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Abstract  
Models that predict brain responses to stimuli provide one measure of understanding of a sensory 
system, and have many potential applications in science and engineering. Stimulus-computable 
sensory models are thus a longstanding goal of neuroscience. Deep neural networks have 
emerged as the leading such predictive models of the visual system, but are less explored in 
audition. Prior work provided examples of audio-trained neural networks that produced good 
predictions of auditory cortical fMRI responses and exhibited correspondence between model 
stages and brain regions, but left it unclear whether these results generalize to other neural 
network models, and thus how to further improve models in this domain. We evaluated brain-
model correspondence for publicly available audio neural network models along with in-house 
models trained on four different tasks. Most tested models out-predicted previous filter-bank 
models of auditory cortex, and exhibited systematic model-brain correspondence: middle stages 
best predicted primary auditory cortex while deep stages best predicted non-primary cortex. 
However, some state-of-the-art models produced substantially worse brain predictions. The 
training task influenced the prediction quality for specific cortical tuning properties, with best 
overall predictions resulting from models trained on multiple tasks. The results suggest the 
importance of task optimization for explaining brain representations and generally support the 
promise of deep neural networks as models of audition. 
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Introduction  
An overarching aim of neuroscience is to build quantitatively accurate computational models of 
sensory systems. Success entails models that take sensory signals as input and reproduce the 
behavioral judgments mediated by a sensory system as well as its internal representations. A 
model that can replicate behavior and brain responses for arbitrary stimuli would help validate the 
theories that underlie the model, but would also have a host of important applications. For 
instance, such models could guide brain-machine interfaces by specifying patterns of brain 
stimulation needed to elicit particular percepts or behavioral responses. 
 
One approach to model building is to construct machine systems that solve biologically relevant 
tasks, based on the hypothesis that task constraints may cause them to reproduce the 
characteristics of biological systems1,2. Advances in machine learning have stimulated a wave of 
renewed interest in this model building approach. Specifically, deep artificial neural networks 
(DNNs) now achieve human-level performance on real-world classification tasks such as object 
and speech recognition, yielding a new generation of candidate models in vision, audition, 
language, and other domains3–8. DNN models are relatively well explored within vision, where 
they reproduce some patterns of human behavior9–12 and in many cases appear to replicate 
aspects of the hierarchical organization of the primate ventral stream13–16. These and other 
findings are consistent with the idea that brain representations are constrained by the demands 
of the tasks organisms must carry out, such that optimizing for ecologically relevant tasks 
produces better models of the brain. 
 
Deep neural network models have also stimulated progress in audition. Comparisons of human 
and model behavioral characteristics have found that audio-trained neural networks often 
reproduce patterns of human behavior when optimized for naturalistic tasks and stimulus sets17–

21. Several studies have also compared audio-trained neural networks to brain responses within 
the auditory system22,17,23–29. The best-known of these prior studies is arguably that of Kell et al., 
(2018), who found that DNNs jointly optimized for speech and music classification could predict 
functional magnetic resonance imaging (fMRI) responses to natural sounds in auditory cortex 
substantially better than a standard model based on spectrotemporal filters. In addition, model 
stages exhibited correspondence with brain regions, with middle stages best predicting primary 
auditory cortex and deeper stages best predicting non-primary auditory cortex. However, Kell et 
al. used only a fixed set of two tasks, investigated a single class of model, and relied exclusively 
on regression-derived predictions as the metric of brain-model similarity.  
 
Several subsequent studies built on these findings by analyzing models trained on various 
speech-related tasks, and found they were able to predict cortical responses to speech better 
than chance, with some evidence that different model stages best predicted different brain 
regions26,28,27,29. But each of these studies analyzed only a small number of models, and each 
used a different brain data set, making it difficult to compare results across studies, and leaving 
the generality of brain-DNN similarities unclear. Specifically, it has remained unclear whether 
DNNs trained on other tasks and sounds also produce good predictions of brain responses, 
whether the correspondence between model stages and brain regions is consistent across 
models, and whether the training task critically influences the ability to predict responses in 
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particular parts of auditory cortex. These questions are important for substantiating the 
hierarchical organization of the auditory cortex, for understanding the role of tasks in shaping 
cortical representations, and for guiding the development of better models of the auditory system. 
 
To answer these questions, we examined brain-DNN similarities within the auditory cortex for a 
large set of models. To address the generality of brain-DNN similarities, we tested a large set of 
publicly available audio-trained neural network models, trained on a wide variety of tasks and 
spanning many types of models. To address the effect of training task, we supplemented these 
publicly available models with in-house models trained on four different tasks. We evaluated both 
the overall quality of the brain predictions as compared to a standard baseline spectrotemporal 
filter model of the auditory cortex (Chi et al., 2005), as well as the correspondence between model 
stages and brain regions. To ensure that the conclusions were robust to the choice of brain-model 
similarity metric, wherever possible we used two different metrics: the variance explained by linear 
mappings fit from model features to brain responses, and representational similarity metrics31. We 
used two different fMRI data sets to assess the reproducibility and robustness of the results: the 
original data set (Norman-Haignere et al., 2015, n=8) used in Kell et al., to facilitate comparisons 
to those earlier results, as well as a second recent data set (Boebinger et al., 2021, n=20) with 
data from a total of 28 unique participants.  
 
We found that most deep neural network models produced better predictions of brain responses 
than the baseline model of the auditory cortex. In addition, most models exhibited a 
correspondence between model stages and brain regions, with lateral, anterior, and posterior 
non-primary auditory cortex being better predicted by deeper model stages. Both of these findings 
indicate that many such models provide better descriptions of cortical responses than traditional 
filter-bank models of auditory cortex. However, not all models produced good predictions, 
suggesting that some training tasks and architectures yield more brain-like predictions than 
others. We also observed significant effects of the training task on the predictions of speech, 
music, and pitch-related cortical responses. The best overall predictions were produced by 
models trained on multiple tasks. The results indicate that many deep neural networks replicate 
aspects of auditory cortical computation, but indicate the important role of training tasks in 
obtaining models that yield accurate brain predictions, in turn suggesting that auditory cortical 
tuning has been shaped by the demands of having to support auditory behavior. 
 
Results 
Deep neural network modeling overview 
The artificial neural network models considered here take an audio signal as input and transform 
it via cascades of operations loosely inspired by biology: filtering, pooling, and normalization, 
among others. Each stage of operations produces a representation of the audio input, typically 
culminating in an output stage: a set of units whose activations can be interpreted as the 
probability that the input belongs to a particular class (e.g. a spoken word, or phoneme, or 
environmental sound category).  
 
A model is defined by its “architecture” – the arrangement of operations within the model – and 
by the parameters of each operation that may be learned during training. These parameters are 
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typically initialized randomly, and are then optimized via gradient descent to minimize a loss 
function over a set of training data. The loss function is typically designed to quantify performance 
of a task. For instance, training data might consist of a set of speech recordings that have been 
annotated, the model’s output units might correspond to word labels, and the loss function might 
quantify the accuracy of the model’s word labeling compared to the annotations. The optimization 
that occurs during training would cause the model’s word labeling to become progressively more 
accurate.  
 
A model’s performance is a function of both the architecture and the training procedure; training 
is thus typically conducted alongside a search over the space of model architectures to find an 
architecture that performs the training task well. Once trained, a model can be applied to any 
arbitrary stimulus, yielding a decision (if trained to classify its input) that can be compared to the 
decisions of human observers, along with internal model responses that can be compared to brain 
responses. Here we focus on the internal model responses, comparing them to fMRI responses 
in human auditory cortex, with the goal of assessing whether the representations derived from 
the model reproduce representations in the auditory cortex. 
 
Model selection 
We began by compiling a set of models that we could compare to brain data (see “Candidate 
models” in Methods for full details and Tables 1 and 2 for an overview). Two criteria dictated the 
choice of models. First, we sought to survey a wide range of models to assess the generality with 
which deep neural networks would be able to model auditory cortical responses. Second, we 
wanted to explore effects of the training task. The main constraint on the model set was that there 
were relatively few publicly available audio-trained deep neural network models available at the 
time of this study (in part because much work on audio engineering is done in industry settings 
where models and data sets are not made public). We thus included every model we could obtain 
in a PyTorch implementation that had been trained on some sort of audio task at a realistic scale 
(i.e., we neglected models trained to classify spoken digits, or other small-scale tasks, on the 
grounds that such tasks are unlikely to place strong constraints on the model representations). 
The resulting set of 9 models varied in both their architecture (spanning convolutional neural 
networks, recurrent neural networks, and transformers) and training task (ranging from automatic 
speech recognition and speech enhancement to audio captioning and audio source separation).  
 
To supplement these external models, we trained ten models ourselves: two architectures trained 
separately on each of four tasks as well as on three of the tasks simultaneously. We used the 
three tasks that could be implemented using the same data set (where each sound clip had labels 
for words, speakers, and environmental sounds). One of the architectures we used was similar to 
that used in our earlier study (Kell et al., 2018), which identified a candidate architecture from a 
large search over number of stages, location of pooling, and size of convolutional filters. The 
resulting model performed well on both word and music genre recognition, and was predictive of 
brain responses to natural sounds. This architecture (henceforth CochCNN9) consisted of a 
sequence of convolutional, normalization, and pooling stages preceded by a hand-designed 
model of the cochlea (henceforth termed a ‘cochleagram’). The second architecture was a 
ResNet5034 backbone with a cochleagram front end (henceforth CochResNet50).  CochResNet50 
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was a much deeper model than CochCNN9 (50 layers compared to 9 layers) with residual (skip-
layer) connections, and although this architecture was not determined via an explicit architecture 
search for auditory tasks, it had been previously optimized for other perceptual tasks, and 
outperformed CochCNN9 on the training tasks (see Methods; Candidate models). We used two 
architectures to obtain a sense of the consistency of any effects of task that we might observe. 
 
The four in-house training tasks consisted of recognizing words, speakers, environmental sounds, 
and musical genres from audio (referred to henceforth as Word, Speaker, AudioSet and Genre, 
respectively). The multi-task models had three different output layers, one for each included task 
(word, speaker, and environmental sound recognition), connected to the same network. The three 
tasks for the multi-task network were originally chosen because we could train on all of them 
simultaneously using a single existing data set (the Word-Speaker-Noise data set35) in which each 
clip has three associated labels: a word, a speaker, and an environmental sound (sounds from 
the AudioSet  data set36) background. For the single-task networks, we used one of these three 
sets of labels. We additionally trained models with a fourth task – a music-genre classification 
task originally presented in Kell et al., (2018). As it turned out, the first three tasks individually 
produced better brain predictions than the fourth, and the multi-task model produced better 
predictions than any of the models individually, and so we did not explore additional combinations 
of tasks. These in-house models were intended to allow a controlled analysis of the effect of task, 
to complement the all-inclusive but uncontrolled set of external models. 
 
We compared each of these models to an untrained baseline model that is commonly used in 
cognitive neuroscience30. The baseline model consisted of a set of spectrotemporal modulation 
filters applied to a model of the cochlea (henceforth referred to as the SpectoTemporal model). 
 
Brain data 
To assess the replicability and robustness of the results, we evaluated the models on two 
independent fMRI data sets (each with three scanning sessions per participant). Each presented 
the same set of 165 two-second natural sounds to human listeners. One experiment32 collected 
data from 8 participants with moderate amounts of musical experience (henceforth NH2015). This 
data set was analyzed in a previous study investigating deep neural network predictions of fMRI 
responses17. The second experiment33 collected data from a different set of 20 participants, 10 of 
whom had almost no musical experience, and 10 of whom had extensive musical training 
(henceforth B2021). The fMRI experiments measured the blood-oxygen-level-dependent (BOLD) 
response to each sound in each voxel in the auditory cortex of each participant (including all 
temporal lobe voxels that responded significantly more to sound than silence, and whose test-
retest response reliability exceeded a criterion; see Methods; fMRI data).  
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Figure 1. Analysis method. (A) Regression Analysis (voxelwise modeling). Brain activity of human 
participants (n=8, n=20) was recorded while they listened to a set of 165 natural sounds in the fMRI scanner. 
Data were taken from two previous publications32,33. We then presented the same set of 165 sounds to 
each model, measuring the time-averaged unit activations from each model stage in response to each 
sound. We performed an encoding analysis where voxel activity was predicted by a regularized linear model 
of the DNN activity. We modeled each voxel as a linear combination of model units from a given model 
stage, estimating the linear transform with half (n=83) the sounds and measuring the prediction quality by 
correlating the empirical and predicted response to the left-out sounds (n=82) using the Pearson correlation. 
We performed this procedure for 10 random splits of the sounds. Figure adapted from Kell et al.17. (B) 
Representational Similarity Analysis (RSA). We used the set of brain data and model activations described 
for the voxelwise regression modeling. We constructed a representational dissimilarity matrix (RDM) from 
the fMRI responses by computing the distance (1-Pearson correlation) between all voxel responses to each 
pair of sounds. We similarly constructed an RDM from the unit responses from a model stage to each pair 
of sounds. We measured the Spearman correlation between the fMRI and model RDMs as the metric of 
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brain-model similarity. When reporting this correlation from a best model stage, we used 10 random splits 
of sounds, choosing the best stage from the training set of 83 sounds and measuring the spearman 
correlation for the remaining set of 82 test sounds. The fMRI RDM is the average RDM across all 
participants for all voxels and all sounds in NH2015. The model RDM is from an example model stage 
(ResNetBlock_2 of the CochResNet50-multitask network).   
 
General approach to analysis 
Because the sounds were short relative to the time constant of the fMRI BOLD signal, we 
summarized the fMRI response from each voxel as a single scalar value for each sound. The 
primary similarity metric we used was the variance in these voxel responses that could be 
explained by linear mappings from the model responses, obtained via regression. This regression 
analysis has the advantage of being in widespread use37–40,17,41 and hence facilitates comparison 
of results to related work. We supplemented the regression analysis with a representational 
similarity analysis31, and wherever possible present results from both metrics. 
 
The steps involved in the regression analysis are shown in Figure 1A. Each sound was passed 
through a neural network model, and the unit activations from each network stage were used to 
predict the response of individual voxels (after averaging unit activations over time to mimic the 
slow time constant of the BOLD signal). Predictions were generated with cross-validated ridge 
regression, using methods similar to those of many previous studies using encoding models of 
fMRI measurements37–40,17,41. Regression yields a linear mapping that rotates and scales the 
model responses to best align them to the brain response, as is needed to compare responses 
in two different systems (model and brain, or two different brains or models). A model that 
reproduces brain-like representations should yield similar patterns of response variation across 
stimuli once such a linear transform has been applied (thus “explaining” a large amount of the 
brain response variation across stimuli).  
 
The specific approach here was modeled after that of Kell et al., 2018: we used 83 of the sounds 
to fit the linear mapping from model units to a voxel’s response, and then evaluated the predictions 
on the 82 remaining sounds, taking the median across 10 training/test cross-validation splits, and 
correcting for both the reliability of the measured voxel response and the reliability of the predicted 
voxel response42,43. The variance explained by a model stage was taken as a metric of the brain-
likeness of the model representations. We asked i) to what extent the models in our set were able 
to predict brain data, and ii) whether there was a relationship between stages in a model and 
regions in the human brain.  
 
To assess the robustness of our conclusions to the evaluation metric, we also compared a 
measure of representational similarity calculated for brain and model responses (Figure 1B). We 
first measured representational dissimilarity matrices (RDMs) for a set of voxel responses from 
the Pearson correlation of all the voxel responses to one sound with that for another sound. These 
correlations for all pairs of sounds yields a matrix, which is standardly expressed as 1-C, where 
C is the correlation matrix. When computed from all voxels in the auditory cortex, this matrix is 
highly structured, with some pairs of sounds producing much more similar responses than others 
(Supplementary Figure S1). We then analogously measured this matrix from the time-averaged 
unit responses within a model stage. To assess whether the representational structure captured 
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by these matrices was similar between a model and the brain, we measured the Spearman 
correlation between the brain and model RDMs. As in previous work44,45, we did not correct this 
metric for the reliability of the RDMs, but instead computed a noise ceiling for it. We estimated 
the noise ceiling as the correlation between a held-out participant’s RDM and the average RDM 
of the remaining participants. 
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Figure 2. Evaluation of overall model-brain similarity. (A) Using regression, explained variance was 
measured for each voxel and the aggregated median variance explained was obtained for the best-
predicting stage for each model, selected using independent data. Grey line shows variance explained by 
the SpectroTemporal baseline model. Colors indicate the nature of the model architecture: CochCNN9 
architectures in shades of red, CochResNet50 architectures in shades of green, Transformer architectures 
in shades of violet (AST, Wav2vec2, S2T, SepFormer), recurrent architectures in shades of yellow 
(DCASE2020, DeepSpeech2), other convolutional architectures in shades of blue (VGGish, VQ-VAE), and 
miscellaneous in brown (MetricGAN). Panel i shows the trained networks, and panel ii shows the control 
networks with permuted weights. Error bars are within-participant SEM. Note that error bars are smaller for 
the B2021 data set because of the larger number of participants (n=20 vs. n=8). For both data sets, most 
trained models out-predict the baseline model, whereas all permuted models produce worse predictions 
than the baseline. (B) We analyzed the representational similarity between all auditory cortex fMRI 
responses and the computational models. The models and colors are the same as in (A). The dashed black 
line shows the noise ceiling measured by comparing one participant’s RDM with the average of the RDMs 
from each of the other participants. Panel i shows the trained networks, and panel ii shows the control 
networks with permuted weights. Error bars are within-participant SEM. Similar to the regression analysis, 
many of the trained models exhibit RDMs that are more correlated with the human RDM than the baseline 
model, whereas all permuted models are less correlated than the baseline.     
 
Many DNN models outperform traditional models of the auditory cortex  
We first assessed the overall accuracy of the brain predictions for each model using regularized 
regression, aggregating across all voxels in the auditory cortex. For each model, explained 
variance was measured for each voxel using the best-predicting stage for that voxel (see 
Methods; Voxel response modeling). We then took the median of this explained variance across 
voxels for each model (averaged across participants).  
 
As shown in Figure 2Ai, the best-predicting stage of most trained DNN models produced better 
overall predictions of auditory cortex responses than did the standard SpectroTemporal baseline 
model30 (see Supplementary Figure S2 for predictivity across model stages). This was true for all 
of the in-house models as well as about half of the external models developed in engineering 
contexts. However, some models developed in engineering contexts did not produce good 
predictions, substantially under-predicting the baseline model. The heterogeneous set of external 
models was intended to provide a strong test of the generality of brain-DNN relations, and 
sacrificed controlled comparisons between models (because models differed on many 
dimensions). It is thus difficult to pinpoint the factors that cause some models to produce poor 
predictions. This finding nonetheless demonstrates that some models that are trained on large 
amounts of data, and that perform some auditory tasks well, do not accurately predict auditory 
cortical responses. But the results also show that many models produce better predictions than 
the classical SpectroTemporal baseline model. 
 
Brain predictions of DNN models depend critically on task-optimization  
To assess whether the improved predictions compared to the SpectroTemporal baseline model 
could be entirely explained by the DNN architectures, we performed the same analysis with each 
model’s parameters (e.g., weights, biases) permuted within each model stage (Figure 2Aii). This 
model manipulation destroyed the parameter structure learned during task-optimization, while 
preserving the model architecture and the marginal statistics of the model parameters. This was 
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intended as replacement for testing untrained models with randomly initialized weights17, the 
advantage being that it seemed a more conservative test for the external models, for which the 
initial weight distributions were in some cases unknown.  
 
