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Abstract 
Biobanks often contain several phenotypes relevant to a given disorder, and researchers face 
complex tradeoffs between shallow phenotypes (high sample size, low specificity and sensitivity) 
and deep phenotypes (low sample size, high specificity and sensitivity). Here, we study an 
extreme case: Major Depressive Disorder (MDD) in UK Biobank. Previous studies found that 
shallow and deep MDD phenotypes have qualitatively distinct genetic architectures, but it remains 
unclear which are optimal for scientific study or clinical prediction. We propose a new framework 
to get the best of both worlds by integrating together information across hundreds of MDD-
relevant phenotypes. First, we use phenotype imputation to increase sample size for the deepest 
available MDD phenotype, which dramatically improves GWAS power (increases #loci ~10 fold) 
and PRS accuracy (increases R2 ~2 fold). Further, we show the genetic architecture of the 
imputed phenotype remains specific to MDD using genetic correlation, PRS prediction in external 
clinical cohorts, and a novel PRS-based pleiotropy metric. We also develop a complementary 
approach to improve specificity of GWAS on shallow MDD phenotypes by adjusting for phenome-
wide PCs. Finally, we study phenotype integration at the level of GWAS summary statistics, which 
can increase GWAS and PRS power but introduces non-MDD-specific signals. Our work provides 
a simple and scalable recipe to improve genetic studies in large biobanks by combining the 
sample size of shallow phenotypes with the sensitivity and specificity of deep phenotypes. 
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Introduction 
 
Although Major Depressive Disorder (MDD) is the most common psychiatric disorder and the 
leading cause of disability worldwide, its causes are largely unknown and its treatments are 
relatively ineffective. Despite the moderate familial heritability of MDD (~40%)1, genome-wide 
association studies (GWAS) have only recently begun to identify replicable risk loci and polygenic 
risk scores (PRS)2–7. These discoveries were enabled by increasing power along two primary 
dimensions: depth of phenotyping and sample size8. Increasing sample size improves GWAS and 
PRS power by reducing standard errors of estimated genetic effects on a given MDD 
phenotype2,9. Alternatively, increasing diagnostic accuracy through structured clinical interviews 
prevents dilution of genetic effect sizes, thus improving GWAS power7,8,10 and PRS accuracy10,11. 
In practice, studies have a fixed budget and must always tradeoff between increasing sample size 
or phenotyping depth. The optimal choice for current and future MDD studies remains 
contested10,12,13. Ultimately, it depends on our goals.  

 
One important goal is statistical explanation, defined as the number of GWAS hits or the 

PRS prediction accuracy. Most MDD GWAS have focused on this goal, which is best achieved 
by maximizing sample size10,11. This motivates use of shallow phenotypes in large biobanks, 
including self-reported depression or health records of seeking care for depression. Such studies 
have amassed sample sizes of millions of individuals and have identified hundreds of risk loci, as 
well as PRS with state-of-the-art prediction accuracy in European-ancestry clinical cohorts2–6. 

 
A partly distinct goal is biological insight. This is more difficult to measure or even define, 

but it represents one of the ultimate goals of genetics: characterizing biological mechanisms to 
improve prediction and treatment for all. This goal may never be achieved by increasing sample 
size with shallow phenotyping, because shallow phenotypes are confounded by genetic effects 
that do not pertain to MDD biology10. In contrast, deep phenotyping in clinical cohorts (e.g., PGC2, 
CONVERGE7, iPSYCH14) has identified a handful of genetic loci that could generate hypotheses 
on MDD-specific biology. However, at current sample sizes they simply do not provide enough 
power to understand MDD biology7. 

 
In this paper, we propose to bridge the shallow-deep gap by integrating information across 

hundreds of MDD-relevant phenotypes in UK Biobank10,15 (UKB, Figure 1). We focus on using 
phenotype imputation16,17 to increase the effective sample size for the deepest MDD phenotype 
in UKB (LifetimeMDD)10, which dramatically improves GWAS power and PRS accuracy over any 
individual MDD phenotype18. We extensively characterize the genetic architecture underlying 
these imputed phenotypes and show they remain specific to LifetimeMDD. Further, we develop a 
novel approach to partly remove non-specific signals from GWAS on shallow phenotypes akin to 
latent factor corrections in eQTL studies19–22. We also investigate phenotype integration via 
GWAS summary statistics using MTAG, which offers varying specificity and sensitivity depending 
on input choices. Finally, we developed a novel metric to quantify the specificity of a given PRS, 
which demonstrates that imputed deep phenotypes of MDD are both more specific and more 
sensitive than observed shallow phenotypes.  
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Results 
 
Phenotype imputation more than doubles effective sample size for LifetimeMDD 
 
We focus on the deepest available measure of MDD in UKB10, LifetimeMDD, which we derive by 
applying clinical diagnostic criteria in silico to MDD symptom data from the PHQ-9 questionnaire 
and CIDI short form (CIDI-SF) in the online Mental Health Questionnaire. This procedure identifies 
16,297 LifetimeMDD cases and 50,869 controls. Because most individuals did not complete these 
questionnaires, LifetimeMDD is missing for 269,962 individuals. We also study a shallow measure 
of MDD, GPpsy10, defined by seeking help from a General Practitioner for “depression, anxiety, 
tension, or nerves”. For imputation and downstream analyses, we use a broad depression-
relevant phenome with 216 phenotypes, including comorbidities, family history, and 
socioeconomic, demographic, and environmental phenotypes (Supplementary Note, 
Supplementary Table 1).  

