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Abstract

The exploration of single-cell 3D genome maps reveals that chromatin domains are
indeed physical structures presenting in single cells and domain boundaries vary from
cell to cell. However, exhaustive analysis of regulatory factor binding or elements for
preference of the formation of chromatin domains in single cells has not yet emerged.
To this end, we first develop a hierarchical chromatin domain structure identification
algorithm (named as HiCS) from individual single-cell Hi-C maps, with superior
performance in both accuracy and efficiency. The results suggest that in addition to the
known CTCF-cohesin complex, Polycomb, TrxG, pluripotent protein families and
other multiple factors also contribute to shaping chromatin domain boundaries in single
embryonic stem cells. Different cooperation patterns of regulatory factors decipher the
preference of genomic position categories forming boundaries. And the most extensive
six types of retrotransposons differentially distributed in these genomic position
categories with preferential localization.
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Introduction

Genome across a wide range of eukaryotic organisms is efficiently packaged and
organized into hierarchical chromatin architecture via ubiquitous architectural features,
which is critical to gene regulation and dynamical changes in development and disease
[1-3]. These basic features consist of chromatin fibers, which fold into chromatin loops,
such as enhancer-promoter interactions and architectural loops mediated by CCCTC-
binding factor (CTCF) [4]. These fibers further fold into chromatin domains, referred
to as topologically associating domains (TADs) or sub-TADs, which are associated
with each other to generate chromosomal compartments. Each chromosome occupies a
distinct volume or chromosome territory within the nucleus [4-6]. Genome architecture
is an integral part of the chromatin landscape that transcription factors (TFs) must
navigate to exert their regulatory roles [7]. Although most loci and chromosomes are
characterized by a high degree of order and non-randomness, the precise functional
roles and formation mechanism of these features remains obscure [8].

Some TFs, cofactors, and histone modifications that correlate with the chromatin
structures have been identified to study features of chromatin organization [9-11].
Particularly, TAD boundaries are enriched with multiple factors including CTCF,
cohesin, H3K4me3, H3K36me3, transcription start sites, housekeeping genes, etc,
suggesting that CTCF binding, high levels of transcription activity, multiple histone
modifications, and other regulatory factors may contribute to the formation of
chromatin domains in mammals [8]. Although TADs and their associated regulatory
factors have been widely identified in multiple species and are highly conserved and
stable across different cell types [6, 12], single-cell 3D genome analysis indicated that
they display substantial cell-to-cell variation [13, 14]. Therefore, the bulk analysis only
reflects properties of ensemble average structures from millions of cells, which may
mask chromatin features appearing in a few cells or a single cell and limit our
understanding of chromatin structures.

A recent study reveals that domain structures often adopt globular conformation
with strongly physical segregation of neighboring domains, and domain boundaries are
preferentially located at CTCF- and cohesin-binding sites with a super-resolution
chromatin tracing method [13]. More surprisingly, single-cell domain structures persist
even after cohesin degradation [13]. These results suggest other TFs or epigenetic
factors may contribute to the formation of chromatin domains. Currently, mouse
embryonic stem cells (MESCs) have been served as a specific model cell system to
elucidate the mechanisms of 3D genome organization and explore the relationship
between chromatin domains and gene regulation. Hundreds of TFs and epigenetic
modification profiles have been identified in mESCs [9-11]. The above observations
push us to investigate the formation of chromatin domains and their relationship with
functional elements in single mESCs systematically.

Here, we first develop a hierarchical chromatin domain structure identification
algorithm (named as HICS) from single-cell Hi-C maps, which shows superior
performance in both accuracy and efficiency. We reorganize atlas of ChlIP-seq for
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85  mESCs, and reveal the patterns of hundreds of regulatory factors are significantly either
86  enriched or absented in domain boundaries of single cells, suggesting that, in addition
87  to known CTCF-cohesin complex, Polycomb, TrxG, pluripotent protein families,
88  different types of histone modifications, and other multiple factors could promote the
89  formation of chromatin domains in single mESCs. To further elaborate on cooperation
90  patterns between different types of regulatory factors, and genomic position categories
91  with differential preference forming boundaries drive by these cooperation patterns, we
92  cluster 13 large genomic position categories (consisting of 29 sub-categories) annotated
93 by 7 different regulatory factor clusters (consisting of 27 sub-clusters). The clear
94  patterns provide a detailed view of the preference of these genomic position categories
95  forming domain boundaries. Furthermore, we discover that these genomic position
96  categories are enriched by different cooperation of retrotransposons with preferential
97  localization. Last but not the least, we find that genomic positions enriched by
98  Alu/B2/B4 retrotransposons have higher preference scores for forming boundaries in
99 G1 and ES phases in comparison with MS and LS/G2 phases, whereas genomic
100  positions enriched by L1/ERVK retrotransposons display opposite tendency. In
101 summary, we reveal that multiple types of regulatory factors interplaying with each
102  other in specific genomic positions could affect focal chromatin interactions, thereby
103 changing interaction density or insulation strength of these regions. This further
104  navigates the preference of genomic position forming boundaries, shape hierarchical
105  chromatin domains, and thus regulate gene expression and cell functions, even cell
106  identity in single embryonic stem cells.

107

108  Results

109  Overview of HIiCS. The key design of HICS is to convert the problem of the
110  identification of hierarchical chromatin domains into finding peaks of insulation
111  strength at different genome scales. The domain boundaries usually have higher
112 insulation strength than their neighbors and a relatively large distance from any regions
113 with higher strength (Fig. 1a). HiCS calculates two metrics for each bin including the
114 insulation strength p and the minimum distance between the bin and any other bin with
115 higher strength &, and controls the number of peaks to obtain the hierarchical chromatin
116 domains at different scales by a (Fig. 1b and c). HICS is super-fast to identify a
117 chromatin hierarchy that the domain of a higher level embraces the multiple smaller
118  ones of a lower level (Fig. 2b). Note that high-level boundaries with high & in local
119  regions may have lower insulation strength than low-level ones, and the boundaries in
120  the same level may have different local insulation strengths, HiCS can automatically
121  detect different level domain boundaries based on local background (Fig. 2b).

