
1 
 

Community diversity is associated with intra-species genetic diversity and 1 
gene loss in the human gut microbiome 2 

 3 

Naïma Madi1, Daisy Chen2,3,^, Richard Wolff4,^, B. Jesse Shapiro1,5,6,7,*, and Nandita Garud4,8,* 4 

 5 

1. Département de sciences biologiques, Université de Montréal, Canada;  6 
2. Computational and Systems Biology, University of California, Los Angeles  7 
3. Bioinformatics and Systems Biology Program, University of California, San Diego� 8 
4. Department of Ecology and Evolutionary Biology, University of California, Los Angeles  9 
5. Department of Microbiology and Immunology, McGill University, Canada;  10 
6. McGill Genome Centre, McGill University, Canada 11 
7. Quebec Centre for Biodiversity Science, Canada 12 
8. Department of Human Genetics, University of California, Los Angeles 13 

 14 
* Correspondence to jesse.shapiro@mcgill.ca and ngarud@ucla.edu. These authors contributed 15 
equally.  16 

^ These authors contributed equally.   17 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.03.08.483496doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.08.483496
http://creativecommons.org/licenses/by-nc/4.0/


2 
 

Abstract 18 

The human gut microbiome contains a diversity of microbial species that varies in composition 19 

over time and across individuals. These species (and strains within species) can migrate across 20 

hosts and evolve by mutation and recombination within hosts. How the ecological process of 21 

community assembly interacts with intra-species diversity and evolutionary change is a 22 

longstanding question. Two contrasting hypotheses have been proposed based on ecological 23 

observations and theory: Diversity Begets Diversity (DBD), in which taxa tend to become more 24 

diverse in already diverse communities, and Ecological Controls (EC), in which higher 25 

community diversity impedes diversification within taxa. Previously, using 16S rRNA gene 26 

amplicon data across a range of environments, we showed a generally positive relationship 27 

between taxa diversity and community diversity at higher taxonomic levels, consistent with the 28 

predictions of DBD (Madi et al., 2020). However, this positive ‘diversity slope’ reaches a plateau 29 

at high levels of community diversity. Here we show that this general pattern holds at much finer 30 

genetic resolution, by analyzing intra-species strain and nucleotide variation in static and 31 

temporally sampled shotgun-sequenced fecal metagenomes from cohorts of healthy human hosts. 32 

We find that both intra-species polymorphism and strain number are positively correlated with 33 

community Shannon diversity. This trend is consistent with DBD, although we cannot exclude 34 

abiotic drivers of diversity. Shannon diversity is also predictive of increases in polymorphism 35 

over time scales up to ~4-6 months, after which the diversity slope flattens and then becomes 36 

negative—consistent with DBD eventually giving way to EC. Also supporting a complex 37 

mixture of DBD and EC, the number of strains per focal species is positively associated with 38 

Shannon diversity but negatively associated with richness. Finally, we show that higher 39 

community diversity predicts gene loss in a focal species at a future time point. This observation 40 

is broadly consistent with the Black Queen Hypothesis, which posits that genes with functions 41 

provided by the community are less likely to be retained in a focal species’ genome. Together, 42 

our results show that a mixture of DBD, EC, and Black Queen may operate simultaneously in the 43 

human gut microbiome, adding to a growing body of evidence that these eco-evolutionary 44 

processes are key drivers of biodiversity and ecosystem function. 45 

  46 
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Introduction 47 

Our understanding of microbial evolution and diversification has been enriched by experimental 48 

studies of bacterial isolates in the laboratory, but it remains a challenge to study evolution in the 49 

context of more complex communities (Lenski, 2017). Ongoing advances in culture-independent 50 

technologies have allowed us to study bacteria in the complex and dense communities in which 51 

they naturally occur (Garud and Pollard, 2020). Within a community, individual players engage 52 

in many negative and positive ecological interactions. Negative interactions can originate from 53 

competition for resources and biomolecular warfare (Hibbing et al., 2010; Mitri and Foster, 54 

2013), while positive interactions can stem from secreted metabolites that are used by other 55 

members of the community (cross-feeding) (Venturelli et al., 2018). These ecological 56 

interactions can create new niches and selective pressures, leading to eco-evolutionary feedbacks 57 

whose nature are yet to be fully understood. 58 

 59 

Ecological interactions can yield positive or negative effects on the diversification of a focal 60 

species. Under the "Diversity Begets Diversity" (DBD) hypothesis, higher levels of community 61 

diversity increase the rate of speciation (or diversification, more generally) due to positive 62 

feedback mechanisms such as niche construction (Calcagno et al., 2017; Schluter and Pennell, 63 

2017). Competition for limited niche space could also drive DBD if species diversify into new 64 

niches to avoid competition (Meyer and Kassen, 2007; Mitri and Foster, 2013; Schluter, 2000). 65 

By contrast, the "Ecological Controls" (EC) hypothesis posits that competition for a limited 66 

number of niches at high levels of community diversity results in a negative effect on further 67 

diversification. Metabolic models predict that DBD may initially spur diversification due to 68 

cross-feeding, but the diversification rate eventually slows and reaches a plateau as metabolic 69 

niches are filled (San Roman and Wagner, 2021). These theoretical predictions are largely 70 

supported by our previous study involving 16S rRNA gene amplicon sequencing data from the 71 

Earth Microbiome Project, in which we observed a generally positive relationship (which we call 72 

the diversity slope; Figure 1) between community diversity and focal-taxon diversity at most 73 

taxonomic levels, reaching a plateau at the highest levels of diversity (Madi et al., 2020).  74 

 75 

In this previous study, we found stronger support for DBD in the animal gut relative to more 76 

diverse microbiomes such as soils and sediments, which were closer to a plateau of diversity 77 
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(Madi et al., 2020). While diversity slopes were generally positive at taxonomic levels as fine as 78 

amplicon sequence variants (akin to species or strains) within a genus, they were most positive at 79 

higher levels such as classes or phyla. A recent experiment on soil bacteria also found evidence 80 

of DBD at the family level, likely driven by niche construction and metabolic cross-feeding 81 

(Estrela et al., 2022). It therefore remains unclear if the predictions of DBD hold primarily at 82 

these higher taxonomic levels, involving the ecological process of community assembly, or if 83 

they also apply at the finer intra-species level. Within-host intra-species diversity can arise by 84 

co-colonization of a host by genetically distinct strains belonging to the same species or 85 

evolutionary diversification of a lineage via de novo mutation and gene gain/loss events within a 86 

host.  87 

 88 

Such fine-scale strain-level variation has important functional and ecological consequences; 89 

among other things, strains are known to engage in interactions that cannot be predicted from 90 

their species identity alone (Goyal et al., 2022). Although closely-related bacteria are expected to 91 

have broadly similar niche preferences, finer-scale niches may differ below the species level 92 

(Martiny et al., 2015). For example, the acquisition of a carbohydrate-active enzyme by 93 

Bacteroides plebeius allows it to exploit a new dietary niche in the guts of people consuming 94 

nori (seaweed) (Hehemann et al., 2010), and single nucleotide adaptations permit Enterococcus 95 

gallinarum translocation across the intestinal barrier resulting in inflammation (Yang et al., 96 

2022). Despite their potential phenotypic effects, it is unknown if such fine-scale genetic changes 97 

are favored by higher community diversity (due for example to niche construction, as predicted 98 

by DBD) or suppressed (due to competition for limited niche space, as predicted by EC). 99 

Competition could also lead to DBD if focal species evolve new niche preferences to avoid 100 

extinction (Mitri and Foster, 2013; Schluter, 2000) – an idea with some support in experimental 101 

microcosms (Meyer and Kassen, 2007) but largely unexplored in natural communities. 102 

