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Abstract 
Stress triggers energy-dependent, anticipatory responses that promote survival, a phenomenon 

termed allostasis. However, the chronic activation of allostatic responses results in allostatic load (AL) 

and in the maladaptive state known as allostatic overload. Epidemiological studies show that allostatic 

load predicts physical and cognitive decline, as well as earlier mortality; yet the manifestations of 

allostatic load and overload at the cellular level remain unclear. To define the energetic cost and 

potential detrimental effects of prolonged cellular allostatic load, we developed a longitudinal model of 

chronic glucocorticoid stress in primary human fibroblasts. Results replicated in three healthy donors 

demonstrated that chronic stress robustly increased cellular basal energy consumption by 62%. This 

hypermetabolic state relied on a bioenergetic shift away from glycolysis towards mitochondrial oxidative 

phosphorylation (OxPhos), supported by an upregulation of mitochondrial biogenesis and increased 

mitochondrial DNA (mtDNA) density. As in humans where chronic stress accelerates biological aging, 

chronic allostatic load altered extracellular cytokine and cell-free DNA, caused mtDNA instability, 

increased the rate of epigenetic aging based on DNA methylation clocks, accelerated telomere 

shortening, and reduced lifespan (i.e., Hayflick limit). Pharmacological blockade of mitochondrial 

nutrients uptake normalized OxPhos activity but exacerbated hypermetabolism, which further 

accelerated telomere shortening and reduced cellular lifespan. Together, these results highlight the 

increased energetic cost of cellular allostatic load and suggests a mechanism for the transduction of 

chronic stress into accelerated cellular aging to be examined in humans. 

 

Keywords: glucocorticoid, chronic stress, mitochondria, allostatic load, allostatic overload, aging, 

hypermetabolism, telomere, epigenetic aging  
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Introduction 

In response to environmental factors and stressors, living organisms mount evolutionarily 

conserved responses that aim to increase resilience and promote survival, a phenomenon termed 

allostasis1,2. However, the chronic activation of these allostatic responses produce allostatic load3,4, 

reflecting the added cost of stress on the organism. When chronically activated, allostatic load can result 

in the maladaptive state of allostatic overload, which disrupt normal physiological functions and 

longevity7. For example, while regular exercise improves glucose regulation and increases overall 

fitness5, excessive or chronic exercise disrupts glucose homeostasis and insulin secretion6. Large-scale 

epidemiological studies also show that allostatic load, reflected by the co-elevation of stress hormones, 

metabolites, and cardiovascular risk parameters, predicts physical and cognitive decline, as well as 

earlier mortality8,9, underscoring the long-term damaging effects that chronic activation of stress 

pathways has on human health. However, how allostatic load and overload manifests at the cellular 

level has not been fully defined.   

Allostatic load involves anticipatory processes that prepare the organism for potential threats, 

but it comes at a cost. All allostatic processes must consume energy ± gene expression and protein 

synthesis, enzymatic reactions, as well as hormone biosynthesis and secretion, all consume ATP10. In 

human cells, ATP is produced with moderate efficiency by glycolysis (JATP-Glyc) in the cytoplasm, and 

with highest efficiency by oxidative phosphorylation (OxPhos, JATP-OxPhos) within mitochondria. 

Intracellularly, maintaining glycolysis and OxPhos pathways come at a cost, which is substantially 

higher for OxPhos, owing to the extensive proteome cost of mitochondrial biogenesis and maintenance 

(>1,000 proteins) relative to glycolysis (Ң10 proteins)11. In addition to their role as the main energy 

producers, mitochondria respond to stress mediators12 and influence physiological processes that 

encompass allostasis13, positioning mitochondria as key mediators of cellular and whole-body stress 

responses14. We have previously outlined theoretical functional and structural mitochondrial 

recalibrations and potential detrimental effects that may occur in response to chronic stress, known as 

mitochondrial allostatic load (MAL)15. However, these hypothesized recalibrations, in particular the total 

energetic cost of allostatic load and the potential downstream maladaptive consequences, have not 

been defined longitudinally in a human system.  

A major evolutionary-conserved stress pathway in mammals involves the release of 

glucocorticoids (GC; cortisol in humans, corticosterone in rodents). GC signaling acts via the 

glucocorticoid receptor influencing the expression of both nuclear16 and mitochondrial genomes17. GC 

signaling in human fibroblasts also has been shown to acutely induce mitochondrial DNA (mtDNA) 

release into the cytoplasm18. In humans, chronic elevation of GC levels is linked to brain atrophy19, 

cognitive decline and increased risk of Alzheimer disease20,21, as well as increased risk of metabolic 
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disease20. Therefore, based on previous short-term GC stimulation studies12 and the fact that any 

allostatic process requires active, ATP-dependent molecular events (e.g., transcription and translation, 

protein secretion, organelle turnover, DNA replication and repair, epigenetic remodeling, etc.), we 

hypothesized that chronic GC signaling would trigger energy-dependent recalibrations among multiple 

domains of bioenergetic and cellular behavior. Moreover, based on evidence in humans that chronic 

allostatic load leads to allostatic overload manifesting as accelerated cellular aging22,23 and increased 

risk of age-related diseases24, we further hypothesized that that prolonged stress exposure in cells 

would trigger maladaptive outcomes among multiple cellular aging markers and lifespan.  

Here we use a cellular system shown to recapitulate human epigenetic aging signatures in vitro25 

and enable to longitudinally examine several key hallmarks of human aging, including mitochondrial 

bioenergetics, secreted cytokines, epigenetic clocks, and markers of replicative senescence such as 

telomere length and the Hayflick limit26. To examine the bioenergetic and cellular manifestations of 

allostatic load across the lifespan, we apply chronic GC stimulation to three cell lines derived from three 

healthy donors, and deploy a longitudinal, high-frequency, repeated-measures approach. This model 

presents the major advantages of reducing potential bias from single-time points and to resolve some 

potential time-dependent effects of chronic GC stress. Together, our findings define the chronic effects 

of GC stress on cellular, bioenergetic and molecular recalibrations, highlighting increased energy 

expenditure (i.e., hypermetabolism) and accelerated cellular aging as interrelated, cell-autonomous 

features allostatic load.  

 

Results 

Chronic GC stress decreases cell volume and increases cell death 

We treated human fibroblasts derived from three healthy donors (Donors 1, 2 and 3) with the GC 

receptor agonist dexamethasone (Dex, 100 nM), at a concentration that triggers its translocation from 

the cytoplasm to the nucleus in this cell type18. To evaluate the effects of chronic GC signaling across 

the cellular lifespan (up to 150-250 days, depending on the cell line), cytologic parameters where 

evaluated every 5-7 days, while cellular bioenergetics, secreted factors, DNA- and RNA-based 

measurements to quantify allostatic load were performed every 10-20 days until cells reached 

replicative senescence, marked by a near absence of cell division (Fig. 1A). A portion of lifespan data 

for the control (untreated) group was reported in 27, and here data from Dex-treated cell lines is 

expressed relative to their respective untreated control condition. Compared to similar experiments in 

an immortalized cell line(s), primary human fibroblasts derived from different female and male donors 

provide a more direct test of robustness and generalizability for our conclusions. 
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Chronic Dex altered cell morphology, marked by a flattened appearance with more membrane 

protrusions and fewer contacts with surrounding cells (Fig. 1B). Acutely (within 5 days), Dex caused a 

25-50% reduction in cell volume that persisted across most of the cellular lifespan in all three donors, 

resulting in an average 33% volume reduction across the lifespan (p<0.0001, Fig. 1D). Towards the 

end of the lifespan between 200-250 days, both Dex-treated cells and controls converged towards the 

same apparent minimal cell volume. Parallel measures of cell death or mortality showed no acute effect 

of Dex on cell death for the first Ң50 days. But Dex caused a marked elevation in cell death in the latter 

portion of the lifespan, reaching up to an order of magnitude increase for donor 3, and an average 3.3-

fold increase across all three donors (p<0.0001, Fig. 1E-F). Thus, GC stress in our primary human cell 

system triggered robust time-dependent allostatic effects including a reduction in cell volume and an 

earlier rise of cell death, which suggested that chronically stressed cells may be under energetic 

constraints that limit survival and growth28-32. 

 

Chronic GC stress triggers hypermetabolism  

Cellular energetic constraints could arise in two main ways: an increase in ATP consumption rate 

(i.e., energy expenditure), or a reduction in the capacity to produce ATP. To evaluate the effects of 

chronic Dex on total energy expenditure and ATP production capacity, we performed extracellular flux 

analysis of oxygen and pH (Seahorse) longitudinally, every 10-28 days (Extended Data Fig. 1A). Using 

a validated approach to converted oxygen consumption rate (OCR) and extracellular acidification rates 

(ECAR) to ATP production rates33, we generated lifespan trajectories of three main parameters: i) 

resting (or basal) ATP production rates derived from glycolysis (JATP-Glyc) and from OxPhos (JATP-OxPhos), 

which reflects how much energy cells consume to sustain life and divide; ii) the maximal JATP-Glyc 

detected after pharmacologically inhibiting OxPhos, which reflects the glycolytic capacity to fulfill basal 

cellular energetic demands; and iii) the maximal JATP-OxPhos, which reflects the built-in spare OxPhos 

capacity (Extended Data Fig. 1B-C). To obtain energy consumption per unit of cell mass (similar to 

measuring whole-body energy consumption per Kg of body weight in humans), bioenergetic measures 

were normalized to the closest available measurement in our model, cell volume.  

Around day 25, Dex caused an initial decrease in JATP-Glyc, which subsequently oscillated but 

remained on average 16% lower than control across the lifespan (p<0.05, Fig 2A). In contrast, Dex 

substantially increased mitochondrially-derived JATP-OxPhos, which remained markedly elevated reaching 

up to 3-4-fold higher rates than control in mid-life (p<0.0001, Fig 2B). Absolute JATP-Glyc and JATP-OxPhos 

values showed similar longitudinal behaviors, with lifespan averages significantly lower and higher than 

controls, respectively (ps<0.0001, Extended Data Fig. 2A-B). 
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To gain insight into the total energetic costs of allostatic load, we then combined ATP production 

rates derived from both glycolysis and OxPhos. This showed that Dex increased total resting energy 

consumption across the lifespan (JATP-Total/cell volume) by a striking 61.9% (p<0.001, Fig 2C). Dex-

treated cells consume more energy per unit of volume to sustain life. This chronic state of 

hypermetabolism suggested the existence of costly allostatic recalibrations that may also involve 

qualitative cellular bioenergetic recalibrations. 

  

Chronic GC stress causes a metabolic shift towards OxPhos 

Expressing JATP-Glyc and JATP-OxPhos as a percentage of JATP-Total showed that that Dex induced a 

significant shift towards OxPhos as the major source of ATP. Across the lifespan, Dex-treated cells 

derived 75-80% of their ATP from OxPhos, compared to 55-60% in control cells (p<0.0001, Fig 3A). 

Accordingly, variations in JATP-Total along the lifespan were mostly explained by JATP-OxPhos (r2=0.87, 

p<0.0001, Extended Data Fig. 2D), highlighting the strong reliance of total energy expenditure on 

mitochondrial OxPhos.  

This result led us to examine whether chronic GC stress directly impaired glycolysis. By inhibiting 

OxPhos with the ATP synthase (i.e., Complex V) inhibitor oligomycin, normal cells naturally increase 

glycolytic activity to compensate for the missing JATP-OxPhos and fulfill the cellular energetic demands. 

