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ABSTRACT 40 

Identifying relatives across cohorts makes one of the basic routines for genomic data. As conventional such practice 41 

often requires explicit genomic data sharing, it is easily hampered by privacy or ethical constraints. In this study, 42 

using our proposed scheme for genomic encryption we developed encG-reg, a regression approach that is able to 43 

detect relatives of various degrees based on encrypted genomic data. The encryption properties of encG-reg is built 44 

on random matrix theory, which masks the original genotypic matrix but still provides controllable precision to that 45 

of direct individual-level genotype data. After having found tractable eighth-order moments for encrypted 46 

genotype, we established connection between the dimension of a random matrix and the required precision of a 47 

study. encG-reg consequently led to balanced i) false positive and false negative rates and ii) the computational 48 

cost and the degree of relatives to be searched. We validated encG-reg in 485,158 UKBiobank multi-ethnical 49 

samples, and the resolution of encG-reg was comparable with the conventional method such as KING. In a more 50 

complex application, we launched a fine-devised multi-center collaboration across 6 research institutes in China, 51 

covering 11 cohorts of 64,091 GWAS samples. In both examples, encG-reg robustly identified and validated 52 

relatives existing across the cohorts even under various ethnical background and different genotypic qualities. 53 

  54 
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Introduction 55 

Genomic datasets have been reaching millions of individuals and often encapsulated in well protected cohorts, in 56 

which relatives more than often, given increasing genotyped individuals, spread across cohorts and can be identified 57 

once the  genomic data are compared1. Finding relatives often has clear scientific reasons, such as controlling false 58 

positive rates in genome-wide association study (GWAS) or reducing overfitting in polygenic risk score prediction2–59 

4. Social benefits are recently promoted for available individual genomic data in such as relativeness testing and 60 

forensic genetic genealogy5. However, direct-to-consumer (DTC) genetic testing activities along with third-party 61 

services pose new privacy and ethnic concerns6; law enforcement authorities have exploited some of consumer 62 

genomic databases to identify suspects by finding their distant genetic relatives, which has brought privacy concerns 63 

to the attention of the general public7,8. For regulating forensic genetic genealogy, laws, policies and privacy-64 

protection techniques such as homomorphic encryption are in parallel development9–11. 65 

 66 

The above progress, nevertheless, often requires individual-level data to be shared which may often be beyond the 67 

permitted range of data sharing because of privacy concerns. Directly processing raw genotype in genetic tests may 68 

be vulnerable to attacks12. We developed a novel mitigation strategy called “encrypted genotype regression”, hereby 69 

encG-reg, which does not require direct genotype data but is able to identify relatedness with highly controllable 70 

precision of balanced Type I and Type II error rates. As only encrypted genotype data is exchanged in performing 71 

encG-reg, a pair or a group of collaborated cohorts are able to minimize their concerns of privacy breach. In this 72 

study we explore the properties of encG-reg in theory, simulations, and 485,158 UK Biobank (UKB) samples of 73 

various ethnicity. In a collaboration that includes 6 genomic centers from north to south China (Beijing, Suzhou, 74 

Shanghai, Hangzhou, Guangzhou, and Shenzhen) totaling 64,091 genetically diverse samples genotyped based on 75 

different platforms, intriguing relatedness were identified between cohorts by encG-reg. Often, the logistic complex 76 

of a human genetic study is exacerbated by the number of cohorts involved13; the presented study, however, 77 

establishes an expert-driven constitution and technical innovations for driving multi-cohort collaborations that is now 78 

in demand for genomic studies. 79 

 80 

Materials and Methods 81 

Overview of GRM 82 
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A pair of collaborators, who concern the privacy of their genomic data, seek identification of relatedness between 83 

their cohorts using GWAS data. Using whole genome-wide markers, inter-cohort relatedness for pairs of individuals 84 

can be inferred from genetic relationship matrix (GRM), which requires matrix multiplication between two genotype 85 

matrices, say 𝐗𝟏 and 𝐗𝟐; where 𝐗# is a matrix of 𝑛# individuals (rows) and 𝑚 markers (columns), so is 𝐗$. We 86 

define 𝐆#$ =
#
%
𝐗#𝐗$& = &𝑔'(()!×)" as the real inter-cohort GRM. Here, the genotype matrices are standardized by 87 

SNP allelic frequencies to have zero mean and a unit variance. Under the assumption of multivariate normal 88 

distribution, the expectation and variance of 𝑔'(, using Isserlis’s theorem are14 89 

 𝐸*𝑔'(+ = 𝜃+ and 𝑣𝑎𝑟(𝑔'() =
#,-#"

%
 (Eq 1) 90 

respectively, where 𝑟 is the degree of relatives and 𝜃+ is relatedness score, which has 𝐸(𝜃+) = 2#
$
3
+
, say 𝐸(𝜃+) =91 

0.5, 0.25, and 0.125 for the first, second, and third degree of relatives, respectively. 92 

 93 

Encrypted genotype (encG) and encG regression (encG-reg) 94 

To extend GRM into its encrypted form, one insight from approximate matrix decomposition is that we can find a 95 

𝐐%×%	 matrix, which satisfies 𝐗#𝐐𝐗$& ≈ 𝐗#𝐗$&15. 𝐐 matrix can be decomposed as 𝐐 = 𝐒𝐒&, where 𝐒 is an 𝑚 × 𝑘 96 

matrix and its elements are dependently sampled from a normal distribution, 𝑁(0, 𝜎$). We show that 𝐸(𝐒𝐒&) = 𝐈 97 

and 𝐸*𝐗#𝐒𝐒&𝐗$&+ = 𝐗#𝐗$., with the choice of 𝜎$ = #
/
. When two collaborators provide 𝐗A# = 𝐗#𝐒 and 𝐗A$ = 𝐗$𝐒, 98 

it leads to 𝐸*𝐗A#𝐗A$&+ = 𝐗#𝐗$&  the approximated precision of which relies on the sampling variance. In this study, 99 

we attack the question that if relatives are involved between 𝐗# and 𝐗$, how precisely 𝑘 should be to control 100 

sampling variance that is able to identify relatives of certain degree. The products of matrix multiplication present an 101 

ideal one-way encryption technique in private genetic data sharing, and this is what we call 𝐗A# “encrypted genotype”, 102 

hereby encG. As discussed, it is computationally impossible to recover 𝐗 from 𝐗A without the knowledge of 𝐒16. 103 

 104 

Based on encG, it is now trustworthy to construct encrypted GRM (encGRM) inter-cohort. We define 𝐆A#$ =105 

𝟏
/
(𝐗𝟏𝐒)*𝐒𝐓𝐗𝟐𝐓+ = &𝑔B'(()!×)" , and elements of the random matrix 𝐒  are sampled from a normal distribution 106 

𝑁20, #
%
3 to provide a good transformation of expectation from 𝐸 2𝐗!𝐗"

$

%
3 to 𝐸((𝐗𝟏𝐒)5𝐒

𝐓𝐗𝟐
𝐓6

/
). In terms of the matrix 107 

element 𝑔B'( by eight-order moments approximation, its expectation and variance are 𝐸*𝑔B'(+ = 𝜃+ and 𝑣𝑎𝑟*𝑔B'(+ ≃108 
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#,-#"

/
+ #,-#"

%
, in which #,-#

"

