

1 Deciphering Hierarchical Chromatin Domains and Preference of Genomic Position
2 Forming Boundaries in Single Mouse Embryonic Stem Cells
3

4 Yusen Ye^{1*}, Shihua Zhang^{2,3,4}, Lin Gao¹, Yuqing Zhu⁵, Jin Zhang^{6,7,8,9}
5

6 1School of Computer Science and Technology, Xidian University, Xi'an 710071,
7 Shaanxi, China.

8 2NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese
9 Academy of Sciences, Beijing 100190, China.

10 3School of Mathematical Sciences, University of Chinese Academy of Sciences,
11 Beijing 100049, China.

12 4Center for Excellence in Animal Evolution and Genetics, Chinese Academy of
13 Sciences, Kunming 650223, China.

14 5Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui
15 University, Hefei, 230601, Anhui, China.

16 6Center for Stem Cell and Regenerative Medicine, Department of Basic Medical
17 Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital,
18 Hangzhou, Zhejiang, China.

19 7Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University
20 Medical Center, Hangzhou, Zhejiang, China.

21 8Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.

22 9Center of Gene/Cell Engineering and Genome Medicine, Hangzhou, Zhejiang, China.
23

24 *To whom correspondence should be addressed. Tel: +86-15802963380; Email:
25 ysye@xidian.edu.cn
26

27

28 **Abstract**

29 The exploration of single-cell 3D genome maps reveals that chromatin domains are
30 indeed physical structures presenting in single cells and domain boundaries vary from
31 cell to cell. However, exhaustive analysis of regulatory factor binding or elements for
32 preference of the formation of chromatin domains in single cells has not yet emerged.
33 To this end, we first develop a **hierarchical chromatin domain structure identification**
34 algorithm (named as **HiCS**) from individual single-cell Hi-C maps, with superior
35 performance in both accuracy and efficiency. The results suggest that in addition to the
36 known CTCF-cohesin complex, Polycomb, TrxG, pluripotent protein families and
37 other multiple factors also contribute to shaping chromatin domain boundaries in single
38 embryonic stem cells. Different cooperation patterns of regulatory factors decipher the
39 preference of genomic position categories forming boundaries. And the most extensive
40 six types of retrotransposons differentially distributed in these genomic position
41 categories with preferential localization.

42

43 **Introduction**

44 Genome across a wide range of eukaryotic organisms is efficiently packaged and
45 organized into hierarchical chromatin architecture via ubiquitous architectural features,
46 which is critical to gene regulation and dynamical changes in development and disease
47 [1-3]. These basic features consist of chromatin fibers, which fold into chromatin loops,
48 such as enhancer-promoter interactions and architectural loops mediated by CCCTC-
49 binding factor (CTCF) [4]. These fibers further fold into chromatin domains, referred
50 to as topologically associating domains (TADs) or sub-TADs, which are associated
51 with each other to generate chromosomal compartments. Each chromosome occupies a
52 distinct volume or chromosome territory within the nucleus [4-6]. Genome architecture
53 is an integral part of the chromatin landscape that transcription factors (TFs) must
54 navigate to exert their regulatory roles [7]. Although most loci and chromosomes are
55 characterized by a high degree of order and non-randomness, the precise functional
56 roles and formation mechanism of these features remains obscure [8].

57 Some TFs, cofactors, and histone modifications that correlate with the chromatin
58 structures have been identified to study features of chromatin organization [9-11].
59 Particularly, TAD boundaries are enriched with multiple factors including CTCF,
60 cohesin, H3K4me3, H3K36me3, transcription start sites, housekeeping genes, etc,
61 suggesting that CTCF binding, high levels of transcription activity, multiple histone
62 modifications, and other regulatory factors may contribute to the formation of
63 chromatin domains in mammals [8]. Although TADs and their associated regulatory
64 factors have been widely identified in multiple species and are highly conserved and
65 stable across different cell types [6, 12], single-cell 3D genome analysis indicated that
66 they display substantial cell-to-cell variation [13, 14]. Therefore, the bulk analysis only
67 reflects properties of ensemble average structures from millions of cells, which may
68 mask chromatin features appearing in a few cells or a single cell and limit our
69 understanding of chromatin structures.

