

1 **Community diversity is associated with intra-species genetic diversity and**
2 **gene loss in the human gut microbiome**
3

4 Naïma Madi¹, Daisy Chen^{2,3,^}, Richard Wolff^{4,^}, B. Jesse Shapiro^{1,5,6,7,*}, and Nandita Garud^{4,8,*}
5

6 1. Département de sciences biologiques, Université de Montréal, Canada;
7 2. Computational and Systems Biology, University of California, Los Angeles
8 3. Bioinformatics and Systems Biology Program, University of California, San Diego □
9 4. Department of Ecology and Evolutionary Biology, University of California, Los Angeles
10 5. Department of Microbiology and Immunology, McGill University, Canada;
11 6. McGill Genome Centre, McGill University, Canada
12 7. Quebec Centre for Biodiversity Science, Canada
13 8. Department of Human Genetics, University of California, Los Angeles
14

15 * Correspondence to jesse.shapiro@mcgill.ca and ngarud@ucla.edu. These authors contributed
16 equally.

17 ^ These authors contributed equally.

18 **Abstract**

19 The human gut microbiome contains a diversity of microbial species that varies in composition
20 over time and across individuals. These species (and strains within species) can migrate across
21 hosts and evolve by mutation and recombination within hosts. How the ecological process of
22 community assembly interacts with intra-species diversity and evolutionary change is a
23 longstanding question. Two contrasting hypotheses have been proposed based on ecological
24 observations and theory: Diversity Begets Diversity (DBD), in which taxa tend to become more
25 diverse in already diverse communities, and Ecological Controls (EC), in which higher
26 community diversity impedes diversification within taxa. Previously, using 16S rRNA gene
27 amplicon data across a range of environments, we showed a generally positive relationship
28 between taxa diversity and community diversity at higher taxonomic levels, consistent with the
29 predictions of DBD (Madi et al., 2020). However, this positive ‘diversity slope’ reaches a plateau
30 at high levels of community diversity. Here we show that this general pattern holds at much finer
31 genetic resolution, by analyzing intra-species strain and nucleotide variation in static and
32 temporally sampled shotgun-sequenced fecal metagenomes from cohorts of healthy human hosts.
33 We find that both intra-species polymorphism and strain number are positively correlated with
34 community Shannon diversity. This trend is consistent with DBD, although we cannot exclude
35 abiotic drivers of diversity. Shannon diversity is also predictive of increases in polymorphism
36 over time scales up to ~4-6 months, after which the diversity slope flattens and then becomes
37 negative—consistent with DBD eventually giving way to EC. Also supporting a complex
38 mixture of DBD and EC, the number of strains per focal species is positively associated with
39 Shannon diversity but negatively associated with richness. Finally, we show that higher
40 community diversity predicts gene loss in a focal species at a future time point. This observation
41 is broadly consistent with the Black Queen Hypothesis, which posits that genes with functions
42 provided by the community are less likely to be retained in a focal species’ genome. Together,
43 our results show that a mixture of DBD, EC, and Black Queen may operate simultaneously in the
44 human gut microbiome, adding to a growing body of evidence that these eco-evolutionary
45 processes are key drivers of biodiversity and ecosystem function.

46

47 Introduction

48 Our understanding of microbial evolution and diversification has been enriched by experimental
49 studies of bacterial isolates in the laboratory, but it remains a challenge to study evolution in the
50 context of more complex communities (Lenski, 2017). Ongoing advances in culture-independent
51 technologies have allowed us to study bacteria in the complex and dense communities in which
52 they naturally occur (Garud and Pollard, 2020). Within a community, individual players engage
53 in many negative and positive ecological interactions. Negative interactions can originate from
54 competition for resources and biomolecular warfare (Hibbing et al., 2010; Mitri and Foster,
55 2013), while positive interactions can stem from secreted metabolites that are used by other
56 members of the community (cross-feeding) (Venturelli et al., 2018). These ecological
57 interactions can create new niches and selective pressures, leading to eco-evolutionary feedbacks
58 whose nature are yet to be fully understood.

59

60 Ecological interactions can yield positive or negative effects on the diversification of a focal
61 species. Under the "Diversity Begets Diversity" (DBD) hypothesis, higher levels of community
62 diversity increase the rate of speciation (or diversification, more generally) due to positive
63 feedback mechanisms such as niche construction (Calcagno et al., 2017; Schluter and Pennell,
64 2017). Competition for limited niche space could also drive DBD if species diversify into new
65 niches to avoid competition (Meyer and Kassen, 2007; Mitri and Foster, 2013; Schluter, 2000).
66 By contrast, the "Ecological Controls" (EC) hypothesis posits that competition for a limited
67 number of niches at high levels of community diversity results in a negative effect on further
68 diversification. Metabolic models predict that DBD may initially spur diversification due to
69 cross-feeding, but the diversification rate eventually slows and reaches a plateau as metabolic
70 niches are filled (San Roman and Wagner, 2021). These theoretical predictions are largely
71 supported by our previous study involving 16S rRNA gene amplicon sequencing data from the
72 Earth Microbiome Project, in which we observed a generally positive relationship (which we call
73 the diversity slope; **Figure 1**) between community diversity and focal-taxon diversity at most
74 taxonomic levels, reaching a plateau at the highest levels of diversity (Madi et al., 2020).

75

76 In this previous study, we found stronger support for DBD in the animal gut relative to more
77 diverse microbiomes such as soils and sediments, which were closer to a plateau of diversity

78 (Madi et al., 2020). While diversity slopes were generally positive at taxonomic levels as fine as
79 amplicon sequence variants (akin to species or strains) within a genus, they were most positive at
80 higher levels such as classes or phyla. A recent experiment on soil bacteria also found evidence
81 of DBD at the family level, likely driven by niche construction and metabolic cross-feeding
82 (Estrela et al., 2022). It therefore remains unclear if the predictions of DBD hold primarily at
83 these higher taxonomic levels, involving the ecological process of community assembly, or if
84 they also apply at the finer intra-species level. Within-host intra-species diversity can arise by
85 co-colonization of a host by genetically distinct strains belonging to the same species or
86 evolutionary diversification of a lineage via *de novo* mutation and gene gain/loss events within a
87 host.

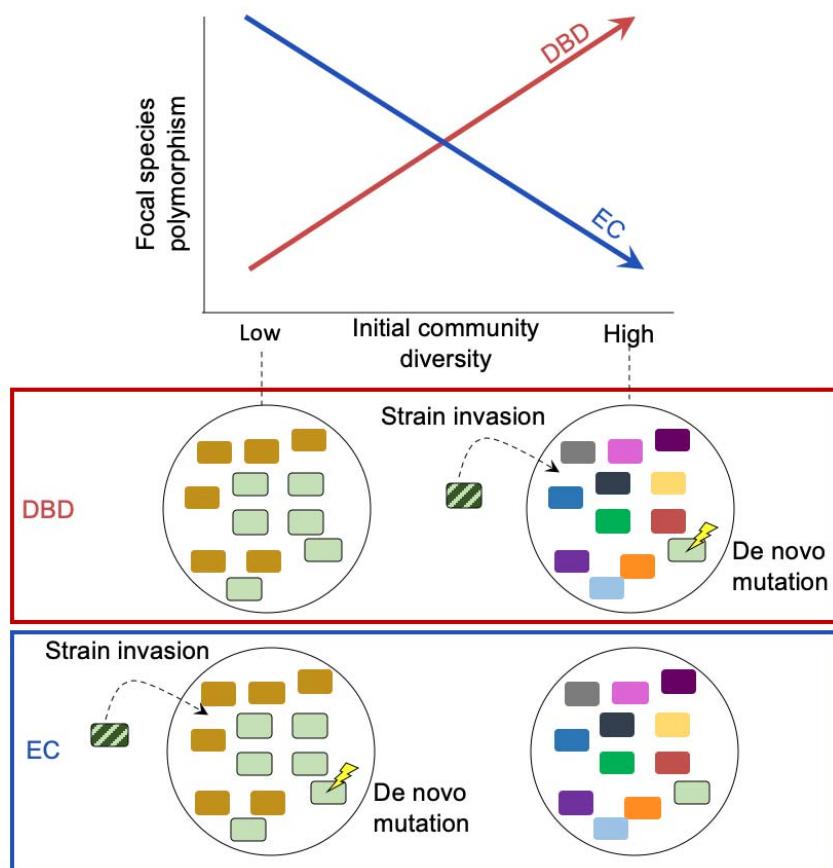
88

89 Such fine-scale strain-level variation has important functional and ecological consequences;
90 among other things, strains are known to engage in interactions that cannot be predicted from
91 their species identity alone (Goyal et al., 2022). Although closely-related bacteria are expected to
92 have broadly similar niche preferences, finer-scale niches may differ below the species level
93 (Martiny et al., 2015). For example, the acquisition of a carbohydrate-active enzyme by
94 *Bacteroides plebeius* allows it to exploit a new dietary niche in the guts of people consuming
95 nori (seaweed) (Hehemann et al., 2010), and single nucleotide adaptations permit *Enterococcus*
96 *gallinarum* translocation across the intestinal barrier resulting in inflammation (Yang et al.,
97 2022). Despite their potential phenotypic effects, it is unknown if such fine-scale genetic changes
98 are favored by higher community diversity (due for example to niche construction, as predicted
99 by DBD) or suppressed (due to competition for limited niche space, as predicted by EC).
100 Competition could also lead to DBD if focal species evolve new niche preferences to avoid
101 extinction (Mitri and Foster, 2013; Schluter, 2000) – an idea with some support in experimental
102 microcosms (Meyer and Kassen, 2007) but largely unexplored in natural communities.

103

104 Here, we investigate the relationship between intra-species genetic diversity and community
105 diversity in the human gut microbiome, a well-studied system in which we previously found
106 support for DBD at higher taxonomic levels. We use static and temporal shotgun metagenomic
107 data from a large panel of healthy adult hosts from the Human Microbiome Project (Lloyd-Price
108 et al., 2017; The Human Microbiome Project Consortium, 2012) as well as from four healthy

109 individuals sampled almost daily over the course of one year (Poyet et al., 2019). Using
110 metagenomic data allows us to track change in single nucleotide variation, strain diversity, and
111 gene gain or loss events within relatively abundant species in the microbiome, and study how
112 these measures of intra-species diversity are associated with community diversity. Although such
113 analyses of natural diversity cannot fully control for unmeasured confounding environmental
114 factors, they are an important complement to controlled experimental and theoretical studies
115 which lack real-world complexity.



116
117 **Figure 1. Diversity Begets Diversity (DBD) and Ecological Controls (EC) hypotheses illustrated.**
118 The top panel shows patterns predicted by alternative hypotheses and the bottom panel illustrates possible
119 underlying mechanisms, including strain invasion and *de novo* mutation within a focal species. Under
120 DBD, high community diversity is associated with high focal species polymorphism (red line) yielding a
121 positive diversity slope. In the bottom panels, the bacterial community within a host (large circle) is
122 represented as small rectangles with different bacterial species in different colors. The focal species is
123 shown in light green outlined in black and the invading strain (striped colors) is a different strain of the
124 resident focal species.

125

126 **Results**

127 We investigated the relationship between community diversity and within-species genetic
128 diversity in human gut microbiota using two shotgun metagenomic datasets. First, we analyzed
129 data from a panel of 249 healthy hosts (Lloyd-Price et al., 2017; The Human Microbiome Project
130 Consortium, 2012), in which stool samples were collected 1-3 times from each host at
131 approximately 6-month intervals. Second, we analyzed data from four individuals sampled more
132 densely over the course of ~18 months (Poyet et al., 2019). In both cases, we only consider intra-
133 species diversity of relatively abundant species that are well sampled in these metagenomic
134 datasets (Methods).

