision mechanistic 

insights analogous to those presented here to accumulate from the research community having the newfound ability to 

accurately assess single nucleotide genomic variation in conjunction with transcriptional profiles—aiding discovery 

efforts to generate a new wealth and generation of pharmacological targets. 

METHODS 
Cell Culture 
NA12878 cells (CEPH/Utah Pedigree 1463) were obtained from the Coriell Institute for Medical Research (Camden, NJ).  

Cells were maintained in RPMI 1640 (Gibco 11875-093) supplemented with 15% FBS and penicillin/streptomycin, and 

sub-cultured every 2-3 days while maintaining a density range of 1.0-3.0 E6/ml. 

MOLM-13 acute myeloid leukemia cells harboring heterozygous FLT3 internal tandem duplication (ITD) were obtained 

from the DSMZ-German Collection of Microorganisms and Cell Cultures (ACC 554). Cells were maintained in RPMI 1640 

(Gibco 11875-093) supplemented with 10% FBS and penicillin/streptomycin, and sub-cultured every 2-3 days while 
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maintaining a density range of 2.5 E5 – 1.5 E6 cells/ml. For generation of the quizartinib-resistant MOLM-13 line, cells 

were continually treated with 2 nM quizartinib (Selleckchem AC220) or DMSO vehicle control for matched parental 

control line and drug replenished at each subculturing until emergence of resistant clones at 5 weeks duration in culture. 

Genomic DNA (Zymo Research Quick-DNA Microprep w\Plus Kit, D3020) or total RNA (Qiagen RNeasy Plus Kit, 74034) 

was isolated from quizartinib-resistant and matched parental MOLM-13 cells at time of FACS sorting to generate bulk 

sequencing control libraries for comparison to single cell datasets and for quantitative PCR template. 

ResolveOME Workflow 
ResolveOME begins with template-switching-based RNA-Seq chemistry to generate biotin-dT-primed, first strand cDNA 

followed by termination of the reaction and nuclear lysis, at which point primary template-directed amplification 

proceeds.  The mRNA-derived cDNA is affinity purified with streptavidin beads from the combined pool of cDNA and 

amplified genome. cDNAs are then further purified with subsequent streptavidin bead washes of two stringencies and 

on-bead pre-amplification of the first-strand cDNA to yield double-stranded cDNA.  In parallel, the PTA fraction from the 

same cell containing genome amplification products, separated from the cDNA, is purified.  The separate and distinct 

fractions of pre-amplified mRNA cDNA and genome-derived DNA amplification fractions undergo SPRI cleanup prior to  

NGS library are generation. 

Karyotyping 
MOLM-13 cells were analyzed within 2 weeks of thaw (KaryoLogic, Inc, Durham, NC) with a workflow for complex 

hyperdiploid karyotypes using 25 metaphase spreads.  Live cultures were delivered to the service provider on-site and 

cultures recovered in 5% CO2 37C incubators on-site for one week prior to metaphase spread creation. 

FACS 
Prior to FACS, cell lines were first counted and assessed for overall viability by trypan blue staining using a Countess II FL 

instrument (ThermoFisher Scientific) or by acridine orange + propidium iodide with a Luna FL instrument (Logos 

Biosystems).  Cell line cultures put forth to the FACS protocol exhibited >90% viability. 

MOLM-13 
For single cell analysis, ~2.0E6 MOLM-13 quizartinib-resistant or matched parental cells were rinsed twice in 

staining buffer (0.2 µm filtered Dulbecco’s Phosphate Buffered Saline lacking calcium and magnesium (Gibco 14190) 

supplemented with 2% FBS) and kept on ice until BD FACSAria III sorting at the UNC School of Medicine Flow Cytometry 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489440doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.29.489440
http://creativecommons.org/licenses/by-nc-nd/4.0/


Core Facility.  Following Calcein AM (BioLegend 425201), propidium iodide (Millipore Sigma P4864) and DAPI staining, 

singlet (FSC-A / FSH-H, SSC-A / SSC-W)  and live cell (DAPI/PI negative, top 70% Calcein-AM positive) gating was 

established and single cells were sorted (130 micron nozzle assembly) into low-bind 96 well PCR plates (Eppendorf 

twin.tec LoBind, semi-skirted, 0030129504) containing ResolveOME Cell Buffer and immediately frozen on dry ice 

following brief mixing (1400 rpm, 10 sec) and centrifugation. 

