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ABSTRACT
Identifying relatives across cohorts makes one of the basic routines for genomic data. As conventional such practice
often requires explicit genomic data sharing, it is easily hampered by privacy or ethical constraints. In this study,
using our proposed scheme for genomic encryption we developed encG-reg, a regression approach that is able to
detect relatives of various degrees based on encrypted genomic data. The encryption properties of encG-reg is built
on random matrix theory, which masks the original genotypic matrix but still provides controllable precision to that
of direct individual-level genotype data. After having found tractable eighth-order moments for encrypted
genotype, we established connection between the dimension of a random matrix and the required precision of a
study. encG-reg consequently led to balanced i) false positive and false negative rates and ii) the computational
cost and the degree of relatives to be searched. We validated encG-reg in 485,158 UKBiobank multi-ethnical
samples, and the resolution of encG-reg was comparable with the conventional method such as KING. In a more
complex application, we launched a fine-devised multi-center collaboration across 6 research institutes in China,
covering 11 cohorts of 64,091 GWAS samples. In both examples, encG-reg robustly identified and validated

relatives existing across the cohorts even under various ethnical background and different genotypic qualities.
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Introduction
Genomic datasets have been reaching millions of individuals and often encapsulated in well protected cohorts, in
which relatives more than often, given increasing genotyped individuals, spread across cohorts and can be identified
once the genomic data are compared'. Finding relatives often has clear scientific reasons, such as controlling false
positive rates in genome-wide association study (GWAS) or reducing overfitting in polygenic risk score prediction®”
4. Social benefits are recently promoted for available individual genomic data in such as relativeness testing and
forensic genetic genealogy®. However, direct-to-consumer (DTC) genetic testing activities along with third-party
services pose new privacy and ethnic concerns’®; law enforcement authorities have exploited some of consumer
genomic databases to identify suspects by finding their distant genetic relatives, which has brought privacy concerns
to the attention of the general public’®. For regulating forensic genetic genealogy, laws, policies and privacy-

protection techniques such as homomorphic encryption are in parallel development®!!.

The above progress, nevertheless, often requires individual-level data to be shared which may often be beyond the
permitted range of data sharing because of privacy concerns. Directly processing raw genotype in genetic tests may
be vulnerable to attacks'2. We developed a novel mitigation strategy called “encrypted genotype regression”, hereby
encG-reg, which does not require direct genotype data but is able to identify relatedness with highly controllable
precision of balanced Type I and Type Il error rates. As only encrypted genotype data is exchanged in performing
encG-reg, a pair or a group of collaborated cohorts are able to minimize their concerns of privacy breach. In this
study we explore the properties of encG-reg in theory, simulations, and 485,158 UK Biobank (UKB) samples of
various ethnicity. In a collaboration that includes 6 genomic centers from north to south China (Beijing, Suzhou,
Shanghai, Hangzhou, Guangzhou, and Shenzhen) totaling 64,091 genetically diverse samples genotyped based on
different platforms, intriguing relatedness were identified between cohorts by encG-reg. Often, the logistic complex
of a human genetic study is exacerbated by the number of cohorts involved'®; the presented study, however,
establishes an expert-driven constitution and technical innovations for driving multi-cohort collaborations that is now

in demand for genomic studies.

Materials and Methods

Overview of GRM
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A pair of collaborators, who concern the privacy of their genomic data, seek identification of relatedness between
their cohorts using GWAS data. Using whole genome-wide markers, inter-cohort relatedness for pairs of individuals
can be inferred from genetic relationship matrix (GRM), which requires matrix multiplication between two genotype

matrices, say X; and X,; where X; isamatrix of n; individuals (rows) and m markers (columns), so is X,. We

define Gy, = %xlxg = {gi j}nlxnz as the real inter-cohort GRM. Here, the genotype matrices are standardized by

SNP allelic frequencies to have zero mean and a unit variance. Under the assumption of multivariate normal
distribution, the expectation and variance of g;;, using Isserlis’s theorem are'*

1+62
m

E(gi]-) = 0, and var(gl-j) = (Eq1)

-
respectively, where r is the degree of relatives and 6, is relatedness score, which has E(6,) = G) ,say E(6,) =

0.5, 0.25, and 0.125 for the first, second, and third degree of relatives, respectively.

Encrypted genotype (encG) and encG regression (encG-reg)

To extend GRM into its encrypted form, one insight from approximate matrix decomposition is that we can find a
Q,.xm matrix, which satisfies X; QX} ~ X;XT'°. Q matrix can be decomposed as Q = SST, where S isan m x k

matrix and its elements are dependently sampled from a normal distribution, N(0,52). We show that E(SST) =1
and E(XlsSTX;) = X, X7, with the choice of g2 = % When two collaborators provide X; = X;S and X, = X,S,
it leads to E (XIXE) = X,X7 the approximated precision of which relies on the sampling variance. In this study,
we attack the question that if relatives are involved between X; and X,, how precisely k should be to control
sampling variance that is able to identify relatives of certain degree. The products of matrix multiplication present an

ideal one-way encryption technique in private genetic data sharing, and this is what we call X; “encrypted genotype”,

hereby encG. As discussed, it is computationally impossible to recover X from X without the knowledge of S'°.