135

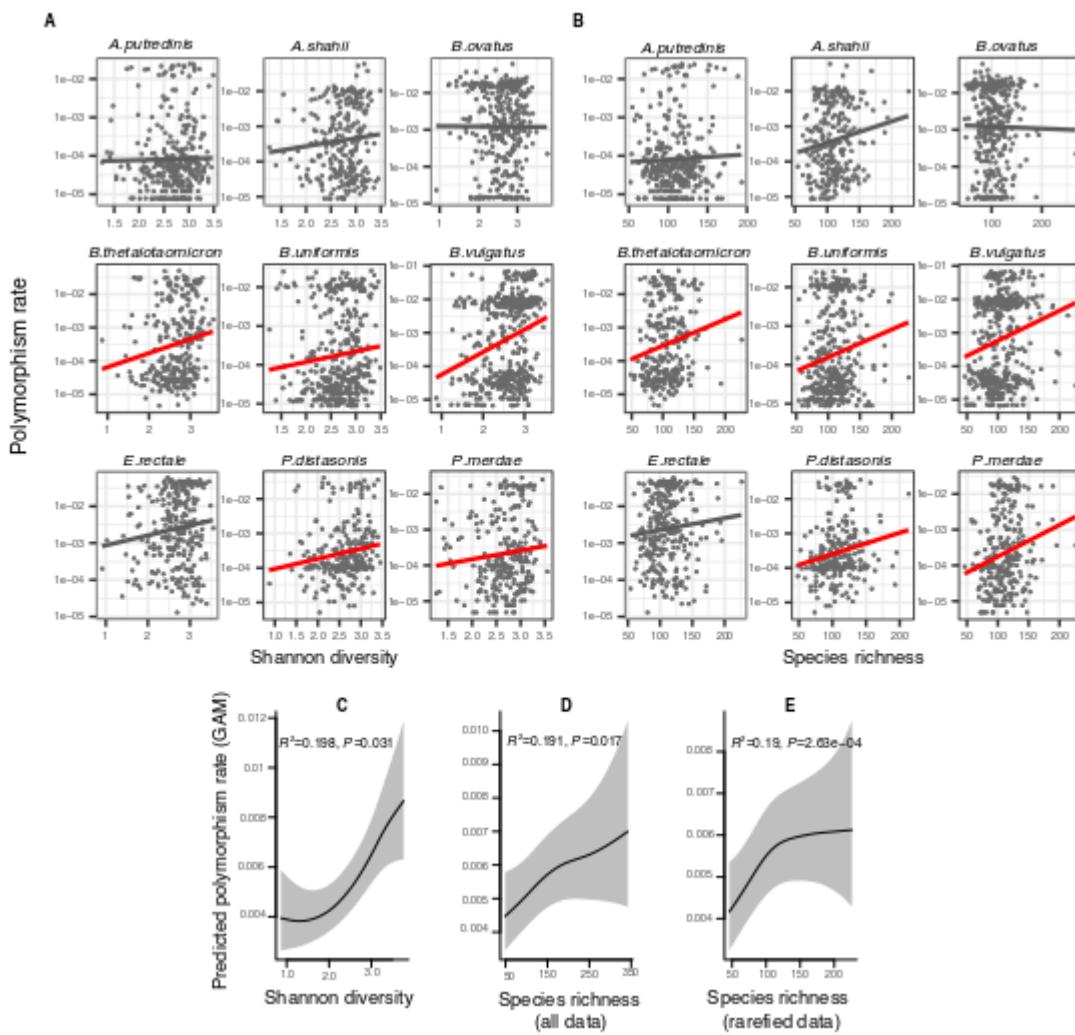
136 We examined several metrics of community diversity and intra-species diversity and calculated
137 the slope of their relationship, defined as the diversity slope (**Figure 1**). We note that intra-
138 species diversity can arise within hosts via *de novo* point mutation, gene gain or loss, or the
139 coexistence of genetically distinct strains that diverged before colonizing the host. To quantify
140 community diversity, we calculated Shannon diversity and richness at the species level. Shannon
141 diversity is relatively insensitive to sampling effort (Madi et al., 2020; Walters and Martiny,
142 2020) but richness can be underestimated in low sample sizes. We therefore computed richness
143 on data rarefied to an equal number of reads per sample, yielding generally similar results to
144 unrarefied data (described below). In all cases, we included the number of reads per sample
145 (coverage) as a covariate in our models, as this could affect estimates of both community
146 diversity and intra-species diversity. To quantify intra-species diversity, we used a reference
147 genome-based approach to call single nucleotide variants (SNVs) and gene copy number variants
148 (CNVs) within each focal species and computed polymorphism rates, measured as the fraction of
149 synonymous nucleotide sites in a species' core genome with intermediate allele frequencies
150 (between 0.2 and 0.8) within a host (Methods). We also repeated the analysis on nonsynonymous
151 sites, as these are subject to stronger selective constraints. As an additional metric of intra-
152 species diversity, we inferred the number of strains within each species using StrainFinder
153 applied to all polymorphic sites (including those outside the 0.2-0.8 frequency range) (Smillie et
154 al., 2018).

155

156 **Community diversity is positively associated with intra-species polymorphism in the**
157 **human gut microbiome**

158 As an exploratory visualization, we began by plotting the relationship between community
159 diversity and intra-species polymorphism rate calculated at synonymous sites in cross-sectional
160 HMP metagenomes for the nine most prevalent species (**Figure 2A,B**). The slope of this
161 relationship (the diversity slope; **Figure 1**) provides an indicator of the evidence for DBD
162 (positive slope) or EC (flat or negative slope). The relationship between polymorphism rate and
163 community diversity was mostly positive in the top nine most prevalent species in HMP hosts
164 (**Figure 2A,B**). These nine species are used as a simple illustration of the diversity slope, not as a
165 formal hypothesis-testing framework.

166



167

168 **Figure 2. Positive association between community diversity and within-species polymorphism in cross-**
169 **sectional Human Microbiome Project samples.** (A) Scatter plots showing the relationship between community
170 Shannon diversity and within-species polymorphism rate (estimated at synonymous sites) in the nine most prevalent
171 species in HMP. (B) Scatter plots showing the relationship between species richness and within-species
172 polymorphism rate in the nine most prevalent species in HMP. These are simple correlations to show the
173 relationships in the raw data. Significant correlations are shown with red trendlines (Spearman correlation, $P<0.05$);
174 non-significant trendlines are in gray. **Results of generalized additive models (GAMs)** predicting polymorphism
175 rate in a focal species as a function of (C) Shannon diversity, (D) species richness estimated on all sequence data,
176 and (E) species richness estimated on rarefied sequence data. GAMs are based on data from 69 bacterial species
177 across 249 HMP stool donors. Adjusted R^2 and Chi-square P -values corresponding to the predictor effect are
178 displayed in each panel. Shaded areas show the 95% confidence interval of each model prediction. See
179 Supplementary File 1a and supplementary file 2 section 1 for detailed model outputs.
180

181 To generalize across species and to formally test the predictions of DBD, we fit generalized
182 additive models (GAMs) to the HMP data. Using GAMs, we are able to model non-linear
183 relationships evident in the data (**Figure 2A,B**), account for random variation in the strength of
184 the diversity slope across bacterial species, and account for the uneven number of samples per
185 host and the non-independence of samples from the same host (Methods; see **Supplementary**
186 **File 1a** and **Supplementary File 2 section 1** for additional model details). These GAMs
187 included 69 focal species with sufficient coverage to quantify within-species polymorphism
188 (Methods); the results therefore apply to relatively abundant species in the human gut
189 microbiome. GAMs showed an overall positive association between within-species
190 polymorphism and Shannon diversity (**Fig 2C**, GAM, $P=0.031$, Chi-square test) as well as
191 between within-species polymorphism and community richness after controlling for coverage as
192 a covariate (**Fig 2D**, GAM, $P=0.017$, Chi-square test) or rarefying samples to an equal number of
193 reads (**Fig 2E**, GAM, $P=2.63e-04$, Chi-square test). The random effect of species identity is
194 highly significant in all models, indicating that each bacterial species has its own characteristic
195 diversity slope (**Supplementary File 1a**). It appears that synonymous polymorphism reaches a
196 plateau at high levels of community richness, which is particularly evident when using rarefied
197 data (**Fig 2E**). Using the same GAMs applied to nonsynonymous polymorphism, we found no
198 significant associations between diversity and within-species polymorphism rate (GAM, $P>0.05$,
199 Chi-square test) (**Supplementary File 1b**, **Supplementary File 2 section 4**). This could be due
200 to lower statistical power, since there are fewer nonsynonymous than synonymous sites, or could
201 reflect a true difference in the diversity slope between these site categories.

202

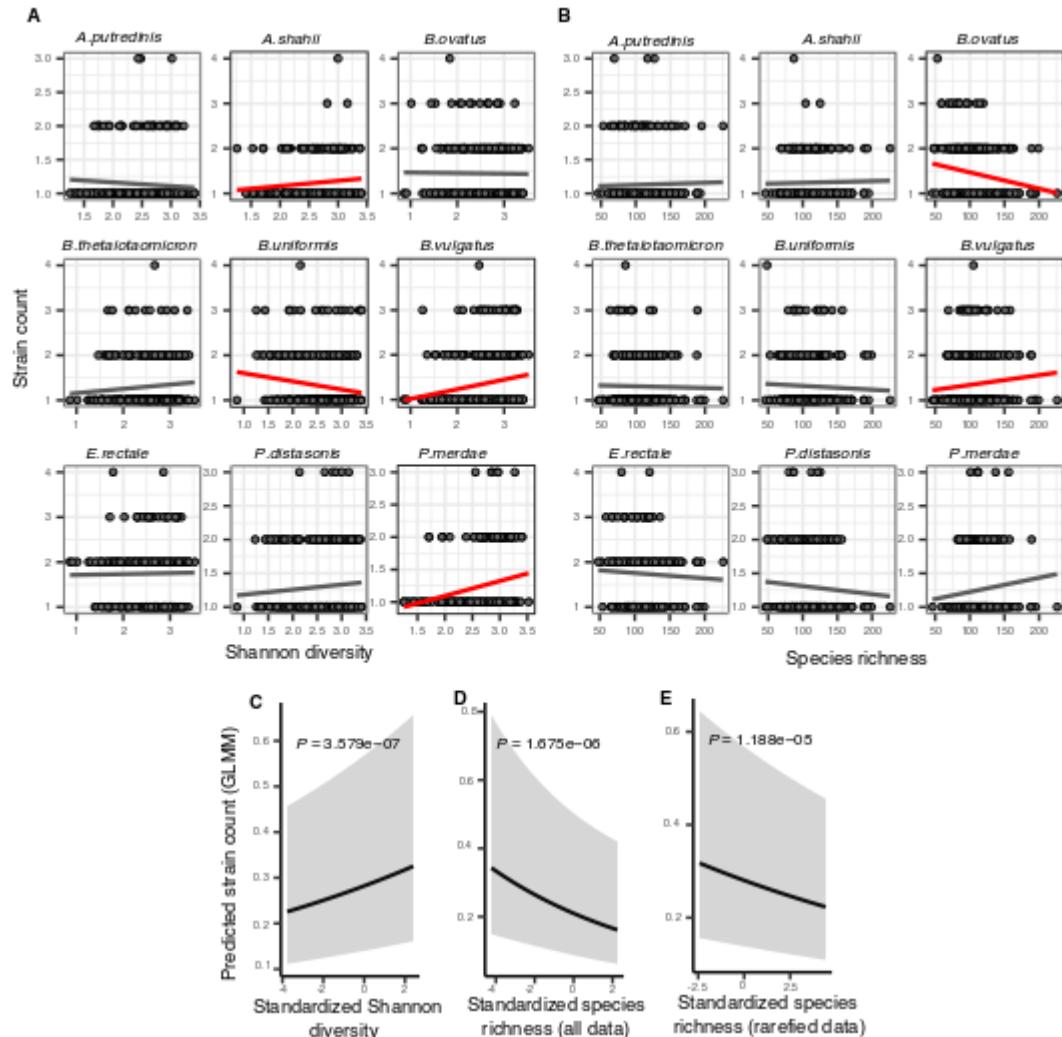
203 These generally positive correlations between focal species polymorphism and species-level
204 measures of community diversity also hold when community diversity is measured at higher
205 taxonomic levels; specifically, synonymous polymorphism rate was significantly positively
206 associated with Shannon diversity calculated at the genus and family levels (GAMs, $P<0.05$,
207 Chi-square test) (**Figure 2-figure supplement 1, Supplementary File 1c**). However,
208 synonymous polymorphism rate was not significantly associated with Shannon diversity
209 calculated at the highest taxonomic levels (order, class and phylum, GAMs, $P>0.05$, Chi-square
210 test). The positive correlation between polymorphism rate and richness held at all taxonomic
211 levels (GAMs, $P<0.05$, Chi-square test) (**Figure 2-figure supplement 1, Supplementary File**
212 **1c, Supplementary File 2 section 2 and 3**). When estimated at nonsynonymous sites,
213 polymorphism rate was not significantly correlated with Shannon diversity at any taxonomic
214 level (GAMs, $P>0.05$, Chi-square test), but was positively correlated with richness at the highest
215 levels (phyla, class and order, $P=3e-04$, $P=0.017$ and $P=6.11e-04$ respectively, Chi-square test
216 from GAMs) (**Figure 2-figure supplement 2, Supplementary File 1d, Supplementary File 2**
217 **section 5 and 6**). Even when not statistically significant, the diversity slopes were generally
218 positive at all taxonomic levels for both synonymous and nonsynonymous polymorphism
219 (**Figure 2-figure supplements 1 and 2**). Overall, these results are consistent with the predictions
220 of DBD at most taxonomic levels. However, slightly different relationships are observed when
221 considering different measures of community diversity (Shannon or richness) and different
222 components of within-species diversity (nonsynonymous or synonymous).
223

