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Abstract

The human gut microbiome contains a diversity of microbial species that varies in composition
over time and across individuals. These species (and strains within species) can migrate across
hosts and evolve by mutation and recombination within hosts. How the ecological process of
community assembly interacts with intra-species diversity and evolutionary change is a
longstanding question. Two contrasting hypotheses have been proposed based on ecological
observations and theory: Diversity Begets Diversity (DBD), in which taxa tend to become more
diverse in already diverse communities, and Ecological Controls (EC), in which higher
community diversity impedes diversification within taxa. Previously, using 16S rRNA gene
amplicon data across a range of environments, we showed a generally positive relationship
between taxa diversity and community diversity at higher taxonomic levels, consistent with the
predictions of DBD (Madi et al., 2020). However, this positive ‘diversity slope’ reaches a plateau
at high levels of community diversity. Here we show that this general pattern holds at much finer
genetic resolution, by analyzing intra-species strain and nucleotide variation in static and
temporally sampled shotgun-sequenced fecal metagenomes from cohorts of healthy human hosts.
We find that both intra-species polymorphism and strain number are positively correlated with
community Shannon diversity. This trend is consistent with DBD, although we cannot exclude
abiotic drivers of diversity. Shannon diversity is also predictive of increases in polymorphism
over time scales up to ~4-6 months, after which the diversity slope flattens and then becomes
negative—consistent with DBD eventually giving way to EC. Also supporting a complex
mixture of DBD and EC, the number of strains per focal species is positively associated with
Shannon diversity but negatively associated with richness. Finally, we show that higher
community diversity predicts gene loss in a focal species at a future time point. This observation
is broadly consistent with the Black Queen Hypothesis, which posits that genes with functions
provided by the community are less likely to be retained in a focal species’ genome. Together,
our results show that a mixture of DBD, EC, and Black Queen may operate simultaneously in the
human gut microbiome, adding to a growing body of evidence that these eco-evolutionary

processes are key drivers of biodiversity and ecosystem function.
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I ntroduction

Our understanding of microbial evolution and diversification has been enriched by experimental
studies of bacterial isolates in the laboratory, but it remains a challenge to study evolution in the
context of more complex communities (Lenski, 2017). Ongoing advances in culture-independent
technologies have allowed us to study bacteria in the complex and dense communities in which
they naturally occur (Garud and Pollard, 2020). Within a community, individual players engage
in many negative and positive ecological interactions. Negative interactions can originate from
competition for resources and biomolecular warfare (Hibbing et al., 2010; Mitri and Foster,
2013), while positive interactions can stem from secreted metabolites that are used by other
members of the community (cross-feeding) (Venturelli et al.,, 2018). These ecological
interactions can create new niches and selective pressures, leading to eco-evolutionary feedbacks

whose nature are yet to be fully understood.

Ecological interactions can yield positive or negative effects on the diversification of a focal
species. Under the "Diversity Begets Diversity" (DBD) hypothesis, higher levels of community
diversity increase the rate of speciation (or diversification, more generally) due to positive
feedback mechanisms such as niche construction (Calcagno et al., 2017; Schluter and Pennell,
2017). Competition for limited niche space could also drive DBD if species diversify into new
niches to avoid competition (Meyer and Kassen, 2007; Mitri and Foster, 2013; Schluter, 2000).
By contrast, the "Ecological Controls" (EC) hypothesis posits that competition for a limited
number of niches at high levels of community diversity results in a negative effect on further
diversification. Metabolic models predict that DBD may initially spur diversification due to
cross-feeding, but the diversification rate eventually slows and reaches a plateau as metabolic
niches are filled (San Roman and Wagner, 2021). These theoretical predictions are largely
supported by our previous study involving 16S rRNA gene amplicon sequencing data from the
Earth Microbiome Project, in which we observed a generally positive relationship (which we call
the diversity slope; Figure 1) between community diversity and focal-taxon diversity at most

taxonomic levels, reaching a plateau at the highest levels of diversity (Madi et al., 2020).

In this previous study, we found stronger support for DBD in the animal gut relative to more

diverse microbiomes such as soils and sediments, which were closer to a plateau of diversity
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78  (Madi et al., 2020). While diversity slopes were generally positive at taxonomic levels as fine as
79  amplicon sequence variants (akin to species or strains) within a genus, they were most positive at
80  higher levels such as classes or phyla. A recent experiment on soil bacteria also found evidence
81 of DBD at the family level, likely driven by niche construction and metabolic cross-feeding
82  (Estrela et al., 2022). It therefore remains unclear if the predictions of DBD hold primarily at
83  these higher taxonomic levels, involving the ecological process of community assembly, or if
84  they also apply at the finer intra-species level. Within-host intra-species diversity can arise by
85  co-colonization of a host by genetically distinct strains belonging to the same species or
86  evolutionary diversification of a lineage via de novo mutation and gene gain/loss events within a
87  host.
88
89  Such fine-scale strain-level variation has important functional and ecological consequences;
90 among other things, strains are known to engage in interactions that cannot be predicted from
91 their species identity alone (Goyal et al., 2022). Although closely-related bacteria are expected to
92  have broadly similar niche preferences, finer-scale niches may differ below the species level
93 (Martiny et al., 2015). For example, the acquisition of a carbohydrate-active enzyme by
94  Bacteroides plebeius allows it to exploit a new dietary niche in the guts of people consuming
95  nori (seaweed) (Hehemann et al., 2010), and single nucleotide adaptations permit Enterococcus
96 gallinarum translocation across the intestinal barrier resulting in inflammation (Yang et al.,
97  2022). Despite their potential phenotypic effects, it is unknown if such fine-scale genetic changes
98  are favored by higher community diversity (due for example to niche construction, as predicted
99 by DBD) or suppressed (due to competition for limited niche space, as predicted by EC).
100  Competition could also lead to DBD if focal species evolve new niche preferences to avoid
101  extinction (Mitri and Foster, 2013; Schluter, 2000) — an idea with some support in experimental
102  microcosms (Meyer and Kassen, 2007) but largely unexplored in natural communities.
103
104  Here, we investigate the relationship between intra-species genetic diversity and community
105  diversity in the human gut microbiome, a well-studied system in which we previously found
106  support for DBD at higher taxonomic levels. We use static and temporal shotgun metagenomic
107  data from a large panel of healthy adult hosts from the Human Microbiome Project (LlIoyd-Price
108 et al., 2017; The Human Microbiome Project Consortium, 2012) as well as from four healthy
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109 individuals sampled almost daily over the course of one year (Poyet et al., 2019). Using
110  metagenomic data allows us to track change in single nucleotide variation, strain diversity, and
111  gene gain or loss events within relatively abundant species in the microbiome, and study how
112  these measures of intra-species diversity are associated with community diversity. Although such
113  analyses of natural diversity cannot fully control for unmeasured confounding environmental
114  factors, they are an important complement to controlled experimental and theoretical studies
115  which lack real-world complexity.
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117  Figure 1. Diversity Begets Diversity (DBD) and Ecological Controls (EC) hypotheses illustrated.
118  The top panel shows patterns predicted by alternative hypotheses and the bottom panel illustrates possible
119  underlying mechanisms, including strain invasion and de novo mutation within a focal species. Under
120  DBD, high community diversity is associated with high focal species polymorphism (red line) yielding a
121  positive diversity slope. In the bottom panels, the bacterial community within a host (large circle) is
122 represented as small rectangles with different bacterial species in different colors. The focal species is
123  shown in light green outlined in black and the invading strain (striped colors) is a different strain of the
124  resident focal species.
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126 Results

127  We investigated the relationship between community diversity and within-species genetic
128  diversity in human gut microbiota using two shotgun metagenomic datasets. First, we analyzed
129  data from a panel of 249 healthy hosts (Lloyd-Price et al., 2017; The Human Microbiome Project
130  Consortium, 2012), in which stool samples were collected 1-3 times from each host at
131  approximately 6-month intervals. Second, we analyzed data from four individuals sampled more
132  densely over the course of ~18 months (Poyet et al., 2019). In both cases, we only consider intra-
133  species diversity of relatively abundant species that are well sampled in these metagenomic
134  datasets (Methods).