 
We first impute the depression phenome using SoftImpute23 (Methods). We previously 

found SoftImpute to be the most scalable among several established approaches16,23. SoftImpute 
is a variant of principal component analysis (PCA) that accommodates missing data. It uses the 
observed phenotype data to identify latent factors, and then uses these factors to impute the 
missing data. As in our prior work, we tune SoftImpute’s regularization parameter using 
realistically held-out test data by taking unions of missingness patterns across samples16, and 
also use this approach to estimate the imputation accuracy for each phenotype (Extended Data 
Figure 1)16. Imputation accuracy varied widely across phenotypes, ranging from R2=1% for being 
a twin (1% missing) to R2=97% for neuroticism score (19% missing). For LifetimeMDD, we 
estimated the phenotype imputation R2 to be 40% (80% missing). Roughly speaking, this means 
that SoftImpute more than doubles the effective sample size of LifetimeMDD (N observed=67K, 
N effective=166K).   

 
We then applied a new deep-learning imputation method, AutoComplete, to the same 

phenotype matrix (Methods, An et al in submission). AutoComplete improved estimated 
imputation accuracy for most phenotypes with >10% missingness (29/42), and increased average 
estimated R2 by 2.9%. 
 
Phenotype imputation improves GWAS power for LifetimeMDD 
 
We next assessed the impact of phenotype imputation on GWAS. We performed GWAS on 
observed LifetimeMDD (N=67,164), imputed values of LifetimeMDD (ImpOnly, N=269,962), and 
the concatenation of imputed and observed LifetimeMDD (ImpAll, N=337,126, Methods). GWAS 
on the observed values of LifetimeMDD identified one significant locus (Figure 2E). GWAS on 
the imputed values increased the number of GWAS loci to 13 and 18 for SoftImpute and 
AutoComplete, respectively (Figure 2A,B, Supplementary Table 2). Finally, GWAS on the 
combination of both imputed and observed values further increased the number of significant loci 
to 26 and 40 for SoftImpute and AutoComplete, respectively (Figure 2C,D, Supplementary 
Table 2).  
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We investigated if the new GWAS hits from phenotype imputation were specific to MDD 
biology by comparing the ImpOnly GWAS to other MDD GWAS. First, we compared the two 
imputation methods. Out of 13 and 18 GWAS loci for ImpOnly from SoftImpute and AutoComplete 
respectively, 8 overlap (giving a total of 23, Extended Data Figure 2). Further, 9 of the remaining 
15 loci had P < 10-5 in both ImpOnly GWAS and all 15 have P < 0.05/23. This shows our two 
imputation methods capture highly overlapping genetic signals, but AutoComplete has greater 
power. Next, we assessed these 8 shared hits in four non-overlapping depression cohorts 
(Methods, Supplementary Note): observed LifetimeMDD in UKB; self-reported depression 
diagnosis or treatment in 23andMe5; the 29 MDD cohorts of the Psychiatric Genomics 
Consortium2 (PGC29); and Danish registry data on MDD cases and population controls  
(iPSYCH14,24). For reference, we also compared to UKB measures of neuroticism, a personality 
trait that is genetically correlated but distinct from MDD25. We found that all 8 hits shared between 
both ImpOnly GWAS have sign-consistent effect size estimates across all of these depression 
cohorts, as well as neuroticism. Moreover, all 8 are significant for observed LifetimeMDD in UKB 
at P < 0.05/23.  Finally, out of the 23 SNPs significant in one ImpOnly GWAS, 18 replicate in at 
least one GWAS of observed MDD at P < 0.05/23 (Extended Data Figure 2). Altogether, these 
results show that the predominant loci underlying imputed LifetimeMDD are relevant to the biology 
of MDD.  

 
We then checked if the ImpOnly GWAS preserved the polygenic architecture of 

LifetimeMDD in terms of heritability and genetic correlation. First, we found that the observed 
scale SNP heritability (ℎ!" from LDSC26) was lower for imputed (Soft-ImpOnly ℎ!" = 7.4%, 
SE=0.6%; Auto-ImpOnly ℎ!" = 8.5%, SE=0.5%) than observed LifetimeMDD (ℎ!" = 10.1%, 
SE=1.5%, Figure 2F). This suggests that imputed values are noisier than observed LifetimeMDD. 
Nonetheless, the genetic correlations between imputed and observed LifetimeMDD are close to 
1 (Soft-ImpOnly 𝑟! = .97, SE=.02; Auto-ImpOnly 𝑟! = .96, SE = .03), as are the correlations 
between imputed values from the two imputation methods (𝑟! = 1.00, SE = .004). Moreover, the 
𝑟! between ImpOnly phenotypes and secondary depression-related phenotypes largely mirror 𝑟! 
based on observed LifetimeMDD (Figure 2G). Altogether, imputed LifetimeMDD harbors similar 
genetic effects as observed LifetimeMDD, though it has additional sources of non-genetic noise. 

 
Finally, we tested for effect size heterogeneity between the ImpOnly and observed 

LifetimeMDD GWAS. We used a simple random effect meta-analysis27 (Methods), as ImpOnly 
and observed LifetimeMDD GWAS use non-overlapping individuals. We find no significant 
heterogeneity between ImpOnly and observed LifetimeMDD at genome-wide significance 
(Extended Data Figure 2), and across the 13 and 18 GWAS hits in Soft-ImpOnly and Auto-
ImpOnly, respectively, 6 and 4 SNPs showed significant heterogeneity at P < 0.05/23.   Altogether, 
imputed LifetimeMDD has more non-genetic noise than observed LifetimeMDD, but has similar 
genetic architecture. 
  
Phenome-wide factors partition pleiotropic axes of depression risk 
 
In order to understand the phenotypic correlations driving imputation, we examined the top latent 
factors in SoftImpute. These latent factors are essentially PCs of our depression-relevant 
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phenome. We used two statistical metrics to prioritize factors for genetic study. First, we quantified 
the variance explained by each factor (Methods, Figure 3A). The top handful of factors clearly 
stood out from the background, but factors became comparable to background noise levels 
around factor 30. Second, we quantified factor stability by calculating the 𝑅" between factors 
estimated on separate halves of the data (Methods, Figure 3B). This is a variant of the prediction 
strength metric for clustering28. We found that the first 10 factors were extremely stable (min 
𝑅"~98%), with stability decaying steadily afterward (factors 11-20 have average 𝑅"~80%, and 21-
30 have average 𝑅"~60%). Overall, we conclude that the first ten or so factors are statistically 
meaningful.  