/
 is crept in 𝑣𝑎𝑟*𝑔B'(+ compared with that of 𝑣𝑎𝑟(𝑔'(). As SNPs are often in linkage 109 

disequilibrium (LD), we introduce the effective number of markers (𝑚7), which is a parameter engaged in various 110 

genetic analyses17. The variance of 𝑔'( and 𝑔B'( turns to #,-#
"

%(
 and #,-#

"

/
+ #,-#"

%(
, respectively. 111 

 112 

Another interpretation on encGRM is from the perspective of regression. The regression is also based on encG and 113 

we call it encG regression, which regresses one individual’s encrypted genotype against another. For a pair of 114 

individuals, say individual 𝑖  and individual 𝑗, the slope 𝑏'(  of a simple regression model 𝐱B( = 𝑏'(𝐱B' + 𝐞, also 115 

known as regression coefficient, indicates the identical by descent (IBD) score between these two individuals. Here 116 

𝐱B'  and 𝐱B(  are vectors of encrypted genotypes for two individuals. 𝐱B '  and 𝐱B(  are scaled to zero mean and unit 117 

variance. The expectation and the sampling variance of 𝑏J'( =
89:5𝐱<),𝐱<*6
:>+(𝐱<))

 can be approximated as 118 

 𝐸*𝑏J'(+ = 𝜃+ and 𝑣𝑎𝑟*𝑏J'(+ ≃
#?-#"

/
+ #?-#"

%(
 (Eq 2) 119 

Compared to encGRM, encG-reg generates smaller sampling variance and thus conceals improved power in 120 

identifying relatives from unrelated pairs. 121 

 122 

A minimal number of 𝒎𝒆 and 𝒌 123 

For a pair of individuals I) whose relatedness is estimated by GRM and follows the distribution of 𝑁(𝜃+ ,
#,-#"

%(
), we 124 

ask how to identify them from unrelated pairs with a distribution of 𝑁(0, #
%(
); II) whose relatedness is estimated by 125 

encG-reg and follows the distribution of 𝑁(𝜃+ ,
#?-#"

/
+ #?-#"

%(
), we ask how to differentiate them from unrelated pairs 126 

with a distribution of 𝑁(0, #
/
+ #

%(
). This question is analogous to the conventional pattern recognition, which can be 127 

solved under the power calculation in the statistical test framework for null verse alternative hypotheses. We 128 

consequently need to determine two key parameters. I) the effective number of markers, 𝑚7, a population statistic 129 

that sets the resolution of GRM itself in detecting relatives. II) the column number of the random matrix, 𝑘, an 130 

iteration dimension that sets the precision of encG-reg. To determine 𝑚7 and 𝑘, upon Type I error rate (𝛼, false 131 

positive rate as aforementioned) and Type II error rate (𝛽, false negative rate), 𝑚7 should satisfy below 132 

 𝑚7|B,C,-#
> PD!+,

E#,-#",D!+-
-#

Q
$

 (Eq 3) 133 
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Similar to 𝑚7, the minimal number of 𝑘 is also responsible for a certain Type I and Type II error rates, and the 134 

degree of relatives to be detected, while corresponding to 𝑚7 as well, 135 

 𝑘|B,C,-#,%( >
#

F .#

/!+,0!+.#
"1/!+-

G

"

? !
2(

 (Eq 4) 136 

In particular, 𝛼 should be under experiment-wise control, say after Bonferroni correction, and consequently upon 137 

the total comparisons 𝒩 = ∑ 𝑛'𝑛(𝒞
'I( , where there are 𝒞 cohorts and 𝑛' is the sample size of cohort 𝑖, or just pair-138 

wise comparisons 𝒩'( = 𝑛'𝑛(. 139 

 140 

Validation for theoretical results 141 

We validated the variance of GRM, encGRM and encG-reg in simulations. 1,000 pairs of relatives were separated in 142 

cohort 1 and cohort 2. 𝑚 = 1,000, 1,250, 1,500, 1,750 and 2,000 independent markers were simulated, and their 143 

minor allele frequency (MAF) was sampled from a uniform distribution 𝑈(0.05, 0.5). Genotype matrices from two 144 

cohorts were encrypted with the same 𝑚 × 𝑘 random matrix 𝐒, whose elements drew from a normal distribution 145 

𝑁(0, #
%
). We set 𝑘 to be 1,000, 2,000, 3,000, 4,000 and 5,000, respectively. Both real and encrypted genotype 146 

matrices were standardized based on the description for the three methods. Observed and theoretical variances were 147 

examined among four different degrees of relatedness (𝜃+ = 0.5+ , in which 𝑟 = 0, 1, 2, and	3 for 𝑟JK  degree of 148 

relatives). Besides, to testify how allele frequency can influence the variance of GRM – which should be modeled by 149 

conditional binomial distribution as discussed above, we simulated 1,000 pairs of relatives of certain degrees, and 150 

2,000 markers with the same MAF from 0.05 to 0.45 per increase in 0.1. We compared the observed variance of 151 

relatedness with the theoretical relatedness in 10 repeats. 152 

 153 

We also examined how 𝑚 and 𝑘 affect the identification of various relatedness in simulations. We simulated 200 154 

individuals each for cohort 1 and cohort 2 (𝑛# = 𝑛$ = 200); between cohort 1 and cohort 2 we generated 10 pairs of 155 

identical samples for each relative, i.e., 1st-degree, 2nd-degree, and 3rd-degree relatives, respectively. We set the 156 

desired number of markers (𝑚) two times of that given by Eq 3 and the corresponding size of 𝑘 as given by Eq 4 at 157 

the experiment-wise Type I error rate of 0.05 and Type II error rate of 0.1 – statistical power of 0.9 accordingly. We 158 

simulated individual-level genotype matrices with the dimension of 𝑛# ×𝑚  and 𝑛$ ×𝑚  and the encrypted 159 

genotype matrices with the dimension of 𝑛# × 𝑘 and 𝑛$ × 𝑘. Relatedness scores for GRM, encGRM and encG-reg 160 
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 8 

were calculated accordingly and theoretical distributions were derived under the assumption of multivariate 161 

distribution for each degree of relatedness. In this case, we ignored the difference between 𝑚 and 𝑚7, because SNPs 162 

were generated independently here. 163 

 164 

More detailed theoretical work for Eq 1~2 of GRM (SNote 1 and 2, and SNote 3 for conditional binomial distribution 165 

properties of GRM), encGRM (SNote 4), and encG-reg (SNote 5) is summarized in supplementary notes and Table 166 

S1-2 which was validated in simulation (Figure S1-3). Details on statistical power calculation for Eq 3~4 please see 167 

SNote 6. 168 

 169 

Protocol for encG-reg for biobank-scale application 170 

Figure 1 presents the workflow of encG-reg algorithm and its detailed implementation from cohort assembly to final 171 

relatedness identification. After the assembly of cohorts, there are options in choosing SNPs upon the experimental 172 

design. An exhaustive design denotes the use of intersected SNPs between each pair of cohorts, thus a specific random 173 

matrix will be shared to each pair of cohorts. Given 𝒞 cohorts, there are 𝒞(𝒞 − 1)/2 𝐒 matrices generated and each 174 

cohort is likely to receive 𝒞 − 1 different 𝐒 matrices. Adopting exhaustive design is possibly to maximize the 175 

statistical power with maximized number of SNPs, but the computational, as well as communicational, efforts may 176 

overwhelm the organization of a study. In contrast, a parsimony design denotes the use of intersected SNPs among 177 

all assembled cohorts, as long as the number of SNPs satisfies the resolution in Eq 3 and Eq 4. Exhaustive design 178 

and parsimony design are both validated in the 19 UKB cohorts, which had sample size greater than 10,000 each, 179 

and parsimony design are further tested in the real-world for 11 Chinese cohorts in this study. 180 