NA12878 
~2.5E6 NA12878 (NA12878/HG001) cells were prepared as above and subjected to Sony SH800 sorting using a 

130 micron chip.  Singlet (FSC-A / FSC-H, BSC-A / BSC-W) and live-cell (PI negative, top 70% Calcein-AM positive) gating 

was employed for single cell sorting into low-bind 96 well PCR plates pre-loaded with ResolveOME Cell Buffer as 

described above. 

Primary DCIS/IDC 
Tissue for single-cell DCIS/IDC studies was obtained in accordance with the Duke University Medical Center IRB 

for the clinical trial PRO00034242 “Biologic Characterization of the Breast Cancer Tumor Microenvironment.”  Cryo-

preserved, singulated cells (~4.2E5) derived from mastectomy tissue were thawed at 37C and centrifuged at 350 x g for 5 

min to separate cryo-preservation media.  Cells were rinsed once in staining buffer and incubated with 2 µg/ml anti-

human CD326 conjugated with AlexaFluor 700 (ThermoFisher 56-9326-42) at 4C in the dark for 1h.  Following this, 

~8.4E4 cells were reserved for a parallel negative control mock stain lacking any antibody for assessment of background 

fluorescence levels for viability and EpCAM staining.  Then cells were washed 3X with staining buffer with 350 x g 5 min 

centrifugations in between washes and passed through a 35 micron filter prior to loading for FACS. Singlet (FSC-A / FSC-

H, BSC-A / BSC-W) and live-cell (Calcein AM) gating was defined followed by daughter EpCAM high and EpCAM low 

gates.  EpCAM High and Low cells were sorted into the same 96 well plates as described above for to minimize potential 

batch effects of downstream genomic/transcriptomic amplification. 

Quantitative RT-PCR 
10 ng of genomic DNA was isolated from a cell collection of quizartinib-resistant or matched parental cells as described 

above and subjected to a custom Taqman™ genotyping assay, #ANMF9C4 (Invitrogen-Applied Biosystems) using the 

manufacturer’s suggested conditions for reaction assembly and cycling on a QuantStudio6 instrument.  The assay was 
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designed to distinguish between human N841 and K841 with the C/A nucleotide polymorphism, respectively at the 

GRCh38 / hg38 coordinate Chr13:28,018,485.  

Combined genomic/transcriptomic analysis 
Firstly, biotin-conjugated oligo dT primer (Integrated DNA Technologies) was utilized in a template-switching reverse 

transcription reaction to generate first-strand cDNA from single cells. Primary Template-directed Amplification (PTA) 

with ResolveDNA reagents was performed in succession following reverse transcription. First-strand cDNA was then 

affinity-purified using ResolveOME streptavidin beads and subjected to two high-salt washes followed by one low-salt 

wash. 24-cycles of pre-amplification was performed to generate 2nd strand cDNA and RNA sequencing libraries were 

prepared using the ResolveOME RNA library preparation module.  For preparation of PTA libraries, PTA product not 

bound to streptavidin beads was purified using BioSkryb ResolveDNA beads and ligated to full-length IDT for Illumina 

TruSeq adapters using the ResolveOME DNA library preparation module.  Sizing for both RNA and DNA amplification 

products was determined by D5000 TapeStation electrophoresis (Agilent Technologies) while library preparation sizing 

was determined by HS D1000 electrophoresis.   Amplification and library yield was assessed by Qubit 3 or Qubit Flex 

instrumentation (ThermoFisher Scientific).  

Sequencing 
Low-pass sequencing was first performed on ResolveOME DNA fraction libraries using an Illumina MiniSeq (2.3 pM 

library flow cell loading concentration) or NextSeq1000 (640pM library flow cell loading concentration), 2X75 targeting 

>2.0E6 total reads per library.  For RNA fraction libraries, 2X75 MiniSeq or NextSeq1000 sequencing targeting on average 

>1.0E6 reads per library was employed for flexibility for data down-sampling.  For joint clustering of ResolveOME DNA 

and RNA fraction libraries, a 10:1 molar ratio of [DNA arm]:[RNA arm] libraries was employed.  Following low-pass 

sequencing, ResolveOME DNA arm libraries were 2X150 sequenced on an Illumina NovaSeq6000 S4 flow cell targeting 

5.5 E8 total reads to provide down-sampling flexibility at either the Vanderbilt Technologies for Advanced Genomics 

(VANTAGE) core facility or the Duke University Genomics and Computational Biology (GCB) core facility. 