 
Conservatively, we interpret only the top five factors. We name Factor 1 Neuroticism: its 

top loading is total neuroticism score, and it heavily loads on specific neuroticism items and 
shallow depression phenotypes10 (Figure 3C, Supplementary Table 1). Factor 2 (Age) captures 
age and related socioeconomic variables, like retirement. Factor 3 (SES/EA) reflects complex 
socioeconomic status (SES) phenotypes, particularly education attainment (EA) and Townsend 
deprivation index. Factor 4 (Cohabit) is another complex social dimension, loading primarily on 
cohabitation phenotypes. Finally, Factor 5 (Sex/Gender) reflects sex/gender and known 
psychosocial correlates such as alcohol and tobacco use. Deeper factors are shown in 
Supplementary Figure 1. 

 
We then studied the genetic basis of each factor with GWAS. Each factor had GWAS hits, 

ranging from from 3 (Age) to 309 (SES/EA), with 𝜆#$ ranging from 1.15 (Age) to 2.11 (SES/EA) 
(Supplementary Figure 2). We next estimated heritability for each factor and found that they 
range from ℎ!" = 1.9% (SE = 0.2%) for Age to ℎ!" = 22.4% (SE=0.9%) for SES/EA (Figure 3D, 
Supplementary Figure 1). These results are consistent with our interpretations based on the 
factor loadings: Age has low ℎ!" and few GWAS hits, while Neuroticism and SES/EA have high 
ℎ!", high 𝜆#$, and many more GWAS hits. Finally, we profiled the genetic correlation between 
factors and various MDD phenotypes and related phenotypes (Figure 3E, Supplementary 
Figure 1). We found that the 𝑟! closely mirrored the factor loadings, which are based only on 
phenotypic correlations. For example, Factor 1 had 𝑟!= -0.93 (SE = 0.01) with neuroticism, and 
SES/EA had 𝑟!=0.79 (SE = 0.96) with years of education and 𝑟!=0.75 (SE = 0.03) with income. 

 
Given these results, we hypothesized that our top phenome-wide factors partly capture 

the nonspecific pathways that contribute to shallow MDD phenotypes. To test this hypothesis, we 
performed GWAS on a shallow MDD measure, GPpsy (N=332,629), conditioning on Factor 1. 
This is akin to removing confounders like batch effects in eQTL studies through conditioning on 
latent factors. We found that only 1 of the 25 GWAS hits for GPpsy remains after adjusting for 
Factor 1 (Figure 3F). This hit overlaps the gene NEGR1 (top SNP rs1194283, OR = 1.05, SE = 
0.0065, P = 6.71x10-13, Figure 3G), which has been identified as an MDD risk locus in multiple 
GWAS studies with varying phenotyping approaches2,4,6,29–31. Intriguingly, this locus also has 
replicated associations with body mass index and obesity in diverse populations32–35, suggesting 
it may act on MDD through a metabolic pathway that is independent of neuroticism. We also 
tested adjusting for each of the other top 10 factors. Generally, these adjustments had little impact, 
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and only removed one or a few GWAS hits (Supplementary Figure 3). One clear exception, 
however, was adjustment for the SES/EA factor, which increased the number of GPpsy GWAS 
hits from 25 to 35. While this may seem surprising, false positives are expected after adjusting for 
a heritable latent factor22,36,37.  

 
MTAG is sensitive to inputs but improves GWAS power 
 
As an alternative to phenotype imputation, we next evaluated phenotype integration at the 
summary statistic level via MTAG (multi-trait analysis of GWAS18), an inverse-covariance-
weighted meta-analysis for GWAS on multiple traits.  We did not use all 216 phenotypes in MTAG 
for two reasons. First, MTAG requires running GWAS on each input phenotype, which is 
computationally intractable for hundreds of phenotypes. Second, MTAG accrues false positives 
as the number of traits grows18.  Instead, we performed MTAG on 6 different sets of input 
phenotypes, each of which produces an integrated LifetimeMDD GWAS (Figure 4A, Extended 
Data Figure 3, Supplementary Table 3, Supplementary Notes). 

 
All MTAG input choices increased the number of GWAS hits from LifetimeMDD. On the 

low end, MTAG using family history measures of depression yielded 5 GWAS hits 
(MTAG.FamilyHistory, 𝜆#$=1.20, Figure 4B). On the high end, MTAG using shallow MDD 
phenotypes and environmental factors (such as recent stressful life events, lifetime traumatic 
experiences, and townsend deprivation index) yielded 33 GWAS hits (MTAG.All, 𝜆#$=1.45, 
Figure 4C). Of the total 51 hits across all MTAG runs, 34 overlap hits from the imputed GWAS 
with SoftImpute or AutoComplete (Extended Data Figure 3). Notably, we found that including 
more input phenotypes in MTAG always increased the number of GWAS hits. This is due to a 
combination of increased power to detect pleiotropic signals and increased false positive 
inflation18. Consistent with the latter contribution, MTAG GWAS yielded substantially inflated 
heritability estimates (on both the liability and observed scales), which increased with more input 
phenotypes. For example, MTAG.All gave ℎ!"	= 45.2% (SE = 3.0%), compared to ℎ!" = 10.1% (SE 
= 1.5%) for observed LifetimeMDD (Figure 4D).  