135

136 We examined several metrics of community diversity and intra-species diversity and calculated
137  the slope of their relationship, defined as the diversity slope (Figure 1). We note that intra-
138  species diversity can arise within hosts via de novo point mutation, gene gain or loss, or the
139  coexistence of genetically distinct strains that diverged before colonizing the host. To quantify
140  community diversity, we calculated Shannon diversity and richness at the species level. Shannon
141  diversity is relatively insensitive to sampling effort (Madi et al., 2020; Walters and Martiny,
142 2020) but richness can be underestimated in low sample sizes. We therefore computed richness
143  on data rarefied to an equal number of reads per sample, yielding generally similar results to
144 unrarefied data (described below). In all cases, we included the number of reads per sample
145  (coverage) as a covariate in our models, as this could affect estimates of both community
146  diversity and intra-species diversity. To quantify intra-species diversity, we used a reference
147  genome-based approach to call single nucleotide variants (SNVs) and gene copy number variants
148  (CNVs) within each focal species and computed polymorphism rates, measured as the fraction of
149  synonymous nucleotide sites in a species’ core genome with intermediate allele frequencies
150  (between 0.2 and 0.8) within a host (Methods). We also repeated the analysis on nonsynonymous
151  sites, as these are subject to stronger selective constraints. As an additional metric of intra-
152  species diversity, we inferred the number of strains within each species using StrainFinder
153  applied to all polymorphic sites (including those outside the 0.2-0.8 frequency range) (Smillie et
154  al., 2018).
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Community diversity is podtively associated with intra-species polymorphism in the
human gut micr obiome

As an exploratory visualization, we began by plotting the relationship between community
diversity and intra-species polymorphism rate calculated at synonymous sites in cross-sectional
HMP metagenomes for the nine most prevalent species (Figure 2A,B). The slope of this
relationship (the diversity slope; Figure 1) provides an indicator of the evidence for DBD
(positive slope) or EC (flat or negative slope). The relationship between polymorphism rate and
community diversity was mostly positive in the top nine most prevalent species in HMP hosts
(Figure 2A,B). These nine species are used as a simple illustration of the diversity slope, not as a
formal hypothesis-testing framework.
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168  Figure 2. Positive association between community diversity and within-species polymorphism in cross
169  sectional Human Microbiome Project samples. (A) Scatter plots showing the relationship between community
170  Shannon diversity and within-species polymorphism rate (estimated at synonymous sites) in the nine most prevalent
171  species in HMP. (B) Scatter plots showing the relationship between species richness and within-species
172  polymorphism rate in the nine most prevalent species in HMP. These are simple correlations to show the
173 relationships in the raw data. Significant correlations are shown with red trendlines (Spearman correlation, P<0.05);
174 non-significant trendlines are in gray. Results of generalized additive models (GAMs) predicting polymorphism
175 rate in a focal species as a function of (C) Shannon diversity, (D) species richness estimated on all sequence data,
176  and (E) species richness estimated on rarefied sequence data. GAMs are based on data from 69 bacterial species
177 across 249 HMP stool donors. Adjusted R® and Chi-square P-values corresponding to the predictor effect are
178 displayed in each panel. Shaded areas show the 95% confidence interval of each model prediction. See
179 Supplementary File 1a and supplementary file 2 section 1 for detailed model outputs.

180

181  To generalize across species and to formally test the predictions of DBD, we fit generalized
182  additive models (GAMs) to the HMP data. Using GAMSs, we are able to model non-linear
183  relationships evident in the data (Figure 2A,B), account for random variation in the strength of
184  the diversity slope across bacterial species, and account for the uneven number of samples per
185  host and the non-independence of samples from the same host (Methods; see Supplementary
186 File 1a and Supplementary File 2 section 1 for additional model details). These GAMs
187 included 69 focal species with sufficient coverage to quantify within-species polymorphism
188  (Methods); the results therefore apply to relatively abundant species in the human gut
189  microbiome. GAMs showed an overall positive association between within-species
190  polymorphism and Shannon diversity (Fig 2C, GAM, P=0.031, Chi-square test) as well as
191  between within-species polymorphism and community richness after controlling for coverage as
192  acovariate (Fig 2D, GAM, P=0.017, Chi-square test) or rarefying samples to an equal number of
193 reads (Fig 2E, GAM, P=2.63e-04, Chi-square test). The random effect of species identity is
194  highly significant in all models, indicating that each bacterial species has its own characteristic
195  diversity slope (Supplementary File 1a). It appears that synonymous polymorphism reaches a
196 plateau at high levels of community richness, which is particularly evident when using rarefied
197 data (Fig 2E). Using the same GAMSs applied to nonsynonymous polymorphism, we found no
198  significant associations between diversity and within-species polymorphism rate (GAM, P>0.05,
199  Chi-square test) (Supplementary File 1b, Supplementary File 2 section 4). This could be due
200  to lower statistical power, since there are fewer nonsynonymous than synonymous sites, or could
201  reflect a true difference in the diversity slope between these site categories.

202


https://doi.org/10.1101/2022.03.08.483496
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.08.483496; this version posted November 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

203  These generally positive correlations between focal species polymorphism and species-level
204  measures of community diversity also hold when community diversity is measured at higher
205 taxonomic levels; specifically, synonymous polymorphism rate was significantly positively
206  associated with Shannon diversity calculated at the genus and family levels (GAMs, P<0.05,
207  Chi-square test) (Figure 2-figure supplement 1, Supplementary File 1c). However,
208  synonymous polymorphism rate was not significantly associated with Shannon diversity
209 calculated at the highest taxonomic levels (order, class and phylum, GAMs, P>0.05, Chi-square
210  test). The positive correlation between polymorphism rate and richness held at all taxonomic
211  levels (GAMs, P<0.05, Chi-square test) (Figure 2-figure supplement 1, Supplementary File
212 1c, Supplementary File 2 section 2 and 3). When estimated at nonsynonymous sites,
213  polymorphism rate was not significantly correlated with Shannon diversity at any taxonomic
214 level (GAMs, P>0.05, Chi-square test), but was positively correlated with richness at the highest
215  levels (phyla, class and order, P=3e-04, P=0.017 and P=6.11e-04 respectively, Chi-square test
216  from GAMs) (Figure 2-figure supplement 2, Supplementary File 1d, Supplementary File 2
217 section 5 and 6). Even when not statistically significant, the diversity slopes were generally
218  positive at all taxonomic levels for both synonymous and nonsynonymous polymorphism
219  (Figure 2-figure supplements 1 and 2). Overall, these results are consistent with the predictions
220 of DBD at most taxonomic levels. However, slightly different relationships are observed when
221  considering different measures of community diversity (Shannon or richness) and different
222  components of within-species diversity (nonsynonymous or synonymous).