Based on encG, it is now trustworthy to construct encrypted GRM (encGRM) inter-cohort. We define G;, =
1(xls)(sTx§) = {gi,-} , and elements of the random matrix S are sampled from a normal distribution
k nyXn,

T Ty T
N (O,i) to provide a good transformation of expectation from E (%) to E ((Xls)i—st)) In terms of the matrix

element g;; by eight-order moments approximation, its expectation and variance are E (gl j) = 0, and var( Ji j) o
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1+62

1+62 n 1+62
k

X T, in which

is crept in var(gij) compared with that of var(g;;). As SNPs are often in linkage

disequilibrium (LD), we introduce the effective number of markers (m,), which is a parameter engaged in various

1+62 1+62 = 1+6% .
and + respectively.
— x e’ p Yy

enetic analyses!’. The variance of g;; and §;; turns to
g y 9ij 9ij

Another interpretation on encGRM is from the perspective of regression. The regression is also based on encG and
we call it encG regression, which regresses one individual’s encrypted genotype against another. For a pair of
individuals, say individual i and individual j, the slope b;; of a simple regression model X; = b;;X; + e, also
known as regression coefficient, indicates the identical by descent (IBD) score between these two individuals. Here

o

X; and X; are vectors of encrypted genotypes for two individuals. &; and X; are scaled to zero mean and unit

variance. The expectation and the sampling variance of b; ;= %Xg)’) can be approximated as
~ ~ 1-02  1-62
E(bl]) = 91‘ and var(bij) = X + m_e (Eq 2)

Compared to encGRM, encG-reg generates smaller sampling variance and thus conceals improved power in

identifying relatives from unrelated pairs.

A minimal number of m, and k

2
For a pair of individuals I) whose relatedness is estimated by GRM and follows the distribution of N(8,, l;i), we
ask how to identify them from unrelated pairs with a distribution of N (O, mi), IT) whose relatedness is estimated by

o -6 —62 . . .
encG-reg and follows the distribution of N (6, 1TT + 1m—r), we ask how to differentiate them from unrelated pairs
e

with a distribution of N (0, =t mi) This question is analogous to the conventional pattern recognition, which can be
e

solved under the power calculation in the statistical test framework for null verse alternative hypotheses. We
consequently need to determine two key parameters. I) the effective number of markers, m,, a population statistic
that sets the resolution of GRM itself in detecting relatives. II) the column number of the random matrix, k, an
iteration dimension that sets the precision of encG-reg. To determine m, and k, upon Type I error rate («, false
positive rate as aforementioned) and Type Il error rate (S, false negative rate), m, should satisfy below

2
z1_py1+67 +Zl—a>

Mea,p,6, = ( o (Eq 3)
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Similar to m,, the minimal number of k is also responsible for a certain Type I and Type II error rates, and the

degree of relatives to be detected, while corresponding to m,, as well,

1

k|“'ﬁ:9r1me > 2
( or ) .

me

(Eq 4)

Z1-p 1-6%+421_¢
In particular, a should be under experiment-wise control, say after Bonferroni correction, and consequently upon
the total comparisons N = ¥<_ jmin;, where there are C cohorts and n; is the sample size of cohort i, or just pair-
wise comparisons JV;; = n;n;.

]

Validation for theoretical results

We validated the variance of GRM, encGRM and encG-reg in simulations. 1,000 pairs of relatives were separated in
cohort 1 and cohort 2. m = 1,000, 1,250, 1,500, 1,750 and 2,000 independent markers were simulated, and their
minor allele frequency (MAF) was sampled from a uniform distribution U(0.05, 0.5). Genotype matrices from two

cohorts were encrypted with the same m X k random matrix S, whose elements drew from a normal distribution
N(O, %). We set k to be 1,000, 2,000, 3,000, 4,000 and 5,000, respectively. Both real and encrypted genotype

matrices were standardized based on the description for the three methods. Observed and theoretical variances were
examined among four different degrees of relatedness (6, = 0.57, in which r = 0,1,2,and 3 for r*"* degree of
relatives). Besides, to testify how allele frequency can influence the variance of GRM — which should be modeled by
conditional binomial distribution as discussed above, we simulated 1,000 pairs of relatives of certain degrees, and
2,000 markers with the same MAF from 0.05 to 0.45 per increase in 0.1. We compared the observed variance of

relatedness with the theoretical relatedness in 10 repeats.

We also examined how m and k affect the identification of various relatedness in simulations. We simulated 200
individuals each for cohort 1 and cohort 2 (n; = n, = 200); between cohort 1 and cohort 2 we generated 10 pairs of
identical samples for each relative, i.e., 1st-degree, 2nd-degree, and 3rd-degree relatives, respectively. We set the
desired number of markers (m) two times of that given by Eq 3 and the corresponding size of k as given by Eq 4 at
the experiment-wise Type I error rate of 0.05 and Type 11 error rate of 0.1 — statistical power of 0.9 accordingly. We
simulated individual-level genotype matrices with the dimension of n; X m and n, X m and the encrypted

genotype matrices with the dimension of n; X k and n, X k. Relatedness scores for GRM, encGRM and encG-reg
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were calculated accordingly and theoretical distributions were derived under the assumption of multivariate
distribution for each degree of relatedness. In this case, we ignored the difference between m and m,, because SNPs

were generated independently here.

More detailed theoretical work for Eq 1~2 of GRM (SNote 1 and 2, and SNote 3 for conditional binomial distribution
properties of GRM), encGRM (SNote 4), and encG-reg (SNote 5) is summarized in supplementary notes and Table
S1-2 which was validated in simulation (Figure S1-3). Details on statistical power calculation for Eq 3~4 please see

SNote 6.