 
We next examined genetic correlations between MTAG and other MDD GWAS (Figure 

4E). First, MTAG.All, which included the most input phenotypes, clustered together with the 
imputed GWAS, which leverage all 216 phenotypes. Second, MTAG using shallow MDD 
phenotypes as input (MTAG.AllDep and MTAG.GPpsy) clustered with GWAS on GPpsy. Third, 
neuroticism is significantly more genetically correlated with MTAG.Envs (𝑟! = 0.84, SE = 0.01) 
than LifetimeMDD (𝑟! = 0.66, SE = 0.06). Overall, the genetic correlations between MTAG and 
LifetimeMDD were high, with lowest value given by MTAG.Envs (𝑟! = 0.90, SE = 0.03). Altogether, 
MTAG outputs resemble the chosen input phenotypes, and the choice of inputs significantly 
impacts power and specificity. 
 
Phenotype integration improves PRS accuracy for LifetimeMDD 
 
We then assessed within-sample prediction accuracy of polygenic risk scores (PRS) based on 
integrated MDD phenotypes. We used 10-fold cross-validation to estimate the Nagelkerke’s 𝑅" 
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prediction accuracy for LifetimeMDD in white British individuals in UKB. We jointly cross-validated 
the phenotype imputation and PRS construction (Methods). For MTAG, we jointly cross-validated 
the GWAS on secondary input phenotypes. To put these results in context, we compared to PRS 
built from observed LifetimeMDD and GPpsy in UKB10; MDD defined by structured interviews in 
PGC292; affective disorder defined by Danish health registriesin iPSYCH14; and self-reported 
depression in 23andMe5.  

 
We found imputing LifetimeMDD doubled PRS prediction accuracy over observed 

LifetimeMDD (Figure 5A, LifetimeMDD 𝑅" = 1.0%, 95% CI = [0.6%,1.4%], Soft-ImpAll 𝑅" = 2.1%, 
95% CI = [1.3%, 2.9%], Auto-ImpAll 𝑅" = 2.2%, 95%CI=[1.4%,3.0%]). Consistent with prior 
reports10,11, we found that the GPpsy PRS predicts LifetimeMDD better than the LifetimeMDD 
PRS itself (𝑅"=1.6%, 95% CI = [0.6%, 2.4%]), which is because GPpsy has roughly four times 
the sample size. Nonetheless, both SoftImpute and AutoComplete PRS outperformed the GPpsy 
PRS, demonstrating that integrating shallow and deep phenotypes can improve PRS over either 
alone. Finally, we found that the imputed LifetimeMDD PRS substantially outperform the PRS 
from iPSYCH (𝑅" = 0.6%, 95% CI = [0.2%,0.9%]) and 23andMe (𝑅" = 1.3%, 95% CI = 
[0.7%,1.9%]), even though iPSYCH used deeper phenotypes and 23andMe had a large sample 
size. 

 
The performance of MTAG PRS depended on the input phenotypes, mirroring the MTAG 

GWAS results (Figure 4, Extended Data Figure 3). For instance, MTAG.FamilyHistory does not 
substantially improve GWAS power, and its PRS underperforms imputed PRS (𝑅" = 1.5%, 95% 
CI = [0.6%,2.5%], Figure 5A). On the other hand, MTAG.All significantly improves GWAS power 
and yields PRS that outperforms the imputed PRS by about 20% (𝑅" = 2.6%, 95% CI 
=[1.3%,3.9%], Figure 5A). In particular, this demonstrates that MTAG with large numbers of 
inputs, which is non-standard and likely yields miscalibrated GWAS results, can nonetheless 
significantly improve PRS.  
 
Phenotype integration improves PRS portability 
 
Having shown that phenotype integration improves PRS predictions in held-out white British 
individuals in UKB, we next asked if it also improves PRS predictions in different cohorts, 
diagnostic systems, and/or populations. If phenotype integration captures core MDD biology, it 
will improve PRS predictions regardless of the context; conversely, if phenotype integration only 
reflects dataset-specific patterns, it will fail this test of portability. Measuring portability is also 
essential for assessing the clinical potential of PRS based on phenotype integration. 

 
First, we tested PRS accuracy in non-British individuals with European ancestry in UKB 

(UKB.EUR, N=10,166). These individuals are measured on the same LifetimeMDD phenotype as 
our sample of white British UKB individuals and also have European ancestry, hence represent 
the most similar cohort (Supplementary Note, Supplementary Figure 4). Though the small 
sample size limits definitive conclusions, we observe a nearly identical pattern amongst PRS 
methods as in our training sample: imputation and MTAG almost always improve over both 
LifetimeMDD and GPpsy (Figure 5B). We next assessed portability to two large European-
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ancestry cohorts from iPSYCH (2012 cohort [N=42,250] and 2015i cohort [N=23,351], 
Supplementary Note). These non-overlapping samples are drawn from a nation-wide Danish 
birth cohort with diagnoses obtained from national health registers24,38. We again found 
qualitatively identical results, with imputation outperforming both LifetimeMDD and GPpsy, and 
the best MTAG setting outperforming imputation (Figure 5B).  Finally, we tested portability to 
European-ancestry individuals in the ATLAS dataset based on MDD as defined in the UCLA EHR 
data39,40 (ATLAS.EUR, N=14,388, Supplementary Note, Supplementary Figure 5, 
Supplementary Tables 4-6). Again, small sample size prevents definitive comparisons, but 
phenotype imputation and the best MTAG setting improve estimated accuracy (Figure 5B). 