223

224 Different measures of community diversity have contrasting associations with intra-species
225  strain diversity

226  Within host polymorphism rates span several orders of magnitude (10°/bp to 10%bp), largely
227  due to the fact that strain content is variable across hosts. As previously argued (Garud et al.,
228  2019), with conservatively high estimates for mutation rate (z~10"°) (Sung et al., 2012),
229  generation times (~ 10 / day) (Poulsen et al., 1995), and time since colonization (<100 years),
230  polymorphism rates of ~10%bp or more are inconsistent with within-host diversification of a
231  single colonizing lineage. Therefore, hosts with relatively high intra-host polymorphism rates are
232 likely colonized by mixtures of multiple strains that diverged long before colonizing a host.

233  Moreover, recent work suggests that the numbers and genetic composition of strains colonizing a
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234 host can vary from host to host (Garud et al., 2019; Olm et al., 2017; Russell and Cavanaugh,
235  2017; Truong et al., 2017; Verster et al., 2017). The associations between polymorphism and
236  community diversity (Figure 2) are likely driven by a combination of de novo mutation and co-
237  colonization by multiple strains.

238

239  To separate these two sources of diversity and to explicitly account for the strain structure within
240  hosts, we inferred the number of strains per focal species with StrainFinder (Smillie et al., 2018)
241  (Methods) and used strain number as another quantifier of intra-species diversity. We found that
242  the number of strains per focal species follows an approximately linear relationship with
243  community diversity in the nine most prevalent species in HMP (Figure 3A, B). Because of
244 these approximately linear relationships, we used generalized linear mixed models (GLMMS) to
245  investigate the relationship between the number of strains per focal species and community
246  diversity, while taking into account coverage per sample as a covariate and variation between
247  species, hosts and samples as random effects (Methods). The number of strains per focal species
248  was positively correlated with community Shannon diversity (GLMM, P=3.58e-07, likelihood
249  ratio test (LRT)) (Fig 3C, Supplementary File 1e, Supplementary File 2 section 7.1). This
250  suggests that the positive correlation between polymorphism rate and Shannon diversity (Figure
251  2)isdue at least in part to strain diversity.

10
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253 Figure 3. Associations between community diversity and strain number in cross-sectional Human
254 Microbiome Project samples. (A) Scatter plots showing the relationship between Shannon diversity and the
255 inferred number of strains within each of the nine most prevalent species in HMP. (B) Scatter plots showing the
256 relationship between species richness and the inferred number of strains within each of the nine most prevalent
257 species in HMP. Significant linear correlations are shown with red trendlines (Pearson correlation, P<0.05); non-
258  significant trend lines are in gray. Results of generalized linear mixed models (GLM M) predicting strain count in
259  a focal species as a function of (C) Shannon diversity, (D) species richness estimated on all data, and (E) species
260 richness estimated on rarefied sequence data. Diversity estimates (x-axis) are standardized to zero mean and unit
261  variance in the models. The Y-axis shows the mean number of strains per focal species predicted by the GLMM.
262 GLMMs are based on data from 184 bacterial species across 249 HMP stool donors. P-values (likelihood ratio test)
263  are displayed in each panel. Shaded areas show the 95% confidence interval of each model prediction. See
264 Supplementary File 1e and Supplementary File 2 section 7 for detailed model outputs.

265

266 By contrast, species richness was negatively correlated with strain number (GLMM, P=1.67e-06,
267 LRT) (Fig 3D, Supplementary File 1le, Supplementary File 2 section 7.2). The negative
268 relationship with richness was unlikely to be confounded by sequencing depth, since the same
269  result was obtained using rarefied data (Fig 3E, Supplementary File 1le, Supplementary File 2
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270  section 7.3). The negative strain number-richness relationship also held at all other taxonomic
271  ranks (GLMM, P<0.05, LRT), while the strain number-Shannon diversity relationship was
272  generally positive (Fig 3-Figur e supplement 1, Supplementary File 1f, Supplementary File 2
273  section 8-9). These effects also appear to be species-specific: for example, the number of
274  Bacteroides vulgatus strains per host is positively correlated with both Shannon diversity and
275  richness (consistent with DBD predictions) whereas B. ovatus has no relationship with Shannon
276  diversity but a negative correlation with richness (consistent with EC; Fig 2A, B). Together,
277  these results reveal that different components of community diversity can have contrasting
278  effects on the diversity slope.

279

280 Community Shannon diversity is a predictor of intra-species polymorphism and gene loss
281 intimeseriesdata

282  Our analyses thus far have considered only individual time points, which represent static
283  snapshots of the dynamic processes of community assembly and evolution in the microbiome. To
284  interrogate these phenomena over time, we analyzed 160 HMP subjects who were sampled 2-3
285  times ~6 months apart. Under a DBD model, we expect community diversity at an earlier time
286  point to result in higher within-species polymorphism at a future time point. To test this
287  expectation, we defined 'polymorphism change' as the difference between polymorphism rates at
288  the two time points (Methods). We also investigated the effects of community diversity on gene
289 loss and gain events within a focal species, as such changes in gene content are known to occur
290  frequently within host gut microbiomes (Garud et al., 2019; Groussin et al., 2021; Yaffe and
291 Relman, 2020; Zhao et al., 2019). Here a gene was considered absent if its copy number (c) was
292  <0.05 and present if 0.6 < ¢ < 1.2. As in the cross-sectional analyses above, we also controlled
293  for sequencing depth of the sample and excluded genes with aberrant coverage or presence in
294  multiple species (Methods).

295

296  In HMP samples, polymorphism change showed no significant relationships with community
297  diversity at the earlier time point, whether it was estimated with Shannon index or species
298  richness (GAM, P>0.05) (Supplementary File 2 section 10.1). These results suggest that DBD
299 is negligible or undetectable over ~6-month time lags in the human gut. By contrast, we found

300 that gene loss in a focal species between two consecutive time points was positively correlated

12
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with community diversity at the earlier time point (Figure 4, GLMM, P=0.028, P=0.034 and
P=0.049, LRT for Shannon, richness and rarefied richness respectively) (Supplementary File
1g, Supplementary file 2 section 10.3). Gene gains did not show any significant relationships
with community diversity (GLMM, P>0.05). Selection for gene loss in more diverse
communities is a prediction of the Black Queen Hypothesis (BQH), provided that higher

community diversity results in more redundant gene functions that compensate for losses in a

focal species (Morris et al., 2012). Most species in HMP samples lost fewer than ten genes over
~6 months — consistent with de novo deletion events of a few genes — but occasionally hundreds
of genes were lost from a host, suggesting that strains with smaller genomes were selected in
more diverse communities (Figure 4A, 4B).
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Figure 4. Positive association between community diversity and genelossin Human Microbiome Project time
series. (A) Scatter plots showing the relationship between Shannon diversity at time point 1 (tpl) and gene loss
between tpl and tp2 within each of the nine most prevalent species in HMP. (B) Scatter plots showing the
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relationship between species richness at tpl and gene loss between tpl and tp2 within each of the nine most
prevalent species in HMP. Significant linear correlations are shown with red trendlines (Pearson correlation,
P<0.05); non-significant trend lines are in gray. The Y-axis is plotted on a logl0 scale for clarity. Results of
generalized linear mixed models (GLM M) predicting gene loss in a focal species as a function of (C) Shannon
diversity, (D) species richness estimated on all data, and (E) species richness estimated on rarefied sequence data. P-
values (likelihood ratio test) are displayed in each panel. Shaded areas show the 95% confidence interval of each
model prediction. The Y-axis is plotted on the link scale, which corresponds to log for negative binomial GLMMs
with a count response. GLMM s are based on data from 54 bacterial species across 154 HMP stool donors sampled at
more than one time point. See Supplementary file 1g and Supplementary File 2 section 10 for detailed model
outputs.