 181 

We sketch encG-reg into a detailed technical protocol. This protocol can be automated, such as by a web server that 182 

coordinates the study. Once the cohorts are assembled, there are four steps in total, where steps 1 and 3 are performed 183 

by each collaborator and steps 2 and 4 are performed by a central analyst. We provide commands and simulated data 184 

in https://github.com/qixininin/encG-reg. 185 

 186 

Step 1 Cohort assembly and intra-cohort quality controls Basic intra-cohort QCs should be conducted. Summary 187 

information such as SNP ID, reference allele, and its frequency are then requested by the central analyst. 188 
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 189 

Step 2 Inter-cohort quality controls and parameter set up	Using “geo-geno” relationship, we suggested two inter-190 

cohort QCs. One is called frequency-principle component analysis (fPCA) which illustrate the origins of cohorts, and 191 

another is called fStructure which explores genetic composition of each cohort in comparing with reference 192 

populations. The technical details of the employed methods can be found in our previous study16. Finally, the 193 

feasibilities of exhaustive and parsimony designs will be evaluated depending on the number of intersected SNPs and 194 

possible costs in communication. Central analyst determines 𝑚 and 𝑘 by Eq 3 and Eq 4 based on survived SNPs 195 

and passes parameter information to each collaborator along with an SNP list. The corresponding 𝑚7  will be 196 

estimated from, here, 1KG-EUR and 1KG-CHN as the reference populations for validation in the UKB cohorts and 197 

the Chinese cohorts, respectively. 198 

 199 

Step 3 Encrypt genotype matrix The 𝑚-by-𝑘 random matrix, or matrices when an exhaustive design is chosen, is 200 

generated and sent to each cohort. As a positive control, reference samples will be merged to each cohort. Genotype 201 

encryption is realized by the matrix multiplication between the standardized genotype matrix and 𝐒. 202 

 203 

Step 4 Perform encG-reg Inter-cohort computing for relatedness will be conducted by the central analyst. A 204 

successful implementation will lead to at least positive controls consistently identified as inter-cohort “overlap” and 205 

if possible, various sporadic relatedness. 206 

 207 

Validation I: UK Biobank in exhaustive and parsimony design 208 

Both exhaustive and parsimony design were conducted for the validation of encG-reg on 485,158 UKB multi-209 

ethnical samples from 19 assessment centers, which had sample size greater than 10,000 (Table S3). Identical/twins, 210 

1st-degree and 2nd-degree relatedness were aimed to be detected by KING (“the rule of thumb”) using the real 211 

genotypes and encG-reg using the encrypted genotypes, respectively. We conducted QC on the 784,256 chip SNPs 212 

within the 19 cohorts, and the inclusion criteria for autosome SNPs were: (1) MAF > 0.01; (2) Hardy-Weinberg 213 

equilibrium (HWE) test p-value > 1e-7; and (3) locus-level missingness < 0.05. In addition, taking account of cross-214 

ethnicity nature in those UKB samples, only SNPs of ethnicity-insensitive frequency, which had indifferent allele 215 

frequencies statistically, were included. 216 
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 217 

For an exhaustive design, intersected SNPs were selected between each two cohorts, leading to generate 171 pairs of 218 

cohort combination for detecting relatedness. For a parsimony design, a total number of 12,858 intersected SNPs 219 

among all 19 cohorts were selected. The number of 𝑘 for encG-reg were estimated by Eq 4 at Type I error rate of 220 

0.05 and Type II error rate of 0.1. To note that, experiment-wise Bonferroni correction is based on the number of 221 

paired samples between each two cohorts (𝒩'( = 𝑛'𝑛() for exhaustive design and based on total number of paired 222 

samples among all cohorts (𝒩 = ∑ 𝑛'𝑛(𝒞
'I( ) for parsimony design. The number of intersected SNPs were all given 223 

in Table S4. 224 

 225 

To zoom in the performance of encG-reg, we took a close scrutiny at two assessment centers in Manchester (11,502 226 

individuals) and Oxford (12,260 individuals) from UKB white British. We used KING to estimate relationship of 227 

any pair of individuals between two cohorts with the recommended thresholds of (0.354, 0.500), (0.177, 0.354), and 228 

(0.088, 0.177) in determining identical, 1st-degree, and 2nd-degree relatives1. 17 pairs of 1st-degree relatedness and 229 

2 pairs of 2nd-degree relatedness detected (no identical samples detected) by KING were taken for a close scrutiny 230 

of encG-reg. As we have already known, in the discussion on Eq 1, that a relatively high MAF has smaller sampling 231 

variance and contributes more  statistical power (Figure S3), we randomly sampled SNPs with different ranges of 232 

MAF (0.01 to 0.05, 0.05 to 0.15, 0.15 to 0.25, 0.25 to 0.35, 0.35 to 0.5, and 0.05 to 0.5) so as to compare the 233 

performance of encG-reg and KING. According to the minimal number of 𝑚7 and 𝑘 at the experiment-wise Type 234 

I error rate of 0.05 and Type II error rate of 0.1 (Table S5), we selected 566 (𝑚7 = 566) and 2,209 (𝑚7 = 2,023) 235 

markers for detecting 1st-degree and 2nd-degree relatedness. 𝑚7 could be empirically estimated as #
:>+5𝐆3446

, where 236 

𝐆9MM denotes the off-diagonal elements of GRM. Since 𝑚7 is asymptotically distributed as 𝑁(𝑚7 ,
N%(

"

)"
) according 237 

to our estimation, the sampling variance of 𝑚7 is negligible as long as the studying populations are of the similar 238 

ancestry, such as the case for Manchester and Oxford cohorts in UKB and the Chinese datasets employed in this 239 

study (Table S6). Against possible noise that may rust statistical power, we also increased 𝑘 to 1.2𝑘 and denoted as 240 

encG-reg+. Average relatedness score, standard deviation and statistical power were calculated for each detected 241 

relative-pairs after resampling SNPs for 100 times. 242 

 243 

Validation II: 10 multi-center Chinese datasets in parsimony design 244 
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We launched a national-scale test for encG-reg in 10 Chinese datasets under the parsimony design to avoid possible 245 

computational and communicational costs. 4 out of 10 datasets were publicly available, while the remaining datasets 246 

were recruited from 6 research centers, located in from north to south China, Beijing, Suzhou, Shanghai, Hangzhou, 247 

Guangzhou, and Shenzhen. As a proof of principle and brief validation of encG-reg in as civil as complex 248 

environment, these datasets agreed to detect identical samples or 1st-degree relatedness but without other exchange 249 

for medical information. 250 

 251 

1KG-CHN (public): We considered two Chinese subpopulations in 1000 Genome Project (1KG)18, CHB (Han 252 

