

1 **Chitin utilization by marine picocyanobacteria and the evolution of a planktonic lifestyle**

2
3
4 Giovanna Capovilla^{†*1}, Rogier Braakman^{†*2}, Gregory Fournier², Thomas Hackl^{1,3}, Julia
5 Schwartzman¹, Xinda Lu^{1,4}, Alexis Yelton^{1,5}, Krista Longnecker⁶, Melissa Kido Soule⁶,
6 Elaina Thomas^{1,7}, Gretchen Swarr⁶, Alessandro Mongera^{8,9}, Jack Payette², Jacob
7 Waldbauer¹⁰, Elizabeth B. Kujawinski⁶, Otto X. Cordero¹, Sallie W. Chisholm^{*1,11}

8
9 ¹Department of Civil & Environmental Engineering, Massachusetts Institute of Technology,
10 Cambridge, MA, USA

11 ² Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of
12 Technology, Cambridge, MA, USA

13 ³ Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen,
14 Netherlands

15 ⁴ present address: DermBiont Inc., Boston, MA, United States

16 ⁵ present address: ActZero.ai, Seattle, WA, United States

17 ⁶ Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic
18 Institution, Woods Hole, MA, USA

19 ⁷ present address: School of Oceanography, University of Washington, Seattle, WA, USA

20 ⁸ Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA

21 ⁹ Department of Genetics, Harvard Medical School, Boston, MA, USA

22 ¹⁰ Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA

23 ¹¹ Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA

24
25
26 [†] Equal contributions

27
28 * Corresponding authors

29 Giovanna Capovilla (giocapo@mit.edu)

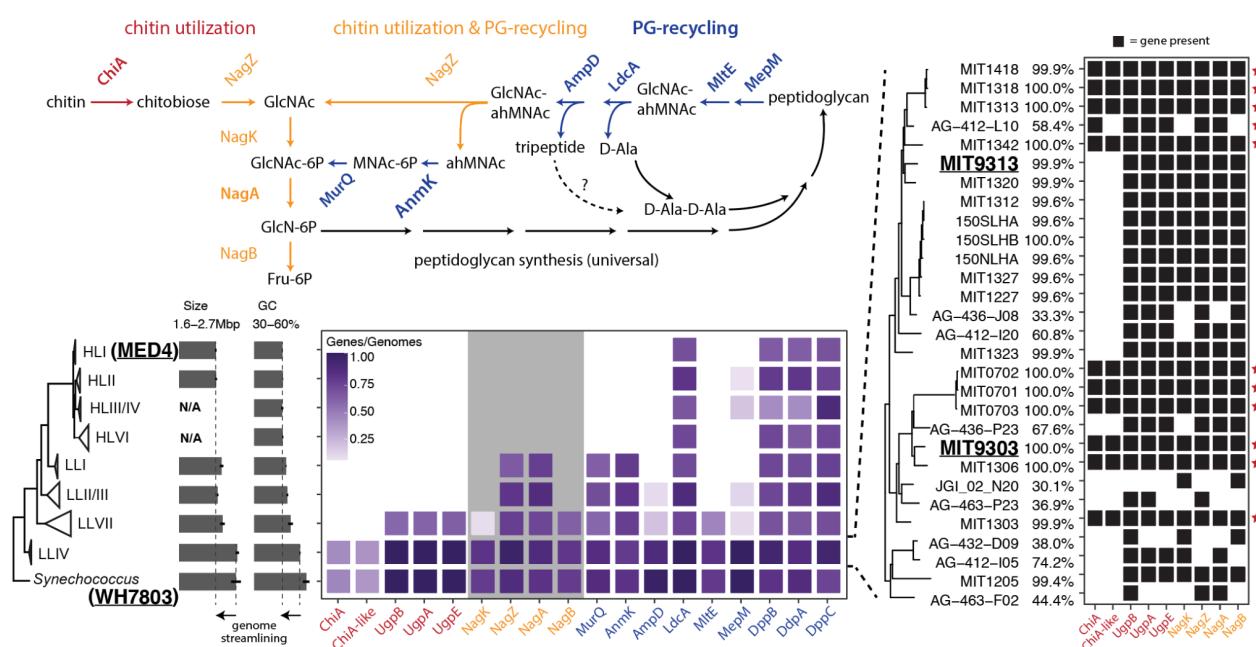
30 Rogier Braakman (braakman@mit.edu)

31 Sallie W. Chisholm (chisholm@mit.edu)

32
33
34
35 **ABSTRACT**

36
37 **Marine picocyanobacteria (*Prochlorococcus* and *Synechococcus*), the most abundant**
38 **photosynthetic cells in the oceans, are generally thought to have a primarily single-**
39 **celled and free-living lifestyle. However, we find that genes for breaking down chitin -**
40 **an abundant source of organic carbon that primarily exists as particles - are widespread**
41 **in this group. We further show that cells with a chitin degradation pathway display**
42 **chitin degradation activity, attach to chitin particles and show enhanced growth under**
43 **low light conditions when exposed to chitosan, a partially deacetylated form of chitin.**
44 **Marine chitin is largely derived from arthropods, whose roots lie in the early**

45 **Phanerozoic, 520-535 million years ago, close to when marine picocyanobacteria began**
46 **colonizing the ocean. We postulate that attachment to chitin particles allowed benthic**
47 **cyanobacteria to emulate their mat-based lifestyle in the water column, initiating their**
48 **expansion into the open ocean, seeding the rise of modern marine ecosystems.**
49 **Transitioning to a constitutive planktonic life without chitin associations along a major**
50 **early branch within the *Prochlorococcus* tree led to cellular and genomic streamlining.**
51 **Our work highlights how coevolution across trophic levels creates metabolic**
52 **opportunities and drives biospheric expansions.**


53

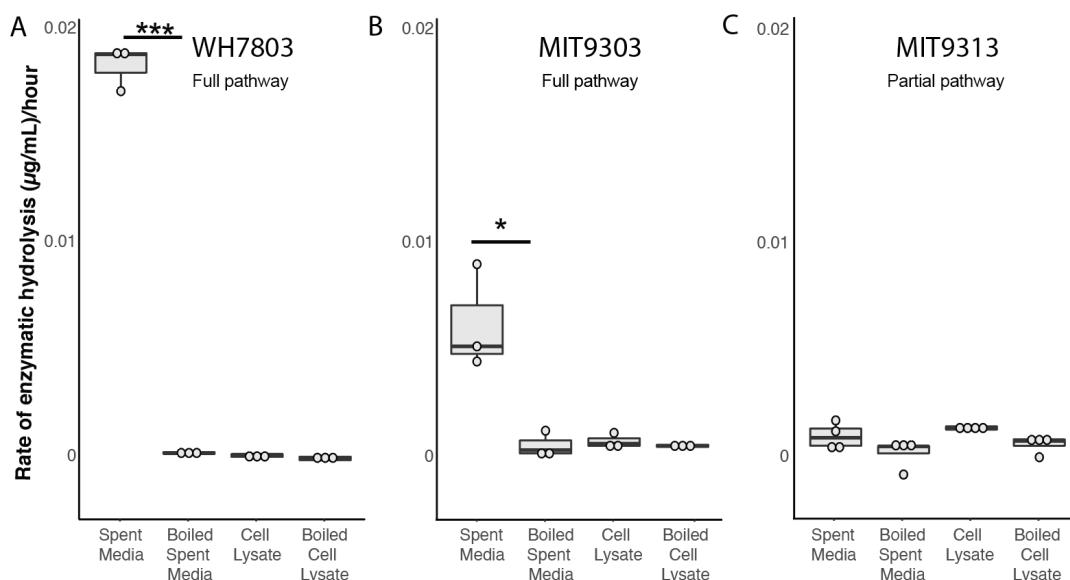
54

55 *Prochlorococcus* and its sister lineage marine *Synechococcus* (together ‘marine
56 picocyanobacteria’) are a monophyletic and highly abundant group of oceanic phytoplankton
57 that perform about ~25% of oceanic CO₂-fixation(1–3). In addition to their role as primary
58 producers, it is increasingly clear that marine picocyanobacteria also use organic carbon as a
59 supplemental carbon and energy source (i.e. mixotrophy)(4–6), especially in the light-limited
60 deep euphotic zone(7, 8). While studying genes involved in mixotrophy in this group(9), we
61 noticed that some strains have chitinase genes, indicating the potential for using chitin, one of
62 the most abundant sources of organic carbon in the ocean(10, 11). However, chitin in the
63 marine environment typically exists as particles, primarily derived from arthropod
64 exoskeletons(10, 11), which are broken down by microbial consortia(12). Marine
65 picocyanobacteria are typically considered to live an exclusively single-celled planktonic
66 lifestyle(13, 14), but are also sometimes found within particulate organic matter
67 aggregates(15) that sink out of the euphotic zone(16). Together this suggests that chitin
68 utilization might be a functional trait in marine picocyanobacteria.

69

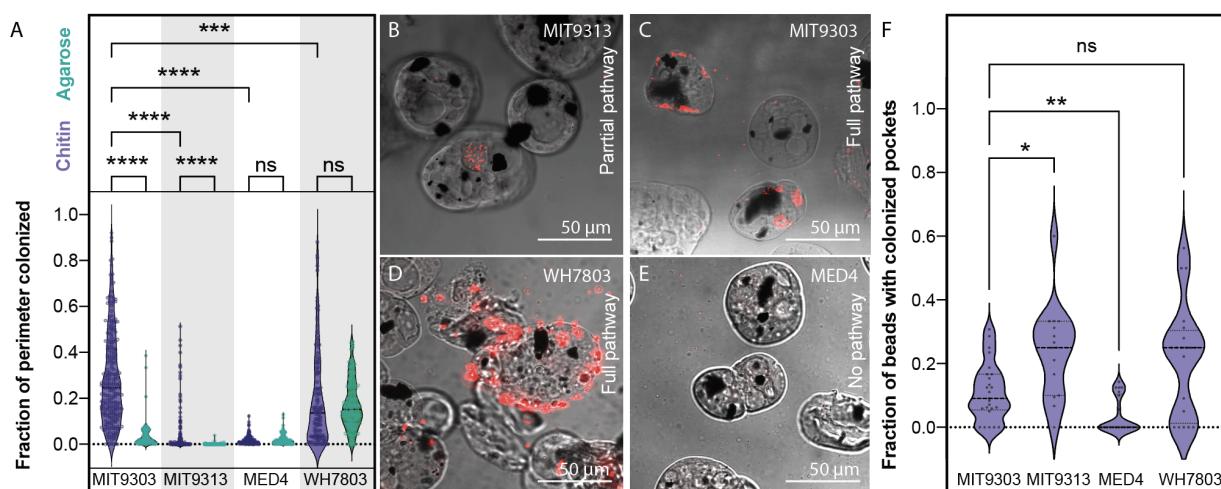
70 To explore this possibility we began by examining the distribution of genes involved in chitin
71 utilization in *Prochlorococcus* and *Synechococcus* genomes (Fig. 1). This comparison is
72 complicated by the significant overlap in gene content between pathways for chitin utilization
73 and peptidoglycan recycling (Fig. 1). Peptidoglycan, which is chemically similar to chitin,
74 forms a single cell-size polymeric structure (the sacculus) that is a component of the bacterial
75 cell wall, and recycling of peptidoglycan fragments inevitably generated during cell growth
76 and division is widespread in bacteria(17). We therefore searched 702 partial and complete
77 genomes for genes required for both chitin utilization and peptidoglycan recycling. We found
78 that in *Synechococcus* and deeply branching “low-light-adapted IV” (LLIV) *Prochlorococcus*
79 most of these genes are nearly universal, i.e. they occur at a frequency similar to the average
80 genome completeness of ~75% (Methods) (Fig. 1). In contrast, these genes are almost
81 universally absent in “high-light-adapted” (HL) *Prochlorococcus* (Fig. 1). All LL clades of
82 *Prochlorococcus* possess peptidoglycan recycling genes, but chitin utilization genes are
83 nearly exclusive to the deeply branching LLIV clade (Fig. 1). These observations suggest that
84 chitin utilization and peptidoglycan recycling were both present in the last common ancestor
85 of marine picocyanobacteria, but were lost during the diversification of extant
86 *Prochlorococcus* groups.