70 A recent study reveals that domain structures often adopt globular conformation
71 with strongly physical segregation of neighboring domains, and domain boundaries are
72 preferentially located at CTCF- and cohesin-binding sites with a super-resolution
73 chromatin tracing method [13]. More surprisingly, single-cell domain structures persist
74 even after cohesin degradation [13]. These results suggest other TFs or epigenetic
75 factors may contribute to the formation of chromatin domains. Currently, mouse
76 embryonic stem cells (mESCs) have been served as a specific model cell system to
77 elucidate the mechanisms of 3D genome organization and explore the relationship
78 between chromatin domains and gene regulation. Hundreds of TFs and epigenetic
79 modification profiles have been identified in mESCs [9-11]. The above observations
80 push us to investigate the formation of chromatin domains and their relationship with
81 functional elements in single mESCs systematically.

82 Here, we first develop a **hierarchical chromatin domain structure** identification
83 algorithm (named as **HiCS**) from single-cell Hi-C maps, which shows superior
84 performance in both accuracy and efficiency. We reorganize atlas of ChIP-seq for

85 mESCs, and reveal the patterns of hundreds of regulatory factors are significantly either
86 enriched or absented in domain boundaries of single cells, suggesting that, in addition
87 to known CTCF-cohesin complex, Polycomb, TrxG, pluripotent protein families,
88 different types of histone modifications, and other multiple factors could promote the
89 formation of chromatin domains in single mESCs. To further elaborate on cooperation
90 patterns between different types of regulatory factors, and genomic position categories
91 with differential preference forming boundaries drive by these cooperation patterns, we
92 cluster 13 large genomic position categories (consisting of 29 sub-categories) annotated
93 by 7 different regulatory factor clusters (consisting of 27 sub-clusters). The clear
94 patterns provide a detailed view of the preference of these genomic position categories
95 forming domain boundaries. Furthermore, we discover that these genomic position
96 categories are enriched by different cooperation of retrotransposons with preferential
97 localization. Last but not the least, we find that genomic positions enriched by
98 Alu/B2/B4 retrotransposons have higher preference scores for forming boundaries in
99 G1 and ES phases in comparison with MS and LS/G2 phases, whereas genomic
100 positions enriched by L1/ERVK retrotransposons display opposite tendency. In
101 summary, we reveal that multiple types of regulatory factors interplaying with each
102 other in specific genomic positions could affect focal chromatin interactions, thereby
103 changing interaction density or insulation strength of these regions. This further
104 navigates the preference of genomic position forming boundaries, shape hierarchical
105 chromatin domains, and thus regulate gene expression and cell functions, even cell
106 identity in single embryonic stem cells.

107

108 **Results**

109 **Overview of HiCS.** The key design of HiCS is to convert the problem of the
110 identification of hierarchical chromatin domains into finding peaks of insulation
111 strength at different genome scales. The domain boundaries usually have higher
112 insulation strength than their neighbors and a relatively large distance from any regions
113 with higher strength (**Fig. 1a**). HiCS calculates two metrics for each bin including the
114 insulation strength ρ and the minimum distance between the bin and any other bin with
115 higher strength δ , and controls the number of peaks to obtain the hierarchical chromatin
116 domains at different scales by α (**Fig. 1b and c**). HiCS is super-fast to identify a
117 chromatin hierarchy that the domain of a higher level embraces the multiple smaller
118 ones of a lower level (**Fig. 2b**). Note that high-level boundaries with high δ in local
119 regions may have lower insulation strength than low-level ones, and the boundaries in
120 the same level may have different local insulation strengths, HiCS can automatically
121 detect different level domain boundaries based on local background (**Fig. 2b**).

122 Specifically, HiCS consists of three steps (**Methods**): (1) Preprocesses single-cell
123 Hi-C data and calculates the two metrics to find the peaks at a given scale α , and
124 determines the domain boundaries for each chromosome of an individual cell (**Fig. 1a-c**);
125 (2) Determines the hierarchical domains of a chromatin by adjusting the optimal
126 structural identification parameter ($\alpha = 1$) (**Fig. 1c, Fig. 2a, b, and Supplementary**

127 **Fig. S1a)**, Noting that the optimal parameter is automatically determined by the
128 algorithm; (3) Applies a bi-clustering method to group chromatin positions and
129 regulatory factors respectively and analyzes the genomic structure-function
130 relationship by combining hundreds of TFs and epigenetic factors with chromatin
131 domains (**Fig. 4**).
132