Bioinformatics Approaches 
 Pre-sequencing Quality Control 

Single cell libraries were evaluated utilizing an internal pre- sequencing pipeline that leverages low-pass 

sequencing data to create multiple quality control metrics to assist in evaluating the single-cell libraries readiness for 

high-throughput sequencing.  Notably we retrieved the PreSeq count to estimate library complexity. This pipeline 
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features additional QC metrics for genomic coverage, percent of reads mapping to chimeras, percent of reads aligned to 

the reference genome, and percent of nucleotides mismatched to the reference genome. Additionally, the pipeline 

implements MultiQC for supplementary QC metrics including read length, percent of duplicate reads, number of 

mapped reads, and total number of mapped reads. 

 Benchmarking RNA-Seq results 
To establish overall benchmarking scores of ResolveOME multi-omic amplification approach, quality control was 

performed pre- and post-sequencing on Human Brain Reference RNA (HBRR), Universal Human Reference RNA (UHRR), 

and NA12878 B-lymphocyte cells.  We considered several metrics: percent mapping, gene detection, dynamic range of 

expression, and coefficient of variation for measuring DNA leakage, accuracy, and robustness of this methodology. For 

each cell the total alignments, reads aligned, and genomic feature alignments were quantified using the Qualimap44 

(v2.2.2) platform for reporting QC metrics and bias estimations of whole transcriptome sequencing data. Furthermore, 

the platform enables detection of outlier cells, relative consistent performance patterns among these cells, and 

potential batch or other systematic artifacts that are not apparent when evaluating individual cells in isolation. Using 

metrics produced from Qualimap findings, we computed the percent mapping of total alignments as well as the percent 

exonic and intergenic of genomic alignments.  Thereafter, we defined the number of genes identified, dynamic range, 

housekeeping gene variability metrics, and observations of expression patterns in housekeeping genes for each 

reference cell line, using counts per million (CPM) normalized gene expression counts. Gene detected is defined at the 

number of genes with non-zero counts in each cell. The dynamic range of all expressed genes was then estimated at 10-

90 percent. As an estimate of sample dispersions and reproducibility, the percent coefficient of variation (CV) was 

calculated as a ratio of standard deviation to mean: CV = . We calculated the median absolute deviation (MAD) as a 

robust measure of variability between housekeeping genes. This is defined as the median of the absolute deviations 

from the median (m): MAD= median(|xi-m|). 

 Secondary Analysis Pipelines 
For the DNA-based analyses coming from the genomic fraction of ResolveOME, we leveraged an internal 

analytics pipeline modified from Sentieon driver-based tools.  Initial FASTQ pairs were trimmed against low quality and 

library artifacts using fastp45 (v0.20.1) Alignment was performed using BWA (Sentieon-202112), followed by 

deduplication (locus_collector v202112 / dedup v202112 ) of identically-aligned reads.  Alignment-based QC and 
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coverage determination was (driver_metrics v202010).  Copy number calling was performed using ginko46 (GitHub 

commit: 892b2e9f851f71a491cade6297f74f09f17acf4c), with a  window size of 500kb.  Variant calling at the cell level 

was performed with haplotyper (v202010). Characteristics for all variants was provided for variant quality score 

recalibration to VARcall, GVCFtyper (v202010).  All variant identification and annotations for gene/coding effect were 

performed using snpEFF/SnpSIFT47 (5.0e).  Further variant-based tertiary analysis used filtered genomic loci with 

sequencing depths >4 and >1 variant read candidate SNVs. All candidate SNVs were classified according to allele 

frequencies. 

The RNA-Seq pipeline implemented here was used to generate metrics of feature quantification at the transcript 

and gene-level.  Details about the number and length of reads generated is found in Supplemental Table 1 for the DNA 

arm (a) and RNA arm (b).  Unless specified to be down-sampled (using seqtk48 v1.3), all reads were leveraged for each 

analysis. To remove low quality sections and sequencing artifacts, fastp was used for all cells’ analysis prior to alignment.  