 103 

Here, we investigate the relationship between intra-species genetic diversity and community 104 

diversity in the human gut microbiome, a well-studied system in which we previously found 105 

support for DBD at higher taxonomic levels. We use static and temporal shotgun metagenomic 106 

data from a large panel of healthy adult hosts from the Human Microbiome Project (Lloyd-Price 107 

et al., 2017; The Human Microbiome Project Consortium, 2012) as well as from four healthy 108 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.03.08.483496doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.08.483496
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

individuals sampled almost daily over the course of one year (Poyet et al., 2019). Using109 

metagenomic data allows us to track change in single nucleotide variation, strain diversity, and110 

gene gain or loss events within relatively abundant species in the microbiome, and study how111 

these measures of intra-species diversity are associated with community diversity. Although such112 

analyses of natural diversity cannot fully control for unmeasured confounding environmental113 

factors, they are an important complement to controlled experimental and theoretical studies114 

which lack real-world complexity. 115 

 116 

Figure 1. Diversity Begets Diversity (DBD) and Ecological Controls (EC) hypotheses illustrated.117 
The top panel shows patterns predicted by alternative hypotheses and the bottom panel illustrates possible118 
underlying mechanisms, including strain invasion and de novo mutation within a focal species. Under119 
DBD, high community diversity is associated with high focal species polymorphism (red line) yielding a120 
positive diversity slope. In the bottom panels, the bacterial community within a host (large circle) is121 
represented as small rectangles with different bacterial species in different colors. The focal species is122 
shown in light green outlined in black and the invading strain (striped colors) is a different strain of the123 
resident focal species. 124 
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Results 126 

We investigated the relationship between community diversity and within-species genetic 127 

diversity in human gut microbiota using two shotgun metagenomic datasets. First, we analyzed 128 

data from a panel of 249 healthy hosts (Lloyd-Price et al., 2017; The Human Microbiome Project 129 

Consortium, 2012), in which stool samples were collected 1-3 times from each host at 130 

approximately 6-month intervals. Second, we analyzed data from four individuals sampled more 131 

densely over the course of ~18 months (Poyet et al., 2019). In both cases, we only consider intra-132 

species diversity of relatively abundant species that are well sampled in these metagenomic 133 

datasets (Methods). 134 

 135 

We examined several metrics of community diversity and intra-species diversity and calculated 136 

the slope of their relationship, defined as the diversity slope (Figure 1). We note that intra-137 

species diversity can arise within hosts via de novo point mutation, gene gain or loss, or the 138 

coexistence of genetically distinct strains that diverged before colonizing the host. To quantify 139 

community diversity, we calculated Shannon diversity and richness at the species level. Shannon 140 

diversity is relatively insensitive to sampling effort (Madi et al., 2020; Walters and Martiny, 141 

2020) but richness can be underestimated in low sample sizes. We therefore computed richness 142 

on data rarefied to an equal number of reads per sample, yielding generally similar results to 143 

unrarefied data (described below). In all cases, we included the number of reads per sample 144 

(coverage) as a covariate in our models, as this could affect estimates of both community 145 

diversity and intra-species diversity. To quantify intra-species diversity, we used a reference 146 

genome-based approach to call single nucleotide variants (SNVs) and gene copy number variants 147 

(CNVs) within each focal species and computed polymorphism rates, measured as the fraction of 148 

synonymous nucleotide sites in a species’ core genome with intermediate allele frequencies 149 

(between 0.2 and 0.8) within a host (Methods). We also repeated the analysis on nonsynonymous 150 

sites, as these are subject to stronger selective constraints. As an additional metric of intra-151 

species diversity, we inferred the number of strains within each species using StrainFinder 152 

applied to all polymorphic sites (including those outside the 0.2-0.8 frequency range) (Smillie et 153 

al., 2018).  154 

 155 
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Community diversity is positively associated with intra-species polymorphism in the 156 

human gut microbiome 157 

As an exploratory visualization, we began by plotting the relationship between community 158 

diversity and intra-species polymorphism rate calculated at synonymous sites in cross-sectional 159 

HMP metagenomes for the nine most prevalent species (Figure 2A,B). The slope of this 160 

relationship (the diversity slope; Figure 1) provides an indicator of the evidence for DBD 161 

(positive slope) or EC (flat or negative slope). The relationship between polymorphism rate and 162 

community diversity was mostly positive in the top nine most prevalent species in HMP hosts 163 

(Figure 2A,B). These nine species are used as a simple illustration of the diversity slope, not as a 164 

formal hypothesis-testing framework.  165 

 166 

 167 
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Figure 2. Positive association between community diversity and within-species polymorphism in cross-168 
sectional Human Microbiome Project samples. (A) Scatter plots showing the relationship between community 169 
Shannon diversity and within-species polymorphism rate (estimated at synonymous sites) in the nine most prevalent 170 
species in HMP. (B) Scatter plots showing the relationship between species richness and within-species 171 
polymorphism rate in the nine most prevalent species in HMP. These are simple correlations to show the 172 
relationships in the raw data. Significant correlations are shown with red trendlines (Spearman correlation, P<0.05); 173 
non-significant trendlines are in gray. Results of generalized additive models (GAMs) predicting polymorphism 174 
rate in a focal species as a function of (C) Shannon diversity, (D) species richness estimated on all sequence data, 175 
and (E) species richness estimated on rarefied sequence data. GAMs are based on data from 69 bacterial species 176 
across 249 HMP stool donors. Adjusted R2 and Chi-square P-values corresponding to the predictor effect are 177 
displayed in each panel. Shaded areas show the 95% confidence interval of each model prediction. See 178 
Supplementary File 1a and supplementary file 2 section 1 for detailed model outputs. 179 
 180 

To generalize across species and to formally test the predictions of DBD, we fit generalized 181 

additive models (GAMs) to the HMP data. Using GAMs, we are able to model non-linear 182 

relationships evident in the data (Figure 2A,B), account for random variation in the strength of 183 

the diversity slope across bacterial species, and account for the uneven number of samples per 184 

host and the non-independence of samples from the same host (Methods; see Supplementary 185 

File 1a and Supplementary File 2 section 1 for additional model details). These GAMs 186 

included 69 focal species with sufficient coverage to quantify within-species polymorphism 187 

(Methods); the results therefore apply to relatively abundant species in the human gut 188 

microbiome. GAMs showed an overall positive association between within-species 189 

polymorphism and Shannon diversity (Fig 2C, GAM, P=0.031, Chi-square test) as well as 190 

between within-species polymorphism and community richness after controlling for coverage as 191 

a covariate (Fig 2D, GAM, P=0.017, Chi-square test) or rarefying samples to an equal number of 192 

reads (Fig 2E, GAM, P=2.63e-04, Chi-square test). The random effect of species identity is 193 

highly significant in all models, indicating that each bacterial species has its own characteristic 194 

diversity slope (Supplementary File 1a). It appears that synonymous polymorphism reaches a 195 

plateau at high levels of community richness, which is particularly evident when using rarefied 196 

data (Fig 2E). Using the same GAMs applied to nonsynonymous polymorphism, we found no 197 

significant associations between diversity and within-species polymorphism rate (GAM, P>0.05, 198 

Chi-square test) (Supplementary File 1b, Supplementary File 2 section 4). This could be due 199 

to lower statistical power, since there are fewer nonsynonymous than synonymous sites, or could 200 

reflect a true difference in the diversity slope between these site categories. 201 

 202 
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These generally positive correlations between focal species polymorphism and species-level 203 

measures of community diversity also hold when community diversity is measured at higher 204 

taxonomic levels; specifically, synonymous polymorphism rate was significantly positively 205 

associated with Shannon diversity calculated at the genus and family levels (GAMs, P<0.05, 206 

