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Abstract

Biobanks often contain several phenotypes relevant to a given disorder, and researchers face
complex tradeoffs between shallow phenotypes (high sample size, low specificity and sensitivity)
and deep phenotypes (low sample size, high specificity and sensitivity). Here, we study an
extreme case: Major Depressive Disorder (MDD) in UK Biobank. Previous studies found that
shallow and deep MDD phenotypes have qualitatively distinct genetic architectures, but it remains
unclear which are optimal for scientific study or clinical prediction. We propose a new framework
to get the best of both worlds by integrating together information across hundreds of MDD-
relevant phenotypes. First, we use phenotype imputation to increase sample size for the deepest
available MDD phenotype, which dramatically improves GWAS power (increases #loci ~10 fold)
and PRS accuracy (increases R2 ~2 fold). Further, we show the genetic architecture of the
imputed phenotype remains specific to MDD using genetic correlation, PRS prediction in external
clinical cohorts, and a novel PRS-based pleiotropy metric. We also develop a complementary
approach to improve specificity of GWAS on shallow MDD phenotypes by adjusting for phenome-
wide PCs. Finally, we study phenotype integration at the level of GWAS summary statistics, which
can increase GWAS and PRS power but introduces non-MDD-specific signals. Our work provides
a simple and scalable recipe to improve genetic studies in large biobanks by combining the
sample size of shallow phenotypes with the sensitivity and specificity of deep phenotypes.
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Introduction

Although Major Depressive Disorder (MDD) is the most common psychiatric disorder and the
leading cause of disability worldwide, its causes are largely unknown and its treatments are
relatively ineffective. Despite the moderate familial heritability of MDD (~40%)', genome-wide
association studies (GWAS) have only recently begun to identify replicable risk loci and polygenic
risk scores (PRS)?”. These discoveries were enabled by increasing power along two primary
dimensions: depth of phenotyping and sample size®. Increasing sample size improves GWAS and
PRS power by reducing standard errors of estimated genetic effects on a given MDD
phenotype?®. Alternatively, increasing diagnostic accuracy through structured clinical interviews
prevents dilution of genetic effect sizes, thus improving GWAS power’®'° and PRS accuracy'®"".
In practice, studies have a fixed budget and must always tradeoff between increasing sample size
or phenotyping depth. The optimal choice for current and future MDD studies remains
contested'®'2'3_ Ultimately, it depends on our goals.

One important goal is statistical explanation, defined as the number of GWAS hits or the
PRS prediction accuracy. Most MDD GWAS have focused on this goal, which is best achieved
by maximizing sample size'®''. This motivates use of shallow phenotypes in large biobanks,
including self-reported depression or health records of seeking care for depression. Such studies
have amassed sample sizes of millions of individuals and have identified hundreds of risk loci, as

well as PRS with state-of-the-art prediction accuracy in European-ancestry clinical cohorts®.

A partly distinct goal is biological insight. This is more difficult to measure or even define,
but it represents one of the ultimate goals of genetics: characterizing biological mechanisms to
improve prediction and treatment for all. This goal may never be achieved by increasing sample
size with shallow phenotyping, because shallow phenotypes are confounded by genetic effects
that do not pertain to MDD biology'. In contrast, deep phenotyping in clinical cohorts (e.g., PGC?,
CONVERGE/, iPSYCH") has identified a handful of genetic loci that could generate hypotheses
on MDD-specific biology. However, at current sample sizes they simply do not provide enough
power to understand MDD biology’.

In this paper, we propose to bridge the shallow-deep gap by integrating information across
hundreds of MDD-relevant phenotypes in UK Biobank'®'® (UKB, Figure 1). We focus on using
phenotype imputation'®'” to increase the effective sample size for the deepest MDD phenotype
in UKB (LifetimeMDD)'°, which dramatically improves GWAS power and PRS accuracy over any
individual MDD phenotype'®. We extensively characterize the genetic architecture underlying
these imputed phenotypes and show they remain specific to LifetimeMDD. Further, we develop a
novel approach to partly remove non-specific signals from GWAS on shallow phenotypes akin to
latent factor corrections in eQTL studies'®??. We also investigate phenotype integration via
GWAS summary statistics using MTAG, which offers varying specificity and sensitivity depending
on input choices. Finally, we developed a novel metric to quantify the specificity of a given PRS,
which demonstrates that imputed deep phenotypes of MDD are both more specific and more
sensitive than observed shallow phenotypes.
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Results
Phenotype imputation more than doubles effective sample size for LifetimeMDD

We focus on the deepest available measure of MDD in UKB'?, LifetimeMDD, which we derive by
applying clinical diagnostic criteria in silico to MDD symptom data from the PHQ-9 questionnaire
and CIDI short form (CIDI-SF) in the online Mental Health Questionnaire. This procedure identifies
16,297 LifetimeMDD cases and 50,869 controls. Because most individuals did not complete these
questionnaires, LifetimeMDD is missing for 269,962 individuals. We also study a shallow measure
of MDD, GPpsy'?, defined by seeking help from a General Practitioner for “depression, anxiety,
tension, or nerves”. For imputation and downstream analyses, we use a broad depression-
relevant phenome with 216 phenotypes, including comorbidities, family history, and
socioeconomic, demographic, and environmental phenotypes (Supplementary Note,
Supplementary Table 1).

We first impute the depression phenome using Softimpute?® (Methods). We previously
found Softimpute to be the most scalable among several established approaches'®%. Softimpute
is a variant of principal component analysis (PCA) that accommodates missing data. It uses the
observed phenotype data to identify latent factors, and then uses these factors to impute the
missing data. As in our prior work, we tune Softimpute’s regularization parameter using
realistically held-out test data by taking unions of missingness patterns across samples'®, and
also use this approach to estimate the imputation accuracy for each phenotype (Extended Data
Figure 1)'®. Imputation accuracy varied widely across phenotypes, ranging from R?>=1% for being
a twin (1% missing) to R*=97% for neuroticism score (19% missing). For LifetimeMDD, we
estimated the phenotype imputation R? to be 40% (80% missing). Roughly speaking, this means
that Softimpute more than doubles the effective sample size of LifetimeMDD (N observed=67K,
N effective=166K).