Here we found that after the addition of oligomycin, Dex-treated cells easily matched the basal JATP-Total 

of their control counterparts by upregulating JATP-Glyc (ns, Fig. 3B). The intact glycolytic capacity 

demonstrated that the metabolic shift towards OxPhos does not arise in response to impaired glycolysis, 

but potentially by actively upregulating the OxPhos system.  

Accordingly, Dex increased the spare fraction of OxPhos capacity above basal consumption by 

an average of 83.9% (p<0.0001, Fig. 3C). Moreover, for a given amount of energy required to sustain 

basal cellular functions, Dex-treated fibroblasts maintained an even larger spare JATP-OxPhos capacity 

than control cells ± an effect that persisted across the lifespan (p<0.0001, Fig. 3D), consistent with the 

anticipatory process of allostasis.  

To examine the basis for this amplified OxPhos capacity in cells experiencing allostatic load, we 

first evaluated mitochondrial coupling efficiency. Surprisingly, Dex did not alter coupling efficiency, 

which oscillated by no more than 10% (within measurement error) from the control across the lifespan 

(n.s., Fig. 3E), and therefore cannot explain neither the observed increased in the total energy 

expenditure, nor the elevated OxPhos spare capacity. We then quantified total cellular mitochondrial 

DNA copy number (mtDNAcn) by qPCR, which showed that Dex induced approximately a doubling in 

mtDNAcn over the first 100 days of lifespan, followed by more substantial elevation at the end of life, 

particularly in one of the donors. On average across the lifespan, Dex-treated cells had an average of 
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936 mtDNA copies per cell, 97.8% higher than the control group (p<0.05, Extended Data Fig. 4). 

Furthermore, when accounting for the observed reduction in cell volume, cellular mtDNA density was 

152.8% higher than in control (p<0.01, Fig. 3F), consistent with the increased reliance on OxPhos, the 

higher spare respiratory capacity, and the overall hypermetabolism in chronically stressed cells.   

 

Chronic GC stress upregulates OxPhos and mitochondrial biogenesis gene expression  

To examine the transcriptional recalibrations associated with stress-induced cellular allostatic 

load and hypermetabolism, we performed RNA sequencing (RNAseq) at 9-10 timepoints across the 

lifespan of each donor, and systematically queried the major glycolytic enzymes as well as OxPhos and 

mtDNA-related genes. Consistent with the stable bioenergetic shift from glycolysis to OxPhos, chronic 

Dex downregulated most key glycolytic genes across the lifespan (Fig. 4A), including the first enzyme 

in the sequence from glucose to pyruvate, hexokinase (HK2, -44.4%, p<0.001), as well as the rate 

limiting enzyme phosphofructokinase (PFK, -28.5%, p<0.001). On the other hand, chronic Dex 

upregulated most individual subunits of the five OxPhos complexes. The most highly upregulated genes 

were UQCRC1 (complex III, +69.7%, p<0.001) and COX7A1 (complex IV, +52.2%, p<0.01), indicating 

a coordinated upregulation of the OxPhos program (Fig. 4B).  

Moreover, consistent with the elevated mtDNAcn in Dex-treated cells, genes encoding mtDNA 

maintenance- and replication-related proteins were both upregulated (Fig. 4C-D). This included the 

DNA polymerase theta POLQ, which plays a key role on repairing double strand breaks by the theta-

mediated end joining mechanism34 (+91.9%, p<0.001). This result also pointed to potential mtDNA 

instability as a feature of MAL15 (see below). Dex upregulated the master regulator of biogenesis PGC1ߙ 

(peroxisome proliferator-activated receptor gamma coactivator 1-alpha, PPARGC1A35) by 106% across 

the lifespan (p<0.001, two-way ANOVA), and simultaneous downregulated the inhibitor of biogenesis 

NRIP1 (nuclear receptor interacting protein 1, also RIP14036,37) by 61.5% (p<0.001, two-way ANOVA) 

(Fig. 4E). Together, the transcriptomics data summarized in Fig. 4F (details in Supplemental Data Fig. 
1) reveal a sustained stress-induced upregulation of the genetic programs involved in building additional 

OxPhos capacity and mtDNA copy number, consistent with the bioenergetic recalibrations and the 

anticipatory processes of cellular allostatic load in Dex-treated cells.  

 

Chronic GC stress increases cell-free mtDNA levels  

The changes in mitochondrial OxPhos and mtDNA density with allostatic load led us to 

investigate extracellular cell-free DNA (cf-mtDNA), an emerging mitochondria-derived signaling agent 

that can act as an inter-cellular signaling factor38. In humans, cf-mtDNA reflects the extracellular release 

of whole mitochondria or mitochondria-free mtDNA39,40. Elevated cf-mtDNA has been reported both in 
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response to acute psychological stress18,41 and with human aging42. In our system, chronic Dex strikingly 

increased media cf-mtDNA by 4-6-fold over the first 100 days in the three donors (Fig. 5A). 

Subsequently, cf-mtDNA levels appeared to oscillate and gradually match control levels. On average, 

cf-mtDNA levels across the lifespan were 46.9% higher in Dex-treated cells than controls (p<0.05). 

Consistent with evidence suggesting that cf-mtDNA release is a selective and regulated process not 

primarily driven by cell death (reviewed in 43,44), cf-mtDNA was only moderately related to cell death at 

each passage. Cell death accounted for 22% and 43% of the variance in cf-mtDNA levels among control 

and Dex-treated cells, respectively (Fig. 5B). 

Dex also robustly elevated cell-free nuclear DNA (cf-nDNA, measured in parallel with cf-

mtDNA), which reached values an order of magnitude higher than controls within the first 100 days of 

treatment. As for cf-mtDNA, this initial response was followed by a gradual normalization, resulting in a 

lifespan average 2-fold higher than controls (p<0.001, Fig. 5C). Similar to cf-mtDNA, cell death was 

significantly correlated with cf-nDNA but accounted for only a minor fraction (10-14%) of the variance 

in extracellular nuclear genome (Fig. 5D).  

Interestingly, whereas media cf-mtDNA and cf-nDNA were strongly correlated in control cells 

(r2=0.64, p<0.0001), in response to chronic Dex, a large number of cf-mtDNA molecules were released 

at certain timepoints (up to 10-fold) without a corresponding elevation in cf-nDNA, as reflected in a 

markedly reduced correlation between cf-mtDNA and cf-nDNA (r2=0.13, p<0.05, Extended Data Fig. 
4A). This result largely, although not definitively, ruled out the possibility that both genomes are 

systematically co-released during glucocorticoid stress. Moreover, the extracellular mitochondrial-to-

nuclear ratio (cf-mtDNA/cf-nDNA) in the extracellular space was not correlated with intracellular 

mtDNA/nDNA ratio (mtDNAcn), supporting the notion that the underlying release mechanisms between 

the mitochondrial and nuclear genomes are different (Extended Data Fig. 4B-D). These data define 

the temporally sensitive release of extracellular genomic material as a feature of GC-induced cellular 

allostatic load. 

 

Chronic GC stress alters cytokine release 

Given the observed increase in extracellular cf-DNA, and considering that allostatic load in 

humans is characterized by elevated levels of neuroendocrine mediators45,46 as well as chronic 

inflammation47, we next sought to investigate the effects of chronic Dex on the profiles of secreted 

cytokines. Using a custom-designed Luminex array of plasma cytokines associated with human aging48, 

we detected a panel of 27 cytokines in the culture media of the three donors across the lifespan (Fig. 
6A). While chronic Dex caused variable responses among different cytokines, it triggered a pattern of 

acute increase in many cytokine levels within the first 60 days of treatment, consistent with the classic 
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inverted-U shaped response of allostasis12 (Fig 6B). The peak cytokine response occurred around Ң30 

days after the onset of stress, with a magnitude approximately double (i.e., Ң100% increase) for most 

cytokines relative to control cells.  

Further analysis revealed that Dex significantly altered the lifespan average secretion of 12 out 

of the 27 age-related cytokines. The strongest response was a stable elevation (average +210%) of 

Tissue Factor Pathway Inhibitor (TFPI, p<0.001, Fig. 6C), a cytokine related to the complement and 

coagulation cascades. The most strongly downregulated cytokine was Interleukin 6 (IL6, -77%, 

p<0.001, Fig. 6D), a pro-inflammatory cytokine well-known to be repressed by GC signaling49. 

Interestingly, when we queried the same cytokines at the transcript level, we observed a global 

downregulation in RNA levels among the three donors (Extended Data Fig. 5A-B). In addition, the 

effect sizes across the lifespan were 2-3 times larger at the RNA level than at the extracellular protein 

level (Extended Data Fig. 5C-D). Comparison of the secreted protein and transcriptomic data 

demonstrated that only half of the cytokines showed congruent (within 10% variation) responses, 

highlighting a disconnect between quantitative measures of gene expression and cytokine release, and 

emphasizing the value of direct protein quantification (Supplemental Data Fig. 2A-AB). Thus, chronic 

GC signaling triggers a time-sensitive secretory phenotype, possibly involving non-transcriptional and/or 

non-genomic effects in the release of age-related cytokines. 

 

Chronic GC stress causes mtDNA instability 

 Thus far, we have examined key bioenergetic features of cellular allostatic load and related 

extracellular signaling behavior. We now turn our attention to potential maladaptive consequences of 

sustained allostatic load, namely evidence of mitochondrial and cellular allostatic overload. In vitro and 

in vivo studies have shown that one of the consequences of chronic metabolic stressors, OxPhos 

defects, and aging is mtDNA instability, manifested as the accumulation of mtDNA defects50-54. We also 

recently demonstrated that mtDNA instability can be induced by OxPhos defects in this cellular lifespan 

system27. 

In Dex-treated cells, long-range PCR (LR-PCR) provided initial evidence that chronic 

glucocorticoid signaling may trigger mtDNA instability, as illustrated in multiple mtDNA deletions 

detected at different time points across the lifespan in two (Donors 1 and 2) out of three donors (Donor 

1 shown in Fig 7A). We confirmed the accumulation of mtDNA deletions in all donors through deep 

mtDNA sequencing and quantified their relative abundance (i.e. proportion of mutant and normal 

mtDNA genomes, or heteroplasmy) across the lifespan using the eKLIPse pipeline55 (Fig 7B, Extended 
Data Fig 6A). Dex induced a relatively large increase in total mtDNA deletion levels between days 20-

50 of treatment among all three donors, suggesting that the effects of glucocorticoid stress on mtDNA 
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in instability may develop relatively rapidly. These timepoints also correspond to the acute elevation in 

cytokines (between days 20-50, see Fig 6). On average, Dex tended to increase the total mtDNA 

deletion burden by an average of 141.1% (p=0.11, Fig 7C). This trend in mtDNA deletion load was not 

driven by an increase in the number of unique deletions, but rather by higher heteroplasmy levels of 

deletions that were i) moderately larger in size and ii) tended to affect the D-loop the sequence where 

the mtDNA maintenance proteins whose gene expression were upregulated (see Fig 4F) are known to 

physically interact (Extended Data Fig 6B-E).  

Another marker of mtDNA instability is the accumulation of point mutations. Along the lifespan, 

except for one low heteroplasmy mutation in Donor 2 detected on day 125, control cells largely did not 

accumulate novel mutations. In comparison, during the same portion of lifespan we identified 3 and 4 

novel mutations in Donors 1 and 2 (total 7 novel mutations), one of which clonally expanded to reach 

39.8% heteroplasmy (Figure 7D).  