Chi-square test) (Figure 2-figure supplement 1, Supplementary File 1c). However, 207 

synonymous polymorphism rate was not significantly associated with Shannon diversity 208 

calculated at the highest taxonomic levels (order, class and phylum, GAMs, P>0.05, Chi-square 209 

test). The positive correlation between polymorphism rate and richness held at all taxonomic 210 

levels (GAMs, P<0.05, Chi-square test) (Figure 2-figure supplement 1, Supplementary File 211 

1c, Supplementary File 2 section 2 and 3). When estimated at nonsynonymous sites, 212 

polymorphism rate was not significantly correlated with Shannon diversity at any taxonomic 213 

level (GAMs, P>0.05, Chi-square test), but was positively correlated with richness at the highest 214 

levels (phyla, class and order, P=3e-04, P=0.017 and P=6.11e-04 respectively, Chi-square test 215 

from GAMs) (Figure 2-figure supplement 2, Supplementary File 1d, Supplementary File 2 216 

section 5 and 6). Even when not statistically significant, the diversity slopes were generally 217 

positive at all taxonomic levels for both synonymous and nonsynonymous polymorphism 218 

(Figure 2-figure supplements 1 and 2). Overall, these results are consistent with the predictions 219 

of DBD at most taxonomic levels. However, slightly different relationships are observed when 220 

considering different measures of community diversity (Shannon or richness) and different 221 

components of within-species diversity (nonsynonymous or synonymous). 222 

 223 

Different measures of community diversity have contrasting associations with intra-species 224 

strain diversity 225 

Within host polymorphism rates span several orders of magnitude (10-5/bp to 10-2/bp), largely 226 

due to the fact that strain content is variable across hosts. As previously argued (Garud et al., 227 

2019), with conservatively high estimates for mutation rate (μ~10−9) (Sung et al., 2012), 228 

generation times (~ 10 / day) (Poulsen et al., 1995), and time since colonization (<100 years), 229 

polymorphism rates of ~10-2/bp or more are inconsistent with within-host diversification of a 230 

single colonizing lineage. Therefore, hosts with relatively high intra-host polymorphism rates are 231 

likely colonized by mixtures of multiple strains that diverged long before colonizing a host. 232 

Moreover, recent work suggests that the numbers and genetic composition of strains colonizing a 233 
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host can vary from host to host (Garud et al., 2019; Olm et al., 2017; Russell and Cavanaugh, 234 

2017; Truong et al., 2017; Verster et al., 2017). The associations between polymorphism and 235 

community diversity (Figure 2) are likely driven by a combination of de novo mutation and co-236 

colonization by multiple strains. 237 

 238 

To separate these two sources of diversity and to explicitly account for the strain structure within 239 

hosts, we inferred the number of strains per focal species with StrainFinder (Smillie et al., 2018) 240 

(Methods) and used strain number as another quantifier of intra-species diversity. We found that 241 

the number of strains per focal species follows an approximately linear relationship with 242 

community diversity in the nine most prevalent species in HMP (Figure 3A, B). Because of 243 

these approximately linear relationships, we used generalized linear mixed models (GLMMs) to 244 

investigate the relationship between the number of strains per focal species and community 245 

diversity, while taking into account coverage per sample as a covariate and variation between 246 

species, hosts and samples as random effects (Methods). The number of strains per focal species 247 

was positively correlated with community Shannon diversity (GLMM, P=3.58e-07, likelihood 248 

ratio test (LRT)) (Fig 3C, Supplementary File 1e, Supplementary File 2 section 7.1). This 249 

suggests that the positive correlation between polymorphism rate and Shannon diversity (Figure 250 

2) is due at least in part to strain diversity. 251 
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 252 
Figure 3. Associations between community diversity and strain number in cross-sectional Human 253 
Microbiome Project samples. (A) Scatter plots showing the relationship between Shannon diversity and the 254 
inferred number of strains within each of the nine most prevalent species in HMP. (B) Scatter plots showing the 255 
relationship between species richness and the inferred number of strains within each of the nine most prevalent 256 
species in HMP. Significant linear correlations are shown with red trendlines (Pearson correlation, P<0.05); non-257 
significant trend lines are in gray. Results of generalized linear mixed models (GLMMs) predicting strain count in 258 
a focal species as a function of (C) Shannon diversity, (D) species richness estimated on all data, and (E) species 259 
richness estimated on rarefied sequence data. Diversity estimates (x-axis) are standardized to zero mean and unit 260 
variance in the models. The Y-axis shows the mean number of strains per focal species predicted by the GLMM. 261 
GLMMs are based on data from 184 bacterial species across 249 HMP stool donors. P-values (likelihood ratio test) 262 
are displayed in each panel. Shaded areas show the 95% confidence interval of each model prediction. See 263 
Supplementary File 1e and Supplementary File 2 section 7 for detailed model outputs. 264 
 265 

By contrast, species richness was negatively correlated with strain number (GLMM, P=1.67e-06, 266 

LRT) (Fig 3D, Supplementary File 1e, Supplementary File 2 section 7.2). The negative 267 

relationship with richness was unlikely to be confounded by sequencing depth, since the same 268 

result was obtained using rarefied data (Fig 3E, Supplementary File 1e, Supplementary File 2 269 
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section 7.3). The negative strain number-richness relationship also held at all other taxonomic 270 

ranks (GLMM, P<0.05, LRT), while the strain number-Shannon diversity relationship was 271 

generally positive (Fig 3-Figure supplement 1, Supplementary File 1f, Supplementary File 2 272 

section 8-9). These effects also appear to be species-specific: for example, the number of 273 

Bacteroides vulgatus strains per host is positively correlated with both Shannon diversity and 274 

richness (consistent with DBD predictions) whereas B. ovatus has no relationship with Shannon 275 

diversity but a negative correlation with richness (consistent with EC; Fig 2A, B). Together, 276 

these results reveal that different components of community diversity can have contrasting 277 

effects on the diversity slope. 278 

 279 

Community Shannon diversity is a predictor of intra-species polymorphism and gene loss 280 

in time series data  281 

Our analyses thus far have considered only individual time points, which represent static 282 

snapshots of the dynamic processes of community assembly and evolution in the microbiome. To 283 

interrogate these phenomena over time, we analyzed 160 HMP subjects who were sampled 2-3 284 

times ~6 months apart. Under a DBD model, we expect community diversity at an earlier time 285 

point to result in higher within-species polymorphism at a future time point. To test this 286 

expectation, we defined 'polymorphism change' as the difference between polymorphism rates at 287 

the two time points (Methods). We also investigated the effects of community diversity on gene 288 

loss and gain events within a focal species, as such changes in gene content are known to occur 289 

frequently within host gut microbiomes (Garud et al., 2019; Groussin et al., 2021; Yaffe and 290 

Relman, 2020; Zhao et al., 2019). Here a gene was considered absent if its copy number (c) was 291 

<0.05 and present if 0.6 � c �  1.2. As in the cross-sectional analyses above, we also controlled 292 

for sequencing depth of the sample and excluded genes with aberrant coverage or presence in 293 

multiple species (Methods).  294 

 295 

In HMP samples, polymorphism change showed no significant relationships with community 296 

diversity at the earlier time point, whether it was estimated with Shannon index or species 297 

richness (GAM, P>0.05) (Supplementary File 2 section 10.1). These results suggest that DBD 298 

is negligible or undetectable over ~6-month time lags in the human gut. By contrast, we found 299 

that gene loss in a focal species between two consecutive time points was positively correlated 300 
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with community diversity at the earlier time point (Figure 4; GLMM, P=0.028, P=0.034 and 301 

P=0.049, LRT for Shannon, richness and rarefied richness respectively) (Supplementary File 302 

1g, Supplementary file 2 section 10.3). Gene gains did not show any significant relationships 303 

with community diversity (GLMM, P>0.05). Selection for gene loss in more diverse 304 

communities is a prediction of the Black Queen Hypothesis (BQH), provided that higher 305 

community diversity results in more redundant gene functions that compensate for losses in a 306 

focal species (Morris et al., 2012). Most species in HMP samples lost fewer than ten genes over 307 