Protocol for encG-reg for biobank-scale application

Figure 1 presents the workflow of encG-reg algorithm and its detailed implementation from cohort assembly to final
relatedness identification. After the assembly of cohorts, there are options in choosing SNPs upon the experimental
design. An exhaustive design denotes the use of intersected SNPs between each pair of cohorts, thus a specific random
matrix will be shared to each pair of cohorts. Given C cohorts, there are C(C — 1)/2 S matrices generated and each
cohort is likely to receive C — 1 different S matrices. Adopting exhaustive design is possibly to maximize the
statistical power with maximized number of SNPs, but the computational, as well as communicational, efforts may
overwhelm the organization of a study. In contrast, a parsimony design denotes the use of intersected SNPs among
all assembled cohorts, as long as the number of SNPs satisfies the resolution in Eq 3 and Eq 4. Exhaustive design
and parsimony design are both validated in the 19 UKB cohorts, which had sample size greater than 10,000 each,

and parsimony design are further tested in the real-world for 11 Chinese cohorts in this study.

We sketch encG-reg into a detailed technical protocol. This protocol can be automated, such as by a web server that
coordinates the study. Once the cohorts are assembled, there are four steps in total, where steps 1 and 3 are performed
by each collaborator and steps 2 and 4 are performed by a central analyst. We provide commands and simulated data

in

Step 1 Cohort assembly and intra-cohort quality controls Basic intra-cohort QCs should be conducted. Summary

information such as SNP ID, reference allele, and its frequency are then requested by the central analyst.
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Step 2 Inter-cohort quality controls and parameter set up Using “geo-geno” relationship, we suggested two inter-
cohort QCs. One is called frequency-principle component analysis (fPCA) which illustrate the origins of cohorts, and
another is called fStructure which explores genetic composition of each cohort in comparing with reference
populations. The technical details of the employed methods can be found in our previous study'. Finally, the
feasibilities of exhaustive and parsimony designs will be evaluated depending on the number of intersected SNPs and
possible costs in communication. Central analyst determines m and k by Eq 3 and Eq 4 based on survived SNPs
and passes parameter information to each collaborator along with an SNP list. The corresponding m, will be
estimated from, here, IKG-EUR and 1KG-CHN as the reference populations for validation in the UKB cohorts and

the Chinese cohorts, respectively.

Step 3 Encrypt genotype matrix The m-by-k random matrix, or matrices when an exhaustive design is chosen, is
generated and sent to each cohort. As a positive control, reference samples will be merged to each cohort. Genotype

encryption is realized by the matrix multiplication between the standardized genotype matrix and S.
Step 4 Perform encG-reg Inter-cohort computing for relatedness will be conducted by the central analyst. A
successful implementation will lead to at least positive controls consistently identified as inter-cohort “overlap” and

if possible, various sporadic relatedness.

Validation I: UK Biobank in exhaustive and parsimony design

Both exhaustive and parsimony design were conducted for the validation of encG-reg on 485,158 UKB multi-
ethnical samples from 19 assessment centers, which had sample size greater than 10,000 (Table S3). Identical/twins,
Ist-degree and 2nd-degree relatedness were aimed to be detected by KING (“the rule of thumb”) using the real
genotypes and encG-reg using the encrypted genotypes, respectively. We conducted QC on the 784,256 chip SNPs
within the 19 cohorts, and the inclusion criteria for autosome SNPs were: (1) MAF > 0.01; (2) Hardy-Weinberg
equilibrium (HWE) test p-value > le-7; and (3) locus-level missingness < 0.05. In addition, taking account of cross-
ethnicity nature in those UKB samples, only SNPs of ethnicity-insensitive frequency, which had indifferent allele

frequencies statistically, were included.
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For an exhaustive design, intersected SNPs were selected between each two cohorts, leading to generate 171 pairs of
cohort combination for detecting relatedness. For a parsimony design, a total number of 12,858 intersected SNPs
among all 19 cohorts were selected. The number of k for encG-reg were estimated by Eq 4 at Type I error rate of
0.05 and Type II error rate of 0.1. To note that, experiment-wise Bonferroni correction is based on the number of
paired samples between each two cohorts (V;; = n;n;) for exhaustive design and based on total number of paired
samples among all cohorts (V' = Z& jnin;) for parsimony design. The number of intersected SNPs were all given

in Table S4.

To zoom in the performance of encG-reg, we took a close scrutiny at two assessment centers in Manchester (11,502
individuals) and Oxford (12,260 individuals) from UKB white British. We used KING to estimate relationship of
any pair of individuals between two cohorts with the recommended thresholds of (0.354, 0.500), (0.177, 0.354), and
(0.088, 0.177) in determining identical, 1st-degree, and 2nd-degree relatives!. 17 pairs of 1st-degree relatedness and
2 pairs of 2nd-degree relatedness detected (no identical samples detected) by KING were taken for a close scrutiny
of encG-reg. As we have already known, in the discussion on Eq 1, that a relatively high MAF has smaller sampling
variance and contributes more statistical power (Figure S3), we randomly sampled SNPs with different ranges of
MAF (0.01 to 0.05, 0.05 to 0.15, 0.15 to 0.25, 0.25 to 0.35, 0.35 to 0.5, and 0.05 to 0.5) so as to compare the
performance of encG-reg and KING. According to the minimal number of m, and k at the experiment-wise Type

I error rate of 0.05 and Type II error rate of 0.1 (Table S5), we selected 566 (m, = 566) and 2,209 (m, = 2,023)

markers for detecting 1st-degree and 2nd-degree relatedness. m, could be empirically estimated as where

1
var(Gosf)’

4m2

G,y denotes the off-diagonal elements of GRM. Since m, is asymptotically distributed as N(m,, 7) according

to our estimation, the sampling variance of m, is negligible as long as the studying populations are of the similar
ancestry, such as the case for Manchester and Oxford cohorts in UKB and the Chinese datasets employed in this
study (Table S6). Against possible noise that may rust statistical power, we also increased k to 1.2k and denoted as
encG-reg+. Average relatedness score, standard deviation and statistical power were calculated for each detected

relative-pairs after resampling SNPs for 100 times.