122 Specifically, HIiCS consists of three steps (Methods): (1) Preprocesses single-cell
123 Hi-C data and calculates the two metrics to find the peaks at a given scale «, and
124 determines the domain boundaries for each chromosome of an individual cell (Fig. la-
125  ¢); (2) Determines the hierarchical domains of a chromatin by adjusting the optimal
126 structural identification parameter (a« = 1) (Fig. 1c, Fig. 2a, b, and Supplementary
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127  Fig. Sla), Noting that the optimal parameter is automatically determined by the
128  algorithm; (3) Applies a bi-clustering method to group chromatin positions and
129  regulatory factors respectively and analyzes the genomic structure-function
130  relationship by combining hundreds of TFs and epigenetic factors with chromatin
131  domains (Fig. 4).

132

133 HiCS shows superior performance. We benchmark the performance of HiCS for
134  domain detection against two methods: one is the commonly used method for bulk data,
135  insulation score (1S) [15], and another is a recent single-cell TAD detection method,
136 deTOKI [16]. We apply these methods to the preprocessed single-cell Hi-C data
137  generated from mESCs [17]. To compare the performance of them fairly, we adjust the
138  scaling parameter of HiCS to obtain similar number and size of domains with IS and
139  deTOKI, respectively (Fig. 1e). Actually, the insulation strengths of domains obtained
140 from HiCS is significantly higher than those of IS and deTOKI respectively with similar
141 number of domains, suggesting its superiority to competing methods (Fig. 1f). The
142 running time of HICS is significantly less than both algorithms under the same
143 hardware condition (Fig. 1g). Moreover, the domain boundaries detected by HiCS are
144 more significantly enriched in multiple common factors, including CTCF, H3K4me3,
145  Housekeeping (HK) genes (Fig. 1h), as well as RNA polymerase Il (Polll), promoters,
146 highly expressed genes, and average phastcon score (Supplementary Fig. S1b). Also,
147  the boundaries detected by HiCS are more pronounced disappearance of the enhancers
148  or the super enhancers (SEs), which unfavorably form boundaries in single cells as
149  reported on analysis of bulk-cells [9] (Supplementary Fig. S1b). With an example, we
150  can see that HiCS can obtain more accurate chromatin domain boundaries at single-cell
151  resolution (Fig. 1a and d). Taken together, HiCS shows superior performance in both
152 accuracy and efficiency.

153

154  The existence of hierarchical chromatin domains. We adjust the optimal structural
155 identification parameter to generate multiple-scale chromatin domains at different
156 genomic scales for 1315 single mESCs at 40kb resolution. We clearly observe four
157  peaks of domain size and insulation strength distribution with different scaling
158  parameters of 0.2, 1, 4, and 8, which we choose for the downstream analysis (Fig. 2a,
159 b and Supplementary Fig. Sla). The domain scales of these four levels are
160  approximately 200Kb~600Kb, 800Kb~1Mb, 2Mb~3Mb, and ~5Mb respectively. We
161  show an example for hierarchical chromatin domains, which well match the local
162 insulation strength of chromatin regions (Fig. 2b).

163 The median size of chromatin domains increases and the median boundaries’
164  insulation strength enhances with the increase of genomic position level
165  (Supplementary Fig. S2a-c). The boundaries show obvious cell-to-cell heterogeneity
166  with anonzero probability of being located at any genomic positions. 99.8% of genomic
167  positions form boundaries in at least 1% of cells, while only 4.1% of genomic positions
168  form boundaries in more than 14% of cells (Fig. 3a). We also observe that the
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169  probability forming boundaries enhances with the levels of genomic position increasing
170 (Supplementary Fig. S2d). The above observations suggest that domain boundaries
171  vary from cell to cell with nonzero probability at all genomic positions as reported in
172 [13], and the preference of genomic position forming boundaries may shape the
173 formation of hierarchical chromatin domains in single cells.

174

175 Regulatory factors navigate the preference of genomic position forming
176 boundaries. Recent study has shown that domain boundaries are preferentially located
177  at CTCF- and cohesin-binding sites with a super-resolution chromatin tracing method
178  [13]. CTCF and cohesin have been proven to be key factors controlling the functional
179  architecture of mammalian chromosomes forming TADs or sub-TADs by “loop
180  extrusion” [18]. Indeed, we observe that both CTCF and cohesin show similar
181  enrichment patterns in boundaries of single cells in different genomic levels, and as the
182  level of boundaries increases, the degree of enrichment gradually increases (Fig. 3d
183 ande).

184 Previous study has illustrated that high levels of transcription activity may

185  contribute to TAD formation in bulk analysis [19]. Here, we observe that the

186  accessibility of genomic positions, the enrichment degree of HK genes and

187  differentially expressed genes (DEGSs), and the expression of genes gradually

188 increases along with the increasing levels of genomic positions (Fig. 3b, ¢ and

189  Supplementary Fig. S2e). Conversely, enhancers and super enhancers (SEs) greatly
190  become more absented with the increase of levels (Fig. 3b and c). It suggests that the
191  emergence of highly transcriptional activity, especially DEGs, and the absence of

192  enhancers, especially SEs, improve the probability of genomic positions forming

193  boundaries of single cells (Fig. 3b and c).