Chinese in Beijing, 103 individuals) and CHS (Southern Han Chinese, 105 individuals) as reference population and 253 

positive control in the cross-cohort test in Chinese datasets. Individuals in the project were genotyped by whole-254 

genome sequencing or whole-exon sequencing. 255 

UKB-CHN (accessible after application): The UK Biobank (UKB) includes 1,653 individuals of self-reported 256 

Chinese19. After genomic assessment, 1,435 were considered from Chinese origin. Individuals in the project were 257 

genotyped using the Applied Biosystems UK BiLEVE Axiom Array by Affymetrix, followed by genotype imputation. 258 

CONVERGE (public): The CONVERGE consortium aimed to investigate major depressive disorder (MDD)20. It 259 

included 5,303 Chinese women with recurrent MDD and 5,337 controls, all of whom were genotyped with low-260 

coverage whole-genome sequencing and followed by imputation. 261 

MESA (accessible after application): The Multi-Ethnic Study of Atherosclerosis (MESA) was to investigate 262 

subclinical cardiovascular disease21. 653 Chinese samples were included. Individuals were genotyped using 263 

Affymetrix Genome-Wide Human Single Nucleotide Polymorphism array 6.0, followed by genotype imputation. 264 

SBWCH Biobank: The Shenzhen Baoan Women’s and Children’s Hospital (Baoan district, Shenzhen, Guangdong 265 

province) Biobank aims to investigate traits and diseases during pregnancy and at birth. 30,074 women were included 266 

in this study. Maternal genotypes were inferred from the non-invasive prenatal testing (NIPT) low depth whole 267 

genome sequencing data using STITCH22 following the methodological pipeline that we previously published23. The 268 

average genotype imputation accuracy reaches 0.89 after filtration of INFO score 0.4. 269 

CAS and ZOC: The Chinese Academy of Sciences (CAS) cohort is a prospective cohort study aiming to identify 270 

risk factors influencing physical and mental health of Chinese mental workers via a multi-omics approach. Since 271 

2015, the study has recruited 4,109 CAS employees (48.2% male) located in Beijing, China. All participants belong 272 
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to the research/education sector, and are characterized by a primary of Chinese Han origin (94.1%). DNA was 273 

extracted from peripheral blood samples and genotyped on the Infinium Asian Screening Array + MultiDisease-24 274 

(ASA+MD) BeadChip, a specially designed genotyping array for clinical research of East Asian population with 275 

743,722 variants. CAS study was approved by the Institutional Review Board of Beijing Institute of Genomics 276 

Chinese Academy of Sciences and Zhongguancun hospital. For validation purpose, samples were randomly split into 277 

CAS1 and CAS2. According to their records, ZOC was consisted of 19 homozygotic and heterozygotic siblings, who 278 

were evenly split into CAS1 and CAS2 as internal validation of encG-reg. ZOC is part of The Guangzhou Twin Eye 279 

Study (GTES), a prospective cohort study that included monozygotic and dizygotic twins born between 1987 and 280 

2000 as well as their biological parents in Guangzhou, China. Baseline examinations were conducted in 2006, and 281 

all participants were invited to attend annual follow-up examinations. Non-fasting peripheral venous blood was 282 

collected by a trained nurse at baseline for DNA extraction, and genotyping was performed using the Affymetrix 283 

axiom arrays (Affymetrix) at the State Key Laboratory of Ophthalmology at Zhongshan Ophthalmic Center (ZOC)24. 284 

This study was approved by the ethics committee of Zhongshan Ophthalmic Center and was conducted in accordance 285 

with the tenets of the Declaration of Helsinki. Written informed consent was obtained for all participants from parents 286 

or their legal guardians. CAS and ZOC cohorts were deeply collaborated for certain studies, and consequently merged 287 

to fit this study. 288 

Fudan: A multistage GWAS of glioma were performed in the Han Chinese population, with a total of 3,097 glioma 289 

cases and 4,362 controls. All Chinese Han samples used in this study were obtained through collaboration with 290 

multiple hospitals (Southern population from Huashan Hospital, Nanjing 1st Hospital, Northern population from 291 

Tiantan Hospital and Tangdu Hospital). DNA samples were extracted from blood samples and were genotyped using 292 

Illumina Human OmniExpress v1 BeadChips25. 2,008 samples were included for this study. 293 

YiKon: YiKon cohort is striving for the research of reproductive medicine. 9,999 Chinese samples many with known 294 

pedigrees were included in this study. Individuals were genotyped using Illumina Infinium Asian Screening Array. 295 

For the validation of encG-reg, familial members were randomly split into YiKon1 (5,000 samples) and YiKon2 296 

(4,999 samples). 297 

WBBC: The Westlake BioBank for Chinese (WBBC) cohort is a population-based prospective study with its major 298 

purpose to better understand the effect of genetic and environmental factors on growth and development from 299 

youngster to elderly26. The mean age of the study samples were 18.6 years for males and 18.5 years for females, 300 
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respectively. The Westlake BioBank WBBC pilot project have finished whole-genome sequencing (WGS) in 4,535 301 

individuals and high-density genotyping in 5,841 individuals27,28. 302 

 303 

In total, based on 10 datasets, we reorganized, mostly retained, 11 Chinese cohorts (1KG-CHN, UKB-CHN, 304 

CONVERGE, META, SBWCH, CAS1, CAS2, Fudan, YiKon1, YiKon2 and WBBC) to be involved in the real-305 

world test of encG-reg. Within CAS1 and CAS2 and within YiKon1 and YiKon2, relatedness if would be reported 306 

by encG-reg was verified by CAS and YiKon, respectively. Between other pairs of cohorts, sporadic relatedness 307 

might occur, as would have been found. 308 

 309 

Results 310 

Simulations 311 

We performed a series of simulations to evaluate the robustness of encG-reg, accompanied by GRM and encGRM. 312 

The estimated sampling variance of GRM, encGRM and encG-reg matched with the theoretical variance at each level 313 

of relatedness (Figure S2). It was noticeable that larger MAFs could lead to a smaller variance of GRM score (Figure 314 

S3), that further resulted in a smaller variance and a higher power of detecting relatives for encGRM and encG-reg. 315 

We also sketched up how 𝑚 and 𝑘 determined the resolution of encGRM and encG-reg (Figure S4). The results 316 

showed that for encG-reg, in each scenario, sufficient 𝑘 was able to detect a certain degree of relatedness if 𝑚 could 317 

support. As we evaluated in simulation, encG-reg stood out against encGRM with a smaller variance and a higher 318 

resolution as a good attempt in detecting relatives with encrypted genotypes. 319 

 320 

Validation I: UKBiobank exercise for multi-ethnical samples 321 

We verified the exhaustive design of encG-reg in 19 UKB cohorts by comparing with KING (Figure 2A). The 322 

average number of intersected SNPs between each two pairs of cohorts was 13,157. Relatedness was estimated and 323 

inferred up to the second degree, where KING used real genotypes and encG-reg used encrypted genotypes only. The 324 

same 38 pairs of identical samples (monozygotic twins in this case) were detected by KING and encG-reg, 7,965, 325 

and 6,632 pairs of 1st-degree and 2nd-degree relatedness were inferred by KING, the number of which went to 7,913 326 

and 7,022 for encG-reg, respectively. It could be seen that encG-reg was quite comparable to KING in practice. Based 327 

on individual ID and their recorded ethnicity, consistent relatedness scores were estimated by KING and encG-reg 328 
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(Figure 2B-D). Combining geographic distance between 19 cohorts, we discovered that more relatives were detected 329 

between adjacent assessment centers, like Manchester and Bury, Newcastle and Middlesborough, and Leeds and 330 