Figure 1. Distribution of chitin utilization genes in marine picocyanobacteria. Upper panel:


Pathway for chitin degradation (red) and its reactions that overlap (orange) with peptidoglycan metabolic recycling (blue). ChiA is annotated as a putative chitinase enzyme, while ChiA-like is a homolog of the substrate-binding domain of ChiA and annotated as a putative chitin-binding domain protein. Lower panel: Average frequency of occurrence of chitin utilization and peptidoglycan recycling genes estimated from both partial and complete genome sequences available in *Synechococcus* and the major clades of *Prochlorococcus* shown in the tree on the left. Average completeness of genomes in our sample is ~75% (see Methods). The clade-membership of the strains used in the experiments are highlighted in bold and underlined. The grey background area in the gene frequency frame highlights genes shared between the chitin utilization and peptidoglycan pathways (orange). The panel on the right breaks down members of the LLIV clade of *Prochlorococcus*, revealing putative primary chitin degraders of chitin that possess chitinase (red star) and putative secondary degraders that lack chitinase. Abbreviations: GlcNAc - N-acetyl-glucosamine, GlcNAc-6P - N-acetyl-glucosamine 6-phosphate, GlcN-6P - glucosamine 6-phosphate, F6P - fructose 6-phosphate, ahMNAc - anhydro-N-acetyl-beta-muramate, MNAc-6P - N-acetyl-muramate 6 phosphate.

In both *Prochlorococcus* and *Synechococcus*, genomes containing chitin-utilization genes sub-differentiate into two groups, which either possess or lack chitinase, the enzyme that hydrolyzes chitin (Fig. 1). It is known from other systems that chitin utilization is a complex ecological process (18, 19) with hydrolysis of chitin polymers occurring in the extracellular milieu, making chitin fragments available to all cells in the community. Consequently, chitin breakdown involves niche partitioning into groups that specialize in performing the initial hydrolysis steps and others that specialize in using small chitin oligosaccharides (20). Our results suggest a similar niche partitioning into 'primary' and 'secondary' degraders may occur among chitin-using members of the marine picocyanobacteria.

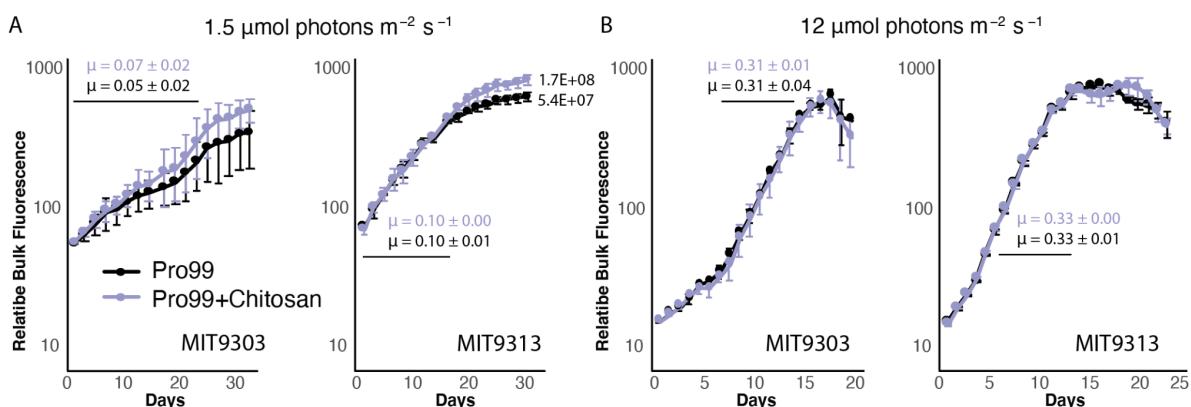
To determine whether the putative chitin users (Fig. 1) actually metabolize chitin, we first used enzyme assays to examine whether the cells display chitinase activity. Both *Synechococcus* and *Prochlorococcus* strains that are putative primary degraders of chitin (i.e. possessing the full complement of chitin utilization genes) displayed chitinase activity in cell-free spent media, and the activity disappeared upon boiling the media (Fig. 2, S1) – consistent with the production of extracellular chitinase enzymes that are denatured upon heating. In agreement with the genomic predictions, a *Prochlorococcus* strain (MIT9313, Fig. 1) that is a


122 putative secondary chitin degrader did not display extracellular chitinase activity in spent
123 media (Fig. 2, S1).

124
125

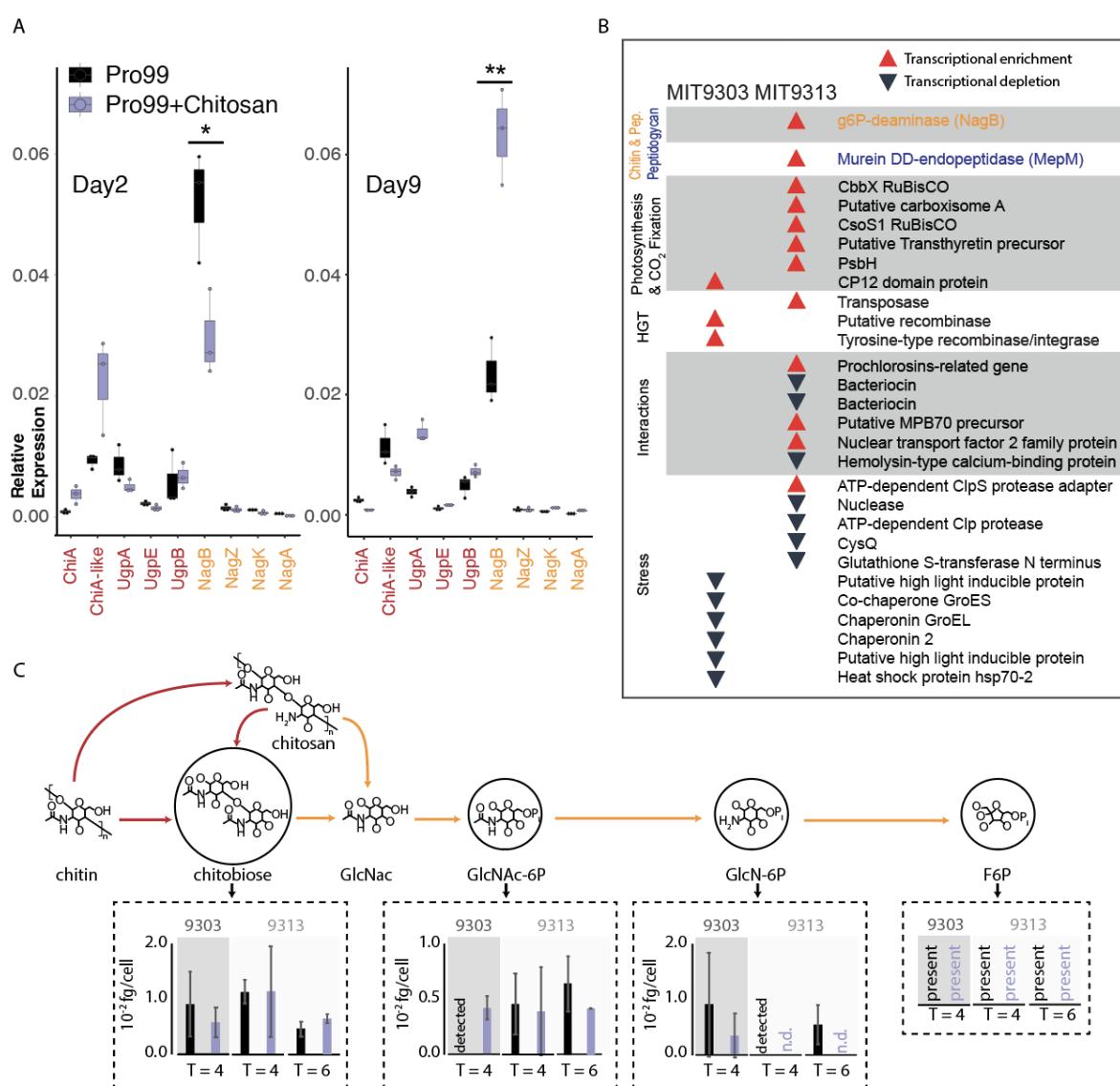
126
127 **Figure 2. Chitinase activity in *Prochlorococcus* and *Synechococcus*.** Endochitinase activity in
128 *Synechococcus* WH7803, *Prochlorococcus* MIT9303, and *Prochlorococcus* MIT9313 measured in spent media
129 and cell lysates. Strains with the complete chitin degradation pathway display such activity in the spent media.
130 Activity is lost after boiling. Exochitinase activity is shown in Figure S1.