Thus, as expected replicating cultured cells accumulate few novel mtDNA deletions and point 

mutations56, likely as a result of purifying selection (fibroblasts with deleterious mtDNA defects die and 

are eliminated). Nevertheless, the apparent elevation in both spontaneous deletions and point 

mutations are consistent with the accumulation of mitochondrial allostatic load, and collectively point to 

mtDNA instability as a potential feature of GC-induced hypermetabolism and cellular allostatic load. 

 

Chronic GC stress accelerates cellular aging 

Combined, the mtDNA instability, premature cell size reduction, elevated mortality, as well as 

the early induction of most human age-related cytokines suggested that cellular allostatic load could 

impact aging trajectories. We first examine the growth curves for each donor, which reveal the maximal 

number of cell divisions (i.e., population doublings) that can be accomplished by each donor before 

reaching replicative senescence. This feature, also known as the Hayflick limit57,58, is the most closely 

related outcome to human lifespan in this simple cellular model and could reflect allostatic overload.  

Consistent with the notion that chronic stress accelerates cellular aging in humans (reviewed in 
59,60), Dex caused a premature halting of population doubling (Fig. 8A), resulting in an average 19.8% 

reduction in the Hayflick limit across the three donors (p<0.05, Fig. 8B). This effect was associated with 

a decrease in cell division rate within the first 50 days of treatment (-39.1%, p<0.05, Fig. 8C, Extended 
Data Fig. 7). In the context of this substantial reduction in the division rate, and particularly given the 

reduced cell size in Dex-treated cells (-25-50% volume), the hypermetabolic phenotype of allostatic load 

becomes particularly striking. Considering cellular doubling rate and cell size, chronically stressed 

fibroblasts expend 107.9% more energy than control cells over the course of each cell division (p<0.001, 

Extended Data Fig. 7). 
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To examine the potential basis for the reduced cellular lifespan, we next examined two 

orthogonal measures of replicative senescence and cellular aging: telomere length22, and DNA 

methylation-based epigenetic clocks61,62. The following results must be interpreted in the context of the 

limited number of observations where which all lifespan timepoints are collapsed into a single 

slope/value (n=3 donors), such that the effect size (% change) is likely more meaningful than the p 

values. We first quantified relative telomere length by qPCR across the lifespan for each donor and 

computed the rate (i.e., linear slope) of telomere shortening per cell division. Chronic Dex accelerated 

the telomere shortening rate by 27.6% across the three donors (p<0.05, Fig. 7D). Telomere length was 

also estimated through a DNA methylation-based algorithm63. This measure documented a trend of 

similar magnitude towards accelerated shortening rate per population doubling (+39.4%, p=0.11, 

Extended Data Fig. 8A-B). These data thus provided converging evidence that chronically stressed 

cells experience more rapid loss of telomeric repeats during each event of genome replication, 

consistent with allostatic overload.  

At the gene expression level, accelerated telomere attrition was associated with an alteration in 

the expression of genes encoding telomere capping proteins. In particular, the major component of the 

shelterin complex, TPP164 was significantly downregulated across the lifespan for the three donors (-

26.7%, p<0.0001), potentially indicating that the telomeres in Dex-treated cells could be less extensively 

protected (Extended Data Fig. 8C-D). On the other hand, several genes encoding the core components 

of the telomerase holoenzyme64 were upregulated, including TERC, which was the most highly 

upregulated telomerase gene (+68.6%, p<0.0001, Extended Data Fig. 8C-D). The upregulation of 

TERC in the context of accelerated telomere shortening in Dex-treated is in agreement with clinical 

associations of chronic life stress and upregulation of telomerase activity in leukocytes65,66, possibly 

reflecting a (failed) attempt to reactivate telomerase to preserve or elongate telomeres, turning chronic 

allostatic load to overload. 

Chronological age can also be predicted with high accuracy through DNA methylation-based 

algorithms, known as epigenetic clocks67-71. Here, we generated a longitudinal DNA methylation dataset 

using the EPIC array26, and deployed an approach that increases DNAmAge accuracy using a principal 

components-adjustment of the classic epigenetic clocks72. Applied across the cellular lifespan, we can 

longitudinally quantify the rate of epigenetic aging relative to population doublings. The results for the 

PC-adjusted PhenoAge clock71 is shown in Fig. 8E and four other clocks (Horvath pan tissue, Hannum, 

Skin & blood, Grim age) are shown in Extended Data Fig. 9. Consistent with the telomere data, results 

across these five different epigenetic clocks indicated that chronic GC stress tended to accelerate the 

rate of epigenetic aging by an average of 70.0% (p=0.055, Fig. 8F). Together, these telomere and DNA 

methylation data provided converging evidence across two modalities linking chronic metabolic 

recalibrations to aging biology in primary human cells experiencing allostatic overload.  
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Age-related hypermetabolism and cell death occur near-synchronously  

Given the premature age-related rise in cell death (see Fig 1) and the profound mitochondrial 

and bioenergetic recalibrations associated with increased energy consumption (see Figs 2 and 3) in 

Dex-treated cells, we leveraged the longitudinal nature of our dataset to examine whether cell death 

was temporally related to hypermetabolism. Plotting both mortality (% cell death) and total energy 

expenditure (JATPtotal/cell volume) relative to population doublings demonstrated that chronic Dex caused 

a left shift in the mortality curves, towards an earlier onset along the lifespan (Fig. 8G, upper panels). 

Strikingly, Dex caused a similar and near synchronous left shift in energy expenditure trajectories, 

reflecting an early onset, hypermetabolic state that develops over weeks (Fig. 8G, lower panels). 

Comparing both mortality and energy expenditure at matched timepoints revealed a strong temporal 

association across the entire lifespan, among both control and Dex-treated cells (r2=0.84 and r2=0.75, 

respectively, ps<0.001, Fig. 8H), meaning that the majority of the variation in cell death can be 

explained by the basal energy expenditure (i.e., how much energy cells must consume to sustain 

allostatic load), and vice-versa. These results therefore underscore the close temporal association 

between the energetic cost of allostatic load (i.e., hypermetabolism) and possibly the ultimate 

consequence of allostatic overload, death or mortality.  

 

Hypermetabolism, not the metabolic shift towards OxPhos, predicts cell death 

Previous work suggested that the shift from glycolysis towards OxPhos (as in the differentiation 

RI� VWHP�FHOOV� WR� ³PRUWDO´� FHOO� OLQHDJHV) drives the susceptibility to detrimental age-related molecular 

alterations73. And mitochondria appear required for key features of senescence74. Therefore, we 

investigated whether in our model of cellular allostatic load the association of hypermetabolism with cell 

death and lifespan was specifically related to increased mitochondrial OxPhos activity (JATP-OxPhos), or 

the total energy expenditure (JATP-Total).  

To disentangle these factors, we repeated the chronic Dex lifespan experiments while 

simultaneously downregulating OxPhos activity using a combination of inhibitors to block the 

mitochondrial import of the major carbon sources: pyruvate (UK509975), fatty acids (Etomoxir76), 

glutamine (BPTES77) (Fig 9A, Extended Data Fig. 10A). As expected, the mitochondrial nutrient uptake 

inhibitors (mitoNUITs) decreased OxPhos-derived ATP production in Dex-treated cells by an average 

of 21.2% (p<0.0001, Extended Data Fig. 10B). This partial inhibition of OxPhos was associated with a 

supra-compensatory increase in glycolytic ATP production rates (+443.2%, p<0.0001, Extended Data 
Fig. 10C). Consequently, the Dex+mitoNUITs treatment elevated JATP-Total above the energy demand in 

Dex-treated cells by an additional 78.9% (p<0.0001, Fig. 9B). Thus, compared to chronic Dex alone, 

Dex+mitoNUITs successfully suppressed OxPhos, and triggered an even more severe state of 

hypermetabolism sustained predominantly by glycolysis. Therefore, we reasoned that if the observed 
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allostatic overload phenotype (accelerated aging and premature mortality) was driven by the enhanced 

energy flux through OxPhos, the addition of mitoNUITs should at least partially rescue it. On the other 

hand, if cellular allostatic overload was directly driven by the total energy expenditure and 

hypermetabolism, then Dex+mitoNUITs would aggravate the pro-aging effects of allostatic overload. 

Consistent with the latter alternative, the Dex+mitoNUITs combination either exacerbated or did 

not alter the pro-aging effects of Dex. Compared to Dex alone, Dex+mitoNUITs reduced the Hayflick 

limit by a further 18.5% (n=3 donors, p<0.05, Fig. 8D-F). Accordingly, Dex+mitoNUITs tended to 

increased telomere erosion rate per population doubling by a similar proportion (+19.2%, p=0.45, Fig. 
8G), although this did not reach statistical significance. However, the DNAm clocks-based rates of aging 

were not different between Dex and Dex+mitoNUITS (Fig. 8H and 8I), pointing to potential mechanistic 

divergences or to a ceiling effect for epigenetic clocks.  

In relation to cell death, the Dex+mitoNUITs treatment combination left-shifted both the mortality 

and energy expenditure trajectories towards an earlier onset along the lifespan (Fig 8J), indicating a 

trend towards increased cell death (+28,6%, p=0.09). Again, the temporal association between energy 

expenditure and death across the lifespan remained strong and significant in Dex+mitoNUITs-treated 

cells (r2=0.52, p<0.001). Thus, diverting energy flux from OxPhos and elevating hypermetabolism with 

Dex+mitoNUITs treatment further exacerbated allostatic overload and related age-related outcomes, 

implicating hypermetabolism, rather than flux through OxPhos, as the main driver of chronic stress-

induced cellular allostatic overload.  

 
Discussion 

 Although the long-term effects of chronic stress on organ systems (i.e. secondary effects) and 

clinical outcomes such as cognitive and functional decline leading to pathology (i.e. tertiary effects) are 

well documented in humans8,9, our understanding of how allostasis and allostatic load are linked and 

manifests at the cellular level (i.e. primary effects) has remained incomplete. Our in vitro findings 

highlight hypermetabolism as a core manifestation of allostatic load, providing to our knowledge the first 

quantitative estimate of the energetic cost of allostatic load at the cellular level. Furthermore, our 

longitudinal data using well-established and validated aging markers in humans such as telomere length 

and epigenetic clocks, also links hypermetabolism to accelerated aging biology, as conserved features 

of cellular allostatic overload. Thus, our finding that a stressor (i.e., glucocorticoid signaling) triggers 

energetically-dependent allostatic recalibrations, which subsequently translate into allostatic overload 

manifesting as cellular aging aligns well with the original allostatic load model of chronic stress from 

McEwen and Stellar78 and with recent evidence of chronic stress pathophysiology in humans23.  

Previous work in cultured rat neurons indicated that GC signaling could influence mitochondrial 

bioenergetics over hours and days12, providing a basis for our first hypothesis that chronic GC stress 
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could have long-term bioenergetic consequences. Our cellular lifespan data allowed us to quantify the 

long-term, persistent cost of the anticipatory allostatic load. With chronic glucocorticoid signaling, it 

costed fibroblasts more energy to sustain life (+62%), and remarkably more to undergo each cell 

division (+108%). Plotting total energy consumption together with cell death also revealed a striking 

shift ± potentially reflecting the transition from allostatic load to allostatic overload, where 

hypermetabolism and cell death were closely associated. Further work will be required to establish 

whether there is a causal connection between hypermetabolism and fibroblast mortality. We note that 

relative to Dex, the partial re-routing of metabolic flux to glycolysis with mitoNUITs reduced the slope of 

the association between hypermetabolism and death by 61.8% (p<0.001, Fig 9K). This relatively 

substantial shift may point to adaptive processes whereby cells are able to tolerate higher levels of 

hypermetabolism when deriving a portion of their energetic needs through both major pathways 

(OxPhos and glycolysis), rather than through a single pathway. Nevertheless, our findings highlight the 

primary importance of total energy expenditure rather than of either pathway as a potential driver of 

allostatic overload. 