224 **Different measures of community diversity have contrasting associations with intra-species** 225 **strain diversity**

226 Within host polymorphism rates span several orders of magnitude (10^{-5} /bp to 10^{-2} /bp), largely
227 due to the fact that strain content is variable across hosts. As previously argued (Garud et al.,
228 2019), with conservatively high estimates for mutation rate ($\mu\sim10^{-9}$) (Sung et al., 2012),
229 generation times (~ 10 / day) (Poulsen et al., 1995), and time since colonization (<100 years),
230 polymorphism rates of $\sim 10^{-2}$ /bp or more are inconsistent with within-host diversification of a
231 single colonizing lineage. Therefore, hosts with relatively high intra-host polymorphism rates are
232 likely colonized by mixtures of multiple strains that diverged long before colonizing a host.
233 Moreover, recent work suggests that the numbers and genetic composition of strains colonizing a

234 host can vary from host to host (Garud et al., 2019; Olm et al., 2017; Russell and Cavanaugh,
235 2017; Truong et al., 2017; Verster et al., 2017). The associations between polymorphism and
236 community diversity (**Figure 2**) are likely driven by a combination of *de novo* mutation and co-
237 colonization by multiple strains.

238
239 To separate these two sources of diversity and to explicitly account for the strain structure within
240 hosts, we inferred the number of strains per focal species with StrainFinder (Smillie et al., 2018)
241 (Methods) and used strain number as another quantifier of intra-species diversity. We found that
242 the number of strains per focal species follows an approximately linear relationship with
243 community diversity in the nine most prevalent species in HMP (**Figure 3A, B**). Because of
244 these approximately linear relationships, we used generalized linear mixed models (GLMMs) to
245 investigate the relationship between the number of strains per focal species and community
246 diversity, while taking into account coverage per sample as a covariate and variation between
247 species, hosts and samples as random effects (Methods). The number of strains per focal species
248 was positively correlated with community Shannon diversity (GLMM, $P=3.58e-07$, likelihood
249 ratio test (LRT)) (**Fig 3C, Supplementary File 1e, Supplementary File 2 section 7.1**). This
250 suggests that the positive correlation between polymorphism rate and Shannon diversity (**Figure**
251 **2**) is due at least in part to strain diversity.



252

253 **Figure 3. Associations between community diversity and strain number in cross-sectional Human**
 254 **Microbiome Project samples.** (A) Scatter plots showing the relationship between Shannon diversity and the

255 inferred number of strains within each of the nine most prevalent species in HMP. (B) Scatter plots showing the

256 relationship between species richness and the inferred number of strains within each of the nine most prevalent

257 species in HMP. Significant linear correlations are shown with red trendlines (Pearson correlation, $P < 0.05$); non-

258 significant trend lines are in gray. **Results of generalized linear mixed models (GLMMs)** predicting strain count in

259 a focal species as a function of (C) Shannon diversity, (D) species richness estimated on all data, and (E) species

260 richness estimated on rarefied sequence data. Diversity estimates (x-axis) are standardized to zero mean and unit

261 variance in the models. The Y-axis shows the mean number of strains per focal species predicted by the GLMM.

262 GLMMs are based on data from 184 bacterial species across 249 HMP stool donors. P -values (likelihood ratio test)

263 are displayed in each panel. Shaded areas show the 95% confidence interval of each model prediction. See

264 **Supplementary File 1e** and **Supplementary File 2 section 7** for detailed model outputs.

265

266 By contrast, species richness was negatively correlated with strain number (GLMM, $P = 1.67e-06$,
 267 LRT) (Fig 3D, **Supplementary File 1e**, **Supplementary File 2 section 7.2**). The negative
 268 relationship with richness was unlikely to be confounded by sequencing depth, since the same
 269 result was obtained using rarefied data (Fig 3E, **Supplementary File 1e**, **Supplementary File 2**

270 **section 7.3).** The negative strain number-richness relationship also held at all other taxonomic
271 ranks (GLMM, $P<0.05$, LRT), while the strain number-Shannon diversity relationship was
272 generally positive (**Fig 3-Figure supplement 1, Supplementary File 1f, Supplementary File 2**
273 **section 8-9**). These effects also appear to be species-specific: for example, the number of
274 *Bacteroides vulgatus* strains per host is positively correlated with both Shannon diversity and
275 richness (consistent with DBD predictions) whereas *B. ovatus* has no relationship with Shannon
276 diversity but a negative correlation with richness (consistent with EC; **Fig 2A, B**). Together,
277 these results reveal that different components of community diversity can have contrasting
278 effects on the diversity slope.

279

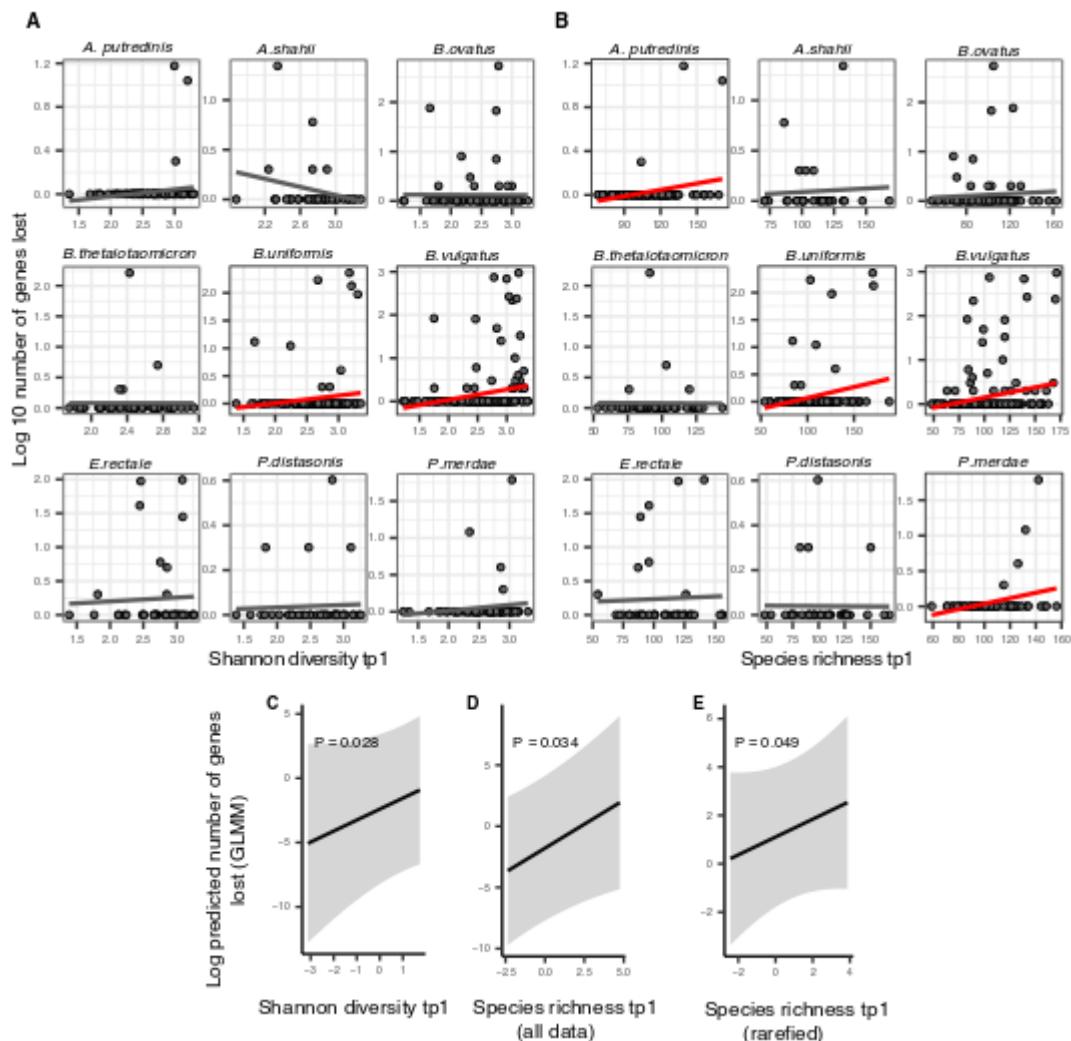
280 **Community Shannon diversity is a predictor of intra-species polymorphism and gene loss**
281 **in time series data**

282 Our analyses thus far have considered only individual time points, which represent static
283 snapshots of the dynamic processes of community assembly and evolution in the microbiome. To
284 interrogate these phenomena over time, we analyzed 160 HMP subjects who were sampled 2-3
285 times ~6 months apart. Under a DBD model, we expect community diversity at an earlier time
286 point to result in higher within-species polymorphism at a future time point. To test this
287 expectation, we defined 'polymorphism change' as the difference between polymorphism rates at
288 the two time points (Methods). We also investigated the effects of community diversity on gene
289 loss and gain events within a focal species, as such changes in gene content are known to occur
290 frequently within host gut microbiomes (Garud et al., 2019; Groussin et al., 2021; Yaffe and
291 Relman, 2020; Zhao et al., 2019). Here a gene was considered absent if its copy number (c) was
292 <0.05 and present if $0.6 \leq c \leq 1.2$. As in the cross-sectional analyses above, we also controlled
293 for sequencing depth of the sample and excluded genes with aberrant coverage or presence in
294 multiple species (Methods).

295

296 In HMP samples, polymorphism change showed no significant relationships with community
297 diversity at the earlier time point, whether it was estimated with Shannon index or species
298 richness (GAM, $P>0.05$) (**Supplementary File 2 section 10.1**). These results suggest that DBD
299 is negligible or undetectable over ~6-month time lags in the human gut. By contrast, we found
300 that gene loss in a focal species between two consecutive time points was positively correlated

301 with community diversity at the earlier time point (**Figure 4**; GLMM, $P=0.028$, $P=0.034$ and
 302 $P=0.049$, LRT for Shannon, richness and rarefied richness respectively) (**Supplementary File**
 303 **1g, Supplementary file 2 section 10.3**). Gene gains did not show any significant relationships
 304 with community diversity (GLMM, $P>0.05$). Selection for gene loss in more diverse
 305 communities is a prediction of the Black Queen Hypothesis (BQH), provided that higher
 306 community diversity results in more redundant gene functions that compensate for losses in a
 307 focal species (Morris et al., 2012). Most species in HMP samples lost fewer than ten genes over
 308 ~6 months – consistent with *de novo* deletion events of a few genes – but occasionally hundreds
 309 of genes were lost from a host, suggesting that strains with smaller genomes were selected in
 310 more diverse communities (**Figure 4A, 4B**).



311
 312 **Figure 4. Positive association between community diversity and gene loss in Human Microbiome Project time**
 313 **series.** (A) Scatter plots showing the relationship between Shannon diversity at time point 1 (tp1) and gene loss
 314 between tp1 and tp2 within each of the nine most prevalent species in HMP. (B) Scatter plots showing the

315 relationship between species richness at tp1 and gene loss between tp1 and tp2 within each of the nine most
316 prevalent species in HMP. Significant linear correlations are shown with red trendlines (Pearson correlation,
317 $P<0.05$); non-significant trend lines are in gray. The Y-axis is plotted on a log10 scale for clarity. **Results of**
318 **generalized linear mixed models (GLMMs)** predicting gene loss in a focal species as a function of (C) Shannon
319 diversity, (D) species richness estimated on all data, and (E) species richness estimated on rarefied sequence data. P -
320 values (likelihood ratio test) are displayed in each panel. Shaded areas show the 95% confidence interval of each
321 model prediction. The Y-axis is plotted on the link scale, which corresponds to log for negative binomial GLMMs
322 with a count response. GLMMs are based on data from 54 bacterial species across 154 HMP stool donors sampled at
323 more than one time point. See Supplementary file 1g and Supplementary File 2 section 10 for detailed model
324 outputs.