133 **HiCS shows superior performance.** We benchmark the performance of HiCS for
134 domain detection against two methods: one is the commonly used method for bulk data,
135 insulation score (IS) [15], and another is a recent single-cell TAD detection method,
136 deTOKI [16]. We apply these methods to the preprocessed single-cell Hi-C data
137 generated from mESCs [17]. To compare the performance of them fairly, we adjust the
138 scaling parameter of HiCS to obtain similar number and size of domains with IS and
139 deTOKI, respectively (**Fig. 1e**). Actually, the insulation strengths of domains obtained
140 from HiCS is significantly higher than those of IS and deTOKI respectively with similar
141 number of domains, suggesting its superiority to competing methods (**Fig. 1f**). The
142 running time of HiCS is significantly less than both algorithms under the same
143 hardware condition (**Fig. 1g**). Moreover, the domain boundaries detected by HiCS are
144 more significantly enriched in multiple common factors, including CTCF, H3K4me3,
145 Housekeeping (HK) genes (**Fig. 1h**), as well as RNA polymerase II (PolII), promoters,
146 highly expressed genes, and average phastcon score (**Supplementary Fig. S1b**). Also,
147 the boundaries detected by HiCS are more pronounced disappearance of the enhancers
148 or the super enhancers (SEs), which unfavorably form boundaries in single cells as
149 reported on analysis of bulk-cells [9] (**Supplementary Fig. S1b**). With an example, we
150 can see that HiCS can obtain more accurate chromatin domain boundaries at single-cell
151 resolution (**Fig. 1a and d**). Taken together, HiCS shows superior performance in both
152 accuracy and efficiency.
153

154 **The existence of hierarchical chromatin domains.** We adjust the optimal structural
155 identification parameter to generate multiple-scale chromatin domains at different
156 genomic scales for 1315 single mESCs at 40kb resolution. We clearly observe four
157 peaks of domain size and insulation strength distribution with different scaling
158 parameters of 0.2, 1, 4, and 8, which we choose for the downstream analysis (**Fig. 2a,**
159 **b** and **Supplementary Fig. S1a**). The domain scales of these four levels are
160 approximately 200Kb~600Kb, 800Kb~1Mb, 2Mb~3Mb, and ~5Mb respectively. We
161 show an example for hierarchical chromatin domains, which well match the local
162 insulation strength of chromatin regions (**Fig. 2b**).
163

164 The median size of chromatin domains increases and the median boundaries'
165 insulation strength enhances with the increase of genomic position level
166 (**Supplementary Fig. S2a-c**). The boundaries show obvious cell-to-cell heterogeneity
167 with a nonzero probability of being located at any genomic positions. 99.8% of genomic
168 positions form boundaries in at least 1% of cells, while only 4.1% of genomic positions
form boundaries in more than 14% of cells (**Fig. 3a**). We also observe that the

169 probability forming boundaries enhances with the levels of genomic position increasing
170 (**Supplementary Fig. S2d**). The above observations suggest that domain boundaries
171 vary from cell to cell with nonzero probability at all genomic positions as reported in
172 [13], and the preference of genomic position forming boundaries may shape the
173 formation of hierarchical chromatin domains in single cells.

174

175 **Regulatory factors navigate the preference of genomic position forming**
176 **boundaries.** Recent study has shown that domain boundaries are preferentially located
177 at CTCF- and cohesin-binding sites with a super-resolution chromatin tracing method
178 [13]. CTCF and cohesin have been proven to be key factors controlling the functional
179 architecture of mammalian chromosomes forming TADs or sub-TADs by “loop
180 extrusion” [18]. Indeed, we observe that both CTCF and cohesin show similar
181 enrichment patterns in boundaries of single cells in different genomic levels, and as the
182 level of boundaries increases, the degree of enrichment gradually increases (**Fig. 3d**
183 and **e**).

184 Previous study has illustrated that high levels of transcription activity may
185 contribute to TAD formation in bulk analysis [19]. Here, we observe that the
186 accessibility of genomic positions, the enrichment degree of HK genes and
187 differentially expressed genes (DEGs), and the expression of genes gradually
188 increases along with the increasing levels of genomic positions (**Fig. 3b, c and**
189 **Supplementary Fig. S2e**). Conversely, enhancers and super enhancers (SEs) greatly
190 become more absented with the increase of levels (**Fig. 3b and c**). It suggests that the
191 emergence of highly transcriptional activity, especially DEGs, and the absence of
192 enhancers, especially SEs, improve the probability of genomic positions forming
193 boundaries of single cells (**Fig. 3b and c**).