In all cases, these control models produced worse predictions than the trained models, and in no 
case did they out-predict the baseline model. This result indicates that task optimization is 
consistently critical to obtaining good brain predictions. This conclusion is consistent with 
previously published results17 but substantiates them on a much broader set of models and tasks.  
 
Qualitatively similar conclusions from representational similarity 
To ensure that the conclusions from the regression-based analyses were robust to the choice of 
metric, we conducted analogous analyses using representational similarity. Analyses of 
representational similarity gave qualitatively similar results to those with regression. We computed 
the Spearman correlation between the RDM for all auditory cortex voxels and that for the unit 
activations of each stage of each model, choosing the model stage that yielded the best match. 
We used 83 of the sounds to choose the best-matching model stage, and then measured the 
model-brain RDM correlation for RDMs computed for the remaining 82 sounds. We performed 
this procedure with 10 different splits of the sounds, averaging the correlation across the 10 splits. 
This analysis showed that most of the models in our set had RDMs that were more correlated 
with the human auditory cortex RDM than that of the baseline model (Figure 2Bi). Moreover, the 
two measures of brain-model similarity (variance explained and correlation of RDMs) were 
correlated in the trained networks (r2=0.75 for NH2015 and r2=0.78 for B2021, p<<.001), with 
models that showed poor matches on one metric tending to show poor matches on the other. The 
correlations with the human RDM were nonetheless well below the noise ceiling, indicating that 
none of the models fully accounts for the fMRI representational similarity. As expected, the RDMs 
for the permuted models were less similar to that for human auditory cortex, never exceeding the 
correlation of the baseline model (Figure 2Bii). Overall, these results provide converging evidence 
for the conclusions of the regression-based analyses. 
 
Improved predictions of DNN models are most pronounced for pitch, speech, and music-
selective responses  
To examine the model predictions for specific tuning properties of the auditory cortex, we used a 
previously derived set of cortical response components. Previous work32 found that cortical voxel 
responses to natural sounds can be explained as a linear combination of six response 
components (Figure 3A). These six components can be interpreted as capturing the tuning 
properties of underlying neural populations. Two of these components were well accounted for 
by audio frequency tuning, and two others were relatively well explained by tuning to spectral and 
temporal modulation frequencies. One of these latter two components was selective for sounds 
with salient pitch. The remaining two components were highly selective for speech and music, 
respectively. The six components had distinct (though overlapping) anatomical distributions, with 
the components selective for pitch, speech, and music most prominent in different regions of non-
primary auditory cortex (Figure 3B; components 4-6, selective for pitch, speech, and music, 
respectively). These components provide one way to examine whether the improved model 
predictions seen in Figure 2 are specific to particular aspects of cortical tuning. 
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We again used regression to generate model predictions, but this time using the component 
responses rather than voxel responses (Figure 3C). We fit a linear mapping from the unit 
activations in a model stage (for a subset of “training” sounds) to the component response, then 
measured the predictions for left-out “test” sounds, averaging the predictions across test splits. 
The main difference between the voxel analyses and the component analyses is that we did not 
noise-correct the estimates of explained component variance. This is because we could not 
estimate test-retest reliability of the components, as they were derived with all three scans worth 
of data. We also restricted this analysis to regression-based predictions because representational 
similarity cannot be measured from single response components. 
 

 
Figure 3. Component decomposition of fMRI responses. (A) Voxel component decomposition method. 
The voxel responses of a set of participants are approximated as a linear combination of a small number 
of component response profiles. The solution to the resulting matrix factorization problem is constrained to 
maximize a measure of the non-Gaussianity of the component weights. Voxel responses in auditory cortex 
to natural sounds are well accounted for by six components. Figure adapted from a previous publication 
(Norman-Haignere et al., 2015). (B) The six components are concentrated in different regions of the 
auditory cortex. Figure adapted from a previous publication (Norman-Haignere et al., 2015). (C) We 
generated model predictions for each component’s response using the same approach used for voxel 
responses, in which the model unit responses were combined to best predict the component response, with 
explained variance measured in held-out sounds (taking the median of the explained variance values 
obtained across train/test cross-validation splits).  
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Figure 4. Example model predictions for six components of fMRI responses to natural sounds. (A) 
Predictions of the six components by a trained deep neural network model (CochResNet50-MultiTask). 
Each dot corresponds to a single natural sound from the set of 165. Dot color denotes the sound’s semantic 
category. Model predictions were made from the model stage that best predicted a component’s response. 
The predicted response is the average of the predictions for a sound across the test half of 10 different 
train-test splits (including each of the splits for which the sound was present in the test half). (B) Predictions 
of the six components by same model used in (A) but with permuted weights. Predictions are substantially 
worse than for the trained model, indicating that task optimization is important for obtaining good 
predictions, especially for components 4-6. (C) Predictions of the six components by the SpectroTemporal 
model. Predictions are substantially worse than for the trained model, particularly for components 4-6. 
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Figure 4A shows the actual component responses (from the Norman-Haignere et al., 2015 data 
set) plotted against the predicted responses for the best-predicting model stage (selected 
separately for each component) of the multi-task CochResNet50, which gave the best overall 
voxel response predictions (Figure 2). The model replicates most of the variance in all 
components (between 58% and 88% of the variance, depending on the component). Given that 
two of the components are highly selective for particular categories, one might suppose that the 
good predictions in these cases could be primarily due to predicting higher responses for some 
categories than others, and the model indeed reproduces the differences in responses to different 
sound categories (e.g. with high responses to speech in the speech-selective component, and 
high responses to music in the music-selective component). However, it also replicates some of 
the response variance within sound categories. For instance, the model predictions explained 
51.7% of the variance in responses to speech sounds in the speech-selective component, and 
55.1% of the variance in the responses to music sounds in the music-selective component (both 
of these values are much higher than would be expected by chance; speech: p=.001; music: 
p<.001). We note that although we could not estimate the reliability of the components in a way 
that could be used for noise correction, we were able to measure their similarity between different 
groups of participants, and this was lowest for component 3, followed by component  633. Thus, 
the differences between components in the overall quality of the model predictions are plausibly 
related to their reliability. 
 
The component response predictions were much worse for models with permuted weights, as 
expected given the results of Figure 2 (Figure 4B; results shown for the permuted multi-task 
CochResNet50; results were similar for other models with permuted weights). The notable 
exceptions were the first two components, which reflect frequency tuning32. This is likely because 
frequency information is made explicit by a convolutional architecture operating on a cochlear 
representation, irrespective of the model weights. For comparison we also show the component 
predictions for the SpectroTemporal baseline model (Figure 4C). These are better than those of 
the permuted model (one-tailed p<.001; permutation test), but significantly worse than those of 
the best-predicting trained model for all six components (one-tailed p<<.0001; permutation test).  
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Figure 5. Summary of model predictions of fMRI response components. (A) Component response 
variance explained by each of the trained models. Model ordering is the same as that in Figure 2A for ease 
of comparison. Variance explained was obtained from the best-predicting stage of each model for each 
component. Error bars plot SEM over iterations of the model stage selection procedure (see Methods; 
Component modeling). (B) Component response variation explained by each of the permuted models. The 
trained models, but not the permuted models, tend to out-predict the SpectroTemporal baseline for all 
components, but the effect is most pronounced for components 4-6.  
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These findings held across most of the neural network models we tested. Most of the trained 
neural network models produced better predictions than the SpectroTemporal baseline model for 
most of the components (Figure 5A), with the improvement being specific to the trained models 
(Figure 5B). However, it is also apparent that the difference between the trained and permuted 
models is most pronounced for components 4-6 (selective for pitch, speech, and music, 
respectively; compare Figure 5A to 5B). This result indicates that the improved predictions for 
task-optimized models are most pronounced for higher-order tuning properties of auditory cortex. 
 
Many DNN models exhibit model-stage-brain-region correspondence with auditory cortex 
One of the most intriguing findings from the neuroscience literature on deep neural network 
models is that the models often exhibit some degree of correspondence with the hierarchical 
organization of sensory systems13–17,46, with particular model stages providing the best matches 
to responses in particular brain regions. To explore the generality of this correspondence for 
audio-trained models, we first examined the best-predicting model stage for each voxel of each 
participant in the two fMRI data sets, separately for each model. We used regression-based 
predictions for this analysis as it was based on single voxel responses. 
 
We first plotted the best-predicting stage as a surface map displayed on an inflated brain. The 
best-predicting model stage for each voxel was expressed as a number between 0 and 1, and we 
plot the median of this value across participants. In both data sets, earlier model stages tended 
to produce the best predictions of primary auditory cortex while deeper model stages produced 
better predictions of non-primary auditory cortex. We show these maps for the eight best-
predicting models in Figure 6A, and provide them for all remaining models in Supplementary 
Figure S3. There was some variation from model to model, both in the relative stages that yield 
the best predictions, and in the detailed anatomical layout of the resulting maps, but the 
differences between primary and non-primary auditory cortex were fairly consistent across 
models. The stage-region correspondence was specific to the trained models; the models with 
permuted weights produce relatively uniform maps (Supplementary Figure S4). 
 
To summarize these maps across models, we computed the median best-stage for each voxel 
across all 15 models that produced better overall predictions compared to the baseline model 
(Figure 2A). This average best-stage map (Figure 6B) shows a clear gradient, with voxels in and 
around primary auditory cortex (black outline) best predicted by earlier stages than voxels beyond 
primary auditory cortex. This correspondence is lost when the weights are permuted (Figure 6C). 
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Figure 6. Surface maps of best-predicting model stage. (A) To investigate correspondence between 
model stages and brain regions, we plot the model stage that best predicts each voxel as a surface map 
(FsAverage) (median best stage across participants). We assigned each model stage a position index 
between 0 and 1 (using minmax normalization such that the first stage is assigned a value of 0 and the last 
stage a value of 1). We show this map for the eight best-predicting models as evaluated by the median 
noise-corrected R2 plotted in Figure 2A (see Supplementary Figure S3 for maps from other models). The 
color scale limits were set to extend from 0 to the stage beyond the most common best stage (across 
voxels). We found that setting the limits in this way made the variation across voxels in the best stage visible 
by not wasting dynamic range on the deep model stages, which were almost never the best-predicting 
stage. For both data sets, middle stages best predict primary auditory cortex, while deep stages best predict 
non-primary cortex. (B) Best-stage map averaged across all models that produced better predictions than 
the baseline SpectroTemporal model. The map plots the median value across models, and thus is 
composed of discrete color values. The thin black outline plots the borders of an anatomical ROI 
corresponding to primary auditory cortex. (C) Best-stage map for the same models as in (B), but with 
permuted weights. 
 
To quantify the trends that were evident in the surface maps, we computed the average best 
stage within four anatomical regions of interest (ROIs): one for primary auditory cortex, along with 
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three ROIs for posterior, lateral, and anterior non-primary auditory cortex. These ROIs were 
combinations of subsets of ROIs in the Glasser et al. parcellation47 (Figure 7A). The ROIs were 
taken directly from a previous publication33, where they were intended to capture the auditory 
cortical regions exhibiting reliable responses to natural sounds, and were not adapted in any way 
to the present analysis. We visualize the results of this analysis by plotting the average best stage 
for the primary ROI vs. that of each of the non-primary ROIs, expressing the stage’s position 
within each model as a number between 0 and 1 (Figure 7B). In each case, nearly all models lie 
above the diagonal (Figure 7C), indicating that all three regions of non-primary auditory cortex 
are consistently better predicted by deeper model stages compared to primary auditory cortex, 
irrespective of the model. This result was statistically significant in each case (Wilcoxon signed 
rank test: two-tailed p<.005 for all six comparisons; two data sets x three non-primary ROIs).  
 
To confirm that these results were not merely the result of the deep neural network architectural 
structure (for instance, with pooling operations tending to produce larger receptive fields at deeper 
stages compared to earlier stages), we performed the same analysis on the models with permuted 
weights. In this case the results showed no evidence for a mapping between model stages and 
brain regions (Supplementary Figure S5, right; no significant difference between primary and non-
primary ROIs in any of the six cases; Wilcoxon signed rank tests, two-tailed p>0.33 in all cases). 
This result is consistent with the surface maps (Figure 6C and Supplementary Figure S4), which 
tended to be fairly uniform. 
 
We repeated the ROI analysis using representational similarity to determine the best-matching 
model stage for each ROI, and obtained similar results. The model stages that were most similar 
to the non-primary ROIs were again situated later than the model stage most similar to the primary 
ROI, in both data sets (Figure 7D; Wilcoxon signed rank test: two-tailed p<.007 for all six 
comparisons; two data sets x three non-primary ROIs). The model stages that provided the best 
match to each ROI according to each of the two metrics (regression and representational 
similarity) were correlated (r2=0.27 for NH2015 and r2=0.24 for B2021, measured across the 60 
best stage values from 15 trained models for the four ROIs of interest, p<<.001 in both cases). 
This correlation is highly statistically significant but is nonetheless well below the maximum it 
could be given the reliability of the best stages (conservatively estimated as the correlation of the 
best stage between the two fMRI data sets; r2=0.91 for regression and r2=0.94 for representational 
similarity). This result suggests that the two metrics capture different aspects of brain-model 
similarity and that they do not fully align for the models we have at present, even though the 
general trend for deeper stages to better predict non-primary responses is present in both cases. 
Another difference between the results from the two metrics was that when evaluated via 
representational similarity, there was a trend for some of the non-primary ROIs to have later best-
stages than the primary ROI for the permuted models as well (p<.05 in 3 of the 6 possible 
comparisons). However, these effects were weaker than those for the trained models (Cohen’s 
d<0.31 for all permuted model comparisons compared to Cohen’s d>0.58 for all trained model 
comparisons), indicating that the result was again not purely a function of the model architecture.  
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Figure 7. Nearly all DNN models exhibit stage-region correspondence. (A) Anatomical ROIs for 
analysis. ROIs were reproduced from a previous study33, in which they were derived by pooling ROIs from 
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the Glasser anatomical parcellation47. (B) To summarize the model-stage-brain-region correspondence 
across models, we obtained the median best-predicting stage for each model within the four anatomical 
ROIs from A: primary auditory cortex (x axis in each plot in C and D) and anterior, lateral, and posterior 
non-primary regions (y axes in C and D). (C) We performed the analysis on each of the two fMRI data sets, 
including each model that out-predicted the baseline model in Figure 2 (n=15 models). Each data point 
corresponds to a model, with the same color correspondence as in Figure 2. Error bars are within-
participant SEM. The non-primary ROIs are consistently best-predicted by later stages than the primary 
ROI. (D) Same analysis as (C) but with the best-matching model stage determined by correlations between 
the model and ROI representational dissimilarity matrices. RDMs for each anatomical ROI (left) are grouped 
by sound category, indicated by colors on the left and bottom edges of each RDM (same color-category 
correspondence as in Figure 4). Larger-scale fMRI RDMs for each ROI including the name of each sound 
is provided in Supplemental Figure S1.  
 
Overall, these results are consistent with the hierarchical stage-region findings of Kell et al. 
(2018), but show that they apply fairly generally to a wide range of DNN models, that they replicate 
across different brain data sets, and are generally consistent across different analysis methods. 
The results suggest that the different representations learned by early and late stages of DNN 
models map onto differences between primary and non-primary auditory cortex in a way that is 
fairly consistent across a diverse set of models. This finding provides support for the idea that 
primary and non-primary human auditory cortex instantiate distinct types of representations that 
resemble earlier and later stages of a computational hierarchy. 
 
Training task modulates model predictions 
We found in our initial analysis that many models produced good predictions of auditory cortical 
brain responses, in that they out-predicted the SpectroTemporal baseline model (Figure 2). But 
some models gave better predictions than others, raising the question of what causes differences 
in model predictions. To address this question, we analyzed the brain predictions of the in-house 
models, which consisted of the same two architectures trained on different tasks. The results 
shown in Figure 2 indicate that some of our in-house tasks produced better overall predictions 
than others, and that the best overall model as evaluated with either metric (regression or RDM 
similarity) was that trained on three of the tasks (the CochResNet50-MultiTask).  
 
To gain insight into the source of these effects, we examined the in-house model predictions for 
the six components of auditory cortical responses (Figure 3) that vary across brain regions. The 
components seemed a logical choice for an analysis of the effect of task on model predictions 
because they isolate distinct cortical tuning properties. We focused on the pitch-selective, speech-
selective, and music-selective components, because these showed the largest effects of model 
training (components 4-6, Figure 4&5), and because the tasks that we trained on seemed a priori 
most likely to influence representations of these types of sounds. This analysis was necessarily 
restricted to the regression-based model predictions because RDMs are not defined for any single 
component’s response.  
 
A priori it was not clear what to expect. The representations learned by neural networks are a 
function both of the training stimuli and the task they are optimized for18,19, and in principle either 
(or both) could be critical to reproducing the tuning found in the brain. For instance, it seemed 
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plausible that speech- and music-selectivity might only become strongly evident in systems that 
must perform speech- and music-related tasks. However, given the distinct acoustic properties of 
speech, music and pitch, it also seemed plausible that they might naturally segregate within a 
distributed neural representation simply from generic representational constraints that might 
occur for any task, such as the need to represent sounds efficiently48–50 (here imposed by the 
finite number of units in each model stage). Our in-house tasks allowed us to distinguish these 
possibilities, because the training stimuli were held constant (for three of the tasks, and for the 
multi-task model), with the only difference being the labels that were used to compute the training 
loss. Thus, any differences in predictions between these models reflect changes in the 
representation due to behavioral constraints rather than the training stimuli. 
 
Comparisons of the variance explained in each component revealed interpretable effects of the 
training task (Figure 8). The pitch-selective component was best predicted by the models trained 
on environmental sound recognition (R2 was higher for AudioSet than for the other three tasks in 
both the CochCNN9 and CochResNet50 architectures, one-tailed p<.0005 for all six comparisons, 
permutation test). The speech-selective component was best predicted by the models trained on 
speech tasks. This was true both for the word recognition task (R2 higher for the word-trained 
model than for the genre or AudioSet-trained models for both architectures, one-tailed p<.05 for 
all four comparisons) and for the speaker recognition task (one-tailed p<.005 for all four 
comparisons). Finally, the music-selective component was best predicted by the models trained 
on environmental sound recognition (R2 higher for the AudioSet-trained model than for the word-
, speaker- or genre-trained models for both architectures, p<<.0001 for all six comparisons). We 
note that the AudioSet task contains multiple music classes, which plausibly explains its success 
in predicting this component. We note also that the component was less well predicted by the 
models trained to classify musical genre. This latter result may indicate that the genre data 
set/task does not fully tap into the features of music that drive cortical responses. 
 