 
We next tested these PRS in individuals with non-European genetic ancestries, including 

African ancestry individuals5 in UKB with observed LifetimeMDD status (UKB.AFR, N=687), as 
well as Han Chinese ancestry individuals in the CONVERGE cohort7,41 (N=10,502, 
Supplementary Note) who were assessed for severe, recurrent MDD (Figure 5C, 
Supplementary Note, Supplementary Table 4). Consistent with previous studies42–44, we find 
that the PRS we derived from GWAS on European-ancestry cohorts generally had poorer 
portability to non-European cohorts. Moreover, the strikingly consistent pattern of relative PRS 
accuracies observed in external European-ancestry cohorts no longer holds so clearly. In 
particular, it is surprising that the shallow PRS (using GPpsy) performs best in CONVERGE, which 
uses the deepest phenotyping of cohorts we study. Nonetheless, the best MTAG setting is always 
near-optimal, and PRS based on imputed LifetimeMDD always outperform PRS based on 
observed LifetimeMDD. Finally, we also for PRS prediction accuracy in UKB individuals with Asian 
ancestry (UKB.ASN, N=334) as well as ATLAS individuals who self-identify as Latino 
(ATLAS.LAT, N=2,454), Black (ATLAS.AFR, N=1,158) or Asian (ATLAS.ASN, N=1,996). 
However, power was too low in these small cohorts for meaningful interpretation (Supplementary 
Figure 6). 
 
A new metric contrasts specificity of PRS from deep, shallow, and integrated phenotypes 
 
While phenotype integration improves PRS prediction in UKB and in external cohorts, this may 
come at the cost of reduced specificity to MDD. This is because integration explicitly borrows 
information from secondary phenotypes, which could introduce genetic signals that are irrelevant 
to MDD. To quantify this spillover of non-specific effects into an MDD PRS, we compare prediction 
accuracy for LifetimeMDD to prediction accuracy for secondary phenotypes. We call this metric 
of specificity PRS Pleiotropy (𝑅"secondary/𝑅"LifetimeMDD). Because core MDD biology is likely partly 
pleiotropic, its PRS Pleiotropy should be nonzero for many secondary phenotypes. We further 
expect that shallow MDD phenotypes, such as GPpsy, would generally have higher PRS 
Pleiotropy than LifetimeMDD10. Our main question, however, is whether phenotype integration 
suffers worse PRS Pleiotropy than shallow MDD phenotypes.  

 
For all PRS based on observed and integrated MDD, we calculated PRS Pleiotropy for 

172 secondary phenotypes used in imputation. We then limited our investigation to the 62 
secondary phenotypes that are significantly predicted by any examined PRS (P<0.05/172, 
Methods). Visualizing PRS Pleiotropy for observed LifetimeMDD across this depression 
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phenome shows a spectrum of highly-linked traits, including shallow MDD phenotypes like GPpsy 
and genetically correlated traits like neuroticism, that quickly fades across successive phenotypes 
(Figure 6A). By comparison, GPpsy broadly has higher PRS Pleiotropy across secondary 
phenotypes, indicating GPpsy captures less-specific biology than LifetimeMDD, as expected. We 
also found that the 23andMe GWAS had similar PRS pleiotropy to GPpsy, consistent with the fact 
that both measure MDD by self-reported depression.  

 
We next evaluated PRS Pleiotropy for MTAG and found that specificity depends highly on 

input phenotypes (Figure 6B). First, MTAG.Envs has far higher PRS Pleiotropy across than 
GPpsy, showing its improved prediction power over GPpsy comes at a cost in specificity. On the 
other hand, MTAG.All is similar to GPpsy in specificity and almost doubles PRS prediction 
accuracy for LifetimeMDD, hence MTAG.All is clearly superior to GPpsy. Finally, 
MTAG.FamilyHistory has the opposite properties: while it only modestly improves PRS prediction 
accuracy over observed LifetimeMDD, this benefit comes without loss of specificity. We then 
evaluated PRS Pleiotropy for imputed phenotypes (Figure 6C). The SoftImpute ImpAll and 
ImpOnly PRS are both more specific to LifetimeMDD than the GPpsy PRS, which is remarkable 
given that imputed values are constructed from more than 200 phenotypes, including GPpsy. The 
AutoComplete ImpOnly PRS was less specific than GPpsy, on the other hand, though the ImpAll 
PRS was comparable.  

 
Finally, we asked which secondary phenotypes had non-specific effects in excess of 

pleiotropy expected from core MDD biology. We define Excess PRS Pleiotropy as PRS Pleiotropy 
minus the PRS Pleiotropy of observed LifetimeMDD, which represents our best proxy for core 
MDD biology10. As expected, self-reported depression (GPpsy and 23andMe) had Excess 
Pleiotropy for most secondary traits, especially shallow MDD measures (Extended Data Figure 
4A). Likewise, MTAG.Envs had substantial Excess PRS Pleiotropy, especially for socioeconomic 
measures like education years (Extended Data Figure 4B). Notably, MTAG.FamilyHistory had 
far less Excess PRS Pleiotropy than other MTAG settings or GPpsy, and in particular actually has 
less pleiotropy for the socioeconomic measures driving Excess PRS Pleiotropy for MTAG.Envs. 
Finally, SoftImp-All had lower Excess PRS Pleiotropy than GPPsy (41/62 phenotypes); however, 
AutoImp-All had higher Excess PRS Pleiotropy (Extended Data Figure 4C). Overall, MTAG 
choices can outperform imputation in PRS sensitivity or specificity, but imputation provides a 
simple, scalable, and robust approach that simultaneously achieves near-optimal power and 
specificity. 
 
Discussion 
 
In this paper we address the power-specificity tradeoff between deep and shallow MDD 
phenotypes by integrating them together. We show that the integrated MDD phenotypes greatly 
improve GWAS power and PRS accuracy while, crucially, preserving the genetic architecture of 
MDD. We propose a novel metric to assess the disorder-specificity of a PRS that is widely 
applicable to biobank-based GWAS. This metric characterizes a power-specificity tradeoff for 
MTAG, where adding more phenotypes generally increases power but sacrifices specificity. 
Imputing LifetimeMDD with SoftImpute, on the other hand, improves both power and specificity 
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over shallow MDD phenotypes. Overall, our results demonstrate that phenotype integration 
outperforms either deep or shallow phenotypes alone, and that phenotype imputation is a practical 
way to improve biobank-based GWAS.  