194 Although the CTCF-cohesin complex is critical for the formation of TADs in
195  mammalian cells, a substantial number of boundaries remain unaffected after cohesin
196  degradation in single cells, suggesting other modulators exist on domain boundaries [7,
197  20]. We indeed observe that mediators (Med1, Med12, Med26, Cdk8, Cdk9), Nipbl,
198  Polll, TFIIB are all enriched in the boundaries of single cells, and as the level of
199  boundaries increases, the degree of enrichment gradually increases (Supplementary
200  Fig. S2g-f). Mediators are essential coactivators that are recruited to the regulatory
201  regions of active genes and facilitate the ability of enhancer-bound TFs to recruit Polll
202 to the promoters of target genes, and Nipbl has been proven to bind mediator to load
203 cohesin [9, 10, 21, 22]. The above results suggest that these factors may play important
204  roles in shaping preference of genomic position forming boundaries of single cells.
205 The master factors of Polycomb repressive complex 1 (PRC1) and PRC2 just
206  exhibit two different enrichment patterns at the domain boundaries of single cells. One
207  type (Aebp2, Rybp, Ringlb) forms obvious single peaks at the domain boundaries, and
208  the degree of enrichment gradually increases with the boundary level increasing
209  (Supplementary Fig. S3a). Another type (Ezh2, Pcl2, Suz12, Eed) shows double peaks
210  around the domain boundaries (Supplementary Fig. S3b). These two types of
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211 complexes have been proved to have distinct catalytic activities, but both are generally
212 associated with transcriptional silencing [23]. We also observe that TrxG associated
213 proteins (COMPASS: Setla, MII2, MII3/4, and SWI/SNP: Brgl) are all enriched in
214 domain boundaries, except for MII3/4 (Supplementary Fig. S3c). In mammalian,
215 Setla reportedly contributes to most of the H3K4me3, and MII2 mediates H3K4me2
216 and H3K4me3 at developmental genes, while MII3/4 implements monomethylation of
217  H3K4 at enhancers [24]. Brgl is an ATP-dependent chromatin remodeler, contributing
218  to the maintenance of pluripotency and self-renewal in ESCs [9]. The above results
219  suggest that the PRC and TrxG protein families could change focal chromatin
220  interactions in different ways.

221 We find that the core TFs (Oct4, Sox2, and Nanog) controlling the pluripotent state
222 do not prefer to appear in domain boundaries, which may be related to chromatin hubs
223 occupied by super-enhancers/enhancers (Supplementary Fig. S4a) as reported in [25].
224 In addition, we also collect 14 additional TFs that may contribute to the pluripotent
225  state of mESCs and investigate whether they are enriched in domain boundaries of
226 single cells [9] (Supplementary Fig. S4b and c). The results indicate that 9 additional
227  TFs (Esrrb, Nr5a2, Klf4, Zfp281, Tcf3, Tcfcp2ll, Stat3, Prdm14, and Smad2/3) that
228  were previously shown to occupy both typical enhancers and SEs do not prefer to
229  appear in domain boundaries, while 5 factors (c-Myc, n-Myc, Zfx, Tbx3, and Yy1) that
230 were previously shown to occupy promoter-proximal sites are enriched in domain
231  boundaries [9]. Among them, it is particularly interesting that Smad2/3, Stat3, and Tcf3
232 signaling pathways were considered as key modulators controlling mESCs pluripotent
233  state transition by modifying chromatin states and shaping chromatin domains [26-28].
234 In addition, we also observe additional 45 proteins are either enriched or absented
235 in domain boundaries of single cells with different enrichment patterns
236 (Supplementary Figs. S5-7), which suggests their potential in shaping chromatin
237 domains.

238 The above TFs and chromatin regulators have the most profound impact on cell
239  states through collaborative control of chromatin states and spatial structures. 14
240  different histone-modifying enzymes show a variety of enrichment patterns around
241  domain boundaries of single cells (Supplementary Fig. S8). For example, ZC3H11A
242 shares consistent enrichment patterns with CTCF-cohesin (Fig. 3e and
243 Supplementary Fig. S8). H3K27me3 shares similar enrichment patterns with PRC2,
244 while H2AK119ubl shares similar enrichment patterns with PCR1 (Supplementary
245 Figs. S3a and b), which are consistent with their function in participating chromatin
246 modifications [23]. H3K4mel marking of enhancers is not enriched in domain
247  boundaries. And H3K4me2 shares similar enrichment patterns with H3K4me3 around
248  domain boundaries, which all are associated with TrxG protein family [24]
249  (Supplementary Fig. S3c). It suggests different histone modifications may cooperate
250  with different TFs and chromatin regulators, to modify chromatin states, shape the local
251 chromatin interaction status and organize chromatin domains of single cells.
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252 To sum up, we have observed hundreds of TFs, chromatin regulators, and histone
253 modifications are significantly either enriched or absented in domain boundaries of
254 single cells with differential enrichment patterns. The occupancy of these regulatory
255 factors in specific genomic positions will affect focal chromatin interactions, thereby
256  changing the interaction density or insulation strengths of these regions. These
257  processes may navigate the preference of genomic position forming boundaries, and
258  then shape hierarchical chromosome domains of single cells.

259

260  Cooperation among regulatory factors differentiate genomic position categories.
261  To further elaborate on cooperation patterns between different types of regulatory
262  factors, and genomic position categories with differential preference forming
263  boundaries drive by these cooperation patterns, we grouped 13 large spatially organized
264  genomic position categories (consisting of 29 sub-categories), which were annotated
265 by 7 different regulatory factor clusters (consisting of 27 sub-clusters). The result helps
266  to explain the preference of genomic position forming boundaries in single cells, and
267  providing an increasingly complex view of the genomic structure-function relationship
268  (Fig. 4 and Supplementary Fig. S9).