131 The next question we addressed was whether or not *Synechococcus* and *Prochlorococcus*
132 cells with the chitin utilization pathway colonize chitin surfaces, by adding hydrogel chitin
133 beads to cultures. The *Prochlorococcus* strains used were from the two sub-groups we
134 identified as putative primary (MIT9303) and secondary (MIT9313) degraders (Fig. 1), as
135 well as cells lacking the complete pathway for chitin degradation (MED4). The
136 *Synechococcus* strain used was WH7803, a primary chitin degrader with a complete set of
137 chitin utilization genes. We found that both *Synechococcus* and *Prochlorococcus* cells with
138 chitin utilization genes attach to chitin particles, while *Prochlorococcus* lacking chitin
139 degradation genes do not (Fig. 3). Primary degraders attach both to the surface of particles
140 and accumulate in “pockets” within the beads (Fig. 3A,C,D,F), while secondary degraders
141 only accumulate in pockets (Fig. 3A,B,F), potentially reflecting the inferred niche
142 partitioning between them. Finally, we found that *Prochlorococcus* attaches only to chitin
143 particles and not to agarose, but that *Synechococcus* attaches to both (Fig. 3A, S2), suggesting
144 that *Synechococcus* has broader surface attachment abilities than *Prochlorococcus*.
145



146
147 **Figure 3. Colonization of artificial chitin particles by *Prochlorococcus* and**

148 ***Synechococcus*.** A) Fraction of particle perimeter colonized by a strain of *Synechococcus* (WH7803) and 3
149 strains of *Prochlorococcus* (MED4, MIT 9313, and MIT 9303) exposed to agarose (green) and chitin (purple)
150 particles. *Synechococcus* WH7803 and *Prochlorococcus* MIT9303 are putative primary chitin degraders,
151 *Prochlorococcus* MIT9313 is a putative secondary chitin degrader (i.e. it lacks chitinase), and *Prochlorococcus*
152 MED4 lacks all chitin degradation genes. B-E). Confocal sections of chitin particles quantified in A. Chitin
153 particles are shown in bright field mode; the dark spots are magnetic beads embedded in the particles.
154 *Synechococcus* and *Prochlorococcus* are detected by their red autofluorescence. Cells were sometimes observed
155 contained in pockets within the particles (as shown in B and C, for example). Quantification of this phenomenon
156 is shown in F.


157
158 As a material resource, chitin potentially provides energy, carbon, and/or nitrogen.
159 *Prochlorococcus* niche partitioning provides relevant clues on what it derives from chitin, as
160 chitin utilization is only retained within the LLIV clade (Fig. 1), which dominates at the
161 bottom of the euphotic zone(21). At these depths, light goes to extinction and
162 *Prochlorococcus* is thought to derive a significant fraction of its carbon through mixotrophy
163 rather than photosynthesis(7, 8). This suggests chitin could provide *Prochlorococcus* a
164 supplemental carbon and energy source that is beneficial under low light conditions. To test
165 this hypothesis, we grew *Prochlorococcus* cells representing both the primary and secondary
166 degrader genotypes (Fig. 1) at several light levels, with and without the addition of chitosan,
167 a form of chitin that is solubilized through partial deacetylation. Differences due to chitosan
168 additions emerged only at the lowest light level (Fig. 4), and for primary degraders was
169 expressed as a higher growth rate, albeit not significantly so, while for secondary degraders
170 was expressed as a higher cell density in stationary phase, potentially reflecting their niche
171 partitioning. A growth boost due to chitin utilization only under light-limitation is consistent
172 with results in other cyanobacteria showing that wild-type cells able to recycle peptidoglycan
173 fragments generated during the normal course of growth have higher growth rates than
174 mutants without this ability, but only at low light levels(22). We also examined whether
175 *Prochlorococcus* can use chitosan as a source of nitrogen by adding it to the growth media of
176 nitrogen-starved cells, but relief from nitrogen stress was not apparent (Fig. S3, S4).
177 Together, this suggests that in its role as a resource, chitin primarily acts as a supplemental
178 carbon source to light-limited *Prochlorococcus* cells deep in the water column.

179
180

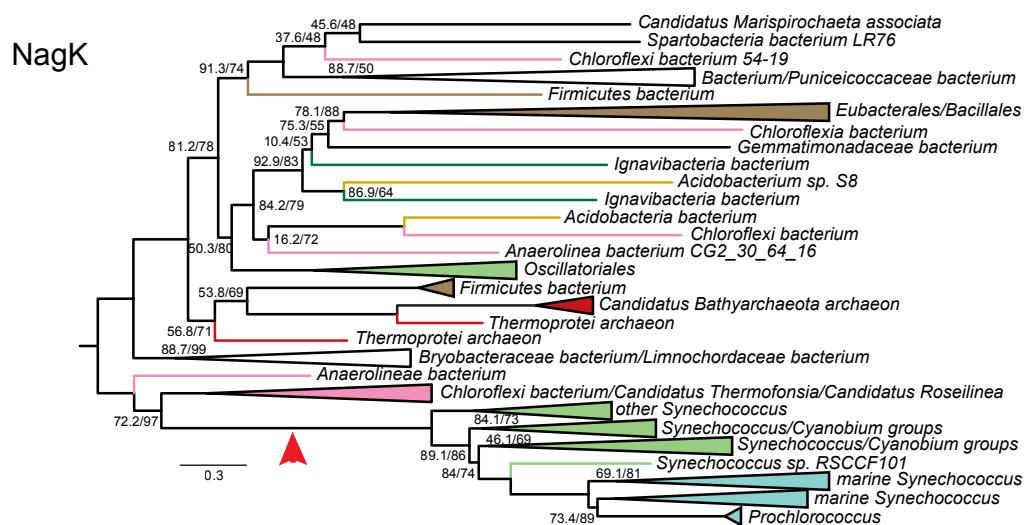
181
182 **Figure 4. Effect of chitosan addition on growth of two *Prochlorococcus* strains as a**
183 **function of light intensity.** MIT9303 is a primary chitinase degrader and MIT9313 is a secondary
184 degrader, missing the chitinase genes. Cultures were grown in Pro99 media with (purple) and without (black)
185 added chitosan, at two different light intensities: 1.5 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$ (A) and 12 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$ (B),
186 the former being growth-limiting for these strains as reflected in the difference in growth rates, μ , at the different
187 light levels. Growth was monitored by bulk chlorophyll fluorescence, but upon emergence of a significant
188 difference in fluorescence in MIT9313 cultures cell counts were measured using flow cytometry. Chitosan-
189 amended cultures had higher cell counts in stationary phase ($1.7\text{E}+8 \text{ cells mL}^{-1}$) than unamended cultures
190 ($5.4\text{E}+7 \text{ cells mL}^{-1}$), reflecting an increase in cell yield. Error bars show standard deviation between the 3
191 biological replicates. The average growth rate and associated standard deviation (μ , in units day^{-1}) was
192 calculated in exponential phase (marked with a black line) and is shown for each curve.

193
194 To investigate how cells respond to chitin addition at the molecular level, we used qPCR to
195 measure the expression of genes in the chitin degradation pathway in *Prochlorococcus*
196 cultures grown with and without chitosan. All genes were expressed under both conditions
197 (Table S3), including the chitinase and chitobiose transporter genes that are specific to chitin
198 degradation (Fig. 5A). This suggests cells constitutively express this pathway, perhaps so
199 they are poised to use chitin when it appears in the environment. Furthermore, while changes
200 in expression due to chitosan exposure were not statistically significant for most genes, we
201 observed a clear trend across the full suite of genes. That is, shortly after chitosan addition,
202 expression of chitinase genes was higher relative to unamended cultures, while expression of
203 downstream genes was lower (Fig. 5A). At later time points, the expression of chitinase was
204 lower and downstream genes higher in amended relative to unamended cultures (Fig. 5A).
205 These patterns suggest that *Prochlorococcus* cells increase the activity of chitin degradation
206 enzymes in the order in which pathway intermediates become available, which is broadly
207 similar to how chitin degradation pathways operate in other chitinolytic bacteria(23).
208
209
210

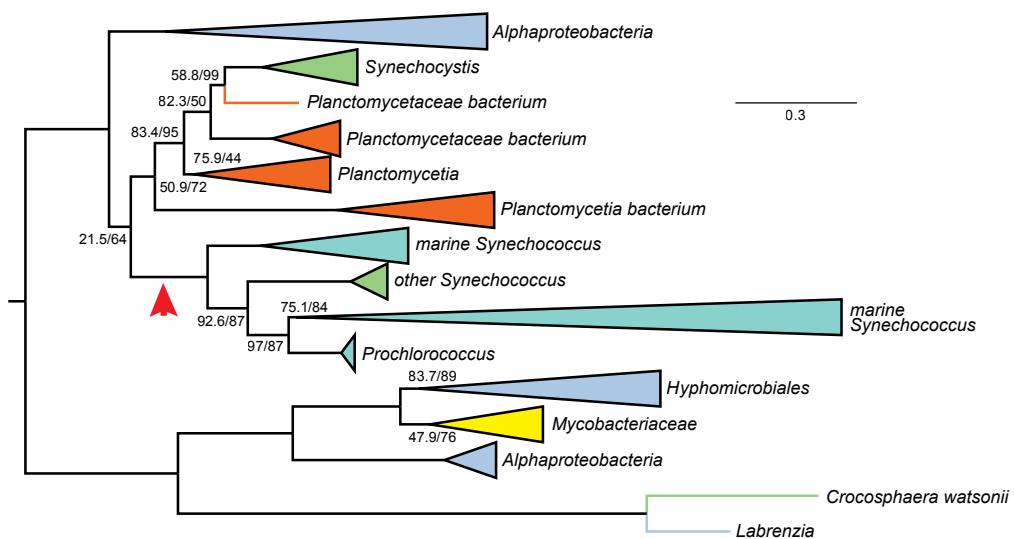
211
212
213

214 **Figure 5. Gene expression and metabolomic analysis in *Prochlorococcus* in response to**
215 **the addition of chitosan.** A) Expression (measured by qPCR) of all the chitin-related genes in MIT9303
216 (primary degrader) in relation to the housekeeping gene, *rnpB*, gene in natural seawater-based Pro99 medium in
217 presence and absence of chitosan at two time points over the growth curve. Cells were in early exponential
218 growth on Day 2 and mid-exponential on Day 9. B) Qualitative representation of the relative expression of
219 genes (measured using RNA-Seq) in the two *Prochlorococcus* strains 24 hours after addition to chitosan (see
220 also Fig. S5). Red upward pointing arrows represent statistically significant transcript enrichment in presence of
221 chitosan while black downward pointing arrows represent statistically significant transcript depletion. Genes are
222 grouped by functional categories, which are shown in shaded/unshaded sections. C) Concentrations of
223 intermediates of chitin degradation on days 4 and 6 after chitosan additions (purple) compared to unamended
224 controls (black). Error bars show the standard deviations of 3 biological replicates for MIT9303 and MIT9313
225 on day 4, and of 2 replicates for MIT9313 on day 6. Molecular abbreviations and color scheme is the same as in
226 Fig. 1. Metabolites are labeled as ‘detected’ in samples where they were observed in only a single replicate, and
227 as ‘n.d.’ (not detected) in samples where they were not observed in any replicates. Fructose-6-P was present in
228 most samples, but its levels could not be quantified due to interference by the organic carbon matrix.