Alignment of reads was performed with STAR 49(v 2.7.6a) and were compared against transcript reference made from 

combining Ensembl50 (release 104) known transcripts and noncoding.  Region assignment and counting of aligned reads 

was performed with HTSeq4949 (v 0.13.5) and Salmon5050 (v1.6.0) for gene-level metrics.  Further, we used the 

pseudo-alignment algorithm implemented in Salmon to perform both transcript-level and gene-level quantification. 

Matrices of feature expression were constructed using the Bioconductor package tximport.    

 Tertiary Analysis 
Bulk dataset identification 

We identified several datasets in the Short Read Archive (SRA) that had bulk NA12878 in mRNA-stranded RNA 

library preparation methods that most closely resembled our own ResolveOME approach.  To handle variation of an 

individual dataset, we wanted to capture at least 10 datasets that could represent transcriptome coverage of NA12878 

and the full list is provided in Supplementary Data 1. 

Variant evaluation in NA12878 cells 
For the NA12878 cells, first we performed joint genotyping across them utilizing the GVCFTyper, VarCal and 

ApplyVarCal modules from Sentieon.  Then, inputting the re-calibrated variants and evaluating the variant quality score 

log-odds (VQSLOD),  we determined the precision and sensitivity of called SNPs by employing the vcfeval module from 
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the RTG tools using as reference the NA12878/HG001 genome v.3.3.251 from the Genome in a bottle (GIAB) 

consortium52.  

Allelic balance in NA12878 cells  
Allelic balance for NA12878 cells was calculated using an ad hoc developed module based on a series of bcftools 

commands that extract the a priori defined high confident heterozygous sites, reported in GIAB NA12878/HG001 

genome v.3.3.2, from all sequenced NA12878 cells. Then, for each cell and for each heterozygous site, variant allele 

depth is extracted and converted into proportion.  For final reporting, heterozygous sites with at least a total depth >1 

are used.  

RNA arm: Matrix normalization  
For MOLM-13 and DCIS cells, their corresponding Salmon-based transcript and gene matrices were normalized 

across features utilizing the log norm method. Briefly, feature counts for each cell are divided by the total counts for that 

cell, multiplied by the scale factor (104 ) whose products is finally log2 transformed. These normalized matrices served as 

input for downstream analysis including, principal component analysis (PCA), differential transcript expression (DTE), 

differential gene expression (DGE), differential transcript usage (DTU), heatmap reconstruction including unsupervised 

clustering of cells and transcripts/genes and zero inflated linear models linking transcript expression to CNV and SNVs. 

Principal Component Analysis   
MOLM-13 and DCIS normalized transcript level and gene level matrices we centered across samples within a 

feature using the R function scale. Further, principal component analysis was computed using the oh.pca function from 

the ohchibi R package taking as input the centered normalized matrices.   

Differential Expression  
We estimated differential transcript expression and differential gene expression leveraging the zero-inflated 

linear model (ZLM) implemented in the MAST53 R package taking as input the log normalized feature matrices described 

above. For the MOLM-13 dataset, we fitted the following model to identify transcripts/genes that had signatures of 

differential expression across parental and resistant cells: Transcript/Gene expression ~ Cell Type (Parental/Resistant) + 

Number of detected features (transcripts/genes) per cell 

For the DCIS dataset, first we performed principal component analysis using the top 500 most highly variable 

genes across the dataset and then split the cells into three groups using the PCA projection as guidance. We used this 
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three group scheme to discretize, in an unbiased way the cellular heterogeneity within EpCAM High and EpCAM Low 

treatment. After dividing the cells into three groups we fitted the following ZLM to identify transcripts/genes that had 

signatures of differential expression across the aforementioned groups: Transcript/Gene expression ~ Cell Group + 

Number of detected features (transcripts/genes) per cell 

Cellular typing  
Transcriptome-based cellular typing was performed for the DCIS dataset using the R package SingleR54 utilizing 

the Human Primary Cell Atlas expression reference dataset deposited in the celldex54 R package and taking as input the 

gene level normalized expression salmon-based matrix.  