194 Although the CTCF-cohesin complex is critical for the formation of TADs in
195 mammalian cells, a substantial number of boundaries remain unaffected after cohesin
196 degradation in single cells, suggesting other modulators exist on domain boundaries [7,
197 20]. We indeed observe that mediators (*Med1*, *Med12*, *Med26*, *Cdk8*, *Cdk9*), *Nipbl*,
198 PolII, TFIIB are all enriched in the boundaries of single cells, and as the level of
199 boundaries increases, the degree of enrichment gradually increases (**Supplementary**
200 **Fig. S2g-f**). Mediators are essential coactivators that are recruited to the regulatory
201 regions of active genes and facilitate the ability of enhancer-bound TFs to recruit PolII
202 to the promoters of target genes, and *Nipbl* has been proven to bind mediator to load
203 cohesin [9, 10, 21, 22]. The above results suggest that these factors may play important
204 roles in shaping preference of genomic position forming boundaries of single cells.

205 The master factors of Polycomb repressive complex 1 (PRC1) and PRC2 just
206 exhibit two different enrichment patterns at the domain boundaries of single cells. One
207 type (*Aebp2*, *Rybp*, *Ring1b*) forms obvious single peaks at the domain boundaries, and
208 the degree of enrichment gradually increases with the boundary level increasing
209 (**Supplementary Fig. S3a**). Another type (*Ezh2*, *Pcl2*, *Suz12*, *Eed*) shows double peaks
210 around the domain boundaries (**Supplementary Fig. S3b**). These two types of

211 complexes have been proved to have distinct catalytic activities, but both are generally
212 associated with transcriptional silencing [23]. We also observe that TrxG associated
213 proteins (COMPASS: *Set1a*, *Mll2*, *Mll3/4*, and SWI/SNP: *Brg1*) are all enriched in
214 domain boundaries, except for *Mll3/4* (**Supplementary Fig. S3c**). In mammalian,
215 *Set1a* reportedly contributes to most of the H3K4me3, and *Mll2* mediates H3K4me2
216 and H3K4me3 at developmental genes, while *Mll3/4* implements monomethylation of
217 H3K4 at enhancers [24]. *Brg1* is an ATP-dependent chromatin remodeler, contributing
218 to the maintenance of pluripotency and self-renewal in ESCs [9]. The above results
219 suggest that the PRC and TrxG protein families could change focal chromatin
220 interactions in different ways.

221 We find that the core TFs (*Oct4*, *Sox2*, and *Nanog*) controlling the pluripotent state
222 do not prefer to appear in domain boundaries, which may be related to chromatin hubs
223 occupied by super-enhancers/enhancers (**Supplementary Fig. S4a**) as reported in [25].
224 In addition, we also collect 14 additional TFs that may contribute to the pluripotent
225 state of mESCs and investigate whether they are enriched in domain boundaries of
226 single cells [9] (**Supplementary Fig. S4b and c**). The results indicate that 9 additional
227 TFs (*Esrrb*, *Nr5a2*, *Klf4*, *Zfp281*, *Tcf3*, *Tcfcp2l1*, *Stat3*, *Prdm14*, and *Smad2/3*) that
228 were previously shown to occupy both typical enhancers and SEs do not prefer to
229 appear in domain boundaries, while 5 factors (*c-Myc*, *n-Myc*, *Zfx*, *Tbx3*, and *Yy1*) that
230 were previously shown to occupy promoter-proximal sites are enriched in domain
231 boundaries [9]. Among them, it is particularly interesting that *Smad2/3*, *Stat3*, and *Tcf3*
232 signaling pathways were considered as key modulators controlling mESCs pluripotent
233 state transition by modifying chromatin states and shaping chromatin domains [26-28].

234 In addition, we also observe additional 45 proteins are either enriched or absented
235 in domain boundaries of single cells with different enrichment patterns
236 (**Supplementary Figs. S5-7**), which suggests their potential in shaping chromatin
237 domains.

238 The above TFs and chromatin regulators have the most profound impact on cell
239 states through collaborative control of chromatin states and spatial structures. 14
240 different histone-modifying enzymes show a variety of enrichment patterns around
241 domain boundaries of single cells (**Supplementary Fig. S8**). For example, ZC3H11A
242 shares consistent enrichment patterns with CTCF-cohesin (**Fig. 3e and**
243 **Supplementary Fig. S8**). H3K27me3 shares similar enrichment patterns with PRC2,
244 while H2AK119ub1 shares similar enrichment patterns with PCR1 (**Supplementary**
245 **Figs. S3a and b**), which are consistent with their function in participating chromatin
246 modifications [23]. H3K4me1 marking of enhancers is not enriched in domain
247 boundaries. And H3K4me2 shares similar enrichment patterns with H3K4me3 around
248 domain boundaries, which all are associated with TrxG protein family [24]
249 (**Supplementary Fig. S3c**). It suggests different histone modifications may cooperate
250 with different TFs and chromatin regulators, to modify chromatin states, shape the local
251 chromatin interaction status and organize chromatin domains of single cells.