The differences between tasks were most evident in scatter plots of the variance explained for 
pairs of components (Figure 8B). For instance, the speech-trained models are furthest from the 
diagonal when the variance explained in the speech and music components are compared. And 
the AudioSet-trained models, along with the multi-task models, are well separated from the other 
models when the pitch- and music-selective components are compared. Given that these models 
were all trained on the same sounds, the differences in their ability to replicate human cortical 
tuning for pitch, music and speech suggests that these tuning properties emerge in the models 
from the demands of supporting of specific behaviors. The results support the idea that the distinct 
forms of tuning in the auditory cortex are to some extent specialized for domain-specific auditory 
abilities, rather than being exclusively a function of the distribution of sounds we are exposed to. 
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Figure 8. Training task modulates model predictions. (A) Component response variance explained by 
each of the trained in-house models. Predictions are shown for components 4-6 (pitch-selective, speech-
selective, and music-selective, respectively). The in-house models were trained separately on each of four 
tasks as well as on three of the tasks simultaneously, using two different architectures. Explained variance 
was measured for the best-predicting stage of each model for each component selected using independent 
data. Error bars plot SEM over iterations of the model stage selection procedure (see Methods; Component 
modeling). Gray line plots the variance explained by the SpectroTemporal baseline model. (B) Scatter plots 
of in-house model predictions for pairs of components. The upper panel shows the variance explained for 
component 5 (speech-selective) vs. component 6 (music-selective), and the lower panels shows 
component 6 (music-selective) vs. component 4 (pitch-selective). Symbols denote the training task. In the 
left panel, the four models trained on speech-related tasks are furthest from the diagonal, indicating good 
predictions of speech-selective tuning at the expense of those for music-selective tuning. In the right panel, 
the models trained on the environmental sound task (AudioSet) are set apart from the others in their 
predictions of both the pitch-selective and music-selective components. Error bars are smaller than the 
symbol width (and are provided in panel A) and so are omitted for clarity. 
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We found that in each component and architecture, the multi-task models predicted component 
responses about as well as the best single-task model. It was not obvious a priori that a model 
trained on multiple tasks would capture the benefits of each single-task model – one might 
alternatively suppose that the demands of supporting multiple tasks with a single representation 
would muddy the ability to predict domain-specific brain responses. Indeed, the multi-task models 
achieved slightly lower task performance than the single-task models on each of the tasks (see 
Methods; Training CochResNet50 and CochCNN9 models – Word-Speaker-Noise tasks). This 
result is consistent with the results of Kell et al. that dual-task performance was impaired in models 
that were forced to share representations across tasks. However, the effect here was modest, 
and evidently did not prevent the multi-task model representations from capturing speech- and 
music-specific response properties. This result indicates that multi-task training is a promising 
path toward better models of the brain, in that the resulting models appear to combine the 
advantages of individual tasks.   
 
Representation dimensionality correlates with model predictivity but does not explain it 
Although the task manipulation showed a benefit of multiple tasks in our in-house models, the 
task alone does not obviously explain the large variance across external models in the measures 
of model-brain similarity that we used. Motivated by recent findings that the dimensionality of a 
model’s representation tends to correlate with regression-based brain predictions of ventral visual 
cortex 48, we examined whether a model’s effective dimensionality could account for some of the 
differences we observed between models (Supplementary Figure S6).  
 
The effective dimensionality is intended to summarize the number of dimensions over which a 
model’s activations vary for a stimulus set, and is estimated from the eigenvalues of the 
covariance matrix of the model activations to a stimulus set (see Methods; Effective 
dimensionality). Effective dimensionality is typically lower than a model’s ambient dimensionality 
(i.e., the number of unit activations) because the activations of different units in a model can be 
correlated. Effective dimensionality must limit predictivity when a model’s dimensionality is lower 
than the dimensionality of the underlying neural response, because a low dimensional model 
response could not account for all of the variance in a high dimensional brain response.  
 
We measured effective dimensionality for each stage of each evaluated model (Supplementary 
Figure S6). We pre-processed the model activations to match the pre-processing used for the 
brain-model comparisons. The effective dimensionality for model stages ranged from ~1 to ~65 
for our stimulus set (using the regression analysis pre-processing). By comparison, the effective 
dimensionality of the fMRI responses was 8.75 (for NH2015) and 5.32 (for B2021). Effective 
dimensionality tended to be higher in trained than in permuted models, and tended to increase 
from one model stage to the next in trained models. The effective dimensionality of a model stage 
was modestly correlated with the stage’s explained variance (r2=0.23 and 0.25 for NH2015 and 
B2021, respectively; Supplementary Figure S6, panel Aii), and with the model-brain RDM 
similarity (r2=0.20 and 0.23 for NH2015 and B2021, respectively; Supplementary Figure S6, panel 
Bii). However, this correlation was much lower than the reliability of the explained variance 
measure (r2=0.98, measured across the two fMRI data sets for trained networks; Supplementary 
Figure S6, panel Ai), and the reliability of the model-brain RDM similarity (r2=0.96; Supplementary 
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Figure S6, panel Bi). Effective dimensionality thus does not explain the majority of the variance 
across models – there was wide variation in the dimensionality of models with good predictivity, 
and also wide variation in predictivity of models with similar dimensionality.  
 
Intuitively, dimensionality could be viewed as a confound for regression-based brain predictions. 
High-dimensional model representations might be more likely to produce better regression scores 
by chance, on the grounds that the regression can pick out a small number of dimensions that 
approximate the function underlying the brain response, while ignoring other dimensions that are 
not brain-like. But because the RDM is a function of all of a representation’s dimensions, it is not 
obvious why high-dimensionality on its own should lead to higher RDM similarity. Thus the 
comparable relationship between RDM similarity and dimensionality helps to rule out 
dimensionality as a confound in the regression analyses. In addition, both relationships were quite 
modest. Overall, the results show that there is a weak relationship between dimensionality and 
model-brain similarity, but that it cannot explain most of the variation we saw across models. 
 
Discussion 
We examined similarities between representations learned by contemporary deep neural network 
models and those in the human auditory cortex, using regression and representational similarity 
analyses to compare model and brain responses to natural sounds. We used two different brain 
data sets to evaluate a large set of models trained to perform audio tasks. Most of the models we 
evaluated produced more accurate brain predictions than a standard spectrotemporal filter model 
of the auditory cortex30. Predictions were consistently much worse for models with permuted 
weights, indicating a dependence on task-optimized features. The improvement in predictions 
with model optimization was particularly pronounced for cortical responses in non-primary 
auditory cortex selective for pitch, speech, or music. We observed task-specific prediction 
improvements for particular brain responses, e.g. with speech tasks producing the best 
predictions of speech-selective brain responses. Accordingly, the best overall predictions 
(aggregating across all voxels) were obtained with models trained on multiple tasks. We also 
found that most models exhibited correspondence with the presumptive auditory cortical 
hierarchy, with primary auditory voxels being best predicted by model stages that were 
consistently earlier than the best-predicting model stages for non-primary voxels. The training-
dependent model-brain similarity and model-stage-brain-region correspondence was evident both 
with regression and representational similarity analyses. The results indicate that more often than 
not, deep neural network models optimized for audio tasks learn representations that capture 
aspects of human auditory cortical responses and organization. 
 
Our general strategy was to test as many models as we could, and the model set included every 
audio model with an implementation in PyTorch that was publicly available at the time of our 
experiments. The benefit of this “kitchen sink” approach is that it provided a strong test of the 
generality of brain-DNN correspondence. The cost is that the resulting model comparisons were 
uncontrolled – the external models varied in architecture, training task, and training data, such 
that there is no way to attribute differences between model results to any one of these variables. 
To better distinguish the role of the training task, we complemented the external models with a 
set of models built in our lab that enabled a controlled manipulation of task. These models had 
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identical architectures, and for three of the tasks had the same training data, being distinguished 
only by which of three types of labels the model was asked to predict. 
 
What do our results reveal about how to build a good model of human auditory cortex? First, they 
provide broad additional support for the idea that training a hierarchical model to perform tasks 
on natural, complex audio signals produces representations that exhibit some alignment with the 
cortex, better than was obtainable by previous generations of models. The fact that many models 
produce relatively good predictions suggests that these models contain audio features that 
typically align to some extent with brain representations, at least for the fMRI measurements we 
are working with. Second, some models built for engineering purposes produce poor brain 
predictions. Although the heterogeneity of the models limits our ability to diagnose the factors that 
underlie these brain-model discrepancies, the result is important insofar as it means that we 
should not expect every DNN model to produce strong alignment with the brain. Third, multiple 
tasks seem to improve predictions. Because the training stimuli for the two in-house architectures 
were the same for the multi-task model and for each of the corresponding three single-task 
models, the improvement from training with multiple tasks must be due to task rather than the 
data set. The results suggest that particular tasks produce representations that align well with 
particular brain responses, such that a model trained on multiple tasks gets the best of all worlds 
(Figure 8). Fourth, models with higher-dimensional representations are somewhat more likely to 
produce good matches with the brain. At present it is not clear what drives this effect, but there 
was a modest but consistent effect evident with both metrics we used.  
 
What do our results reveal about the auditory system? The main immediate biological contribution 
lies in providing further evidence and context for functional differentiation between regions of 
human auditory cortex. Discussions of auditory cortical functional organization commonly revolve 
around two proposed principles. The first is that the cortex is organized hierarchically into a 
sequence of stages corresponding to cortical regions49–51,17. Much of the evidence for hierarchy 
is associated with speech processing, in that speech-specific responses only emerge outside of 
primary cortical areas52–57,32,58,40. Other evidence for hierarchical organization comes from 
analyses of responses to natural sounds, which show selective responses to music and song in 
non-primary auditory cortex32,33,59. These non-primary responses occur with longer latencies and 
longer integration windows60 than primary cortical responses. In addition, stimuli that are matched 
in audio and modulation frequency content to natural sounds drive responses in primary, but not 
non-primary, auditory cortex61. Non-primary areas also show greater invariance to real-world 
background noise62. The present results are consistent with all of these prior results but provide 
further evidence for a broad distinction between the computational description of primary and non-
primary auditory cortex (with primary and non-primary voxels being consistently best-predicted by 
earlier and later stages of hierarchical models, respectively). We note that these results do not 
speak to the anatomical connections between regions, only to their stimulus selectivity and 
correspondence to hierarchical computational models. The present results in particular do not 
necessarily imply that the observed regional differences reflect strictly sequential stages of 
processing63. But they do show that the relationship to hierarchical model stages is fairly 
consistent across data sets and models.  
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The second commonly articulated principle of functional organization is that of domain specificity 
– the idea that different regions are specialized for different auditory functions. Previous evidence 
for this idea comes from findings that selectivity for particular stimulus attributes is localized to 
distinct regions of auditory cortex. In particular, speech selectivity is typically found to be localized 
to the superior temporal gyrus52–57,32,58,40, music-selective responses are localized anterior and 
posterior from primary auditory cortex64,65,32,33,59, and location-specific responses to the planum 
temporale66–70. The present results provide additional evidence for domain-specific responses, in 
that particular tasks produced model representations that best predicted particular response 
components. This was true even though the models in question were trained on identical sound 
sets. This manipulation thus helps to disentangle the effect of auditory “diet” from that of the 
behaviors a system must mediate. The results indicate that the way sound is used to perform 
tasks can shape representations in ways that cannot be entirely explained by the distribution of 
sound features a system is optimized for. 
 
Relation to prior work 
The best-known prior study along these lines is that of Kell et al., (2018), and the results here 
qualitatively replicate the key results of that study. One contribution of the present study thus lies 
in showing that these earlier results hold for many different auditory models. In particular, most 
trained models produce better predictions than the SpectroTemporal baseline model, and most 
exhibit a correspondence between model stages and brain regions. The consistently worse 
predictions obtained from models with random/permuted weights also replicates prior work, 
providing more evidence that optimizing representations for tasks tends to bring them in closer 
alignment with biological sensory systems. In addition, we substantiated these main conclusions 
using representational similarity analyses in addition to regression-based predictions, providing 
converging evidence for model-brain matches. Overall, the results indicate a qualitatively similar 
set of results to those obtained in the ventral visual pathway, where many different trained models 
produce overall good predictions45. 
 
The Kell et al. study used a model trained on two tasks, but did not test the extent to which the 
multiple tasks improved the overall match to human brain responses. Here we compared brain-
model similarity for models trained on single tasks and models trained on multiple tasks, and saw 
advantages for multiple tasks. We note that it is not always straightforward to train models to 
perform multiple tasks, and indeed that the Kell et al. study found that task performance was 
optimized when the representations subserving the two tasks were partially segregated. This 
representational segregation could potentially interact with the extent to which the model 
representations match to human brain responses. But for the tasks we considered here, it was 
not necessary to explicitly force representational segregation in order to achieve good task 
performance, or good predictions of human brain responses. 
 
Beyond the study by Kell et al., there have been relatively few other efforts to compare neural 
network models to auditory cortical responses. One study compared representational similarity of 
fMRI responses to music to the responses of a neural network trained on music annotations, but 
did not compare to standard baseline models of auditory cortex22. Another study optimized a 
network for a small-scale (10 digit) word recognition task, and reported seeing some 
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neurophysiological properties of the auditory system24. Koumura et al.23 trained networks on 
environmental sound or speech classification, and observed tuning to amplitude modulation, 
similar to that found in peripheral and mid-level stages of biological auditory systems, but did not 
investigate the putative hierarchy of cortical regions. Millet et al.27 used a self-supervised speech 
model to predict brain responses to naturalistic speech, and found a stage-region correspondence 
similar to that in Kell et al. and the present work. However, the overall variance explained was 
very low. Similarly, Vaidya et al.29 demonstrated that certain self-supervised speech models 
capture distinct stages of speech processing. Our results complement these findings in showing 
that they apply to a large set of models and to responses to natural sounds more generally. 
 
Limitations 
The analyses presented here are intrinsically limited by the coarseness of fMRI data in space and 
time. Voxels contain many thousands of neurons, and the slow time constant of the BOLD signal 
averages the underlying neuronal responses on a timescale of several seconds. It remains 
possible that responses of single neurons would be harder to relate to the responses of the sorts 
of models tested here, particularly when temporal dynamics are examined. Our analyses are also 
limited by the number of stimuli that can feasibly be presented in an fMRI experiment (less than 
200 given our current methods and reliability standards). It is possible that larger stimulus sets 
would better differentiate the models we tested.  
 
The conclusions here are also limited by the two metrics of model-brain similarity that we used. 
The regression-based metric of explained variance is based on the assumption that 
representational similarity can be meaningfully assessed using a linear mapping between 
responses to natural stimuli71,37,72. This assumption is common in systems neuroscience, but 
could obscure aspects of a model representation that deviate markedly from those of the brain, 
because the linear mapping picks out only the model features that are predictive of brain 
responses. There is ample evidence that deep neural network models tend to rely partially on 
different features than humans73,74, and have partially distinct invariances35,75 for reasons that 
remain unclear. Encoding model analyses likely mask the presence of such discrepant model 
properties. We note that accurate predictions of brain responses may be useful in a variety of 
applied contexts, and so have value independent of the extent to which they capture intuitive 
notions of similarity. In addition, accurate predictive models might be scientifically useful in helping 
to better understand what is represented in a brain response (e.g. by generating predictions of 
stimuli that yield high or low responses, that can then be tested experimentally76). But there are 
nonetheless limitations when relying exclusively on regression to evaluate whether a model 
replicates brain representations. 
 
Representational dissimilarity matrices complement regression-based metrics, but have their own 
limitations. RDMs are computed from the entirety of a representation, and so reflect all of its 
dimensions, but conversely are not invariant to linear transformations. Scaling some dimensions 
up and others down can alter an RDM even if it does not alter the information that can be extracted 
from the underlying representation. Moreover, RDMs must be computed from sets of voxel 
responses, and so are sensitive to the (potentially ad hoc) choice of which voxels to pool together. 
For instance, our first analysis (Figure 2) pooled voxels across all of auditory cortex, and this may 
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have limited the similarity observed with individual model stages. By contrast, regression metrics 
can be evaluated on individual voxels.  
 
The fact that the regression and RDM analyses yielded similar qualitative conclusions is 
reassuring, but they are but two of a large space of possible metrics. In addition, the 
correspondence between the two metrics was not perfect. The correlation between overall 
variance explained (the regression metric) and the human-model RDM similarity across network 
stages was r2=0.58 and 0.60 for NH2015 and B2021, respectively – much higher than chance, 
but below the noise ceiling for the two measures (Supplementary Figure S7). In addition, the best 
model stages for each ROI were generally weakly correlated between the two metrics (Figure 7). 
These discrepancies are not well understood at present, but must eventually be resolved for the 
modeling enterprise to declare success. 
 
As discussed above, our study is unable to disentangle effects of model architecture, task, and 
training data on the brain predictions of the external models tested. We emphasize that this was 
not our goal – we sought to test a wide range of models as a strong test of the generality of brain-
DNN similarities, cognizant that this would limit our ability to assess the reasons for brain-model 
discrepancies. The in-house models nonetheless help reveal some of the factors that drive 
differences in model predictions. 
 
Future directions 
The finding that task-optimized neural networks generally enable improved predictions of auditory 
cortical brain responses motivates a broader examination of such models, as well as further model 
development for this purpose. For instance, the findings that different tasks best predict different 
brain responses suggest that models that both recognize and produce speech might help to 
explain differences in “dorsal” and “ventral” speech pathways77, particularly if paired with 
branching architectures17 that can be viewed as hypotheses for distinct functional pathways. 
Models trained to localize sounds19 in addition to recognizing them might help explain aspects of 
the cortical encoding of sound location and its possible segregation from representations of sound 
identity78,79,66,80–82. Task-optimized models could potentially also help clarify findings that currently 
do not have an obvious functional interpretation, for instance the tendency for responses to 
broadband onsets to be anatomically segregated from responses to sustained and tonal 
sounds32,83,84, if such response properties emerge for some tasks and not others. 
 
The fact that optimizing models to perform tasks produces better brain predictions suggests that 
brain representations are shaped to some extent by task constraints. As is widely noted, the 
learning algorithm used in most of the models we considered (supervised learning) is not a 
plausible account for how task constraints might influence biological organisms85. The use of 
supervised learning is motivated by the possibility that one could converge on an accurate model 
of the brain’s representations by replicating some constraints that shape neural representations 
even if the way those constraints are imposed deviates from biology. It is nonetheless conceivable 
(and perhaps likely) that fully accurate models will require learning algorithms that more closely 
resemble the optimization processes of biology, in which nested loops of evolutionary selection 
and (largely unsupervised) learning over development combine to produce systems that can 
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perform a wide range of tasks with breathtaking accuracy and efficiency. Some steps in this 
direction can be found in recent models that are optimized without labeled training data27,29,86,87. 
Our model set contained one such contrastive self-supervised model (Wav2vec2), and although 
its brain predictions were worse than those of most of the supervised models, this direction clearly 
merits extensive exploration.  
 