 
Our study has implications for improving disorder specificity in future MDD studies. We 

have worked on the deepest MDD phenotype in UKB, LifetimeMDD, which is derived by applying 
DSM-5 criteria in silico to self-rated MDD symptoms. Though it  is shallow compared to a clinical 
diagnosis based on a structured in-person interview, especially due to self-report biases45–48, 
LifetimeMDD lies on essentially the same genetic liability continuum as gold-standard MDD10. In 
particular, genetic effects on LifetimeMDD are likely to represent MDD-specific biology, hence 
they provide a reliable benchmark when interrogating the specificity of genetic effects on 
integrated phenotypes. More broadly, we acknowledge that the DSM-5 criteria for MDD 
themselves have significant shortcomings in reliability49–51. Nonetheless, improving the MDD 
diagnostic criteria may only be achievable through epistemic iterations47, a series of efforts to 
characterize specific genetic signals for the deepest available MDD definition and, in turn, refine 
our definition of MDD. Our efforts to improve GWAS power and specificity in noisy biobanks 
advances this process. 

 
Our implementation of phenotype integration uses shallow MDD phenotypes to improve 

power for LifetimeMDD, and as such its specificity is limited by the specificity of LifetimeMDD. 
Future statistical methods could go further and actually improve the specificity of existing 
phenotypes. For example, we could incorporate family history and/or genetic data to home in on 
more genetically-specific MDD phenotypes. We have taken a complementary step in this direction 
by residualizing latent factors from SoftImpute, which revealed a specific locus from a shallow 
phenotype. This approach is akin to latent factor correction in genomic studies22,52–55 and it could 
be adapted to AutoComplete using, for example, Integrated Gradients56. However, it is 
challenging to remove non-specific signals without removing specific signals or, worse, 
introducing artificial signals due to collider bias22,36,57. This is especially true for disorders like MDD 
where epistemic uncertainty clouds what signals are most biomedically useful. A more principled 
approach is warranted.  

 
There are also natural extensions to our summary statistics-based approaches. First, we 

could incorporate local estimates of genetic correlation in MTAG, which have been used to 
improve LifetimeMDD PRS in UKB58. Second, we could directly combine PRS for multiple traits 
using weights that optimize prediction59–61. Third, we could develop a more systematic approach 
to choose MTAG inputs, which is important because this choice heavily impacts power and 
specificity. However, this search is limited by the computational cost of performing cross-validated 
GWAS on each considered trait. Fourth, parametric models of confounding in summary statistics, 
like GWAS-by-subtraction62, could improve specificity as well as power. However, these models 
rely on choosing appropriate inputs and causal models, neither of which is straightforward for 
heterogeneous disorders. Finally, we could use GWAS on imputed phenotypes as inputs for these 
summary statistics-based approaches.   
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Phenotype integration is broadly applicable to biobank-based genetic studies, which often 
evaluate a mixture of biomarker-, nurse-, GP-, specialist-, and/or patient-defined disorder 
statuses. Further, biobanks offer diverse disorder-relevant phenotypes, such as age of onset, 
medical procedures, prescriptions, environmental risk factors, family history, and socioeconomic 
measures. We expect phenotype integration to substantially improve GWAS power and PRS 
accuracy for many complex disorders. While the degree of specificity will vary between 
applications, this can be assessed with our novel PRS Pleiotropy metric.  

 
Importantly, our work has complex implications for equity in genetic studies and clinical 

care. On the one hand, EHR-derived phenotypes have a history of exacerbating inequities that 
continues to this day63. Moreover, phenotype integration uses a reference phenome, which has 
the potential to propagate systematic biases present in biobank data. On the other hand, we found 
that phenotype integration can improve PRS portability across ancestries. Additionally, mounting 
evidence suggests that portability can be improved by homing in on causal biology using 
transcriptomics64, genomic annotations65, or fine-mapping66. Therefore, careful extensions of our 
approach, such as residualizing phenome-wide factors, have the potential to improve portability 
by eliminating confounders. Given the extreme Euro-centric biases in available genomics data, 
these and other statistical approaches to improve the utility of PRS for all people are urgently 
needed. 
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Methods  
 
Phenotypes used in phenotype imputation  
 
We considered 216 relevant phenotypes to impute LifetimeMDD in 337,127 individuals of white 
British ancestry in UKB (Supplementary Table 1). These include: a) LifetimeMDD as defined in 
Cai et al 202010; b) minimal phenotyping definitions of depression based on help-seeking, 
symptoms, self-reports, and/or electronic health records (EHR) as defined in Cai et al 202010; c) 
individual lifetime and current MDD symptoms from the Composite International Diagnostic 
Interview – Short Form (CIDI-SF)67 and Patient Health Questionnaire (PHQ9) from which we 
derived LifetimeMDD; d) psychosocial factors; e) self-reported comorbidities; f) family history of 
common diseases; g) early life factors h) socioeconomic phenotypes; i) lifestyle and environment 
phenotypes; j) social support status; and k) demographic features including age, sex, UKBiobank 
assessement centre as a proxy for geographical residence, and 20 genetic PCs. These 
phenotypes are selected based on their established relevance to MDD, and are all collected 
through either the Touchscreen questionnaire completed at the assessment centre or through the 
online mental health follow-up questionnaire (MHQ). All UKBiobank data fields, sample sizes and 
prevalence of binary outcomes are detailed in Supplementary Table 1, and we report levels of 
missingness for all inputs for multi-phenotype imputation in Extended Data Figure 1. For PRS 
pleiotropy analyses, we excluded the 20 genetic PCs, 22 assessment centers, and genotyping 
array.  
 