269 The categories of regulatory factors. The result of hierarchical clustering indicates
270  that these categories mainly consist of the cluster of core regulatory factors of mESC
271  (CoreRF, particularly Oct4, Sox2, and Nanog), the clusters associated with highly
272 active activators for SEs and enhancers (HASE&E), the clusters of highly transcribed
273 activators (HTA), the clusters of transcriptional repressor factors (TRF), the cluster
274 associated with heterochromatin factors (Hetero), and the clusters of architectural
275 proteins (AP). There are also a few single factors (Other) (Fig. 4a and Supplementary
276  Fig. S9). For a specific example with less prior studies among these clusters, Sumo2 is
277  required to play critical roles in the canonical Zfp809/Trim28/Eset complex via post-
278  translational sumoylation of Trim28, which enhances the recruitment of Trim28 to the
279  proviral DNA, resulting in the modification of proviral chromatin with repressive
280  histone H3K9me3 marks in turn [29]. These four factors were grouped with H3K9me3
281  together in the analysis below, which may organize the formation of heterochromatin
282  (Fig. 4a). The annotation information and supporting materials of these all categories
283 were summarized in Supplementary Table S2.

284 We also observe some interesting cooperative patterns among different clusters
285  (Supplementary Fig. S9b). For example, the CoreRF cluster is strongly associated
286  with the HASE&E cluster, but not the HTG cluster, while the HASE&E cluster is
287  intimated to the HTG cluster. It suggests the HASE&E cluster may be a bridge between
288  CoreRF and HTG clusters, which can be linked to various signaling pathways involved
289 in the transcriptional network in mESCs.

290 The division of genomic position categories. We further analyze the preference of
291  genomic position categories with a ratio>1% (Supplementary Fig. S10a). These
292 genomic position categories can be divided into three families, including the categories
293  with high accessibility preferentially forming boundaries, the categories with high
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294 accessibility unfavorably forming boundaries, and the categories with low accessibility
295  unfavorably forming boundaries (Fig. 5a and Supplementary Fig. S10b).

296 Of note, the largest type with weak open chromatin accessibility (13.7% of all
297  positions, consisting of 12.6%, 1.1% from the 37", 34™" classes, respectively, defined
298  as AP1-Positions) preferentially forming boundaries only are significantly occupied by
299  AP1 factors (CTCF, cohesin, etc.) comparing with other types of factors (Fig. 4b, c and
300  Fig. 5a). Previous studies have indicated that loop extrusion executed by CTCF and
301  cohesin is a leading factor governing domain formation and facilitating chromatin
302  folding. We find that the other subunits (Sal and Sa2) of cohesin which occupy the
303  same genomic locus and present similar enrichment patterns at boundaries of single
304  cells, suggesting that both Sal and Sa2 may also participate in the maintenance of
305  domain boundaries (Fig. 3e). ZC3H11A, a zinc finger protein, shows a uniform pattern
306 as Sal and Sa2, implying its novel role in shaping boundaries of chromatin domains
307  (Supplementary Fig. S8). The chromatin positions that AP1 proteins occupy may be
308  directly related to the macroscopic architecture of chromatin within the nucleus, and
309 indirectly change the local chromatin context to exert regulatory functions.

310 The second major category of open chromatin positions preferentially forming
311  boundaries (7.5%, 2.7% from the 38", 39" classes, defined as HTG-Positions) is
312 associated with highly transcribed genes (Fig. 4b, ¢ and Fig. 5a). These regions are
313 mainly occupied by the HTA (particularly the TrxG class, playing important roles in
314  orchestrating the stable activation of gene expression) and HASE&E clusters, but not
315 the CoreRF cluster, which indicates that the CoreRF cluster hardly participates in the
316  regulation of genes occupying in domain boundaries of single cells.

317 The third major category of open chromatin positions preferentially forming
318  boundaries (3.1%, 1.7% from the 41", 33" classes, defined as TrxG-PRC-Positions,
319 1.5% from the 35" class, defined as TrxG-AP1-Positions) is associated with PRC, TrxG,
320  and AP1 proteins (Fig. 4b, ¢ and Fig. 5a). The 33" class of genomic regions is also
321  associated with AP1 proteins with a higher probability of forming domain boundaries
322 of single cells compared with the 41" class, which suggests CTCF-cohesin complexes
323 may help these regions form a more stable structure. In addition, the 35" class of
324 genomic region with higher enrichment of TrxG proteins and lower enrichment of PRC
325  proteins compared with the 33" class, which results in higher open chromatin
326  accessibility, enhancers occupation, and probability forming domain boundaries in
327  single cells. The above results indicate that chromatin modifiers (TrxG and PRC
328  proteins) can provide an additional layer of regulation by changing chromatin structures,
329  and balance the formation of domain boundaries by repressing and activating chromatin
330  states, respectively.

331 The major categories of the open chromatin positions unfavorably forming
332 boundaries are associated with highly active SEs or enhancers, which mainly contain
333 three categories (Fig. 4b, ¢ and Fig. 5a). The first category (4.8% from the 0™ class,
334  defined as SEs-Positions) almost encompasses more than 75% of SEs, which are
335 strongly related with the HASE&E, CoreRF, TrxG, and Med-Polll clusters. The second
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336 category (5.5%, 1% from the 21", 9 classes, defined as CoreRF-Positions) is mainly
337  associated with enhancers occupied by CoreRF. The slight difference between the 21™
338 and 9" classes is that the 9" one shows higher chromatin accessibility, while the 21™"
339  one shows a stronger DamID enrichment, which may be related to their locations in the
340  nucleus. The third category (2.7%, 1.3% from the 7", 5" classes, H3K4me1-Positions)
341  are related to enhancers enriched by H3K4mel. These regions taking SES or enhancers
342 associated with CoreRF and H3K4mel as focal regions generate dense chromatin
343  structures mediated by different regulatory factors in an orientation-independent
344 manner, and unfavorably form boundaries in single cells with weakened insulation
345 strengths [30].