We then applied a new deep-learning imputation method, AutoComplete, to the same
phenotype matrix (Methods, An et al in submission). AutoComplete improved estimated
imputation accuracy for most phenotypes with >10% missingness (29/42), and increased average
estimated R2 by 2.9%.

Phenotype imputation improves GWAS power for LifetimeMDD

We next assessed the impact of phenotype imputation on GWAS. We performed GWAS on
observed LifetimeMDD (N=67,164), imputed values of LifetimeMDD (ImpOnly, N=269,962), and
the concatenation of imputed and observed LifetimeMDD (ImpAll, N=337,126, Methods). GWAS
on the observed values of LifetimeMDD identified one significant locus (Figure 2E). GWAS on
the imputed values increased the number of GWAS loci to 13 and 18 for Softimpute and
AutoComplete, respectively (Figure 2A,B, Supplementary Table 2). Finally, GWAS on the
combination of both imputed and observed values further increased the number of significant loci
to 26 and 40 for Softimpute and AutoComplete, respectively (Figure 2C,D, Supplementary
Table 2).
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We investigated if the new GWAS hits from phenotype imputation were specific to MDD
biology by comparing the ImpOnly GWAS to other MDD GWAS. First, we compared the two
imputation methods. Out of 13 and 18 GWAS loci for ImpOnly from Softimpute and AutoComplete
respectively, 8 overlap (giving a total of 23, Extended Data Figure 2). Further, 9 of the remaining
15 loci had P < 10 in both ImpOnly GWAS and all 15 have P < 0.05/23. This shows our two
imputation methods capture highly overlapping genetic signals, but AutoComplete has greater
power. Next, we assessed these 8 shared hits in four non-overlapping depression cohorts
(Methods, Supplementary Note): observed LifetimeMDD in UKB; self-reported depression
diagnosis or treatment in 23andMe®; the 29 MDD cohorts of the Psychiatric Genomics
Consortium? (PGC29); and Danish registry data on MDD cases and population controls
(iPSYCH'?*). For reference, we also compared to UKB measures of neuroticism, a personality
trait that is genetically correlated but distinct from MDD?. We found that all 8 hits shared between
both ImpOnly GWAS have sign-consistent effect size estimates across all of these depression
cohorts, as well as neuroticism. Moreover, all 8 are significant for observed LifetimeMDD in UKB
at P < 0.05/23. Finally, out of the 23 SNPs significant in one ImpOnly GWAS, 18 replicate in at
least one GWAS of observed MDD at P < 0.05/23 (Extended Data Figure 2). Altogether, these
results show that the predominant loci underlying imputed LifetimeMDD are relevant to the biology
of MDD.

We then checked if the ImpOnly GWAS preserved the polygenic architecture of
LifetimeMDD in terms of heritability and genetic correlation. First, we found that the observed
scale SNP heritability (h5 from LDSC?) was lower for imputed (Soft-ImpOnly hi = 7.4%,
SE=0.6%; Auto-ImpOnly h; = 8.5%, SE=0.5%) than observed LifetimeMDD (h; = 10.1%,
SE=1.5%, Figure 2F). This suggests that imputed values are noisier than observed LifetimeMDD.
Nonetheless, the genetic correlations between imputed and observed LifetimeMDD are close to
1 (Soft-ImpOnly r, = .97, SE=.02; Auto-ImpOnly r, = .96, SE = .03), as are the correlations
between imputed values from the two imputation methods (r; = 1.00, SE = .004). Moreover, the
7y between ImpOnly phenotypes and secondary depression-related phenotypes largely mirror 7
based on observed LifetimeMDD (Figure 2G). Altogether, imputed LifetimeMDD harbors similar
genetic effects as observed LifetimeMDD, though it has additional sources of non-genetic noise.

Finally, we tested for effect size heterogeneity between the ImpOnly and observed
LifetimeMDD GWAS. We used a simple random effect meta-analysis?” (Methods), as ImpOnly
and observed LifetimeMDD GWAS use non-overlapping individuals. We find no significant
heterogeneity between ImpOnly and observed LifetimeMDD at genome-wide significance
(Extended Data Figure 2), and across the 13 and 18 GWAS hits in Soft-ImpOnly and Auto-
ImpOnly, respectively, 6 and 4 SNPs showed significant heterogeneity at P < 0.05/23. Altogether,
imputed LifetimeMDD has more non-genetic noise than observed LifetimeMDD, but has similar
genetic architecture.

Phenome-wide factors partition pleiotropic axes of depression risk

In order to understand the phenotypic correlations driving imputation, we examined the top latent
factors in Softimpute. These latent factors are essentially PCs of our depression-relevant
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phenome. We used two statistical metrics to prioritize factors for genetic study. First, we quantified
the variance explained by each factor (Methods, Figure 3A). The top handful of factors clearly
stood out from the background, but factors became comparable to background noise levels
around factor 30. Second, we quantified factor stability by calculating the R? between factors
estimated on separate halves of the data (Methods, Figure 3B). This is a variant of the prediction
strength metric for clustering?®. We found that the first 10 factors were extremely stable (min
R?~98%), with stability decaying steadily afterward (factors 11-20 have average R?~80%, and 21-
30 have average R?~60%). Overall, we conclude that the first ten or so factors are statistically
meaningful.

Conservatively, we interpret only the top five factors. We name Factor 1 Neuroticism: its
top loading is total neuroticism score, and it heavily loads on specific neuroticism items and
shallow depression phenotypes'® (Figure 3C, Supplementary Table 1). Factor 2 (Age) captures
age and related socioeconomic variables, like retirement. Factor 3 (SES/EA) reflects complex
socioeconomic status (SES) phenotypes, particularly education attainment (EA) and Townsend
deprivation index. Factor 4 (Cohabit) is another complex social dimension, loading primarily on
cohabitation phenotypes. Finally, Factor 5 (Sex/Gender) reflects sex/gender and known
psychosocial correlates such as alcohol and tobacco use. Deeper factors are shown in
Supplementary Figure 1.