Phenotype imputation with SoftImpute  
 
We fit SoftImpute with the ALS method23 on the 216 phenotypes comprising the MDD-related 
phenome in UKB, using cross-validation to optimize the nuclear norm regularization parameter. 
We used our prior approach to make the cross-validation more realistic by copying real 
missingness patterns instead of completely random entries16,68, which provides far more realistic 
estimates of imputation accuracy (Extended Data Figure 1). We previously studied SoftImpute 
at a smaller scale in comprehensive simulations and several real datasets16, and we have since 
used it in several larger studies16,68,69. Overall, SoftImpute is extremely simple, robust, and 
scalable. We summarize the SoftImpute model fit by the latent factors (Figure 3C) and the 
variance they explain (Figure 3A), which are akin to the eigenvectors (or PCs) and eigenvalues 
of the phenotype covariance matrix, respectively. We also estimate the prediction strength 
(Figure 3B), which is the squared-correlation between two latent factors estimated after splitting 
the sample into two non-overlapping halves. 
 
Phenotype imputation with AutoComplete  
 
We developed a new deep-learning based method, AutoComplete, in a companion paper (An et 
al in submission). AutoComplete consists of several fully-connected layers with nonlinearities and 
learns to optimize reconstruction of realistically held-out missing entries. The model is fully 
differentiable and is fit using stochastic gradient descent. Unlike SoftImpute, Autocomplete’s 
objective function models binary phenotypes. As with SoftImpute, the hyperparameters for 
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AutoComplete were determined through cross-validation on realistically held-out missing data. In 
this paper, we focus on its application to imputing LifetimeMDD. 
 
GWAS on observed or imputed phenotypes  
 
GWAS on directly-phenotyped and imputed phenotypes in UKB was performed using imputed 
genotype data at 5,781,354 SNPs (minor allele frequency > 5%, INFO score > 0.9) using logistic 
regression and linear regression implemented in PLINK v270 for binary and quantitative traits 
respectively. We used 20 PCs computed with flashPCA71 on 337,129 White-British individuals in 
UKB and genotyping arrays as covariates for all GWAS (see Supplementary Methods for details 
in sample and genotype QC in UKB). To test for heterogeneity between genetic effects found in 
GWAS on observed LifetimeMDD and imputed measures of MDD from SoftImpute (Soft-ImpOnly) 
and AutoComplete (Auto-ImpOnly), we performed a random effect meta-analysis using 
METASOFT27 and tested for heterogeneity between effect sizes at each SNP.  
 
SNP heritability and genetic correlation 
 
To test for heritability of each phenotype and the genetic correlation between pairs of phenotypes, 
LD score regression implemented in LDSC v1.0.1126,72 was performed on the GWAS summary 
statistics using in-sample LD scores estimated in 10,000 random white British UKB individuals at 
SNPs with MAF > 5% as reference. For MTAG results, we used the effective sample size 
estimated in MTAG as sample size entry in LDSC; for all other GWAS, we use the actual sample 
size. When we estimate the liability-scale heritability, we assume the population prevalence of 
binary phenotypes equal their prevalence in UKB.  
 
In-sample PRS prediction of phenotypes in UKB with 10-fold cross validation  
 
We performed SoftImpute23 and AutoComplete imputations 10 times, each time using 90% of the 
individuals in the input phenotype matrix, built PRS from GWAS results from this with PRSice 
v273, and evaluated predictive accuracy for observed LifetimeMDD and the depression-related 
phenome (216 phenotypes, used as input in imputation) in the held-out 10%. For MTAG18, we 
performed GWAS on each set of input phenotypes (as shown in Figure 4) 10 times, each time 
using 90% of the individuals in UKB. We then ran MTAG on GWAS summary statistics in this 
90%, built PRS from the resulting MTAG summary statistics with PRSice v2, and evaluated 
predictive accuracy for observed LifetimeMDD in the held-out 10%. For all PRS predictions, we 
used 20 genomic PCs and the genotyping array used as covariates. For binary phenotypes, 
including LifetimeMDD, we evaluated accuracy using Nagelkerke’s 𝑅". For all quantitative 
phenotypes, including neuroticism, we evaluated accuracy using ordinary 𝑅".  
 
PRS prediction of phenotypes in UKB from external GWAS summary statistics  
 
We construct PRS from MDD GWAS summary statistics from PGC292, iPSYCH14, and 23andMe5, 
as detailed in Supplementary Table 4, and predicted phenotypes in UKB using PRSice v2, using 
20 genomic PCs and the genotyping array used in UKB as covariates. For each of these studies, 
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we use only SNPs with imputation INFO score > 0.9 and MAF > 5% for constructing PRS. For 
binary phenotypes, including LifetimeMDD, we evaluated accuracy using Nagelkerke’s 𝑅". For all 
quantitative phenotypes, including neuroticism, we evaluated accuracy using ordinary 𝑅".  
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Figures 
 