It will also be important to use additional means of model evaluation, such as model-matched 
stimuli61,35,75, stimuli optimized for the model’s predicted response88,89,76, or directly substituting 
brain responses into models90. And ultimately, analyses such as these need to be related to more 
fine-grained anatomy and brain response measurements. Model-based analyses of human 
intracranial data28,91 and single neuron responses from nonhuman animals both seem like 
promising next steps in the pursuit of complete models of biological auditory systems. 
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Methods  
 

Methods 	
Voxel response modeling	

General	
Voxelwise modeling: Regularized linear regression and cross-validation	
Voxelwise modeling: Correcting for reliability of the measured voxel response	
Voxelwise modeling: Correcting for reliability of the predicted voxel response	
Voxelwise modeling: Corrected measure of variance explained	
Voxelwise modeling: Summary	
Voxelwise predictions across models [Figure 2]	
Voxelwise predictions across model stages [Supplementary Figure S2]	
Best-predicting model stage [Figure 6 / Figure 7]	

Component modeling	
Component predictions across models [Figure 5 & Figure 8]	
Component predictions across sounds [Figure 4]	

Representational Similarity Analysis	
Effective dimensionality	
Statistical analysis	

Voxel responses: Pairwise model comparisons	
Comparisons of best predicting model stages between ROIs	
Component responses: Pairwise model comparisons	

fMRI data (NH2015)	
fMRI cortical responses to natural sounds	
Natural sound stimuli	
fMRI scanning procedure	
fMRI data acquisition	
fMRI data preprocessing	
Voxel selection	

fMRI data (B2021)	
fMRI cortical responses to natural sounds	
Natural sound stimuli	
fMRI scanning procedure	
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fMRI data acquisition	
fMRI data preprocessing	
Voxel selection	

Candidate models	
External models	

AST	
DCASE2020 baseline	
DeepSpeech2	
MetricGAN	
S2T	
SepFormer	
VGGish	
VQ-VAE (ZeroSpeech2020)	
Wav2vec 2.0	

In-house models	
Cochleagram inputs	
SpectroTemporal model	
CochCNN9 architecture	
CochResNet50 architecture	
Training data set for CochResNet50 and CochCNN9 models - Word-Speaker-Noise 
tasks	
Training CochResNet50 and CochCNN9 models - Word-Speaker-Noise tasks	
Training data set for CochResNet50 and CochCNN9 models - musical genre task	
Training CochResNet50 and CochCNN9 models - musical genre task	

Candidate models with permuted weights	
 

Voxel response modeling 
The following voxel encoding model methods are adapted from those of Kell et al., (2018) and 
where the methods are identical, we have reproduced the analogous sections of the methods 
verbatim. We summarize the minor differences from the Kell et al. methods at the end of this 
section. All voxel response  modeling and analysis code was written in Python (version 3.6.10), 
making heavy use of the numpy92 (version 1.19.0), scipy93 (version 1.4.1), and scikit-learn94 
libraries (version 0.24.1). 
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General 
We performed an encoding analysis in which each voxel’s time-averaged activity was predicted 
by a regularized linear model of the DNN activity. We operationalized each model stage within 
each candidate model (see Section “Candidate models”) as a hypothesis of a neural 
implementation of auditory processing. The fMRI hemodynamic signal to which we were 
comparing the candidate model blurs the temporal variation of the cortical response, thus a fair 
comparison of the model to the fMRI data involved predicting each voxel’s time-averaged 
response to each sound from time-averaged model responses. We therefore averaged the model 
responses over the temporal dimension after extraction. Because it seemed possible that units 
with real-valued activations might average out to near-zero values, we extracted unit activations 
after model stages that transform the output to positive values (ReLU, Tanh stages). Transformer 
architectures had no such stages, so we extracted the real-valued unit activations, and analyzed 
all model stages in this way. Pilot analyses suggested that voxel predictions from these models 
were similar when we time-averaged unit activations that were exclusively positive (specifically, 
when we used the root-mean-square instead of the mean). 
 

Voxelwise modeling: Regularized linear regression and cross-validation 
We modeled each voxel’s time-averaged response as a linear combination of a model stage’s 
time-averaged unit responses. We first generated 10 randomly selected train/test splits of the 165 
sound stimuli into 83 training sounds and 82 testing sounds. For each split, we estimated a linear 
map from model units to voxels on the 83 training stimuli and evaluated the quality of the 
prediction using the remaining 82 testing sounds (described below in greater detail). For each 
voxel-stage pair, we took the median across the 10 splits. The linear map was estimated using 
regularized linear regression. Given that the number of regressors (i.e., time-averaged model 
units) typically exceeded the number of sounds used for estimation (83), regularization was 
critical. We used L2-regularized (‘‘ridge’’) regression, which can be seen as placing a zero-mean 
Gaussian prior on the regression coefficients. Introducing the L2-penalty on the weights results in 
a closed-form solution to the regression problem, which is similar to the ordinary least-squares 
regression normal equation: 
 

𝐰 = (𝐗!𝐗 + 𝑛λ𝐈)"𝟏𝐗!𝐲 
 
where w is a d-length column vector (the number of regressors – i.e., the number of time-averaged 
units for the given stage), y is an n-length column vector containing the voxel’s mean response 
to each sound (length 83), X is a matrix of regressors (n stimuli by d regressors), n is the number 
of stimuli used for estimation (83), and I is the identity matrix (d by d). We demeaned each column 
of the regressor matrix (i.e., each model unit’s response to each sound), but we did not normalize 
the columns to have unit norm. Similarly, we demeaned the target vector (i.e., the voxel’s or the 
component’s response to each sound). By not constraining the norm of each column to be one, 
we implemented ridge regression with a non-isotropic prior on each unit’s learned coefficient. 
Under such a prior, units with larger norm were expected a priori to contribute more to the voxel 
predictions. In pilot experiments, we found that this procedure led to more accurate and stable 
predictions in left-out data, compared with a procedure where the columns of the regressor 
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matrices were normalized (i.e., with an isotropic prior). The demeaning was performed on the 
train set and the same transformation was applied on the test set. This ensured independence 
(no data leakage) between the train and test sets.  
 
Performing ridge regression requires selecting a regularization parameter that trades off between 
the fit to the (training) data and the penalty for weights with high coefficients. To select this 
regularization parameter, we used leave-one-out cross validation within the set of 83 training 
sounds. Specifically, for each of 100 logarithmically-spaced regularization parameter values (1e-
50, 1e-49, …, 1e49, 1e50), we measured the squared error in the resulting prediction of the left 
out sound using regression weights derived from the other sounds in the training split. We 
computed the average of this error (across the 83 training sounds) for each of the 100 potential 
regularization parameter values. We then selected the regularization parameter that minimized 
this mean squared error. Finally, with the regularization parameter selected, we used all 83 
training sounds to estimate a single linear mapping from a stage’s features to a given voxel’s 
response. We then used this linear mapping to predict the response to the left-out 82 test sounds, 
and evaluated the Pearson correlation of the predicted voxel response with the observed voxel 
response. If the predicted voxel response had a standard deviation of exactly zero (no variance 
of the prediction across test sounds), the Pearson correlation coefficient was set to 0. Similarly, if 
the Pearson correlation coefficient was negative, indicating that the held-out test sounds were not 
meaningfully predicted by the linear map from the training set, the Pearson correlation value was 
similarly set to 0. We squared this Pearson correlation coefficient to yield a measure of variance 
explained. We found that the selected regularization parameter values rarely fell on the 
boundaries of the search grid, suggesting that the range of the search grid was appropriate. We 
emphasize that the 82 test sounds on which predictions were ultimately evaluated were not 
incorporated into the procedure for selecting the regularization parameter nor for estimating the 
linear mapping from stage features to a voxel’s response – i.e., the procedure was fully cross-
validated. 
 
Selecting regularization coefficients independently for each voxel-stage regression was 
computationally expensive, but seemed important for our scientific goals given that the optimal 
regularization parameter could vary across voxel-stage pairs. For instance, differences in the 
extent to which the singular value spectrum of the feature matrix is uniform or peaked (which 
influences the extent to which the 𝐗!𝐗 + 𝑛λ𝐈 matrix in the normal equation above is well-
conditioned) can lead to differences in the optimal amount of regularization. Measurement noise, 
which varies across voxels can also influence the degree of optimal regularization. By allowing 
different feature sets (stages) to have different regularization parameters we are enabling each 
feature set to make the best possible predictions, which is appealing given that the prediction 
quality is the critical dependent variable that we compare across voxels and stages. Varying the 
regularization parameter across feature sets while predicting the same voxel response will alter 
the statistics of the regression coefficients across feature sets, and thus would complicate the 
analysis and interpretation of regression coefficients. However, we are not analyzing the 
regression coefficients in this work. 
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Voxelwise modeling: Correcting for reliability of the measured voxel response 
The use of explained variance as a metric for model evaluation is inevitably limited by 
measurement noise. To correct for the effects of measurement noise we computed the reliability 
of both the measured voxel response and the predicted voxel response. Correcting for the 
reliability of the measured response is important to make comparisons across different voxels, 
because (as shown in e.g., Figure S2 in Kell et al., (2018)) the reliability of the BOLD response 
varies across voxels. This variation can occur for a variety of reasons (e.g., distance from the 
head coil elements). Not correcting for the reliability of the measured response will downwardly 
bias the estimates of variance explained and will do so differentially across voxels. This differential 
downward bias could lead to incorrect inferences about how well a given set of model features 
explains the response of voxels in different parts of auditory cortex.  
 

Voxelwise modeling: Correcting for reliability of the predicted voxel response 
Measurement noise corrupts the test data to which model predictions are compared (which we 
accounted for by correcting for the reliability of the measured voxel response, as described 
above), but noise is also present in the training data and thus also inevitably corrupts the 
estimates of the regression weights mapping from model features to a given voxel. This second 
influence of measurement noise is often overlooked, but can be addressed by correcting for the 
reliability of the predicted response. Doing so is important for two reasons. First, as with the 
reliability of the measured voxel response, not correcting for the predicted voxel response can 
yield incorrect inferences about how well a model explains different voxels. Second, the reliability 
of the predicted response for a given voxel can vary across feature sets, and failing to account 
for these differences can lead to incorrect inferences about which set of features best explains 
that voxel’s response. It was thus in practice important to correct for the reliability of the predicted 
voxel response. By correcting for both the reliability of the measured voxel response and the 
reliability of the predicted response, the ceiling of our measured r-squared values was 1 for all 
voxels and all stages, enabling comparisons of voxel predictions across all voxels and all neural 
network stages. 
 

Voxelwise modeling: Corrected measure of variance explained 
To correct for the reliability, we employ the correction for attenuation42. It is a standard technique 
in many fields, and is becoming more common in neuroscience. The correction estimates the 
correlation between two variables independent of measurement noise (here the measured voxel 
response and the model prediction of that response). The result is an unbiased estimator of the 
correlation coefficient that would be observed from noiseless data. Our corrected measure of 
variance explained was the following: 
 

𝑟𝐯,𝐯&
'∗ =

r(𝐯)'*, 𝐯/)'*)'

𝑟𝐯+𝑟,-
+  
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where 𝐯)'*	is the voxel response to the 82 left-out sounds averaged over the three scans, 𝐯/)'* is 
the predicted response to the 82 left-out sounds (with regression weights learned from the other 
83 sounds), r is a function that computes the correlation coefficient,  𝑟𝐯+ is the estimated reliability 
of that voxel’s response to the 83 sounds and 𝑟,-+ is the estimated reliability of that predicted voxel’s 
response. 𝑟𝐯+ is the median of the correlation between all 3 pairs of scans (scan 0 with scan 1; 
scan 1 with scan 2; and scan 0 with scan 2), which is then Spearman-Brown corrected to account 
for the increased reliability that would be expected from tripling the amount of data 42. 𝑟,-+ is 
analogously computed by taking the median of the correlations for all pairs of predicted responses 
(models fitted on a single scan) and Spearman-Brown correcting this measure. Note that for very 
noisy voxels, this division by the estimated reliability can be unstable and can cause for corrected 
variance explained measures that exceed one. To ameliorate this problem, we limited both the 
reliability of the prediction and the reliability of the voxel response to be greater than some value 
k 39. For k = 1, the denominator would be constrained to always equal one and thus the ‘‘corrected’’ 
variance explained measured would be identical to uncorrected value. For k = 0, the corrected 
estimated variance explained measure is unaffected by the value k. This k-correction can be seen 
through the lens of a bias-variance tradeoff: this correction reduces the amount of variance in the 
estimate of variance explained across different splits of stimuli, but does it at the expense of a 
downward bias of those variance explained metrics (by inflating the reliability measure for 
unreliable voxels). For 𝑟𝐯+, we used a k of 0.182, which is the p < 0.05 significance threshold for 
the correlation of two 83-dimensional Gaussian variables (i.e., with the same length as our 83-
dimensional voxel response vectors used as the training set), while for 𝑟,-+ we used a k of 0.183 
which is the p < 0.05 significance threshold for the correlation of two 82-dimensional Gaussian 
variables (i.e., same length as our 82-dimensional predicted voxel response vectors, the test set). 
 

Voxelwise modeling: Summary  
We repeated this procedure for each stage and voxel ten times, once each for 10 random train/test 
splits, and took the median explained variance across the ten splits for a given stage-voxel pair. 
We performed this procedure for all stages of all candidate models and all voxels (across two 
data sets: NH2015: 7694 voxels, B2021: 26,792 voxels). Thus, for each stage and voxel, this 
resulted in ten explained variance values (r2). We computed the median explained variance 
across these ten cross-validation splits for each voxel-stage pair. For comparison, we performed 
an identical procedure with the stages of a permuted network with the same architecture as our 
main networks (see Section “Candidate models with permuted weights”) and the spectrotemporal 
baseline model. In all analyses, if a noise-corrected median explained variance value exceeded 
1, we set the value to 1 to avoid an inflation of the explained variance.  
 
In summary, the voxel prediction methods were largely the same as those in Kell et al., (2018), 
with the following differences. First, we imposed a different range of regularization constants to 
avoid hitting the bounds of the range. This difference was necessitated to accommodate a larger 
and more diverse set of models than in Kell et al. as well as changes to scikit learn in the years 
separating our study from that of Kell et al. Second, we set the r-squared values for negative r 
values to zero, rather than using signed r-squared values as in Kell et al. This seemed like the 
best choice given that negative r values indicates that a model cannot predict the data. Third, we 
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used a different limit for the reliability used to correct the explained variance. Our limit was the 
minimum correlation that would be statistically significant for a sample size of 82 and 83 (which 
is the sample size for which the reliability is measured), whereas Kell assumed a sample size of 
165. Fourth, we omitted the Fisher z transform when averaging r-squared values, as it seemed 
hard to motivate. We strongly suspect that none of these differences qualitatively affect any 
important result, but list them here for transparency. 

Voxelwise predictions across models [Figure 2] 
To compare how well each candidate model explained the variance in the fMRI data, we 
aggregated the explained variance across all voxels in the data set of interest (NH2015: 7694 
voxels, B2021: 26,792 voxels) for each model. We evaluated each candidate model using its best-
predicting stage. Selection of the best-predicting model stage was performed in one of two ways. 
In the main analysis featured in Figure 2, for each voxel, we used half of the ten cross-validation 
test splits to select the best-predicting stage, and the remaining five test splits to obtain the median 
explained variance. This yielded a median explained variance per voxel. To ensure that this 
procedure did not depend on the random five cross-validation splits selected, we repeated this 
procedure ten times for each model. We then obtained the mean of the explained variance values 
for each voxel across these ten iterations. To mitigate concerns that this analysis might be 
affected by the overlap in sounds in the five splits used to select the best stage and the five splits 
used to measure the explained variance, we performed a second analysis in which we selected 
the best-predicting model stage using all the voxels for all but one participant, and then measured 
the explained variance in each of the voxels in the left-out participant. This analysis measures 
explained variance with data fully independent from that used to choose the best-stage, but is 
less consistent with the rest of the analyses (e.g., the maps of the best-predicting model stage, in 
which it was critical to choose the best-predicting stage separately for each voxel). We confirmed 
that the results shown in Figure 2 were qualitatively similar if this second procedure was used to 
choose the best-predicting stage for each model. To obtain an aggregated explained variance 
across voxels for each model, we first obtained the median across voxels within each participant, 
and then took the mean across participants. An identical procedure was used for the permuted 
networks. 
 

Voxelwise predictions across model stages [Supplementary Figure S2] 
To visualize how well each stage of each candidate model explained variance in the fMRI data, 
we aggregated the explained variance across all voxels in the data set of interest (NH2015: 7694 
voxels, B2021: 26,792 voxels) for each model. Given that no model stage selection procedure 
took place, we simply obtained the median across voxels within each participant, and then took 
the mean across participants for each model stage, identical to the aggregation procedure for the 
best stage voxelwise predictions (Figure 2). 
 

Best-predicting model stage [Figure 6 / Figure 7] 
We also examined which model stage best predicted each voxel’s response (an ‘‘argmax’’ 
analysis, i.e., the position that best predicts the response for each voxel). We assigned each 
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model stage a position index between 0 and 1 (using minmax normalization such that the first 
stage was assigned a value of 0 and the last stage a value of 1, i.e.: (current_stage - min_stage) 
/ (num_stages - min_stage)). For summary maps (Figure 6), we predicted responses in individuals 
and then aggregated results across participants (median), after they were aligned in a common 
coordinate system (i.e., the FsAverage surface from FreeSurfer) using K-Nearest Neighbor 
interpolation. For the across-model summary map we took the median of the best model stage 
positions across the n=15 best-performing models (rounded to the first decimal place). The plots 
were visualized using Freeview using default parameters. The color overlay was an inverse color 
wheel. The color scale limits were set to extend from 0 to the stage beyond the most common 
best stage (across voxels in both fMRI data sets). The permuted control networks were visualized 
using an identical color scale to the trained networks. 
 
To quantify these summary maps, we compared the best-predicting model stage within different 
regions of the auditory cortex (Figure 7). We used four anatomical region-of-interest (ROIs): one 
for primary auditory cortex along with three ROIs for posterior, lateral, and anterior non-primary 
auditory cortex. These ROIs were combinations of subsets of ROIs in the Glasser et al. 
parcellation 47. We note that they were taken directly from a previous publication 33 where they 
were intended to capture the auditory cortical regions exhibiting reliable responses to natural 
sounds, and were not adapted in any way to the present analysis. For each model, we computed 
the relative model stage position of the best-predicting stage within each ROI (an ‘‘argmax’’ 
analysis, as shown on the summary maps, Figure 6), which we summarized by taking the median 
across voxels within each ROI for each participant followed by the mean across participants 
(similar to the aggregation procedure in Figure 2). This yielded an average relative best model 
stage position per candidate model within each ROI. An identical procedure was used for the 
permuted networks. 
 

Component modeling 
We complemented the voxelwise modeling with analogous predictions of components of the fMRI 
response derived from all of the voxels. In previous work 32 we found that voxel responses to 
natural sounds can be explained as a linear combination of six response components (Figure 3A). 
The components are derived from the auditory cortical voxels (pooled across participants) that 
exceed a criterion of reliability. Each component is defined by a response to each of the sounds 
in the stimulus set, and has a weight for each voxel in the pool. 
 
We predicted the responses for each of these six components in a manner similar to the voxelwise 
modeling. The only difference was that we did not perform any noise-ceiling correction for the 
components (the components do not have repetitions across scan sessions, unlike the voxel 
responses). Thus, all component predictions reported are the “raw” explained variance (squared 
Pearson correlation coefficient). 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2022. ; https://doi.org/10.1101/2022.09.06.506680doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506680
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

Component predictions across models [Figure 5 & Figure 8] 
To compare how well each candidate model explained the component responses, we selected 
the best-predicting model stage for each candidate model using independent data (identical to 
the procedure described in “Voxelwise predictions across models” for the voxel data). 
 

Component predictions across sounds [Figure 4] 
We visualized the component response predictions by plotting them against the actual responses 
(derived from Norman-Haignere et al., (2015)) for each sound. We did this for the best-predicting 
model stage of the CochResNet50-MultiTask (best-performing model overall, Figure 2A) for each 
component. The best-predicting model stage was selected across ten iterations of the 
independent model stage selection procedure, as described in Section “Voxelwise predictions 
across models”. For each of the ten iterations, we used the median explained variance value of 
five random cross-validation test splits to identify the best model stage. Thus, ten iterations of this 
procedure yielded ten best-predicting model stages. For each component, we selected the most 
frequently occurring best-predicting model stage as the stage with which to visualize a given 
component’s predictions. Given a component and model stage, we obtained the predicted 
component response for a sound by taking the mean over all cross-validation splits in which that 
sound was included in the test set. In that way, we obtained the average prediction for each sound 
and each component.  
 
We note that the predicted component responses visualized in Figure 4 were demeaned during 
the regression procedure (using the training set mean to demean the test set, ensuring no data 
leakage between train/test sets, see Section: Voxelwise modeling: Regularized linear regression 
and cross validation) and are hence centered around 0 (ordinate values). The actual component 
responses in Figure 4 were taken directly from Norman-Haignere et al., (2015) without any 
transformations (abscissa values). 
 