346 We also check the classes of genomic positions with low chromatin accessibility,
347  all of which unfavorably form boundaries in single cells. These chromatin positions are
348  mainly divided into the following categories (Fig. 4b, c and Fig. 5a). The first category
349 (19% of all positions, consisting of 9.2%, 3.7%, 3.5%, 1.6%, and 1% from the 29'", 28",
350  20™ 31" and 27" classes, respectively, defined as Hetero-Positions) are associated
351  with the Hetero cluster. The second category (18% of all positions, consisting of 2.8%,
352 2.3%, 1.9%, and 1.7% from the 16™, 15™, 12™ and 13" classes, respectively, defined
353  as DamlD-Positions) maintains high enrichment of the DamID signal. The above
354  observations suggest that the presence of heterochromatin factors reduce the probability
355 of single-cell domain boundaries formation. Finally, we observe an interesting and
356 specific category (4.6%, 1.2% from the 45™, 44™ classes, defined as AP2-Repressor-
357  Positions), which are associated with the AP2 (Yyl and H2AZ) and H3K36me3 classes
358  (Fig. 4a and Fig. 5a). Both Yyl and H2AZ facilitate the organization of genome
359  architecture (Supplementary Table S2) [31-34].

360 To summarize, we obtain the following key results by the above analysis: (1) The
361  genomic positions occupied by architectural proteins (CTCF and cohesin), highly
362  transcribed genes, and TrxG proteins preferentially form boundaries in the single cells
363  analysis. (2) The genomic positions taking SEs or enhancers associated with CoreRF
364  or marked by H3K4mel, heterochromatin factors, and repressing factors unfavorably
365  form boundaries in single cells with weakened insulation strengths.

366

367  Retrotransposons are associated with these genomic position categories. In a recent
368  paper, Shen and colleagues find that retrotransposons embedded in 3D genome
369  architecture, regulates the formation of euchromatin and heterochromatin respectively,
370  particularly the separation of compartments A/B [35, 36], which are consistent with our
371  observations. Notably, our study focuses on the effect of retrotransposons on the
372 preference of genomic position forming boundaries in single cells. In order to explain
373  the preference of genomic position categories forming boundaries in single cells with
374 more detail, we further analyze the influences of the largest six types of
375  retrotransposons on genomic architecture.

376 We observe that the division of genomic position categories is strongly associated
377  with the regulation of retrotransposons. The genomic positions are clearly divided into
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378  five functional units based on categories of retrotransposons, including Highly-Alu/B2-
379  Positions, Other-Alu/B2/B4-Positions, MaLR-dominant-Positions, L1-Positions, and
380  ERVKI/L1-Positions (Fig. 4d and Fig. 5a).

381 Firstly, all genomic regions (Hetero-Positions, DamID-Positions, AP2-Repressor-
382  Positions) with low accessibility and unfavorably forming boundaries are enriched by
383 L1 elements, which tend to occupy gene-poor, heterochromatic B compartments that
384 interact with lamina-associated domains in previous studies [35]. Among the defined
385 regions, we are surprised to find that Hetero-Positions are specially associated with
386  ERVK elements, which may indicate that ERVK acts as specific roles in regulating
387  embryonic development as reported in [37, 38]. The above observation also implies
388  that the previously unannotated 18" and 43" genomic positions may be related to
389  heterochromatin organization.

390 We also observe that genomic regions (HTG-Positions, SEs-Positions, TrxG-AP1-
391  Positions, TrxG-PRC-Positions, H3K4me1-Positions, the 9" class of CoreRF-Positions)
392 are enriched by Alu/B2/B4, which may be related to euchromatin organization [35].
393  HTG-Positions, SEs-Positions as well as TrxG-AP1-Positions with higher Alu/B2
394  enrichment than others suggest that the enrichment of Alu/B2 may indicate the
395  transcription level of genes, and promote the formation of hierarchical chromatin
396  structures by regulating gene transcription and SEs/Enhancer activation.

397 Besides the above genomic positions, what is interesting is that MaLR elements
398 are enriched in AP1-Positions, the 21" class of CoreRF-Positions, and other
399  unannotated regions (the 6", 3", 8" and 22" classes). We first observe that the 21™
400  class occurs a stronger heterochromatin factors (the Hetero cluster) enrichment
401  compared to the 9™ (CoreRF-Positions), which may result in uncertain chromatin states
402 in the 21" positions (Fig. 4b and c). In addition, previous studies have shown that
403  domain boundaries mediated by AP1 proteins (e.g., CTCF and cohesin) may block the
404  spread of chromatin states [4]. It may suggest that the regions dominantly enriched by
405 MaLR elements may often undergo switches between euchromatin and
406  heterochromatin.

407 In summary we find that: (1) L1-Positions with low accessibility and unfavorably
408  forming boundaries are associated with heterochromatin organization, and Alu/B2/B4-
409  Positions are associated with euchromatin chromatin, which are consistent with a recent
410  study [35], while MaLR-Positions may result in switches between euchromatin and
411  heterochromatin, which is yet to be proven. (2) ERVK elements acts as specific roles
412 heterochromatin formation, while Alu/B2 may promote highly transcription of genes
413  and highly activation of SEs/Enhancers. These retrotransposons contribute to the
414 maintaining of chromatin states, and interplay with other types of regulatory factors, to
415 navigate the preference of genomic positions forming boundaries and gene regulation
416 insingle cells.