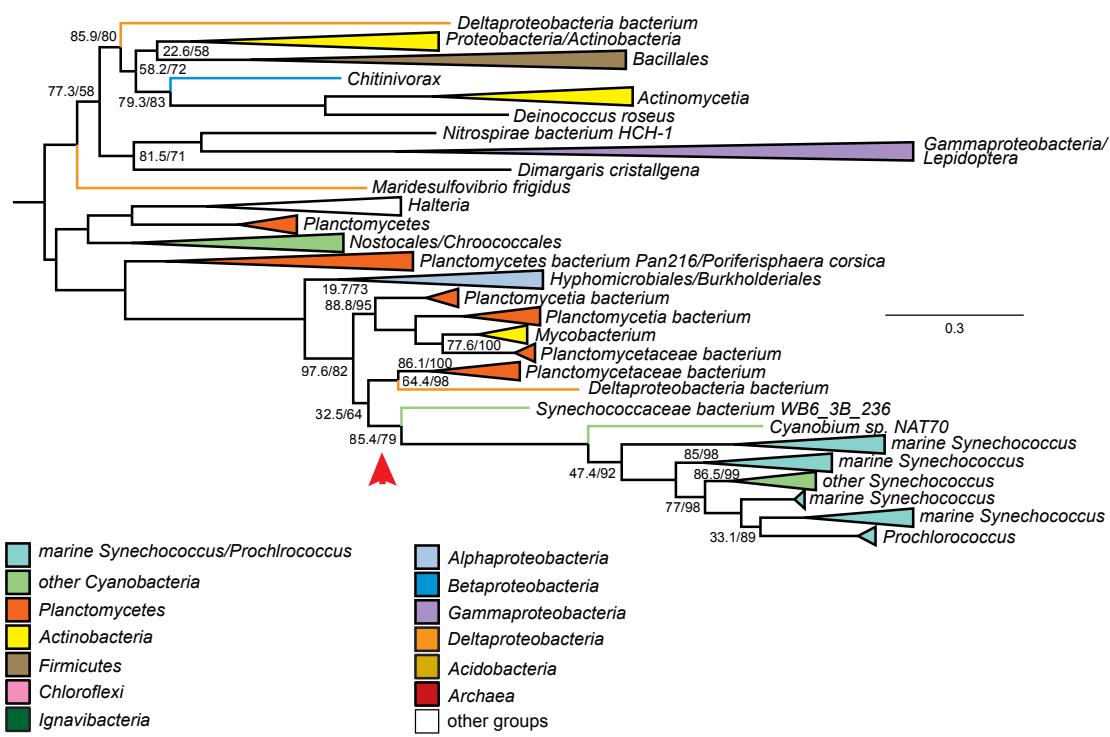
229
230
231 To augment the qPCR results and gain a systems-level understanding of how the availability
232 of chitin shapes *Prochlorococcus*, we performed RNA-Seq and metabolomic analyses of


233 cultures exposed to chitosan. While expression of many genes changed in response to the
234 addition of chitosan, relatively few of those changes were significant, and they disappeared
235 after 48 hours (Fig. 5B, S5). As with our analysis of the expression of individual genes by
236 qPCR, this suggests a mild and transient response to chitosan additions. We further observed
237 transcripts of all genes of the chitin utilization pathway and accumulation of all its metabolic
238 intermediates under all conditions (Fig. 5C, Table S3,S4), consistent with the idea that cells
239 constitutively express this pathway to be ready when chitin appears in the environment, as
240 also suggested by qPCR data (Fig. 5A).

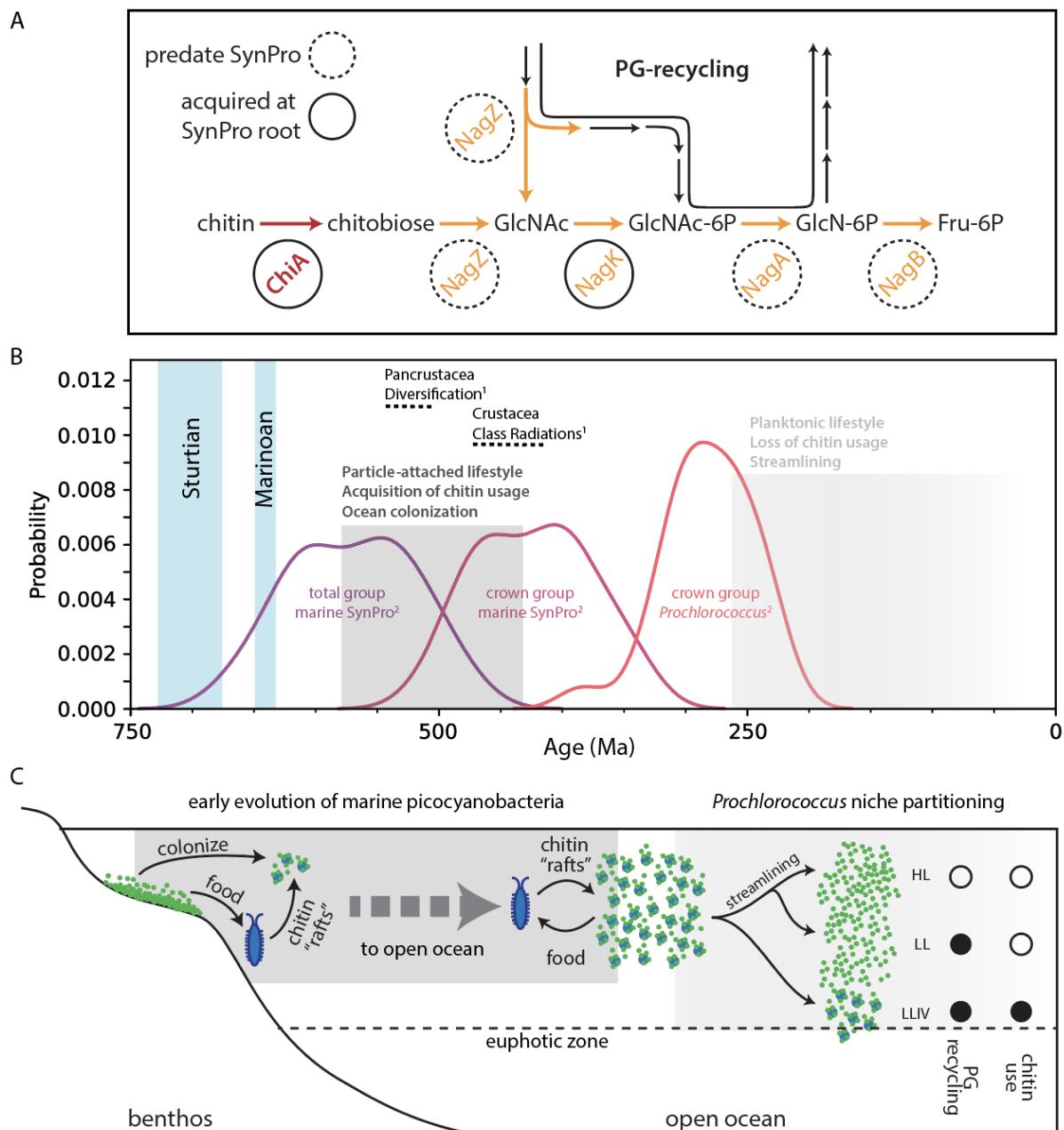
241
242 While the chitin utilization pathway is always active, *Prochlorococcus* metabolism also
243 responds to chitosan additions: in one strain, MIT9313 (secondary degrader), the expression
244 of two genes involved in peptidoglycan recycling (NagB, MepM), one of which is also
245 involved in chitin utilization (NagB), significantly increased (Fig. 5B), consistent with the
246 noted molecular, physiological and ecological links between pathways (Fig. 1). Similarly,
247 concentrations of chitin degradation intermediates also changed upon addition of chitosan,
248 although most changes were not significant (Fig. 3C). Additional changes occurred in
249 downstream metabolic processes. Transcripts of several genes involved in photosynthesis and
250 carbon fixation were enriched in the presence of chitosan in MIT9313, a secondary degrader
251 of chitin, which could have indirectly contributed to the difference in cell number observed in
252 low light levels (Fig. 4A). Transcripts for CP12, which inhibits carbon fixation(24), were
253 enriched in the presence of chitosan in MIT9303, a primary degrader of chitin (Fig. 1,3B).
254 Furthermore, the concentration of several intermediates of core carbohydrate metabolism
255 changed in the presence of chitosan (Fig S6), although again few changes were significant.
256 Together these observations indicate that chitosan exposure modifies the processing of
257 carbon through core metabolic pathways.


258
259 Changes in a number of other functional categories in cells exposed to chitosan can be
260 grouped together in terms of their inferred ecological function. Transcripts of various genes
261 involved in horizontal gene transfer (e.g., transposases and recombinases), and microbial
262 interactions (e.g., antibiotics, lanthipeptides, secreted proteins) were enriched, while
263 transcripts of various genes involved in mitigating stress (e.g., chaperonins, high light-
264 inducible proteins, proteases, and genes related to glutathione) were depleted (Fig. 3B, S5).
265 Since life in biofilms increases microbial interactions, promotes horizontal gene transfer(25),
266 helps buffer against external stresses(26), and increases likelihood of the light-limited
267 conditions under which peptidoglycan recycling becomes beneficial(22), we interpret these
268 collective changes as cells preparing to attach to chitin particles and switch to a surface-
269 attached lifestyle.

270
271 To gain insight into the Earth-historical context of the acquisition of the chitin utilization trait
272 in *Prochlorococcus* and *Synechococcus*, we examined when this acquisition happened
273 relative to the divergence of marine picocyanobacteria from other cyanobacteria.
274 Picocyanobacterial sequences for most genes involved in both the chitin degradation and
275 peptidoglycan recycling pathways (i.e. orange genes in Fig. 1) are nested within larger
276 branches of cyanobacterial genes (Fig. 6, S7), indicating ancestral vertical inheritance of
277 peptidoglycan recycling. In contrast, picocyanobacterial sequences for both chitinase (ChiA
278 and ChiA-like) and N-acetylglucosamine kinase (NagK) are nested within non-cyanobacterial
279 diversity, indicating horizontal gene transfer to picocyanobacteria after their divergence from
280 other cyanobacteria (Fig. 6, S7). NagK is present in deeply branching 'SynPro' groups (i.e.,
281 including *Cyanobium* and related *Synechococcus* that bridge the fresh-salt water divide), but
282 chitinase genes are exclusive to 'marine SynPro' (Fig. 6, S7). NagK fortifies peptidoglycan


283 recycling by completing a second branch involved in metabolizing GlcNAc but is obligately
284 required for chitin utilization (Fig. 1,7A). These observations suggest that peptidoglycan
285 recycling pre-dated the radiation of marine picocyanobacteria and provided a preadaptation to
286 chitin utilization. Acquisition of chitinase along the stem leading from total group SynPro to
287 crown-group marine SynPro then enabled chitin utilization by this group (Fig. 7A).

ChiA domain



ChiA domain

289
290
291
292
293
294
295
296
297
298
299

Figure 6. Phylogenies of ChiA and NagK genes in marine picocyanobacteria. Red arrows indicate inferred HGTs into SynPro ancestor lineages. Branch lengths are indicated by included scale bars (average substitutions/site). High-level taxonomic identities are indicated by color coding, with specific represented groups labeled for terminal and collapsed groups. In each case, trees are rooted at the branch closest to the midpoint that preserves the monophyly of Synechococcales groups including SynPro. Branch supports (approximate likelihood ratio test/bootstrap value) are included for bipartitions with less than 90% support for either metric. Phylogenies of NagZ, NagA, NagB, UgpA, and UgpB are found in Figure S7.