Because our in vitro system consists of isolated cells, the observed effects must be cell 

autonomous ± meaning that they occur independent of inter-organ crosstalk, of the brain, and of other 

stress mediators encountered in vivo. This supports the idea that allostatic load is not a unique 

phenomenon of complex, multi-organ organisms. Instead, our findings support the notion that allostatic 

load and allostatic overload are conserved processes able to manifest at the single cell level, whose 

evolution must therefore have predated the evolution of the brain79. 

 These results also open up important questions regarding the mechanisms whereby chronic GC 

stress cause hypermetabolism. Our data directly rules out two major potential confounders, namely cell 

volume and division rate. Larger and faster dividing cells would require greater ATP demand. But in 

fact, chronically stressed cells under allostatic load were significantly smaller and divided significantly 

more slowly (possibly as an attempt to curtail the rising energetic cost arising from the chronic activation 

of allostatic responses). Chronic Dex treatment also did not cause uncoupling of mitochondrial OxPhos, 

which rules out impaired OxPhos coupling efficiency as a cause of hypermetabolism in this model, and 

instead implicates other active cellular processes as potential contributors for the increased ³ORDG´�RU�
energetic cost of living.  

This state of hypermetabolism is likely driven not by a single process or signaling pathway, but 

by a multitude of inter-related processes. The major energetic costs within cells arise from gene 

transcription and translation80,81, from the maintenance of the plasma membrane potential, and from 

additional costs arising from the secretion of proteins/cytokines82. The biogenesis of organelles is also 

expected to consume large amounts of ATP. This is particularly true of mitochondria, which are made 

of large proteomes whose synthesis entail substantial energy expenditure and require genome 
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replication83. Mitochondrial OxPhos dysfunction and the heteroplasmic mixture of mutant and normal 

mtDNA molecules caused by mtDNA instability is predicted to directly increase the energetic cost of 

organelle maintenance84. This cost may be particularly substantial in cells that upregulate mitochondrial 

biogenesis to build and sustain spare OxPhos capacity in excess of basal needs, as in our chronically 

stressed fibroblasts. Adding to these maintenance costs, our results revealed elevated extracellular 

secretion of cytokines and mtDNA during allostatic load. Thus, the increases in mtDNAcn, the modest 

levels of mtDNA heteroplasmy, and secretion-related costs observed across the lifespan may all 

contribute to the increased energetic cost of living in Dex-treated fibroblasts. Additional work is required 

to determine the specific sequence of events leading to hypermetabolism with allostatic load, and the 

degree to which chronic psychosocial stress trigger hypermetabolism in whole animals, including in 

humans. 

 Another open question concerns the link between the allostatic recalibrations underlying 

hypermetabolism and the reduced lifespan that reflect allostatic overload. Our data cannot definitively 

establish directionality: does hypermetabolism cause the premature aging phenotype, or do aging 

biology processes drive increased energy expenditure? Nevertheless, to begin addressing this question 

we can consider two relevant literatures: allometric scaling of metabolic rates and lifespan, and 

prospective studies of energy expenditure and mortality in humans. First, among animals there are well-

defined relationships among body size, energy expenditure, and aging. These relationships show that 

animals of smaller sizes (e.g., mice, shrews) have correspondingly higher metabolic rates, age faster, 

and predictably live shorter lives than larger mammals (e.g., elephants)85-87. Body weight and lifespan 

between animal species also scale linearly with the rate of telomere shortening, meaning that smaller 

animals with higher metabolic rates exhibit correspondingly faster telomere shortening rates88. These 

inter-species regularities, to which there are notable exceptions, are analogous to our human fibroblast 

data where Dex-induced allostatic load shifted cells towards a smaller effective size, correspondingly 

accelerated their metabolic rates, and accelerated the rate of telomere shortening and epigenetic 

aging), predictably resulting in shortened lifespan. 

A second relevant body of literature prospectively links hypermetabolism, measured as elevated 

basal metabolic rate (BMR), with health outcomes and mortality in humans. Among healthy individuals, 

independently of well-recognized risk factors such as age, body mass index, smoking, white blood cell 

count, and diabetes, hypermetabolism is associated with poor health in older individuals89, and predicts 

earlier mortality over the subsequent 20-25 years90,91. Similarly, in patients with various illnesses 

(hepatitis B, amyotrophic lateral sclerosis, type 2 diabetes, and cancers), hypermetabolism also predicts 

worse prognosis and mortality92-95. Thus, we propose a model where hypermetabolism reflects the 

magnitude of allostatic load ± i.e., how much energy cells and organisms are expending to maintain 

stable physiology ± which subsequently drives the severity of allostatic load that contribute to 
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accelerated aging and early mortality. Further studies are required to establish the directionality and 

modifiability of this stress-aging cascade. 

In relation to aging biology, our study makes two noteworthy observations. First, it confirms the 

usefulness of replicative cellular lifespan models96-98 with high temporal resolution sampling as an 

experimental approach to quantify the chronic effects of allostasis on a number of cellular, bioenergetic, 

and molecular outcomes, in a human system. Moreover, deploying aging biomarkers validated in 

human populations to this in vitro system directly contributes to the interpretability of our findings, and 

to their potential physiological significance. Second, our relative telomere length data revealed that the 

loss of telomeric repeats is not a fixed quantity per genome duplication event (i.e., cell division), but that 

these can be decoupled by stress exposure. The accelerated erosion of telomeric repeats per cell 

division caused by Dex implicate an effect of GC-mediated allostasis on genomic stability, or on other 

aspects of telomere maintenance. Another study of Dex-treated human fibroblasts reported no effect of 

cortisol or Dex on the rate of telomere shortening per day in culture (one fibroblast line, aged for up to 

51 days)99. Our study (three donors, aged for up to 250 days) agrees with this observation when 

telomere shortening is expressed per day in culture. However, taking into account the slowed rate of 

cell division per day revealed a markedly accelerated rate of shortening per event genome replication, 

which we regard as the most relevant independent variable to understand telomere maintenance. 

Finally, some limitations of this study should be noted. While the epigenetic clocks can act as 

accurate molecular biomarkers of epigenetic age in several cell types and models, they still face 

challenges that make them less accurate in some models62. Here, we used an approach based on a 

principal components-adjustment of the epigenetic clocks ± PC clocks, which markedly improves the 

accuracy of the classic DNAm clocks72. In relation to our cellular model, compared to convenient 

immortalized cell lines, or to an experimental design that would include a single arbitrarily chosen donor, 

we noted substantial inter-individual variation among several measures between our three donors; 

Donor 1 was least affected whereas Donor 3 was most affected on several variables. This variability 

likely reflects true inter-individual differences. Thus, although this multi-donor design increases 

experimental variability, it importantly guards against overfitting results and findings to a single 

donor/cell line, and therefore provides a more robust test of generalizability for our main findings. We 

also acknowledge that Dex is a simplistic model of stress, whereas chronic psychosocial stressors in 

humans involves the action of multiple hormones and metabolic factors. Therefore, although this 

targeted glucocorticoid stressor provides a strong proof-of-concept of the cell-autonomous energetic 

and molecular consequences of allostatic load, additional studies with other (combination of) stress 

mediators are warranted. Finally, our analyses of the RNA sequencing and DNA methylation omics 

datasets are only partial, and more complete analyses of these data beyond the scope of the present 

manuscript could yield further insights into the global, longitudinal recalibrations and mechanisms 
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underlying glucocorticoid-driven cellular allostatic load and the resulting allostatic overload. To examine 

these and related questions, we make available as a community resource the multi-omics dataset of 

chronic Dex (as well as other treatments, see Data Availability Statement)26. 

In summary, we have defined the cell-autonomous features of GC-induced allostatic load, and 

mapped the long-term consequences associated with cellular allostatic overload in primary human 

fibroblasts. Our work quantifies the added energetic costs of chronic anticipatory responses at the 

cellular level, thereby defining hypermetabolism as a feature of allostatic load. We have also 

documented features of mitochondrial allostatic overload including accelerated telomere shortening and 

epigenetic aging per cell division. We also describe a robust and specific temporal association between 

hypermetabolism and premature cell death, aligning with in vivo human literature where 

hypermetabolism increases mortality. Elucidating the mechanisms linking stress exposure, 

hypermetabolism, and shortened cellular lifespan will require further experimental work, and 

subsequent extension to well-controlled studies in humans. Resolving the bioenergetic and cellular 

basis of allostatic load and chronic stress biology should reveal novel bioenergetic principles that can 

subsequently be leveraged to increase human resilience across the lifespan. 

 

Methods 

Human fibroblasts 

Primary human fibroblasts of 3 healthy donors were obtained from certified distributors and 

described in detail in 26. The characteristics of the three cell lines are summarized in Table 1.  

Table 1. Primary human fibroblast information 
 

Distributor Catalog # Genetic Sex Ethnicity Age Biopsy Passage Cell Line ID1 

Donor 1 Lifeline Cell 
Technology 

FC-0024 
Lot # 03099 

Normal Female Caucasian 18 years Dermal 
Breast 

1 HC2 (hFB13) 

Donor 2 Lifeline Cell 
Technology 

FC-0024 
Lot # 00967 

Normal Male Caucasian 18 years Dermal 
Breast 

1 HC1 (hFB12) 

Donor 3 Coriell 
Institute 

AG01439 Normal Male Black Newborn Foreskin 4 HC3 (hFB14) 

 

Tissue culture 

Cells were cultured under standard conditions of atmospheric O2, 5% CO2 and 37°C in DMEM 

(Thermo Fisher Scientific #10567022) supplemented with 10% Fetal Bovine Serum (FBS, Thermo 

)LVKHU� 6FLHQWLILF��� ��� ȝJ�P/� XULGLQH� �6LJPD-Aldrich), 1% MEM non-essential amino acids (Thermo 

 
1 Refers to the ID given in the Cellular Lifespan Study Shiny Application (See Data availability statement)  
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)LVKHU� 6FLHQWLILF��� DQG� ��� ȝ0-���� ȝ0 palmitate-BSA conjugate (Sigma-Aldrich). Treatment with 

dexamethasone (Dex, Sigma-Aldrich #D4902, 100 nM) and Dex plus the Mitochondrial Nutrients 

Uptake InhibiTors cocktail (Dex+mitoNUITs) began after 15-days of culturing post-thaw to allow the 

cells to adjust to the in vitro environment and were dosed every passage. The mitoNUITs cocktail 

included i) UK5099 (Sigma-Aldrich #PZ0160, 2 ȝ0�, an inhibitor of the mitochondrial pyruvate carrier 

(MPC) that interferes with the pyruvate import into the mitochondrial matrix ii) Etomoxir (Sigma-Aldrich 

#E1905, 4 ȝ0�, an inhibitor of carnitine palmitoyltransferase-1 (CPT-1) that interferes with the fatty-

acid-derived Acyl-CoA import into the mitochondrial matrix; and iii) BPTES (Sigma-Aldrich #SML0601, 

3 ȝ0), an inhibitor of glutaminase 1 (GLS1) that prevents the conversion of glutamine to glutamate into 

the mitochondrial matrix. The combined action of these three compounds ultimately abates the 

availability of the tricarboxylic acid cycle (TCA) substrates Acetyl-CoA and D-ketoglutarate. 