Sheffield. Besides, consistent numbers of relatedness were inferred by the parsimony design of encG-reg (Table S7). 331 

The decrease in the number of detected 2nd-degree relatedness for parsimony design was possibly due to a smaller 332 

experiment-wise Type I error rate and thus a more stringent cutting threshold. 333 

 334 

We took a closer look at two representative assessment centers in Manchester and Oxford. Figure 2E listed that of 335 

the 11,502 × 12,260 = 141,014,520 pairs of inter-cohort individuals, 17 pairs of so-called 1st-degree and 2 pairs 336 

of 2nd-degree relatives were found using overall QCed SNPs by KING. The bar plots compared relatedness scores 337 

of the known 1st-degree (𝑚7 = 566, 𝑘 = 494) and 2nd-degree (𝑚7 = 2023, 𝑘 = 2,342) relatives, estimated by 338 

KING, GRM, encG-reg, and encG-reg+ (using 1.2𝑘). In general, encG-reg and encG-reg+, still showed very similar 339 

estimations of relatedness score comparing with KING, even only encrypted genotypes were provided. When SNPs 340 

were sampled with MAFs between 0.05 and 0.5, the average statistical power reached 0.9 and 0.95 for detecting 1st-341 

degree relatedness by encG-reg and encG-reg+. The overall statistical power increased as MAF increased; otherwise 342 

the MAF of the sampled SNPs was less than 0.05, the statistical power of encG-reg was practically as sufficient as 343 

devised (Figure S5). 344 

 345 

Validation II: national-scale test in China 346 

As summarized in Figure 1, the Chinese cohort study was swiftly organized and completed within about 7 weeks, 347 

demonstrating that encG-reg was easy to carry out. Following intra-cohort QCs and upon received summary 348 

information, we examined sample sizes and SNPs in each cohort (Table 1). In total, it included 64,091 samples and 349 

generated 𝒩 =1,496,000,912 pairs of tests. When allele frequencies were compared with that in CONVERGE, the 350 

majority of SNPs had consistent allele frequencies across cohorts (Table S8 and Figure S6). The missing rates and 351 

the intersected SNPs were also examined across cohorts (Figure S7-8, and Table S9), after which a total of 1,650 352 

SNPs were in common among 11 cohorts for parsimony design of encG-reg (Figure 3A). The results of fPCA and 353 

fStucture matched with their expected “geo-geno” mirror in Chinese samples23. The first eigenvector of fPCA 354 

distinguished southern and northern Chinese samples in this study, the SBWCH Biobank (dominantly sampled from 355 

Shenzhen, the southmost metropolitan city in mainland China) and CAS cohort (dominantly sampled from Beijing) 356 
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(Figure 3B and 3C). Using a slightly different illustration strategy, the fStructure results, a counterpart to the well-357 

known Structure plot in population genetics, were also consistent with the reported Chinese background of the 11 358 

cohorts (Figure 3C and 3D). As the Chinese datasets showed little population structure, the choice of SNPs ignored 359 

the technical consideration for multi-ethnicity as in UKBiobank exercise. 360 

 361 

We offered a list of 500 shared SNPs, whose 𝑚7 was 477 (evaluated in 1KG-CHN) and the corresponding minimal 362 

number of 𝑘  was 757 given the experiment-wise Type I error rate of 0.05 and statistical power of 0.9. Each 363 

collaborator then encrypted their genotype matrix by the random matrix 𝐒. As foolproof controls, 1KG-CHN samples 364 

were consistently identified as “identical” inter-cohort. 365 

 366 

Anticipated relatives were identified between YiKon1 and YiKon2, and between CAS1 and CAS2 (Figure 4A and 367 

4B), and further validated by intra-cohort IBD calculation, respectively. Between YiKon1 and YiKon2, we reported 368 

194 identical samples and 2,194 1st-degree relatedness, respectively. The pair-wise encG-reg distributions between 369 

cohorts were consistent to our theoretical expectation (Figure 4C and Figure S9). Detected relatedness were 370 

confirmed by medical records (101 pairs were unknown among 2,388 identified pairs) in YiKon. However, for 20 371 

inferred but unrecorded relatedness pairs, YiKon further verified them using real genotype data (Figure 4D). KING-372 

inferred relatedness matched with encG-reg in 14 pairs. Of the rest six pairs that all identified as 1st-degree by encG-373 

reg, three were inferred as 2nd-degree and one as unrelated by KING. In addition, due to possible adopted thresholds, 374 

KING reported two 1st-degree pairs as identical (their kinship scores were 0.390 and the suggested threshold for 375 

separating 1st-degree and identical pairs was 0.354), while encG-reg clearly separated identical pairs from 1st-degree 376 

(Figure 4C). 377 

 378 

Specifically, as each of 19 Guangzhou twins was split into CAS1 and CAS2, 18 pairs were identified as monozygotic 379 

(MZ) or dizygotic (DZ) by encG-reg and verified by intra-cohort IBD calculation in CAS Beijing team (Figure 4E). 380 

Remarkably, one pair of so-called twins that was left out by encG-reg was verified as unrelated by IBD calculation, 381 

and ZOC team took further investigation on possible logistic errors. These results demonstrated that encG-reg was 382 

reliable with well controlled Type I and Type II error rates. 383 

 384 
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In particular, we illustrated how sporadically related pairs were captured by encG-reg. We detected 6 pairs of inter-385 

cohort relatedness, including 2 pairs of identical samples and 4 pairs of 1st-degree relatives (Table 2). For these 386 

sporadic related inter-cohort samples, encG-reg exhibited their relatedness in forms of regression plots and estimated 387 

regression coefficients (Figure 4F). Obviously, compared with the regression plot for 2 pairs of identical samples, 388 

the higher missing rate of SBWCH then introduced more noise but was still captured by encG-reg. Nevertheless, its 389 

largest sample size provided SBWCH more linked with other cohorts. To avoid possible breaching of privacy we did 390 

not explore their relationship further here. 391 

 392 

DISCUSSION 393 

Individual genome sequencing is likely to be the trend and deserves well preserved privacy. The purpose of genomic 394 

data sharing often leads to cross-cohort tasks, such as finding relatives as occurred but of various purposes. Privacy-395 

protection issues are raised during these tasks. One attempt on detecting cross-cohort relatives, limited to only 396 

overlapping individuals, employed one-way cryptographic hashes, which offered qualitative but not quantitative 397 

conclusions on false positive and false negative rates29. To settle the question of exact encryption precision, we 398 

focused more on the intrinsic consequence after genotype encryption with random matrix. Given our current 399 

knowledge in random matrix theory, we described its properties in how 𝑘 and 𝑚7 influence the encryption precision 400 

for encrypted genotypes. This property is well testified in GRM which can be considered as a basis for a multiparty, 401 

or say cross-population genotype sharing. To note that the random matrix encryption, also called “random orthogonal 402 

keys”, has been applied in performing GWAS30,31. They claimed that random orthogonal keys provide an encryption 403 

scheme where it is very difficult to recover individual genetic or phenotypic data. However, our investigation led to 404 

controllable encryption precision even under varying genotype platforms and data quality. 405 