We then studied the genetic basis of each factor with GWAS. Each factor had GWAS hits,
ranging from from 3 (Age) to 309 (SES/EA), with ;¢ ranging from 1.15 (Age) to 2.11 (SES/EA)
(Supplementary Figure 2). We next estimated heritability for each factor and found that they
range from hj = 1.9% (SE = 0.2%) for Age to h7 = 22.4% (SE=0.9%) for SES/EA (Figure 3D,
Supplementary Figure 1). These results are consistent with our interpretations based on the
factor loadings: Age has low hj and few GWAS hits, while Neuroticism and SES/EA have high
hZ, high Ag¢, and many more GWAS hits. Finally, we profiled the genetic correlation between
factors and various MDD phenotypes and related phenotypes (Figure 3E, Supplementary
Figure 1). We found that the r; closely mirrored the factor loadings, which are based only on
phenotypic correlations. For example, Factor 1 had ;= -0.93 (SE = 0.01) with neuroticism, and
SES/EA had 7,=0.79 (SE = 0.96) with years of education and 7,=0.75 (SE = 0.03) with income.

Given these results, we hypothesized that our top phenome-wide factors partly capture
the nonspecific pathways that contribute to shallow MDD phenotypes. To test this hypothesis, we
performed GWAS on a shallow MDD measure, GPpsy (N=332,629), conditioning on Factor 1.
This is akin to removing confounders like batch effects in eQTL studies through conditioning on
latent factors. We found that only 1 of the 25 GWAS hits for GPpsy remains after adjusting for
Factor 1 (Figure 3F). This hit overlaps the gene NEGR1 (top SNP rs1194283, OR = 1.05, SE =
0.0065, P = 6.71x10™", Figure 3G), which has been identified as an MDD risk locus in multiple
GWAS studies with varying phenotyping approaches®*%2°31 Intriguingly, this locus also has
replicated associations with body mass index and obesity in diverse populations®?-°, suggesting
it may act on MDD through a metabolic pathway that is independent of neuroticism. We also
tested adjusting for each of the other top 10 factors. Generally, these adjustments had little impact,
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and only removed one or a few GWAS hits (Supplementary Figure 3). One clear exception,
however, was adjustment for the SES/EA factor, which increased the number of GPpsy GWAS
hits from 25 to 35. While this may seem surprising, false positives are expected after adjusting for

a heritable latent factor??3637,

MTAG is sensitive to inputs but improves GWAS power

As an alternative to phenotype imputation, we next evaluated phenotype integration at the
summary statistic level via MTAG (multi-trait analysis of GWAS'), an inverse-covariance-
weighted meta-analysis for GWAS on multiple traits. We did not use all 216 phenotypes in MTAG
for two reasons. First, MTAG requires running GWAS on each input phenotype, which is
computationally intractable for hundreds of phenotypes. Second, MTAG accrues false positives
as the number of traits grows'®. Instead, we performed MTAG on 6 different sets of input
phenotypes, each of which produces an integrated LifetimeMDD GWAS (Figure 4A, Extended
Data Figure 3, Supplementary Table 3, Supplementary Notes).

All MTAG input choices increased the number of GWAS hits from LifetimeMDD. On the
low end, MTAG using family history measures of depression yielded 5 GWAS hits
(MTAG.FamilyHistory, A;-=1.20, Figure 4B). On the high end, MTAG using shallow MDD
phenotypes and environmental factors (such as recent stressful life events, lifetime traumatic
experiences, and townsend deprivation index) yielded 33 GWAS hits (MTAG.AIll, A;-=1.45,
Figure 4C). Of the total 51 hits across all MTAG runs, 34 overlap hits from the imputed GWAS
with Softimpute or AutoComplete (Extended Data Figure 3). Notably, we found that including
more input phenotypes in MTAG always increased the number of GWAS hits. This is due to a
combination of increased power to detect pleiotropic signals and increased false positive
inflation'®. Consistent with the latter contribution, MTAG GWAS yielded substantially inflated
heritability estimates (on both the liability and observed scales), which increased with more input
phenotypes. For example, MTAG.All gave h; = 45.2% (SE = 3.0%), compared to hZ = 10.1% (SE
= 1.5%) for observed LifetimeMDD (Figure 4D).

We next examined genetic correlations between MTAG and other MDD GWAS (Figure
4E). First, MTAG.AIl, which included the most input phenotypes, clustered together with the
imputed GWAS, which leverage all 216 phenotypes. Second, MTAG using shallow MDD
phenotypes as input (MTAG.AlIDep and MTAG.GPpsy) clustered with GWAS on GPpsy. Third,
neuroticism is significantly more genetically correlated with MTAG.Envs (r; = 0.84, SE = 0.01)
than LifetimeMDD (r; = 0.66, SE = 0.06). Overall, the genetic correlations between MTAG and
LifetimeMDD were high, with lowest value given by MTAG.Envs (1; = 0.90, SE = 0.03). Altogether,
MTAG outputs resemble the chosen input phenotypes, and the choice of inputs significantly
impacts power and specificity.

Phenotype integration improves PRS accuracy for LifetimeMDD

We then assessed within-sample prediction accuracy of polygenic risk scores (PRS) based on
integrated MDD phenotypes. We used 10-fold cross-validation to estimate the Nagelkerke’'s R?
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prediction accuracy for LifetimeMDD in white British individuals in UKB. We jointly cross-validated
the phenotype imputation and PRS construction (Methods). For MTAG, we jointly cross-validated
the GWAS on secondary input phenotypes. To put these results in context, we compared to PRS
built from observed LifetimeMDD and GPpsy in UKB'®; MDD defined by structured interviews in
PGC29?; affective disorder defined by Danish health registriesin iPSYCH'*; and self-reported
depression in 23andMe®.