Differential transcript usage 
For the MOLM-13 dataset, we performed differential transcript usage as previously described55 . Briefly, we took 

the scaledTPM metric output from tximport and reconstructed a matrix of transcript abundances across cells. Next, we 

modeled the transcript expression using the Dirichlet-multinomial distribution model implemented in the DRIMSeq R 

package56. 

Linking transcript expression to CNV 
For the MOLM-13 dataset, we linked transcript-level variation in expression with changes in locus ploidy utilizing 

a zero-inflated linear model framework. Briefly, for each quantified transcript, we extracted its ploidy across cells from 

the Ginkgo-based estimation by employing genomic-coordinate intersection utilizing the GenomicRanges R package57. 

Next, we fitted the following ZLM design utilizing the MAST R package: Transcript expression ~ Estimated ploidy at a 

given locus 

Linking transcript expression to genomic polymorphisms 
For the MOLM-13 dataset, we linked transcript-level variation in expression with single nucleotide variations 

across the genome utilizing a zero inflated linear model framework. Briefly, first we paired the genomic coordinates of 

SNVs with transcripts utilizing genomic-coordinate intersection via the GenomicRanges R package. With respect to the 

transcript-coordinates, we used the Ensembl reported transcript start and transcript end  to define the gene-body of a 

transcript, in addition we took the 5000 bps upstream of the Ensembl reported transcription start site (TSS) to define 

potential cis-regulatory regions affecting the that transcript. After defining the corresponding SNV-Transcripts pairs, we 

constructed a matrix of expression and genotype locus (SNV) across all cells. Finally, utilizing this matrix, we fitted a zero-

inflated linear model using the MAST R package with the following design: Transcript expression ~ Genotype 
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We utilized the GSEA-R tool in conjunction with the molecular signatures database (MSigDB) to conduct a 

systematic examination of enriched gene sets connected to differentially expressed genes across Molm-13 parental and 

resistant cells as well as significant SNVs. In addition, we utilized the Reactome Pathways database to find relevant 

pathways among these genes using a default adjusted p-value of 0.10. 

Significant Variant Testing 
For identification of differential SNV’s between MOLM-13 P and R cells, we generated categorical variables for 

diploidy status and compared with chi-square test. Two-sided p-values less than 0.05 were considered significant. In 

addition, we fitted a multinomial logistic regression to identify differences in SNV prevalence across the parental and 

resistant MOLM-13 types. Specifically, for each SNP, we encoded the three states genotype (0/0, 0/1, 1/1) as dependent 

variable and the MOLM-13 type (parental, resistant) as independent variable. Significance of the model was tested using 

a Wald Test.  
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FIGURE LEGENDS 
Figure 1. ResolveOME workflow.  
a.) The high-level workflow of enrichment and preparation of simultaneous RNA and DNA from a single cell 

and b.) the amplification yields of ResolveOME.  The yields of RNA and DNA isolated (in ng) for each cell used 

in this study.  Samples where purification by streptavidin beads was omitted are highlighted in orange. 

Figure 2.  Performance characteristics of ResolveOME. 
a.) ResolveOME (green) and ResolveDNA (orange) allelic balance in control (NA12878) is shown in deciles of 

observed allele frequency (AF) across known heterozygous positions.  Each dot represents the proportion of 

variants that showed an AF within the bin frequency for a given cell. Barplots with error bars describe general 

trend for all cell-replicates for each AF bin.  Allelic dropouts are called when AF is < 0.1 or > 0.9. b.) A 

cumulative genomic coverage plot for each sample type performed on ResolveOME, showing the proportion 

of the entire genome covered (y-axis) at a given depth (x-axis).  Each dot represents a cell replicate within a 

dataset and error plots denote the variability of coverage at a given depth. c) SNV calling sensitivity (y-axis) 

and precision (x-axis), with respect to GIAB NA12878 reference dataset, across the two chemistries 
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(ResolveDNA, salmon, ResolveOME, turquoise) are shown with both axes having a minimum range of 0.9 and 

0.99, respectively. 