 406 

As demonstrated in UKB multi-ethnical samples, encG-reg could be applied for biobank-scale datasets with very 407 

high precision compared with conventional individual-level benchmark methods such as KING and GRM. Our real-408 

world test in Chinese cohorts present an unprecedent attempt on developing safe method that can be applied in large-409 

scale searching relatives with encrypted genomic data. In a real-world setup, for the sake of convenience and 410 

manageability, we only considered parsimony design of using shared SNPs across the 11 Chinese cohorts. Switching 411 

to exhaustive design will be a better choice if each pair of cohorts conducts encG-reg for their customized degree of 412 
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relatives. Compared with UKB, which has relatives more frequently found in nearby assessment centers, the 413 

assembled Chinses cohorts are unanticipatedly fused a “functional cascade”. The cohorts SBWCH, YiKon, and 414 

CONVERGE could be engaged in a much bigger network on human production medicine. Consequently, close 415 

relatives were detected between them. Likely was a person to join one or another genomic service under the influence 416 

of relatives who has already been included in a such service. 417 

 418 

For either exhaustive design or parsimony design of encG-reg, the core algorithm is algebraic and asks little human 419 

information in its implementation, so developing an automatic central analysis facility that can significantly host and 420 

synchronize more cohorts will be in the near future. An exhaustive implementation of encG-reg will search even 421 

deeper relatedness across cohorts in a highly mobilizing nation like China, in which relatives were used to live nearby 422 

but now are more distantly due to industrialization32. A much deeper implementation of encG-reg will bring out 423 

unique resource for conducting biomedical research at large scale as including familial information as demonstrated33. 424 

Last but not least, encG-reg is developed a tool that, under much better protected genomic privacy, can facilitate 425 

necessary relative searching when it is needed but not for the purpose of penetrate membership or other unethical 426 

activities. 427 

 428 

Data availability statement 429 

Public datasets used in this study can be freely downloaded from the following URLs. Access to certain public 430 

databases may require researchers to submit their access requests. 431 

1000 Genome Project: https://www.internationalgenome.org/home. 432 

UK Biobank: https://www.ukbiobank.ac.uk/. 433 

CONVERGE: http://dx.doi.org/10.5524/100155. 434 

MESA: https://www.mesa-nhlbi.org/. 435 

All codes for simulation study and practical protocol are available in https://github.com/qixininin/encG-reg. 436 

 437 

Acknowledgements 438 

We thank the participants of the included cohorts and of UK Biobank for making this work possible (UKB application 439 

41376). This work is supported by National Natural Science Foundation of China (31771392 to GBC, 31900487 to 440 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.10.18.512407doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.18.512407
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

SL, 31871707 to HMX, 32061143019 to HFZ, and 81974197 to JH), Chinese Academy of Sciences (KFJ-STS-441 

ZDTP-079, XDB38010400, KJZD-EW-L14), China Postdoc Council (E1QTJP0201), and QZ was partially 442 

supported by a student research fellowship of Zhejiang provincial people’s hospital; the funders played no role in 443 

designing, preparation, and submission of the paper. Thank Qiu Feng, Mu Wentao, and Mei Lixiao for various 444 

assistance in making this work possible. 445 

 446 

Author contributions 447 

GBC conceived and initiated the study. GBC, SL (SWBCH), FL (CAS), YY (YiKon), HFZ (WBBC), MH (ZOC), 448 

DL (Fudan), and HMX designed the part of study for 11 Chinese datasets; each cohort team conducted intra-cohort 449 

analyses. GBC and QZ derived the analytical results. QZ conducted simulation, analyzed UKBiobank samples, and 450 

QZ developed the toolkit for encG-reg. GBC and QZ wrote the first draft of the paper, ZX, HZ, JH, XZ, and HM 451 

contributed to the writing and discussion that improved earlier versions of the paper. All authors contributed to the 452 

writing, discussion of the paper, and validation of the results. 453 

SWBCH team: XG, JZ, and SL; 454 

CAS team: LT, QZ, PJ, CZ and FL; 455 

ZOC team: XH, XD, and MH; 456 

WBBC team: MY, SK, and HFZ; 457 

YiKon Genomics: KB, YY, and SLu; 458 

Fudan team: FZ, HC, and DL. 459 

 460 

Declare of Interests 461 

None. 462 

  463 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.10.18.512407doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.18.512407
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

References 464 

1. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–465 

73 (2010). 466 

2. Thomson, R. & McWhirter, R. Adjusting for Familial Relatedness in the Analysis of GWAS Data. Methods Mol. 467 

Biol. 1526, 175–190 (2017). 468 

3. Choi, S. W., Mak, T. S. H. & O’Reilly, P. F. Tutorial: a guide to performing polygenic risk score analyses. Nat. 469 

Protoc. 15, 2759–2772 (2020). 470 

4. Wray, N. R. et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14, 507–15 (2013). 471 

5. Guerrini, C. J. et al. Family secrets: Experiences and outcomes of participating in direct-to-consumer genetic 472 

relative-finder services. Am. J. Hum. Genet. 109, 486–497 (2022). 473 

6. Nelson, S. C., Bowen, D. J. & Fullerton, S. M. Third-Party Genetic Interpretation Tools: A Mixed-Methods Study 474 

of Consumer Motivation and Behavior. Am. J. Hum. Genet. 105, 122–131 (2019). 475 

7. Erlich, Y., Shor, T., Pe’er, I. & Carmi, S. Identity inference of genomic data using long-range familial searches. 476 

Science 362, 690–694 (2018). 477 

8. Ram, N., Guerrini, C. J. & McGuire, A. L. Genealogy databases and the future of criminal investigation. Science 478 

360, 1078–1079 (2018). 479 

9. Ram, B. N., Murphy, E. E. & Suter, S. M. Regulating forensic genetic genealogy. Science 373, 1444–1446 (2021). 480 

10. Bonomi, L., Huang, Y. & Ohno-Machado, L. Privacy challenges and research opportunities for genomic data 481 

sharing. Nat. Genet. 52, 646–654 (2020). 482 

11. Wan, Z. et al. Sociotechnical safeguards for genomic data privacy. Nat. Rev. Genet. 23, 429–445 (2022). 483 

12. Ney, P., Ceze, L., Kohno, T. & Allen, P. G. Genotype Extraction and False Relative Attacks: Security Risks to 484 

Third-Party Genetic Genealogy Services Beyond Identity Inference. Annu. Netw. Distrib. Syst. Secur. Symp. (2020). 485 

doi:10.14722/ndss.2020.23049 486 

13. Yu, H. & Xue, L. Shaping the evolution of regime complex: The case of multiactor punctuated equilibrium in 487 

governing human genetic data. Glob. Gov. 25, 645–669 (2019). 488 

14. Isserlis, L. On a formula for the product-moment coefficient of any order of a normal frequency distribution in any 489 

number of variables. Biometrika 12, 134–139 (1918). 490 

15. Halko, N., Martinsson, P. G. & Tropp, J. A. Finding structure with randomness: Probabilistic algorithms for 491 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.10.18.512407doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.18.512407
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

constructing approximate matrix decompositions. SIAM Rev. 53, 217–288 (2011). 492 