325
326

327 To study these dynamics at higher temporal resolution, we analyzed shotgun metagenomic data
328 from four more frequently sampled healthy individuals from a previous study (Poyet et al.,
329 2019). Stool from donor *am* was sequenced over 18 months with a median of one day between
330 samples; *an* over 12 months (median 2 days between samples); *ao* over 5 months (median 1 day
331 between samples); and *ae* over 7 months (median 2 days between samples). In this data, we
332 tracked both polymorphism change and gene gains and losses between two successive time
333 points in 15 species with a minimal marker gene coverage of 10 in at least ten samples. These
334 include seven species of *Bacteroides*, two *Eubacterium*, two *Faecalibacterium*, two
335 *Ruminococcus*, as well as *Alistipes putredinis* and *Parabacteroides merdae*.

336

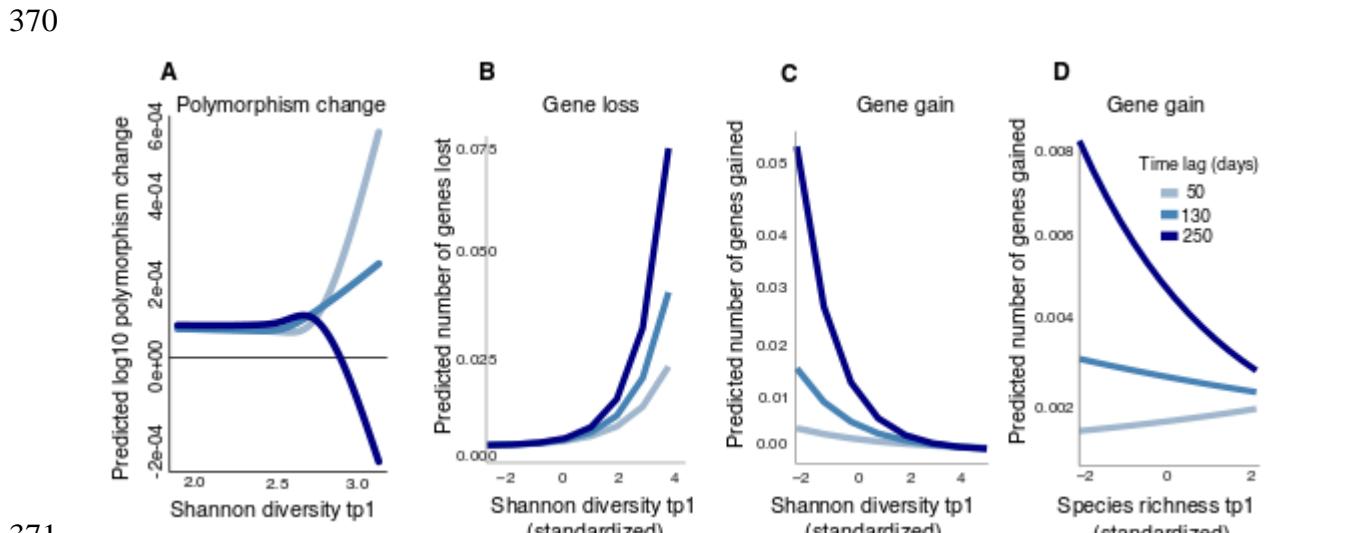
337 Using the Poyet dataset, we asked whether community diversity in the gut microbiome at one
338 time point could predict polymorphism change at a future time point by fitting GAMs with the
339 change in polymorphism rate as a function of the interaction between community diversity at the
340 first time point and the number of days between the two time points. Shannon diversity at the
341 earlier time point was correlated with increases in polymorphism (consistent with DBD) up to
342 ~150 days (~4.5 months) into the future (**Fig 5-Figure supplement 1**), but this relationship
343 became weaker and then inverted (consistent with EC) at longer time lags (**Fig 5A**,
344 **Supplementary File 1h**, GAM, $P=0.023$, Chi-square test). The diversity slope is approximately
345 flat for time lags between four and six months, which could explain why no significant
346 relationship was found in HMP, where samples were collected every ~6 months. No relationship
347 was observed between community richness and changes in polymorphism (**Supplementary File**
348 **1h**, GAM, $P>0.05$).

349

350 We next asked if community diversity at one time point could predict gene gains or losses at
351 future time points by fitting GLMMs (analogous to the GAMs above, but more appropriate for

352 gain/loss count data). Our method does not explicitly distinguish between gene gain/loss arising
353 from recombination or deletion versus replacement of strains with different gene content. We
354 found that community Shannon diversity predicted future gene loss in a focal species, and this
355 effect became stronger with longer time lags (**Fig 5B, Supplementary File 1i**, GLMM, $P=0.006$,
356 LRT for the effect of the interaction between the initial Shannon diversity and time lag on the
357 number of genes lost). The model predicts that increasing Shannon diversity from its minimum
358 to its maximum would result in the loss of 0.075 genes from a focal species after 250 days. In
359 other words, about one of the 15 focal species considered would be expected to lose a gene in
360 this time frame.

361
362 Higher Shannon diversity was also associated with fewer gene gains, and this relationship also
363 became stronger over time (**Fig 5C, Supplementary File 1i**, GLMM, $P=1.11e-09$, LRT). We
364 found a similar relationship between community species richness and gene gains, although the
365 relationship was slightly positive at shorter time lags (**Fig 5D, Supplementary File 1i**, GLMM,
366 $P=3.41e-04$, LRT). No significant relationship was observed between richness and gene loss
367 (**Supplementary File 1i**, GLMM, $P>0.05$). Taken together with the HMP results (**Fig 4**), these
368 longer time series reveal how the sign of the diversity slope can vary over time and how
369 community diversity is generally predictive of reduced focal species gene content.



372 **Figure 5. Community diversity is associated with increases in focal species polymorphism over short time**
373 **lags and net gene loss in dense gut microbiome time series.** (A) Results of a GAM predicting polymorphism
374 change in a focal species as a function of the interaction between Shannon diversity at the first time point and the
375 time lag (days) between two time points in data from Poyet et al. The response (Y-axis) was log transformed in the
376 Gaussian GAM. Results of GLMMs predicting (B) Number of genes lost and (C) Number of genes gained between

377 two time points in a focal species as a function of the interaction between Shannon diversity at the first time point
378 and the time lag between the two time points. (D) Results of the GLMM predicting the number of genes gained in a
379 focal species as a function of the interaction between rarefied species richness at the first time point and the time lag
380 between the two time points. The illustrated time lags correspond to the first quartile (50 days), the median (130
381 days), and the third quartile (250 days). See Supplementary Files 1h and i and Supplementary File 2 section 11 for
382 detailed model outputs. These analyses are based on data from 15 bacterial species across 4 stool donors from Poyet
383 et al. Only statistically significant relationships are plotted. Non-significant relationships are not shown: the GAM
384 predicting polymorphism change as a function of rarefied richness ($P>0.05$) and the GLMM predicting the number
385 of genes lost as a function of rarefied richness ($P>0.05$).
386

387

388 **Discussion**

389 How eco-evolutionary feedbacks shape biological communities is an open question that
390 to date has received substantial experimental and theoretical attention but is challenging to
391 address in nature. In our previous study using 16S rRNA amplicon sequences from the Earth
392 Microbiome Project, we found generally positive diversity slopes that eventually flattened at
393 high levels of community diversity (Madi et al., 2020). This pattern is generally consistent with
394 the predictions of DBD during the early stages of community assembly, but at later stages
395 becomes more consistent with EC as niches become filled. Based on the time series
396 metagenomic data analyzed here, the predictions of DBD also tend to hold over short time scales
397 but fail over longer time scales of several months. Whether this leads to a terminal plateau of
398 diversity, or whether ecological disturbances lead to cycles of DBD and EC, deserves further
399 study.

400 In our previous study, the animal gut microbiome had one of the highest positive
401 diversity slopes, making it an ideal candidate for investigating eco-evolutionary interactions at
402 greater intra-species resolution using metagenomic data. In this follow-up study, we investigate
403 the same phenomenon at a subspecies level, with results that are broadly consistent with the
404 predictions of DBD giving way to EC over long time scales. We note that experiments
405 supporting DBD have generally been conducted over short time scales ranging from two to 20
406 days (Estrela et al., 2022; Jousset et al., 2016), consistent with the importance of DBD early in
407 community assembly. We also identify several nuances and caveats to this general conclusion,
408 which are discussed below in detail.

409 Another recent study also found evidence for eco-evolutionary feedbacks in the HMP, in
410 the form of a positive relationship between evolutionary modifications or strain replacements in
411 a focal species and community diversity (Good and Rosenfeld, 2022). Using a model, they

412 further showed that these eco-evolutionary dynamics could be explained by resource competition
413 and did not require the cross-feeding interactions previously invoked (Estrela et al., 2022; San
414 Roman and Wagner, 2021, 2018) to explain DBD at higher taxonomic levels. This could be
415 because cross-feeding operates at the family- or genus- level and is less relevant at finer
416 evolutionary scales.

417 There are several noteworthy caveats to our study. First, using metagenomic data from
418 human microbiomes allowed us to study genetic diversity, but limited us to considering only
419 relatively abundant species with genomes that were well-covered by short sequence reads.
420 Deeper or more targeted sequencing may permit us to determine whether the same patterns hold
421 for rarer members of the microbiome. However, it is notable that the majority of the dozens of
422 species across the two datasets analyzed support DBD, suggesting that the phenomenon may
423 generalize.

424 Second, we cannot establish causal relationships without controlled experiments. We are
425 therefore careful to conclude that positive diversity slopes are consistent with the predictions of
426 DBD, and negative slopes with EC, but unmeasured environmental drivers could be at play. For
427 example, increased dietary diversity could simultaneously select for higher community diversity
428 and also higher intra-species diversity. In our previous study, we found that positive diversity
429 slopes persisted even after controlling for potential abiotic drivers such as pH and temperature
430 (Madi et al., 2020), but a similar analysis was not possible here due to a lack of metadata.
431 Neutral processes can account for several ecological patterns such as species-area relationships
432 (Hubbell, 2001), and must be rejected in favor of niche-centric models like DBD or EC. Using
433 neutral models without DBD or EC, we found generally flat or negative diversity slopes due to
434 sampling processes alone and that positive slopes were hard to explain with a neutral model
435 (Madi et al., 2020). These models were intended mainly for 16S rRNA gene sequence data, but
436 we expect the general conclusions to extend to metagenomic data. Nevertheless, further
437 modeling and experimental work will be required to fully exclude a neutral explanation for the
438 diversity slopes we report in the human gut microbiome.

439 Based on controlled experiments (Estrela et al., 2022) and modeling studies (San Roman
440 and Wagner, 2021), DBD is a plausible causal explanation for positive diversity slopes in the gut
441 microbiome. Although they also note that causality is difficult to establish, Good and Rosenfeld
442 (2022) suggest the importance of focal species evolution as a driver of changes in community

443 structure, as shown in an experimental study of *Pseudomonas* in compost communities (Padfield
444 et al., 2020). Clearly, further work is needed to establish the extent and relative rates of eco-
445 evolutionary feedback in both directions. How these feedbacks among bacteria are influenced by
446 abiotic factors and by interactions with fungi, archaea, and phages also deserve further study.

447 Third, the diversity slope changes depending on which component of within-species
448 diversity or community diversity is considered. Notably, the number of strains within a focal
449 species is positively correlated with Shannon diversity, but inversely correlated with species
450 richness, suggesting that the ability of strains to colonize a host may be associated with higher
451 community evenness rather than total species count. Higher evenness might maximize the
452 chance of inter-species interactions, whereas higher richness might be driven by rare species that
453 are less likely to interact. Although Shannon diversity is considered to be more robust and
454 informative than richness in estimating bacterial diversity (He et al., 2013; Reese and Dunn,
455 2018), we observe the same contrasting results between Shannon diversity and richness when
456 community diversity is calculated at higher taxonomic levels, suggesting that this pattern is not
457 due to artifacts such as sequencing effort.

458 Our measures of intra-species diversity included both synonymous and nonsynonymous
459 single nucleotide variants, inferred strain richness, and gene content. Synonymous nucleotide
460 variation was consistently and positively associated with both community richness and Shannon
461 diversity at all taxonomic levels (although not always with statistical significance).
462 Nonsynonymous variation also tended to track positively with both measures of community
463 diversity but was only statistically significantly associated with phylum and class richness. This
464 suggests that evolutionarily older, less selectively constrained synonymous mutations and more
465 recent nonsynonymous mutations that affect protein structure both track similarly with measures
466 of community diversity. Nonetheless, a parsimonious explanation for possible differences
467 between the two classes is that while they are affected similarly, we have more statistical power
468 to identify correlations in the more numerous synonymous mutations. This merits further
469 investigation.