300

301

302

303

304

305

306

Figure 7. Hypothesized timing and ecological context of the rise of marine picocyanobacteria. A) Pathways for chitin utilization and peptidoglycan metabolic recycling. Genes exclusive to chitin utilization are shown in red, and genes shared between the two pathways are shown in orange. Genes highlighted with dashed circles pre-date evolution of marine picocyanobacteria, while genes highlighted with solid circles were acquired along the stem leading to their crown group. B) Summary of

307 divergence time estimates for the evolution of 1) arthropods(27) and 2) marine picocyanobacteria(28), which we
308 postulate are linked via chitin utilization metabolism. Vertical blue bars represent the snowball Earth intervals
309 preceding the rise of marine picocyanobacteria. C) The “chitin-raft hypothesis” for the rise of marine
310 picocyanobacteria. The rise of marine arthropods led to an accumulation of chitin in the environment, providing
311 a substrate that benthic cyanobacteria could colonize while preserving their surface-attached lifestyle. Existing
312 peptidoglycan recycling pathways provided a preadaptation for acquiring chitin degradation pathways (Fig. 7A).
313 As *Prochlorococcus* diversified, loss of chitin associations and adaptation to a constitutive planktonic lifestyle
314 occurred during cellular and genomic streamlining, and a shift from physical-chemical interactions within
315 particle-attached communities to purely chemical interactions in the water column. A facultative ability to
316 colonize chitin particles and use chitin as a supplemental carbon source under light limitation was preserved in
317 the LLIV clade of *Prochlorococcus* that is adapted to the low light conditions at the bottom of the euphotic
318 zone.
319
320

321 To better understand the context of the transfer of chitinase genes into ancestors of marine
322 SynPro we examined their phylogenetic relationships to similar sequences found within other
323 bacterial groups. Picocyanobacterial chitinases contain two major chitin-binding domains that
324 show homology to different chitinase sequence variants found within other bacterial
325 genomes. Gene sequence alignments suggest that the marine SynPro variant is likely the
326 product of a fusion of two genes that were both acquired from Planctomycetes (SI Text 1).
327 However, the sampling of Planctomycete diversity is too sparse to determine if the gene
328 fusion event occurred before or after the transfers into ancestral marine SynPro (see SI Text 1
329 and SI Text 1 files for detailed discussion). Planctomycete genomes and metagenomes
330 containing chitinases are found in both fresh and marine environments, preventing us from
331 determining if the gene transfers to picocyanobacteria occurred in freshwater environments
332 prior to colonization of the ocean, or within the marine planktonic environment. Recipients of
333 chitinase genes from Planctomycetes include both marine and freshwater bacteria (SI Text 1),
334 suggesting the lack of a strong congruence between ecological and phylogenetic signals.
335

336 Palaeobiological evidence provides further insight into the early evolution of chitin utilization
337 in marine picocyanobacteria. First, molecular clocks constrained by horizontally transferred
338 genes that link the timing of cyanobacterial evolution to that of other bacterial phyla indicate
339 that the stem lineage leading to crown group SynPro existed during the interval of ~570-420
340 Ma(28) (Fig. 7B). Second, both fossils and fossil-calibrated molecular clocks indicate that
341 marine arthropods – whose exoskeletons are the main source of chitin in the ocean(10, 11) –
342 underwent a major ecological expansion between ~535-400 Ma(27, 29, 30). Finally, while
343 the body fossil record from open ocean environments is limited because of a high likelihood
344 of degradation before preservation, the second half of this period (~480-400 Ma), nearer to
345 the calculated timing of crown group SynPro (Fig. 7B), is thought to have seen an increase in
346 pelagic planktonic arthropods(31) and the emergence of more complex trophic structures in
347 the open ocean(31–34). These dates are consistent with the hypothesis that the early evolution
348 of marine picocyanobacteria and arthropods was intertwined, and played a role in
349 establishing modern marine ecosystems.
350

351 Given chitin utilization by marine picocyanobacteria and their apparent contemporaneous
352 evolution with arthropods, one might expect existence of direct associations with arthropods
353 in the extant biosphere. However, while *Synechococcus* has been found to be abundant in
354 copepod guts (35), we found no reports of direct associations with the exoskeletons of living
355 copepods or other arthropods(35, 36). It is possible that chitin utilization by
356 picocyanobacteria has become primarily restricted to detrital particulate matter, derived from
357 exoskeletal molts (which constitute the largest flux of arthropod chitin into the environment)
358 and dead bodies. Alternatively, direct arthropod-picocyanobacterial associations may yet be

359 discovered now that there is added motivation to look for them. Indeed, picocyanobacterial
360 symbionts have been discovered in association with an increasingly diverse set of algae in
361 recent years, including dinoflagellates, foraminifera, radiolarians, and tintinnids(15, 37–41).
362

363 The emergence of chitin attachment and utilization during the rise of marine
364 picocyanobacteria helps address a conundrum regarding the evolution of lifestyle in this
365 group. In most environments other than lakes and oceans, microbes predominantly live as
366 aggregates attached to surfaces, which provides protection from external stresses and allows
367 efficient recycling of nutrients(26). The earliest marine cyanobacteria likely also
368 predominantly lived in mats in the benthic environment(13, 42–44). In contrast, extant
369 marine picocyanobacteria are generally thought to live a single-celled planktonic life(13, 14),
370 despite existing in a saline, UV-rich, and nutrient-poor environment, which are all factors
371 associated with inducing aggregation of cells and attachment to surfaces(26, 45–47). This
372 raises the question: what was the sequence of innovations that allowed cyanobacteria to make
373 the evolutionary transition from life in benthic mats to life as individual planktonic cells in
374 the open ocean?
375

376 To resolve this conundrum, we propose the “chitin raft hypothesis”, in which
377 picocyanobacteria and arthropods colonized the open ocean in tandem (Fig. 7C).
378 Accumulated detrital chitin and other organic material could have provided “rafts” that
379 allowed picocyanobacteria to maintain a surface-attached lifestyle while expanding into the
380 ocean. By promoting collective nutrient recycling and stress mitigation, life in chitin particle-
381 attached communities would have provided refugia from the harsh environment of the open
382 ocean, allowing cells over millions of years of evolution to acquire necessary adaptations for
383 an eventual transition to a single-celled planktonic life. Indeed, evolution of marine
384 picocyanobacteria involved acquisition of genes for synthesis of unique compatible solutes
385 for mitigating osmotic stress in saline environments(48, 49), various genes involved in
386 mitigating light/UV stress or repairing light damage(50, 51), a number of changes to the
387 membrane, genome, and proteome that are thought to lower cellular nutrient
388 requirements(52–54), and a general remodeling of metabolism that is thought to enhance
389 cellular nutrient affinity(55). Each of these innovations acts to mitigate against stresses that in
390 other contexts are linked to triggering aggregation of cells and attachment to surfaces(26, 45–
391 47).
392

393 This sequence of innovations culminated with a period of dramatic genomic and proteomic
394 streamlining(52, 54) (Fig. 1) and enhanced genetic drift(56) along the branch separating the
395 LLIV clade and all other *Prochlorococcus*, indicating the occurrence of a major population
396 bottleneck. This transition also involved a shift in other *Prochlorococcus* lineages toward a
397 smaller and rounder cell(57, 58) and the loss of both chitin utilization genes (Fig. 1) and the
398 ability to attach to chitin particles (eg. MED4 in Fig. 3). Together these observations lead us
399 to conclude that the divergence between LLIV and other *Prochlorococcus* involved a
400 transition from a facultatively particle-attached to a constitutively planktonic lifestyle.
401 Metabolic reconstructions indicate that streamlining was part of a drive toward greater
402 cellular energy flux with as a by-product increased organic carbon exudation, in turn driving
403 co-evolution with co-occurring heterotrophs(55). Added context from our findings here
404 suggests that various adaptations over the course of *Prochlorococcus* evolution collectively
405 mediated an ecological transition from physical-chemical interactions at microscopic scales
406 on particles to primarily chemical interactions at ecosystem scales in the water column.
407
408

409 **Materials and Methods**
410
411

412 **Culture conditions for growth curves**
413

414 *Prochlorococcus* or *Synechococcus* cells were grown under constant light flux at 24°C in
415 natural seawater-based Pro99 medium containing 0.2-μm-filtered Sargasso Sea water,
416 amended with Pro99 nutrients (N, P, and trace metals) prepared as previously described
417 (Moore *et al.* 2007). The low light experiment in *Prochlorococcus* MIT9303 and MIT9313
418 was performed at a light level of 1.5 μmol quanta $\text{m}^{-2} \text{s}^{-1}$. The other experiments in
419 *Prochlorococcus* or *Synechococcus* were performed at 12 or 15 μmol quanta $\text{m}^{-2} \text{s}^{-1}$ as
420 specified in each legend. The final concentrations of NH_4^+ were 800 μM in Pro99, 250 μM in
421 Pro5, 150 μM in Pro3, and 50 μM in Pro1. In these experiments, half of the samples were
422 amended with high molecular weight chitosan (Millipore Sigma) to a final concentration of
423 56 $\mu\text{g}/\text{ml}$. All the growth curves were performed in triplicates.
424

425 **Identification of genes involved in chitin degradation and peptidoglycan recycling**
426

427 To identify genes potentially involved in chitin-degradation, we searched for homologs to
428 known chitin degradation genes(12) in *Prochlorococcus* strains MIT9313 and MIT1318
429 using blast. Similarly, for peptidoglycan recycling, we searched for homologs to known
430 peptidoglycan recycling genes(17). We found homologues for most genes of the
431 peptidoglycan recycling pathway employed by *E. coli*(17) in *Prochlorococcus*, most of which
432 had previous functional annotations consistent with our findings. We next assigned each of
433 these sequences to NCBI COGs (clusters of orthologous groups)(59) based on reciprocal best
434 hits (Table S1_chitin-cogs)

435 We then expanded these annotations to our entire collection: 623 *Prochlorococcus*(60) and
436 79 *Synechococcus* genomes(61) (Table S1_pro-syn-genomes). Of note, the majority of these
437 genomes were derived from single-cell sequencing projects and often are not complete. The
438 estimated average completeness for genomes in this set is 75%. We first clustered all proteins
439 using mmseqs(62) (--cov-mode 5 -c 0.5), then annotated the cluster representatives with
440 eggNOG-mapper(63) to obtain NCBI COG labels for each cluster, and, finally, crossmatched
441 the clusters with the COG-labels assigned to our seed sequence set. We manually checked
442 and if necessary refined each matched protein cluster for consistency and correct functional
443 assignment. For the final list of annotated genes see (Table S1 pro-chitin-genes).
444