We found imputing LifetimeMDD doubled PRS prediction accuracy over observed
LifetimeMDD (Figure 5A, LifetimeMDD R? = 1.0%, 95% Cl =[0.6%,1.4%], Soft-ImpAll R? = 2.1%,
95% Cl = [1.3%, 2.9%], Auto-ImpAll R? = 2.2%, 95%CI=[1.4%,3.0%]). Consistent with prior
reports'®'", we found that the GPpsy PRS predicts LifetimeMDD better than the LifetimeMDD
PRS itself (R*=1.6%, 95% Cl = [0.6%, 2.4%)]), which is because GPpsy has roughly four times
the sample size. Nonetheless, both Softimpute and AutoComplete PRS outperformed the GPpsy
PRS, demonstrating that integrating shallow and deep phenotypes can improve PRS over either
alone. Finally, we found that the imputed LifetimeMDD PRS substantially outperform the PRS
from iPSYCH (R? = 0.6%, 95% CI = [0.2%,0.9%]) and 23andMe (R? = 1.3%, 95% CI =
[0.7%,1.9%]), even though iPSYCH used deeper phenotypes and 23andMe had a large sample
size.

The performance of MTAG PRS depended on the input phenotypes, mirroring the MTAG
GWAS results (Figure 4, Extended Data Figure 3). For instance, MTAG.FamilyHistory does not
substantially improve GWAS power, and its PRS underperforms imputed PRS (R? = 1.5%, 95%
Cl =[0.6%,2.5%], Figure 5A). On the other hand, MTAG.AIl significantly improves GWAS power
and yields PRS that outperforms the imputed PRS by about 20% (R? = 2.6%, 95% CI
=[1.3%,3.9%], Figure 5A). In particular, this demonstrates that MTAG with large numbers of
inputs, which is non-standard and likely yields miscalibrated GWAS results, can nonetheless
significantly improve PRS.

Phenotype integration improves PRS portability

Having shown that phenotype integration improves PRS predictions in held-out white British
individuals in UKB, we next asked if it also improves PRS predictions in different cohorts,
diagnostic systems, and/or populations. If phenotype integration captures core MDD biology, it
will improve PRS predictions regardless of the context; conversely, if phenotype integration only
reflects dataset-specific patterns, it will fail this test of portability. Measuring portability is also
essential for assessing the clinical potential of PRS based on phenotype integration.

First, we tested PRS accuracy in non-British individuals with European ancestry in UKB
(UKB.EUR, N=10,166). These individuals are measured on the same LifetimeMDD phenotype as
our sample of white British UKB individuals and also have European ancestry, hence represent
the most similar cohort (Supplementary Note, Supplementary Figure 4). Though the small
sample size limits definitive conclusions, we observe a nearly identical pattern amongst PRS
methods as in our training sample: imputation and MTAG almost always improve over both
LifetimeMDD and GPpsy (Figure 5B). We next assessed portability to two large European-
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ancestry cohorts from iPSYCH (2012 cohort [N=42,250] and 2015i cohort [N=23,351],
Supplementary Note). These non-overlapping samples are drawn from a nation-wide Danish
birth cohort with diagnoses obtained from national health registers®**. We again found
qualitatively identical results, with imputation outperforming both LifetimeMDD and GPpsy, and
the best MTAG setting outperforming imputation (Figure 5B). Finally, we tested portability to
European-ancestry individuals in the ATLAS dataset based on MDD as defined in the UCLA EHR
data®®“ (ATLAS.EUR, N=14,388, Supplementary Note, Supplementary Figure 5,
Supplementary Tables 4-6). Again, small sample size prevents definitive comparisons, but
phenotype imputation and the best MTAG setting improve estimated accuracy (Figure 5B).

We next tested these PRS in individuals with non-European genetic ancestries, including
African ancestry individuals® in UKB with observed LifetimeMDD status (UKB.AFR, N=687), as
well as Han Chinese ancestry individuals in the CONVERGE cohort’*' (N=10,502,
Supplementary Note) who were assessed for severe, recurrent MDD (Figure 5C,
Supplementary Note, Supplementary Table 4). Consistent with previous studies*?™**, we find
that the PRS we derived from GWAS on European-ancestry cohorts generally had poorer
portability to non-European cohorts. Moreover, the strikingly consistent pattern of relative PRS
accuracies observed in external European-ancestry cohorts no longer holds so clearly. In
particular, it is surprising that the shallow PRS (using GPpsy) performs bestin CONVERGE, which
uses the deepest phenotyping of cohorts we study. Nonetheless, the best MTAG setting is always
near-optimal, and PRS based on imputed LifetimeMDD always outperform PRS based on
observed LifetimeMDD. Finally, we also for PRS prediction accuracy in UKB individuals with Asian
ancestry (UKB.ASN, N=334) as well as ATLAS individuals who self-identify as Latino
(ATLAS.LAT, N=2,454), Black (ATLAS.AFR, N=1,158) or Asian (ATLAS.ASN, N=1,996).
However, power was too low in these small cohorts for meaningful interpretation (Supplementary
Figure 6).

A new metric contrasts specificity of PRS from deep, shallow, and integrated phenotypes

While phenotype integration improves PRS prediction in UKB and in external cohorts, this may
come at the cost of reduced specificity to MDD. This is because integration explicitly borrows
information from secondary phenotypes, which could introduce genetic signals that are irrelevant
to MDD. To quantify this spillover of non-specific effects into an MDD PRS, we compare prediction
accuracy for LifetimeMDD to prediction accuracy for secondary phenotypes. We call this metric
of specificity PRS Pleiotropy (R?secondary/R?Litetimempn). Because core MDD biology is likely partly
pleiotropic, its PRS Pleiotropy should be nonzero for many secondary phenotypes. We further
expect that shallow MDD phenotypes, such as GPpsy, would generally have higher PRS
Pleiotropy than LifetimeMDD'™. Our main question, however, is whether phenotype integration
suffers worse PRS Pleiotropy than shallow MDD phenotypes.