~6 months – consistent with de novo deletion events of a few genes – but occasionally hundreds 308 

of genes were lost from a host, suggesting that strains with smaller genomes were selected in 309 

more diverse communities (Figure 4A, 4B). 310 

 311 
Figure 4. Positive association between community diversity and gene loss in Human Microbiome Project time 312 
series. (A) Scatter plots showing the relationship between Shannon diversity at time point 1 (tp1) and gene loss 313 
between tp1 and tp2 within each of the nine most prevalent species in HMP. (B) Scatter plots showing the 314 
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relationship between species richness at tp1 and gene loss between tp1 and tp2 within each of the nine most 315 
prevalent species in HMP. Significant linear correlations are shown with red trendlines (Pearson correlation, 316 
P<0.05); non-significant trend lines are in gray. The Y-axis is plotted on a log10 scale for clarity. Results of 317 
generalized linear mixed models (GLMMs) predicting gene loss in a focal species as a function of (C) Shannon 318 
diversity, (D) species richness estimated on all data, and (E) species richness estimated on rarefied sequence data. P-319 
values (likelihood ratio test) are displayed in each panel. Shaded areas show the 95% confidence interval of each 320 
model prediction. The Y-axis is plotted on the link scale, which corresponds to log for negative binomial GLMMs 321 
with a count response. GLMMs are based on data from 54 bacterial species across 154 HMP stool donors sampled at 322 
more than one time point. See Supplementary file 1g and Supplementary File 2 section 10 for detailed model 323 
outputs. 324 
 325 
 326 
To study these dynamics at higher temporal resolution, we analyzed shotgun metagenomic data 327 

from four more frequently sampled healthy individuals from a previous study (Poyet et al., 328 

2019). Stool from donor am was sequenced over 18 months with a median of one day between 329 

samples; an over 12 months (median 2 days between samples); ao over 5 months (median 1 day 330 

between samples); and ae over 7 months (median 2 days between samples). In this data, we 331 

tracked both polymorphism change and gene gains and losses between two successive time 332 

points in 15 species with a minimal marker gene coverage of 10 in at least ten samples. These 333 

include seven species of Bacteroides, two Eubacterium, two Faecalibacterium, two 334 

Ruminococcus, as well as Alistipes putredinis and Parabacteroides merdae. 335 

 336 

Using the Poyet dataset, we asked whether community diversity in the gut microbiome at one 337 

time point could predict polymorphism change at a future time point by fitting GAMs with the 338 

change in polymorphism rate as a function of the interaction between community diversity at the 339 

first time point and the number of days between the two time points. Shannon diversity at the 340 

earlier time point was correlated with increases in polymorphism (consistent with DBD) up to 341 

~150 days (~4.5 months) into the future (Fig 5-Figure supplement 1), but this relationship 342 

became weaker and then inverted (consistent with EC) at longer time lags (Fig 5A, 343 

Supplementary File 1h, GAM, P=0.023, Chi-square test). The diversity slope is approximately 344 

flat for time lags between four and six months, which could explain why no significant 345 

relationship was found in HMP, where samples were collected every ~6 months. No relationship 346 

was observed between community richness and changes in polymorphism (Supplementary File 347 

1h, GAM, P>0.05). 348 

 349 
We next asked if community diversity at one time point could predict gene gains or losses at 350 

future time points by fitting GLMMs (analogous to the GAMs above, but more appropriate for 351 
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gain/loss count data). Our method does not explicitly distinguish between gene gain/loss arising 352 

from recombination or deletion versus replacement of strains with different gene content. We 353 

found that community Shannon diversity predicted future gene loss in a focal species, and this 354 

effect became stronger with longer time lags (Fig 5B, Supplementary File 1i, GLMM, P=0.006, 355 

LRT for the effect of the interaction between the initial Shannon diversity and time lag on the 356 

number of genes lost). The model predicts that increasing Shannon diversity from its minimum 357 

to its maximum would result in the loss of 0.075 genes from a focal species after 250 days. In 358 

other words, about one of the 15 focal species considered would be expected to lose a gene in 359 

this time frame. 360 

 361 

Higher Shannon diversity was also associated with fewer gene gains, and this relationship also 362 

became stronger over time (Fig 5C, Supplementary File 1i, GLMM, P=1.11e-09, LRT). We 363 

found a similar relationship between community species richness and gene gains, although the 364 

relationship was slightly positive at shorter time lags (Fig 5D, Supplementary File 1i, GLMM, 365 

P=3.41e-04, LRT). No significant relationship was observed between richness and gene loss 366 

(Supplementary File 1i, GLMM, P>0.05). Taken together with the HMP results (Fig 4), these 367 

longer time series reveal how the sign of the diversity slope can vary over time and how 368 

community diversity is generally predictive of reduced focal species gene content. 369 

 370 

 371 
Figure 5.  Community diversity is associated with increases in focal species polymorphism over short time 372 
lags and net gene loss in dense gut microbiome time series. (A) Results of a GAM predicting polymorphism 373 
change in a focal species as a function of the interaction between Shannon diversity at the first time point and the 374 
time lag (days) between two time points in data from Poyet et al. The response (Y-axis) was log transformed in the 375 
Gaussian GAM. Results of GLMMs predicting (B) Number of genes lost and (C) Number of genes gained between 376 
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two time points in a focal species as a function of the interaction between Shannon diversity at the first time point 377 
and the time lag between the two time points. (D) Results of the GLMM predicting the number of genes gained in a 378 
focal species as a function of the interaction between rarefied species richness at the first time point and the time lag 379 
between the two time points. The illustrated time lags correspond to the first quartile (50 days), the median (130 380 
days), and the third quartile (250 days). See Supplementary Files 1h and i and Supplementary File 2 section 11 for 381 
detailed model outputs. These analyses are based on data from 15 bacterial species across 4 stool donors from Poyet 382 
et al. Only statistically significant relationships are plotted. Non-significant relationships are not shown: the GAM 383 
predicting polymorphism change as a function of rarefied richness (P>0.05) and the GLMM predicting the number 384 
of genes lost as a function of rarefied richness (P>0.05). 385 
 386 

 387 

Discussion 388 

How eco-evolutionary feedbacks shape biological communities is an open question that 389 

to date has received substantial experimental and theoretical attention but is challenging to 390 

address in nature. In our previous study using 16S rRNA amplicon sequences from the Earth 391 

Microbiome Project, we found generally positive diversity slopes that eventually flattened at 392 

high levels of community diversity (Madi et al., 2020). This pattern is generally consistent with 393 

the predictions of DBD during the early stages of community assembly, but at later stages 394 

becomes more consistent with EC as niches become filled. Based on the time series 395 

metagenomic data analyzed here, the predictions of DBD also tend to hold over short time scales 396 

but fail over longer time scales of several months. Whether this leads to a terminal plateau of 397 

diversity, or whether ecological disturbances lead to cycles of DBD and EC, deserves further 398 

study.  399 

In our previous study, the animal gut microbiome had one of the highest positive 400 

diversity slopes, making it an ideal candidate for investigating eco-evolutionary interactions at 401 

greater intra-species resolution using metagenomic data. In this follow-up study, we investigate 402 

the same phenomenon at a subspecies level, with results that are broadly consistent with the 403 

predictions of DBD giving way to EC over long time scales. We note that experiments 404 

supporting DBD have generally been conducted over short time scales ranging from two to 20 405 

days (Estrela et al., 2022; Jousset et al., 2016), consistent with the importance of DBD early in 406 

community assembly. We also identify several nuances and caveats to this general conclusion, 407 

which are discussed below in detail.  408 

Another recent study also found evidence for eco-evolutionary feedbacks in the HMP, in 409 

the form of a positive relationship between evolutionary modifications or strain replacements in 410 

a focal species and community diversity (Good and Rosenfeld, 2022). Using a model, they 411 
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further showed that these eco-evolutionary dynamics could be explained by resource competition 412 

and did not require the cross-feeding interactions previously invoked (Estrela et al., 2022; San 413 