445 **Quantitative PCR analysis**
446

447 *Prochlorococcus* MIT9303 cells grown at 11 μmol photons $\text{m}^{-2} \text{s}^{-1}$ were collected from the
448 samples by centrifugation in triplicates at each time point and each condition. RNA samples
449 were extracted with a standard acidic Phenol:Chloroform protocol and measured with
450 Nanodrop (Thermo Scientific). RevertAid First Strand cDNA Synthesis Kit (Thermo
451 Scientific) with random primers was used to obtain cDNA. Quantitative PCR reactions were
452 performed in a CFX96 thermocycler (Bio-Rad) using the primers listed in Table S1. The
453 expression of *rnpB* gene was used to normalize the results.
454

455 **Chitinase assay**
456

457 *Prochlorococcus* MIT9303, MIT9313 and *Synechococcus* WH7803 cultures were grown at
458 15 μmol quanta $\text{m}^{-2} \text{s}^{-1}$ in Pro99 media amended with high molecular weight chitosan

459 (Millipore Sigma) to a final concentration of 56 µg/ml in triplicates. A volume of 50 ml of
460 culture in mid-exponential was then centrifuged to separate the cells fraction and the spent
461 media. The pellet was flash frozen, resuspended in sterile MilliQ water to a volume of 2 ml,
462 sonicated and filtered through a Spin-X centrifuge tube filter (Costar). The supernatant was
463 filtered through a 0.45 µm filter and concentrated using 30kDa Amicon® Ultra-15
464 Centrifugal Filter Units (Millipore) to a volume of 1,5 ml. Half volume of each sample has
465 been boiled at 90°C for 45 minutes to serve as controls. Protease inhibitor (Roche) was added
466 to all samples. Each sample was then divided into 3 aliquots. Each aliquot was tested with
467 one of the 3 substrates contained in the Chitinase kit (Sigma): 4-Methylumbelliferyl N,N'-
468 diacetyl-β-D-chitobioside (substrate suitable for exochitinase activity detection or
469 chitobiosidase activity), 4-Methylumbelliferyl N-acetyl-β-D-glucosaminide (substrate
470 suitable for exochitinase activity detection or β-N-acetylglucosaminidase activity) and 4-
471 Methylumbelliferyl β-D-N,N',N"-triacetylchitotriose (substrate suitable for endochitinase
472 activity detection).

473 The aliquots were then mixed with each of these substrates, incubated in darkness and the
474 fluorescence of the 4-methyl-umbelliferone released by the chitinase activity in the sample
475 was measured every 24 hours on a plate reader set at excitation 360 nm and emission at 450
476 nm.

477

478 **Beads and microscopy**

479

480 Chitin magnetic beads (NEB Cat#E8036L), or Agarose magnetic beads (Pierce™ Glutathione
481 Magnetic Agarose Beads Thermo Scientific™ Cat#78602) were washed in Pro99 media and
482 size selected using cell strainers. Chitin beads smaller than 40 µm or larger than 100 µm have
483 been discarded during the washes with Pro99. The media enriched with beads has then been
484 inoculated with the *Prochlorococcus* or *Synechococcus* strains of interest, in triplicates in
485 light level of 30 µmol quanta m⁻² s⁻¹ (for MED4 and WH7803) and 11 µmol quanta m⁻² s⁻¹
486 (for MIT9303 and MIT9313). Growth was monitored using bulk culture fluorescence
487 measured with a 10AU fluorometer (Turner Designs) and samples were collected in late
488 exponential, at a cell density of 10⁸. A volume of 1ml of each sample was poured on a
489 35mm Petri dish with 20 mm Glass Bottom Microwell Dish (Mat Tek). To avoid excessive
490 fluorescent signal from floating cyanobacteria, the samples were washed 5 times with fresh
491 media. Floating culture was removed by placing the mini dish on a magnet (to keep the
492 magnetic beads on the bottom) and then substituted with fresh Pro99 media before placing
493 the sample on the scope. Images were taken with a LSM780 Zeiss, capturing the beads on the
494 bright field and the *Prochlorococcus* by its autofluorescence with laser 561.

495

496 **Analysis of the colonized perimeter and cells colonizing pockets**

497

498 To quantify the fraction of cells colonizing the perimeter of chitin or agarose magnetic beads,
499 we wrote a custom analysis script using MATLAB (version R2020a, Mathworks. Code
500 available at <https://github.com/jaschwartzman/prochlorococcus>). The script segmented the
501 brightfield image of magnetic beads to create a binary mask for the bead perimeter. To
502 account for the fact that chitin magnetic beads are semi-transparent, the mask was created
503 using the gradient of the image, which defines the shadow around the perimeter of the beads.
504 This area was filled and eroded to define the bead center. The center area was subtracted from
505 the total area to define the perimeter zone of the beads. Any cells found in this zone are
506 assumed to be attached to the bead surface. To define cell area, we segmented the
507 accompanying image of cell autofluorescence. Briefly, cells were segmented by defining a
508 linear threshold based on the magnitude of the gradient of the autofluorescence image. This

509 threshold was defined for each day of experimental acquisition, to account for variation in
510 acquisition parameters. For each bead, the perimeter area, and the subset of the perimeter area
511 colonized by cells were quantified. The fraction of the perimeter area colonized was defined
512 by dividing the total perimeter area by the cell area. An assumption of this quantification is
513 that cells from different taxa occupy approximately the same 2-dimensional area.
514

515 The chitin magnetic beads were found to contain pockets, in which we sometimes observed
516 cells. The irregularities and pockets internal to the chitin hydrogel were visible due to the
517 weak autofluorescence of chitin detected in the 561 nm channel and were also identifiable in
518 brightfield images. In the latter scenario, the greater depth of field in the brightfield image
519 creates the possibility that cells are sitting on a surface above a hollow feature. Due to the
520 diverse morphologies of pockets, we were unable to define a consistent set of characteristics
521 to segment these structures using a script. Accordingly, we quantified the number of particles
522 in which we observed cells colonizing internal pockets manually, by counting instances of
523 cells colonizing either a zone with less autofluorescence within a particle and verifying the
524 presence of a pocket in the brightfield image.
525

526 **RNA-Seq and Metabolites analysis**

527
528 *Prochlorococcus* MIT9303 and MIT9313 cells were grown under constant light flux at 11
529 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ at 24°C in artificial AMP1 medium(64). Cultures were transferred to
530 AMP1 from Pro99 and kept in AMP1 for at least 3 transfers before performing the
531 experiment to avoid any potential contributions to observed pathway dynamics by
532 background levels of uncharacterized organic polymers in natural seawater. Half of the
533 samples were supplemented with chitosan (Millipore Sigma) to a final concentration of 56
534 $\mu\text{g/ml}$. The growth curves were monitored using bulk culture fluorescence measured with a
535 10AU fluorometer (Turner Designs) and the cell count was recorded using Guava®
536 easyCyte™ HT Flow Cytometer. Samples were collected on day 1 and day 3 after inoculation
537 for RNA extraction and day 4 and day 6 for the metabolomics analysis.
538

539 For the RNA-Seq *Prochlorococcus* cells were collected from the samples by centrifugation in
540 triplicates at each time point and each condition. RNA samples were extracted with a
541 standard acidic Phenol:Chloroform protocol, rRNA was depleted with NEBNext® rRNA
542 Depletion Kit (Bacteria); libraries were prepared with KAPA HyperPrep Kit (Roche) and the
543 multiplexed samples were run on an Illumina HiSeq with a 75nt NextSeq sequencing
544 program.
545

546 **RNA-Seq analysis**

547
548 The raw Illumina reads were trimmed of adapters using bbdruk v38.16(65) (ktrim=r, k=23,
549 mink=11, hdist=1). Low-quality regions were removed from the adapter-trimmed sequences
550 with bbdruk v38.16(65) (qtrim=rl, trimq=6). The trimmed RNA-seq reads from
551 *Prochlorococcus* MIT9303 and MIT9313 cultures were aligned to the MIT9303 and
552 MIT9313 reference genomes, respectively (available from <https://github.com/thackl/protycheposons/>) with the Burrows-Wheeler Aligner v0.7.16a-r1181(66), using the BWA-
553 backtrack algorithm. The number of reads that aligned to each annotated ORF in the “sense”
554 orientation was determined using the HTSeq package v0.11.2(67) (default parameters,
555 “nonunique all”). Counts of reads that aligned to each ORF (excluding rRNAs and tRNAs)
556 were compiled across replicates. MIT9303 and MIT9313 reads were analyzed separately
557 using the DESeq2 R package v1.24.0(68) to determine differentially expressed genes. The
558

559 standard DESeq2 functions and workflow were implemented to normalize samples by library
560 sequencing depth and estimate gene dispersion. Differential expression tests were performed
561 on comparisons of cultures with chitosan vs. control cultures one and three days after
562 chitosan addition. Significance was determined with the Wald test, using a negative binomial
563 generalized linear model, and p-values were corrected for multiple testing with the
564 Benjamini–Hochberg procedure. Following the guidance of the DESeq2 authors(68), genes
565 were considered to be significantly differentially expressed between a given pair of
566 treatments if the adjusted p-value was <0.1. Gene expression results were visualized with
567 ggplot2(69).

568

569 **Metabolite extractions**

570

571 For the metabolomics analysis, *Prochlorococcus* cells were filtered under gentle vacuum (to
572 prevent cell lysis) in a glass filtration tower onto 0.1 μ M Omnipore filters (Millipore). Filters
573 were then folded and placed into a cryovial, and frozen at -80°C until processed. We
574 extracted intracellular metabolites using a method described in (70) and modified as
575 described in (71). Briefly, we extracted each filter with ice-cold extraction solvent (40:40:20
576 acetonitrile: methanol: water with 0.1 M formic acid), neutralized the combined extracts with
577 6M ammonium hydroxide, and dried them in a vacufuge until near dryness. Prior to liquid
578 chromatography-mass spectrometry (LC/MS) analysis, we re-constituted all extracts in 245
579 μ L of solvent (30 μ L MQ pure water, 70 μ L methanol, and 145 μ L acetonitrile) with
580 isotopically-labeled injection standards (50 pg/ μ L each; d₂ biotin, d₆ succinic acid, d₄ cholic
581 acid, d₇ indole-3-acetic acid, and ¹³C₁-phenylalanine). We generated a pooled sample for
582 quality control (QC) by combining 25 μ L aliquots from each sample.