Validation II: 10 multi-center Chinese datasets in parsimony design

10
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We launched a national-scale test for encG-reg in 10 Chinese datasets under the parsimony design to avoid possible
computational and communicational costs. 4 out of 10 datasets were publicly available, while the remaining datasets
were recruited from 6 research centers, located in from north to south China, Beijing, Suzhou, Shanghai, Hangzhou,
Guangzhou, and Shenzhen. As a proof of principle and brief validation of encG-reg in as civil as complex
environment, these datasets agreed to detect identical samples or 1st-degree relatedness but without other exchange

for medical information.

1KG-CHN (public): We considered two Chinese subpopulations in 1000 Genome Project (1KG)'S, CHB (Han
Chinese in Beijing, 103 individuals) and CHS (Southern Han Chinese, 105 individuals) as reference population and
positive control in the cross-cohort test in Chinese datasets. Individuals in the project were genotyped by whole-
genome sequencing or whole-exon sequencing.

UKB-CHN (accessible after application): The UK Biobank (UKB) includes 1,653 individuals of self-reported
Chinese'”. After genomic assessment, 1,435 were considered from Chinese origin. Individuals in the project were
genotyped using the Applied Biosystems UK BiLEVE Axiom Array by Affymetrix, followed by genotype imputation.
CONVERGE (public): The CONVERGE consortium aimed to investigate major depressive disorder (MDD)%. It
included 5,303 Chinese women with recurrent MDD and 5,337 controls, all of whom were genotyped with low-
coverage whole-genome sequencing and followed by imputation.

MESA (accessible after application): The Multi-Ethnic Study of Atherosclerosis (MESA) was to investigate
subclinical cardiovascular disease’!. 653 Chinese samples were included. Individuals were genotyped using
Affymetrix Genome-Wide Human Single Nucleotide Polymorphism array 6.0, followed by genotype imputation.
SBWCH Biobank: The Shenzhen Baoan Women’s and Children’s Hospital (Baoan district, Shenzhen, Guangdong
province) Biobank aims to investigate traits and diseases during pregnancy and at birth. 30,074 women were included
in this study. Maternal genotypes were inferred from the non-invasive prenatal testing (NIPT) low depth whole
genome sequencing data using STITCH?? following the methodological pipeline that we previously published?. The
average genotype imputation accuracy reaches 0.89 after filtration of INFO score 0.4.

CAS and ZOC: The Chinese Academy of Sciences (CAS) cohort is a prospective cohort study aiming to identify
risk factors influencing physical and mental health of Chinese mental workers via a multi-omics approach. Since

2015, the study has recruited 4,109 CAS employees (48.2% male) located in Beijing, China. All participants belong
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to the research/education sector, and are characterized by a primary of Chinese Han origin (94.1%). DNA was
extracted from peripheral blood samples and genotyped on the Infinium Asian Screening Array + MultiDisease-24
(ASA+MD) BeadChip, a specially designed genotyping array for clinical research of East Asian population with
743,722 variants. CAS study was approved by the Institutional Review Board of Beijing Institute of Genomics
Chinese Academy of Sciences and Zhongguancun hospital. For validation purpose, samples were randomly split into
CAS1 and CAS2. According to their records, ZOC was consisted of 19 homozygotic and heterozygotic siblings, who
were evenly split into CAS1 and CAS2 as internal validation of encG-reg. ZOC is part of The Guangzhou Twin Eye
Study (GTES), a prospective cohort study that included monozygotic and dizygotic twins born between 1987 and
2000 as well as their biological parents in Guangzhou, China. Baseline examinations were conducted in 2006, and
all participants were invited to attend annual follow-up examinations. Non-fasting peripheral venous blood was
collected by a trained nurse at baseline for DNA extraction, and genotyping was performed using the Affymetrix
axiom arrays (Affymetrix) at the State Key Laboratory of Ophthalmology at Zhongshan Ophthalmic Center (ZOC)*.
This study was approved by the ethics committee of Zhongshan Ophthalmic Center and was conducted in accordance
with the tenets of the Declaration of Helsinki. Written informed consent was obtained for all participants from parents
or their legal guardians. CAS and ZOC cohorts were deeply collaborated for certain studies, and consequently merged
to fit this study.

Fudan: A multistage GWAS of glioma were performed in the Han Chinese population, with a total of 3,097 glioma
cases and 4,362 controls. All Chinese Han samples used in this study were obtained through collaboration with
multiple hospitals (Southern population from Huashan Hospital, Nanjing 1st Hospital, Northern population from
Tiantan Hospital and Tangdu Hospital). DNA samples were extracted from blood samples and were genotyped using
Illumina Human OmniExpress vl BeadChips?. 2,008 samples were included for this study.