16. Chen, G. B. et al. Across-cohort QC analyses of GWAS summary statistics from complex traits. Eur. J. Hum. 493 

Genet. 25, 137–146 (2016). 494 

17. Chen, G.-B. Estimating heritability of complex traits from genome-wide association studies using IBS-based 495 

Haseman-Elston regression. Front. Genet. 5, 107 (2014). 496 

18. Altshuler, D. L. et al. A map of human genome variation from population scale sequencing. Nature 467, 1061–497 

1073 (2010). 498 

19. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018). 499 

20. Cai, N. et al. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523, 588–500 

591 (2015). 501 

21. Bild, D. E. et al. Multi-Ethnic Study of Atherosclerosis: Objectives and Design. Am. J. Epidemiol. 156, 871–881 502 

(2002). 503 

22. Davies, R. W., Flint, J., Myers, S. & Mott, R. Rapid genotype imputation from sequence without reference panels. 504 

Nat. Genet. 48, 965–969 (2016). 505 

23. Liu, S. et al. Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral 506 

infections, and Chinese population history. Cell 175, 347–359 (2018). 507 

24. Zheng, Y., Ding, X., Chen, Y. & He, M. The Guangzhou twin project: An update. Twin Res. Hum. Genet. 16, 73–508 

78 (2013). 509 

25. Chen, H. et al. Two novel genetic variants in the STK38L and RAB27A genes are associated with glioma 510 

susceptibility. Int. J. Cancer 145, 2372–2382 (2019). 511 

26. Zhu, X. W. et al. Cohort profile: the Westlake BioBank for Chinese (WBBC) pilot project. BMJ Open 11, e045564 512 

(2021). 513 

27. Cong, P. K. et al. Identification of clinically actionable secondary genetic variants from whole‐genome sequencing 514 

in a large‐scale Chinese population. Clin. Transl. Med. 12, e866 (2022). 515 

28. Cong, P. K. et al. Genomic analyses of 10,376 individuals in the Westlake BioBank for Chinese (WBBC) pilot 516 

project. Nat. Commun. 13, 2939 (2022). 517 

29. Turchin, M. C. & Hirschhorn, J. N. Gencrypt: one-way cryptographic hashes to detect overlapping individuals 518 

across samples. Bioinformatics 28, 886–8 (2012). 519 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.10.18.512407doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.18.512407
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

30. Mott, R., Fischer, C., Prins, P. & Davies, R. W. Private Genomes and Public SNPs : Homomorphic Encryption of 520 

Genotypes and Phenotypes for Shared Quantitative Genetics. Genetics 215, 359–372 (2020). 521 

31. Yang, M. et al. TrustGWAS : A full-process workflow for encrypted GWAS using multi-key homomorphic 522 

encryption and pseudorandom number perturbation Methods TrustGWAS : A full-process workflow for encrypted 523 

GWAS using multi-key homomorphic encryption and pseudorand. Cell Syst. 1–16 (2022). 524 

doi:10.1016/j.cels.2022.08.001 525 

32. Chen, G. B. Where is the friend’s home. Front. Genet. 5, 400 (2014). 526 

33. Kaplanis, J. et al. Quantitative analysis of population-scale family trees with millions of relatives. Science 360, 527 

171–175 (2018). 528 

529 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 29, 2022. ; https://doi.org/10.1101/2022.10.18.512407doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.18.512407
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

Table 1 Summary information for the cohorts participated in this study 530 
Cohort ID Genotyping platform Sample size SNPs (after QC) Description 

1KG-CHN18 NGS 208 5,578,934 Chinese in 1000 Genome Project 
UKB-CHN19 Affymetrix Chip + imputation 1,435 5,033,920 Chinese in UK Biobank 

CONVERGE20 Low-coverage WGS + imputation 10,640 5,215,820 Chinese women in study of major depression 
MESA21 Affymetrix Chip + imputation 653 4,950,239 Chinese samples in the multi-ethnic study of atherosclerosis 

SBWCH22,23 
Noninvasive prenatal testing (low-

coverage WGS + imputation) 
30,074 1,237,941 

Chinese pregnancies recruited from the Shenzhen Baoan 
Women and Children’s Hospital 

CAS & ZOC24 
CAS1 

Illumina Chip; Affymetrix Chip 
1,497 288,684 Unpublished Chinese samples mainly collected in Beijing, 

with which 19 pairs of twins (ZOC) were mixed in 
separately CAS2 1,497 288,539 

Fudan25 Illumina Chip 2,008 311,384 Chinese samples in the study of glioma 

YiKon 
YiKon1 Illumina Chip + single cell WGA 5,000 89,084 

Chinese samples in the study of reproductive medicine 
YiKon2 Illumina Chip + single cell WGA 4,999 89,084 

WBBC26–28 Illumina Chip 6,080 319,930 The Westlake BioBank for Chinese pilot project 
  64,091 (all) 1,650 (intersection)  

  531 
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Table 2 Supporting evidence for the related pairs 532 

Pair Cohort 1 ID 1 

 

Cohort 2 ID 2 Score (SDa) Scoreb (SD) Inferred relatedness 

1 SBWCH SBWCH_21253 YiKon2 YKB1693 0.890 (0.017) 0.993 (0.019) Identical 

2 CAS1 2009111148 YiKon2 YKB570 0.985 (0.002) 0.999 (0.002) Identical 

3 SBWCH SBWCH_2988 YiKon1 YKA1770 0.397 (0.033) 0.434 (0.036) 1st-degree 

4 SBWCH SBWCH_28165 YiKon1 YKA3820 0.406 (0.033) 0.479 (0.039) 1st-degree 

5 SBWCH SBWCH_200 WBBC WBBC3849 0.427 (0.033) 0.533 (0.041) 1st-degree 

6 YiKon2 YKB1046 CONVERGE MD_CHW_AAD_11728 0.511 (0.031) 0.512 (0.031) 1st-degree 

Notes: IDs were de-identified by each cohort. 533 

aStandard deviation (SD) is calculated from 𝑆𝐷O)* = c89:5𝐱<),𝐱<*6
:>+(𝐱<))

, where 𝐱B' and 𝐱B( are the vectors of the encrypted genotypes for two individuals. 534 

bDue to missing data, the corrected score, is adjusted for the genotype missing rate between the pair of individuals. 535 
 536 
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Figure 1 Workflow of encG-reg and its practical timeline as exercised in Chinese cohorts 537 

 538 
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Figure notes: The mathematical details of encG-reg is simply algebraic, but its inter-cohort 539 
implementation involves coordination. We illustrate its key steps, the time cost of which was adapted from 540 
the present exercise for 10 Chinese datasets (here simplified as three cohorts). Cohort assembly: It took us 541 
about a week to call and got positive responses from our collaborators (See Table 1), who agreed with our 542 
research plan. Inter-cohort QC: we received allele frequencies reports from each cohort and started to 543 
implement inter-cohort QC according to “geo-geno” analysis (see Figure 2). This step took about two 544 
weeks. Encrypt genotypes: upon the choice of the exercise, it could be exhaustive design (see UKB 545 
example), which may maximize the statistical power but with increased logistics such as generating 546 
pairwise 𝐒'(; in the Chinese cohorts study we used parsimony design, and generated a unique 𝐒 given 500 547 
SNPs that were chosen from the 1,650 common SNPs. It took about a week to determine the number of 548 
SNPs and the dimension of 𝑘 according to Eq 3 and 4, and to evaluate the effective number of markers. 549 
Perform encG-reg and validation: we conducted inter-cohort encG-reg and validated the results (see 550 
Figure 3 and Table 2). It took one week. 551 
  552 
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Figure 2 Resolution for detecting relatives in UKB cohorts by KING and encG-reg at exhaustive design 553 