583

584 **LC/MS analysis of metabolites**

585

586 The organic matter extracts were analyzed using targeted LC/MS. A mix of metabolite
587 standards (see Table S4) was made in 80:20 acetonitrile:Milli-Q water at 10 μ g/mL. Matrix-
588 matched calibration solutions were prepared by diluting this mix in the pooled sample with
589 methanol and water added to match the composition of the samples. The concentrations
590 prepared included 0.25, 0.5, 2.5, 5, 12.5, 25, 50, 125, 250, and 500 ng/mL. Separate
591 hydrophilic interaction liquid chromatography (HILIC) methods were developed to separate
592 metabolites in negative and positive ionization modes. For negative mode, a 2.1 x 100 mm,
593 2.7 μ m Infinity Lab Poroshell HILIC-Z, P column (Agilent Technologies) was used. A
594 mobile phase at pH 9 was prepared for gradient elution with 10 mM ammonium acetate in
595 water (A) and 10 mM ammonium acetate in 90% acetonitrile (B) and pH adjusted with
596 ammonium hydroxide. The additive medronic acid (5 mM methylenediphosphonic acid) was
597 added to A and B at final 5 μ M concentration to improve peak shape (72). A sample volume
598 of 5 μ L was injected onto the column held at 30 °C, and eluted at a flow rate of 0.3 mL/min
599 with the following gradient: hold at 90% B from 0 to 1.7 min, 90 to 60% from 1.7 to 10 min,
600 hold at 60% B from 10.2 to 12.7 min, return to 90% B at 13.5 min, and equilibrate with 90%
601 B till 20 min. For positive ion mode analysis, a 2.1 x 100 mm, 1.7 um Acquity BEH Amide
602 column (Waters Corporation) was used. A mobile phase at pH 10 was prepared and
603 composed of 0.1% ammonium hydroxide in Milli-Q water (A) and 0.1% ammonium
604 hydroxide in 90% acetonitrile. A 5 μ L sample volume was injected onto the column held at
605 40 °C, and eluted at 0.3 mL/min with the same gradient as above. The autosampler was
606 washed between injections to prevent carryover with two successive wash solutions, 50:50
607 acetonitrile/water followed by 95:5 acetonitrile/water.

608

609 To quantify metabolites, we used liquid chromatography (Accela Open Autosampler and
610 Accela 1250 Pump, Thermo Scientific) coupled to a heated electrospray ionization source (H-
611 ESI) and a triple quadrupole mass spectrometer (TSQ Vantage, Thermo Scientific) operated
612 under selected reaction monitoring (SRM) mode. Optimal SRM parameters (s-lens, collision
613 energy, fragment ions) for each target compound were determined with authentic standards
614 purchased from Sigma. The complete list of metabolites is provided in Table S5. We
615 monitored two SRM transitions per compound for quantification and confirmation and
616 generated external calibration curves based on peak area for each compound. We converted
617 raw data files from proprietary Thermo (.RAW) format to mzML using the msConvert
618 tool(73) prior to processing with El-MAVEN(74). Samples were analyzed in random order
619 within each batch, and the pooled QC sample was analyzed every six injections.
620

621
622 **Phylogenetic analysis**
623

624 Sequences were collected from the Genbank database(75) for the following chitin
625 degradation pathway proteins: The N-terminal region of ChiA/ChiA-like, the C-terminal
626 region of ChiA/ChiA-like, UgpA, UgpE, NagZ, NagK, NagA, and NagB. Orthologs found
627 within *Prochlorococcus* MIT1303 were used as protein search queries using BLASTP(76),
628 with the top 500 or 250 hits recovered in each case. Each set of sequences were then aligned
629 in MAFFT(77) with the automatic algorithm selection option. Aligned sequences were then
630 used for phylogenetic reconstruction using IQTree(78) with automatic best-fitting model
631 selection. All sequence alignment and phylogenetic data files are available in SI data (Data
632 S1, SI Text 1 files), with alignment and tree filenames in each case describing the algorithms
633 and parameters used for these reconstructions. Several BLAST hits for the ChiA and ChiA-
634 like genes in SynPro overlapped, with some protein sequences containing multiple domains
635 homologous to different chitinase orthologs in other bacteria. A phylogenomic analysis of our
636 alignment data showed that the SynPro variant was likely the result of a fusion between genes
637 from Planctomycetes, before or after horizontal gene transfer into SynPro (see SI Text 1 and
638 SI Text 1 files for a detailed analysis of the protein fusion history).
639
640
641
642
643
644

645 **Acknowledgments**
646

647 We thank members of the Chisholm lab for thoughtful discussions, and Nikolai Radzinski for
648 insightful discussions and useful references regarding microbial aggregation. This research
649 was supported by grants from the Simons Foundation (Award ID #509034SCFY20 to R.B.
650 and S.W.C., and SCOPE Award ID 329108 to M.J. Follows; Life Sciences Award IDs
651 337262, 647135, 736564 to S.W.C.; SCOPE Award ID 329108 and 721246 to S.W.C.). G.C.
652 was also supported by the EMBO Long-Term Fellowship (ALTF 904-2018) and by the
653 Human Frontier Science Program (LT000069/2019-L). This paper is a contribution from the
654 Simons Collaboration on Ocean Processes and Ecology (SCOPE).
655
656
657
658
659

660 **Contributions**

661
662 G.C., R.B., A.Y. and S.W.C. designed experiments.
663 G.C., J.S., X.L. and A.M. performed experiments.
664 T.H., E.T. and R.B. performed bioinformatic analyses.
665 K.L., M.K.S., G.S. and E.B.K. performed metabolite analyses.
666 G.F. and J.P. performed phylogenetic analyses.
667 G.C., R.B. and S.W.C. interpreted data.
668 R.B. developed macroevolutionary model.
669 R.B., G.C., and S.W.C. wrote the paper with contributions from all authors.
670
671
672
673

674 **REFERENCES**

- 675 1. J. B. Waterbury, S. W. Watson, R. R. L. Guillard, L. E. Brand, Widespread occurrence of a unicellular, 676 marine, planktonic, cyanobacterium. *Nature* **277**, 293–294 (1979).
- 677 2. S. W. Chisholm, *et al.*, A novel free-living prochlorophyte abundant in the oceanic euphotic zone. *Nature* 678 **334**, 340 (1988).
- 679 3. P. Flombaum, *et al.*, Present and future global distributions of the marine Cyanobacteria Prochlorococcus 680 and Synechococcus. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 9824–9829 (2013).
- 681 4. G. Gómez-Baena, *et al.*, Glucose uptake and its effect on gene expression in prochlorococcus. *PLoS One* **3**, 682 e3416 (2008).
- 683 5. M. C. Muñoz-Marín, *et al.*, Mixotrophy in marine picocyanobacteria: use of organic compounds by 684 Prochlorococcus and Synechococcus. *ISME J.* **14**, 1065–1073 (2020).
- 685 6. M. del C. Muñoz-Marín, *et al.*, Prochlorococcus can use the Pro1404 transporter to take up glucose at 686 nanomolar concentrations in the Atlantic Ocean. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 8597–8602 (2013).
- 687 7. Z. Wu, *et al.*, Significant organic carbon acquisition by Prochlorococcus in the oceans. *bioRxiv*, 688 2022.01.14.476346 (2022).
- 689 8. J. R. Casey, *et al.*, Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization 690 of metabolism and physiology. *Science Advances* **8**, eabl4930 (2022).
- 691 9. A. P. Yelton, *et al.*, Global genetic capacity for mixotrophy in marine picocyanobacteria. *ISME J.* **10**, 692 2946–2957 (2016).
- 693 10. H.-M. Cauchie, Chitin production by arthropods in the hydrosphere. *Hydrobiologia* **470**, 63–95 (2002).
- 694 11. K. W. Tang, V. Turk, H. P. Grossart, Linkage between crustacean zooplankton and aquatic bacteria. *Aquat. 695 Microb. Ecol.* **61**, 261 (2010).
- 696 12. S. Beier, S. Bertilsson, Bacterial chitin degradation-mechanisms and ecophysiological strategies. *Front. 697 Microbiol.* **4**, 149 (2013).
- 698 13. P. Sánchez-Baracaldo, Origin of marine planktonic cyanobacteria. *Sci. Rep.* **5**, 17418 (2015).
- 699 14. M. del M. Aguiló-Ferretjans, *et al.*, Pili allow dominant marine cyanobacteria to avoid sinking and evade 700 predation. *Nat. Commun.* **12**, 1–10 (2021).
- 701 15. J. J. Pierella Karlusich, *et al.*, A robust approach to estimate relative phytoplankton cell abundances from 702 metagenomes. *Mol. Ecol. Resour.* (2022) <https://doi.org/10.1111/1755-0998.13592>.
- 703 16. M. W. Lomas, S. B. Moran, Evidence for aggregation and export of cyanobacteria and nano-eukaryotes

704 from the Sargasso Sea euphotic zone. *Biogeosciences* **8**, 203–216 (2011).

705 17. C. Mayer, *et al.*, Bacteria's different ways to recycle their own cell wall. *Int. J. Med. Microbiol.* **309**,
706 151326 (2019).

707 18. A. Ebrahimi, J. Schwartzman, O. X. Cordero, Cooperation and spatial self-organization determine rate and
708 efficiency of particulate organic matter degradation in marine bacteria. *Proc. Natl. Acad. Sci. U. S. A.* **116**,
709 23309–23316 (2019).

710 19. M. S. Datta, E. Sliwerska, J. Gore, M. F. Polz, O. X. Cordero, Microbial interactions lead to rapid micro-
711 scale successions on model marine particles. *Nat. Commun.* **7**, 11965 (2016).

712 20. T. N. Enke, *et al.*, Modular Assembly of Polysaccharide-Degrading Marine Microbial Communities. *Curr.*
713 *Biol.* **29**, 1528–1535.e6 (2019).

714 21. R. R. Malmstrom, *et al.*, Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific
715 oceans. *ISME J.* **4**, 1252–1264 (2010).

716 22. Jiang Haibo, Kong Renqiu, Xu Xudong, The N-Acetylmuramic Acid 6-Phosphate Etherase Gene Promotes
717 Growth and Cell Differentiation of Cyanobacteria under Light-Limiting Conditions. *J. Bacteriol.* **192**,
718 2239–2245 (2010).

719 23. Y. Saito, T. Okano, F. Gaill, H. Chanzy, J.-L. Putaux, Structural data on the intra-crystalline swelling of β -
720 chitin. *Int. J. Biol. Macromol.* **28**, 81–88 (2000).

721 24. L. R. Thompson, *et al.*, Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon
722 metabolism. *Proc. Natl. Acad. Sci. U. S. A.* **108**, E757–E764 (2011).

723 25. K. Abe, N. Nomura, S. Suzuki, Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic
724 environments, with a focus on a new HGT mechanism. *FEMS Microbiol. Ecol.* **96** (2020).

725 26. H.-C. Flemming, S. Wuertz, Bacteria and archaea on Earth and their abundance in biofilms. *Nat. Rev.*
726 *Microbiol.* **17**, 247–260 (2019).

727 27. O. Rota-Stabelli, A. C. Daley, D. Pisani, Molecular Timetrees Reveal a Cambrian Colonization of Land
728 and a New Scenario for Ecdysozoan Evolution. *Curr. Biol.* **23**, 392–398 (2013).