Representational Similarity Analysis 
To assess the robustness of our conclusions to the evaluation metric, we also investigated the 
similarity of model and fMRI responses using Representational Similarity Analysis (RSA) 31,44,45. 
We used the same set of model stages and time-averaged representations as were used in the 
regression-based voxelwise modeling analysis. To construct the model representational 
dissimilarity matrix (RDM) for each model and model stage, we computed the dissimilarity (1 
minus the Pearson correlation coefficient) between the model activations evoked by each pair of 
sounds. Similarly, to construct the fMRI RDM, we computed the dissimilarity in voxel responses 
(1 minus the Pearson correlation coefficient) between all voxel responses from a participant to 
each pair of sounds. Before computing the RDMs from the fMRI or model responses, we z-scored 
the voxel or unit responses. As a measure of fMRI and model similarity, we computed the 
Spearman rank ordered correlation coefficient between the fMRI RDM and the model RDM.  
 
Representational Similarity Analysis: Across model comparison 
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In the analysis shown in Figure 2, we compared the RDMs computed across all voxels of a 
participant to the RDM computed from the time-averaged unit responses of each stage of each 
model. To choose the best-matching stage, we first generated 10 randomly selected train/test 
splits of the 165 sound stimuli into 83 training sounds and 82 testing sounds. For each split, we 
computed the RDMs for each model stage and for each participant’s fMRI data for the 83 training 
sounds. We then chose the model stage that yielded the highest Spearman r measured between 
the model stage RDM and the participant’s fMRI RDM. Using this model stage, we measured the 
model and fMRI RDMs from the test sounds and computed the Spearman r. We repeated this 
procedure ten times, once each for 10 random train/test splits, and took the median Spearman r 
across the ten splits. We performed this procedure for all candidate models and all participants 
(across two data sets: NH2015: 8 participants, B2021: 20 participants) and computed the mean 
Spearman r across participants for each model. For comparison, we performed an identical 
procedure with permuted versions of each neural network model, and with the SpectroTemporal 
baseline model. 
 
Representational Similarity Analysis: Noise ceiling 
The representational similarity analysis is limited by measurement noise in the fMRI data. As an 
estimate of the RDM correlation that could be reasonably expected to be achieved between a 
model RDM and a single participant’s fMRI RDM, we calculated the correlation between one 
participant’s RDM and the average of all the other participant’s RDM. Within each data set 
(NH2015 and B2021) we held out one participant and averaged the RDMs across the remaining 
participants. The RDMs were measured from the same 10 train/test splits of the 165 sounds 
described in the previous section, using the 82 test sounds for each split. We then calculated the 
Spearman r between the RDM from the held-out participant and the average participant RDM. 
We took the median Spearman r across the 10 splits of data to yield a single value for each 
participant. This procedure was repeated holding out each participant, and the noise ceiling 
shown in Figure 2B is the mean across the measured value for each held out participant. This 
corresponds to the “lower bound” of the noise ceiling used in prior work44. We plotted the noise 
ceiling on the results graphs rather than noise-correcting the human-model RDM correlation to be 
consistent with prior modeling papers that have used this analysis44,45.  
 
Representational Similarity Analysis: Best model stage analysis 
We also examined which model stage best captured the RDM measured from each anatomical 
ROI (an ‘‘argmax’’ analysis). We assigned each model stage a position index between 0 and 1. 
Given that we only report the “argmax” for this analysis (and not the measured values), we used 
the full set of 165 sounds to compute the RDMs. For a given ROI, we measured each participant’s 
fMRI RDM computed on the voxels within the ROI. For each model, we computed the RDM for 
each stage and measured the Spearman r between the model-stage RDM and the fMRI ROI 
RDM. We measured the argmax across the stages for each model and each participant. We then 
took the mean of this position index across participants to yield an average relative best model 
stage per candidate model within each ROI. An identical procedure was used for the permuted 
networks. 
 
Representational Similarity Analysis: Visualization 
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For fMRI RDMs, we computed the RDM  individually for each participant, and then averaged the 
RDM for visualization. Both fMRI and model RDMs are grouped and colored by the sound 
categories assigned in Norman-Haignere et al., (2015). fMRI RDMs for all auditory cortex voxels 
and for each ROI can be found in Supplementary Figure S1. 

Effective dimensionality 
We investigated the effective dimensionality (ED) of the representations at each model stage as 
well as of the measured fMRI activity. The ED95 was calculated on the set of 165 sounds that 
were used for the brain comparisons. The ED was evaluated as:  

ED = 	
(Σ.λ.)'

Σ.λ.'
 

 
where 𝜆. are the square of the singular values obtained from the matrix of <activations> by 
<sounds>. This matrix was measured from the fMRI or model activations that were used for the 
regression analysis (demeaning each voxel or unit response) or for the RSA analysis (z-scoring 
the voxel or unit responses). In practice, these two different forms of pre-processing altered the 
ED measure, with ED values being about twice as large following the RSA pre-processing 
compared to the regression pre-processing. For instance, the ED for the fMRI data was 8.75 (for 
NH2015) and 5.32 (for B2021) using the regression pre-processing, but 16.9 (NH2015) and 12.9 
(B2021) when using the representational similarity pre-processing. We used the two types of pre-
processing to maintain consistency with the two types of model-brain similarity analysis, but the 
conclusions of the ED analysis would not have been qualitatively different had we exclusively 
used one type of pre-processing or the other. 

Statistical analysis 

Voxel responses: Pairwise model comparisons  
For statistical comparison of brain predictions between multi- and single-task models, we 
evaluated significance non-parametrically by bootstrapping across participants (n=8 for NH2015, 
n=20 for B2021). For each single-task model, we sampled the participant explained variance 
values with replacement (8 or 20 values, sampled 10,000 times) and took the average. The 
resulting histogram was compared to the multi-task model’s observed value averaged across all 
participants. The p-value was obtained by counting the number of times the bootstrapped value 
was smaller than the observed value, divided by the number of bootstrap iterations (n=10,000). 
The test was one-tailed because it was motivated by the hypothesis that the multi-task model 
would produce better fMRI response predictions than the single-task models. 
 

Comparisons of best predicting model stages between ROIs 
For statistical comparison of the mean model stage position index for pairs of anatomical ROIs 
(related to Figure 7), we performed a Wilcoxon signed rank test. The test compared the average 
values across models obtained from the primary ROI versus the average values obtained from 
the non-primary ROI across models. The test was two-tailed. 
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Component responses: Pairwise model comparisons 
For statistical comparison of component predictions between pairs of models (related to Figure 5 
and 8), we evaluated significance non-parametrically via a permutation test. Based on the model 
stage selection procedure described in Section “Component predictions across models”, we 
obtained ten independently selected median explained variance values per component. For a 
given component, we took the average across the ten explained variance values for each model 
and then compute the difference between the two models. We generated a null distribution by 
randomly permuting the model assignment and measuring the difference between the average of 
these permuted model assignment lists. The p-value was obtained by counting the number of 
times the observed difference was smaller than the values measured from permuted data, divided 
by the number of permutations (n=10,000). The test was one-tailed because in each case it was 
motivated by a hypothesis that one model would produce better component response predictions 
than the other. Specifically, there were two types of comparisons. In the first, the trained models 
were compared to the SpectroTemporal baseline model. In the second, models trained on a task 
that was plausibly related to the selectivity of a component (e.g. the word task for the speech 
component) were compared to models trained on a task not obviously related to that component 
(e.g. the genre task for the speech component).  
 

fMRI data (NH2015) 
The initial sections of the fMRI data collection methods used in Norman-Haignere et al., (2015) 
are very similar to the methods reported in Kell et al., (2018) and the text is replicated with minor 
edits. 
 

fMRI cortical responses to natural sounds 
The fMRI data analyzed here is a subset of the data in Norman-Haignere et al., (2015), only 
including the participants who completed three scanning sessions. Eight participants (four female, 
mean age: 22 years, range: 19-25; all right-handed) completed three scanning sessions (each ~2 
hours). Participants were non-musicians (no formal training in the five years preceding the scan), 
native English speakers, and had self-reported normal hearing. Two other participants only 
completed two scans and were excluded from these analyses, and three additional participants 
were excluded due to excessive head motion or inconsistent task performance. The decision to 
exclude these five participants was made before analyzing any of their fMRI data. All participants 
provided informed consent, and the Massachusetts Institute of Technology Committee on the Use 
of Humans as Experimental participants approved experiments. 
 

Natural sound stimuli 
The stimuli were a set of 165 two-second sounds selected to span the sorts of sounds that 
listeners most frequently encounter in day-to-day life (Norman-Haignere et al., 2015). All sounds 
were recognizable – i.e., classified correctly at least 80% of the time in a ten-way alternative 
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forced choice task run on Amazon Mechanical Turk, with 55-60 participants per sound. See 
Supplementary Table S1 for names of all stimuli and category assignments. To download all 165 
sounds, see the McDermott lab website: http://mcdermottlab.mit.edu/ downloads.html.  
 

fMRI scanning procedure 
Sounds were presented using a block design. Each block included five presentations of the 
identical two-second sound clip. After each two-second sound, a single fMRI volume was 
collected (‘‘sparse scanning’’), such that sounds were not presented simultaneously with the 
scanner noise. Each acquisition lasted one second and stimuli were presented during a 2.4 s 
interval (200 ms of silence before and after each sound to minimize forward/backward masking 
by scanner noise). Each block lasted 17 s (five repetitions of a 3.4 s TR). This design was selected 
based on pilot results showing that it gave more reliable responses than an event-related design 
given the same amount of overall scan time. Blocks were grouped into eleven runs, each with 
fifteen stimulus blocks and four blocks of silence. Silence blocks were the same duration as the 
stimulus blocks and were spaced randomly throughout the run. Silence blocks were included to 
enable estimation of the baseline response. To encourage participants to attend equally to each 
sound, participants performed a sound intensity discrimination task. In each block, one of the five 
sounds was 7 dB lower than the other four (the quieter sound was never the first sound). 
Participants were instructed to press a button when they heard the quieter sound. 
 

fMRI data acquisition 
MR data were collected on a 3T Siemens Trio scanner with a 32-channel head coil at the 
Athinoula A. Martinos Imaging Center of the McGovern Institute for Brain Research at MIT. Each 
functional volume consisted of fifteen slices oriented parallel to the superior temporal plane, 
covering the portion of the temporal lobe superior to and including the superior temporal sulcus. 
Repetition time (TR) was 3.4 s (although acquisition time was only 1 s), echo time (TE) was 30 
ms, and flip angle was 90 degrees. For each run, the five initial volumes were discarded to allow 
homogenization of the magnetic field. In-plane resolution was 2.1 x 2.1 mm (96 x 96 matrix), and 
slice thickness was 4 mm with a 10% gap, yielding a voxel size of 2.1 x 2.1 x 4.4 mm. iPAT was 
used to minimize acquisition time. T1-weighted anatomical images were collected in each 
participant (1mm isotropic voxels) for alignment and surface reconstruction. 
 

fMRI data preprocessing 
Functional volumes were preprocessed using FSL and in-house MATLAB scripts. Volumes were 
corrected for motion and slice time. Volumes were skull-stripped, and voxel time courses were 
linearly detrended. Each run was aligned to the anatomical volume using FLIRT and 
BBRegister96,97. These preprocessed functional volumes were then resampled to vertices on the 
reconstructed cortical surface computed via FreeSurfer98, and were smoothed on the surface with 
a 3mm FWHM 2D Gaussian kernel to improve SNR. All analyses were done in this surface space, 
but for ease of discussion we refer to vertices as ‘‘voxels’’ throughout this paper. For each of the 
three scan sessions, we estimated the mean response of each voxel (in the surface space) to 
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each stimulus block by averaging the response of the second through the fifth acquisitions after 
the onset of each block (the first acquisition was excluded to account for the hemodynamic lag). 
Pilot analyses showed similar response estimates from a more traditional GLM. These signal-
averaged responses were converted to percent signal change (PSC) by subtracting and dividing 
by each voxel’s response to the blocks of silence. These PSC values were then downsampled 
from the surface space to a 2mm isotropic grid on the FreeSurfer-flattened cortical sheet. For 
summary maps, we registered each participant’s surface to Freesurfer’s fsaverage template. 
 

Voxel selection 
For individual participant analyses, we used the same voxel selection criterion as Kell et al., 
(2018), selecting voxels with a consistent response to sounds from a large anatomical constraint 
region encompassing the superior temporal and posterior parietal cortex. Specifically, we used 
two criteria: (1) a significant response to sounds compared with silence (p < 0.001, uncorrected); 
and (2) a reliable response to the pattern of 165 sounds across scans. The reliability measure 
was as follows: 
 

𝑟 = 1 −
‖𝐯)' 	− 	proj𝐯*𝐯)'‖'

‖𝐯)'‖'
 

 

proj𝐯*𝐯)' = ;
𝐯* ∙ 𝐯)'
‖𝐯*‖''

=𝐯* 

 
where 𝐯)' is the response of a single voxel to the 165 sounds averaged across the first two scans 
(a vector), and 𝐯* is that same voxel’s response measured in the third. The numerator in the 
second term in the first equation is the magnitude of the residual left in 𝐯)'  after projecting out 
the response shared with 𝐯*. This ‘‘residual magnitude’’ is divided by its maximum possible value 
(the magnitude of 𝐯)'). The measure is bounded between 0 and 1, but differs from a correlation 
in assigning high values to voxels with a consistent response to the sound set, even if the 
response does not vary substantially across sounds. We found that using a more traditional 
correlation-based reliability measure excluded many voxels in primary auditory cortex because 
some of them exhibit only modest response variation across natural sounds. We included voxels 
with a value of this modified reliability measure of 0.3 or higher, which when combined with the 
sound responsive t test yielded a total of 7694 voxels across the eight participants (mean number 
of voxels per participant: 961.75; range: 637-1221).  

fMRI data (B2021) 

fMRI cortical responses to natural sounds 
The fMRI data analyzed here is from Boebinger et al., (2021)33. Twenty participants (fourteen 
female, mean age: 25 years, range: 18-34; all right-handed) completed three scanning sessions 
(each ~2 hours). Half of these participants (n=10) were highly-trained musicians, with an average 
of 16.3 years of formal training (ranging from 11-23 years, SD = 2.5) that began before the age 
of seven99 and continued until the time of scanning. The other half of the participants (n=10) were 
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non-musicians with less than two years of total music training, which could not have occurred 
either before the age of seven or within the five years preceding the time of scanning. All 
participants provided informed consent, and the Massachusetts Institute of Technology 
Committee on the Use of Humans as Experimental Subjects approved experiments. 

Natural sound stimuli 
The stimuli consisted of the set of 165 two-second natural sounds from Norman-Haignere et al., 
(2015), as well as 27 additional music and drumming clips from a variety of musical cultures, for 
a total of 192 sounds. For consistency with the Norman-Haignere et al., (2015) data set, we 
constrained our analyses to the same set of 165 sounds. 
 

fMRI scanning procedure 
The fMRI scanning procedure was similar to the design of Norman-Haignere et al., (2015), except 
for the following minor differences. Each stimulus block consisted of three repetitions of an 
identical two-second sound clip, and lasted 10.2 s (three repetitions of a 3.4 s TR). Each of the 
three scanning sessions consisted of sixteen runs (for a total of 48 functional runs per participant), 
with each run containing twenty-four stimulus blocks and five silent blocks of equal duration that 
were evenly distributed throughout the run. The shorter stimulus blocks used in this experiment 
allowed each stimulus to be presented six times throughout the course of the 48 runs. To 
encourage participants to attend equally to each sound, participants performed a sound intensity 
discrimination task. In each block, either the second or third repetition was 12 dB lower, and 
participants were instructed to press a button when they heard the quieter sound. 

fMRI data acquisition 
The data acquisition parameters were similar to those from Norman-Haignere et al., (2015), with 
a few minor differences. MR data were collected on a 3T Siemens Prisma scanner with a 32-
channel head coil at the Athinoula A. Martinos Imaging Center of the McGovern Institute for Brain 
Research at MIT. Each functional volume consisted of 48 slices oriented parallel to the superior 
temporal plane, covering the whole brain. However, all analyses were restricted to an anatomical 
mask encompassing the same portions of the temporal and parietal lobes as in Norman-Haignere 
et al., (2015). Repetition time (TR) was 3.4 s (TA = 1 s), echo time (TE) was 33 ms, and flip angle 
was 90 degrees. For each run, the four initial volumes were discarded to allow homogenization 
of the magnetic field. In-plane resolution was 2.1 x 2.1 mm (96 x 96 matrix), and slice thickness 
was 3 mm with a 10% gap, yielding a voxel size of 2.1 x 2.1 x 3.3 mm. An SMS acceleration factor 
of 4 was used in order to minimize acquisition time. T1-weighted anatomical images were 
collected in each participant (1mm isotropic voxels) for alignment and surface reconstruction. 

fMRI data preprocessing 
Preprocessing was identical to Norman-Haignere et al., (2015). However, the initial analyses of 
this data set differ from Norman-Haignere et al., (2015) in that a GLM was used to estimate voxel 
responses rather than signal averaging, which was necessary due to the use of shorter stimulus 
blocks that caused more overlap between BOLD responses to different stimuli. For each of the 
three scan sessions, we estimated the mean response of each voxel (in the surface space) by 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2022. ; https://doi.org/10.1101/2022.09.06.506680doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506680
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 

modeling each block as a boxcar function convolved with a canonical hemodynamic response 
function (HRF). The model also included six motion regressors and a first-order polynomial noise 
regressor to account for linear drift in the baseline signal. The resulting voxel beta weights were 
then downsampled from the surface space to a 2mm isotropic grid on the FreeSurfer-flattened 
cortical sheet. For summary maps, we registered each participant’s surface to Freesurfer’s 
fsaverage template. 

Voxel selection 
The process of selecting voxels was identical to Norman-Haignere et al., (2015), except that the 
reliability of voxel responses was determined by comparing the vectors of 192 beta weights 
estimated separately for the two halves of the data (v1 = first three repetitions from runs 1-24, v2 
= last three repetitions from runs 25-48). Voxels were selected using the following reliability 
measure: 
 

𝑟 = 1 −
‖𝐯)' 	− 	proj𝐯*𝐯)'‖''

‖𝐯)'‖'
 

 

proj𝐯*𝐯)' = ;
𝐯* ∙ 𝐯)'
‖𝐯*‖''

=𝐯* 

 
including voxels with a value of 0.3 or higher and further selecting only voxels with significant 
responses to sounds (p < 0.001, uncorrected). The combination of these two criteria yielded a 
total of 26,792 voxels across the twenty participants (mean number of voxels per participant: 
1,340; range: 1,020 – 1,828). 

Candidate models 
We investigated a set of n=19 candidate models. Nine of these models were trained by other labs 
for engineering purposes (“external”), and ten of these models were trained by us (“in-house”). 
Table 1 and Table 2 below show an overview of the nine external models and ten in-house 
models, respectively. For completeness, the SpectroTemporal baseline model is included in Table 
2 along the in-house models. Details on model architectures and training can be found below the 
tables. 
 
 
Table 1. External model overview. 

Model name Brief description Model input Model output Training data 
set 

AST (Audio 
Spectrogram 
Transformer)100 

Transformer 
architecture for audio 
classification. 

Spectrogram AudioSet label 
(527) 

AudioSet 
(ImageNet 
pretraining)36,10

1 
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DCASE2020102 Recurrent network 
trained for automated 
audio captioning. 

Spectrogram Audio text 
captions (4,367) 

Clotho V1103 

DeepSpeech2104 Recurrent architecture 
for automatic speech 
recognition. 

Spectrogram Characters (29) LibriSpeech105 

MetricGAN106 Generative adversarial 
network for speech 
enhancement. 

Spectrogram Voice-enhanced 
audio 

VoiceBank-
DEMAND107 

S2T (Speech-to-
Text)108 

Transformer 
architecture for 
automatic speech 
recognition and 
speech-to-text 
translation. 