YiKon: YiKon cohort is striving for the research of reproductive medicine. 9,999 Chinese samples many with known
pedigrees were included in this study. Individuals were genotyped using [llumina Infinium Asian Screening Array.
For the validation of encG-reg, familial members were randomly split into YiKon1 (5,000 samples) and YiKon2
(4,999 samples).

WBBC: The Westlake BioBank for Chinese (WBBC) cohort is a population-based prospective study with its major
purpose to better understand the effect of genetic and environmental factors on growth and development from

youngster to elderly®®. The mean age of the study samples were 18.6 years for males and 18.5 years for females,
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respectively. The Westlake BioBank WBBC pilot project have finished whole-genome sequencing (WGS) in 4,535

individuals and high-density genotyping in 5,841 individuals?’-5.

In total, based on 10 datasets, we reorganized, mostly retained, 11 Chinese cohorts (1KG-CHN, UKB-CHN,
CONVERGE, META, SBWCH, CAS1, CAS2, Fudan, YiKonl, YiKon2 and WBBC) to be involved in the real-
world test of encG-reg. Within CAS1 and CAS2 and within YiKonl and YiKon2, relatedness if would be reported
by encG-reg was verified by CAS and YiKon, respectively. Between other pairs of cohorts, sporadic relatedness

might occur, as would have been found.

Results

Simulations

We performed a series of simulations to evaluate the robustness of encG-reg, accompanied by GRM and encGRM.
The estimated sampling variance of GRM, encGRM and encG-reg matched with the theoretical variance at each level
of relatedness (Figure S2). It was noticeable that larger MAFs could lead to a smaller variance of GRM score (Figure
S3), that further resulted in a smaller variance and a higher power of detecting relatives for encGRM and encG-reg.
We also sketched up how m and k determined the resolution of encGRM and encG-reg (Figure S4). The results
showed that for encG-reg, in each scenario, sufficient k was able to detect a certain degree of relatedness if m could
support. As we evaluated in simulation, encG-reg stood out against encGRM with a smaller variance and a higher

resolution as a good attempt in detecting relatives with encrypted genotypes.

Validation I: UKBiobank exercise for multi-ethnical samples

We verified the exhaustive design of encG-reg in 19 UKB cohorts by comparing with KING (Figure 2A). The
average number of intersected SNPs between each two pairs of cohorts was 13,157. Relatedness was estimated and
inferred up to the second degree, where KING used real genotypes and encG-reg used encrypted genotypes only. The
same 38 pairs of identical samples (monozygotic twins in this case) were detected by KING and encG-reg, 7,965,
and 6,632 pairs of 1st-degree and 2nd-degree relatedness were inferred by KING, the number of which went to 7,913
and 7,022 for encG-reg, respectively. It could be seen that encG-reg was quite comparable to KING in practice. Based

on individual ID and their recorded ethnicity, consistent relatedness scores were estimated by KING and encG-reg
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(Figure 2B-D). Combining geographic distance between 19 cohorts, we discovered that more relatives were detected
between adjacent assessment centers, like Manchester and Bury, Newcastle and Middlesborough, and Leeds and
Sheffield. Besides, consistent numbers of relatedness were inferred by the parsimony design of encG-reg (Table S7).
The decrease in the number of detected 2nd-degree relatedness for parsimony design was possibly due to a smaller

experiment-wise Type I error rate and thus a more stringent cutting threshold.

We took a closer look at two representative assessment centers in Manchester and Oxford. Figure 2E listed that of
the 11,502 x 12,260 = 141,014,520 pairs of inter-cohort individuals, 17 pairs of so-called 1st-degree and 2 pairs
of 2nd-degree relatives were found using overall QCed SNPs by KING. The bar plots compared relatedness scores
of the known 1st-degree (m, = 566, k = 494) and 2nd-degree (m, = 2023, k = 2,342) relatives, estimated by
KING, GRM, encG-reg, and encG-reg+ (using 1.2k). In general, encG-reg and encG-reg+, still showed very similar
estimations of relatedness score comparing with KING, even only encrypted genotypes were provided. When SNPs
were sampled with MAFs between 0.05 and 0.5, the average statistical power reached 0.9 and 0.95 for detecting 1st-
degree relatedness by encG-reg and encG-reg+. The overall statistical power increased as MAF increased; otherwise
the MAF of the sampled SNPs was less than 0.05, the statistical power of encG-reg was practically as sufficient as

devised (Figure S5).

Validation II: national-scale test in China

As summarized in Figure 1, the Chinese cohort study was swiftly organized and completed within about 7 weeks,
demonstrating that encG-reg was easy to carry out. Following intra-cohort QCs and upon received summary
information, we examined sample sizes and SNPs in each cohort (Table 1). In total, it included 64,091 samples and
generated V' =1,496,000,912 pairs of tests. When allele frequencies were compared with that in CONVERGE, the
majority of SNPs had consistent allele frequencies across cohorts (Table S8 and Figure S6). The missing rates and
the intersected SNPs were also examined across cohorts (Figure S7-8, and Table S9), after which a total of 1,650
SNPs were in common among 11 cohorts for parsimony design of encG-reg (Figure 3A). The results of fPCA and
fStucture matched with their expected “geo-geno” mirror in Chinese samples?. The first eigenvector of fPCA
distinguished southern and northern Chinese samples in this study, the SBWCH Biobank (dominantly sampled from

Shenzhen, the southmost metropolitan city in mainland China) and CAS cohort (dominantly sampled from Beijing)
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(Figure 3B and 3C). Using a slightly different illustration strategy, the fStructure results, a counterpart to the well-
known Structure plot in population genetics, were also consistent with the reported Chinese background of the 11
cohorts (Figure 3C and 3D). As the Chinese datasets showed little population structure, the choice of SNPs ignored

the technical consideration for multi-ethnicity as in UKBiobank exercise.