Figure 3.  ResolveOME transcriptome performance. 
a.) Summarized coverage plots for all detected transcripts across the full-length chemistry (top).  X axis is a 

normalized fraction of a transcript from 5’ to 3’, breaking regions into mean depth per percentile of transcript 

and y-axis are counts.  Distribution of counts across coding sequence of two known housekeeping genes: 

GAPDH and ACTB (bottom). b.) The proportion (averaged across all biosamples of a group) of aligned reads 

that matches a specific transcript feature or RNA species is reported for each dataset.  Features and 

proportions were derived from Qualimap summarizations of our transcriptome definition file.  NA12878 cells 

were leveraged except for the MOLM-13/DCIS plots.  Bulk data was pulled from online repository to serve as 

reference from typical RNA-Seq.  c.)  Various RNA quality control metrics are displayed for the UHRR and HBRR 

RNA controls alongside the NA12878 controls used in this study.  Clockwise from the top left, the distribution 

of reads assigned to transcriptome, coding region features, unique genes detected, ranges of counts per 

million (CPM) and the median absolute deviation (MAD) of common housekeeping genes. d.)  Expressed 

protein-coding genes detected with ResolveOME chemistry compared to bulk preparation with the same 

workflow. Number of uniquely expressed genes across a diversity of cell line models and a primary DCIS 

patient sample.  All sample sets were down-sampled to 75,000 reads. 

Figure 4. Copy number profiles of MOLM-13 cells. 
a.)  Copy number alterations of individual MOLM-13 cells (rows) from parental (turquoise) and resistant 

(salmon) cells using a bin size of 500kb with Ginkgo.  Dendrogram was generated based on distance of each 

bin’s average fold change from 2N.  b.): Representative metaphase spread of 25 total karyotypic spreads.  Red 

circles denote abnormally amplified chromosomes. 

Figure 5. FLT3 mutational characterization of MOLM-13 cells 

 a.) Genome views showing detection of mutual FLT3 ITD mutation in parental and quizartinib-resistant single 

cells. b.) Genome views of FLT3 secondary mutation N841K exclusively in quizartinib-resistant cells. c.): qRT-

PCR detection of mutant FLT3 K841 in treatment-naïve parental cells.  Cycling traces of FLT3 N841 (blue) and 

K841 (red) in MOLM-13 parental and quizartinib-resistant cells are shown.   

Figure 6. Differential parental and resistant MOLM-13 genotypes. 

Heatmap of SNVs showing statistically significant (p < 0.05 by multinomial logistic regression) genotype 

prevalence across the MOLM-13 parental and resistant cells. Columns represent cells and rows SNV ids. Color 
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within the tiles represent the called genotypes. Both rows and columns were subjected to unsupervised 

hierarchical clustering. 

 
Figure 7. Distinguishing genotypic and transcriptomic characteristics between MOLM-13 parental and 
resistant cells. 
a.) Scatterplot showing the principal coordinate projection (PCA) of 28,134 SNVs that exhibited statistically 

significant (chi-square test, p < 0.05 ) differential prevalence across the two MOLM-13 cohorts, parental 

(turquoise) and resistant (salmon). b.) Clustering of differentially-expressed genes in MOLM-13 model of drug 

resistance.  Parental single cells (turquoise) and quizartinib-resistant (salmon) single cells comprise columns; 

Gene Symbol/Ensembl transcript ID comprise rows.  Biotype and FDR is presented to the right of the heat 

map; red line indicates q < 0.1. c.)  CEBPA/B transcript upregulation in single quizartinib-resistant MOLM-13 

cells.  Each row corresponds to a separate MOLM-13 cell.  Resistant cells that also harbor 19q gains are also 

shown.  d.): Heatmap with transcripts in the y-axis that show a statistical (ZLM p < 0.01) association with 

ploidy level across all cells in the MOLM-13 dataset. Color of the tiles represents the average standardized 

expression value at a given ploidy level. The right panel shown the output of the ZLM model testing the 

expression given the ploidy. Red line indicates the p < 0.05 cutoff of the model. Bars are colored based on the -

log10 p-value of the ZLM model testing transcriptional differences between parental and resistant cells. e.) 

Example of differential transcript utilization (DTU) between MOLM-13 parental and drug-resistant single cells. 