Cells were passaged every 5 r 1 days through standard procedure using Trypsin-EDTA 0.25% 

(Sigma-Aldrich #T4049). Cell counts and cell volume assessment were performed using 0.4% Trypan 

Blue Stain and the Countess II Automated Cell Counter (Thermo Fisher Scientific #AMQAF1000). Total 

cell counts were used to calculate the doubling rate at each passage, and to determine the number 

cells needed seeded to reach ~90% cell confluency by the time of the following passage. Cells not used 

for seeding or bioenergetic measurements were stored at -80°C for future analysis. Individual cell lines 

were terminated after exhibiting less than one population doubling over a 30-day period. The Hayflick 

limit was calculated as the cumulative number of population doublings of a cell line after termination. 

Brightfield microscopy images were obtained right before passaging using an inverted phase-contrast 

microscope (10X and 20X magnification, Thermo Fisher Scientific).  

Mycoplasma testing was performed according to the manufacturer's instructions (R&D Systems) 

on media samples at the end of lifespan for each treatment and cell line used. All tests were negative.  

 
Bioenergetic parameters  

The Seahorse XF Cell Mito Stress Test was performed in a XFe96 Seahorse extracellular flux 

analyzer (Agilent). ATP production rates derived from glycolysis (JATP-Glyc) and oxidative phosphorylation 

(OxPhos, JATP-OxPhos) were calculated from simultaneous measurements of cellular oxygen consumption 

rate (OCR) and extracellular acidification rate (ECAR) on a monolayer of 20,000 cells, with 10-12 

replicates per group. The experimental conditions were, in sequence, as follows: i) 1 ȝM oligomycin-A, 

ii) ��ȝ0 FCCP, and iii) ��ȝ0 rotenone and ��ȝ0 antimycin-A (Sigma-Aldrich). Raw OCR and ECAR 

measurements were normalized by a Hoechst-based cell count for each well (Cytation1 Cell Imager, 

BioTek), which provided more robust (i.e., less well-to-well variation) and stable results than results 

normalized to protein content. As illustrated in Extended Data Figure 1, Basal OCR, basal ATP-linked 
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OCR, proton leak OCR, maximal OCR, maximal ATP-linked OCR, compensatory OCR, coupling 

efficiency, basal ECAR, maximal ECAR, and compensatory ECAR were then utilized to derive ATP 

production rates from glycolysis and OxPhos as described previously by Mookerjee et al33. OCR and 

ECAR measurements in the absence of glucose (0mM) or with 2-deoxyglucose (2-DG) were performed 

to confirm the specificity of the ECAR signal in control primary human fibroblasts under these culture 

conditions27, indicating that >XX% of the ECAR signal is glucose-dependent.  

 
mtDNA copy number 

Cellular DNA was extracted using DNeasy Blood and Tissue Kit (Qiagen #69504). Duplex qPCR 

reactions with Taqman chemistry were used to quantify mitochondrial (mtDNA, ND1) and nuclear 

(nDNA, B2M) amplicons, as described previously100. Primers and probes utilized were the following: 

ND1-Fwd: [�¶-GAGCGATGGTGAGAGCTAAGGT-�¶], ND1-Rev: [�¶-CCCTAAAACCCGCCACATCT-�¶], 

ND1-Probe: [�¶-/5HEX/CCATCACCC/ZEN/TCTACATCACCGCCC/2IABkGQ/-3¶@; B2M-Fwd: [�¶-

TCTCTCTCCATTCTTCAGTAAGTCAACT-3¶@, B2M-Rev: [�¶-CCAGCAGAGAATGGAAAGTCAA-�¶, 

B2M-Probe: �¶-/56-FAM/ATGTGTCTG/ZEN/GGTTTCATCCATCCGACCA/3IABkFQ/-�¶]. Each sample 

was evaluated in triplicates. Triplicates with average Ct >33 were discarded. Triplicates with C.V. > 10% 

were also discarded. mtDNA copy number (mtDNAcn) was calculated as 2ǻ&W x 2, where ǻ&W = average 

nDNA Ct - average mtDNA Ct.  

 
mtDNA deletions and point mutations 

Long-range PCR (LR-PCR) was performed with mtDNA extracted as described in the mtDNA 

copy number section. Isolated DNA was amplified by PCR using Hot Start TaKaRa LA Taq kit to yield 

a 10-Kb product (Takara Biotechnology, #RR0��$��� 3ULPHUV� XWLOL]HG� ZHUH� WKH� IROORZLQJ�� )ZG�� >�¶-

AGATTTACAGTCCAATGCTTC-�¶@��5HY�� >�¶-AGATACTGCGACATAGGGTG-�¶@��3&5�SURGXFWV�ZHUH�

separated on 1% agarose gel electrophoresis in 1X TBE buffer, stained with GelGreen (Biotium 

#41005), and imaged using a GelDoc Go Imager (Biorad).  

mtDNA next-generation sequencing was used to identify and quantify deletions and point 

mutations. The entire mtDNA was obtained through the amplification of two overlapping fragments by 

LR-PCR, XVLQJ�.DSD�/RQJ�5DQJH�'1$�SRO\PHUDVH�DFFRUGLQJ�WR�WKH�PDQXIDFWXUHU¶V�UHFRPPHQGDWLRQV�

(Kapa Biosystems). The primer pairs utilized were tested first on Rho zero cells, devoid of mtDNA, to 

remove nuclear-encoded mitochondrial pseudogene (NUMTS) amplification. Primers utilized were the 

IROORZLQJ�� 3&5��� )ZG�� >�¶-AACCAAACCCCAAAGACACC-�¶@�� 5HY�� >� �¶-

GCCAATAATGACGTGAAGTCC-�¶@�� 3&5��� )ZG�� >�¶-TCCCACTCCTAAACACATCC-�¶@�� 5HY�� >�¶-

TTTATGGGGTGATGTGAGCC-�¶@��3&5�SURGXFWV�ZHUH�VHSDUDWHG�RQ�D����DJDURVH�JHO�HOHFWURSKRUHVLs 
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and NGS Libraries were generated using an enzymatic DNA fragmentation approach with Ion Xpress 

Plus Fragment Library Kit (Thermo Fisher Scientific). Sequencing was performed using an Ion Torrent 

S5XL platform with an Ion 540 chip, and signal processing and base calling were performed through 

the pre-processing embedded pipeline. Demultiplexed reads were mapped according to the mtDNA 

reference sequence (NC_012920.1), and further analysis was performed through the eKLIPse 

pipeline55 (https://github.com/dooguypapua/eKLIPse). 

 

RNA sequencing and transcriptomic analysis 

Cells were lysed and stored at -80°C in TRIzol (Thermo Fisher Scientific). RNA isolation of all 

samples was performed as a single batch using a RNeasy Kit (Qiagen). All samples had an RNA 

integrity number (RIN) score >8.0, a A260/A280 ratio between 1.8-2.2, and no detectable levels of DNA. 

cDNA library was prepared from 1,500 ng of RNA using QIAseq FastSelect ±rRNA HMR Kit (Qiagen) 

and 1(%1H[W�� 8OWUD�� ,,� 51$� /LEUDU\� 3UHS� .LW� IRU� ,OOXPLQD (New England Biolabs). cDNA was 

sequenced using paired-end 150 bp chemistry on a HiSeq 4000 System (Illumina) and yielded an 

average sequencing depth of 40 million reads per sample. Sequenced reads were aligned using the 

pseudoalignment tool kallisto101 (v0.44.0) and imported using the µtximport¶ package102 (v1.18.0). 

Variance stabilizing transformation (VST) was performed using the µDEseq2¶ package103 (v1.30.1). 

Heatmaps and time courses show transcript levels as the Log2 of fold change (Log2FC) of normalized 

expression relative to the corresponding control time point for each donor. Categorized genes were 

selected using MitoCarta 3.0104 and related literature on mitochondrial biogenesis34-37.  

 
Cell-free DNA  

Culture media was collected and stored at -80°C until analyzed as a single batch. Total cell-free 

DNA (cf-DNA) was isolated from 75 µL f cell culture media using an automated, high throughput 

methodology previously published105, using the MagMAX Cell-Free DNA Isolation Kit based on 

0DJ0$;��PDJQHWLF-bead technology (Thermo Fisher Scientific). Duplex qPCR reactions with Taqman 

chemistry were used to simultaneously quantify mitochondrial (cf-mtDNA, ND1) and nuclear (cf-nDNA, 

B2M) amplicons, using the same primers and probes described in the mtDNA copy number section. 

Serial dilutions of pooled human placenta DNA were used as a standard curve. mtDNA and nDNA copy 

number (copies/µL) of the standard curve samples were measured using a single-plex Digital PCR 

(dPCR) for ND1 and B2M genes. The obtained values were then used to calculate the copy number of 

the experimental samples. 

 
Cytokines  
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Cytokine levels measurements were performed on the same culture media samples used for cf-

DNA measurements. Two multiplex fluorescence-based arrays (R&D) were custom-designed with 

selected cytokines and chemokines whose levels in human plasma had been reported to be correlated 

with chronological age48. Media samples were run along with negative controls (fresh untreated media), 

positive controls (healthy fibroblast aged for >200 days), and a standard curve following PDQXIDFWXUHU¶V�

instructions (Luminex). Positive (>200 days aged healthy fibroblast) and negative controls (fresh 

untreated media) samples were included along the experimental samples. Cytokine concentrations 

were then normalized to the number of cells counted at the time of collection to produce estimates of 

cytokine production on a per-cell basis.  

 

Relative telomere length 

Relative telomere length was evaluated on the same genomic material used for other DNA-

based measurements. Measurements were performed by single-plex qPCR reactions with SYBR Green 

chemistry and expressed as the ratio of telomere to single-copy gene abundance (T/S ratio), as 

previously described106,107. Primers utilized for the telomere (T) PCR were: tel1b: [5'-

CGGTTT(GTTTGG)5GTT-3'], and tel2b: [5'-GGCTTG(CCTTAC)5CCT-3']. Primers utilized for the 

single-copy gene (human beta globin) PCR were: Fwd: [5' GCTTCTGACACAACTGTGTTCACTAGC-

3'] and Rev: [5'-CACCAACTTCATCCACGTTCACC-3']. Each sample was evaluated in triplicates. 

Triplicates were subjected to 'L[RQ¶V�4�WHVW�IRU�RXWOLHU�UHPRYDO, and averaged values of T and S were 

used to calculate the T/S ratios. T/S ratio for each sample was measured twice. When duplicates 

showed C.V. > 7%, the sample was run a third time and the two closest values were used.  

 

DNA methylation and DNAmAge 

Global DNA methylation was evaluated on the same genomic material used for other DNA-

based measurements. DNA samples were submitted to the UCLA Neuroscience Genomic Core 

(UNGC) for bisulfite conversion and hybridization using the Infinium Methylation EPIC BeadChip kit 

(Illumina). DNA methylation data was processed in R (v4.0.2), using the 'minfi¶ package108 (v1.36.0). 

Data was normalized using functional normalization (Fun Norm), and RCP and ComBat adjustments 

were applied using the µVYD¶�SDFNDJH109 (v3.12.0) to correct for probe-type and plate bias, respectively.  