For all PRS based on observed and integrated MDD, we calculated PRS Pleiotropy for
172 secondary phenotypes used in imputation. We then limited our investigation to the 62
secondary phenotypes that are significantly predicted by any examined PRS (P<0.05/172,
Methods). Visualizing PRS Pleiotropy for observed LifetimeMDD across this depression
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phenome shows a spectrum of highly-linked traits, including shallow MDD phenotypes like GPpsy
and genetically correlated traits like neuroticism, that quickly fades across successive phenotypes
(Figure 6A). By comparison, GPpsy broadly has higher PRS Pleiotropy across secondary
phenotypes, indicating GPpsy captures less-specific biology than LifetimeMDD, as expected. We
also found that the 23andMe GWAS had similar PRS pleiotropy to GPpsy, consistent with the fact
that both measure MDD by self-reported depression.

We next evaluated PRS Pleiotropy for MTAG and found that specificity depends highly on
input phenotypes (Figure 6B). First, MTAG.Envs has far higher PRS Pleiotropy across than
GPpsy, showing its improved prediction power over GPpsy comes at a cost in specificity. On the
other hand, MTAG.AIl is similar to GPpsy in specificity and almost doubles PRS prediction
accuracy for LifetimeMDD, hence MTAG.AIl is clearly superior to GPpsy. Finally,
MTAG.FamilyHistory has the opposite properties: while it only modestly improves PRS prediction
accuracy over observed LifetimeMDD, this benefit comes without loss of specificity. We then
evaluated PRS Pleiotropy for imputed phenotypes (Figure 6C). The Softimpute ImpAll and
ImpOnly PRS are both more specific to LifetimeMDD than the GPpsy PRS, which is remarkable
given that imputed values are constructed from more than 200 phenotypes, including GPpsy. The
AutoComplete ImpOnly PRS was less specific than GPpsy, on the other hand, though the ImpAll
PRS was comparabile.

Finally, we asked which secondary phenotypes had non-specific effects in excess of
pleiotropy expected from core MDD biology. We define Excess PRS Pleiotropy as PRS Pleiotropy
minus the PRS Pleiotropy of observed LifetimeMDD, which represents our best proxy for core
MDD biology™. As expected, self-reported depression (GPpsy and 23andMe) had Excess
Pleiotropy for most secondary traits, especially shallow MDD measures (Extended Data Figure
4A). Likewise, MTAG.Envs had substantial Excess PRS Pleiotropy, especially for socioeconomic
measures like education years (Extended Data Figure 4B). Notably, MTAG.FamilyHistory had
far less Excess PRS Pleiotropy than other MTAG settings or GPpsy, and in particular actually has
less pleiotropy for the socioeconomic measures driving Excess PRS Pleiotropy for MTAG.Envs.
Finally, Softimp-All had lower Excess PRS Pleiotropy than GPPsy (41/62 phenotypes); however,
Autolmp-All had higher Excess PRS Pleiotropy (Extended Data Figure 4C). Overall, MTAG
choices can outperform imputation in PRS sensitivity or specificity, but imputation provides a
simple, scalable, and robust approach that simultaneously achieves near-optimal power and
specificity.

Discussion

In this paper we address the power-specificity tradeoff between deep and shallow MDD
phenotypes by integrating them together. We show that the integrated MDD phenotypes greatly
improve GWAS power and PRS accuracy while, crucially, preserving the genetic architecture of
MDD. We propose a novel metric to assess the disorder-specificity of a PRS that is widely
applicable to biobank-based GWAS. This metric characterizes a power-specificity tradeoff for
MTAG, where adding more phenotypes generally increases power but sacrifices specificity.
Imputing LifetimeMDD with Softimpute, on the other hand, improves both power and specificity

10


https://doi.org/10.1101/2022.08.15.503980
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.15.503980; this version posted August 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

over shallow MDD phenotypes. Overall, our results demonstrate that phenotype integration
outperforms either deep or shallow phenotypes alone, and that phenotype imputation is a practical
way to improve biobank-based GWAS.

Our study has implications for improving disorder specificity in future MDD studies. We
have worked on the deepest MDD phenotype in UKB, LifetimeMDD, which is derived by applying
DSM-5 criteria in silico to self-rated MDD symptoms. Though it is shallow compared to a clinical
diagnosis based on a structured in-person interview, especially due to self-report biases*,
LifetimeMDD lies on essentially the same genetic liability continuum as gold-standard MDD™. In
particular, genetic effects on LifetimeMDD are likely to represent MDD-specific biology, hence
they provide a reliable benchmark when interrogating the specificity of genetic effects on
integrated phenotypes. More broadly, we acknowledge that the DSM-5 criteria for MDD
themselves have significant shortcomings in reliability*>-'. Nonetheless, improving the MDD
diagnostic criteria may only be achievable through epistemic iterations*’, a series of efforts to
characterize specific genetic signals for the deepest available MDD definition and, in turn, refine
our definition of MDD. Our efforts to improve GWAS power and specificity in noisy biobanks
advances this process.

Our implementation of phenotype integration uses shallow MDD phenotypes to improve
power for LifetimeMDD, and as such its specificity is limited by the specificity of LifetimeMDD.
Future statistical methods could go further and actually improve the specificity of existing
phenotypes. For example, we could incorporate family history and/or genetic data to home in on
more genetically-specific MDD phenotypes. We have taken a complementary step in this direction
by residualizing latent factors from Softimpute, which revealed a specific locus from a shallow
phenotype. This approach is akin to latent factor correction in genomic studies®2°2->° and it could
be adapted to AutoComplete using, for example, Integrated Gradients®®. However, it is
challenging to remove non-specific signals without removing specific signals or, worse,
introducing artificial signals due to collider bias?**%5"_ This is especially true for disorders like MDD
where epistemic uncertainty clouds what signals are most biomedically useful. A more principled
approach is warranted.