Figure 1. Study overview.  
(A) We impute LifetimeMDD using a partially-observed matrix of depression-relevant phenotypes 
in UK Biobank. We focus on using SoftImpute, which also produces latent phenome-wide factors. 
(B) We then perform GWAS on observed and imputed values of LifetimeMDD, as well as (C) 
downstream polygenic analyses, including in-sample and out-of-sample PRS predictions of MDD. 
We also study the genetic basis of the latent factors of the depression phenome (D), and 
residualize latent factors from shallow MDD phenotypes to remove non-specific pleiotropic effects 
(E). 
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Figure 2. Genetic architecture of observed and imputed LifetimeMDD 
Manhattan plots for GWAS on (A,C) imputed LifetimeMDD values from SoftImpute and 
AutoComplete (Soft-ImpOnly, Auto-ImpOnly, N=270K); (B,D) combined imputed and observed 
LifetimeMDD values from SoftImpute and AutoComplete (Soft-ImpAll, Auto-ImpAll, N=337K); and 
(E) observed LifetimeMDD (N=67K). Red lines show the genome-wide significance threshold of 
P < 5x10-8; (F) Observed-scale estimates of heritability and (H) genetic correlation between all 
UKB measures of MDD and external MDD studies from PGC, iPSYCH, and 23andMe. (G) 
Replication of GWAS effect sizes from Soft-ImpOnly and Auto-ImpOnly in observed LifetimeMDD 
and external MDD studies. 
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Figure 3. Characterizing top latent factors driving SoftImpute 
Statistical importance of each factor measured by (A) percentage variance explained in the 
phenotype matrix and (B) factor prediction strength. (C) Top phenotype loadings for the top 5 
Softmpute factors. (D) Estimates of heritability and (E) genetic correlations of the top 5 SoftImpute 
factors to MDD-relevant traits. (F) GWAS Manhattan plot of GPpsy conditioning on SoftImpute 
Factor 1; red line shows the genome-wide significance threshold. (G) Locus-zoom plot of the 
significant GWAS locus on gene NEGR1. 
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Figure 4. MTAG results for different choices of input phenotypes 
(A) Description of the evaluated input choices for MTAG and their resulting GWAS summaries. 
(B,C) Manhattan plots for MTAG models with fewest (MTAG.FamilyHistory) and greatest 
(MTAG.AllDep+Envs) number of GWAS hits; red line shows the genome-wide significance 
threshold. (D) SNP heritability estimates on the observed and liability scales for observed, 
imputed, and MTAG GWAS on LifetimeMDD as well as reference phenotypes. (E) Estimated 
genetic correlations for observed, imputed and MTAG analyses of LifetimeMDD and reference 
phenotypes. 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.15.503980doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.15.503980
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

20 

Figure 5. PRS performance using observed, imputed, and/or meta-analyzed MDD 
(A) PRS prediction accuracy in the training population of unrelated white British individuals in UKB 
using 10-fold cross-validation. For imputed PRS, we also cross-validate the imputation. (B) Out-
of-sample PRS prediction accuracy in four additional cohorts with European ancestries. (C) PRS 
prediction accuracy in African ancestry individuals in UKB and Han Chinese ancestry individuals 
in CONVERGE.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.15.503980doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.15.503980
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

21 

 
 
Figure 6. Phenome-wide PRS Pleiotropy quantifies non-specificity 
PRS Pleiotropy spectra across the depression-relevant phenome, defined as the ratio of PRS 
prediction accuracy for secondary traits relative to LifetimeMDD (PRS Pleiotropy := 
𝑅"secondary/𝑅"LifetimeMDD). (A) The PRS derived from GWAS on shallow MDD phenotypes (GPpsy or 
23andMe) are less specific to LifetimeMDD than the PRS derived from GWAS on LifetimeMDD. 
(B) MTAG-based PRS range from highly specific (MTAG.FamilyHistory) to less specific than 
shallow MDD phenotypes (MTAG.Envs). (C) Softimpute PRS are more specific than the shallow 
PRS, while Autocomplete PRS are similar.  
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Extended Data Figures 
 

Extended Data Figure 1: Imputation accuracy metrics across our depression-relevant UKB 
phenome. (A) Scatter plot of estimated imputation accuracy against phenotype missingness. (B) 
Scatter plot of estimated imputation accuracy using our copy-masking approach against naive 
estimates masking entries uniformly at random. (C) Distribution across phenotypes of gained 
effective sample size from phenotype imputation.   
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Extended Data Figure 2: (A) Venn diagram showing the overlap of GWAS loci identified from 
GWAS on ImpOnly and ImpAll measures of LifetimeMDD from Softimpute and Autocomplete; 
(B,C) Manhattan plots of Cochran's Q statistic P value for heterogeneity, obtained through a 
random effect meta-analysis performed with METASOFT, between genetic effects identified from 
GWAS on observed LifetimeMDD and GWAS on ImpOnly measures of LifetimeMDD from 
Softimpute or Autocomplete; red line shows the genome-wide significance threshold 
corresponding to P value 5x10-8.  
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Extended Data Figure 3: (A-D) Manhattan plots showing MTAG results for LifetimeMDD for the 
MTAG runs: MTAG.GPpsy, MTAG.Envs, MTAG.AllDep and MTAG.All, descriptions of which are 
shown in Figure 4A; red line shows the genome-wide significance threshold corresponding to P 
value 5x10-8; (E) Replication of GWAS effect sizes for LifetimeMDD for loci identified in MTAG 
runs only and those that overlap between MTAG and imputation (both Softimpute and 
Autocomplete), in observed LifetimeMDD and external MDD studies from PGC, iPSYCH, and 
23andMe. 
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Extended Data Figure 4: Excess PRS Pleiotropy of a PRS relative to the LifetimeMDD PRS. 
PRS Pleiotropy is defined as the PRS prediction ratio for a secondary trait relative to observed 
LifetimeMDD (PRS Pleiotropy := 𝑅"secondary/𝑅"LifetimeMDD), and excess pleiotropy is the increase in 
pleiotropy relative to the LifetimeMDD PRS (Excess PRS Pleiotropy := (PRS Pleiotropy - 
LifetimeMDD PRS Pleiotropy)/LifetimeMDD PRS Pleiotropy). Plots are ordered by Excess PRS 
Pleiotropy for each phenotype PRS. (A) The PRS derived from GPpsy and 23andMe are less 
specific to LifetimeMDD than the LifetimeMDD PRS, especially for shallow MDD phenotypes and 
neuroticism (B) MTAG.Envs has high Excess PRS Pleiotropy to secondary traits like college 
education, smoking, and maternal smoking, while MTAG.FamilyHistory actually reduces PRS 
Pleiotropy for these traits. (C) Both ImpOnly and ImpAll SoftImpute phenotypes show lower 
Excess PRS Pleiotropy than GPpsy, while ImpAll GWAS from Autocomplete is comparable to 
GPpsy. 
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