To study these dynamics at higher temporal resolution, we analyzed shotgun metagenomic data
from four more frequently sampled healthy individuals from a previous study (Poyet et al.,
2019). Stool from donor am was sequenced over 18 months with a median of one day between
samples; an over 12 months (median 2 days between samples); ao over 5 months (median 1 day
between samples); and ae over 7 months (median 2 days between samples). In this data, we
tracked both polymorphism change and gene gains and losses between two successive time
points in 15 species with a minimal marker gene coverage of 10 in at least ten samples. These
include seven species of Bacteroides, two Eubacterium, two Faecalibacterium, two
Ruminococcus, as well as Alistipes putredinis and Parabacteroides merdae.

Using the Poyet dataset, we asked whether community diversity in the gut microbiome at one
time point could predict polymorphism change at a future time point by fitting GAMs with the
change in polymorphism rate as a function of the interaction between community diversity at the
first time point and the number of days between the two time points. Shannon diversity at the
earlier time point was correlated with increases in polymorphism (consistent with DBD) up to
~150 days (~4.5 months) into the future (Fig 5-Figure supplement 1), but this relationship
became weaker and then inverted (consistent with EC) at longer time lags (Fig 5A,
Supplementary File 1h, GAM, P=0.023, Chi-square test). The diversity slope is approximately
flat for time lags between four and six months, which could explain why no significant
relationship was found in HMP, where samples were collected every ~6 months. No relationship
was observed between community richness and changes in polymorphism (Supplementary File
1h, GAM, P>0.05).

We next asked if community diversity at one time point could predict gene gains or losses at

future time points by fitting GLMMs (analogous to the GAMs above, but more appropriate for
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352  gain/loss count data). Our method does not explicitly distinguish between gene gain/loss arising
353  from recombination or deletion versus replacement of strains with different gene content. We
354  found that community Shannon diversity predicted future gene loss in a focal species, and this
355  effect became stronger with longer time lags (Fig 5B, Supplementary File 1i, GLMM, P=0.006,
356  LRT for the effect of the interaction between the initial Shannon diversity and time lag on the
357  number of genes lost). The model predicts that increasing Shannon diversity from its minimum
358  to its maximum would result in the loss of 0.075 genes from a focal species after 250 days. In
359  other words, about one of the 15 focal species considered would be expected to lose a gene in
360 this time frame.

361

362  Higher Shannon diversity was also associated with fewer gene gains, and this relationship also
363  became stronger over time (Fig 5C, Supplementary File 1i, GLMM, P=1.11e-09, LRT). We
364  found a similar relationship between community species richness and gene gains, although the
365 relationship was slightly positive at shorter time lags (Fig 5D, Supplementary File 1i, GLMM,
366 P=3.41e-04, LRT). No significant relationship was observed between richness and gene loss
367 (Supplementary File 1i, GLMM, P>0.05). Taken together with the HMP results (Fig 4), these
368  longer time series reveal how the sign of the diversity slope can vary over time and how
369 community diversity is generally predictive of reduced focal species gene content.
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372 Figure 5. Community diversity is associated with increases in focal species polymorphism over short time
373 lags and net gene loss in dense gut microbiome time series. (A) Results of a GAM predicting polymorphism
374 change in a focal species as a function of the interaction between Shannon diversity at the first time point and the
375  time lag (days) between two time points in data from Poyet et al. The response (Y-axis) was log transformed in the
376 Gaussian GAM. Results of GLMMs predicting (B) Number of genes lost and (C) Number of genes gained between
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377  two time points in a focal species as a function of the interaction between Shannon diversity at the first time point
378  and the time lag between the two time points. (D) Results of the GLMM predicting the number of genes gained in a
379  focal species as a function of the interaction between rarefied species richness at the first time point and the time lag
380  between the two time points. The illustrated time lags correspond to the first quartile (50 days), the median (130
381  days), and the third quartile (250 days). See Supplementary Files 1h and i and Supplementary File 2 section 11 for
382 detailed model outputs. These analyses are based on data from 15 bacterial species across 4 stool donors from Poyet
383 et al. Only statistically significant relationships are plotted. Non-significant relationships are not shown: the GAM
384 predicting polymorphism change as a function of rarefied richness (P>0.05) and the GLMM predicting the number
385  of genes lost as a function of rarefied richness (P>0.05).

388 Discussion

389 How eco-evolutionary feedbacks shape biological communities is an open question that
390 to date has received substantial experimental and theoretical attention but is challenging to
391  address in nature. In our previous study using 16S rRNA amplicon sequences from the Earth
392  Microbiome Project, we found generally positive diversity slopes that eventually flattened at
393  high levels of community diversity (Madi et al., 2020). This pattern is generally consistent with
394  the predictions of DBD during the early stages of community assembly, but at later stages
395 becomes more consistent with EC as niches become filled. Based on the time series
396 metagenomic data analyzed here, the predictions of DBD also tend to hold over short time scales
397  Dbut fail over longer time scales of several months. Whether this leads to a terminal plateau of
398 diversity, or whether ecological disturbances lead to cycles of DBD and EC, deserves further
399  study.

400 In our previous study, the animal gut microbiome had one of the highest positive
401  diversity slopes, making it an ideal candidate for investigating eco-evolutionary interactions at
402  greater intra-species resolution using metagenomic data. In this follow-up study, we investigate
403  the same phenomenon at a subspecies level, with results that are broadly consistent with the
404  predictions of DBD giving way to EC over long time scales. We note that experiments
405  supporting DBD have generally been conducted over short time scales ranging from two to 20
406  days (Estrela et al., 2022; Jousset et al., 2016), consistent with the importance of DBD early in
407  community assembly. We also identify several nuances and caveats to this general conclusion,
408  which are discussed below in detail.

409 Another recent study also found evidence for eco-evolutionary feedbacks in the HMP, in
410 the form of a positive relationship between evolutionary modifications or strain replacements in

411  a focal species and community diversity (Good and Rosenfeld, 2022). Using a model, they
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412  further showed that these eco-evolutionary dynamics could be explained by resource competition
413  and did not require the cross-feeding interactions previously invoked (Estrela et al., 2022; San
414  Roman and Wagner, 2021, 2018) to explain DBD at higher taxonomic levels. This could be
415  because cross-feeding operates at the family- or genus- level and is less relevant at finer
416  evolutionary scales.