There are also natural extensions to our summary statistics-based approaches. First, we
could incorporate local estimates of genetic correlation in MTAG, which have been used to
improve LifetimeMDD PRS in UKB®8. Second, we could directly combine PRS for multiple traits
using weights that optimize prediction®*-*". Third, we could develop a more systematic approach
to choose MTAG inputs, which is important because this choice heavily impacts power and
specificity. However, this search is limited by the computational cost of performing cross-validated
GWAS on each considered trait. Fourth, parametric models of confounding in summary statistics,
like GWAS-by-subtraction®®, could improve specificity as well as power. However, these models
rely on choosing appropriate inputs and causal models, neither of which is straightforward for
heterogeneous disorders. Finally, we could use GWAS on imputed phenotypes as inputs for these
summary statistics-based approaches.
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Phenotype integration is broadly applicable to biobank-based genetic studies, which often
evaluate a mixture of biomarker-, nurse-, GP-, specialist-, and/or patient-defined disorder
statuses. Further, biobanks offer diverse disorder-relevant phenotypes, such as age of onset,
medical procedures, prescriptions, environmental risk factors, family history, and socioeconomic
measures. We expect phenotype integration to substantially improve GWAS power and PRS
accuracy for many complex disorders. While the degree of specificity will vary between
applications, this can be assessed with our novel PRS Pleiotropy metric.

Importantly, our work has complex implications for equity in genetic studies and clinical
care. On the one hand, EHR-derived phenotypes have a history of exacerbating inequities that
continues to this day®®. Moreover, phenotype integration uses a reference phenome, which has
the potential to propagate systematic biases present in biobank data. On the other hand, we found
that phenotype integration can improve PRS portability across ancestries. Additionally, mounting
evidence suggests that portability can be improved by homing in on causal biology using
transcriptomics®, genomic annotations®®, or fine-mapping®. Therefore, careful extensions of our
approach, such as residualizing phenome-wide factors, have the potential to improve portability
by eliminating confounders. Given the extreme Euro-centric biases in available genomics data,
these and other statistical approaches to improve the utility of PRS for all people are urgently
needed.
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Methods
Phenotypes used in phenotype imputation

We considered 216 relevant phenotypes to impute LifetimeMDD in 337,127 individuals of white
British ancestry in UKB (Supplementary Table 1). These include: a) LifetimeMDD as defined in
Cai et al 2020"; b) minimal phenotyping definitions of depression based on help-seeking,
symptoms, self-reports, and/or electronic health records (EHR) as defined in Cai et al 2020'°; ¢)
individual lifetime and current MDD symptoms from the Composite International Diagnostic
Interview — Short Form (CIDI-SF)*” and Patient Health Questionnaire (PHQ9) from which we
derived LifetimeMDD; d) psychosocial factors; e) self-reported comorbidities; f) family history of
common diseases; g) early life factors h) socioeconomic phenotypes; i) lifestyle and environment
phenotypes; j) social support status; and k) demographic features including age, sex, UKBiobank
assessement centre as a proxy for geographical residence, and 20 genetic PCs. These
phenotypes are selected based on their established relevance to MDD, and are all collected
through either the Touchscreen questionnaire completed at the assessment centre or through the
online mental health follow-up questionnaire (MHQ). All UKBiobank data fields, sample sizes and
prevalence of binary outcomes are detailed in Supplementary Table 1, and we report levels of
missingness for all inputs for multi-phenotype imputation in Extended Data Figure 1. For PRS
pleiotropy analyses, we excluded the 20 genetic PCs, 22 assessment centers, and genotyping
array.

Phenotype imputation with Softimpute

We fit Softimpute with the ALS method?® on the 216 phenotypes comprising the MDD-related
phenome in UKB, using cross-validation to optimize the nuclear norm regularization parameter.
We used our prior approach to make the cross-validation more realistic by copying real
missingness patterns instead of completely random entries'®®, which provides far more realistic
estimates of imputation accuracy (Extended Data Figure 1). We previously studied Softimpute
at a smaller scale in comprehensive simulations and several real datasets'®, and we have since
used it in several larger studies'®®®%  Overall, Softimpute is extremely simple, robust, and
scalable. We summarize the Softimpute model fit by the latent factors (Figure 3C) and the
variance they explain (Figure 3A), which are akin to the eigenvectors (or PCs) and eigenvalues
of the phenotype covariance matrix, respectively. We also estimate the prediction strength
(Figure 3B), which is the squared-correlation between two latent factors estimated after splitting
the sample into two non-overlapping halves.

Phenotype imputation with AutoComplete

We developed a new deep-learning based method, AutoComplete, in a companion paper (An et
al in submission). AutoComplete consists of several fully-connected layers with nonlinearities and
learns to optimize reconstruction of realistically held-out missing entries. The model is fully
differentiable and is fit using stochastic gradient descent. Unlike Softimpute, Autocomplete’s
objective function models binary phenotypes. As with Softimpute, the hyperparameters for
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AutoComplete were determined through cross-validation on realistically held-out missing data. In
this paper, we focus on its application to imputing LifetimeMDD.

GWAS on observed or imputed phenotypes

GWAS on directly-phenotyped and imputed phenotypes in UKB was performed using imputed
genotype data at 5,781,354 SNPs (minor allele frequency > 5%, INFO score > 0.9) using logistic
regression and linear regression implemented in PLINK v2'° for binary and quantitative traits
respectively. We used 20 PCs computed with flashPCA’" on 337,129 White-British individuals in
UKB and genotyping arrays as covariates for all GWAS (see Supplementary Methods for details
in sample and genotype QC in UKB). To test for heterogeneity between genetic effects found in
GWAS on observed LifetimeMDD and imputed measures of MDD from Softimpute (Soft-ImpOnly)
and AutoComplete (Auto-ImpOnly), we performed a random effect meta-analysis using
METASOFT? and tested for heterogeneity between effect sizes at each SNP.

SNP heritability and genetic correlation

To test for heritability of each phenotype and the genetic correlation between pairs of phenotypes,
LD score regression implemented in LDSC v1.0.11%¢72 was performed on the GWAS summary
statistics using in-sample LD scores estimated in 10,000 random white British UKB individuals at
SNPs with MAF > 5% as reference. For MTAG results, we used the effective sample size
estimated in MTAG as sample size entry in LDSC; for all other GWAS, we use the actual sample
size. When we estimate the liability-scale heritability, we assume the population prevalence of
binary phenotypes equal their prevalence in UKB.