470 Metagenomes from the same individual sampled over time allowed us to detect gene gain
471 and loss events. In both HMP and Poyet et al. time series, community diversity was predictive of
472 future gene loss in a focal species. This phenomenon is not explicitly predicted by either DBD or
473 EC but it is compatible with aspects of the Black Queen Hypothesis, with some caveats. BQH

474 predicts that a focal species will be less likely to encode genes with functions provided by other
475 members of the surrounding community if such functions are "leaky" and available as diffusible
476 public goods (Morris et al., 2012). The BQH could also act as a driver of polymorphism within a
477 species (Morris et al., 2014). Gene loss may be adaptive, provided that there is a cost to encoding
478 and expressing the relevant genes (Albalat and Cañestro, 2016; Koskineni et al., 2012;
479 Simonsen, 2022). The tendency for reductive genome evolution in bacteria is well established
480 (Albalat and Cañestro, 2016; Koskineni et al., 2012; Puigbò et al., 2014). Genome reduction is
481 a particular hallmark of endosymbiotic bacteria, which depend on their hosts for many metabolic
482 gene products (McCutcheon and Moran, 2012; Nikoh et al., 2011). It has been shown that
483 uncultivated bacteria from the gut have undergone considerable genome reduction, which may
484 be an adaptive process that results from reliance on public goods (Nayfach et al., 2019). In the
485 gut microbiome, the BQH has been invoked to explain the distribution of genes involved in
486 vitamin B metabolism (Sharma et al., 2019) and iron acquisition (Vatanen et al., 2019).

487 Our findings in human gut metagenomes are compatible with the BQH under the
488 assumption that increasing community diversity also increases the availability of leaky gene
489 products – which may not be the case if genomes in the gut microbiome are functionally
490 redundant, as inferred in a recent study (Tian et al., 2020). This study found that species in the
491 gut microbiome were highly redundant at the level of annotated metabolic pathways (KEGG
492 orthologs) and that more functionally redundant microbiomes were more resistant to colonization
493 by fecal transplants. Relatively low-redundancy microbiomes could therefore be more easily
494 colonized but might also require migrants to encode more gene functions in order to persist.
495 Importantly, functional redundancy may be high at the level of well-annotated metabolic
496 functions, but low at the finer level of individual gene families, as demonstrated in marine
497 microbiomes (Galand et al., 2018) but not yet studied explicitly in the gut. Here we report that
498 genome reduction in the gut is higher in more diverse gut communities. This could be due to *de*
499 *novo* gene loss, preferential establishment of migrant strains encoding fewer genes, or a
500 combination of the two. The mechanisms underlying this correlation remain unclear and could be
501 due to biotic interactions – including metabolic cross-feeding as posited by some models (Estrela
502 et al., 2022; San Roman and Wagner, 2021, 2018) but not others (Good and Rosenfeld, 2022) –
503 or due to unknown abiotic drivers of both community diversity and gene loss. Finally, we
504 measured community diversity from the phylum to the species level, not below. We therefore did

505 not investigate how the BQH could extend to maintain gene content variation within a species, as
506 has been shown experimentally in *E. coli* (Morris et al., 2014). This could be an avenue for
507 future work.

508 In our previous analysis of lower-resolution 16S rRNA amplicon sequences, we reported
509 a tendency for focal genera with larger genomes to have higher diversity slopes, perhaps because
510 they experience stronger DBD (Madi et al., 2020). At face value, this tendency seems at odds
511 with the BQH, which predicts genome reduction in more diverse communities. This apparent
512 contradiction may be reconciled by considering eco-evolutionary dynamics on different time
513 scales. A recent study used phylogenetic and metabolic reconstructions to show that gene gains
514 often drive metabolic dependencies among bacteria (Goyal, 2022), potentially explaining why
515 genera with larger maximum genome size could experience stronger DBD. Our earlier study
516 only had the genetic resolution to consider focal taxa down to the genus level, and by using the
517 maximum genome size observed in a public database we did not capture the dynamic process of
518 gene gain and loss within a species, as was possible in the current metagenomic study. It is
519 therefore possible that on longer (ecological) time scales, larger genomes have more metabolic
520 interactions and thus experience stronger DBD, while genome reduction in more diverse
521 communities occurs on shorter (evolutionary) time scales.

522 In summary, we demonstrate how metagenomic data can be used to test the predictions of
523 eco-evolutionary theory, including DBD, EC, and the BQH. It remains to be seen whether the
524 distinct eco-evolutionary processes proposed by DBD and the BQH operate orthogonally or
525 whether they interact. If BQH leads to gene losses that remain polymorphic rather than being lost
526 entirely from the species (Morris et al., 2014) – or invasions of strains with fewer genes that
527 remain incomplete and do not replace the resident strain – this could be viewed as a form of
528 diversification and perhaps a special case of DBD. Here we considered gene loss as a directional
529 process; we did not attempt to distinguish between directional changes in gene copy number and
530 the complete extinction of a gene, which is difficult to show using metagenomic data. Future
531 work could attempt to resolve this point and to potentially combine DBD and BQH into a unified
532 theory.

533

534 **Data and materials availability**

535 The raw sequencing reads for the metagenomic samples used in this study were downloaded
536 from the Human Microbiome Project Consortium 2012 and Lloyd-Price et al. (2017)
537 (URL: <https://aws.amazon.com/datasets/human-microbiome-project/>); and Poyet et al. 2019
538 (NCBI accession number [PRJNA544527](#)). All computer code for this paper is available at
539 https://github.com/Naima16/DBD_in_gut_microbiome.

540

541

542 **Methods**

543

544 **Metagenomic analyses**

545 **Estimation of species, gene, and SNV content of metagenomic samples**

546 We used MIDAS (Metagenomic Intra-Species Diversity Analysis System, version 1.2,
547 downloaded on November 21, 2016) (Nayfach et al., 2016) to estimate within-species nucleotide
548 and gene content of raw metagenomic whole genome shotgun sequencing data for HMP1-2 and
549 Poyet et al. 2019 data. MIDAS relies on a reference database comprised of 31,007 bacterial
550 genomes that are clustered into 5,952 species, covering roughly 50% of species found in human
551 stool metagenomes from “urban” individuals. Described below are the parameters used to
552 estimate species abundances, single nucleotide variants (SNVs), and gene copy number variants
553 (CNVs) with MIDAS.

554

555 ***Estimation of species content***

556 We estimated species abundances, SNVs and CNVs by mapping metagenomic shotgun
557 reads to reference genomes. Since a component of this work relies on quantifying polymorphism
558 and CNV changes over time, we constructed a “personal” reference database to avoid spurious
559 inferences of allele frequency and CNV changes due to errors in mapping of reads to regions of
560 the genome shared by multiple species (Garud et al., 2019). This per-host reference database was
561 comprised of the union of all species present at one or more timepoints so as to be as inclusive as
562 possible to prevent reads from being “donated” to reference genome, while also being selective
563 to prevent a reference genome from “stealing” reads from a species truly present.

564 To estimate the species relative abundances for each host x timepoint sample, we mapped
565 reads to 15 universal single-copy marker genes that are a part of the MIDAS pipeline (Nayfach et
566 al., 2016; Wu et al., 2013) and belong to the 5,952 species in the MIDAS reference database. A
567 species with an average marker gene coverage ≥ 3 was considered present for the purposes of
568 building a per-host database for mapping reads to infer SNVs and CNVs below. The per-host
569 database was constructed by including all species present at one or more timepoints with
570 coverage ≥ 3 . However, more stringent thresholds were imposed for calling SNVs and CNVs, as
571 described below.

572

573 ***Estimation of copy number variation***

574 To estimate gene copy number variation (CNV), we mapped reads to the pangenomes of
575 species present in a host's personal database using Bowtie2 (Langmead and Salzberg, 2012) with
576 default MIDAS settings (local alignment, MAPID $\geq 94.0\%$, READQ ≥ 20 , and ALN_COV ≥ 0.75).
577 Each gene's coverage was estimated by dividing the total number of reads mapped to a given
578 gene by the gene length. These genes included the aforementioned 15 universal single-copy
579 marker genes. A given gene's copy number (c) was estimated by taking the ratio of its coverage
580 and the median coverage of the species' single-copy marker genes.

581 With these copy number values, we estimated the prevalence of genes in the between-
582 host population, defined as the fraction of samples with copy number $c \leq 3$ and $c \geq 0.3$ (conditional
583 on the mean single gene marker coverage being $\geq 5x$). For each species, we computed "core
584 genes", defined as genes in the MIDAS reference database that are present in at least 90% of
585 samples within a given cohort. Within-host polymorphism rates were computed in core genes.

586 Orthologous genes present in multiple species can result in read "stealing" and read
587 "donating" to species from which the reads did not originate. Thus, we excluded a set of genes
588 belonging to a 'blacklist' composed of genes present in multiple species. This blacklist was
589 constructed in (Garud et al., 2019) using USEARCH (Edgar, 2010) to cluster all genes in human-
590 associated reference genomes with a 95% nucleotide identity threshold. Since some genes may
591 be absent from the MIDAS database but may nevertheless be shared across species, we
592 implemented another filter (as in Garud et al. 2019) in which genes with $c \geq 3$ in at least one
593 sample in our cohort were excluded from analysis of polymorphism rate or gene changes over
594 time.

595

596 ***Inferring single nucleotide variants (SNVs) within bacterial species***

597 To call SNVs, we mapped reads to a single representative reference genome as per the
598 default MIDAS software. Reads were mapped with Bowtie2, with default MIDAS mapping
599 thresholds: global alignment, MAPID \geq 94.0%, READQ \geq 20, ALN_COV \geq 0.75, and MAPQ \geq 20.
600 Species were excluded from further analysis if reads mapped to \leq 40% of their genome. We
601 additionally excluded samples from further analysis if they had low median read coverage (\bar{D}) at
602 protein coding sites. Specifically, samples with $\bar{D} < 5$ across all protein coding sites with nonzero
603 coverage were excluded. This MIDAS SNV output was then used for computing within-species
604 polymorphism rates and inferring the number of strains present for each species in each sample
605 (see below).

606 To compute polymorphism rates, additional bioinformatic filters were imposed to avoid
607 read stealing and donating across different species. First, we did not call SNVs in blacklisted
608 genes present in multiple species. Additionally, we excluded sites in a given sample if $D < 0.3\bar{D}$
609 or $D > 3\bar{D}$ as these sites harbor anomalously low or high coverage compared to the genome-wide
610 average \bar{D} . Additional filters are described below.

611

612 ***Shannon diversity, species richness and polymorphism rate calculations***

613 Shannon diversity and richness were computed within each sample by including any
614 species with abundance greater than zero. Rarefied species richness estimates are based on
615 HMP1-2 samples rarefied to 20 million reads and Poyet samples rarefied to 5 million reads. SNV
616 and gene content variation within a focal species were ascertained only from the full dataset and
617 not the rarefied dataset.

618 The polymorphism rate of a species in a sample was computed as the proportion of
619 synonymous sites in core genes with intermediate allele frequencies ($0.2 \leq f \leq 0.8$), as was done
620 in Garud et al. 2019. Only species with a MIDAS marker gene coverage of 10 or more in 10 or
621 more samples were included, yielding 69 species in 249 HMP stool donors and 15 species in four
622 Poyet et al. 2019 donors. As explained in SI text 1 in Garud et al. 2019, this is quantitatively
623 similar to the more traditional population genetic measure of heterozygosity, $H = E[2f(1-f)]$, in
624 which intermediate frequency alleles contribute the most weight to heterozygosity. By
625 computing polymorphism with the criteria $0.2 \leq f \leq 0.8$, we avoid inclusion of low frequency

626 sequencing errors, which can otherwise greatly influence the mean heterozygosity.
627 Polymorphism rates were computed separately for synonymous (4-fold degenerate) and
628 nonsynonymous (1-fold degenerate) sites. The degeneracy of sites was determined based on
629 MIDAS output.