417 There are several noteworthy caveats to our study. First, using metagenomic data from
418 human microbiomes allowed us to study genetic diversity, but limited us to considering only
419 relatively abundant species with genomes that were well-covered by short sequence reads.
420  Deeper or more targeted sequencing may permit us to determine whether the same patterns hold
421  for rarer members of the microbiome. However, it is notable that the majority of the dozens of
422  species across the two datasets analyzed support DBD, suggesting that the phenomenon may
423  generalize.

424 Second, we cannot establish causal relationships without controlled experiments. We are
425  therefore careful to conclude that positive diversity slopes are consistent with the predictions of
426  DBD, and negative slopes with EC, but unmeasured environmental drivers could be at play. For
427  example, increased dietary diversity could simultaneously select for higher community diversity
428 and also higher intra-species diversity. In our previous study, we found that positive diversity
429  slopes persisted even after controlling for potential abiotic drivers such as pH and temperature
430 (Madi et al., 2020), but a similar analysis was not possible here due to a lack of metadata.
431  Neutral processes can account for several ecological patterns such as species-area relationships
432  (Hubbell, 2001), and must be rejected in favor of niche-centric models like DBD or EC. Using
433  neutral models without DBD or EC, we found generally flat or negative diversity slopes due to
434  sampling processes alone and that positive slopes were hard to explain with a neutral model
435 (Madi et al., 2020). These models were intended mainly for 16S rRNA gene sequence data, but
436 we expect the general conclusions to extend to metagenomic data. Nevertheless, further
437  modeling and experimental work will be required to fully exclude a neutral explanation for the
438  diversity slopes we report in the human gut microbiome.

439 Based on controlled experiments (Estrela et al., 2022) and modeling studies (San Roman
440  and Wagner, 2021), DBD is a plausible causal explanation for positive diversity slopes in the gut
441  microbiome. Although they also note that causality is difficult to establish, Good and Rosenfeld

442  (2022) suggest the importance of focal species evolution as a driver of changes in community
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443  structure, as shown in an experimental study of Pseudomonas in compost communities (Padfield
444 et al., 2020). Clearly, further work is needed to establish the extent and relative rates of eco-
445  evolutionary feedback in both directions. How these feedbacks among bacteria are influenced by
446  abiotic factors and by interactions with fungi, archaea, and phages also deserve further study.

447 Third, the diversity slope changes depending on which component of within-species
448  diversity or community diversity is considered. Notably, the number of strains within a focal
449  species is positively correlated with Shannon diversity, but inversely correlated with species
450 richness, suggesting that the ability of strains to colonize a host may be associated with higher
451  community evenness rather than total species count. Higher evenness might maximize the
452  chance of inter-species interactions, whereas higher richness might be driven by rare species that
453  are less likely to interact. Although Shannon diversity is considered to be more robust and
454  informative than richness in estimating bacterial diversity (He et al., 2013; Reese and Dunn,
455  2018), we observe the same contrasting results between Shannon diversity and richness when
456  community diversity is calculated at higher taxonomic levels, suggesting that this pattern is not
457  due to artifacts such as sequencing effort.

458 Our measures of intra-species diversity included both synonymous and nonsynonymous
459  single nucleotide variants, inferred strain richness, and gene content. Synonymous nucleotide
460  variation was consistently and positively associated with both community richness and Shannon
461 diversity at all taxonomic levels (although not always with statistical significance).
462  Nonsynonymous variation also tended to track positively with both measures of community
463  diversity but was only statistically significantly associated with phylum and class richness. This
464  suggests that evolutionarily older, less selectively constrained synonymous mutations and more
465  recent nonsynonymous mutations that affect protein structure both track similarly with measures
466  of community diversity. Nonetheless, a parsimonious explanation for possible differences
467  between the two classes is that while they are affected similarly, we have more statistical power
468  to identify correlations in the more numerous synonymous mutations. This merits further
469  investigation.

470 Metagenomes from the same individual sampled over time allowed us to detect gene gain
471  and loss events. In both HMP and Poyet et al. time series, community diversity was predictive of
472  future gene loss in a focal species. This phenomenon is not explicitly predicted by either DBD or
473  EC but it is compatible with aspects of the Black Queen Hypothesis, with some caveats. BQH
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474 predicts that a focal species will be less likely to encode genes with functions provided by other
475  members of the surrounding community if such functions are "leaky" and available as diffusible
476  public goods (Morris et al., 2012). The BQH could also act as a driver of polymorphism within a
477  species (Morris et al., 2014). Gene loss may be adaptive, provided that there is a cost to encoding
478 and expressing the relevant genes (Albalat and Cafestro, 2016; Koskiniemi et al., 2012;
479  Simonsen, 2022). The tendency for reductive genome evolution in bacteria is well established
480  (Albalat and Cafiestro, 2016; Koskiniemi et al., 2012; Puigbo et al., 2014). Genome reduction is
481  a particular hallmark of endosymbiotic bacteria, which depend on their hosts for many metabolic
482  gene products (McCutcheon and Moran, 2012; Nikoh et al., 2011). It has been shown that
483  uncultivated bacteria from the gut have undergone considerable genome reduction, which may
484  Dbe an adaptive process that results from reliance on public goods (Nayfach et al., 2019). In the
485  gut microbiome, the BQH has been invoked to explain the distribution of genes involved in
486  vitamin B metabolism (Sharma et al., 2019) and iron acquisition (Vatanen et al., 2019).

487 Our findings in human gut metagenomes are compatible with the BQH under the
488  assumption that increasing community diversity also increases the availability of leaky gene
489  products — which may not be the case if genomes in the gut microbiome are functionally
490 redundant, as inferred in a recent study (Tian et al., 2020). This study found that species in the
491  gut microbiome were highly redundant at the level of annotated metabolic pathways (KEGG
492  orthologs) and that more functionally redundant microbiomes were more resistant to colonization
493 Dby fecal transplants. Relatively low-redundancy microbiomes could therefore be more easily
494  colonized but might also require migrants to encode more gene functions in order to persist.
495  Importantly, functional redundancy may be high at the level of well-annotated metabolic
496  functions, but low at the finer level of individual gene families, as demonstrated in marine
497  microbiomes (Galand et al., 2018) but not yet studied explicitly in the gut. Here we report that
498  genome reduction in the gut is higher in more diverse gut communities. This could be due to de
499 novo gene loss, preferential establishment of migrant strains encoding fewer genes, or a
500 combination of the two. The mechanisms underlying this correlation remain unclear and could be
501 due to biotic interactions — including metabolic cross-feeding as posited by some models (Estrela
502 et al., 2022; San Roman and Wagner, 2021, 2018) but not others (Good and Rosenfeld, 2022) —
503 or due to unknown abiotic drivers of both community diversity and gene loss. Finally, we
504  measured community diversity from the phylum to the species level, not below. We therefore did
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505  not investigate how the BQH could extend to maintain gene content variation within a species, as
506 has been shown experimentally in E. coli (Morris et al., 2014). This could be an avenue for
507  future work.