417

418  Genomic landscape regulates cellular states. To investigate the preference of
419  genomic positions in the above functional groups along the cell cycle process, we check
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420  the dynamics of each functional group forming boundaries in single cells among four
421  different cycle phases, including G1, early-S (ES), mid-S (MS), and late-S/G2 (LS/G2).
422 We first reveal that genomic positions enriched by SEs show a significant preference
423 for forming boundaries in the G1 phase (Fig. 5b). The observation suggests that highly
424 activation of SEs in the phase may promote gene regulation and transcription for cell
425 growth in size, and ensure biomaterials for DNA synthesis. In addition, the functional
426 group (HTG-Positions) accompanied with highly transcribed genes exhibits a
427  significant loss of boundaries in the MS phase, which may be because the rates of
428  transcription and protein synthesis are low during DNA replication (Fig. 5b). We also
429  observe that functional groups occupied by both CTCF-cohesin and TrxG-PRC
430  complexes prefer to form boundaries in ES phases (Fig. 5b). The observation implicates
431 in the clearest segmentation of chromatin structures at the beginning of DNA
432 replication [39, 40]. Both complexes have been proven to modify local chromatin
433  structure and regulate higher-order chromatin organization [7, 41]. And functional
434  groups (Hetero-Positions and  AP2-Repressor-Positions) associated  with
435  heterochromatin organization prefers to form boundaries in both MS and LS/G2 phases
436  (Fig. 5b). Both phases may prepare for everything entering the mitosis phase with
437  condensing chromatin states.

438 In general, genomic positions (HTG-Positions, SEs-Positions, TrxG-AP1-
439  Positions, TrxG-PRC-Positions, H3K4me1-Positions, and the 9" class of CoreRF-
440  Positions) enriched by Alu/B2/B4 retrotransposons have higher preference scores for
441  forming boundaries of single cells in G1 and ES phases in comparison with MS and
442 LS/G2 phases, whereas genomic positions (Hetero-Positions, AP2-Repressor-Positions,
443  and DamlD-Positions) enriched by L1/ERVK retrotransposons display opposite
444 tendency, following by high preference scores for forming boundaries in both MS and
445  LS/G2 phases (Fig. 5b and Supplementary Fig. S11). The above observations further
446  expound that the dynamic interplay among different types of regulatory factors,
447  retrotransposons, and chromatin structures could navigate gene regulation and cell
448  functions, even cell identity in single embryonic stem cells.

449

450  Discussion

451  Several decades of research have shown that eukaryotic chromatin adopts a complex
452 hierarchical architecture within the nucleus, which plays a key role in functional
453 implications for almost all nuclear processes. Thus, the spatially organized chromatin
454 architecture interplaying with multiple types of regulatory factors shape focal
455 chromatin landscapes and then exert gene regulatory functions. Single-cell 3D genome
456 analysis extends the limitation of bulk analysis to show substantial cell-to-cell variation
457  and promote our understanding of chromatin structures in the individual cell. Recent
458  discoveries on single-cell 3D genome have shed light on the relationship between
459  CTCF-cohesin complexes and domain formation, but the more molecular details
460  associated with regulatory factors remain to be investigated [13].
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461 Here, we develop HiCS to detect hierarchical chromatin domains from single-cell
462  Hi-C maps, and observe hundreds of regulatory factors, including TFs, chromatin
463  regulators, and histone modifications, are significantly either enriched or absented in
464  domain boundaries of single cells, which presents several different enrichment patterns.
465  The results suggest their potential cooperative associations in shaping focal chromatin
466  interactions, thereby changing interaction density or insulation strength of these regions,
467  and drive different genomic position categories. We further group chromatin position
468  categories and different regulatory factor clusters, explaining the emergence and
469  functionality of different chromatin landscapes and providing a comprehensive view of
470  the genomic structure-function relationship. We also find that different
471  retrotransposons exactly match the above genomic position categories. The above
472 results indicate that these regulatory factors interplaying with each other exert gene
473  regulatory processes and control cell functions, even cell identity.

474 The chromatin structures within the nucleus operate in an obvious dynamic process
475 driven by both “loop extrusion” and attractive process induced by regulatory factors
476  (associated with compartmentalization). The process may condense or loose local
477  chromatin landscapes in an overlapping and concerted manner accompanied by
478  adjusting insulation strength of chromatin position and generating chromatin loops, and
479  then shape gene expression programs during cell-fate specification [39]. Further work
480 is needed to leverage more specific chromatin structures, particularly chromatin loops,
481  of single cells with more abundant regulatory factors (TFs, chromatin regulators,
482 histone modifications, retrotransposons, RNA, even structural variations) to understand
483  structure-function relationships in complex tissues or diseases, particularly cancers [42,
484  43]. It will promote our understanding of how multiple types of regulatory factors
485 interact with chromatin topological engines (such as loop extraction and
486  compartmentalization) to regulate the gene-repression program, determine cell
487  functions and identity, and further explain tissue complexity and disease development.
488

489  Materials and Methods

490  Single-cell Hi-C and other genomic data processing

491  Single-cell Hi-C data generated from mESCs. The single-cell Hi-C dataset used in this
492 study consists of 1992 diploid cells of mMESCs grown in 2i media without feeder cells
493  with stringent quality control filter. This dataset involves a median number of 393506
494  restriction fragments, and 127233 distinct >1 kb contacting pairs on average per cell
495  [17]. The top 1315 cells with >250000 contacts per cell were selected for downstream
496  analysis. Among them, 317, 341, 303, and 354 cells belong to G1, early-S (ES), mid-S
497  (MS), and late-S/G2 (LS/G2) phases labeled by fluorescence-activated cell sorting
498  (FACS) sort criterion, respectively.