In-sample PRS prediction of phenotypes in UKB with 10-fold cross validation

We performed Softimpute® and AutoComplete imputations 10 times, each time using 90% of the
individuals in the input phenotype matrix, built PRS from GWAS results from this with PRSice
v273, and evaluated predictive accuracy for observed LifetimeMDD and the depression-related
phenome (216 phenotypes, used as input in imputation) in the held-out 10%. For MTAG'®, we
performed GWAS on each set of input phenotypes (as shown in Figure 4) 10 times, each time
using 90% of the individuals in UKB. We then ran MTAG on GWAS summary statistics in this
90%, built PRS from the resulting MTAG summary statistics with PRSice v2, and evaluated
predictive accuracy for observed LifetimeMDD in the held-out 10%. For all PRS predictions, we
used 20 genomic PCs and the genotyping array used as covariates. For binary phenotypes,
including LifetimeMDD, we evaluated accuracy using Nagelkerke’s R%. For all quantitative
phenotypes, including neuroticism, we evaluated accuracy using ordinary R2.

PRS prediction of phenotypes in UKB from external GWAS summary statistics
We construct PRS from MDD GWAS summary statistics from PGC29?, iPSYCH", and 23andMe®,

as detailed in Supplementary Table 4, and predicted phenotypes in UKB using PRSice v2, using
20 genomic PCs and the genotyping array used in UKB as covariates. For each of these studies,
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we use only SNPs with imputation INFO score > 0.9 and MAF > 5% for constructing PRS. For
binary phenotypes, including LifetimeMDD, we evaluated accuracy using Nagelkerke’s R?. For all
quantitative phenotypes, including neuroticism, we evaluated accuracy using ordinary R?.

15


https://doi.org/10.1101/2022.08.15.503980
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.15.503980; this version posted August 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figures
Lifetime Mental health
MDD measures A. Imputation of LifetimeMDD using Softimpute
E —
)
£~
o g
§5 RN |
=} -
O c -— +
£ 0
o5 Weights(V")
2 ©
&
a
a
= | -
Shallow Socio- Factors (U) Noise
MDD economic
status
phenotypes . C. Assessing the genetics of imputed LifetimeMDD
Higher power
Imputed than observed ——% SNP heritability (h2app)
o s SNP
LifetimeMDD LifetimeMDD
. Genetic correaltion with observed
e — LifetimeMDD, other measures of
B. GWAS on T MDD, and other phenotypes (rG)
imputed S
LifetimeMDD © ——— Polygenic risk score (PRS)
2 prediction of MDD within and
across ancestry
> Quantification of the power-depth
trade-off using novel specificity metrics
Factors (U) Shallow MDD 'GWAS hits with
that capture Phenotype higher specificity to
pleiotropic axes D. Identify pleiotropic axes GPpsy LifetimeMDD
EEE—

E. Residualizing
relevant factors
from shallow
MDD phenotype
GPpsy

Factor loadings

<] SNP heritability (h2gpp) -

—~

o

=

=]

=4
=)

o

'

Genetic correlation with
other phenotypes (rG)

CITTTTTTTTT]

Factor1

Figure 1. Study overview.

(A) We impute LifetimeMDD using a partially-observed matrix of depression-relevant phenotypes
in UK Biobank. We focus on using Softimpute, which also produces latent phenome-wide factors.
(B) We then perform GWAS on observed and imputed values of LifetimeMDD, as well as (C)
downstream polygenic analyses, including in-sample and out-of-sample PRS predictions of MDD.
We also study the genetic basis of the latent factors of the depression phenome (D), and
residualize latent factors from shallow MDD phenotypes to remove non-specific pleiotropic effects

(E).
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Figure 2. Genetic architecture of observed and imputed LifetimeMDD

Manhattan plots for GWAS on (A,C) imputed LifetimeMDD values from Softimpute and
AutoComplete (Soft-ImpOnly, Auto-ImpOnly, N=270K); (B,D) combined imputed and observed
LifetimeMDD values from Softimpute and AutoComplete (Soft-ImpAll, Auto-ImpAll, N=337K); and
(E) observed LifetimeMDD (N=67K). Red lines show the genome-wide significance threshold of
P < 5x10-8; (F) Observed-scale estimates of heritability and (H) genetic correlation between all
UKB measures of MDD and external MDD studies from PGC, iPSYCH, and 23andMe. (G)
Replication of GWAS effect sizes from Soft-ImpOnly and Auto-ImpOnly in observed LifetimeMDD
and external MDD studies.
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factors to MDD-relevant traits. (F) GWAS Manhattan plot of GPpsy conditioning on Softimpute

Factor 1; red line shows the genome-wide significance threshold. (G) Locus-zoom plot of the

significant GWAS locus on gene NEGR1.
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Figure 4. MTAG results for different choices of input phenotypes

(A) Description of the evaluated input choices for MTAG and their resulting GWAS summaries.
(B,C) Manhattan plots for MTAG models with fewest (MTAG.FamilyHistory) and greatest
(MTAG.AIlIDep+Envs) number of GWAS hits; red line shows the genome-wide significance
threshold. (D) SNP heritability estimates on the observed and liability scales for observed,
imputed, and MTAG GWAS on LifetimeMDD as well as reference phenotypes. (E) Estimated
genetic correlations for observed, imputed and MTAG analyses of LifetimeMDD and reference

phenotypes.
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Figure 5. PRS performance using observed, imputed, and/or meta-analyzed MDD

(A) PRS prediction accuracy in the training population of unrelated white British individuals in UKB
using 10-fold cross-validation. For imputed PRS, we also cross-validate the imputation. (B) Out-
of-sample PRS prediction accuracy in four additional cohorts with European ancestries. (C) PRS
prediction accuracy in African ancestry individuals in UKB and Han Chinese ancestry individuals
in CONVERGE.
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Figure 6. Phenome-wide PRS Pleiotropy quantifies non-specificity