Roman and Wagner, 2021, 2018) to explain DBD at higher taxonomic levels. This could be 414 

because cross-feeding operates at the family- or genus- level and is less relevant at finer 415 

evolutionary scales.  416 

There are several noteworthy caveats to our study. First, using metagenomic data from 417 

human microbiomes allowed us to study genetic diversity, but limited us to considering only 418 

relatively abundant species with genomes that were well-covered by short sequence reads. 419 

Deeper or more targeted sequencing may permit us to determine whether the same patterns hold 420 

for rarer members of the microbiome. However, it is notable that the majority of the dozens of 421 

species across the two datasets analyzed support DBD, suggesting that the phenomenon may 422 

generalize.  423 

Second, we cannot establish causal relationships without controlled experiments. We are 424 

therefore careful to conclude that positive diversity slopes are consistent with the predictions of 425 

DBD, and negative slopes with EC, but unmeasured environmental drivers could be at play. For 426 

example, increased dietary diversity could simultaneously select for higher community diversity 427 

and also higher intra-species diversity. In our previous study, we found that positive diversity 428 

slopes persisted even after controlling for potential abiotic drivers such as pH and temperature 429 

(Madi et al., 2020), but a similar analysis was not possible here due to a lack of metadata. 430 

Neutral processes can account for several ecological patterns such as species-area relationships 431 

(Hubbell, 2001), and must be rejected in favor of niche-centric models like DBD or EC. Using 432 

neutral models without DBD or EC, we found generally flat or negative diversity slopes due to 433 

sampling processes alone and that positive slopes were hard to explain with a neutral model 434 

(Madi et al., 2020). These models were intended mainly for 16S rRNA gene sequence data, but 435 

we expect the general conclusions to extend to metagenomic data. Nevertheless, further 436 

modeling and experimental work will be required to fully exclude a neutral explanation for the 437 

diversity slopes we report in the human gut microbiome.  438 

Based on controlled experiments (Estrela et al., 2022) and modeling studies (San Roman 439 

and Wagner, 2021), DBD is a plausible causal explanation for positive diversity slopes in the gut 440 

microbiome. Although they also note that causality is difficult to establish, Good and Rosenfeld 441 

(2022) suggest the importance of focal species evolution as a driver of changes in community 442 
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structure, as shown in an experimental study of Pseudomonas in compost communities (Padfield 443 

et al., 2020). Clearly, further work is needed to establish the extent and relative rates of eco-444 

evolutionary feedback in both directions. How these feedbacks among bacteria are influenced by 445 

abiotic factors and by interactions with fungi, archaea, and phages also deserve further study. 446 

Third, the diversity slope changes depending on which component of within-species 447 

diversity or community diversity is considered. Notably, the number of strains within a focal 448 

species is positively correlated with Shannon diversity, but inversely correlated with species 449 

richness, suggesting that the ability of strains to colonize a host may be associated with higher 450 

community evenness rather than total species count. Higher evenness might maximize the 451 

chance of inter-species interactions, whereas higher richness might be driven by rare species that 452 

are less likely to interact. Although Shannon diversity is considered to be more robust and 453 

informative than richness in estimating bacterial diversity (He et al., 2013; Reese and Dunn, 454 

2018), we observe the same contrasting results between Shannon diversity and richness when 455 

community diversity is calculated at higher taxonomic levels, suggesting that this pattern is not 456 

due to artifacts such as sequencing effort.  457 

Our measures of intra-species diversity included both synonymous and nonsynonymous 458 

single nucleotide variants, inferred strain richness, and gene content. Synonymous nucleotide 459 

variation was consistently and positively associated with both community richness and Shannon 460 

diversity at all taxonomic levels (although not always with statistical significance). 461 

Nonsynonymous variation also tended to track positively with both measures of community 462 

diversity but was only statistically significantly associated with phylum and class richness. This 463 

suggests that evolutionarily older, less selectively constrained synonymous mutations and more 464 

recent nonsynonymous mutations that affect protein structure both track similarly with measures 465 

of community diversity. Nonetheless, a parsimonious explanation for possible differences 466 

between the two classes is that while they are affected similarly, we have more statistical power 467 

to identify correlations in the more numerous synonymous mutations. This merits further 468 

investigation.  469 

Metagenomes from the same individual sampled over time allowed us to detect gene gain 470 

and loss events. In both HMP and Poyet et al. time series, community diversity was predictive of 471 

future gene loss in a focal species. This phenomenon is not explicitly predicted by either DBD or 472 

EC but it is compatible with aspects of the Black Queen Hypothesis, with some caveats. BQH 473 
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predicts that a focal species will be less likely to encode genes with functions provided by other 474 

members of the surrounding community if such functions are "leaky" and available as diffusible 475 

public goods (Morris et al., 2012). The BQH could also act as a driver of polymorphism within a 476 

species (Morris et al., 2014). Gene loss may be adaptive, provided that there is a cost to encoding 477 

and expressing the relevant genes (Albalat and Cañestro, 2016; Koskiniemi et al., 2012; 478 

Simonsen, 2022). The tendency for reductive genome evolution in bacteria is well established 479 

(Albalat and Cañestro, 2016; Koskiniemi et al., 2012; Puigbò et al., 2014). Genome reduction is 480 

a particular hallmark of endosymbiotic bacteria, which depend on their hosts for many metabolic 481 

gene products (McCutcheon and Moran, 2012; Nikoh et al., 2011). It has been shown that 482 

uncultivated bacteria from the gut have undergone considerable genome reduction, which may 483 

be an adaptive process that results from reliance on public goods (Nayfach et al., 2019). In the 484 

gut microbiome, the BQH has been invoked to explain the distribution of genes involved in 485 

vitamin B metabolism (Sharma et al., 2019) and iron acquisition (Vatanen et al., 2019). 486 

Our findings in human gut metagenomes are compatible with the BQH under the 487 

assumption that increasing community diversity also increases the availability of leaky gene 488 

products – which may not be the case if genomes in the gut microbiome are functionally 489 

redundant, as inferred in a recent study (Tian et al., 2020). This study found that species in the 490 

gut microbiome were highly redundant at the level of annotated metabolic pathways (KEGG 491 

orthologs) and that more functionally redundant microbiomes were more resistant to colonization 492 

by fecal transplants. Relatively low-redundancy microbiomes could therefore be more easily 493 

colonized but might also require migrants to encode more gene functions in order to persist. 494 