630

631 ***Temporal changes in polymorphism rates and gene content***

632 Polymorphism change was computed as the difference in polymorphism rates between
633 time points within a host. Gene gains and losses between time points were computed in species
634 with sufficient prevalence (at least 10 samples with marker gene coverage of at least 10, as in the
635 polymorphism analysis above) by identifying genes with copy number $c \leq 0.05$ (indicating gene
636 absence) in one sample and $0.6 \leq c \leq 1.2$ (with marker coverage $\geq 20x$) in another (indicating
637 single copy gene presence). These thresholds were used in Garud et al. 2019 when inferring gene
638 changes in temporal data and reflect a range of copy numbers expected in either the absence of a
639 gene or presence of a single copy of a gene given typical coverage values in growing cells
640 (Korem et al., 2015). These copy number cutoffs were chosen to avoid spuriously analyzing
641 genes linked to multiple species. In such cases, mapping artifacts in which reads can be
642 arbitrarily assigned to multiple species cannot be disentangled. For example, a gene present in
643 multiple species would likely have copy number significantly deviating from 1 (including values
644 that lie in an ambiguous zone of 0.05 to 0.6, as well as $>>1$), reflecting the joint abundances of
645 the multiple species. Thus, although we may miss many biologically interesting multi-copy
646 genes (e.g. transporter genes in *Bacteroides* (Wexler and Goodman, 2017)), our thresholds avoid
647 confounding our analysis with read stealing or donating among different species. Filters for
648 coverage and blacklisted genes were applied as described above.

649

650 ***Strain number inference***

651 We used StrainFinder (Smillie et al., 2018) to infer the number of strains present within
652 each species in each HMP1-2 metagenomic sample. To do so, we used allele frequencies from
653 MIDAS SNV output, generated as described above. For each species in each host, all multi-
654 allelic sites with coverage of 20x or greater were passed as input to StrainFinder. Species/host
655 pairs which had fewer than 100 sites with 20x coverage were removed from the analysis.
656 StrainFinder was then run on each sample separately for strain number 1, 2, 3, and 4, and the

657 optimal strain number was chosen based on the Bayesian Information Criterion (BIC). This
658 range of strain number was chosen for biological reasons. A number of studies have
659 demonstrated that at most a small handful of strains (between one and four) not sharing a
660 common ancestor within the host are ever observed within a single gut microbiome at any one
661 time (Garud et al., 2019; Truong et al., 2017; Verster et al., 2017; Yassour et al., 2018).
662 Additionally, for the four densely longitudinally sampled hosts in Poyet et al. 2019, multiple
663 analyses employing distinct sequencing strategies and strain phasing techniques have similarly
664 concluded that a maximum of four strains were present at any one time within a host for the ~30
665 most prevalent species (Poyet et al., 2019; Wolff et al., 2021; Zheng et al., 2022). Thus, four
666 strains were chosen as the maximum to accommodate the range of observed possibilities.

667

668 **Statistical analyses**

669

670 ***Model construction and evaluation***

671 Using data from the Human Microbiome Project (HMP) and Poyet et al. 2019, we examined the
672 relationship between within-species genetic diversity and the gut microbiome community
673 diversity. Within-species genetic diversity was estimated with polymorphism rate and strain
674 richness. Community diversity was estimated with the Shannon index, species richness estimated
675 on the whole data, and species richness calculated on the data rarefied to an equal number of
676 reads per sample (as described above). When the relationship between the response variable
677 (within-species genetic diversity) and the predictor (community diversity) was approximately
678 linear by visual inspection, we fit generalized linear mixed models (GLMMs) (glmmTMB
679 function from the glmmTMB R package - RStudio version 1.2.5042) with community diversity
680 as the predictor of within-species genetic diversity. Otherwise we fit generalized additive mixed
681 models (GAMs) (mgcv function from the mgcv R package - RStudio version 1.2.5042) to
682 account for the non-linearity of the relationships.

683

684 To account for variation in sequencing depth, which can affect estimates of both community
685 diversity and within-species genetic diversity, we added read count per sample (coverage) as a
686 covariate to all generalized mixed models. Species name, subject identifier and sample identifier
687 were added as random effects to account for variation between different species and subjects,

688 and to account for non-independence between observations. The R syntax and statistics of all
689 generalized models are reported in **Supplementary File 2**.

690

691 In generalized mixed models, the predictors were standardized to zero mean and unit variance
692 before analyses. We first assessed random effects significance by comparing nested models
693 where each random effect was dropped one at a time using the likelihood-ratio test (LRT, anova
694 function from the R stats package) and only significant random effects were included in the final
695 models. We then assessed the fixed effects' significance with likelihood-ratio tests implemented
696 in the drop1 function in the R stats package. This function drops individual terms from the full
697 model and reports the AIC and the LRT *P*-value. All the *P*-values reported for the GLMMs
698 correspond to LRT and not to the Wald *P*-values reported by glmm.summary function from the
699 R package glmmTMB, as was recommended in <https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html>. We again used LRTs to compare the full significant models to null models
700 including all random effects but no fixed effects other than the intercept. The difference in
701 Akaike information criterion (ΔAIC) between full and null model and their associated *P*-values
702 are reported in **Supplementary File 1e,f,g**. As an additional evaluation of the goodness of fits,
703 we estimated the coefficient of determination (R^2) using the r2 function from the performance R
704 package. Two values are reported: the marginal R^2 , a measure of the variance explained only by
705 fixed effects, and the conditional R^2 , a measure of the variance explained by the entire model.

707

708 We evaluated model fits by inspecting the residuals using the DHARMA library in R
709 (simulateResiduals and plot functions) for the GLMMs and by inspecting residual distributions
710 and fitted-observed value plots using the gam.check function from the mgcv R package for the
711 GAMs. Adjusted R^2 values (from gam.summary function from the mgcv R package) are reported
712 as a goodness of fit for the GAMs. All model outputs (summary function from mgcv and
713 glmmTMB R packages) are reported in the **Supplementary File 2**.

714

715 To study the relationship between focal species polymorphism and community diversity
716 calculated at higher taxonomic ranks (from genus to phylum), we used GTDBK and the Genome
717 Taxonomy Database (GTDB) (Chaumeil et al., 2020) to annotate MIDAS reference genomes.
718 Richness at each level was estimated with the total number of distinct taxonomic units in the

719 sample. The Shannon index was calculated based on the relative abundances table from MIDAS:
720 at each taxonomic level, we used the sum of the abundances of all species belonging to that
721 taxonomic level to calculate the Shannon index (using the diversity function from the R vegan
722 library). We then fit two separate GAMs for each taxonomic rank (from genus to phylum) with
723 either Shannon diversity or richness as the predictors of within-species polymorphism rate (with
724 the coverage per sample as a covariate and species name, sample and subject identifiers as
725 random effects). These GAMs were fitted with a beta error distribution with logit-link function,
726 chosen because polymorphism rate is a continuous value strictly bounded by 1, and all the terms
727 were smoothed terms (See **Supplementary File 1c** and **Supplementary File 2 section 1-3** for
728 additional model details).

729

730 We repeated the same methods for focal species synonymous and nonsynonymous
731 polymorphism separately. See **Supplementary File 1b and d** and **Supplementary File 2**
732 **section 4-6** for details of the models applied to nonsynonymous polymorphism.

733

734 *Analysis of strain count*

735 To study the relationship between community diversity and the number of strains within a focal
736 species in the HMP, we restricted the analysis to 184 focal species genomes with at least 100
737 nucleotide sites with 20x coverage in a sample. We fit separate GLMMs with strain count in a
738 focal species as a function of community diversity estimated with Shannon diversity, species
739 richness, or rarefied species richness. Since strain number is positive count data, we compared
740 many zero-truncated count models based on the Akaike information criterion (AIC) score
741 (AICtab function from bbmle R library) (Brooks et al., 2017). We fit the model with the
742 truncated negative binomial distribution (truncated_nbinom2 or truncated_nbinom1 in
743 glmmTMB; the second best fit) in order to resolve the overdispersion detected in the best fit (the
744 truncated Poisson model). Overdispersion was tested using the check_overdispersion function
745 from the performance R package as described here: <https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html>.

747

748 As described above for focal species polymorphism, we tested the relationship between focal
749 species strain count and community diversity at higher taxonomic levels from genus to phylum,

750 fitting a separate GLMM with strain count in a focal species as a function of each metric of
751 diversity (Shannon and richness) at higher taxonomic levels (from genus to phylum). All GLMM
752 details are reported in **Supplementary File 1f** and **Supplementary File 2 section 7-9**.

753

754 ***Analysis of time series data***

755 To test the predictions of DBD over time, we used HMP samples with multiple time points from
756 the same person to look at the relationship between within-species polymorphism change,
757 defined as the difference between polymorphism rate at two time points, and community
758 diversity at the earlier time point. To account for non-linearity of the relationships, we fit GAMs
759 with log transformed polymorphism change as a function of community diversity at the earlier
760 time point, and added the coverage per sample at the earlier time point as a covariate as well as
761 species name, sample and subject identifiers as random effects (**Supplementary File 2 section**
762 **10.1**).

763

764 In addition, we investigated the effect of community diversity at one time point on gene content
765 variation (gains and losses considered separately) at the subsequent time point. The relationships
766 were generally linear, so we used separate negative binomial generalized linear mixed models
767 with gene gain as the response and each of the metrics of community diversity as the predictor
768 with the same covariates and random effects used in the previous models (**Supplementary File 2**
769 **section 10.2**). The same method was used to test how gene loss was related to community
770 diversity (**Supplementary File 1g**, **Supplementary File 2 section 10.3**).

771

772 HMP longitudinal data consisted of hosts sampled at a time lag of ~6 months. To assess the
773 relationship between within-species genetic diversity and community diversity at higher
774 temporal resolution, we used the same methods to analyze longitudinal metagenomic data from
775 four more frequently sampled healthy stool donors (hosts *am*, *an*, *ao* and *ae*) (Poyet et al., 2019).
776 Stool from donor *am* was sequenced over 18 months with a median of one day between samples;
777 *an* over 12 months (median 2 days between samples); *ao* over 5 months (median 1 day between
778 samples); and *ae* over 7 months (median 2 days between samples). We looked at polymorphism
779 change and gene gains and losses between two time points in the 15 species with a minimal
780 marker gene coverage of ten in at least ten samples. Community diversity was estimated with

781 Shannon diversity (unrarefied) and richness calculated on rarefied data to 5 million reads per
782 sample.

783

784 To study the relationship between community diversity at the initial time point and
785 polymorphism change between the initial time point and all the future time points, we fit
786 Gaussian generalized additive mixed models with log-transformed polymorphism change as the
787 response and the interaction between community diversity at the first time point and the number
788 of days between time points as the predictor. Covariates included coverage, species name,
789 sample, and subject identifiers as random effects (**Supplementary File 1h, Supplementary File**
790 **2 section 11.1 and 11.2**). To study the relationship between gene variation (gains and losses
791 separately) and diversity at the first time point, we fit negative binomial generalized linear mixed
792 models with gene variation as a function of the interaction between diversity at the first time
793 point and the number of days between the two time points, with the same covariate and random
794 effects as used above for polymorphism change over time (**Supplementary File 1i,**
795 **Supplementary File 2 section 11.3-11.6**).

796

797

798 **Acknowledgements**

799 We sincerely thank members of the Garud and Shapiro labs for their feedback during the
800 development of this paper. NRG received support from the Paul Allen Frontiers Group, a
801 University of California Hellman fellowship, a UCLA Faculty Career Development award, and
802 the Research Corporation for Science Advancement. DWC received funding support from
803 NIH R25 MH 109172. BJS was supported by a Natural Sciences and Engineering Research
804 Council of Canada (NSERC) Discovery Grant and a Canada Research Chair. We also thank
805 Djordje Bajić and two anonymous reviewers for their constructive suggestions that substantially
806 improved the manuscript.

807

808

809 **Supplementary files**

810

811 **Supplementary File 1.** Supplementary tables a-i.