508 In our previous analysis of lower-resolution 16S rRNA amplicon sequences, we reported
509 atendency for focal genera with larger genomes to have higher diversity slopes, perhaps because
510 they experience stronger DBD (Madi et al., 2020). At face value, this tendency seems at odds
511  with the BQH, which predicts genome reduction in more diverse communities. This apparent
512  contradiction may be reconciled by considering eco-evolutionary dynamics on different time
513  scales. A recent study used phylogenetic and metabolic reconstructions to show that gene gains
514  often drive metabolic dependencies among bacteria (Goyal, 2022), potentially explaining why
515 genera with larger maximum genome size could experience stronger DBD. Our earlier study
516  only had the genetic resolution to consider focal taxa down to the genus level, and by using the
517 maximum genome size observed in a public database we did not capture the dynamic process of
518 gene gain and loss within a species, as was possible in the current metagenomic study. It is
519 therefore possible that on longer (ecological) time scales, larger genomes have more metabolic
520 interactions and thus experience stronger DBD, while genome reduction in more diverse
521  communities occurs on shorter (evolutionary) time scales.

522 In summary, we demonstrate how metagenomic data can be used to test the predictions of
523  eco-evolutionary theory, including DBD, EC, and the BQH. It remains to be seen whether the
524  distinct eco-evolutionary processes proposed by DBD and the BQH operate orthogonally or
525  whether they interact. If BQH leads to gene losses that remain polymorphic rather than being lost
526 entirely from the species (Morris et al., 2014) — or invasions of strains with fewer genes that
527  remain incomplete and do not replace the resident strain — this could be viewed as a form of
528 diversification and perhaps a special case of DBD. Here we considered gene loss as a directional
529  process; we did not attempt to distinguish between directional changes in gene copy number and
530 the complete extinction of a gene, which is difficult to show using metagenomic data. Future
531  work could attempt to resolve this point and to potentially combine DBD and BQH into a unified
532  theory.

533
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53¢ Data and materials availability

535  The raw sequencing reads for the metagenomic samples used in this study were downloaded
536  from the Human Microbiome Project Consortium 2012 and Lloyd-Price et al. (2017)

537  (URL: https://aws.amazon.com/datasets/human-microbiome-project/); and Poyet et al. 2019
538  (NCBI accession number PRINA544527). All computer code for this paper is available at
539  https://github.com/Naimal6/DBD_in_gut_microbiome.

540

541
542 Methods

543

544  Metagenomic analyses

545  Estimation of species, gene, and SNV content of metagenomic samples

546 We used MIDAS (Metagenomic Intra-Species Diversity Analysis System, version 1.2,
547  downloaded on November 21, 2016) (Nayfach et al., 2016) to estimate within-species nucleotide
548  and gene content of raw metagenomic whole genome shotgun sequencing data for HMP1-2 and
549  Poyet et al. 2019 data. MIDAS relies on a reference database comprised of 31,007 bacterial
550 genomes that are clustered into 5,952 species, covering roughly 50% of species found in human
551  stool metagenomes from “urban” individuals. Described below are the parameters used to
552  estimate species abundances, single nucleotide variants (SNVs), and gene copy number variants
553  (CNVs) with MIDAS.

554

555  Estimation of species content

556 We estimated species abundances, SNVs and CNVs by mapping metagenomic shotgun
557  reads to reference genomes. Since a component of this work relies on quantifying polymorphism
558 and CNV changes over time, we constructed a “personal” reference database to avoid spurious
559 inferences of allele frequency and CNV changes due to errors in mapping of reads to regions of
560 the genome shared by multiple species (Garud et al., 2019). This per-host reference database was
561 comprised of the union of all species present at one or more timepoints so as to be as inclusive as
562  possible to prevent reads from being “donated” to reference genome, while also being selective
563  to prevent a reference genome from “stealing” reads from a species truly present.
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564 To estimate the species relative abundances for each host x timepoint sample, we mapped
565  reads to 15 universal single-copy marker genes that are a part of the MIDAS pipeline (Nayfach et
566 al., 2016; Wu et al., 2013) and belong to the 5,952 species in the MIDAS reference database. A
567  species with an average marker gene coverage > 3 was considered present for the purposes of
568  building a per-host database for mapping reads to infer SNVs and CNVs below. The per-host
569 database was constructed by including all species present at one or more timepoints with
570  coverage >3. However, more stringent thresholds were imposed for calling SNVs and CNVs, as
571  described below.

572

573  Estimation of copy number variation

574 To estimate gene copy number variation (CNV), we mapped reads to the pangenomes of
575  species present in a host’s personal database using Bowtie2 (Langmead and Salzberg, 2012) with
576  default MIDAS settings (local alignment, MAPID>94.0%, READQ>20, and ALN_COV>0.75).
577  Each gene’s coverage was estimated by dividing the total number of reads mapped to a given
578 gene by the gene length. These genes included the aforementioned 15 universal single-copy
579  marker genes. A given gene’s copy number (c) was estimated by taking the ratio of its coverage
580 and the median coverage of the species’ single-copy marker genes.

581 With these copy number values, we estimated the prevalence of genes in the between-
582  host population, defined as the fraction of samples with copy number c< 3 and ¢>0.3 (conditional
583  on the mean single gene marker coverage being > 5x). For each species, we computed “core
584  genes”, defined as genes in the MIDAS reference database that are present in at least 90% of
585  samples within a given cohort. Within-host polymorphism rates were computed in core genes.
586 Orthologous genes present in multiple species can result in read "stealing™ and read
587  “donating” to species from which the reads did not originate. Thus, we excluded a set of genes
588 belonging to a ‘blacklist” composed of genes present in multiple species. This blacklist was
589  constructed in (Garud et al., 2019) using USEARCH (Edgar, 2010) to cluster all genes in human-
590 associated reference genomes with a 95% nucleotide identity threshold. Since some genes may
591 Dbe absent from the MIDAS database but may nevertheless be shared across species, we
592  implemented another filter (as in Garud et al. 2019) in which genes with ¢ > 3 in at least one
593  sample in our cohort were excluded from analysis of polymorphism rate or gene changes over
594  time.
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595

596 Inferring single nucleotide variants (SNVs) within bacterial species

597 To call SNVs, we mapped reads to a single representative reference genome as per the
598 default MIDAS software. Reads were mapped with Bowtie2, with default MIDAS mapping
599 thresholds: global alignment, MAPID>94.0%, READQ>20, ALN_COV>0.75, and MAPQ>20.
600  Species were excluded from further analysis if reads mapped to < 40% of their genome. We
601  additionally excluded samples from further analysis if they had low median read coverage (D) at
602  protein coding sites. Specifically, samples with D < 5 across all protein coding sites with nonzero
603  coverage were excluded. This MIDAS SNV output was then used for computing within-species
604  polymorphism rates and inferring the number of strains present for each species in each sample
605  (see below).

606 To compute polymorphism rates, additional bioinformatic filters were imposed to avoid
607 read stealing and donating across different species. First, we did not call SNVs in blacklisted
608  genes present in multiple species. Additionally, we excluded sites in a given sample if D < 0.3D
609 or D > 3D as these sites harbor anomalously low or high coverage compared to the genome-wide
610 average D. Additional filters are described below.

611

612  Shannon diversity, species richness and polymorphism rate calculations

613 Shannon diversity and richness were computed within each sample by including any
614  species with abundance greater than zero. Rarefied species richness estimates are based on
615 HMP1-2 samples rarefied to 20 million reads and Poyet samples rarefied to 5 million reads. SNV
616  and gene content variation within a focal species were ascertained only from the full dataset and
617  not the rarefied dataset.