Importantly, functional redundancy may be high at the level of well-annotated metabolic 495 

functions, but low at the finer level of individual gene families, as demonstrated in marine 496 

microbiomes (Galand et al., 2018) but not yet studied explicitly in the gut. Here we report that 497 

genome reduction in the gut is higher in more diverse gut communities. This could be due to de 498 

novo gene loss, preferential establishment of migrant strains encoding fewer genes, or a 499 

combination of the two. The mechanisms underlying this correlation remain unclear and could be 500 

due to biotic interactions – including metabolic cross-feeding as posited by some models (Estrela 501 

et al., 2022; San Roman and Wagner, 2021, 2018) but not others (Good and Rosenfeld, 2022) – 502 

or due to unknown abiotic drivers of both community diversity and gene loss. Finally, we 503 

measured community diversity from the phylum to the species level, not below. We therefore did 504 
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not investigate how the BQH could extend to maintain gene content variation within a species, as 505 

has been shown experimentally in E. coli (Morris et al., 2014). This could be an avenue for 506 

future work. 507 

In our previous analysis of lower-resolution 16S rRNA amplicon sequences, we reported 508 

a tendency for focal genera with larger genomes to have higher diversity slopes, perhaps because 509 

they experience stronger DBD (Madi et al., 2020). At face value, this tendency seems at odds 510 

with the BQH, which predicts genome reduction in more diverse communities. This apparent 511 

contradiction may be reconciled by considering eco-evolutionary dynamics on different time 512 

scales. A recent study used phylogenetic and metabolic reconstructions to show that gene gains 513 

often drive metabolic dependencies among bacteria (Goyal, 2022), potentially explaining why 514 

genera with larger maximum genome size could experience stronger DBD. Our earlier study 515 

only had the genetic resolution to consider focal taxa down to the genus level, and by using the 516 

maximum genome size observed in a public database we did not capture the dynamic process of 517 

gene gain and loss within a species, as was possible in the current metagenomic study. It is 518 

therefore possible that on longer (ecological) time scales, larger genomes have more metabolic 519 

interactions and thus experience stronger DBD, while genome reduction in more diverse 520 

communities occurs on shorter (evolutionary) time scales. 521 

In summary, we demonstrate how metagenomic data can be used to test the predictions of 522 

eco-evolutionary theory, including DBD, EC, and the BQH. It remains to be seen whether the 523 

distinct eco-evolutionary processes proposed by DBD and the BQH operate orthogonally or 524 

whether they interact. If BQH leads to gene losses that remain polymorphic rather than being lost 525 

entirely from the species (Morris et al., 2014) – or invasions of strains with fewer genes that 526 

remain incomplete and do not replace the resident strain – this could be viewed as a form of 527 

diversification and perhaps a special case of DBD. Here we considered gene loss as a directional 528 

process; we did not attempt to distinguish between directional changes in gene copy number and 529 

the complete extinction of a gene, which is difficult to show using metagenomic data. Future 530 

work could attempt to resolve this point and to potentially combine DBD and BQH into a unified 531 

theory. 532 

  533 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.03.08.483496doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.08.483496
http://creativecommons.org/licenses/by-nc/4.0/


21 
 

Data and materials availability 534 

The raw sequencing reads for the metagenomic samples used in this study were downloaded 535 

from the Human Microbiome Project Consortium 2012 and Lloyd-Price et al. (2017) 536 

(URL: https://aws.amazon.com/datasets/human-microbiome-project/); and Poyet et al. 2019 537 

(NCBI accession number PRJNA544527). All computer code for this paper is available at  538 

https://github.com/Naima16/DBD_in_gut_microbiome. 539 

 540 

 541 

Methods 542 

 543 

Metagenomic analyses 544 

Estimation of species, gene, and SNV content of metagenomic samples 545 

We used MIDAS (Metagenomic Intra-Species Diversity Analysis System, version 1.2, 546 

downloaded on November 21, 2016) (Nayfach et al., 2016) to estimate within-species nucleotide 547 

and gene content of raw metagenomic whole genome shotgun sequencing data for HMP1-2 and 548 

Poyet et al. 2019 data. MIDAS relies on a reference database comprised of 31,007 bacterial 549 

genomes that are clustered into 5,952 species, covering roughly 50% of species found in human 550 

stool metagenomes from “urban” individuals. Described below are the parameters used to 551 

estimate species abundances, single nucleotide variants (SNVs), and gene copy number variants 552 

(CNVs) with MIDAS. 553 

 554 

Estimation of species content 555 

We estimated species abundances, SNVs and CNVs by mapping metagenomic shotgun 556 

reads to reference genomes. Since a component of this work relies on quantifying polymorphism 557 

and CNV changes over time, we constructed a “personal” reference database to avoid spurious 558 

inferences of allele frequency and CNV changes due to errors in mapping of reads to regions of 559 

the genome shared by multiple species (Garud et al., 2019). This per-host reference database was 560 

comprised of the union of all species present at one or more timepoints so as to be as inclusive as 561 

possible to prevent reads from being “donated” to reference genome, while also being selective 562 

to prevent a reference genome from “stealing” reads from a species truly present.  563 
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To estimate the species relative abundances for each host x timepoint sample, we mapped 564 

reads to 15 universal single-copy marker genes that are a part of the MIDAS pipeline (Nayfach et 565 

al., 2016; Wu et al., 2013) and belong to the 5,952 species in the MIDAS reference database. A 566 

species with an average marker gene coverage ≥ 3 was considered present for the purposes of 567 

building a per-host database for mapping reads to infer SNVs and CNVs below. The per-host 568 

database was constructed by including all species present at one or more timepoints with 569 

coverage ≥3. However, more stringent thresholds were imposed for calling SNVs and CNVs, as 570 

described below.  571 

 572 

Estimation of copy number variation 573 

To estimate gene copy number variation (CNV), we mapped reads to the pangenomes of 574 

species present in a host’s personal database using Bowtie2 (Langmead and Salzberg, 2012) with 575 

default MIDAS settings (local alignment, MAPID≥94.0%, READQ≥20, and ALN_COV≥0.75). 576 

Each gene’s coverage was estimated by dividing the total number of reads mapped to a given 577 

gene by the gene length. These genes included the aforementioned 15 universal single-copy 578 

marker genes. A given gene’s copy number (c) was estimated by taking the ratio of its coverage 579 

and the median coverage of the species’ single-copy marker genes. 580 

With these copy number values, we estimated the prevalence of genes in the between-581 

host population, defined as the fraction of samples with copy number c≤ 3 and c≥0.3 (conditional 582 

on the mean single gene marker coverage being ≥ 5x). For each species, we computed “core 583 

genes”, defined as genes in the MIDAS reference database that are present in at least 90% of 584 

samples within a given cohort. Within-host polymorphism rates were computed in core genes. 585 

Orthologous genes present in multiple species can result in read "stealing" and read 586 

"donating" to species from which the reads did not originate. Thus, we excluded a set of genes 587 

belonging to a ‘blacklist’ composed of genes present in multiple species. This blacklist was 588 

constructed in (Garud et al., 2019) using USEARCH (Edgar, 2010) to cluster all genes in human-589 

associated reference genomes with a 95% nucleotide identity threshold. Since some genes may 590 

be absent from the MIDAS database but may nevertheless be shared across species, we 591 

implemented another filter (as in Garud et al. 2019) in which genes with c ≥ 3 in at least one 592 

sample in our cohort were excluded from analysis of polymorphism rate or gene changes over 593 

time.  594 
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 595 

Inferring single nucleotide variants (SNVs) within bacterial species 596 

To call SNVs, we mapped reads to a single representative reference genome as per the 597 

default MIDAS software. Reads were mapped with Bowtie2, with default MIDAS mapping 598 

thresholds: global alignment, MAPID≥94.0%, READQ≥20, ALN_COV≥0.75, and MAPQ≥20. 599 

Species were excluded from further analysis if reads mapped to ≤ 40% of their genome. We 600 

additionally excluded samples from further analysis if they had low median read coverage (�) at 601 

protein coding sites. Specifically, samples with � < 5 across all protein coding sites with nonzero 602 

coverage were excluded. This MIDAS SNV output was then used for computing within-species 603 

polymorphism rates and inferring the number of strains present for each species in each sample 604 

(see below). 605 

To compute polymorphism rates, additional bioinformatic filters were imposed to avoid 606 

read stealing and donating across different species. First, we did not call SNVs in blacklisted 607 

genes present in multiple species. Additionally, we excluded sites in a given sample if D < 0.3� 608 

or D > 3� as these sites harbor anomalously low or high coverage compared to the genome-wide 609 

average �. Additional filters are described below.  610 

 611 

Shannon diversity, species richness and polymorphism rate calculations 612 

Shannon diversity and richness were computed within each sample by including any 613 

species with abundance greater than zero. Rarefied species richness estimates are based on 614 