252 To sum up, we have observed hundreds of TFs, chromatin regulators, and histone
253 modifications are significantly either enriched or absented in domain boundaries of
254 single cells with differential enrichment patterns. The occupancy of these regulatory
255 factors in specific genomic positions will affect focal chromatin interactions, thereby
256 changing the interaction density or insulation strengths of these regions. These
257 processes may navigate the preference of genomic position forming boundaries, and
258 then shape hierarchical chromosome domains of single cells.

259

260 **Cooperation among regulatory factors differentiate genomic position categories.**
261 To further elaborate on cooperation patterns between different types of regulatory
262 factors, and genomic position categories with differential preference forming
263 boundaries drive by these cooperation patterns, we grouped 13 large spatially organized
264 genomic position categories (consisting of 29 sub-categories), which were annotated
265 by 7 different regulatory factor clusters (consisting of 27 sub-clusters). The result helps
266 to explain the preference of genomic position forming boundaries in single cells, and
267 providing an increasingly complex view of the genomic structure-function relationship
268 (**Fig. 4 and Supplementary Fig. S9**).

269 **The categories of regulatory factors.** The result of hierarchical clustering indicates
270 that these categories mainly consist of the cluster of core regulatory factors of mESC
271 (CoreRF, particularly *Oct4*, *Sox2*, and *Nanog*), the clusters associated with highly
272 active activators for SEs and enhancers (HASE&E), the clusters of highly transcribed
273 activators (HTA), the clusters of transcriptional repressor factors (TRF), the cluster
274 associated with heterochromatin factors (Hetero), and the clusters of architectural
275 proteins (AP). There are also a few single factors (Other) (**Fig. 4a and Supplementary**
276 **Fig. S9**). For a specific example with less prior studies among these clusters, *Sumo2* is
277 required to play critical roles in the canonical *Zfp809/Trim28/Eset* complex via post-
278 translational sumoylation of *Trim28*, which enhances the recruitment of *Trim28* to the
279 proviral DNA, resulting in the modification of proviral chromatin with repressive
280 histone H3K9me3 marks in turn [29]. These four factors were grouped with H3K9me3
281 together in the analysis below, which may organize the formation of heterochromatin
282 (**Fig. 4a**). The annotation information and supporting materials of these all categories
283 were summarized in **Supplementary Table S2**.

284 We also observe some interesting cooperative patterns among different clusters
285 (**Supplementary Fig. S9b**). For example, the CoreRF cluster is strongly associated
286 with the HASE&E cluster, but not the HTG cluster, while the HASE&E cluster is
287 intimated to the HTG cluster. It suggests the HASE&E cluster may be a bridge between
288 CoreRF and HTG clusters, which can be linked to various signaling pathways involved
289 in the transcriptional network in mESCs.

290 **The division of genomic position categories.** We further analyze the preference of
291 genomic position categories with a ratio>1% (**Supplementary Fig. S10a**). These
292 genomic position categories can be divided into three families, including the categories
293 with high accessibility preferentially forming boundaries, the categories with high

294 accessibility unfavorably forming boundaries, and the categories with low accessibility
295 unfavorably forming boundaries (**Fig. 5a** and **Supplementary Fig. S10b**).

296 Of note, the largest type with weak open chromatin accessibility (13.7% of all
297 positions, consisting of 12.6%, 1.1% from the 37th, 34th classes, respectively, defined
298 as AP1-Positions) preferentially forming boundaries only are significantly occupied by
299 AP1 factors (CTCF, cohesin, etc.) comparing with other types of factors (**Fig. 4b, c** and
300 **Fig. 5a**). Previous studies have indicated that loop extrusion executed by CTCF and
301 cohesin is a leading factor governing domain formation and facilitating chromatin
302 folding. We find that the other subunits (*Sa1* and *Sa2*) of cohesin which occupy the
303 same genomic locus and present similar enrichment patterns at boundaries of single
304 cells, suggesting that both *Sa1* and *Sa2* may also participate in the maintenance of
305 domain boundaries (**Fig. 3e**). ZC3H11A, a zinc finger protein, shows a uniform pattern
306 as *Sa1* and *Sa2*, implying its novel role in shaping boundaries of chromatin domains
307 (**Supplementary Fig. S8**). The chromatin positions that AP1 proteins occupy may be
308 directly related to the macroscopic architecture of chromatin within the nucleus, and
309 indirectly change the local chromatin context to exert regulatory functions.