Spectrogram Words (10,000) LibriSpeech105 

SepFormer 
(Separation 
Transformer)109 

Transformer 
architecture for 
speech separation. 

Waveform Source-
separated audio  

WHAMR!110 

VGGish111 Convolutional 
architecture for audio 
classification. 

Spectrogram Video label 
(30,871) 

YouTube-
100M111 

VQ-VAE 
(ZeroSpeech2020
)112 

Convolutional encoder 
architecture for 
speech synthesis in a 
target speaker’s voice. 

Spectrogram Audio in target 
speaker’s voice 

ZeroSpeech 
2019 training 
data set113 

Wav2vec2114 Transformer 
architecture for 
automatic speech 
recognition. 

Waveform Characters (32) LibriSpeech105 

 
 
 
Table 2. In-house model overview. 

Model name Brief description Model input Model output Training data 
set 

CochCNN9 Word Convolutional 
architecture for word 
recognition 

Cochleagram Word label (794) Word-
Speaker-Noise 
data set35 

CochCNN9 
Speaker 

Convolutional 
architecture for 

Cochleagram Speaker label 
(433) 

Word-
Speaker-Noise 
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speaker recognition data set35 

CochCNN9 
AudioSet 

Convolutional 
architecture for 
environmental sound 
classification 
(AudioSet) 

Cochleagram AudioSet label 
(517) 

Word-
Speaker-Noise 
data set35 

CochCNN9 Multi-
task 

Convolutional 
architecture for word 
recognition, speaker 
recognition, and 
environmental sound 
classification 
(AudioSet) 

Cochleagram Three output 
layers: Word 
label (794), 
Speaker label 
(433), AudioSet 
label (517) 

Word-
Speaker-Noise 
data set35 

CochCNN9 
Genre 

Convolutional 
architecture for music 
genre classification 

Cochleagram Genre label (41) Genre task 
using 
MusicBrainz 
data17 

CochResNet50 
Word 

Convolutional 
architecture for word 
recognition 

Cochleagram Word label (794) Word-
Speaker-Noise 
data set35 

CochResNet50 
Speaker 

Convolutional 
architecture for 
speaker recognition 

Cochleagram Speaker label 
(433) 

Word-
Speaker-Noise 
data set35 

CochResNet50 
AudioSet 

Convolutional 
architecture for 
environmental sound 
classification 
(AudioSet) 

Cochleagram AudioSet label 
(517) 

Word-
Speaker-Noise 
data set35 

CochResNet50 
Multi-task 

Convolutional 
architecture for word 
recognition, speaker 
recognition, and 
environmental sound 
classification 
(AudioSet) 

Cochleagram Three output 
layers: Word 
label (794), 
Speaker label 
(433), AudioSet 
label (517) 

Word-
Speaker-Noise 
data set35 

CochResNet50 
Genre 

Convolutional 
architecture for music 
genre classification 

Cochleagram Genre label (41) Genre task 
using 
MusicBrainz 
data17 

SpectroTemporal  Linear filterbank with 
spectral and temporal 
modulations 

Cochleagram Spectrotemporal 
embedding 
space  

(None) 
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External models 
Nine external models implemented in PyTorch were obtained from publicly available repositories. 
To accommodate the required dependencies, a separate software environment was created to 
run each model, and the versions of Python, PyTorch, and TorchAudio are reported separately 
for each model.  

AST 
Audio Spectrogram Transformer (AST) is an attention-based, convolution-free transformer 
architecture for audio classification.  
We used the pretrained model available by Yuan Gong and colleagues as described in Gong et 
al., (2021)100. Specifically, we used the model that was pre-trained on ImageNet101 using a vision 
transformer architecture (data-efficient image Transformer (DeiT)115) and afterwards trained on 
AudioSet36 (the best single model checkpoint which consisted of a model where all weights were 
averaged across model checkpoints from the first to last training epoch, model name: “Full 
AudioSet, 10 tstride, 10 fstride, with Weight Averaging (0.459 mAP)” 
(https://github.com/YuanGongND/ast). 
 
AST is composed of an initial embedding layer followed by 12 multi-level encoder blocks that 
match the transformer architecture116,117. Model activations were extracted at the output of each 
transformer encoder block. In addition to model activations from the transformer blocks, we 
extracted the initial embeddings that are fed to the model, as well as the final logits over AudioSet 
classes, yielding 14 layers in total.  
 
As described in Gong et al., (2021), the audio input to AST is the raw audio waveform that is 
converted into a sequence of 128 log-mel filterbank features computed with 25 ms Hamming 
windows every 10 ms. As the model was trained on AudioSet, the input size to the model was 
10.24s (1024 time frames). The model implementation zero-padded any input less than this 
length. Thus, the spectrogram was of size [1024, 128] ([n_temporal, n_spectral]), which in our 
analyses resulted from a zero-padded 2s audio clip. The spectrogram was normalized by 
subtracting the average value measured from the training data set spectrograms (in this case, 
AudioSet), and dividing by two times the training data set spectrogram standard deviation. The 
spectrogram was split into a sequence of 101 16x16 patches (see Gong et al., (2021) for details 
on the patch embedding procedure) with an overlap of 6 in both time and frequency (i.e., stride 
(10,10)). These patches were projected into an embedding of size 768 (“the patch embedding 
layer”) using the single convolutional layers as specified under “Architecture” in Gong et al., 
(2021). Two classification tokens were prepended to the embedding, which was then passed 
through 12 transformer encoder blocks. AST was trained on the full AudioSet data set (consisting 
of the official balanced and full training set, i.e., around 2M segments) using cross-entropy. The 
final layer was a linear classification layer over 527 audio labels.  
 
Architecture 
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The AST architecture is denoted below with the sizes of the tensors propagated through the 
network denoted in parentheses. Encoder refers to each transformer encoding block. Model 
stages that were used for voxel and component response modeling are denoted in bold.  
 
Input         (1024,128) 

Embedding: Conv2d(1, 768, kernel_size=(16, 16), stride=(10, 10)) (12, 101, 768) 
Encoder_1        (1214, 768) 
Encoder_2        (1214, 768) 
Encoder_3         (1214, 768) 
Encoder_4        (1214, 768) 
Encoder_5         (1214, 768) 
Encoder_6         (1214, 768) 
Encoder_7         (1214, 768) 
Encoder_8         (1214, 768) 
Encoder_9        (1214, 768) 
Encoder_10        (1214, 768) 
Encoder_11        (1214, 768) 
Encoder_12        (1214, 768) 
Linear_1(in_features=768, out_features=527, bias=True) (1, 527) 

 
 
For AST, we thus extracted model representations from the following 14 layers with the number 
of unit activations (regressors) for each sound denoted in parentheses: Embedding (768), 
Encoder_1 (768), Encoder_2 (768), Encoder_3 (768), Encoder_4 (768), Encoder_5 (768), 
Encoder_6 (768), Encoder_7 (768), Encoder_8 (768), Encoder_9 (768), Encoder_10 (768), 
Encoder_11 (768), Encoder_12 (768), Linear_1 (527). 
 
Extractions were performed using torch=1.8.1, torchaudio=0.8.1 in Python 3.8.11. 
 

DCASE2020 baseline 
The DCASE2020 baseline model (henceforth DCASE2020) is recurrent architecture trained for 
automated audio captioning102, where the model accepts audio as input and outputs the textual 
description (i.e., the caption) of that signal. We used the pre-trained model implemented by 
Konstantinos Drossos and collaborators (https://github.com/audio-captioning/dcase-2020-
baseline). 
 
The input to the model is a log-mel spectrogram (audio was peak-normalized prior to spectrogram 
conversion, i.e., divided by the maximum value of the absolute value of the audio signal) with 64 
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frequency bins resulting from a short-time Fourier transform applying 23 ms windows (window 
size) every 11.5 ms (stride). This yields log spectrogram patches of 173 x 64 bins that are the 
inputs to the model, i.e., a 2D array [n_temporal, n_spectral]. These spectrograms are passed 
through a 3-layer bi-directional GRU encoder and a one bi-directional layer GRU decoder with a 
linear readout. There are residual connections between the second and third encoder GRUs. The 
linear readout is a linear projection into C classes representing the 4367 one-hot encoding of 
unique caption words. The decoder iterates for 22 time steps. 
 
DCASE2020 was trained using cross-entropy loss on the development split of Clotho v1103 which 
consists of 2893 audio clips with 14465 captions. The audio samples are of 15 to 30 seconds 
duration, each audio sample having five captions of length 8-20 words. 
 
Architecture 
The DCASE2020 architecture is denoted below with the sizes of the tensors propagated through 
the network denoted in parentheses. Model stages that were used for voxel and component 
response modeling are denoted in bold. The two outputs of bidirectional recurrent stages were 
concatenated (i.e., treated as different features). 
 
Input           (173,64) 

Dropout(p=0.25)  

GRU_1(input_size=64, output_size=256, bidirectional=True)   (2,256) 
GRU_2(input_size=512, output_size=256, bidirectional=True)   (2,256) 
GRU_3(input_size=512, output_size=256, bidirectional=True)   (2,256) 
Dropout(p=0.25)  

GRU_4(input_size=512, output_size=256, bidirectional=False)   (1,256) 
Linear_1(in_features=256, out_features=4367)   (22, 4367) 

 
Thus, for DCASE, we extracted model representations from the following 5 layers with the number 
of unit activations (regressors) for each sound denoted in parentheses: GRU_1 (512), GRU_2 
(512), GRU_3 (512), GRU_4 (256), Linear_1 (4367).   
 
Extractions were performed using torch=1.3.1 in Python 3.7.10. 
 

DeepSpeech2 
DeepSpeech2 is a recurrent architecture for automatic speech recognition104. We used the pre-
trained PyTorch model by Sean Naren and collaborators 
(https://github.com/SeanNaren/deepspeech.pytorch). 
 
As described by Amodei et al., (2016)104, the input to the model is a log-spectrogram with 161 
frequency bins resulting from a short-time Fourier transform applying 20 ms windows (window 
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size) every 10 ms (stride). This yields log spectrogram patches of 201 x 161 bins that are the 
inputs to the model, i.e., a 2D array [n_temporal, n_spectral]. Each spectrogram was normalized 
by subtracting the mean spectrogram value and dividing by the standard deviation. These 
spectrograms were transformed by two 2D convolutional layers followed by five bidirectional 
recurrent Long Short-Term Memory (LSTM) layers and ending in a fully connected layer. The fully 
connected layer is a linear projection into C classes representing the vocabulary of the task. The 
vocabulary consists of 29 classes (output features), corresponding to English characters and 
space, apostrophe, blank. DeepSpeech2 was trained using a CTC loss on the Librispeech 
corpus105 (960hrs).  
 
Architecture 
The DeepSpeech2 architecture is denoted below with the sizes of the tensors propagated through 
the network denoted in parentheses. Model stages that were used for voxel and component 
response modeling are denoted in bold. The two outputs of bidirectional recurrent stages (using 
the LSTM output cell states) were concatenated (i.e., treated as different features).  
 
Input      (201, 161) 

Conv2d_1(in_channels=1, out_channels=32, kernel_size=(41,11), 

stride=(2,2), padding=(20,5))    

(32, 81, 101) 

BatchNorm2d_1(num_features=32)   (32, 81, 101) 

HardTanh_1(min_val=0, max_val=20)     (32, 81, 101) 
Conv2d_2(in_channels=32, out_channels=32, kernel_size=(21,11), 

stride=(2,1), padding=(10,5))  

(32, 41, 101) 

BatchNorm2d_2(num_features=32)                                   (32, 41, 101) 

HardTanh_2(min_val=0, max_val=20) (32, 41, 101) 
LSTM_1(input_size=1312, hidden_size=1024, bidirectional=True) (2, 1024) 
SequenceWise BatchNorm1d_1(num_features=1024) (101, 1024) 

LSTM_2(input_size=1024, hidden_size=1024, bidirectional=True) (2, 1024) 
SequenceWise BatchNorm1d_2(num_features=1024)  (101, 1024) 

LSTM_3(input_size=1024, hidden_size=1024, bidirectional=True) (2, 1024) 
SequenceWise BatchNorm1d_3(num_features=1024)  (101, 1024) 

LSTM_4(input_size=1024, hidden_size=1024, bidirectional=True) (2, 1024) 
SequenceWise BatchNorm1d_4(num_features=1024) (101, 1024) 

LSTM_5(input_size=1024, hidden_size=1024, bidirectional=True) (2, 1024) 
BatchNorm1d_5(num_features=1024)  (101, 1024) 

Linear_1(in_features=1024, out_features=29  (101, 29) 
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Thus, for DeepSpeech2, we extracted model representations from the following 8 layers with the 
number of unit activations (regressors) for each sound denoted in parentheses: HardTanh_1 
(2,592), HardTanh_2 (1,312), LSTM_1 (2,048), LSTM_2 (2,048), LSTM_3 (2,048), LSTM_4 
(2,048), LSTM_5 (2,048), Linear_1 (29). 
 
Extractions were performed using torch=1.7.1, torchaudio=0.7.2 in Python 3.6.13. 
 

MetricGAN 
MetricGAN+ (henceforth MetricGAN) is a generative adversarial network (GAN) for speech 
enhancement. We used the pretrained model available by SpeechBrain118 (hosted by 
HuggingFace) as described in Fu et al., (2021)106. Specifically, we used a model that was pre-
trained on the Voicebank-DEMAND data set107 (training files: 20,000 (58.03hr) + validation files: 
5,000 (14.65hr)) (https://huggingface.co/speechbrain/metricgan-plus-voicebank). 
 
The generator of MetricGAN is a Bidrectional Long Short-Term Memory (BLSTM) with two 
bidirectional LSTM layers followed by two fully-connected layers. The objective of the generator 
is to estimate a mask consisting of the noise in the signal in order to generate clean speech. The 
discriminator of MetricGAN consists of a convolutional architecture (not investigated here).  
 
As described in Fu et al., (2021), the audio input to the model is the magnitude spectrogram 
resulting from a short-time Fourier transform applying 32 ms (window size) windows every 16 ms 
(stride) resulting in 256 power frequency bins. This yields magnitude spectrogram patches of 126 
x 256 bins that are the inputs to the model, i.e., a 2D array [n_temporal, n_spectral] that are 
passed through the BLSTM and linear layers of the generator model. 
 
Architecture 
The MetricGAN architecture is denoted below with the sizes of the tensors propagated through 
the network denoted in parentheses. Model stages that were used for voxel and component 
response modeling are denoted in bold. The two outputs of bidirectional recurrent stages (using 
the LSTM output cell states) were concatenated (i.e., treated as different features). 
 
Input        (126, 257) 
LSTM_1(input_size=257, hidden_size=200, bidirectional=True) (2, 200) 
LSTM_2(input_size=257, hidden_size=200, bidirectional=True)   (2, 200) 
Linear_1(in_features=400, out_features=300, bias=True)   (126, 300) 

LeakyReLU_1        (126, 300) 
Linear_2(in_features=300, out_features=257, bias=True)   (126, 257) 
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For MetricGAN, we thus extracted model representations from the following 4 layers with the 
number of unit activations (regressors) for each sound denoted in parentheses: LSTM_1 (400), 
LSTM_2 (400), LeakyReLU_1 (300), Linear_2 (257). 
 
Extractions were performed using torch=1.9.1, speechbrain=0.5.10, huggingface-hub=0.0.17 in 
Python 3.8.11. 
 

S2T 
S2T (also known as Speech-to-Text) is an attention-based transformer architecture for automatic 
speech recognition (ASR) and speech-to-text translation (ST). We used the pre-trained model 
available by HuggingFace119 as described in Wang et al., (2020)108. Specifically, we used the 
large model trained on Librispeech corpus105 (960hrs) (https://huggingface.co/facebook/s2t-large-
librispeech-asr). 
 
S2T is an encoder-decoder model. The encoder part is composed of two convolutional layers 
followed by 12 multi-level encoder blocks that match the transformer architecture116,117. Model 
activations were extracted at the output of each transformer encoder block. In addition to model 
activations from the transformer blocks, we extracted the initial embeddings that were fed to the 
model, yielding 13 layers in total. We did not investigate the decoder part of the model. 
 
As described by Wang et al., (2020), the audio input to S2T is a log-mel spectrogram with 80 mel-
spaced frequency bins resulting from a short-time Fourier transform applying 25 ms windows 
every 10 ms. Each spectrogram was normalized by subtracting the mean value of the 
spectrogram and dividing by the standard deviation. This yields the log-mel spectrogram of 198 x 
80 bins that are the inputs to the model, i.e., a 2D array [n_temporal, n_spectral]. The spectrogram 
is passed through two convolutional layers before it is then passed through the 12 transformer 
encoder blocks. S2T was trained using cross-entropy loss, and the output consists of the 10K 
unigram vocabulary from SentencePiece120. 
 
Architecture 
The S2T architecture is denoted below with the sizes of the tensors propagated through the 
network denoted in parentheses (which is determined by the total stride in the initial feature 
encoder part of the architecture; not investigated here). Encoder refers to each transformer 
encoding block. Model stages that were used for voxel and component response modeling are 
denoted in bold. 
 
Input         (198, 80) 

Embedding / input post feature encoder    (50, 1024) 
Encoder_1       (50, 1024) 
Encoder_2         (50, 1024) 
Encoder_3         (50, 1024) 
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Encoder_4      (50, 1024) 
Encoder_5   (50, 1024) 
Encoder_6   (50, 1024) 
Encoder_7       (50, 1024) 
Encoder_8      (50, 1024) 
Encoder_9      (50, 1024) 
Encoder_10         (50, 1024) 
Encoder_11      (50, 1024) 
Encoder_12      (50, 1024) 

 
 
Thus, for S2T, we extracted model representations from the following 13 layers with the number 
of unit activations (regressors) for each sound denoted in parentheses: Embedding (1024), 
Encoder_1 (1024), Encoder_2 (1024), Encoder_3 (1024), Encoder_4 (1024), Encoder_5 (1024), 
Encoder_6 (1024), Encoder_7 (1024), Encoder_8 (1024), Encoder_9 (1024), Encoder_10 (1024), 
Encoder_11 (1024), Encoder_12 (1024). 
 
Extractions were performed using transformers=4.10.0, torch=1.9.0, huggingface-hub=0.0.16 in 
Python 3.8.11. 
 

SepFormer 
SepFormer (also known as Separation Transformer) is an attention-based transformer 
architecture for speech separation. We used the pretrained model available by SpeechBrain118 
(hosted by HuggingFace) as described in Subakan et al., (2021)109. Specifically, we used a model 
that was pre-trained on the WHAMR! data set110 (training files: 20,000 (58.03hr) + validation files: 
5,000 (14.65hr)) (https://huggingface.co/speechbrain/sepformer-whamr). 
 
SepFormer is composed of an initial encoder followed by 32 multi-level dual-path encoder blocks 
similar to the transformer architecture116,117. followed by a decoder. The transformer blocks follow 
a dual-path framework consisting of transformer blocks that model the short-term dependencies 
(IntraTransformer, IntraT), and Transformer blocks that model longer-term dependencies 
(InterTransformer, InterT). There are respectively 8 such IntraT and InterT blocks, yielding 16 
transformer blocks, which is then repeated twice, yielding 32 transformer blocks in total. The 
objective of the dual-path transformer architecture is to estimate optimal masks to separate the 
audio sources present in the audio mixtures. The model was trained using scale-invariant source-
to-noise ratio (SI-SNR) loss. 
 
As described in Subakan et al., (2021), the audio input to AST is the raw audio waveform that is 
transformed by a single convolutional layer (encoder) followed by chunking the temporal 
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dimension into patches of size 250. These chunks were then passed through the 32 transformer 
encoder blocks.  
Model activations were extracted at the output of each transformer encoder block. In addition to 
model activations from the transformer blocks, we extracted the initial encoder embeddings that 
are fed to the model, yielding 33 layers in total.  
 