PRS Pleiotropy spectra across the depression-relevant phenome, defined as the ratio of PRS
prediction accuracy for secondary traits relative to LifetimeMDD (PRS Pleiotropy :=
RZsecondary/ R? Liretimempn)- (A) The PRS derived from GWAS on shallow MDD phenotypes (GPpsy or
23andMe) are less specific to LifetimeMDD than the PRS derived from GWAS on LifetimeMDD.
(B) MTAG-based PRS range from highly specific (MTAG.FamilyHistory) to less specific than
shallow MDD phenotypes (MTAG.Envs). (C) Softimpute PRS are more specific than the shallow
PRS, while Autocomplete PRS are similar.
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Extended Data Figure 1: Imputation accuracy metrics across our depression-relevant UKB
phenome. (A) Scatter plot of estimated imputation accuracy against phenotype missingness. (B)
Scatter plot of estimated imputation accuracy using our copy-masking approach against naive
estimates masking entries uniformly at random. (C) Distribution across phenotypes of gained
effective sample size from phenotype imputation.
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Extended Data Figure 2: (A) Venn diagram showing the overlap of GWAS loci identified from
GWAS on ImpOnly and ImpAll measures of LifetimeMDD from Softimpute and Autocomplete;
(B,C) Manhattan plots of Cochran's Q statistic P value for heterogeneity, obtained through a
random effect meta-analysis performed with METASOFT, between genetic effects identified from
GWAS on observed LifetimeMDD and GWAS on ImpOnly measures of LifetimeMDD from
Softimpute or Autocomplete; red line shows the genome-wide significance threshold
corresponding to P value 5x10%®,

23


https://doi.org/10.1101/2022.08.15.503980
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.15.503980; this version posted August 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

. Soft Auto Lifetime o
©_ MTAG.GPpsy (N hits = 19) MTAGAI| | 1meBniy| | imponly| | MDD PGC29 | | iPSYCH | |23andMe | | Neuro
M rs66511648 | —— | = —
156565535 | —— L — , —
rs6559402 —— — -
154841485 e~ He- -
154744240 | —— ro | -
rsgiggg?gi |- Mt | -
rs. Ead o
1534020413 '~ e — |3
152815753 | - | - Lo 2
152696626 | —— [ e )
15263575 - -
TN e vy 0o >~ @o 2 o O 2I200EN 2006753 Ire- = <
1
e 15236346 — —_

152222765 ! | o
rs17562388 | 1 ——
151359463 I 1=
rs11123030 L~
159529055 T

rs7954112
rs7866090
rs7537413
rs7528791
rs7502539
rs73047041
rs6991878
rs66975207
rs6431691

Chromosome 161997596

C o rs597462

& rs4632195

e MTAG.AIlIDep (N hits = 22)} . rs4534613

| rs3807866

3 1$34729439
0o [ 1s34721637 g
2 . 153132610 g
= | i [l il Vo 1530266 3

0 rs240764
N . rs2093623

rs200977
rs1800628
rs1452787

H

!

HE 1
"'.h 2

pit I—i—*w— A TR R FrRTirm
AT AL

R A R A A T T

fr 31 rl-r -I ]- H_l_ tri- -‘i-l-t-“ T rl-*- Tt ifd-|11 st Lr 3
N A A Pt TR

A T A R AAR L TR T

i*u*H***q*m*n,,n“mum* iyt

=== =cc=c===

;++|im**+”+++{H,+*+*+|+*m++

o rs143864773
1s13197176 !
Chromosome 1s12967855 [
D rs12889665 | -
©_ MTAG.All i 1512624433 t -
its = 151235162 — o
(N'hits = 33) r$12057031 - |
° rs11599236 Lo e || 1=
Qe rs10896633 e 1= 1= | -
o : 9:140251458_G_A o N N N ——
ONg Ov—N(‘)g TN O Wwo v owo o NONT® © N ¢
S © O 600000000 90w ©0Qo v o o S58000 © © ©
wn o o o ococooo o000 ooo ?OOO ?OOOOOOO
BETA
o . .
- ~ P < © © ~ ®©® ® © — N M <O~ OHON Category ® MTAG © CIDI-based e ShallowPhenotyping
T T T TreerTeran @ Imputed ® EHR-based ® NotMDD
Chromosome

Significant oNo e Yes

Extended Data Figure 3: (A-D) Manhattan plots showing MTAG results for LifetimeMDD for the
MTAG runs: MTAG.GPpsy, MTAG.Envs, MTAG.AlIDep and MTAG.AIl, descriptions of which are
shown in Figure 4A; red line shows the genome-wide significance threshold corresponding to P
value 5x10°%; (E) Replication of GWAS effect sizes for LifetimeMDD for loci identified in MTAG
runs only and those that overlap between MTAG and imputation (both Softimpute and
Autocomplete), in observed LifetimeMDD and external MDD studies from PGC, iPSYCH, and
23andMe.
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Extended Data Figure 4: Excess PRS Pleiotropy of a PRS relative to the LifetimeMDD PRS.
PRS Pleiotropy is defined as the PRS prediction ratio for a secondary trait relative to observed
LifetimeMDD (PRS Pleiotropy := R?secondary/R%Litetmemop), @and excess pleiotropy is the increase in
pleiotropy relative to the LifetimeMDD PRS (Excess PRS Pleiotropy := (PRS Pleiotropy -
LifetimeMDD PRS Pleiotropy)/LifetimeMDD PRS Pleiotropy). Plots are ordered by Excess PRS
Pleiotropy for each phenotype PRS. (A) The PRS derived from GPpsy and 23andMe are less
specific to LifetimeMDD than the LifetimeMDD PRS, especially for shallow MDD phenotypes and
neuroticism (B) MTAG.Envs has high Excess PRS Pleiotropy to secondary traits like college
education, smoking, and maternal smoking, while MTAG.FamilyHistory actually reduces PRS
Pleiotropy for these traits. (C) Both ImpOnly and ImpAll Softimpute phenotypes show lower
Excess PRS Pleiotropy than GPpsy, while ImpAll GWAS from Autocomplete is comparable to
GPpsy.
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