499

500  An atlas of ChlP-seq for mESCs. We organized an atlas of ChlP-seq for hundreds of
501  regulatory factors of mESCs (Supplementary Table S1), including CTCF, cohesin
502  (Smcl, Smc3, Rad2l, Sal, Sa2), mediators (Medl, Med2, Med26, Cdk8, Cdk9),
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503  codensin (Capd3, Nipbl), Polll, TFIIB, polycomb repressive complex (Aebp2, Rybp,
504  Ringlb, Rnf2, Suz12, Ezh2, Eed, Pcl2), Trithorax protein family (Setla, MlI2, M113/4,
505  Brgl), the core regulatory factors of mESC (Oct4, Sox2, Nanog), the regulatory factors
506  of ESC occupied on enhancers or SEs (Esrrb, Nr5a2, KIf4, Stat3, Prdm14, Zfp281, Tcf3,
507  Tcfcp2ll, Smad2/3), the regulatory factors of ESC occupied on promoter-proximal sites
508  or sites that border topological domains (c-Myc, n-Myc, Zfx, Tbx3, Yy1), and additional
509 45 TFs. We collected 14 histone modification factors, including H3K4mel, H3K4me2,
510  H3K4me3, H3K27me3, H3K36me3, H3K79me2, H3k9me3, H3K9%ac, H3K122ac,
511  H3K64ac, H3K27ac, H2AZ, ZC3H11A, and H2AK119ubl. In addition, we also
512  collected two chromatin accessibility datasets (ATAC-seq and Dnase-seq) and the
513  DamlD-seq dataset.

514 For the ChlP-seq of regulatory factors, peaks were called using MACS2 software
515  with g-value cut-off 1 x 1075 [44]. The source information and supporting materials
516  of these factors were summarized in Supplementary Table S1 and S2.

517

518  Regulatory elements and genes. Enhancers/SEs and gene expression datasets of
519  mESCs were downloaded in GSE29278 [45]. Housekeeping genes were downloaded
520  in  Housekeeping and Reference Transcript Atlas (HRT Atlas v1.0,
521  www.housekeeping.unicamp.br) [46]. PhastCons scores were downloaded from the
522  UCSC Genome Browser via
523  ftp://hgdownload.cse.ucsc.edu/goldenPath/mm9/phastCons30way/vertebrate [47].
524 Mouse cell-cycle annotated genes were obtained from the mouse genome informatics
525  (MGI) (http://www.informatics.jax.org/), containing 891 genes relating to cell cycle
526  process and regulation. We adopted Seurat to detect DEGs and the variable score of
527  genes using FindAlIMarkers and FindVariableFeatures functions based on single-cell
528  RNA-seq data of ESCs, which consists of 182 cells labeled by FACS sort criterion,
529  including 59, 58, and 65 cells belonging to “G1” phase, “S” phase, and “G2M” phase,
530  respectively [48, 49].

531

532  Retrotransposons. Retrotransposons built from RepeatMasker annotations were
533  downloaded from the UCSC Table Browser (http://genome.ucsc.edu/). We kept the top
534  six categories of counts for the downstream analysis, including Alu, B2, B4, MaLR, L1,
535  and ERVK.

536

537  HICS

538  Preprocess contact probability for each chromosome of the individual cell. We first
539  divided each chromosome into bins of specific size (40kb in this study), and counted
540  the contact for each bin pair. Next, we modeled each chromosome as an unweighted
541  network (each bin is one node, and each bin pair with non-zero contacts is added as one
542  edge), and implemented a classic graph embedding method node2vec, which applies a
543  biased random walks procedure, to compute the contact probability of edges by
544  computing the cosine similarity of any two node embedding vectors, and obtained the



http://www.housekeeping.unicamp.br/
ftp://hgdownload.cse.ucsc.edu/goldenPath/mm9/phastCons30way/vertebrate
http://genome.ucsc.edu/
https://doi.org/10.1101/2022.05.27.493686
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.27.493686; this version posted August 18, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

545  preprocessed matrix A (Fig. 1a) [50]. We only kept the top 5% pairs for downstream
546  analysis and the diagonal pairs were removed in our study.

547

548  Detect domain boundaries for each individual cell. Inspired by a fast density-based
549  clustering method designed for grouping data points [51, 52], we take advantage of
550  finding the cluster centers to detect domain boundaries for each chromosome of
551 individual cells (Fig. 1b and c). Specifically, we define two indexes for each 40kb bin:
552 (1) insulation strength p(i) of the i genomic position is defined as the ratio of
553 (iintra — liinter) @A (I; inera + Ii inter) [53] using a 800kb sliding window size:

554 Ii,intra = Ig+Ip,
595 Ii,inter =1,
556 ,D(i) — Ii,intra - Ii,inter’

Ii,intra + Ii,inter

a b

557
558  where I, I, and I, respectively represent the summation of interaction frequencies for

559  region a, b, and ¢, and (2) minimum distance between the bin i and any other bin j with
560  higher insulation strength is defined as & (i):
561 6= min [i—j|, (Smax <MAX).
J:p(N>p(D)
562  We search for higher insulation strength of bin i in the range of MAX = 500 (20M

563  genomic distance at 40kb resolution). Next, we define p” (i) = p (i)/pPmax and
564 & (i) = 8(i)/8may such that both p* (i) and § * (i) are within range [0,1]. Then, we
565  generate the rank y of all bins for each chromosome by their n(i) = p (i) x § " (i) in

566  the descending and normalized the rank of each binby y * (i) = y(i)/¥max- We define

567  the optimal reflection point with 7 = argminn(i)? +y ~ (i)?, where len is defined as
i=1l:len

568  the number of bins for a specific chromosome. The boundaries of the optimal structure
569  are assigned by bins with n(i) > a x n(r), (@ = 1). The gap regions are defined by
570 I; inter = 0 Or have no contact with any other bins.