Original DNAmAge was calculated using the online calculator 

(https://dnamage.genetics.ucla.edu/new) with normalization, using the age of the donor as the input 

age. This outputted the Horavth1 (i.e., PanTissue clock), Horvarth2 (i.e., Skin&Blood clock), PhenoAge, 

Hannum, and GrimAge estimated DNAmAges. More recent versions of the epigenetic clocks based on 

shared extracted variances among CpGs from principal components were also computed, yielding the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2022. ; https://doi.org/10.1101/2022.02.22.481548doi: bioRxiv preprint 

https://dnamage.genetics.ucla.edu/new
https://doi.org/10.1101/2022.02.22.481548
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

PC-adjusted DNAmAges for each clock72. Stable estimates of the rate of epigenetic aging were obtained 

from the linear regression for each cell line between 27 to 210 days of growth, yielding three values per 

treatment condition.  

 
Statistical analyses  

All statistical analyses were performed using GraphPad Prism (v9.0) and R (v4.0.2) using 

RStudio (v1.3.1056). All analyses were restricted to matching timepoints between control and the Dex 

or Dex+mitoNUITs treatments from the CellularLifespan dataset 26. In graphs of lifespan trajectories, 

datapoints are connected using the Akima spline curve. Lifespan average graphs show each passage 

as a single datapoint, and bars represents mean ± standard error of the mean (SEM). The percent 

differences between groups (i.e., Control vs Dex; or Dex vs mitoNUITs) was computed separately for 

each cell line (i.e., Donors 1, 2, 3), and groups were compared by two-way ANOVA treating each 

timepoint as a unique observation. Analyses of gene expression (i.e., HK2, PFK, UQCRC1, COX7A1, 

POLQ, PPARGC1A, and NRIP1, TPP1, TERC) were similarly performed by two-way ANOVA across 

all donors, without adjustment for multiple comparisons. To analyze temporal associations between 

variables, we performed linear regression for each group, and correlation coefficients are Pearson r, 

squared to obtain proportions of shared variance between variable pairs. To estimate the average 

expression of transcriptional pathways, the average Log2 fold change values of each gene were 

averaged across all timepoints of the lifespan of three donors, and p values obtained using a one-

sample t-test against the reference value = 0 (i.e., no change in expression relative to control). For 

analyses of the Hayflick limit, doubling rate, telomere shortening rate, and epigenetic aging rate, a single 

value (e.g., slope across the lifespan) was obtained per donor (total n=3), and group averages were 

compared using ratio paired t-test (two-tailed). Because of the small sample sizes for these outcomes 

the p values are less reliable than the estimated differences (%) across multiple aging biomarkers. The 

significance threshold for all analyses was arbitrarily set at 0.05, and effect sizes are provided 

throughout. 
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Supplementary Material 

Extended Data Figures 1-10 and Supplemental Figures 1-2 are available in the supplemental material.  
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Figure legends 
 
Figure 1. Longitudinal cytologic effects of chronic glucocorticoid signaling in primary human 
fibroblasts. (A) Study design: primary human fibroblasts derived from three healthy donors (Donors 1, 

2, and 3) were cultured under standard conditions (control) or chronically treated with Dexamethasone 

(Dex, 100 nM) across their lifespan for up to 150-250 days, until replicative senescence. Cytologic 

parameters were evaluated every 5-7 days, while bioenergetics, DNA, RNA, and secreted factors 

parameters were evaluated every 10-20 days. (B) Representative images of untreated replicating 

control and Dex-treated cells from Donor 1 at 25 days of treatment. (C) Raw lifespan trajectories of cell 

volume. (D) To examine the effects of the chronic glucocorticoid signaling from the effects of aging, 

lifespan trajectories (left panel) and lifespan average effects (right panel) of Dex treatment on cell 

volume are expressed relative to the corresponding control time points for each donor. (E-F) Same as 

C-D but for the proportion of dead cells at each passage. n = 3 donors per group, n = 26-36 timepoints 

per donor. Lifespan average graphs are mean ± SEM, two-way ANOVA. * p < 0.05, **** p < 0.0001, ns: 

not significant. 

 

Figure 2. Cellular allostatic load is associated with hypermetabolism. (A-C) Energy expenditure 

trajectories across the cellular lifespan derived from Seahorse extracellular flux analyzer described in 

detail in Extended Data Fig. 1. (A) Lifespan trajectories (left panel) and lifespan average effects (right 

panel) of Dex treatment expressed relative to the corresponding control time points for each donor on 

basal glycolysis-derived ATP (JATP-Glyc), (B) OxPhos-derived ATP (JATP-OxPhos), and (C) total ATP 

production (JATP-Total) corrected for cell volume. n = 3 donors per group, 8-13 timepoints per donor. 

Lifespan average graphs are mean ± SEM, two-way ANOVA * p < 0.05, ** p < 0.01, *** p < 0.001, **** 

p < 0.0001, ns: not significant. JATP-Total is the algebraic sum of JATP-Glyc and JATP-OxPhos. 

 

Figure 3. Cellular allostatic load involves a metabolic shift towards OxPhos. (A) Fraction of basal 

energy production from JATP-Glyc (yellow) and basal JATP-OxPhos (green) across the lifespan. (B) 

Compensatory glycolytic capacity, expressed as the percentage of basal JATP-Total, achieved when 

OxPhos ATP production is inhibited with oligomycin. Basal JATP-Glyc levels are shown in dark yellow, and 

compensatory JATP-Glyc are shown in bright yellow. (C) Same as B but for spare OxPhos capacity, 

expressed as the percentage of basal JATP-OxPhos that can be achieved under uncoupled condition with 

FCCP. Basal JATP-OxPhos levels are shown in dark green, and spare JATP-OxPhos are shown in bright green. 

(D) Correlation between spare JATP-OxPhos/cell volume and basal JATP-OxPhos/cell volume (left panel) and 

between spare JATP-OxPhos/cell volume and basal JATP-Total/cell volume (right panel). (E) Lifespan 

trajectories (left panel) and lifespan average effects (right panel) of Dex treatment on coupling efficiency 

expressed relative to the corresponding control time points for each donor. (F) Same as C but for mtDNA 
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copy number/cell volume. n = 3 donors per group, 8-13 timepoints per donor. Lifespan average graphs 

are mean ± SEM, two-way ANOVA. Thick lines in correlation graphs show linear regression for each 

group, Pearson r correlation. ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns: not significant. JATP-Glyc: ATP 

production rate derived from glycolysis. JATP-OxPhos: ATP production rate derived from OxPhos. JATP-Total: 

algebraic sum of JATP-Glyc and JATP-OxPhos. 

 

Figure 4. Cellular allostatic load involves transcriptional upregulation of OxPhos and 
mitochondrial biogenesis. (A) Heatmaps showing the effect of Dex treatment on the expression of 

glycolytic genes, expressed as the Log2 of fold change (Log2FC) of normalized gene expression relative 

to the corresponding control time points for each donor. (B) Same as A but for genes encoding the 

subunits of complexes I, II, III, IV and V of the OxPhos system, (C) mtDNA maintenance, (D) mtDNA 

replication, and (E) mitochondrial biogenesis. Two key regulators of mitochondrial biogenesis, one 

positive (PGC-1a) and one negative (NRIP1) are highlighted, showing expression signatures consistent 

with both activated and un-repressed mitochondrial biogenesis. (F) Average effect of Dex treatment 

shown in A-E. Each datapoint represents the gene average of the Log2FC values throughout the entire 

lifespan of the three donors (n=28 timepoints). Average graphs are mean ± SEM, with each gene shown 

as a single datapoint. One-sample t-test different than 0, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 

0.0001, ns: not significant. n = 3 donors per group, 9-10 timepoints per donor. Heatmap row annotation 

with individual gene names is provided in Supplemental Data Figure 1. 

 

Figure 5. Cellular allostatic load increases cell-free DNA levels. (A) Lifespan trajectories (left panel) 

and lifespan average effects (right panel) of Dex treatment on cell-free mitochondrial DNA (cf-mtDNA) 

expressed relative to the corresponding control time points for each donor. (B) Pearson correlation 

between cf-mtDNA and the proportion of dead cells at each passage. (C) Same as A but for cell-free 

nuclear DNA (cf-nDNA). (D) Same as B but for cf-nDNA. n = 3 donors per group, 6-10 timepoints per 

donor. Lifespan average graphs are mean ± SEM, two-way ANOVA. Thick lines in correlation graphs 

show linear regression for each group, Pearson r correlation. * p < 0.05, ** p < 0.01, *** p < 0.001, **** 

p < 0.0001, ns: not significant. 

 

Figure 6. Cellular allostatic load alters cytokine release. (A) Heatmaps showing the effect of Dex 

treatment on the secretion of age-related cytokines, expressed as the Log2 fold change (Log2FC) of 

cytokine concentration (pg/mL of medium), relative to the corresponding control time points for each 

donor. (B) Lifespan trajectories of cytokine concentration in cells treated with Dex relative to the 

corresponding control time point for each donor. Thin curves in soft red represents individual cytokines; 

thick curves in red represent the average of all cytokines evaluated; thick lines in gray represent the 

control level. (C) Lifespan trajectories (left panel) and average effects (right panel) of Dex treatment on 
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TFPII (most upregulated cytokine) levels per mL of culture media expressed relative to the 

corresponding control time point for each donor. (D) Same as C but for IL6 (most downregulated 

cytokine). n = 3 donors per group, 6-10 timepoints per donor. Lifespan average graphs are mean ± 

SEM, two-way ANOVA. *** p < 0.001, **** p < 0.0001, ns: not significant. Lifespan trajectories and 

average effects of Dex treatment on levels of every cytokine detected are shown in Supplemental 
Figure 2. 

 

Figure 7. Cellular allostatic load causes mtDNA instability. (A) Long-range PCR (10 kb product) of 

mtDNA extracted from Donor 2 control and Dex-treated cells across lifespan, resolved by agarose gel 

electrophoresis. The presence of amplicons of sizes smaller than 10 kb reveal the presence of mtDNA 

molecules containing deletions. (B) Circos plots from mtDNA sequencing and Eclipse analysis for 

mtDNA extracted from Donor 2 control and Dex-treated cells at days 26, 56 and 126. Each red line 

represents an individual deletion that spans the sequence contained between its two ends. The line 

thickness reflects the level of relative abundance or heteroplasmy for each deletion (see Extended 
Data Fig. 6 for all donors). (C) Lifespan trajectories (left panel) and average effects (right panel) of Dex 

treatment on the cumulative heteroplasmy of all deletions present at a particular time point, expressed 

relative to the corresponding control time point for each donor. (D) Lifespan trajectories of individual 

point mutations heteroplasmy found in control (left panels) and Dex-treated cells (right panels) of the 

three donors. n = 3 donors per group, 2-8 timepoints per donor. Datapoints in lifespan trajectories are 

connected using the Akima spline curve, but the datapoints for Donor 3 in (C), for which due to 

insufficient time points the spline fit was not feasible and therefore datapoints were connected through 

a straight line. Lifespan average graphs are mean ± SEM, two-way ANOVA. ns: not significant, N/A: not 

applicable. 