HMP1-2 samples rarefied to 20 million reads and Poyet samples rarefied to 5 million reads. SNV 615 

and gene content variation within a focal species were ascertained only from the full dataset and 616 

not the rarefied dataset.  617 

The polymorphism rate of a species in a sample was computed as the proportion of 618 

synonymous sites in core genes with intermediate allele frequencies (0.2 �f �0.8), as was done 619 

in Garud et al. 2019. Only species with a MIDAS marker gene coverage of 10 or more in 10 or 620 

more samples were included, yielding 69 species in 249 HMP stool donors and 15 species in four 621 

Poyet et al. 2019 donors. As explained in SI text 1 in Garud et al. 2019, this is quantitatively 622 

similar to the more traditional population genetic measure of heterozygosity, H=E[2f(1-f)], in 623 

which intermediate frequency alleles contribute the most weight to heterozygosity. By 624 

computing polymorphism with the criteria 0.2 �f �0.8, we avoid inclusion of low frequency 625 
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sequencing errors, which can otherwise greatly influence the mean heterozygosity. 626 

Polymorphism rates were computed separately for synonymous (4-fold degenerate) and 627 

nonsynonymous (1-fold degenerate) sites. The degeneracy of sites was determined based on 628 

MIDAS output.  629 

 630 

Temporal changes in polymorphism rates and gene content 631 

Polymorphism change was computed as the difference in polymorphism rates between 632 

time points within a host. Gene gains and losses between time points were computed in species 633 

with sufficient prevalence (at least 10 samples with marker gene coverage of at least 10, as in the 634 

polymorphism analysis above) by identifying genes with copy number c ≤0.05 (indicating gene 635 

absence) in one sample and 0.6 ≤ c ≤ 1.2 (with marker coverage ≥20x) in another (indicating 636 

single copy gene presence). These thresholds were used in Garud et al. 2019 when inferring gene 637 

changes in temporal data and reflect a range of copy numbers expected in either the absence of a 638 

gene or presence of a single copy of a gene given typical coverage values in growing cells 639 

(Korem et al., 2015). These copy number cutoffs were chosen to avoid spuriously analyzing 640 

genes linked to multiple species. In such cases, mapping artifacts in which reads can be 641 

arbitrarily assigned to multiple species cannot be disentangled. For example, a gene present in 642 

multiple species would likely have copy number significantly deviating from 1 (including values 643 

that lie in an ambiguous zone of 0.05 to 0.6, as well as >>1), reflecting the joint abundances of 644 

the multiple species. Thus, although we may miss many biologically interesting multi-copy 645 

genes (e.g. transporter genes in Bacteroides (Wexler and Goodman, 2017)), our thresholds avoid 646 

confounding our analysis with read stealing or donating among different species. Filters for 647 

coverage and blacklisted genes were applied as described above. 648 

 649 

Strain number inference 650 

We used StrainFinder (Smillie et al., 2018) to infer the number of strains present within 651 

each species in each HMP1-2 metagenomic sample. To do so, we used allele frequencies from 652 

MIDAS SNV output, generated as described above. For each species in each host, all multi-653 

allelic sites with coverage of 20x or greater were passed as input to StrainFinder. Species/host 654 

pairs which had fewer than 100 sites with 20x coverage were removed from the analysis. 655 

StrainFinder was then run on each sample separately for strain number 1, 2, 3, and 4, and the 656 
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optimal strain number was chosen based on the Bayesian Information Criterion (BIC). This 657 

range of strain number was chosen for biological reasons. A number of studies have 658 

demonstrated that at most a small handful of strains (between one and four) not sharing a 659 

common ancestor within the host are ever observed within a single gut microbiome at any one 660 

time (Garud et al., 2019; Truong et al., 2017; Verster et al., 2017; Yassour et al., 2018). 661 

Additionally, for the four densely longitudinally sampled hosts in Poyet et al. 2019, multiple 662 

analyses employing distinct sequencing strategies and strain phasing techniques have similarly 663 

concluded that a maximum of four strains were present at any one time within a host for the ~30 664 

most prevalent species (Poyet et al., 2019; Wolff et al., 2021; Zheng et al., 2022). Thus, four 665 

strains were chosen as the maximum to accommodate the range of observed possibilities.  666 

 667 

Statistical analyses 668 

 669 

Model construction and evaluation  670 

Using data from the Human Microbiome Project (HMP) and Poyet et al. 2019, we examined the 671 

relationship between within-species genetic diversity and the gut microbiome community 672 

diversity. Within-species genetic diversity was estimated with polymorphism rate and strain 673 

richness. Community diversity was estimated with the Shannon index, species richness estimated 674 

on the whole data, and species richness calculated on the data rarefied to an equal number of 675 

reads per sample (as described above). When the relationship between the response variable 676 

(within-species genetic diversity) and the predictor (community diversity) was approximately 677 

linear by visual inspection, we fit generalized linear mixed models (GLMMs) (glmmTMB 678 

function from the glmmTMB R package - RStudio version 1.2.5042) with community diversity 679 

as the predictor of within-species genetic diversity. Otherwise we fit generalized additive mixed 680 

models (GAMs) (mgcv function from the mgcv R package - RStudio version 1.2.5042) to 681 

account for the non-linearity of the relationships.  682 

 683 

To account for variation in sequencing depth, which can affect estimates of both community 684 

diversity and within-species genetic diversity, we added read count per sample (coverage) as a 685 

covariate to all generalized mixed models. Species name, subject identifier and sample identifier 686 

were added as random effects to account for variation between different species and subjects, 687 
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and to account for non-independence between observations. The R syntax and statistics of all 688 

generalized models are reported in Supplementary File 2.  689 

 690 

In generalized mixed models, the predictors were standardized to zero mean and unit variance 691 

before analyses. We first assessed random effects significance by comparing nested models 692 

where each random effect was dropped one at a time using the likelihood-ratio test (LRT, anova 693 

function from the R stats package) and only significant random effects were included in the final 694 

models. We then assessed the fixed effects' significance with likelihood-ratio tests implemented 695 

in the drop1 function in the R stats package. This function drops individual terms from the full 696 

model and reports the AIC and the LRT P-value. All the P-values reported for the GLMMs 697 

correspond to LRT and not to the Wald P-values reported by glmm.summary function from the 698 

R package glmmTMB, as was recommended in https://bbolker.github.io/mixedmodels-699 

misc/glmmFAQ.html. We again used LRTs to compare the full significant models to null models 700 

including all random effects but no fixed effects other than the intercept. The difference in 701 

Akaike information criterion (∆AIC) between full and null model and their associated P-values 702 

are reported in Supplementary File 1e,f,g. As an additional evaluation of the goodness of fits, 703 

we estimated the coefficient of determination (R2) using the r2 function from the performance R 704 

package. Two values are reported: the marginal R2, a measure of the variance explained only by 705 

fixed effects, and the conditional R2, a measure of the variance explained by the entire model.  706 

 707 

We evaluated model fits by inspecting the residuals using the DHARMa library in R 708 

(simulateResiduals and plot functions) for the GLMMs and by inspecting residual distributions 709 

and fitted-observed value plots using the gam.check function from the mgcv R package for the 710 

GAMs. Adjusted R2 values (from gam.summary function from the mgcv R package) are reported 711 

as a goodness of fit for the GAMs. All model outputs (summary function from mgcv and 712 

glmmTMB R packages) are reported in the Supplementary File 2.  713 

 714 

To study the relationship between focal species polymorphism and community diversity 715 

calculated at higher taxonomic ranks (from genus to phylum), we used GTDBK and the Genome 716 

Taxonomy Database (GTDB) (Chaumeil et al., 2020) to annotate MIDAS reference genomes. 717 