618 The polymorphism rate of a species in a sample was computed as the proportion of
619  synonymous sites in core genes with intermediate allele frequencies (0.2 <f <0.8), as was done
620 in Garud et al. 2019. Only species with a MIDAS marker gene coverage of 10 or more in 10 or
621  more samples were included, yielding 69 species in 249 HMP stool donors and 15 species in four
622  Poyet et al. 2019 donors. As explained in Sl text 1 in Garud et al. 2019, this is quantitatively
623  similar to the more traditional population genetic measure of heterozygosity, H=E[2f(1-f)], in
624  which intermediate frequency alleles contribute the most weight to heterozygosity. By

625 computing polymorphism with the criteria 0.2 <f <0.8, we avoid inclusion of low frequency

23


https://doi.org/10.1101/2022.03.08.483496
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.08.483496; this version posted November 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

626  sequencing errors, which can otherwise greatly influence the mean heterozygosity.
627  Polymorphism rates were computed separately for synonymous (4-fold degenerate) and
628 nonsynonymous (1-fold degenerate) sites. The degeneracy of sites was determined based on
629  MIDAS output.

630

631 Temporal changesin polymorphism rates and gene content

632 Polymorphism change was computed as the difference in polymorphism rates between
633  time points within a host. Gene gains and losses between time points were computed in species
634  with sufficient prevalence (at least 10 samples with marker gene coverage of at least 10, as in the
635 polymorphism analysis above) by identifying genes with copy number ¢ <0.05 (indicating gene
636  absence) in one sample and 0.6 < ¢ < 1.2 (with marker coverage >20x) in another (indicating
637  single copy gene presence). These thresholds were used in Garud et al. 2019 when inferring gene
638  changes in temporal data and reflect a range of copy numbers expected in either the absence of a
639 gene or presence of a single copy of a gene given typical coverage values in growing cells
640 (Korem et al., 2015). These copy number cutoffs were chosen to avoid spuriously analyzing
641 genes linked to multiple species. In such cases, mapping artifacts in which reads can be
642 arbitrarily assigned to multiple species cannot be disentangled. For example, a gene present in
643  multiple species would likely have copy number significantly deviating from 1 (including values
644  that lie in an ambiguous zone of 0.05 to 0.6, as well as >>1), reflecting the joint abundances of
645 the multiple species. Thus, although we may miss many biologically interesting multi-copy
646  genes (e.g. transporter genes in Bacteroides (Wexler and Goodman, 2017)), our thresholds avoid
647  confounding our analysis with read stealing or donating among different species. Filters for
648  coverage and blacklisted genes were applied as described above.

649

650  Strain number inference

651 We used StrainFinder (Smillie et al., 2018) to infer the number of strains present within
652  each species in each HMP1-2 metagenomic sample. To do so, we used allele frequencies from
653 MIDAS SNV output, generated as described above. For each species in each host, all multi-
654 allelic sites with coverage of 20x or greater were passed as input to StrainFinder. Species/host
655  pairs which had fewer than 100 sites with 20x coverage were removed from the analysis.
656  StrainFinder was then run on each sample separately for strain number 1, 2, 3, and 4, and the
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657  optimal strain number was chosen based on the Bayesian Information Criterion (BIC). This
658 range of strain number was chosen for biological reasons. A number of studies have
659  demonstrated that at most a small handful of strains (between one and four) not sharing a
660 common ancestor within the host are ever observed within a single gut microbiome at any one
661 time (Garud et al., 2019; Truong et al., 2017; Verster et al., 2017; Yassour et al., 2018).
662  Additionally, for the four densely longitudinally sampled hosts in Poyet et al. 2019, multiple
663  analyses employing distinct sequencing strategies and strain phasing techniques have similarly
664  concluded that a maximum of four strains were present at any one time within a host for the ~30
665 most prevalent species (Poyet et al., 2019; Wolff et al., 2021; Zheng et al., 2022). Thus, four

666  strains were chosen as the maximum to accommodate the range of observed possibilities.

667
668 Statistical analyses
669

670 Mode construction and evaluation

671  Using data from the Human Microbiome Project (HMP) and Poyet et al. 2019, we examined the
672 relationship between within-species genetic diversity and the gut microbiome community
673  diversity. Within-species genetic diversity was estimated with polymorphism rate and strain
674  richness. Community diversity was estimated with the Shannon index, species richness estimated
675 on the whole data, and species richness calculated on the data rarefied to an equal number of
676 reads per sample (as described above). When the relationship between the response variable
677  (within-species genetic diversity) and the predictor (community diversity) was approximately
678 linear by visual inspection, we fit generalized linear mixed models (GLMMs) (gimmTMB
679  function from the gimmTMB R package - RStudio version 1.2.5042) with community diversity
680  as the predictor of within-species genetic diversity. Otherwise we fit generalized additive mixed
681 models (GAMs) (mgcv function from the mgcv R package - RStudio version 1.2.5042) to
682  account for the non-linearity of the relationships.

683

684  To account for variation in sequencing depth, which can affect estimates of both community
685  diversity and within-species genetic diversity, we added read count per sample (coverage) as a
686  covariate to all generalized mixed models. Species name, subject identifier and sample identifier
687  were added as random effects to account for variation between different species and subjects,
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688 and to account for non-independence between observations. The R syntax and statistics of all
689  generalized models are reported in Supplementary File 2.

690

691 In generalized mixed models, the predictors were standardized to zero mean and unit variance
692  before analyses. We first assessed random effects significance by comparing nested models
693  where each random effect was dropped one at a time using the likelihood-ratio test (LRT, anova
694  function from the R stats package) and only significant random effects were included in the final
695 models. We then assessed the fixed effects' significance with likelihood-ratio tests implemented
696 in the dropl function in the R stats package. This function drops individual terms from the full
697 model and reports the AIC and the LRT P-value. All the P-values reported for the GLMMs
698  correspond to LRT and not to the Wald P-values reported by gimm.summary function from the
699 R package glmmTMB, as was recommended in https:/bbolker.github.io/mixedmodels-

700  misc/gimmEAQ.html. We again used LRTs to compare the full significant models to null models

701  including all random effects but no fixed effects other than the intercept. The difference in
702  Akaike information criterion (AAIC) between full and null model and their associated P-values
703 are reported in Supplementary File 1ef,g. As an additional evaluation of the goodness of fits,
704  we estimated the coefficient of determination (R?) using the r2 function from the performance R
705  package. Two values are reported: the marginal R? a measure of the variance explained only by
706  fixed effects, and the conditional R?, a measure of the variance explained by the entire model.
707

708 We evaluated model fits by inspecting the residuals using the DHARMa library in R
709  (simulateResiduals and plot functions) for the GLMMs and by inspecting residual distributions
710 and fitted-observed value plots using the gam.check function from the mgcv R package for the
711  GAMSs. Adjusted R? values (from gam.summary function from the mgcv R package) are reported
712 as a goodness of fit for the GAMs. All model outputs (summary function from mgcv and
713  gImmTMB R packages) are reported in the Supplementary File 2.