812

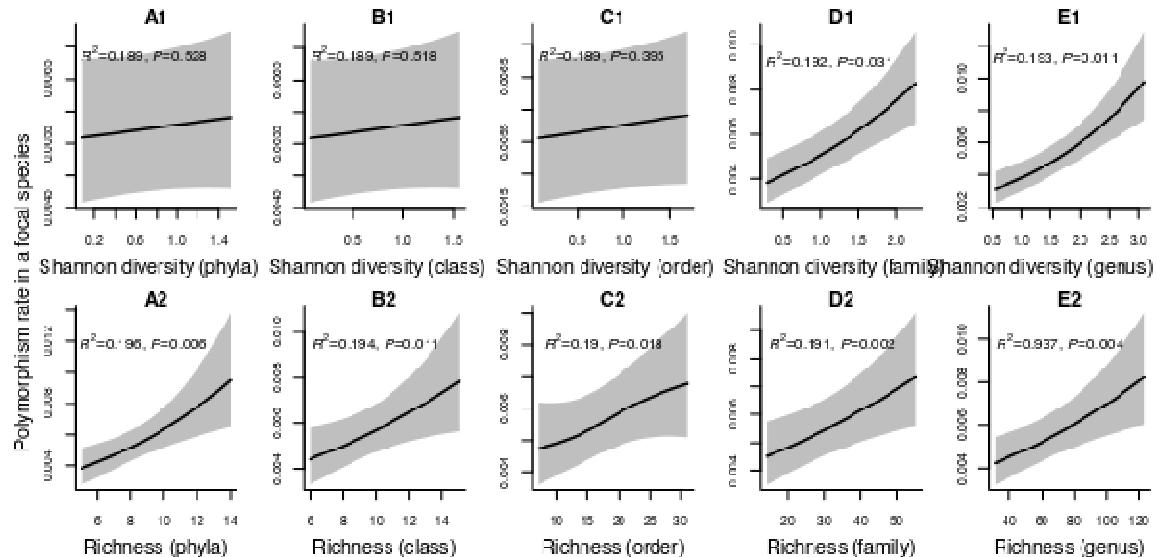
813 **Supplementary File 2.** R syntax and statistics of all generalized models.

814

815

816 **Supplementary figure legends**

817



818

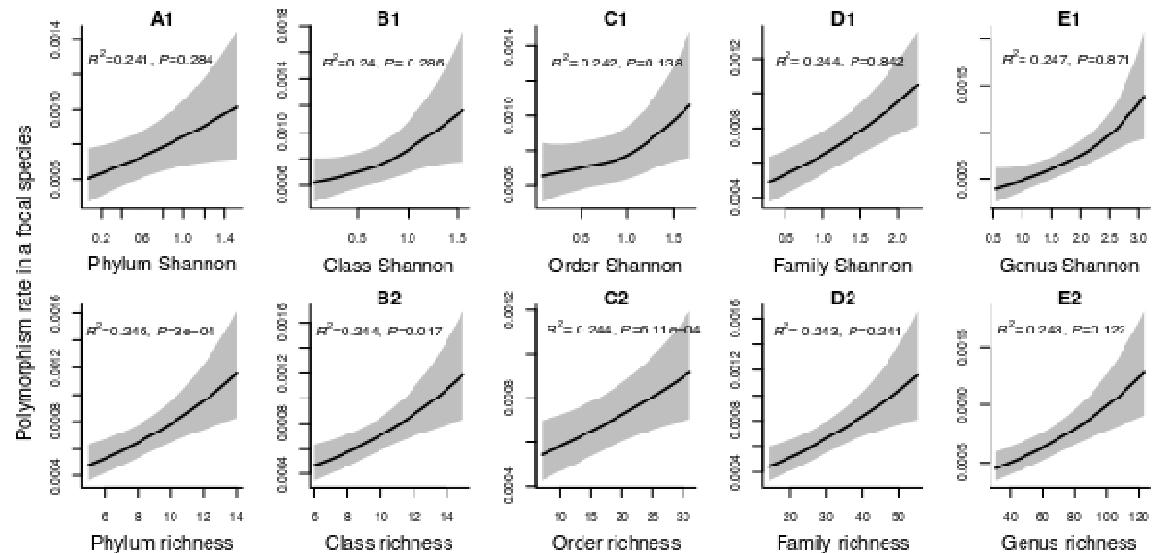
819

820 **Figure 2-Supplement 1. Results of generalized additive models predicting within-species polymorphism rate**
821 **(at synonymous sites) as a function of community diversity at higher taxonomic levels (HMP data).** (A1-E1)
822 The predictor is Shannon diversity. (A2-E2) The predictor is richness. Adjusted r-squared (R^2) and Chi-squared P -
823 values corresponding to the predictor are displayed in each panel (gam.summary function from mgcv R package).
824 Shaded areas show the 95% confidence interval of each model prediction. See Supplementary File 1c and
825 supplementary file 2 sections 2-3 for further details about model outputs.

826

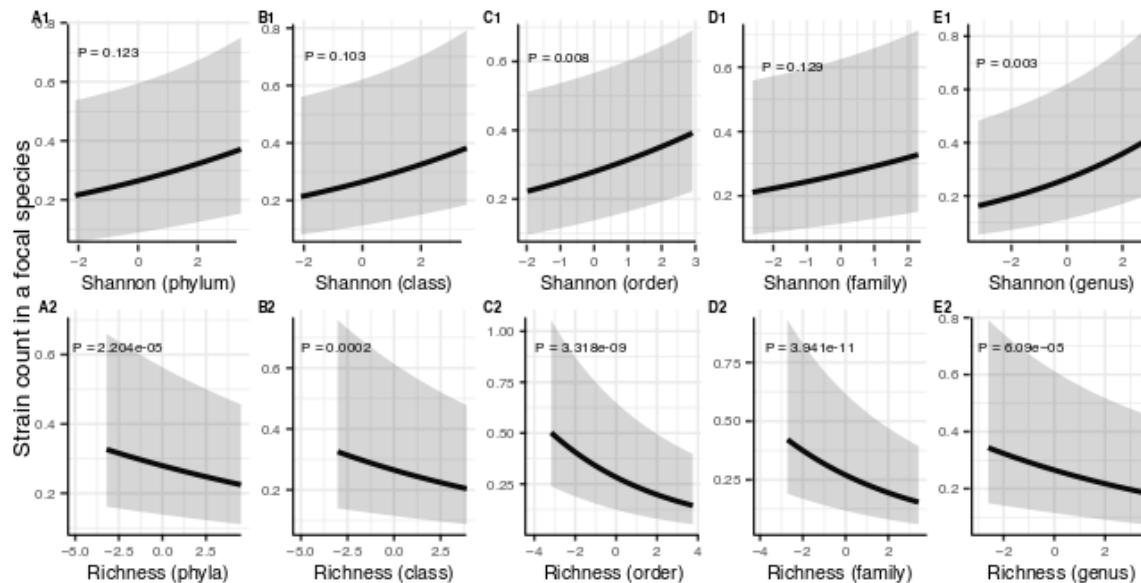
827

828

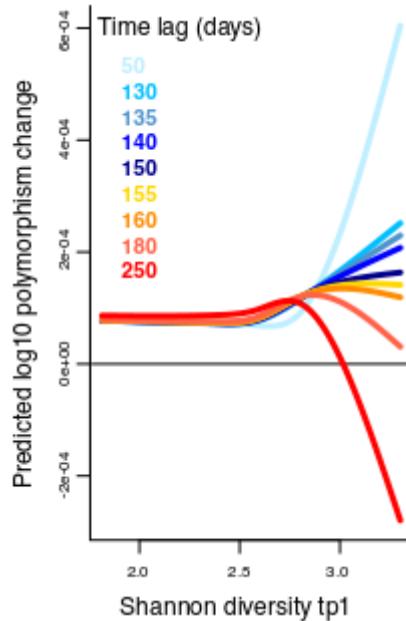


829

830 **Figure 2-Supplement 2. Results of generalized additive models predicting within-species polymorphism rate**
831 **(at nonsynonymous sites) in a focal species as a function of community diversity at higher taxonomic levels**
832 **(HMP data).** (A1-E1) The predictor is Shannon diversity. (A2-E2) The predictor is richness. Adjusted r-squared
833 (R^2) and Chi-squared P -values corresponding to the predictor are displayed in each panel (gam.summary function
834 from mgcv R package). Shaded areas show the 95% confidence interval of each model prediction. See
835 Supplementary File 1d and supplementary file 2 sections 5-6 for further details about model outputs.
836
837



838 **Figure 3-Supplement 1. Results of generalized linear mixed models predicting strain count in a focal species**
839 **as a function of community diversity at higher taxonomic levels (HMP data).** Strain number in a focal species is
840 positively correlated with Shannon (A1-E1) whereas its correlation with richness remains negative (A2-E2) through
841 all taxonomic levels. The Y-axis is the predicted mean number of strains within a focal species. P -values (drop1
842 function from R stats package, LRT). Shaded areas show the 95% confidence interval of each model prediction. See
843 Supplementary File 1f and supplementary file 2 section 9 for model details.
844
845
846



847

848 **Figure 5-Supplement 1.** Results of a GAM predicting polymorphism change in a focal species as a function of the
849 interaction between Shannon diversity at the first time point and the time lag (days) between two time points in the
850 Poyet time series. The response (Y-axis) was log transformed in the Gaussian GAM. Several different time lags are
851 shown to illustrate the inversion of the relationship around a lag time of 150 days. See Supplementary File 1h and
852 supplementary file 2 section 11 for further model details.

853 References

854 Albalat R, Cañestro C. 2016. Evolution by gene loss. *Nat Rev Genet.* doi:10.1038/nrg.2016.39

855 Brooks ME, Kristensen K, Benthem KJ van, Magnusson A, Berg CW, Nielsen A, Skaug HJ,

856 Mächler M, Bolker BM. 2017. Modeling zero-inflated count data with glmmTMB. *BioRxiv.*

857 Calcagno V, Jarne P, Loreau M, Mouquet N, David P. 2017. Diversity spurs diversification in

858 ecological communities. *Nat Commun* **8**. doi:10.1038/ncomms15810

859 Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. 2020. GTDB-Tk: A toolkit to classify

860 genomes with the genome taxonomy database. *Bioinformatics* **36**.

861 doi:10.1093/bioinformatics/btz848

862 Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics*

863 **26**. doi:10.1093/bioinformatics/btq461

864 Estrela S, Diaz-Colunga J, Vila JCC, Sanchez-Gorostiaga A, Sanchez A. 2022. Diversity begets

865 diversity under microbial niche construction. *BioRxiv.*

866 Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. 2018. A strong link between marine

867 microbial community composition and function challenges the idea of functional

868 redundancy. *ISME J* **12**. doi:10.1038/s41396-018-0158-1

869 Garud NR, Good BH, Hallatschek O, Pollard KS. 2019. Evolutionary dynamics of bacteria in the

870 gut microbiome within and across hosts. *PLoS Biol* **17**:e3000102.

871 doi:10.1371/JOURNAL.PBIO.3000102

872 Garud NR, Pollard KS. 2020. Population Genetics in the Human Microbiome. *Trends Genet*

873 **36**:53–67. doi:10.1016/j.tig.2019.10.010

874 Good BH, Rosenfeld LB. 2022. Eco-evolutionary feedbacks in the human gut microbiome.

875 *BioRxiv.*

876 Goyal A. 2021. Horizontal Gene Transfer Drives the Evolution of Dependencies in Bacteria.

877 *iScience* **25**: 104312

878 Goyal A, Bittleston LS, Leventhal GE, Lu L, Cordero OX. 2022. Interactions between strains

879 govern the eco-evolutionary dynamics of microbial communities. *Elife* **11**.