 554 
Figure notes: (A) Chord diagrams shows the number of inter-cohort identical/twins, 1st-degree and 2nd-555 
degree relatedness for 19 UKB assessments which had more than 10,000 samples. Relatedness were detected 556 
and compared between KING and encG-reg under an exhaustive design, totaling 171 inter-cohort analyses. 557 
In each chord plot, the length of its side edge was proportional to the count of detected relatives between this 558 
cohort with other cohorts. (B) Scatter plot showed estimated relatedness score by KING and encG-reg. The 559 
inter-cohort links for the three relative clusters were as shown in A. (C) and (D) are the respective relatedness 560 
score distributions. (E) The bar plot compared relatedness scores of the known 1st-degree and 2nd-degree 561 
relatives estimated by KING, GRM, encG-reg and encG-reg+ across two representative assessment centers 562 
(Manchester and Oxford). 566 and 2,209 SNPs were randomly selected with MAF between 0.05 and 0.5. 563 
Here, encG-reg+ denotes the use of 1.2-fold of the minimal number of 𝑘 and IBD denotes twice of the 564 
relatedness score estimated by KING. Average GRM score, standard deviation and statistical power were 565 
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calculated for each detected relative-pair after resampling SNPs for 100 times. The grey dash line indicates 566 
the expected statistical power of 0.9. Colored solid lines indicate the average relatedness scores of certain 567 
degrees by the four methods. 17 pairs of so-called 1st-degree and 2 pairs of 2nd-degree relatives were 568 
approved using overall SNPs by KING.  569 
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Figure 3 Cohort-level genetic background analyses for Chinese cohorts under parsimony encG-reg 570 
analysis. 571 

 572 
Figure notes: (A) Overview of the intersected SNPs across cohorts, a black dot indicated its corresponding 573 
cohort was included. Each row represented one cohort while each column represented one combination of 574 
cohorts. Dots linked by lines suggested cohorts in this combination. The height of bars represented the 575 
cohort’s SNP numbers (rows) or SNP intersection numbers (columns). Inset histogram plot showed the 576 
distribution of the 1,650 intersected SNPs and the 500 SNPs chosen from the 1,650 SNPs for encG-reg 577 
analysis. (B) 1,650 SNPs were used to estimate fPC from the intersection of SNPs for the 11 cohorts. Each 578 
triangle represented one Chinese cohort and was placed according to their first two principle component 579 
score (fPC1 and fPC2) derived from the received allele frequencies. (C) A Chinese map had 6 private 580 
datasets pinned on it, according to the location of data owners. The size of point indicated the sample size of 581 
each dataset. (D) Global fStructure plot indicated global-level 𝐹PJ-derived genetic composite projected onto 582 
the three external reference populations: 1KG-CHN (CHB and CHS), 1KG-EUR (CEU and TSI), and 1KG-583 
AFR (YRI), respectively; 1,041 of the 1,650 SNPs intersected with the three reference populations were 584 
used. (E) Within Chinese fStructure plot indicated within-China genetic composite. The three external 585 
references were 1KG-CHB (North Chinese), 1KG-CHS (South Chinese), and 1KG-CDX (Southwest 586 
minority Chinese Dai), respectively; 1,164 of the 1,650 SNPs intersected with these three reference 587 
populations were used. Along x axis were 11 Chinese cohorts and the height of each bar represented its 588 
proportional genetic composition of the three reference populations. Cohort codes: YRI, Yoruba in Ibadan 589 
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representing African samples; CHB, Han Chinese in Beijing; CHS, Southern Han Chinese; CHN, CHB and 590 
CHS together; CEU, Utah Residents with Northern and Western European Ancestry; TSI, Tuscani in Italy; 591 
CDX, Chinese Dai in Xishuangbanna. 592 
  593 
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Figure 4 Detected identical pairs and 1st-degree pairs between Chinese cohorts 594 

 595 
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Figure notes: (A) The circle plot illustrated identical pairs and (B) 1st-degree pairs across 11 Chinses cohorts. 596 
The solid links indicated anticipated relatedness between the CAS cohorts and between the YiKon cohorts. 597 
The dashed links were sporadic relatedness found between the cohorts. The length of each cohort bar was 598 
proportional to their respective sample sizes. (C) The histogram showed all estimated relatedness using 599 
encG-reg, most of which were unrelated pairs and the theoretical probability density function was given as 600 

the normal distribution 𝑁 20, #
%(
+ #

/!
3  (grey solid curve). The inset histogram on the left showed the 601 

estimated relatedness around 0.5 and the theoretical probability density function was given as the normal 602 

distribution 𝑁 2𝜃+ ,
#?-#

"

%(
+ #?-#

"

/!
3 (blue solid curve). The threshold (grey dot line) for rejecting 𝐻Q was 603 

calculated by 𝑧#?B/𝒩c
#
%(
+ #

/!
. The inset histogram on the right showed estimated relatedness around 1. 604 

The threshold (grey dot line) for rejecting 𝐻Q was calculated by 𝑧#?B/𝒩c
#
%(
+ #

/5
. Here we included 208 605 

controls merged from 1KG-CHN. 𝑚7 = 477,	𝑘Q = 72, 𝑘# = 757, 𝒩 = 1,496,000,912. (D) Relationship 606 
verification for 20 YiKon pairs that had mismatched medical records with encG-reg inference. Relatedness 607 
score (y axis) was estimated in KING by YiKon. Dashed lines indicated inference criteria for detecting a 608 
range of relatedness. Solid line of 𝑦 = 𝑥 indicated the agreement between encG-reg and IBD. Points were 609 
colored with KING-inferred relatedness (identical in green, 1st-degree in blue, 2nd-degree in red and 610 
unrelated in purple) and shaped with encG-reg-inferred relatedness (identical in square and 1st-degree in 611 
diamond). (E) Relationship verification for 19 Guangdong twins split in CAS cohorts. Dashed lines indicated 612 
inference criteria for detecting relatedness of different degrees. Solid line of 𝑦 = 𝑥 indicated the agreement 613 
between encG-reg and IBD. Points were colored with IBD-inferred, in KING, relatedness (identical in green, 614 
1st-degree in blue and unrelated in red) and was shaped according to encG-reg-inferred relatedness (identical 615 
in square, 1st-degree in diamond and unrelated in circle). (F) Illustration for encG-reg estimation for sporadic 616 
related inter-cohort samples. In each plot the grey line was the criterion for identical pairs (slope of 1) or 1st-617 
degree pairs (slope of 0.5). The solid lines coloured in red were without adjustment for missing values (engG-618 
reg score), and in the bottom (coloured in purple) were adjusted for missing values (encG-reg score*). The 619 
first two pairs (coloured in green) were inferred as identical samples, whose encG-reg scores were close to 620 
1, and the rest four pairs (coloured in blue) were 1st-degree pairs, whose encG-reg scores were close to 0.5. 621 
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