 

Figure 8. Cells under chronic allostatic load display accelerated cellular aging. (A) Lifespan 

trajectories of cumulative population doublings. (B) Hayflick limit for each donor of each group. (C) Early 

life doubling rate, calculated as the slope of the linear regression of the population doubling trajectories 

within the first 50 days of treatment. (D) Telomere length across population doublings, with linear 

regressions for each donor of each group (left panel), and telomere shortening rate calculated as the 

slope of the correspondent linear regressions (right panel). (E) Epigenetic age calculated by the 

principal components (PC)-adjusted PhenoAge epigenetic clock, with linear regressions for each donor 

of each group (left panel), and epigenetic aging rate calculated as the slope of the corresponding linear 

equation (right panel). (F) Epigenetic aging rate for the Dex group relative to the control as calculated 

by all the PC-adjusted epigenetic clocks evaluated: PA: PhenoAge, H: Hannum, S&B: Skin and Blood, 

PT: PanTissue, GA: GrimAge. Detailed analysis of these epigenetic clocks is in Extended Data Fig. 9 

(G) Percentage of dead cells (upper panels) and basal JATP-Total/cell volume (lower panels) across 
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population doublings for Donor 1 (left panels), Donor 2 (middle panels) and Donor 3 (right panels). (H) 

Correlation between proportion of dead cells in every passage and Basal JATP-Total/cell volume. n = 3 

donors per group; timepoints per donor: n = 26-36 in A, n = 4-14 in D-E, n = 8-13 in G-H. Bar graphs 

are mean ± SEM, ratio paired t-test (two-tailed). Thick lines in correlation graphs show linear regression 

for each group, Pearson r correlation. * p < 0.05, ** p < 0.01, **** p < 0.0001, ns: not significant. 

 

Figure 9. Hypermetabolism, not the metabolic shift towards OxPhos, predicts cell death. (A) 

Energetic phenotype of cells treated with Dex and Dex+mitoNUITs defined by Basal JATP-OxPhos/cell 

volume and Basal JATP-Glyc/cell volume across lifespan. (B) Lifespan average effects of Dex+mitoNUIT 

treatment on JATP-Total/cell volume. (C) Values across lifespan (left panel) and average effects (right 

panel) of basal JATP-Glyc (yellow) and basal JATP-OxPhos (green) expressed as percentage of basal JATP-Total. 

(D) Lifespan trajectories of cumulative population doublings. (E) Hayflick limit for each donor of each 

group. (F) Early life doubling rate, calculated as the slope of the linear regression of the population 

doubling trajectories within the first 50 days of treatment. (G) Telomere length across population 

doublings, with linear regressions for each donor of each group (left panel), and telomere shortening 

rate calculated as the slope of the correspondent linear regressions (right panel). (H) Epigenetic age 

calculated by the principal components (PC)-adjusted PhenoAge epigenetic clock, with linear 

regressions for each donor of each group (left panel), and epigenetic aging rate calculated as the slope 

of the correspondent linear regressions (right panel). (J) Epigenetic aging rate for the Dex+mitoNUITs 

group relative to the Dex group as calculated by all the PC-adjusted epigenetic clocks evaluated: PA: 

Phone Age, H: Hannum, S&B: Skin and Blood, PT: Pan Tissue, GA: Grimm Age. (K) Percentage of 

dead cells (upper panels) and basal JATP-Total/cell volume (lower panels) across population doublings for 

Donor 1 (left panels), Donor 2 (middle panels) and Donor 3 (right panels). (H) Correlation between 

proportion of dead cells in every passage and Basal JATP-Total/cell volume. n = 3 donors per group; 

timepoints per donor: n=7-11 in B-C, n = 26-36 in D, n = 4-14 in G-H, n = 8-13 in J-K. Lifespan average 

graphs are mean ± SEM, two-way ANOVA in B, ratio paired t-test (two-tailed) in E, F, H and I. Thick 

lines in correlation graphs show linear regression for each group, Pearson r correlation. * p < 0.05, ** p 

< 0.01, *** p < 0.001, **** p < 0.0001, ns: not significant. mitoNUITs: Mitochondrial uptake inhibitors. 

JATP-Glyc: ATP production rate derived from glycolysis. JATP-OxPhos: ATP production rate derived from 

OxPhos. JATP-Total: algebraic sum of JATP-Glyc and JATP-OxPhos. 

 
Figure 10. Summary diagram. Proposed model for the transduction of glucocorticoid signaling into 

cellular allostatic load and its interrelated cellular features, and the chronic downstream consequences 

of allostatic overload on cellular aging. 
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Extended Data Figure 1. Evaluation of bioenergetic parameters. (A) Study design: primary human 

fibroblasts derived from three healthy donors (Donors 1, 2, 3) were cultured under standard conditions 

or chronically treated with Dexamethasone (Dex, 100 nM) across its lifespan for up to 150-250 days. 

Bioenergetics parameters were evaluated every 15-10 days performing the Seahorse Mito Stress Test 

(Agilent). Green bars highlight the cell volume values the day prior to the test, which were then utilized 

to normalize the bioenergetic parameters. (B) Representative curves of cellular oxygen consumption 

rate (OCR) and extracellular acidification rate (ECAR) obtained throughout the Seahorse Mito Stress 

Test (C). Bioenergetic parameters that can be derived from ECAR and OCR curves in B. JATP-Glyc: ATP 

production rate derived from glycolysis. JATP-OxPhos: ATP production rate derived from OxPhos. O: 

Oligomycin. FCCP: Carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazon. R/A: Rotenone/Antimycin A. 

 

Extended Data Figure 2. Effects of chronic glucocorticoid signaling on basal bioenergetic 
parameters on a per cell basis. (A) Lifespan trajectories (left panel) and lifespan average effects (right 

panel) of Dex treatment on basal JATP-Glyc /20k cells expressed relative to the corresponding control time 

points for each donor. (B) Same as A but for JATP-OxPhos/20k cells. (C) Same as A but for JATP-Total/20k 

cells. (D) Correlation between basal JATP-Total and basal JATP-Glyc (left panel) and between basal JATP-Total 

and basal JATP-OxPhos (right panel). n = 3 donors per group, 8-13 timepoints per donor. Lifespan average 

graphs are mean ± SEM, two-way ANOVA. Thick lines in correlation graphs show linear regression for 

each group, Pearson r correlation. ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns: not significant. JATP-

Glyc: ATP production rate derived from glycolysis. JATP-OxPhos: ATP production rate derived from OxPhos. 

JATP-Total: algebraic sum of JATP-Glyc and JATP-OxPhos. 

 

Extended Data Figure 3. Effects of chronic glucocorticoid signaling on mtDNAcn. (A) Lifespan 

trajectories of Dex treatment on mtDNA copy number (mtDNAcn). (B) Lifespan trajectories (left panel) 

and lifespan average effects (right panel) of Dex treatment on mtDNAcn expressed relative to the 

corresponding control time points for each donor. n = 3 donors per group, 5-8 timepoints per donor. 

Lifespan average graphs are mean ± SEM, two-way ANOVA. * p < 0.05, ns: not significant. 

 

Extended Data Figure 4. Effects of chronic glucocorticoid signaling on mtDNAcn. (A) Correlation 

between cell-free mitochondrial DNA (cf-mtDNA) and cell-free nuclear DNA (cf-nDNA). (B) Lifespan 

trajectories (left panel) and lifespan average effects (right panel) of Dex treatment on cf-mtDNA/cf-nDNA 

ratio expressed relative to the corresponding control time points for each donor. (C) Correlation between 

cell-free (cf) and intracellular (int) mtDNA/nDNA ratio. (D) Lifespan average of cell-free (cf) and 

intracellular (int) mtDNA/nDNA ratio for under control conditions (left panel) and Dex treatment (right 

panel). n = 3 donors per group, 6-10 timepoints per donor. Lifespan average graphs are mean ± SEM, 
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two-way ANOVA. Thick lines in correlation graphs show linear regression for each group, Pearson r 

correlation. * p < 0.05, ** p < 0.01, **** p < 0.0001, ns: not significant. 

 

Extended Data Figure 5. Effects of chronic glucocorticoid signaling on gene expression of age-
related cytokines. (A) Heatmaps showing the effect of Dex treatment on the expression of age-related 

cytokines, expressed as the Log2
 of fold change (Log2FC) normalized gene expression relative to the 

corresponding control time points for each donor. (B) Lifespan trajectories of gene expression of each 

in cells treated with Dex relative to the corresponding control time points for each donor. Thin curves in 

soft red represents individual cytokines; thick curves in red represent the average of all cytokines 

evaluated; thick lines in gray represent the control level. (C) Lifespan trajectories (left panel) and 

average effects (right panel) of Dex treatment on Stc1 gene (most upregulated gene) expression 

expressed relative to the corresponding control time point for each donor. (D) Same as C but for Lum 

gene (most downregulated gene). n = 3 donors per group, 9-10 timepoints per donor. Lifespan average 

graphs are mean ± SEM, two-way ANOVA. * p < 0.05, **** p < 0.0001, ns: not significant. 

 
Extended Data Figure 6. Chronic glucocorticoid causes mtDNA instability. (A) Circos plots from 

mtDNA sequencing and Eclipse analysis for mtDNA. Red lines represent individual deletion break 

points that span the sequence contained between its two ends, and line darkness reflects the level of 

heteroplasmy for each deletion. The blue histograms represent coverage depth along the mtDNA 

sequence. (B) Lifespan trajectories (left panel) and lifespan average effects (right panel) of Dex 

treatment on the individual deletions count. (C) Frequency distribution of deletion lengths for all 

timepoints across lifespan. (D) Frequency of deletions (upper panels) and frequency of deletion break 

points (lower panels) along the mtDNA sequence. (E) Lifespan trajectories (left panel) and lifespan 

average effects (right panel) of Dex treatment on the deletions that span the D-loop region of the 

mtDNA. n = 3 donors per group, 2-6 timepoints per donor. Lifespan average graphs are mean ± SEM, 

two-way ANOVA. ns: not significant; N/A: not applicable. 

 

Extended Data Figure 7. Effects of chronic glucocorticoid signaling on cell division. (A) Lifespan 

trajectories (left panel) and average effects (right panel) of Dex treatment on doubling rate 

(divisions/day) expressed relative to the corresponding control time points for each donor. (B) Same as 

A but for JATP-Total/cell volume/division. n = 3 donors per group, timepoints per donor: n = 26-36 in A, 8-

13 in B. Lifespan average graphs are mean ± SEM, two-way ANOVA. **** p < 0.0001. ns: not significant. 

JATP-Total: algebraic sum of JATP-Glyc and JATPOxPhos. JATP-Glyc: ATP production rate derived from glycolysis. 

JATP-OxPhos: ATP production rate derived from OxPhos. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2022. ; https://doi.org/10.1101/2022.02.22.481548doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.481548
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

Extended Data Figure 8. Effects of chronic glucocorticoid signaling on aging hallmarks. (A) 
Telomere length across population doublings calculated by the DNAmTL epigenetic clock with linear 

regressions for each donor of each group (B) Telomere length across population doublings calculated 
by the principal components (PC)-adjusted DNAmTL epigenetic clock with linear regressions for each 

donor of each group with linear regressions for each donor of each group (left panel), and telomere 

shortening rate calculated as the slope of the correspondent linear regressions (right panel). (C) 

Heatmaps showing the effect of Dex treatment on the expression of telomere maintenance-associated 

genes, expressed as the Log2
 fold change (Log2FC) relative to the corresponding control time point for 

each donor. (D) Average effect of Dex treatment shown in C. Each datapoint represents the gene 

average of the Log2FC values throughout the entire lifespan of the three donors. n = 3 donors per group, 

timepoints per donor: n = 4-13 in A-B, n = 9-10 in C. Thin lines in correlation graphs show linear 

regression for each donor, Pearson r correlation. Bar graphs are mean ± SEM, ratio paired t-test (two-

tailed. * p < 0.05, ns: not significant. 