714

715 To study the relationship between focal species polymorphism and community diversity
716  calculated at higher taxonomic ranks (from genus to phylum), we used GTDBK and the Genome
717  Taxonomy Database (GTDB) (Chaumeil et al., 2020) to annotate MIDAS reference genomes.
718 Richness at each level was estimated with the total number of distinct taxonomic units in the
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719  sample. The Shannon index was calculated based on the relative abundances table from MIDAS:
720  at each taxonomic level, we used the sum of the abundances of all species belonging to that
721  taxonomic level to calculate the Shannon index (using the diversity function from the R vegan
722 library). We then fit two separate GAMs for each taxonomic rank (from genus to phylum) with
723  either Shannon diversity or richness as the predictors of within-species polymorphism rate (with
724  the coverage per sample as a covariate and species name, sample and subject identifiers as
725  random effects). These GAMs were fitted with a beta error distribution with logit-link function,
726  chosen because polymorphism rate is a continuous value strictly bounded by 1, and all the terms
727  were smoothed terms (See Supplementary File 1c and Supplementary File 2 section 1-3 for
728  additional model details).

729

730 We repeated the same methods for focal species synonymous and nonsynonymous
731  polymorphism separately. See Supplementary File 1b and d and Supplementary File 2
732  section 4-6 for details of the models applied to nonsynonymous polymorphism.

733

734 Analysisof strain count

735  To study the relationship between community diversity and the number of strains within a focal
736  species in the HMP, we restricted the analysis to 184 focal species genomes with at least 100
737  nucleotide sites with 20x coverage in a sample. We fit separate GLMMs with strain count in a
738  focal species as a function of community diversity estimated with Shannon diversity, species
739  richness, or rarefied species richness. Since strain number is positive count data, we compared
740 many zero-truncated count models based on the Akaike information criterion (AIC) score
741  (AICtab function from bbmle R library) (Brooks et al., 2017). We fit the model with the
742  truncated negative binomial distribution (truncated_nbinom2 or truncated_nbinoml in
743  gImmTMB; the second best fit) in order to resolve the overdispersion detected in the best fit (the
744 truncated Poisson model). Overdispersion was tested using the check overdispersion function
745 from the performance R package as described here: https:/bbolker.github.io/mixedmodels-
746  misc/gImmFAQ.html.

747

748  As described above for focal species polymorphism, we tested the relationship between focal

749  species strain count and community diversity at higher taxonomic levels from genus to phylum,
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750 fitting a separate GLMM with strain count in a focal species as a function of each metric of
751  diversity (Shannon and richness) at higher taxonomic levels (from genus to phylum). All GLMM
752  details are reported in Supplementary File 1f and Supplementary File 2 section 7-9.

753

754  Analysisof time series data

755  To test the predictions of DBD over time, we used HMP samples with multiple time points from
756  the same person to look at the relationship between within-species polymorphism change,
757  defined as the difference between polymorphism rate at two time points, and community
758  diversity at the earlier time point. To account for non-linearity of the relationships, we fit GAMs
759  with log transformed polymorphism change as a function of community diversity at the earlier
760  time point, and added the coverage per sample at the earlier time point as a covariate as well as
761  species name, sample and subject identifiers as random effects (Supplementary File 2 section
762  10.1).

763

764 In addition, we investigated the effect of community diversity at one time point on gene content
765  variation (gains and losses considered separately) at the subsequent time point. The relationships
766  were generally linear, so we used separate negative binomial generalized linear mixed models
767  with gene gain as the response and each of the metrics of community diversity as the predictor
768  with the same covariates and random effects used in the previous models (Supplementary File 2
769  section 10.2). The same method was used to test how gene loss was related to community
770  diversity (Supplementary File 1g, Supplementary File 2 section 10.3).

771

772  HMP longitudinal data consisted of hosts sampled at a time lag of ~6 months. To assess the
773  relationship between within-species genetic diversity and community diversity at higher
774 temporal resolution, we used the same methods to analyze longitudinal metagenomic data from
775  four more frequently sampled healthy stool donors (hosts am, an, ao and ae) (Poyet et al., 2019).
776  Stool from donor am was sequenced over 18 months with a median of one day between samples;
777  anover 12 months (median 2 days between samples); ao over 5 months (median 1 day between
778  samples); and ae over 7 months (median 2 days between samples). We looked at polymorphism
779  change and gene gains and losses between two time points in the 15 species with a minimal
780  marker gene coverage of ten in at least ten samples. Community diversity was estimated with
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781  Shannon diversity (unrarefied) and richness calculated on rarefied data to 5 million reads per
782  sample.

783

784  To study the relationship between community diversity at the initial time point and
785  polymorphism change between the initial time point and all the future time points, we fit
786  Gaussian generalized additive mixed models with log-transformed polymorphism change as the
787  response and the interaction between community diversity at the first time point and the number
788  of days between time points as the predictor. Covariates included coverage, species name,
789  sample, and subject identifiers as random effects (Supplementary File 1h, Supplementary File
790 2 section 11.1 and 11.2). To study the relationship between gene variation (gains and losses
791  separately) and diversity at the first time point, we fit negative binomial generalized linear mixed
792  models with gene variation as a function of the interaction between diversity at the first time
793  point and the number of days between the two time points, with the same covariate and random
794  effects as used above for polymorphism change over time (Supplementary File 1i,
795  Supplementary File 2 section 11.3-11.6).

796
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Supplementary File 2. R syntax and statistics of all generalized models.

Supplementary figure legends
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Figure 2-Supplement 1. Results of generalized additive models predicting within-species polymor phism rate
(at synonymous sites) as a function of community diversity at higher taxonomic levels (HM P data). (A1-E1)
The predictor is Shannon diversity. (A2-E2) The predictor is richness. Adjusted r-squared (R?) and Chi-squared P-
values corresponding to the predictor are displayed in each panel (gam.summary function from mgcv R package).

Shaded areas show the 95% confidence interval of each model prediction. See Supplementary File 1c and
supplementary file 2 sections 2-3 for further details about model outputs.
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Figure 2-Supplement 2. Results of generalized additive models predicting within-species polymor phism rate
(at nonsynonymous sites) in a focal species asafunction of community diversity at higher taxonomic levels
(HMP data). (A1-E1) The predictor is Shannon diversity. (A2-E2) The predictor is richness. Adjusted r-squared
(R?) and Chi-squared P-values corresponding to the predictor are displayed in each panel (gam.summary function
from mgcv R package). Shaded areas show the 95% confidence interval of each model prediction. See
Supplementary File 1d and supplementary file 2 sections 5-6 for further details about model outputs.
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Figure 3-Supplement 1. Results of generalized linear mixed models predicting strain count in a focal species
as a function of community diversity at higher taxonomic levels (HM P data). Strain number in a focal species is
positively correlated with Shannon (Al1-E1) whereas its correlation with richness remains negative (A2-E2) through
all taxonomic levels. The Y-axis is the predicted mean number of strains within a focal species. P-values (dropl
function from R stats package, LRT). Shaded areas show the 95% confidence interval of each model prediction. See
Supplementary File 1f and supplementary file 2 section 9 for model details.
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848 Figure 5-Supplement 1. Results of a GAM predicting polymorphism change in a focal species as a function of the
849 interaction between Shannon diversity at the first time point and the time lag (days) between two time points in the
850 Poyet time series. The response (Y-axis) was log transformed in the Gaussian GAM. Several different time lags are
851  shown to illustrate the inversion of the relationship around a lag time of 150 days. See Supplementary File 1h and
852  supplementary file 2 section 11 for further model details.
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