571

572 Determine the hierarchical chromatin domains. We ran the above procedures of
573  detecting domain boundaries multiple times by define n(i) > a X n(r) as a screening
574  selection for different genomic levels, where the range of o are set as (0.1, 10) (Fig.
575  2a). In our study, we selected multiple scaling parameters o as {0.2, 1, 4, 8} to
576  obtain the hierarchical domains of chromatin, according to the distribution of the
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577  domain sizes and insulation strengths under different scaling parameters (Fig. 2a and
578  b).

579

580  Clustering and annotating genomic positions with different types of regulatory
581  factors. We applied the hierarchical clustering method to group regulatory factors and
582  chromatin positions, respectively (Fig. 4a). The classes of chromatin positions with the
583  ratio>1% of all chromatin positions were selected for downstream analysis, which led
584  to 29 classes of chromatin positions, along with 27 different transcriptional factor
585  classes.

586 We further applied the hierarchical clustering method to merge the 27 classes into
587 7 large clusters, based on the Pearson correlation of the normalization ratio of the mean
588  counts for peaks of regulatory factor classes (Supplementary Fig. S9b). These clusters
589  or sub-clusters were manually annotated based on the annotation information
590  (Supplementary Table S2). We then merged different chromatin position classes into
591 12 large categories based on hierarchical clustering of correlation of regulatory factor
592  classes, and manually annotated these categories based on the ratios of regulatory factor
593  classes. We obtained and annotated 12 large chromatin position categories (consisting
594  of 29 sub-categories), and 7 different regulatory factor clusters (consisting of 27 sub-
595  clusters).

596

597  Data availability

598  All datasets analyzed in this study were published previously. The corresponding
599  descriptions and preprocessing steps can be found in Supplementary Materials.

600

601  Software availability

602  The open-source HICS python package and tutorial are available at GitHub
603  (https://github.com/YusenYe/HiCS).
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760  Figure 1. lllustration and efficiency of HICS for determining the chromatin
761  domains. a. An illustrative example of the preprocessed single-cell Hi-C contact map
762  (top) and the insulation strength (p) of genomic positions (bottom). HSMD (§)
763  represents the minimum distance between the bin and any other bins with higher
764  strengths. b, c. The decision graph (b) and the normalization value of n = p X § ina
765  decreasing order (c) for the domain boundaries (colored in red) in the optimal structural
766 identification parameter. The decision graph of optimal structural identification
767  parameter (zoom box in c). d. A local example of domain boundaries from map in a at
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768  the region Chr2:80.8Mb-108Mb with different methods. e, f. Comparison of different
769  methods for domain sizes and insulation strengths. g. Runtime (seconds) of different
770 methods or parameters. h. The average number of CTCF peaks, H3K4me3 peaks, and
771  HK genes at domain boundaries of single cells. The above results (d-h) are implemented
772 by different methods across all single cells.
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775  Figure 2. Identification of hierarchical chromatin domains. a. Density distribution

776 of domain sizes at different multi-scale parameters. b. An example for hierarchical
777  chromatin domains at the region Chr2:80.8Mb-108Mb. Circles mark three boundaries
778  (two boundaries in level 1 have a magnitude difference in local insulation strength, and
779  the boundary in level 3 has lower insulation strength than one of the boundaries in level

780 1),
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Figure 3. Regulatory factors navigate the preference of genomic position forming
boundaries. a. The ratio distribution of genomic positions forming boundaries at less
than a given ratio of single cells in the left y-axis (such as 99.8% of genomic positions
form boundaries in at least 1% of cells, respectively), and the number distribution of
genomic positions forming boundaries in the right y-axis as the ratio of single cells
increases. b-c. The concentration scores (b) and the average number of ATAC-seq
peaks and multiple regulatory elements (ATAC: ATAC-seq peaks, HK genes, Exp:
gene expression value, DEGs: differentially expressed genes, E: enhancers, SES) (c)
around domain boundaries. d. The concentration scores for CTCF, cohesin, mediator-
and Pol ll-associated factors. e. The average number of peaks for CTCF and cohesin
around domain boundaries. In b-e, the results were detected in the different genomic
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794  scales across all single cells. The concentration score is defined in Supplementary
795  Methods.
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797  Figure 4. The systematic analysis on genomic position categories. a. The bi-cluster
798  of chromatin positions and regulatory factors. b. The column normalization ratio and
799  the average number of peaks for regulatory factor-classes on genomic position
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800  categories (different dot color represents different categories in Fig. 4a). c. The column
801  normalization ratio of different elements or factors, including SC_ratio (the ratio of
802  single cells forming boundaries), ATAC, DamID (DamID-seq), HK genes, Cyc (mark
803  genes for cell cycle), Exp (gene expression value), DEGs, Variable (variable scores for
804  genes), E (Enhancers), and SEs, on genomic position categories. d. The heatmap shows
805  the column normalization ratio of different retrotransposons based on genomic position
806  categories.
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809  Figure 5. A schematic showing different genomic position categories. a. The graph
810  presents the different clusters based on retrotransposons in the area marked by different
811  colors of dotted line containing multiple functional groups associated with different
812  regulatory factor-classes (the sub-categories serial number in above and the ratio
813  occupying from all positions are marked for each functional group). The shades of
814  purple on the background of circles indicate the preference of genomic positions
815  forming boundaries in single cells for each functional group, and the shades of green
816  onthe background of these areas marked by dotted line indicate the degree of chromatin
817  accessibility of genomic positions for each cluster based on retrotransposons. b.
818  Preference scores of different chromatin landscapes categories across different cell
819  states. Statistical significance is calculated by Welch’s t-test (*P < 0.05, **P < 0.01,
820  and ***P < 0.001). The preference score is defined in Supplementary Methods.
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