Architecture 
The SepFormer architecture is denoted below with the sizes of the tensors propagated through 
the network denoted in parentheses. Encoder refers to each transformer encoding block. Model 
stages that were used for voxel and component response modeling are denoted in bold. 
 
 
Input       (1, 16000) 

Embedding: Conv1d(1, 256, kernel_size=(16,), stride=(8,), bias=False) (256, 1999) 

ReLU_1()        (256, 1999) 
Conv1d(256, 256, kernel_size=(1,), stride=(1,), bias=False)   (256, 1999) 

Encoder_1          (18, 250, 256) 
Encoder_2        (18, 250, 256) 
… … 
Encoder_31        (18, 250, 256) 
Encoder_32        (18, 250, 256) 

 
 
For SepFormer, we thus extracted model representations from the following 33 layers with the 
number of unit activations (regressors) for each sound denoted in parentheses: Embedding (after 
ReLU) (256), Encoder_1 (256), Encoder_2 (256), …, Encoder_31 (256), Encoder_32 (256). 
 
Extractions were performed using torch=1.9.1, speechbrain=0.5.10, huggingface-hub=0.0.17 in 
Python 3.8.11. 
 

VGGish 
VGGish is a convolutional architecture for audio classification inspired by the VGG model for 
image recognition121. VGGish converts audio input features into a semantically meaningful, 128-
dimensional embedding. We used the pretrained VGGish by Hershey et al., (2017)111 
(https://github.com/tensorflow/models/tree/master/research/audioset, specifically the PyTorch-
compatible port by Harri Taylor and collaborators as found here: 
https://github.com/harritaylor/torchvggish).  
 
VGGish was trained on the YouTube-100M corpus (70M training videos, 5.24 million hours with 
30,871 labels)111. The videos average 4.6 minutes and are (machine) labeled with 5 labels on 
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average per video from the set of 30,871 labels. The model was trained to predict the video-level 
labels based on audio information using a cross-entropy loss function. As described by Hershey 
et al., (2017), the audio input consists of 960 ms audio frames that are decomposed with a short-
time Fourier transform applying 25 ms (window size) windows every 10 ms (stride) resulting in 64 
log mel-spaced frequency bins. This yields log-mel spectrogram patches of 96 x 64 bins that are 
the inputs to the model, i.e., a 3D array [n_frames, n_temporal, n_spectral]. Given that VGGish 
contained an additional temporal dimension (the n_frames dimension), we averaged over both 
temporal dimensions (the n_temporal dimension which corresponds to the time dimension of the 
spectrogram as well as the n_frames dimension which corresponds to the batch dimension) to 
obtain a time-averaged model representation. 
 
Architecture 
The VGGish architecture is denoted below with the sizes of the tensors propagated through the 
network denoted in parentheses. Model stages that were used for voxel and component response 
modeling are denoted in bold. 
 
Input  (2, 96, 64) 

Conv2d_1(in_channels=1, out_channels=64, kernel_size=(3,3), stride=(1,1), 

padding=(1,1)) 

(2, 64, 96, 64) 

ReLU_1()     (2, 64, 96, 64) 
MaxPool2d_1(kernel_size=2, stride=2, padding=0) (2, 64, 48, 32) 
Conv2d_2(in_channels=64, out_channels=128, kernel_size=(3,3), 

stride=(1,1), padding=(1,1)   

(2, 128, 48, 32) 

ReLU_2()   (2, 128, 48, 32) 
MaxPool2d_2(kernel_size=2, stride=2, padding=0) (2, 128, 24, 16) 
Conv2d_3(in_channels=128, out_channels=256, kernel_size=(3,3), 

stride=(1,1), padding=(1,1)) 

(2, 256, 24, 16) 

ReLU_3()   (2, 256, 24, 16) 
Conv2d_4(in_channels=256, out_channels=256, kernel_size=(3,3), 

stride=(1,1), padding=(1,1)  

(2, 256, 24, 16) 

ReLU_4()   (2, 256, 24, 16) 
MaxPool2d_4(kernel_size=2, stride=2, padding=0) (2, 256, 12, 8) 
Conv2d_5(in_channels=256, out_channels=512, kernel_size=(3,3), 

stride=(1,1), padding=(1,1))  

(2, 512, 12, 8) 

ReLU_5()    (2, 512, 12, 8) 
Conv2d_6(in_channels=512, out_channels=512, kernel_size=(3,3), 

stride=(1,1), padding=(1,1))   

(2, 512, 12, 8) 
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ReLU_6()                                (2, 512, 12, 8) 
MaxPool2d_6(kernel_size=2, stride=2, padding=0)  (2, 512, 6, 4) 
Linear_1(in_features=12288, out_features=4096)  (2, 4096) 

ReLU_7()      (2, 4096) 
Linear_2(in_features=4096, out_features=4096) (2, 4096) 

ReLU_8()  (2, 4096) 
Linear_3(in_features=4096, out_features=128)   (2, 128) 

ReLU_9()   (2, 128) 
 
 
Thus, for VGGish, we extracted model representations from the following 13 layers with the 
number of unit activations (regressors) for each sound denoted in parentheses: ReLU_1 (4,096), 
MaxPool2d_1 (2,048), ReLU_2 (4,096), MaxPool2d_2 (2,048), ReLU_3 (4,096), ReLU_4 (4,096), 
MaxPool2d_3 (2,048), ReLU_5 (4,096), ReLU_6 (4,096), MaxPool2d_4 (2,048), ReLU_7 (4,096), 
ReLU_8 (4,096), ReLU_9 (128). 
 
Extractions were performed using torch=1.8.0 and torchaudio=0.8.1 in Python 3.8.5. 
 

VQ-VAE (ZeroSpeech2020) 
Vector-quantized variational autoencoder (henceforth VQ-VAE) is an encoder-decoder 
architecture trained to synthesize speech in a target speaker’s voice. The model was trained for 
the ZeroSpeech 2020 challenge122. We used the pretrained model by Benjamin van Niekerk and 
colleagues as described in Niekerk et al., (2020)112 (https://github.com/bshall/ZeroSpeech). 
 
VQ-VAE consists of a CNN-based encoder and an RNN-based decoder. The encoder encodes 
the audio spectrogram and the decoder produces the new sound waveform. The model maps 
speech into a discrete latent space before reconstructing the original waveform.  
 
As described by Niekerk et al., (2020), the input to VQ-VAE is the log-mel spectrogram (audio 
was peak-normalized prior to spectrogram conversion by dividing by the maximum of the absolute 
value of the audio signal, and this signal was multiplied by 0.999) with 80 mel-spaced frequency 
bins resulting from a short-time Fourier transform applying 25 ms windows every 10 ms. This 
yields the log-mel spectrogram of 201 x 80 bins that are the inputs to the model, i.e., a 2D array 
[n_temporal, n_spectral]. These spectrograms were transformed by five 1D convolutional layers. 
The model was trained to maximize the log-likelihood of the waveform given the discretized latent 
space bottleneck (details in Niekerk et al., (2020)). The model was trained on the ZeroSpeech 
2019 English data set consisting of the Train Voice Dataset (4h40min) and the Train Unit Dataset 
(15h40min)113. To extract model activations, the audio samples were converted to the first 
encountered speaker ID on the available speaker ID list (“S015”). 
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Architecture 
The VQ-VAE encoder architecture is denoted below with the sizes of the tensors propagated 
through the network denoted in parentheses. We did not investigate the decoder part of VQ-VAE. 
Model stages that were used for voxel and component response modeling are denoted in bold. 
 
Input     (80,201) 

Conv1d_1(80, 768, kernel_size=(3,), stride=(1,), bias=False) (768,199) 

BatchNorm1d_1(768, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(768,199) 

ReLU_1()       (768,199) 
Conv1d(768, 768, kernel_size=(3,), stride=(1,), padding=(1,), bias=False) (768,199) 

BatchNorm1d(768, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(768,199) 

ReLU_2()        (768,199) 
Conv1d(768, 768, kernel_size=(4,), stride=(2,), padding=(1,), bias=False) (768,99) 

BatchNorm1d(768, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(768,99) 

ReLU_3()        (768,99) 
Conv1d(768, 768, kernel_size=(3,), stride=(1,), padding=(1,), bias=False) (768,99) 

BatchNorm1d(768, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(768,99) 

ReLU_4()       (768,99) 
Conv1d(768, 768, kernel_size=(3,), stride=(1,), padding=(1,), bias=False) (768,99) 

BatchNorm1d(768, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(768,99) 

ReLU_5()         (768,99) 
 
 
Thus, for VQ-VAE, we extracted model representations from the following 5 layers with the 
number of unit activations (regressors) for each sound denoted in parentheses: ReLU_1 (768), 
ReLU_2 (768), ReLU_3 (768), ReLU_4 (768), ReLU_5 (768). 
 
Extractions were performed using torch=1.9.0 in Python 3.8.11. 
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Wav2vec 2.0 
Wav2vec 2.0 (henceforth Wav2vec2) is a self-supervised transformer architecture for automatic 
speech recognition that learns representations of speech from masked parts of raw audio. We 
used the pretrained model from Huggingface Transformers119; original model can be found here:  
https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec#wav2vec-20). 
Specifically, we used the base version trained and fine-tuned on the Librispeech corpus105 
(960hrs) (https://huggingface.co/facebook/wav2vec2-base-960h). 
 
Wav2vec2 is composed of an initial multi-layer convolutional feature encoder followed by 12 multi-
level encoder blocks that match the transformer architecture116,117. Model activations were 
extracted at the output of each transformer encoder block. In addition to model activations from 
the transformer blocks, we extracted the initial embeddings that are fed to the model, as well as 
the final logits over character tokens, yielding 14 layers in total. 
 
As described by Baevski et al., (2020)114 the audio input to Wav2vec2 is a sound waveform of 
zero mean and unit variance. Wav2vec2 is trained via a contrastive task where the true speech 
input is masked in a latent space and has to be distinguished from distractors. The contrastive 
loss is augmented by a diversity loss to encourage the model to use samples equally often. The 
pre-trained model is fine-tuned for speech recognition by adding a linear projection on top of the 
network into C classes representing the vocabulary of the task by minimizing a CTC loss123. The 
vocabulary consists of 32 classes (output features), corresponding to English characters + 
bos_token='<s>', eos_token='</s>', unk_token='<unk>', pad_token='<pad>', 
word_delimiter_token='|'.  
 
Architecture 
The Wav2vec2 architecture is denoted below with the sizes of the tensors propagated through 
the network denoted in parentheses (which is determined by the total stride in the initial feature 
encoder part of the architecture; not investigated here). Encoder refers to each transformer 
encoding block. Model stages that were used for voxel and component response modeling are 
denoted in bold. 
 
Input         (32000) 

Embedding / input post feature encoder     (99, 768) 
Encoder_1       (99, 768) 
Encoder_2        (99, 768) 
Encoder_3         (99, 768) 
Encoder_4       (99, 768) 
Encoder_5  (99, 768) 
Encoder_6      (99, 768) 
Encoder_7       (99, 768) 
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Encoder_8     (99, 768) 
Encoder_9    (99, 768) 
Encoder_10    (99, 768) 
Encoder_11     (99, 768) 
Encoder_12      (99, 768) 
Linear_1   (99, 768) 

 
 
For Wav2vec2, we thus extracted model representations from the following 14 layers with the 
number of unit activations (regressors) for each sound denoted in parentheses: Embedding (768), 
Encoder_1 (768), Encoder_2 (768), Encoder_3 (768), Encoder_4 (768), Encoder_5 (768), 
Encoder_6 (768), Encoder_7 (768), Encoder_8 (768), Encoder_9 (768), Encoder_10 (768), 
Encoder_11 (768), Encoder_12 (768), Linear_1 (32).  
 
Extractions were performed using transformers=4.5.0, torch=1.8.1 in Python 3.8.8. 
 
 

In-house models 
The in-house models consisted of a fixed cochleagram stage followed by either a convolutional 
architecture similar to that used in Kell et al., (2018) or a ResNet50 architecture. We refer to the 
full model architectures as CochCNN9 (indicating the 9 stages of this model) and CochResNet50. 
The models were trained either on the Word-Speaker-Noise data set35, which supports three 
different tasks (word, speaker and environmental sound recognition), or the musical genre data 
set compiled in Kell et al., (2018). In house models were trained and evaluated with Python 3.8.2 
and PyTorch 1.5.0.  
 

Cochleagram inputs 
The SpectroTemporal model and all CochResNet50 and CochCNN9 architectures had a 
cochleagram representation as the input to the model. A cochleagram is a time-frequency 
representation of the audio with frequency bandwidth and spacing that mimics the human ear, 
followed by a compressive nonlinearity124,125. The audio waveform passes through a bank of 211 
bandpass filters ranging from 50Hz to 10kHz. Audio was sampled at 20kHz for the 
SpectroTemporal and the Word-Speaker-Noise task models, and was sampled at 16kHz for the 
genre task models. Filters are zero-phase with frequency response equal to the positive portion 
of a single period of a cosine function. Filter spacing was set by the Equivalent Rectangular 
Bandwidth (ERB N) scale. Filters perfectly tile the spectrum such that the summed square 
response across all frequencies is flat, which includes four low-pass and four high-pass filters. 
The envelope was extracted from each filter subband using the magnitude of the analytic signal 
(Hilbert transform), and the envelopes were raised to the power of 0.3 to simulate basilar 
membrane compression. The resulting envelopes were lowpass filtered and downsampled to 
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200Hz, without any zero padding, resulting in a cochleagram representation of 211 frequency 
channels by 390 time points. This representation was the input to the auditory models. 
Cochleagram generation was implemented in PyTorch (code available: 
https://github.com/jenellefeather/chcochleagram).  
 

SpectroTemporal model 
For comparison to previous hand-engineered models of the auditory system we included a single 
layer SpectroTemporal model based on Chi et al., (2005)30. The main difference was that spectral 
filters were specified in cycles/erb (rather than cycles/octave) as the input signal to the model is 
a cochleagram with ERB-spaced filters. The model consists of a linear filter bank tuned to 
spectrotemporal modulations at different frequencies, spectral scales, and temporal rates. The 
different frequencies were implemented via applying the spectrotemporal filters as a 2D 
convolution with zero padding in frequency (800 samples) and time (211 samples). 
Spectrotemporal filters were constructed with center frequencies for the spectral modulations of 
[0.0625, 0.125, 0.25, 0.5, 1, 2] cycles/erb. Center frequencies for the temporal modulations 
consisted of [0.5, 1, 2, 4, 8, 16, 32, 64] and both upward and downward frequency modulations 
were included (resulting in 96 filters). An additional 6 purely spectral and 8 purely temporal 
modulation filters were included for a total of 110 modulation filters. To extract the power in each 
frequency band for each filter, we squared the output of each filter response at each time step 
and took the average across time for each frequency channel, similar to previous studies 17,61. 
These power measurements were used as the regressors for voxel and component modeling 
(23421 activations). 
 

CochCNN9 architecture 
The CochCNN9 architecture is based on the architecture in Kell et al., (2018) that emerged from 
a neural network architecture search. The architecture used here differed in that the input to the 
first layer of the network is maintained as the 211x390 size cochleagram rather than being 
reshaped to 256x256. The convolutional layer filters and pooling regions were adjusted from those 
of the Kell et al. architecture to maintain the same receptive field size in frequency and time given 
the altered input dimensions. The other difference was that the network here was trained with 
batch normalization rather than the local response normalization used in Kell et al., (2018).  Along 
with the CochResNet50, this architecture was used for task-optimization comparisons throughout 
the paper.  
 
The CochCNN9 architecture is denoted below with the sizes of the tensors propagated through 
the network denoted in parentheses. Model stages that were used for voxel and component 
response modeling are denoted in bold. 
 

Input (cochleagram) (1,211,390) 

BatchNorm2d_1 (1) (1,211,390) 
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Conv2d_1(1, 96, kernel_size = [7, 14], stride = [3, 3], padding = 'same') (96, 71, 130) 

ReLU_1 (96, 71, 130) 

MaxPool2d_1(kernel_size = [2,5] , stride = [2,2], padding = 'same') (96, 36, 65) 

BatchNorm2d_2(96) (96, 36, 65) 

Conv2d_2(96, 256, kernel_size = [4,8], stride = [2,2], padding = 'same') (256, 18, 33) 

ReLU_2 (256, 18, 33) 

MaxPool2d_2(kernel_size = [2,5] , stride = [2,2], padding = 'same') (256, 9, 17) 

BatchNorm2d_3 (256) (256, 9, 17) 

Conv2d_3 (512, kernel_size = [2,5], stride = [1,1], padding = 'same') (512, 9, 17) 

ReLU_3 (512, 9, 17) 

Conv2d_4 (1024, kernel_size = [2,5], stride = [1,1], padding = 'same') (1024, 9, 17) 

ReLU_4 (1024, 9, 17) 

Conv2d_5 (512, kernel_size = [2,5], stride = [1,1], padding = 'same') (512, 9, 17) 

ReLU_5 (512, 9, 17) 

AvgPool_1 (kernel_size = [2,5] , stride = [2,2], padding = 'same') (512, 5, 9) 

Linear_1 (4096) 

ReLU_6 (4096) 

Dropout_1 (p=0.5) (4096) 

Linear_2 (num_classes) 
 
where num_classes corresponds to the number of logits used for training each task (Table 1).  
 
Thus, for CochCNN9, we extracted model representations from the following 10 layers with the 
number of unit activations (regressors) for each sound denoted in parentheses:  
Cochleagram (211), ReLU_1 (6816), MaxPool2d_1 (3456), ReLU_2 (4608), MaxPool2d_2 
(2304),  ReLU_3 (4608), ReLU_4 (9216), ReLU_5 (4608), AvgPool_1 (2560), ReLU_6 (4096). 

CochResNet50 architecture 
The CochResNet50 model is composed of a ResNet50 backbone architecture applied to a 
cochleagram representation (with 2D convolutions applied to the cochleagram). Along with 
CochCNN9, this architecture was used for task-optimization comparisons throughout the paper.  
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The CochResNet50 architecture is denoted below with the sizes of the tensors propagated 
through the network denoted in parentheses. Model stages that were used for voxel and 
component response modeling are denoted in bold. 
 
The model architecture follows: 

Input (cochleagram) (1,211,390) 

Conv2d_1(1, 64, kernel_size=7, stride=2, padding=3, bias=False) (64, 106, 195) 

BatchNorm2d_1(64) (64, 106, 195) 

ReLU_1 (64, 106, 195) 

MaxPool2d_1(kernel_size=3, stride=2, padding=1) (64, 53, 98) 

ResNetBlock_1(inplanes=64, planes=64, num_blocks=3, stride=1) (256, 53, 98) 

ResNetBlock_2(inplanes=256, planes=128, num_blocks=4, stride=2) (512, 27, 49) 

ResNetBlock_3(inplanes=512, planes=256, num_blocks=6, stride=2) (1024, 14, 25) 

ResNetBlock_4(inplanes=1024, planes=512, num_blocks=3, stride=2) (2048, 7, 13) 

AvgPool_1 (2048, 1, 1) 

Linear_1 (num_classes) 

 
where num_classes corresponds to the number of logits used for training each task (Table 1) and 
the ResNetBlock components of the architecture have the following structure:  

1. input (x) 

2. 1x1 Conv2d(inplanes, planes, stride=1) 

3. BatchNorm2d(planes) 

4. ReLU  

5. 3x3 Conv2d (planes, planes, stride=1) 

6. BatchNorm2d(planes) 

7. ReLU 

8. 1x1 Conv2d (planes, planes * expansion, stride=1) 

9. BatchNorm2d(planes) 

10. Residual connection on x (if inplanes !=planes * expansion): 1x1 Conv2D 
(inplanes, planes * expansion, stride) 

11. Residual connection on x  (if inplanes !=planes * expansion):  
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BatchNorm2d(planes * expansion) 

12. Add output from (9) to output from (11) 

13. (Output) ReLU  
Multiple of these residual blocks (num_blocks) are stacked together to form a single ResNetBlock. 
The expansion factor was set to four for all layers (expansion=4).  
 