We offered a list of 500 shared SNPs, whose m, was 477 (evaluated in 1KG-CHN) and the corresponding minimal
number of k was 757 given the experiment-wise Type I error rate of 0.05 and statistical power of 0.9. Each
collaborator then encrypted their genotype matrix by the random matrix S. As foolproof controls, 1KG-CHN samples

were consistently identified as “identical” inter-cohort.

Anticipated relatives were identified between YiKonl and YiKon2, and between CAS1 and CAS2 (Figure 4A and
4B), and further validated by intra-cohort IBD calculation, respectively. Between YiKonl and YiKon2, we reported
194 identical samples and 2,194 1st-degree relatedness, respectively. The pair-wise encG-reg distributions between
cohorts were consistent to our theoretical expectation (Figure 4C and Figure S9). Detected relatedness were
confirmed by medical records (101 pairs were unknown among 2,388 identified pairs) in YiKon. However, for 20
inferred but unrecorded relatedness pairs, YiKon further verified them using real genotype data (Figure 4D). KING-
inferred relatedness matched with encG-reg in 14 pairs. Of the rest six pairs that all identified as 1st-degree by encG-
reg, three were inferred as 2nd-degree and one as unrelated by KING. In addition, due to possible adopted thresholds,
KING reported two 1st-degree pairs as identical (their kinship scores were 0.390 and the suggested threshold for
separating 1st-degree and identical pairs was 0.354), while encG-reg clearly separated identical pairs from 1st-degree

(Figure 4C).

Specifically, as each of 19 Guangzhou twins was split into CAS1 and CAS2, 18 pairs were identified as monozygotic
(MZ) or dizygotic (DZ) by encG-reg and verified by intra-cohort IBD calculation in CAS Beijing team (Figure 4E).
Remarkably, one pair of so-called twins that was left out by encG-reg was verified as unrelated by IBD calculation,
and ZOC team took further investigation on possible logistic errors. These results demonstrated that encG-reg was

reliable with well controlled Type I and Type 1l error rates.
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In particular, we illustrated how sporadically related pairs were captured by encG-reg. We detected 6 pairs of inter-
cohort relatedness, including 2 pairs of identical samples and 4 pairs of 1st-degree relatives (Table 2). For these
sporadic related inter-cohort samples, encG-reg exhibited their relatedness in forms of regression plots and estimated
regression coefficients (Figure 4F). Obviously, compared with the regression plot for 2 pairs of identical samples,
the higher missing rate of SBWCH then introduced more noise but was still captured by encG-reg. Nevertheless, its
largest sample size provided SBWCH more linked with other cohorts. To avoid possible breaching of privacy we did

not explore their relationship further here.

DISCUSSION
Individual genome sequencing is likely to be the trend and deserves well preserved privacy. The purpose of genomic
data sharing often leads to cross-cohort tasks, such as finding relatives as occurred but of various purposes. Privacy-
protection issues are raised during these tasks. One attempt on detecting cross-cohort relatives, limited to only
overlapping individuals, employed one-way cryptographic hashes, which offered qualitative but not quantitative
conclusions on false positive and false negative rates®. To settle the question of exact encryption precision, we
focused more on the intrinsic consequence after genotype encryption with random matrix. Given our current
knowledge in random matrix theory, we described its properties in how k and m, influence the encryption precision
for encrypted genotypes. This property is well testified in GRM which can be considered as a basis for a multiparty,
or say cross-population genotype sharing. To note that the random matrix encryption, also called “random orthogonal
keys”, has been applied in performing GWAS***!. They claimed that random orthogonal keys provide an encryption
scheme where it is very difficult to recover individual genetic or phenotypic data. However, our investigation led to

controllable encryption precision even under varying genotype platforms and data quality.

As demonstrated in UKB multi-ethnical samples, encG-reg could be applied for biobank-scale datasets with very
high precision compared with conventional individual-level benchmark methods such as KING and GRM. Our real-
world test in Chinese cohorts present an unprecedent attempt on developing safe method that can be applied in large-
scale searching relatives with encrypted genomic data. In a real-world setup, for the sake of convenience and
manageability, we only considered parsimony design of using shared SNPs across the 11 Chinese cohorts. Switching

to exhaustive design will be a better choice if each pair of cohorts conducts encG-reg for their customized degree of
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relatives. Compared with UKB, which has relatives more frequently found in nearby assessment centers, the
assembled Chinses cohorts are unanticipatedly fused a “functional cascade”. The cohorts SBWCH, YiKon, and
CONVERGE could be engaged in a much bigger network on human production medicine. Consequently, close
relatives were detected between them. Likely was a person to join one or another genomic service under the influence

of relatives who has already been included in a such service.