880 doi:10.7554/ELIFE.74987

881 Groussin M, Poyet M, Sistiaga A, Kearney SM, Moniz K, Noel M, Hooker J, Gibbons SM,

882 Segurel L, Froment A, Mohamed RS, Fezeu A, Juimo VA, Lafosse S, Tabe FE, Girard C,

883 Iqaluk D, Nguyen LTT, Shapiro BJ, Lehtimäki J, Ruokolainen L, Kettunen PP, Vatanen T,

884 Sigwazi S, Mabulla A, Domínguez-Rodrigo M, Nartey YA, Agyei-Nkansah A, Duah A,
885 Awuku YA, Valles KA, Asibey SO, Afihene MY, Roberts LR, Plymoth A, Onyekwere CA,
886 Summons RE, Xavier RJ, Alm EJ. 2021. Elevated rates of horizontal gene transfer in the
887 industrialized human microbiome. *Cell* **184**. doi:10.1016/j.cell.2021.02.052

888 He Y, Zhou BJ, Deng GH, Jiang XT, Zhang H, Zhou HW. 2013. Comparison of microbial
889 diversity determined with the same variable tag sequence extracted from two different PCR
890 amplicons. *BMC Microbiol* **13**. doi:10.1186/1471-2180-13-208

891 Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. 2010. Transfer of
892 carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. *Nature*
893 **464**:908–912. doi:10.1038/nature08937

894 Hibbing ME, Fuqua C, Parsek MR, Peterson SB. 2010. Bacterial competition: Surviving and
895 thriving in the microbial jungle. *Nat Rev Microbiol*. doi:10.1038/nrmicro2259

896 Hubbell SP. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. *Princeton*
897 *Univ Press*.

898 Jousset A, Eisenhauer N, Merker M, Mouquet N, Scheu S. 2016. High functional diversity
899 stimulates diversification in experimental microbial communities. *Sci Adv* **2**.
900 doi:10.1126/sciadv.1600124

901 Korem T, Zeevi D, Suez J, Weinberger A, Avnit-Sagi T, Pompan-Lotan M, Matot E, Jona G,
902 Harmelin A, Cohen N, Sirota-Madi A, Thaiss CA, Pevsner-Fischer M, Sorek R, Xavier RJ,
903 Elinav E, Segal E. 2015. Growth dynamics of gut microbiota in health and disease inferred
904 from single metagenomic samples. *Science (80-)* **349**:1101–1106.
905 doi:10.1126/science.aac4812

906 Koskineni S, Sun S, Berg OG, Andersson DI. 2012. Selection-driven gene loss in bacteria.
907 *PLoS Genet* **8**. doi:10.1371/journal.pgen.1002787

908 Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**.
909 doi:10.1038/nmeth.1923

910 Lenski RE. 2017. Experimental evolution and the dynamics of adaptation and genome evolution
911 in microbial populations. *ISME J*. doi:10.1038/ismej.2017.69

912 Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, Brady A, Creasy HH,
913 McCracken C, Giglio MG, McDonald D, Franzosa EA, Knight R, White O, Huttenhower C.
914 2017. Strains, functions and dynamics in the expanded Human Microbiome Project. *Nature*

915 **550**:61–66. doi:10.1038/nature23889

916 Madi N, Vos M, Murall CL, Legendre P, Shapiro BJ. 2020. Does diversity beget diversity in
917 microbiomes? *Elife* **9**. doi:10.7554/eLife.58999

918 Martiny JBH, Jones SE, Lennon JT, Martiny AC. 2015. Microbiomes in light of traits: A
919 phylogenetic perspective. *Science* (80-). doi:10.1126/science.aac9323

920 McCutcheon JP, Moran NA. 2012. Extreme genome reduction in symbiotic bacteria. *Nat Rev
921 Microbiol.* doi:10.1038/nrmicro2670

922 Meyer JR, Kassen R. 2007. The effects of competition and predation on diversification in a
923 model adaptive radiation. *Nature* **446**. doi:10.1038/nature05599

924 Mitri S, Foster KR. 2013. The genotypic view of social interactions in microbial communities.
925 *Annu Rev Genet.* doi:10.1146/annurev-genet-111212-133307

926 Morris JJ, Lenski RE, Zinser ER. 2012. The black queen hypothesis: Evolution of dependencies
927 through adaptive gene loss. *MBio* **3**. doi:10.1128/mBio.00036-12

928 Morris JJ, Papoulis SE, Lenski RE. 2014. Coexistence of evolving bacteria stabilized by a shared
929 Black Queen function. *Evolution* **68**. doi:10.1111/evo.12485

930 Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. 2016. An integrated metagenomics
931 pipeline for strain profiling reveals novel patterns of bacterial transmission and
932 biogeography. *Genome Res* **26**:1612–1625. doi:10.1101/gr.201863.115

933 Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. 2019. New insights from uncultivated
934 genomes of the global human gut microbiome. *Nature* **568**:505–510. doi:10.1038/s41586-
935 019-1058-x

936 Nikoh N, Hosokawa T, Oshima K, Hattori M, Fukatsu T. 2011. Reductive evolution of bacterial
937 genome in insect gut environment. *Genome Biol Evol* **3**. doi:10.1093/gbe/evr064

938 Olm MR, Brown CT, Brooks B, Firek B, Baker R, Burstein D, Soenjoyo K, Thomas BC,
939 Morowitz M, Banfield JF. 2017. Identical bacterial populations colonize premature infant
940 gut, skin, & oral microbiomes & exhibit different in situ growth rates. *Genome Res* **27**:601–
941 612. doi:10.1101/gr.213256.116

942 Padfield D, Vujakovic A, Paterson S, Griffiths R, Buckling A, Hesse E. 2020. Evolution of
943 diversity explains the impact of pre-adaptation of a focal species on the structure of a
944 natural microbial community. *ISME J* **14**. doi:10.1038/s41396-020-00755-3

945 Poulsen LK, Licht TR, Rang C, Krogfelt KA, Molin S. 1995. Physiological state of *Escherichia*

946 *coli* BJ4 growing in the large intestines of streptomycin-treated mice. *J Bacteriol* **177**.
947 doi:10.1128/jb.177.20.5840-5845.1995

948 Poyet M, Groussin M, Gibbons SM, Avila-Pacheco J, Jiang X, Kearney SM, Perrotta AR, Berdy
949 B, Zhao S, Lieberman TD, Swanson PK, Smith M, Roesemann S, Alexander JE, Rich SA,
950 Livny J, Vlamakis H, Clish C, Bullock K, Deik A, Scott J, Pierce KA, Xavier RJ, Alm EJ.
951 2019. A library of human gut bacterial isolates paired with longitudinal multiomics data
952 enables mechanistic microbiome research. *Nat Med* **25**:1442–1452. doi:10.1038/s41591-
953 019-0559-3

954 Puigbò P, Lobkovsky AE, Kristensen DM, Wolf YI, Koonin E V. 2014. Genomes in turmoil:
955 Quantification of genome dynamics in prokaryote supergenomes. *BMC Med* **12**.
956 doi:10.1186/s12915-014-0066-4

957 Reese AT, Dunn RR. 2018. Drivers of microbiome biodiversity: A review of general rules, feces,
958 and ignorance. *MBio* **9**. doi:10.1128/mBio.01294-18

959 Russell SL, Cavanaugh CM. 2017. Intrahost genetic diversity of bacterial symbionts exhibits
960 evidence of mixed infections and recombinant haplotypes. *Mol Biol Evol* **34**:2747–2761.
961 doi:10.1093/molbev/msx188

962 San Roman M, Wagner A. 2021. Diversity begets diversity during community assembly until
963 ecological limits impose a diversity ceiling. *Mol Ecol* **30**. doi:10.1111/mec.16161

964 San Roman M, Wagner A. 2018. An enormous potential for niche construction through bacterial
965 cross-feeding in a homogeneous environment. *PLoS Comput Biol* **14**.
966 doi:10.1371/journal.pcbi.1006340

967 Schlüter D. 2000. The Ecology of Adaptive Radiation. *Oxford Ser Ecol Evol*.

968 Schlüter D, Pennell MW. 2017. Speciation gradients and the distribution of biodiversity. *Nature*.
969 doi:10.1038/nature22897

970 Sharma V, Rodionov DA, Leyn SA, Tran D, Iablokov SN, Ding H, Peterson DA, Osterman AL,
971 Peterson SN. 2019. B-Vitamin sharing promotes stability of gut microbial communities.
972 *Front Microbiol* **10**. doi:10.3389/fmicb.2019.01485

973 Simonsen AK. 2022. Environmental stress leads to genome streamlining in a widely distributed
974 species of soil bacteria. *ISME J* **16**. doi:10.1038/s41396-021-01082-x

975 Smillie CS, Sauk J, Gevers D, Friedman J, Sung J, Youngster I, Hohmann EL, Staley C, Khoruts
976 A, Sadowsky MJ, Allegretti JR, Smith MB, Xavier RJ, Alm EJ. 2018. Strain Tracking

977 Reveals the Determinants of Bacterial Engraftment in the Human Gut Following Fecal
978 Microbiota Transplantation. *Cell Host Microbe*. doi:10.1016/j.chom.2018.01.003

979 Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M. 2012. Drift-barrier hypothesis and
980 mutation-rate evolution. *Proc Natl Acad Sci U S A* **109**. doi:10.1073/pnas.1216223109

981 The Human Microbiome Project Consortium. 2012. A framework for human microbiome
982 research. *Nature* **486**.

983 Tian L, Wang XW, Wu AK, Fan Y, Friedman J, Dahlin A, Waldor MK, Weinstock GM, Weiss
984 ST, Liu YY. 2020. Deciphering functional redundancy in the human microbiome. *Nat
985 Commun* **11**. doi:10.1038/s41467-020-19940-1

986 Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. 2017. Microbial strain-level population
987 structure & genetic diversity from metagenomes. *Genome Res* **27**:626–638.
988 doi:10.1101/gr.216242.116

989 Vatanen T, Plichta DR, Somanı J, Münch PC, Arthur TD, Hall AB, Rudolf S, Oakeley EJ, Ke X,
990 Young RA, Haiser HJ, Kolde R, Yassour M, Luopajarvi K, Siljander H, Virtanen SM,
991 Ilonen J, Uibo R, Tillmann V, Mokurov S, Dorshakova N, Porter JA, McHardy AC,
992 Lähdesmäki H, Vlamakis H, Huttenhower C, Knip M, Xavier RJ. 2019. Genomic variation
993 and strain-specific functional adaptation in the human gut microbiome during early life. *Nat
994 Microbiol* **4**. doi:10.1038/s41564-018-0321-5

995 Venturelli OS, Carr A V, Fisher G, Hsu RH, Lau R, Bowen BP, Hromada S, Northen T, Arkin
996 AP. 2018. Deciphering microbial interactions in synthetic human gut microbiome
997 communities. *Mol Syst Biol* **14**. doi:10.15252/msb.20178157

998 Verster AJ, Ross BD, Radey MC, Bao Y, Goodman AL, Mougous JD, Borenstein E. 2017. The
999 Landscape of Type VI Secretion across Human Gut Microbiomes Reveals Its Role in
1000 Community Composition. *Cell Host Microbe* **22**:411-419.e4.
1001 doi:10.1016/j.chom.2017.08.010

1002 Walters KE, Martiny JBH. 2020. Alpha-, beta-, and gamma-diversity of bacteria varies across
1003 habitats. *PLoS One* **15**. doi:10.1371/journal.pone.0233872

1004 Wexler AG, Goodman AL. 2017. An insider's perspective: Bacteroides as a window into the
1005 microbiome. *Nat Microbiol*. doi:10.1038/nmicrobiol.2017.26

1006 Wolff R, Shoemaker WR, Garud NR. 2021. Ecological Stability Emerges at the Level of Strains
1007 in the Human Gut Microbiome. *bioRxiv*. doi:<https://doi.org/10.1101/2021.09.30.462616>

1008 Wu D, Jospin G, Eisen JA. 2013. Systematic Identification of Gene Families for Use as
1009 "Markers" for Phylogenetic and Phylogeny-Driven Ecological Studies of Bacteria and
1010 Archaea and Their Major Subgroups. *PLoS One* **8**. doi:10.1371/journal.pone.0077033

1011 Yaffe E, Relman DA. 2020. Tracking microbial evolution in the human gut using Hi-C reveals
1012 extensive horizontal gene transfer, persistence and adaptation. *Nat Microbiol* **5**.
1013 doi:10.1038/s41564-019-0625-0

1014 Yang Y, Nguyen M, Khetrapal V, Sonnert ND, Martin AL, Chen H, Kriegel MA, Palm NW.
1015 2022. Within-host evolution of a gut pathobiont facilitates liver translocation. *Nature*.

1016 Yassour M, Jason E, Hogstrom LJ, Arthur TD, Tripathi S, Siljander H, Selvenius J, Oikarinen S,
1017 Hyöty H, Virtanen SM, Ilonen J, Ferretti P, Pasolli E, Tett A, Asnicar F, Segata N,
1018 Vlamakis H, Lander ES, Huttenhower C, Knip M, Xavier RJ. 2018. Strain-Level Analysis
1019 of Mother-to-Child Bacterial Transmission during the First Few Months of Life. *Cell Host
Microbe* **24**:146-154.e4. doi:10.1016/j.chom.2018.06.007

1020 Zhao S, Lieberman TD, Poyet M, Kauffman KM, Gibbons SM, Groussin M, Xavier RJ, Alm EJ.
1021 2019. Adaptive Evolution within Gut Microbiomes of Healthy People. *Cell Host Microbe*
1022 **25**:656-667.e8. doi:10.1016/j.chom.2019.03.007

1023 Zheng W, Zhao S, Yin Y, Zhang H, Needham DM, Evans ED, Dai CL, Lu PJ, Alm EJ, Weitz
1024 DA. 2022. High-throughput, single-microbe genomics with strain resolution, applied to a
1025 human gut microbiome. *Science (80-)* **376**.

1026
1027