Richness at each level was estimated with the total number of distinct taxonomic units in the 718 
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sample. The Shannon index was calculated based on the relative abundances table from MIDAS: 719 

at each taxonomic level, we used the sum of the abundances of all species belonging to that 720 

taxonomic level to calculate the Shannon index (using the diversity function from the R vegan 721 

library). We then fit two separate GAMs for each taxonomic rank (from genus to phylum) with 722 

either Shannon diversity or richness as the predictors of within-species polymorphism rate (with 723 

the coverage per sample as a covariate and species name, sample and subject identifiers as 724 

random effects). These GAMs were fitted with a beta error distribution with logit-link function, 725 

chosen because polymorphism rate is a continuous value strictly bounded by 1, and all the terms 726 

were smoothed terms (See Supplementary File 1c and Supplementary File 2 section 1-3 for 727 

additional model details).  728 

 729 

We repeated the same methods for focal species synonymous and nonsynonymous 730 

polymorphism separately. See Supplementary File 1b and d and Supplementary File 2 731 

section 4-6 for details of the models applied to nonsynonymous polymorphism. 732 

 733 

Analysis of strain count 734 

To study the relationship between community diversity and the number of strains within a focal 735 

species in the HMP, we restricted the analysis to 184 focal species genomes with at least 100 736 

nucleotide sites with 20x coverage in a sample. We fit separate GLMMs with strain count in a 737 

focal species as a function of community diversity estimated with Shannon diversity, species 738 

richness, or rarefied species richness. Since strain number is positive count data, we compared 739 

many zero-truncated count models based on the Akaike information criterion (AIC) score 740 

(AICtab function from bbmle R library) (Brooks et al., 2017). We fit the model with the 741 

truncated negative binomial distribution (truncated_nbinom2 or truncated_nbinom1 in 742 

glmmTMB; the second best fit) in order to resolve the overdispersion detected in the best fit (the 743 

truncated Poisson model). Overdispersion was tested using the check_overdispersion function 744 

from the performance R package as described here: https://bbolker.github.io/mixedmodels-745 

misc/glmmFAQ.html. 746 

 747 

As described above for focal species polymorphism, we tested the relationship between focal 748 

species strain count and community diversity at higher taxonomic levels from genus to phylum, 749 
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fitting a separate GLMM with strain count in a focal species as a function of each metric of 750 

diversity (Shannon and richness) at higher taxonomic levels (from genus to phylum). All GLMM 751 

details are reported in Supplementary File 1f and Supplementary File 2 section 7-9. 752 

 753 

Analysis of time series data 754 

To test the predictions of DBD over time, we used HMP samples with multiple time points from 755 

the same person to look at the relationship between within-species polymorphism change, 756 

defined as the difference between polymorphism rate at two time points, and community 757 

diversity at the earlier time point. To account for non-linearity of the relationships, we fit GAMs 758 

with log transformed polymorphism change as a function of community diversity at the earlier 759 

time point, and added the coverage per sample at the earlier time point as a covariate as well as 760 

species name, sample and subject identifiers as random effects (Supplementary File 2 section 761 

10.1). 762 

 763 

In addition, we investigated the effect of community diversity at one time point on gene content 764 

variation (gains and losses considered separately) at the subsequent time point. The relationships 765 

were generally linear, so we used separate negative binomial generalized linear mixed models 766 

with gene gain as the response and each of the metrics of community diversity as the predictor 767 

with the same covariates and random effects used in the previous models (Supplementary File 2 768 

section 10.2). The same method was used to test how gene loss was related to community 769 

diversity (Supplementary File 1g, Supplementary File 2 section 10.3).  770 

 771 

HMP longitudinal data consisted of hosts sampled at a time lag of ~6 months. To assess the 772 

relationship between within-species genetic diversity and community diversity at higher 773 

temporal resolution, we used the same methods to analyze longitudinal metagenomic data from 774 

four more frequently sampled healthy stool donors (hosts am, an, ao and ae) (Poyet et al., 2019). 775 

Stool from donor am was sequenced over 18 months with a median of one day between samples; 776 

an over 12 months (median 2 days between samples); ao over 5 months (median 1 day between 777 

samples); and ae over 7 months (median 2 days between samples). We looked at polymorphism 778 

change and gene gains and losses between two time points in the 15 species with a minimal 779 

marker gene coverage of ten in at least ten samples. Community diversity was estimated with 780 
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Shannon diversity (unrarefied) and richness calculated on rarefied data to 5 million reads per 781 

sample.  782 

 783 

To study the relationship between community diversity at the initial time point and 784 

polymorphism change between the initial time point and all the future time points, we fit 785 

Gaussian generalized additive mixed models with log-transformed polymorphism change as the 786 

response and the interaction between community diversity at the first time point and the number 787 

of days between time points as the predictor. Covariates included coverage, species name, 788 

sample, and subject identifiers as random effects (Supplementary File 1h, Supplementary File 789 

2 section 11.1 and 11.2). To study the relationship between gene variation (gains and losses 790 

separately) and diversity at the first time point, we fit negative binomial generalized linear mixed 791 

models with gene variation as a function of the interaction between diversity at the first time 792 

point and the number of days between the two time points, with the same covariate and random 793 

effects as used above for polymorphism change over time (Supplementary File 1i, 794 

Supplementary File 2 section 11.3-11.6).   795 

 796 
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 812 
Supplementary File 2. R syntax and statistics of all generalized models. 813 

 814 

 815 

Supplementary figure legends 816 
 817 

 818 
 819 
Figure 2-Supplement 1. Results of generalized additive models predicting within-species polymorphism rate 820 
(at synonymous sites) as a function of community diversity at higher taxonomic levels (HMP data). (A1-E1) 821 
The predictor is Shannon diversity. (A2-E2) The predictor is richness. Adjusted r-squared (R2) and Chi-squared P-822 
values corresponding to the predictor are displayed in each panel (gam.summary function from mgcv R package). 823 
Shaded areas show the 95% confidence interval of each model prediction. See Supplementary File 1c and 824 
supplementary file 2 sections 2-3 for further details about model outputs.  825 
 826 
 827 
 828 

 829 
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Figure 2-Supplement 2. Results of generalized additive models predicting within-species polymorphism rate 830 
(at nonsynonymous sites) in a focal species as a function of community diversity at higher taxonomic levels 831 
(HMP data). (A1-E1) The predictor is Shannon diversity. (A2-E2) The predictor is richness. Adjusted r-squared 832 
(R2) and Chi-squared P-values corresponding to the predictor are displayed in each panel (gam.summary function 833 
from mgcv R package). Shaded areas show the 95% confidence interval of each model prediction. See 834 
Supplementary File 1d and supplementary file 2 sections 5-6 for further details about model outputs.  835 
 836 
 837 

 838 
 839 

Figure 3-Supplement 1. Results of generalized linear mixed models predicting strain count in a focal species 840 
as a function of community diversity at higher taxonomic levels (HMP data). Strain number in a focal species is 841 
positively correlated with Shannon (A1-E1) whereas its correlation with richness remains negative (A2-E2) through 842 
all taxonomic levels. The Y-axis is the predicted mean number of strains within a focal species. P-values (drop1 843 
function from R stats package, LRT). Shaded areas show the 95% confidence interval of each model prediction. See 844 
Supplementary File 1f and supplementary file 2 section 9 for model details. 845 
 846 
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 847 
Figure 5-Supplement 1. Results of a GAM predicting polymorphism change in a focal species as a function of the 848 
interaction between Shannon diversity at the first time point and the time lag (days) between two time points in the 849 
Poyet time series. The response (Y-axis) was log transformed in the Gaussian GAM. Several different time lags are 850 
shown to illustrate the inversion of the relationship around a lag time of 150 days. See Supplementary File 1h and 851 
supplementary file 2 section 11 for further model details.  852 
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