For either exhaustive design or parsimony design of encG-reg, the core algorithm is algebraic and asks little human
information in its implementation, so developing an automatic central analysis facility that can significantly host and
synchronize more cohorts will be in the near future. An exhaustive implementation of encG-reg will search even
deeper relatedness across cohorts in a highly mobilizing nation like China, in which relatives were used to live nearby
but now are more distantly due to industrialization®>. A much deeper implementation of encG-reg will bring out
unique resource for conducting biomedical research at large scale as including familial information as demonstrated*?.
Last but not least, encG-reg is developed a tool that, under much better protected genomic privacy, can facilitate
necessary relative searching when it is needed but not for the purpose of penetrate membership or other unethical

activities.
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530 Table 1 Summary information for the cohorts participated in this study

Cohort ID Genotyping platform Sample size SNPs (after QC) Description
1KG-CHN'® NGS 208 5,578,934 Chinese in 1000 Genome Project
UKB-CHN" Affymetrix Chip + imputation 1,435 5,033,920 Chinese in UK Biobank
CONVERGE? Low-coverage WGS + imputation 10,640 5,215,820 Chinese women in study of major depression
MESA?! Affymetrix Chip + imputation 653 4,950,239  Chinese samples in the multi-ethnic study of atherosclerosis
Noninvasive prenatal testing (low- Chinese pregnancies recruited from the Shenzhen Baoan
SBWCH?*? , , 30,074 1,237,941 , ,
coverage WGS + imputation) Women and Children’s Hospital
CAS1 1,497 288,684 Unpublished Chinese samples mainly collected in Beijing,
CAS & ZOC* [llumina Chip; Affymetrix Chip with which 19 pairs of twins (ZOC) were mixed in
CAS2 1,497 288,539 separately
Fudan® Illumina Chip 2,008 311,384 Chinese samples in the study of glioma
) YiKonl  Illumina Chip + single cell WGA 5,000 89,084 . . . .
YiKon . . i . Chinese samples in the study of reproductive medicine
YiKon2  Illumina Chip + single cell WGA 4,999 89,084
WBB(C?-28 [llumina Chip 6,080 319,930 The Westlake BioBank for Chinese pilot project

64,091 (all) 1,650 (intersection)

531
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532

533

534

535
536

Table 2 Supporting evidence for the related pairs

Pair Cohort 1 ID1 Cohort 2 ID 2 Score (SD?) Score” (SD) Inferred relatedness
1 SBWCH SBWCH 21253 YiKon2 YKB1693 0.890 (0.017) 0.993 (0.019) Identical
2 CAS1 2009111148 YiKon2 YKB570 0.985 (0.002) 0.999 (0.002) Identical
3 SBWCH SBWCH_2988 YiKonl YKA1770 0.397 (0.033) 0.434 (0.036) Ist-degree
4 SBWCH SBWCH_28165 YiKonl YKA3820 0.406 (0.033)  0.479 (0.039) Ist-degree
5 SBWCH SBWCH_200 WBBC WBBC3849 0.427 (0.033) 0.533 (0.041) Ist-degree
6 YiKon2 YKB1046 CONVERGE MD CHW_AAD 11728 0.511 (0.031) 0.512 (0.031) Ist-degree
Notes: IDs were de-identified by each cohort.

#Standard deviation (SD) is calculated from S Dy,; =

var(X;)

Due to missing data, the corrected score, is adjusted for the genotype missing rate between the pair of individuals.
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537  Figure 1 Workflow of encG-reg and its practical timeline as exercised in Chinese cohorts
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539  Figure notes: The mathematical details of encG-reg is simply algebraic, but its inter-cohort

540  implementation involves coordination. We illustrate its key steps, the time cost of which was adapted from
541  the present exercise for 10 Chinese datasets (here simplified as three cohorts). Cohort assembly: It took us
542 about a week to call and got positive responses from our collaborators (See Table 1), who agreed with our
543  research plan. Inter-cohort QC: we received allele frequencies reports from each cohort and started to
544  implement inter-cohort QC according to “geo-geno” analysis (see Figure 2). This step took about two

545  weeks. Encrypt genotypes: upon the choice of the exercise, it could be exhaustive design (see UKB

546 example), which may maximize the statistical power but with increased logistics such as generating

547  pairwise S;j; in the Chinese cohorts study we used parsimony design, and generated a unique S given 500
548 SNPs that were chosen from the 1,650 common SNPs. It took about a week to determine the number of
549  SNPs and the dimension of k according to Eq 3 and 4, and to evaluate the effective number of markers.
550  Perform encG-reg and validation: we conducted inter-cohort encG-reg and validated the results (see

551  Figure 3 and Table 2). It took one week.

552
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Figure 2 Resolution for detecting relatives in UKB cohorts by KING and encG-reg at exhaustive design
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Figure notes: (A) Chord diagrams shows the number of inter-cohort identical/twins, 1st-degree and 2nd-
degree relatedness for 19 UKB assessments which had more than 10,000 samples. Relatedness were detected
and compared between KING and encG-reg under an exhaustive design, totaling 171 inter-cohort analyses.
In each chord plot, the length of its side edge was proportional to the count of detected relatives between this
cohort with other cohorts. (B) Scatter plot showed estimated relatedness score by KING and encG-reg. The
inter-cohort links for the three relative clusters were as shown in A. (C) and (D) are the respective relatedness
score distributions. (E) The bar plot compared relatedness scores of the known 1st-degree and 2nd-degree
relatives estimated by KING, GRM, encG-reg and encG-reg+ across two representative assessment centers
(Manchester and Oxford). 566 and 2,209 SNPs were randomly selected with MAF between 0.05 and 0.5.
Here, encG-reg+ denotes the use of 1.2-fold of the minimal number of k and IBD denotes twice of the