Thus, for CochResNet50, we extracted model representations from the following 8 layers with the 
number of unit activations (regressors) for each sound denoted in parentheses: 
Cochleagram (211), ReLU_1 (6784), MaxPool_1 (3392), ResNetBlock_1 (13568), 
ResNetBlock_2 (13824), ResNetBlock_3 (14336), ResNetBlock_4 (14336), AvgPool_1 (2048). 

Training data set for CochResNet50 and CochCNN9 models - Word-Speaker-Noise tasks 
Eight in-house models were trained on the Word-Speaker-Noise (WSN) data set. This data set 
was first presented in Feather et al., (2019)35 and was constructed from existing speech 
recognition and environmental sound classification data sets. The data set description that follows 
is reproduced from   with some additions to further detail the speaker and environmental sound 
recognition tasks.  
 
The data set was approximately balanced to enable performance of three tasks on the same 
training exemplar: (1) recognition of the word at the center of a two second speech clip (2) 
recognition of the speaker and (3) recognition of environmental sounds, that were superimposed 
with the speech clips (serving as “background noise” for the speech tasks while enabling an 
environmental sound recognition task).  
 
The speech clips used in the data set were excerpted from the Wall Street Journal129 (WSJ) and 
Spoken Wikipedia Corpora130 (SWC). To choose speech clips, we screened WSJ, TIMIT131 and 
a subset of articles from SWC for appropriate audio clips (specifically, clips that contained a word 
at least four characters long and that had one second of audio before the beginning of the word 
and after the end of the word, to enable the temporal jittering augmentation described below). 
Some SWC articles were left out of the screen due to a) potentially offensive content for human 
listening experiments; (29/1340 clips), b) missing data; (35/1340 clips), or c) bad audio quality (for 
example, due to computer generated voices of speakers reading the article or the talker changing 
mid-way through the clip; 33/1340 clips). Each segment was assigned the word class label of the 
word overlapping the segment midpoint and a speaker class label determined by the speaker. 
With the goal of constructing a data set with speaker and word class labels that were 
approximately independent, we selected words and speaker classes such that the exemplars 
from each class spanned at least 50 unique cross-class labels (e.g., 50 unique speakers for each 
of the word classes). This exclusion fully removed TIMIT from the training data set. We then 
selected words and speaker classes that each contained at least 200 unique utterances, and such 
that each class could contain a maximum of 25% of a single cross-class label (e.g., for a given 
word class, a maximum of 25% of utterances could come from the same speaker). These 
exemplars were subsampled so that the maximum number in any word or speaker class was less 
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than 2000. The resulting training data set contained 230,356 unique clips in 793 word classes 
and 432 speaker classes, with 40,650 unique clips in the test set. Each word class had between 
200 and 2000 unique exemplars. A “null” class was used as a label for the word and speaker 
when a background clip was presented without the added speech. 
 
The environmental soundtrack clips that were superimposed on the speech clips were a subset 
of examples from the “Unbalanced Train” split of the AudioSet data set (a set of annotated 
YouTube video soundtracks) 36 To minimize ambiguity for the two speech tasks, we removed any 
sounds under the “Speech” or “Whispering” branch of the AudioSet ontology. Since a high 
proportion of AudioSet clips contain music, we achieved a more balanced set by excluding any 
clips that were only labeled with the root label of “Music”, with no specific branch labels. We also 
removed silent clips by first discarding everything tagged with a “Silence” label and then culling 
clips containing more than 10% zeros. This screening resulted in a training set of 718,625 unique 
natural sound clips spanning 516 categories. Each AudioSet clip was a maximum of 10 seconds 
long, from which a 2-second excerpt was randomly cropped during training (see below). A “null” 
environmental sound label was used as a label when speech clips were presented without added 
background sound.  
 
During training, the speech clips from the Word-Speaker-Noise data set were randomly cropped 
in time and superimposed on random crops of the AudioSet clips. Data augmentations during 
training consisted of 1) randomly selecting a clip from the pre-screened AudioSet clips to pair with 
each labeled speech clip, 2) randomly cropping 2 seconds of the AudioSet clip and 2 seconds of 
the speech clip, cropped such that the labeled word remained in the center of the clip (due to 
training pipeline technicalities, we used a pre-selected set of 5,810,600 paired speech and natural 
sound crops which spanned 25 epochs of the full set of speech clips and 8 passes through the 
full set of AudioSet clips), 3) superimposing the speech and the noise (i.e., the AudioSet crop) 
with a Signal-to-Noise-Ratio (SNR) sampled from a uniform distribution between -10dB SNR and 
10dB SNR, augmented with additional samples of speech without an AudioSet background (i.e., 
with infinite SNR, 2464 examples in each epoch) and samples of AudioSet without speech (i.e., 
with negative infinite SNR, 2068 examples in each epoch) and 4) setting the root-mean-square 
(RMS) amplitude of the resulting signal to 0.1. By constructing the data set in this way, we could 
train networks on different tasks while using the same data set and training and test 
augmentations.  
 
Evaluation performance for the word and speaker recognition tasks was measured from one pass 
through the speech test set (i.e., one crop from each of the 40,650 unique test set speech clips) 
constructed with the same augmentations used during training (specifically, variable SNR and 
temporal crops, paired with a set of AudioSet test clips from the “Balanced Train” split, same 
random seed used to test each model such that test sets were identical across models). 
 
The representation from the AudioSet-trained models were evaluated with a support vector 
machine (SVM) fit to the ESC-50 data set132, composed of 50 types of environmental sounds. 
After the model was trained, and for each of the five folds in ESC-50, an SVM was fit to the output 
representation of the top of the layer immediately before the final linear layer (AvgPool_1 for 
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CochResNet50 and ReLU_6 for CochCNN9). Each fold had 400 sounds, resulting in 1600 sounds 
used for training when holding out each fold. As the networks were trained with two-second-long 
sound clips, we took random two-second crops of the ESC-50 sounds. For each sound in the 
training and test data, we took 5 two-second-long crops at random from the five second sound 
(randomly selecting a new crop if the chosen crop was all zeros). The five crops of the training 
data were all used in fitting the SVM, treated as separate training data points. After the predictions 
were measured for the five crops for each test sound, we chose the label that was predicted most 
often as the prediction for the test sound.  
 
The SVM was implemented with sklearn’s LinearSVC, with cross validation over five 
regularization parameters (C=[0.01, 0.1, 1.0, 10.0, 100.0]). For cross validation, a random 
selection of 25% of the training sounds were held out and the SVM was fit on the other 75% of 
the sounds, and this was repeated three times (the five crops from a given sound were never split 
up between cross validation training and test splits, such that the cross validation tested for 
generalization to held-out sounds). This cross-validation strategy is independent of the held-out 
test fold, as it only relies on the training data set. A best regularization parameter was determined 
by choosing the parameter that resulted in the maximum percent correct averaged across the 
three splits, and we refit the SVM using the selected regularization parameter on the entire training 
data set of 1600 sounds to measure the performance on the held-out fold (400 sounds). The 
reported performance is the average across the 5 folds of the ESC-50 data set.  

Training CochResNet50 and CochCNN9 models - Word-Speaker-Noise tasks 
Each audio model was trained for 150 epochs of the speech data set (corresponding to 48 epochs 
of the AudioSet training data). The learning rate was decreased by a factor of 10 after every 50 
speech epochs (16 AudioSet epochs). All models were trained on the OpenMind computing 
cluster at MIT using NVIDIA GPUs.  
 
The Word and Speaker networks were trained with a cross entropy loss on the target labels. 
Because the AudioSet data set has multiple labels per clip, the logits are passed through a 
sigmoid and the Binary Cross Entropy is used as the loss function. Models had weight decay of 
1e-4, except for models trained on the AudioSet task (including the multi-task models) which had 
weight decay of 0.  
 
Both of the CochResNet50 and CochCNN9 architectures were trained simultaneously on all three 
tasks by including three fully connected layers as the final readout. These models were optimized 
by adding together a weighted loss from each individual task, and minimizing this summed loss. 
The weights used for the loss function were 1.0 (Word), 0.25 (Speaker), and 300 (AudioSet).  
 
Additional training details are given in the table below.  
 

Model Name Batch 
Size 

Initial 
Learning 
Rate 

Num Classes 
(includes “null”) 

Accuracy on Training 
Task 
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CochCNN9 Word 128 0.01 794 (Top 1) 66.640%  
(Top 5) 83.102% 

CochCNN9 Speaker 128 0.01 433 (Top 1) 96.216% 
(Top 5) 99.058% 

CochCNN9 AudioSet 128 0.00001*  517 (ESC-50 SVM)  83.60% 

CochCNN9 Multi-task 128 0.00001* Three tasks: 
(Word) 794, 
(Speaker) 433, 
(AudioSet) 517 

(Top 1 Word) 64.954% 
(Top 5 Word) 81.998% 
(Top 1 Speaker) 
86.686% 
(Top 5 Speaker) 
96.039% 
(ESC-50 SVM) 82.60% 

CochResNet50 Word 256 0.1 794 (Top 1) 86.792% 
(Top 5) 95.149% 

CochResNet50 Speaker 256 0.1 433 (Top 1) 99.114% 
(Top 5) 99.835% 

CochResNet50 AudioSet 256 0.001* 517 (ESC-50 SVM) 91.6% 

CochResNet50 Multi-task 256 0.001* Three tasks: 
(Word) 794, 
(Speaker) 433, 
(AudioSet) 517 

(Top 1 Word) 83.459% 
(Top 5 Word) 93.422% 
(Top 1 Speaker) 
94.354% 
(Top 5 Speaker) 
98.785% 
(ESC-50 SVM)  
87.450% 

 
* Models trained with the AudioSet loss had additional gradient clipping (max l2 norm=1.0) and 
learning rate warm-up for the first 500 batches of training (learning rate = <initial learning rate> / 
(500-i), where i is the batch number).  

Training data set for CochResNet50 and CochCNN9 models - musical genre task 
The genre task was the 41-way classification task introduced by Kell et al., (2018). The sounds 
and labels were derived from The Million Song Dataset133. Genre labels were obtained from user-
generated ‘‘tags’’ from the MusicBrainz open-source music encyclopedia 
(https://musicbrainz.org/). Tags were first culled to eliminate those that did not apply to at least 
ten different artists or that did not obviously correspond to a genre. These tags were then grouped 
into genre classes using hierarchical clustering applied to the tag co-occurrence matrix, grouping 
together tags that overlapped substantially. See Table S2 from the Kell et al., (2018) for a list of 
genres and the tags associated with each genre.  
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Training exemplars for the genre task were obtained by randomly excerpting two-second clips 
from the tracks that had tags for the genre labels selected for the task. The music excerpts were 
superimposed with two-second excerpts of one of four different background noises: (1) auditory 
scenes, (2) two-speaker speech babble, (3) eight-speaker speech babble, or (4) music-shaped 
noise. Music-shaped noise consisted of a two-second clip of noise that was matched to the 
average spectrum of its corresponding two-second clip of music. SNRs were selected to yield 
performance in human listeners that was below ceiling (but above chance). The mean SNR for 
each of the four background types was 12 dB, with the SNR for each training example drawn 
randomly from a Gaussian with a standard deviation of 2 dB. All waveforms were downsampled 
to 16 kHz. 

Training CochResNet50 and CochCNN9 models - musical genre task 
The genre networks were trained with a cross entropy loss, and. A stochastic gradient descent 
optimizer was used for training with weight decay of 1e-4, momentum of 0.9, and an initial learning 
rate of 0.01. The models were trained for 125 epochs of the genre data set, and the learning rate 
was dropped by a factor of 10 after every 50 epochs. A batch size of 64 was used for training. 
The CochCNN9 architecture achieved Top 1 accuracy of 83.21% and Top 5 of 96.19% on the 
musical genre task, and the CochResNet50 model achieved Top 1 accuracy of 87.99% and Top 
5 accuracy of 97.56%.  
 

Candidate models with permuted weights 
In addition to the trained networks, we also analyzed ‘permuted’ versions of the models with the 
exact same architecture as the trained models. We created these models by replacing all 
parameters making up the trained model in each network by random permutations across all 
tensor dimensions within a given parameter block (e.g. a weight or bias matrix) for each model 
stage. This model manipulation destroyed the parameter structure learned during task-
optimization, while preserving the marginal statistics of the parameters. All analyses procedures 
were identical for trained and permuted networks. 
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 ii 

Supplementary Figure S1 

 

 
 
Figure S1. Representational Dissimilarity Matrices for fMRI voxels in (A) NH2015 
and (B) B2021. For visualization purposes, the RDMs are computed as 1-Spearman 
Correlation between the 3-scan average activations for pairs of sounds. RDMs are 
computed for all sound-responsive voxels (left) and using only a subset of voxels for each 
of the anatomical ROIs (right). Sounds are grouped by sound categories (included in 
colors on the axis).  
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Figure S2. Median variance explained across model stages for each model. 
Explained variance was measured for each voxel and the aggregated median variance 
explained across all voxels in auditory cortex was obtained. This aggregated median 
variance explained is plotted for all candidate models (n=19) for both fMRI datasets. The 
model plots are sorted according to overall model performance (median noise-corrected 
R2 for NH2015 in Figure 2Ai in the main text), meaning that the first subplot in subfigure 
1 shows the best-performing model, CochResNet50-MultiTask, and the last subplot in 
subfigure 2 shows the worst-performing model, MetricGAN. Dark lines show the trained 
networks, and lighter lines show the control networks with permuted weights. Error bars 
are within-participant SEM. Error bars are smaller for the B2021 dataset because of the 
larger number of participants (20 vs. 8). 
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Supplementary Figure S3 (extension of Figure 6) 

 
 
Figure S3. Surface maps of best-predicting model stage for trained models. The 
figure shows surface maps for trained models that are not included in Figure 6A in the 
main text (which featured the n=8 best-predicting models, leaving the n=11 models shown 
here). The plots are sorted according to overall model predictivity (the quantity plotted in 
Figure 2Ai in the main text). As in Figure 6A in the main text, the plots show the model 
stage that best predicts each voxel as a surface map (FsAverage) (median best stage 
across participants). We assigned each model stage a position index between 0 and 1. 
The color scale limits were set to extend from 0 to the stage beyond the most common 
best stage (across voxels). 
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Supplementary Figure S4 (extension of Figure 6) 

 
Figure S4. Surface maps of best-predicting model stage for permuted control 
models. Subfigure 1 shows the surface maps for the eight models shown in Figure 6A, 
but with permuted weights. Subfigure 2 shows surface maps for models with permuted 
weights that are not included in Figure 6A in the main text. Identical analyses procedures 
and color scale limits were used for the permuted models as for the trained ones. 
  

Individual Model Surface Maps (Permuted) (sub�gure 1/2) 
NH2015 B2021 NH2015 B2021

0

0.9

0

0.8

0

0.

0

0.7

0

0.4

0

0.9

0

0.7

0

0

CochResNet50-MultiTask

VGGish

CochResNet50-AudioSet

CochResNet50-Word

CochResNet50-Speaker

CochCNN9-Speaker

AST

CochCNN9-MultiTask

0

0.8

0

0.9

0

0.4

0

0.9

0

0.7

0

0.7

0

0.7

0

0.7

Relative 
best layer
position

Individual Model Surface Maps (Permuted) (sub�gure 2/2) 

0

0.7

0

0.7

0

0.6

0

0.9

0

0.8

0

0.5

0

0.7

0

1.0

0

1.0

0

0.3

0

1.0

VQ-VAE

Wav2Vec2

SepFormer

S2T

CochResNet50-Genre

MetricGAN

CochCNN9-Word

CochCNN9-Genre

CochCNN9-AudioSet DeepSpeech2

DCASE2020

NH2015 B2021 NH2015 B2021

0

0.7

0

0.7

0

0.7

0

0.6

0

0.9

0

0.8

0

0.5

0

1.0

0

1.0

0

1.0

0

0.3

Relative 
best layer
position

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2022. ; https://doi.org/10.1101/2022.09.06.506680doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506680
http://creativecommons.org/licenses/by-nc-nd/4.0/


 vii 

Supplementary Figure S5 (extension of Figure 7) 

 
Figure S5. Stage-region correspondence of permuted networks. The figure mirrors 
Figure 7 in the main text which shows the quantification of model-stage-region 
correspondence across trained networks. Given that the first stage of the in-house models 
(cochleagram input stage) could not be permuted, this stage was excluded for these 
analyses for all the ten in-house models. (A) As in Figure 7 in the main text, we obtained 
the median best-predicting stage for each model within four anatomical ROIs (illustrated 
in Figure 7A, main text): primary auditory cortex (x axis in each plot in A and B) and 
anterior, lateral, and posterior non-primary regions (y axes in A and B). We performed the 
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analysis on each of the two fMRI data sets, including each model that out-predicted the 
baseline model in Figure 2Ai in the main text (n=15 models). Each data point corresponds 
to a model with permuted weights, with the same color correspondence as in Figure 2 in 
the main text. None of the six possible comparisons (two datasets x three non-primary 
ROIs) were statistically significant without correction for multiple comparisons, p>0.33 in 
all cases (Wilcoxon signed rank tests, two-tailed). (B) Same analysis as (A) but with the 
best-matching model stage determined by correlations between the model and ROI 
representational dissimilarity matrices. Three of the six possible comparisons were 
statistically significant without correction for multiple comparisons: p=0.033 NH2015 
Primary vs. Anterior, p=0.047 NH2015 Primary vs. Posterior, p=0.008 B2021 Primary vs. 
Posterior (Wilcoxon signed rank tests, two-tailed). 
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Supplementary Figure S6 

 
Figure S6. Effective dimensionality (ED) in relation to brain-model similarity 
metrics. (A) Quantification of ED in relation to the regression-based brain-model 
similarity metric (voxelwise modeling). Panel i shows the consistency of the model 
evaluation metric (median noise-corrected R2) between the two datasets analyzed in the 
paper (NH2015 and B2021). The consistency between datasets provides a ceiling for the 
strength of the relationship shown in panel ii. Panel ii shows the relationship between the 
model evaluation metric (median noise-corrected R2) and ED. ED was computed as 
described in Methods; Effective dimensionality. Each data point corresponds to a model 
stage, with the same color correspondence as in Figure 2 in the main text. (B) Same 
analysis as (A) but with the representational similarity analysis evaluation metric (median 
Spearman correlation between the fMRI and model representational dissimilarity 
matrices). 
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Supplementary Figure S7 

 
Figure S7. Consistency between regression and representational similarity brain-
model similarity metrics. (A) Correlation between the regression-based metric (median 
noise-corrected noise-corrected R2) and the representational similarity metric (median 
Spearman correlation) across trained network stages for the NH2015 and B2021 
datasets. Each data point corresponds to a network stage, with the same color 
correspondence as in Figure 2 in the main text. (B) Same as in (A), but for permuted 
network stages. 
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Supplementary Table S1 
 

 
 
Table S1. Natural sound stimulus set. List of all 165 sounds presented to human 
listeners while in the fMRI machine. Category assignments were based on judgments of 
human subjects on Amazon Mechanical Turk1.  
Table re-printed from Kell et al., (2018)2. 
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