729 28. G. P. Fournier, *et al.*, The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages.
730 *Proc. Biol. Sci.* **288**, 20210675 (2021).

731 29. T. H. P. Harvey, M. I. Vélez, N. J. Butterfield, Exceptionally preserved crustaceans from western Canada
732 reveal a cryptic Cambrian radiation. *Proceedings of the National Academy of Sciences* **109**, 1589–1594
733 (2012).

734 30. M. Williams, T. R. A. Vandenbroucke, V. Perrier, D. J. Siveter, T. Servais, A link in the chain of the
735 Cambrian zooplankton: bradoriid arthropods invade the water column. *Geol. Mag.* **152**, 923–934 (2015).

736 31. V. Perrier, M. Williams, D. J. Siveter, The fossil record and palaeoenvironmental significance of marine
737 arthropod zooplankton. *Earth-Sci. Rev.* **146**, 146–162 (2015).

738 32. T. Servais, *et al.*, The onset of the “Ordovician Plankton Revolution” in the late Cambrian. *Palaeogeogr.*
739 *Palaeoclimatol. Palaeoecol.* **458**, 12–28 (2016).

740 33. B. Kröger, T. Servais, Y. Zhang, The origin and initial rise of pelagic cephalopods in the Ordovician. *PLoS*
741 *One* **4**, e7262 (2009).

742 34. A. Blieck, The Andre Dumont medallist lecture: from adaptive radiations to biotic crises in palaeozoic
743 vertebrates: a geobiological approach/Des radiations adaptatives aux crises biologiques des vertébrés
744 paleozoïques: une approche géobiologique. *Geologica Belgica* **14**, 203+ (2011).

745 35. K. M. Shoemaker, S. Duhamel, P. H. Moisander, Copepods promote bacterial community changes in
746 surrounding seawater through farming and nutrient enrichment. *Environ. Microbiol.* **21**, 3737–3750 (2019).

747 36. M. S. Datta, *et al.*, Inter-individual variability in copepod microbiomes reveals bacterial networks linked to
748 host physiology. *ISME J.* **12**, 2103–2113 (2018).

749 37. R. A. Foster, J. L. Collier, E. J. Carpenter, Reverse transcription pcr amplification of cyanobacterial
750 symbiont 16s rRNA sequences from single non-photosynthetic eukaryotic marine planktonic host cells1. *J.*
751 *Phycol.* **42**, 243–250 (2006).

752 38. T. Yuasa, T. Horiguchi, S. Mayama, A. Matsuoka, O. Takahashi, Ultrastructural and molecular
753 characterization of cyanobacterial symbionts in *Dictyocoryne profunda* (polycystine radiolaria). *Symbiosis*
754 **57**, 51–55 (2012).

755 39. C. Bird, *et al.*, Cyanobacterial endobionts within a major marine planktonic calcifier (*Globigerina*
756 *bulloides*, Foraminifera) revealed by 16S rRNA metabarcoding. *Biogeosciences* **14**, 901–920 (2017).

757 40. T. Nakayama, *et al.*, Single-cell genomics unveiled a cryptic cyanobacterial lineage with a worldwide
758 distribution hidden by a dinoflagellate host. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 15973–15978 (2019).

759 41. M. Kim, D. H. Choi, M. G. Park, Cyanobiont genetic diversity and host specificity of cyanobiont-bearing
760 dinoflagellate *Ornithocercus* in temperate coastal waters. *Sci. Rep.* **11**, 1–13 (2021).

761 42. T. Bosak, B. Liang, M. S. Sim, A. P. Petroff, Morphological record of oxygenic photosynthesis in conical
762 stromatolites. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 10939–10943 (2009).

763 43. C. E. Blank, P. Sánchez-Baracaldo, Timing of morphological and ecological innovations in the
764 cyanobacteria--a key to understanding the rise in atmospheric oxygen. *Geobiology* **8**, 1–23 (2010).

765 44. S. V. Lalonde, K. O. Konhauser, Benthic perspective on Earth's oldest evidence for oxygenic
766 photosynthesis. *Proc. Natl. Acad. Sci. U. S. A.* **112**, 995–1000 (2015).

767 45. H.-C. Flemming, *et al.*, Biofilms: an emergent form of bacterial life. *Nat. Rev. Microbiol.* **14**, 563–575
768 (2016).

769 46. R. Allen, B. E. Rittmann, R. Curtiss 3rd, Axenic biofilm formation and aggregation by *Synechocystis* sp.
770 Strain PCC 6803 are induced by changes in nutrient concentration and require cell surface structures. *Appl.*
771 *Environ. Microbiol.* **85** (2019).

772 47. C. Callieri, A. Lami, R. Bertoni, Microcolony formation by single-cell *Synechococcus* strains as a fast
773 response to UV radiation. *Appl. Environ. Microbiol.* **77**, 7533–7540 (2011).

774 48. S. Klähn, C. Steglich, W. R. Hess, M. Hagemann, Glucosylglycerate: a secondary compatible solute
775 common to marine cyanobacteria from nitrogen-poor environments. *Environ. Microbiol.* **12**, 83–94 (2010).

776 49. C. E. Blank, Phylogenetic distribution of compatible solute synthesis genes support a freshwater origin for
777 cyanobacteria. *J. Phycol.* **49**, 880–895 (2013).

778 50. G. C. Kettler, *et al.*, Patterns and implications of gene gain and loss in the evolution of *Prochlorococcus*.
779 *PLoS Genet.* **3**, e231 (2007).

780 51. F. Partensky, L. Garczarek, *Prochlorococcus*: advantages and limits of minimalism. *Ann. Rev. Mar. Sci.* **2**,
781 305–331 (2010).

782 52. A. Dufresne, L. Garczarek, F. Partensky, Accelerated evolution associated with genome reduction in a free-
783 living prokaryote. *Genome Biol.* **6**, R14 (2005).

784 53. B. A. S. Van Mooy, G. Rocap, H. F. Fredricks, C. T. Evans, A. H. Devol, Sulfolipids dramatically decrease
785 phosphorus demand by picocyanobacteria in oligotrophic marine environments. *Proc. Natl. Acad. Sci. U. S.*
786 *A.* **103**, 8607–8612 (2006).

787 54. J. J. Grzymski, A. M. Dussaq, The significance of nitrogen cost minimization in proteomes of marine
788 microorganisms. *ISME J.* **6**, 71–80 (2012).

789 55. R. Braakman, M. J. Follows, S. W. Chisholm, Metabolic evolution and the self-organization of ecosystems.
790 *Proc. Natl. Acad. Sci. U. S. A.* **114**, E3091–E3100 (2017).

791 56. H. Luo, Y. Huang, R. Stepanauskas, J. Tang, Excess of non-conservative amino acid changes in marine
792 bacterioplankton lineages with reduced genomes. *Nature Microbiology* **2**, 1–9 (2017).

793 57. C. S. Ting, C. Hsieh, S. Sundararaman, C. Mannella, M. Marko, Cryo-electron tomography reveals the
794 comparative three-dimensional architecture of Prochlorococcus, a globally important marine
795 cyanobacterium. *J. Bacteriol.* **189**, 4485–4493 (2007).

796 58. N. Cermak, *et al.*, High-throughput measurement of single-cell growth rates using serial microfluidic mass
797 sensor arrays. *Nat. Biotechnol.* **34**, 1052–1059 (2016).

798 59. M. Y. Galperin, K. S. Makarova, Y. I. Wolf, E. V. Koonin, Expanded microbial genome coverage and
799 improved protein family annotation in the COG database. *Nucleic Acids Res.* **43**, D261–9 (2015).

800 60. T. Hackl, *et al.*, Novel integrative elements and genomic plasticity in ocean ecosystems. *bioRxiv*,
801 2020.12.28.424599 (2020).

802 61. S. L. Hogle, *et al.*, Siderophores as an iron source for picocyanobacteria in deep chlorophyll maximum
803 layers of the oligotrophic ocean. *ISME J.*, 1–11 (2022).

804 62. M. Steinegger, J. Söding, Clustering huge protein sequence sets in linear time. *Nat. Commun.* **9**, 2542
805 (2018).

806 63. J. Huerta-Cepas, *et al.*, eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology
807 resource based on 5090 organisms and 2502 viruses. *Nucleic Acids Res.* **47**, D309–D314 (2019).

808 64. L. R. Moore, *et al.*, Culturing the marine cyanobacterium Prochlorococcus. *Limnol. Oceanogr. Methods* **5**,
809 353–362 (2007).

810 65. B. Bushnell, BBTools software package. *URL* <http://sourceforge.net/projects/bbmap> (2014).

811 66. H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*
812 **25**, 1754–1760 (2009).

813 67. S. Anders, P. T. Pyl, W. Huber, HTSeq—a Python framework to work with high-throughput sequencing
814 data. *Bioinformatics* **31**, 166–169 (2015).

815 68. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data
816 with DESeq2. *Genome Biol.* **15**, 550 (2014).

817 69. H. Wickham, ggplot2. *WIREs Comp Stat* **3**, 180–185 (2011).

818 70. J. D. Rabinowitz, E. Kimball, Acidic Acetonitrile for Cellular Metabolome Extraction from Escherichia
819 coli. *Anal. Chem.* **79**, 6167–6173 (2007).

820 71. M. C. Kido Soule, K. Longnecker, W. M. Johnson, E. B. Kujawinski, Environmental metabolomics:
821 Analytical strategies. *Mar. Chem.* **177**, 374–387 (2015).

822 72. J. J. Hsiao, O. G. Potter, T.-W. Chu, H. Yin, Improved LC/MS Methods for the Analysis of Metal-
823 Sensitive Analytes Using Medronic Acid as a Mobile Phase Additive. *Anal. Chem.* **90**, 9457–9464 (2018).

824 73. M. C. Chambers, *et al.*, A cross-platform toolkit for mass spectrometry and proteomics. *Nat. Biotechnol.*
825 **30**, 918–920 (2012).

826 74. S. Agrawal, *et al.*, El-MAVEN: A Fast, Robust, and User-Friendly Mass Spectrometry Data Processing
827 Engine for Metabolomics. *Methods Mol. Biol.* **1978**, 301–321 (2019).

828 75. D. A. Benson, *et al.*, GenBank. *Nucleic Acids Res.* **46**, D41–D47 (2018).

829 76. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic local alignment search tool. *J. Mol.*
830 *Biol.* **215**, 403–410 (1990).

831 77. K. Katoh, K.-I. Kuma, H. Toh, T. Miyata, MAFFT version 5: improvement in accuracy of multiple
832 sequence alignment. *Nucleic Acids Res.* **33**, 511–518 (2005).

833 78. L.-T. Nguyen, H. A. Schmidt, A. von Haeseler, B. Q. Minh, IQ-TREE: A Fast and Effective Stochastic
834 Algorithm for Estimating Maximum-Likelihood Phylogenies. *Mol. Biol. Evol.* **32**, 268–274 (2014).