relatedness score estimated by KING. Average GRM score, standard deviation and statistical power were
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566  calculated for each detected relative-pair after resampling SNPs for 100 times. The grey dash line indicates
567  the expected statistical power of 0.9. Colored solid lines indicate the average relatedness scores of certain
568  degrees by the four methods. 17 pairs of so-called 1st-degree and 2 pairs of 2nd-degree relatives were
569  approved using overall SNPs by KING.
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Figure 3 Cohort-level genetic background analyses for Chinese cohorts under parsimony encG-reg

analysis.
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Figure notes: (A) Overview of the intersected SNPs across cohorts, a black dot indicated its corresponding
cohort was included. Each row represented one cohort while each column represented one combination of
cohorts. Dots linked by lines suggested cohorts in this combination. The height of bars represented the
cohort’s SNP numbers (rows) or SNP intersection numbers (columns). Inset histogram plot showed the
distribution of the 1,650 intersected SNPs and the 500 SNPs chosen from the 1,650 SNPs for encG-reg
analysis. (B) 1,650 SNPs were used to estimate fPC from the intersection of SNPs for the 11 cohorts. Each
triangle represented one Chinese cohort and was placed according to their first two principle component
score (fPC1 and fPC2) derived from the received allele frequencies. (C) A Chinese map had 6 private
datasets pinned on it, according to the location of data owners. The size of point indicated the sample size of
each dataset. (D) Global fStructure plot indicated global-level F,-derived genetic composite projected onto
the three external reference populations: 1KG-CHN (CHB and CHS), 1KG-EUR (CEU and TSI), and 1KG-
AFR (YRI), respectively; 1,041 of the 1,650 SNPs intersected with the three reference populations were
used. (E) Within Chinese fStructure plot indicated within-China genetic composite. The three external
references were 1KG-CHB (North Chinese), 1KG-CHS (South Chinese), and 1KG-CDX (Southwest
minority Chinese Dai), respectively; 1,164 of the 1,650 SNPs intersected with these three reference
populations were used. Along x axis were 11 Chinese cohorts and the height of each bar represented its

proportional genetic composition of the three reference populations. Cohort codes: YRI, Yoruba in Ibadan
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590 representing African samples; CHB, Han Chinese in Beijing; CHS, Southern Han Chinese; CHN, CHB and
591 CHS together; CEU, Utah Residents with Northern and Western European Ancestry; TSI, Tuscani in Italy;
592  CDX, Chinese Dai in Xishuangbanna.
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594  Figure 4 Detected identical pairs and 1st-degree pairs between Chinese cohorts
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596  Figure notes: (A) The circle plot illustrated identical pairs and (B) 1st-degree pairs across 11 Chinses cohorts.
597  The solid links indicated anticipated relatedness between the CAS cohorts and between the YiKon cohorts.
598  The dashed links were sporadic relatedness found between the cohorts. The length of each cohort bar was
599  proportional to their respective sample sizes. (C) The histogram showed all estimated relatedness using

600  encG-reg, most of which were unrelated pairs and the theoretical probability density function was given as
601  the normal distribution N (O,mi + ki) (grey solid curve). The inset histogram on the left showed the
e 1

602  estimated relatedness around 0.5 and the theoretical probability density function was given as the normal

_n2 p2
603  distribution N (t9r,1mi + lki) (blue solid curve). The threshold (grey dot line) for rejecting H, was

1

604 calculated by z;_q 5 /mi + ki The inset histogram on the right showed estimated relatedness around 1.
e 1

605  The threshold (grey dot line) for rejecting Hy was calculated by z;_q /5 /mi + ki Here we included 208
e 0

606  controls merged from 1KG-CHN. m, =477, ky = 72, k; = 757, V' = 1,496,000,912. (D) Relationship
607  verification for 20 YiKon pairs that had mismatched medical records with encG-reg inference. Relatedness
608  score (y axis) was estimated in KING by YiKon. Dashed lines indicated inference criteria for detecting a
609  range of relatedness. Solid line of y = x indicated the agreement between encG-reg and IBD. Points were
610  colored with KING-inferred relatedness (identical in green, Ist-degree in blue, 2nd-degree in red and
611 unrelated in purple) and shaped with encG-reg-inferred relatedness (identical in square and 1st-degree in
612  diamond). (E) Relationship verification for 19 Guangdong twins split in CAS cohorts. Dashed lines indicated
613  inference criteria for detecting relatedness of different degrees. Solid line of y = x indicated the agreement
614 between encG-reg and IBD. Points were colored with IBD-inferred, in KING, relatedness (identical in green,
615  1st-degree in blue and unrelated in red) and was shaped according to encG-reg-inferred relatedness (identical
616  insquare, 1st-degree in diamond and unrelated in circle). (F) Illustration for encG-reg estimation for sporadic
617  related inter-cohort samples. In each plot the grey line was the criterion for identical pairs (slope of 1) or 1st-
618  degree pairs (slope 0f 0.5). The solid lines coloured in red were without adjustment for missing values (engG-
619  reg score), and in the bottom (coloured in purple) were adjusted for missing values (encG-reg score”). The
620  first two pairs (coloured in green) were inferred as identical samples, whose encG-reg scores were close to

621 1, and the rest four pairs (coloured in blue) were 1st-degree pairs, whose encG-reg scores were close to 0.5.
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