Figure 8.  Correlation of genotype and expression in parental and resistant MOLM-13 cells. 
a.) Bubble plot showing SNV-transcript expression associations (p < 0.05). Top: SNVs within 5000 bases of 

transcriptional start site.  Candidate SNVs are shown in the y-axis and genotypes in the x-axis. Size of the circle 

denotes the genotype prevalence of the variant in the MOLM-13 cell type set (parental or resistant).  Colors of 

points denotes the standardized mean expression level of the transcript in the set.  Lateral bars represent 

significance of the model testing the association between transcript expression and genotype. Red line 

indicates the p < 0.1 cutoff of the model. Bars are colored based on the -log10 p-value of the ZLM model 

testing transcriptional differences between parental and resistant cells.  PABPC4 and MYC are highlighted in 

yellow.  CEBPA SNVs were too distal (>5 kb) from transcriptional start site for significance in this plotting. b.)  

Parental/quizartinib-resistant SNVs proximal to CEBPA genomic locus. Stars denote mutation locations.  

Resistant cells show variant in 60% of cells compared to 11% in the parental line variant ‘chr19:33,333,734 – 

delA’ (middle star).  For ‘chr19:33,361,973 – insA’ we observed no mutations in the parental cells and in 50% 

in quizartinib-resistant cells.  c.) Intronic SNV of MYC gene ‘chr8:127,739,932 G>A’ correlated with increased 

expression in drug-resistant MOLM-13 cells.  d.) Putative promoter variants in PABPC4 ‘chr1:39,579,411 T>G’ 
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& ‘chr1:39,579,413 T>G’ were found in half of the resistant cells only and also associated with differential 

expression between MOLM-13 parental and resistant cells. 

Figure 9.  Copy number analysis of DCIS cells. 
Single-cell copy number alterations in primary DCIS/IDC EpCAM cohorts.  Status of EpCAM presented for 

EpCAM High (yellow) and Low (turquoise).  Two distinct classes of chromosomal loss are observed in EpCAM 

high (yellow) cells: 1) combined 11q, 13q, 16q/17p loss and 2) combined 13q and 16q/17p loss.  Additionally, 

13p gain was identified in 10/20 EpCAM high cells, while Chr. X gain encompassing the centromere and 

flanking P & Q segments was noted in 3 single cells. 

Figure 10. Expression analysis of primary breast cancer single cells. 

 a.) Principal component analysis of EpCAM high (circles) and EpCAM low (diamonds) primary DCIS/IDC 

transcriptomes where cells are colored based on the number of detected transcripts b.) PAM50 gene 

expression stratification of EpCAM high and EpCAM low DCIS/IDC transcriptomes.  c.) Unsupervised clustering 

yields six primary blocks of differential gene expression between EpCAM high and EpCAM low clades.  Average 

ploidy, PIK3CA genotypic status (green=N345 wildtype, pink = K345 heterozygous mutant), and cellular 

identity call are shown for each single cell (column).  Gene biotype and FDR is presented for each transcript 

(row). d.) Prediction of DCIS cell identity/state using Human Cell Atlas data.  Heat map showing identity score 

of diverse cell types (rows) for EpCAM High and EpCAM Low single cells (columns) that were used to identify 

cell annotations.  e.) Overlay of cellular annotation for principal component analysis of DCIS cells.  EpCAM high 

(circles) and EpCAM low (diamonds) single cell transcriptomes, leveraging isoform counts with overlay of cell 

identity/state (colors). 

 

SUPPLEMENTARY DATA 
Table S1: Sequencing metrics for ResolveOME genomic and transcriptomic libraries.   
a.) PreSeq estimation of library complexity is shown along with mitochondrial read percentage as a proxy for 

ascertainment of efficient cell lysis and cell health of ResolveOME DNA material. b.) RNA QC values for 

matched cells from the RNA feature of ResolveOME. 

Table S2: Significant coding variants in quizartinib-resistant vs. parental MOLM-13 cells. 
Positions that showed genotype association (Chi-Sq p-value) to parental vs. drug resistant are shown, but 

filtered for positions within or adjacent to coding sequence.  Adjusted p-values are provided but were not 

filtered.  File sorted for p-value and then by chromosome position.  Cells were grouped according to genotype 

along with gene and transcript-level annotation is shown. 
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Table S3: Significant intergenic variants in quizartinib-resistant vs. parental MOLM-13 cells. 
Positions that showed genotype association (Chi-Sq p-value) to parental vs. drug resistant are shown, but 

filtered for positions outside of coding sequence.  Adjusted p-values are provided but were not filtered.  File 

sorted for p-value and then by chromosome position.  Cells were grouped according to genotype along with 

gene and transcript-level annotation is shown. 