 

Extended Data Figure 9. Effects of chronic glucocorticoid signaling on aging epigenetic clocks. 
(A) Epigenetic age across population doublings calculated by the DNAm Hannum epigenetic clock (left 

panel) and the principal components (PC)-adjusted version of it (middle panel), with linear regressions 

for each donor of each group, and the epigenetic aging rate calculated as the slope of the correspondent 

linear regressions (right panel). (B-D) Same as A but for Skin and Blood, Pan Tissue and Grimm Age 

epigenetic clocks, respectively. n = 3 donors per group, 4-13 timepoints per donor. Thin lines in 

correlation graphs show linear regression for each donor, Pearson r correlation. Bar graphs are mean 

± SEM, ratio paired t-test (two-tailed). Ns: not significant. 

 

Extended Data Figure 10. Hypermetabolism, not the metabolic shift towards OxPhos, predicts 
cell death. (A) Schematic of mitoNUITs mechanism of action, three pharmacological inhibitors of 

nutrient uptake in the mitochondria. (B) Lifespan average effects of Dex+mitoNUIT treatment on JATP-

OxPhos/cell volume. (C) Same as (B) but for JATP-Glyc/cell volume. N = 3 donors per group, n=7-11 

timepoints per donor. Lifespan average graphs are mean ± SEM, two-way ANOVA. * p < 0.05, ** p < 

0.01, *** p < 0.001, **** p < 0.0001. mitoNUITs: Mitochondrial nutrient uptake inhibitors. JATP-Glyc: ATP 

production rate derived from glycolysis. JATP-OxPhos: ATP production rate derived from OxPhos 

 

Supplemental Data Figure 1. Effects of chronic glucocorticoid signaling on gene expression. (A-
E) Heatmaps from Figure 4 shown with complete labelling for gene-specific resolution. (A) Heatmaps 

showing the effect of Dex treatment on the expression of glycolytic genes, expressed as the Log2
 of fold 

change (Log2FC) of normalized gene expression relative to the corresponding control time point for 

each donor. (B) Same as A but for genes that encodes for the subunits of Complex I, II, III, IV and V 
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(CI, CII, CIII, CIV, and CV) of OxPhos. (C) Same as A, but for genes associated with mtDNA replication. 

(D) Same as A but for genes associated with mtDNA maintenance. (E) Same as A but for genes 

associated with mitochondrial biogenesis. n = 3 donors per group, 9-10 timepoints per donor. 

 

Supplemental Data Figure 2. Effects of chronic glucocorticoid signaling on secretion and gene 
expression of age-related cytokines. (A-AB) Lifespan trajectories (left panel) and average effects 

(right panel) of Dex treatment on age-related cytokines levels per mL of culture media (upper panel) 

and normalized gene expression (lower panel), expressed relative to the corresponding control time 

point for each donor. n = 3 donors per group, 6-10 timepoints per donor. Lifespan average graphs are 

mean ± SEM, two-way ANOVA. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns: not significant 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2022. ; https://doi.org/10.1101/2022.02.22.481548doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.481548
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1

0 50 100 150 200 250
0

5

10

15

20

25

Days in treatment

C
el

l d
ea

th
 (%

)

Cell death %

Donor 1 Ctrl

Donor 1 Dex

Donor 2 Ctrl

Donor 2 Dex

Donor 3 Ctrl

Donor 3 Dex

E Cell death

DC Cell volume

0 50 100 150 200 250
0

5,000

10,000

15,000

Days in treatment

C
el

l v
ol

um
e 

(µ
m

3 )

Cell volume

Donor 1 Ctrl

Donor 1 Dex

Donor 2 Ctrl

Donor 2 Dex

Donor 3 Ctrl

Donor 3 Dex

0 50 100 150 200 250
0

20

40

60

80

Days in treatment

Ba
sa

l O
C

R
 

(p
m

ol
 O

2 
/ m

in
 / 

20
k 

ce
lls

)

Basal OCR

Donor 1 Ctrl

Donor 1 Dex

Donor 2 Ctrl

Donor 2 Dex

Donor 3 Ctrl

Donor 3 Dex

F Cell death relative to Control

0 50 100 150 200 250
0%

1,250%

2,500%

3,750%

5,000%

Days in treatment

C
el

l d
ea

th

Cell death %

Donor 1 Ctrl

Donor 1 Dex

Donor 2 Ctrl

Donor 2 Dex

Donor 3 Ctrl

Donor 3 Dex

Donor 1 Donor 2 Donor 3

0%

1,250%

2,500%

3,750%

5,000%

C
el

l d
ea

th

Cell death %

ns
+ 115.6%

*
+ 227.4%

****
+ 327.6%

****
+ 639.8%

- + - + - +

Donor 1 Donor 2 Donor 3

0%

1,250%

2,500%

3,750%

5,000%

C
el

l d
ea

th

Cell death %

ns
+ 115.6%

*
+ 227.4%

****
+ 327.6%

****
+ 639.8%

- + - + - +

- + - + - +
Donor 1 Donor 2 Donor 3

0%

50%

100%

150%

200%

250%

C
el

l v
ol

um
e

Cell volume

****
- 22.9%

****
- 36.4%

****
- 33.3%

****
- 40.5%

- + - + - +

50 µm

Dex

ControlBA

0 50 100 150 200 250
0%

50%

100%

150%

200%

250%

Days in treatment

C
el

l v
ol

um
e

Cell volume relative to Control

Donor 1 Ctrl

Donor 1 Dex

Donor 2 Ctrl

Donor 2 Dex

Donor 3 Ctrl

Donor 3 Dex

Donor 1 Donor 2 Donor 3

0%

50%

100%

150%

200%

250%

C
el

l v
ol

um
e

Cell volume

****
- 22.9%

****
- 36.4%

****
- 33.3%

****
- 40.5%

- + - + - +

Cell volume relative to Control

Donor 1 Donor 2 Donor 3

0%

50%

100%

150%

200%

250%

C
el

l v
ol

um
e

Cell volume

****
- 22.9%

****
- 36.4%

****
- 33.3%

****
- 40.5%

- + - + - +

- + - + - +
Donor 1 Donor 2 Donor 3

0%

50%

100%

150%

200%

250%

C
el

l v
ol

um
e

Cell volume

****
- 22.9%

****
- 36.4%

****
- 33.3%

****
- 40.5%

- + - + - + Dex

Dex

C
el

l v
ol

um
e 

(%
 o

f c
on

tro
l)

C
el

l d
ea

th
 (%

 o
f c

on
tro

l)

C
el

l v
ol

um
e 

(µ
m

3 )
C

el
l d

ea
th

 (%
)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2022. ; https://doi.org/10.1101/2022.02.22.481548doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.481548
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2

C Total ATP demand

Donor 1 Donor 2 Donor 3

0%

200%

400%

600%

B
as

al
 J

AT
P

to
ta

l /
 C

el
l v

ol
um

e

Basal JATPtotal / Cell volume

***
+ 61.9%

- + - + - +

ns
+ 13.5%

*
+ 61.0%

**
+ 111.2%

- + - + - +
Donor 1 Donor 2 Donor 3

0%

50%

100%

150%

200%

250%

C
el

l v
ol

um
e

Cell volume

****
- 22.9%

****
- 36.4%

****
- 33.3%

****
- 40.5%

- + - + - +

B OxPhos-derived ATP

0 50 100 150 200 250
0%

200%

400%

600%

Days in treatment

B
as

al
 J

AT
P

ox
 / 

C
el

l v
ol

um
e

Basal JATPox / Cell volume

Donor 2 Ctrl

Donor 2 Dex

Donor 1 Ctrl

Donor 1 Dex

Donor 3 Ctrl

Donor 3 Dex

Donor 1 Donor 2 Donor 3

0%

200%

400%

600%

B
as

al
 J

AT
P

ox
 / 

C
el

l v
ol

um
e

Basal JATPox / Cell volume

****
+ 116.3%

- + - + - +

ns
+ 35.5%

***
+ 138.9%

***
+ 174.6%

Donor 1 Donor 2 Donor 3

0%

200%

400%

600%

B
as

al
 J

AT
P

ox
 / 

C
el

l v
ol

um
e

Basal JATPox / Cell volume

****
+ 116.3%

- + - + - +

ns
+ 35.5%

***
+ 138.9%

***
+ 174.6%

- + - + - +
Donor 1 Donor 2 Donor 3

0%

50%

100%

150%

200%

250%

C
el

l v
ol

um
e

Cell volume

****
- 22.9%

****
- 36.4%

****
- 33.3%

****
- 40.5%

- + - + - +

A

0 50 100 150 200 250
0

20

40

60

80

Days in treatment

Ba
sa

l O
C

R
 

(p
m

ol
 O

2 
/ m

in
 / 

20
k 

ce
lls

)

Basal OCR

Donor 1 Ctrl

Donor 1 Dex

Donor 2 Ctrl

Donor 2 Dex

Donor 3 Ctrl

Donor 3 Dex

Glycolysis-derived ATP

Donor 1 Donor 2 Donor 3

0%

200%

400%

600%

B
as

al
 J

AT
P

G
ly

co
 / 

C
el

l v
ol

um
e

Basal JATPglyc / Cell volume

*
- 16.3%

- + - + - +

ns
- 20.6%

p=0.08
- 26.8%

ns
- 1.6%

- + - + - +
Donor 1 Donor 2 Donor 3

0%

50%

100%

150%

200%

250%

C
el

l v
ol

um
e

Cell volume

****
- 22.9%

****
- 36.4%

****
- 33.3%

****
- 40.5%

- + - + - +
B

as
al

 J
AT

P
-G

ly
c /

 µ
m

3  (
%

 o
f c

on
tro

l)
B

as
al

 J
AT

P
-O

xP
ho

s /
 µ

m
3  (

%
 o

f c
on

tro
l)

B
as

al
 J

AT
P

-T
ot

al
 / 

µm
3  (

%
 o

f c
on

tro
l)

Dex

Dex

Dex

0 50 100 150 200 250
0%

50%

100%

150%

200%

Days in treatment

B
as

al
 J

AT
P

gl
yc

o 
/ C

el
l v

ol
um

e 

Basal JATPglyco / Cell volume

Donor 1 Donor 2 Donor 3

0%

50%

100%

150%

200%

B
as

al
 J

AT
P

gl
yc

o 
/ C

el
l v

ol
um

e 

Basal JATPglyco / Cell volume

*
- 16.3%

- + - + - +

ns
- 20.6%

p=0.08
- 26.8%

ns
- 1.6%

Donor 1 Donor 2 Donor 3

0%

100%

200%

300%

400%

500%

B
as

al
 J

AT
P

to
ta

l /
 C

el
l v

ol
um

e 

Basal JATPtotal  / Cell volume

***
+ 61.9%

- + - + - +

ns
+ 13.5%

*
+ 61.0%

**
+ 111.2%

0 50 100 150 200 250
0%

100%

200%

300%

400%

500%

Days in treatment

B
as

al
 J

AT
P

to
ta

l /
 C

el
l v

ol
um

e 

Basal JATPtotal  / Cell volume

Donor 2 Ctrl

Donor 2 Dex

Donor 1 Ctrl

Donor 1 Dex

Donor 3 Ctrl

Donor 3 Dex

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2022. ; https://doi.org/10.1101/2022.02.22.481548doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.481548
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3
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Figure 5
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Figure 6
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Figure 10
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