Table S4: MOLM-13 genes with expression levels correlated with ploidy. 
A genome-ordered list of transcripts with shared expression magnitudes within known copy numbers from 

Figure 4a.  Associated Gene IDs and Gene Symbols are provided. 

Table S5: Variants associated with DCIS EpCAM High vs Low. 
Positions that showed genotype association (Chi-Sq p-value) of EpCAM high vs low are shown, but filtered for 

positions outside of coding sequence.  Adjusted p-values are provided but were not filtered.  File sorted for p-

value and then by chromosome position.  Cells were grouped according to genotype along with gene and 

transcript-level annotation is shown. 

 

Figure S1.  Relative growth rates of parental and quizartinib-resistant MOLM-13 cells.   
Counts of cells over culture days after introduction of varying concentrations of quizartinib. 

Figure S2.  Missense variants in parental vs. resistant MOLM-13 cells. 
Variants (rows) identified as significantly associated through logistic regression with drug resistance are 

displayed, along with individual genotypes (0/0=homozygous reference, 0/1=heterozygous, 1/1=homozygous 

alternate, NA=not determined).  Single cells (columns) are presented for parental (left) or resistant (right) 

cohorts.   P value is shown along the right-hand side. 

Figure S3.  Model of transcriptional bypass signaling through AXL upon FLT3 inhibition. 
Schematic illustrating that upon FLT3 inhibition by quizartinib, GAS6, the ligand for the receptor tyrosine 

kinase AXL, is upregulated in resistant MOLM-13 cells to drive growth and survival through PI3 kinase and AKT 

signaling, respectively. 

Figure S4.  Variants associated with DCIS expression groups. 
Variants (rows) identified as significantly associated through logistic regression with expression groups within 

EpCAM-H DCIS cells are shown, along with individual genotypes are shown (0/1=heterozygous, 

1/1=homozygous alternate, NA=not determined).  P value is shown along the right-hand side.  
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SRR15909920: A public-private-academic consortium, Genome-in-a-Bottle (GIAB), hosted 

by NIST to develop reference materials and standards for clinical sequencing. 

https://www.nature.com/articles/s41587-019-0054-x 

ERR356372: Coordinated effects of sequence variation on DNA binding, chromatin 

structure, and transcription. 

https://www.science.org/doi/10.1126/science.1242463?url_ver=Z39.88-

2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed 

SRR1258218: Transcriptome sequencing of a large human family identifies the impact of 

rare non-coding variants. 

https://www.sciencedirect.com/science/article/pii/S0002929714003486#:~:text=Article-

,Transcriptome%20Sequencing%20of%20a%20Large%20Human%20Family,Impact%20of

%20Rare%20Noncoding%20Variants&text=Recent%20and%20rapid%20human%20popu

lation,genetic%20burden%20of%20disease%20risk. 

SRR307005: RNA-Seq in GM12878 (ENCODE Project). 

SRR307006: RNA-Seq in GM12878 (ENCODE Project). 

SRR307007: RNA-Seq in GM12878 (ENCODE Project). 

SRR307008: RNA-Seq in GM12878 (ENCODE Project). 

SRR065532: ENCODE Caltech RNA-seq 

SRR5117664: Analysis of parent-of-origin bias in gene expression levels. 

https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-019-0674-0 

SRR5117665: Analysis of parent-of-origin bias in gene expression levels. 

https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-019-0674-0 

SRR653897: Homo sapiens Transcriptome or Gene expression. 

SRR002055: Pilot ENCODE transcriptome data. 

SRR002063: Pilot ENCODE transcriptome data. 

SRR005091: Pilot ENCODE transcriptome data. 
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SRR002052: Pilot ENCODE transcriptome data. 

SRR002054: Pilot ENCODE transcriptome data. 

SRR002060: Pilot ENCODE transcriptome data. 

SRR065514: ENCODE Caltech RNA-seq 

SRR065515: ENCODE Caltech RNA-seq 

SRR065510: ENCODE Caltech RNA-seq 
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