310 The second major category of open chromatin positions preferentially forming
311 boundaries (7.5%, 2.7% from the 38th, 39th classes, defined as HTG-Positions) is
312 associated with highly transcribed genes (**Fig. 4b, c** and **Fig. 5a**). These regions are
313 mainly occupied by the HTA (particularly the TrxG class, playing important roles in
314 orchestrating the stable activation of gene expression) and HASE&E clusters, but not
315 the CoreRF cluster, which indicates that the CoreRF cluster hardly participates in the
316 regulation of genes occupying in domain boundaries of single cells.

317 The third major category of open chromatin positions preferentially forming
318 boundaries (3.1%, 1.7% from the 41th, 33th classes, defined as TrxG-PRC-Positions,
319 1.5% from the 35th class, defined as TrxG-AP1-Positions) is associated with PRC, TrxG,
320 and AP1 proteins (**Fig. 4b, c** and **Fig. 5a**). The 33th class of genomic regions is also
321 associated with AP1 proteins with a higher probability of forming domain boundaries
322 of single cells compared with the 41th class, which suggests CTCF-cohesin complexes
323 may help these regions form a more stable structure. In addition, the 35th class of
324 genomic region with higher enrichment of TrxG proteins and lower enrichment of PRC
325 proteins compared with the 33th class, which results in higher open chromatin
326 accessibility, enhancers occupation, and probability forming domain boundaries in
327 single cells. The above results indicate that chromatin modifiers (TrxG and PRC
328 proteins) can provide an additional layer of regulation by changing chromatin structures,
329 and balance the formation of domain boundaries by repressing and activating chromatin
330 states, respectively.

331 The major categories of the open chromatin positions unfavorably forming
332 boundaries are associated with highly active SEs or enhancers, which mainly contain
333 three categories (**Fig. 4b, c** and **Fig. 5a**). The first category (4.8% from the 0th class,
334 defined as SEs-Positions) almost encompasses more than 75% of SEs, which are
335 strongly related with the HASE&E, CoreRF, TrxG, and Med-PolII clusters. The second

336 category (5.5%, 1% from the 21th, 9th classes, defined as CoreRF-Positions) is mainly
337 associated with enhancers occupied by CoreRF. The slight difference between the 21th
338 and 9th classes is that the 9th one shows higher chromatin accessibility, while the 21th
339 one shows a stronger DamID enrichment, which may be related to their locations in the
340 nucleus. The third category (2.7%, 1.3% from the 7th, 5th classes, H3K4me1-Positions)
341 are related to enhancers enriched by H3K4me1. These regions taking SEs or enhancers
342 associated with CoreRF and H3K4me1 as focal regions generate dense chromatin
343 structures mediated by different regulatory factors in an orientation-independent
344 manner, and unfavorably form boundaries in single cells with weakened insulation
345 strengths [30].

346 We also check the classes of genomic positions with low chromatin accessibility,
347 all of which unfavorably form boundaries in single cells. These chromatin positions are
348 mainly divided into the following categories (**Fig. 4b, c** and **Fig. 5a**). The first category
349 (19% of all positions, consisting of 9.2%, 3.7%, 3.5%, 1.6%, and 1% from the 29th, 28th,
350 20th, 31th, and 27th classes, respectively, defined as Hetero-Positions) are associated
351 with the Hetero cluster. The second category (18% of all positions, consisting of 2.8%,
352 2.3%, 1.9%, and 1.7% from the 16th, 15th, 12th, and 13th classes, respectively, defined
353 as DamID-Positions) maintains high enrichment of the DamID signal. The above
354 observations suggest that the presence of heterochromatin factors reduce the probability
355 of single-cell domain boundaries formation. Finally, we observe an interesting and
356 specific category (4.6%, 1.2% from the 45th, 44th classes, defined as AP2-Repressor-
357 Positions), which are associated with the AP2 (*Yy1* and H2AZ) and H3K36me3 classes
358 (**Fig. 4a** and **Fig. 5a**). Both *Yy1* and H2AZ facilitate the organization of genome
359 architecture (**Supplementary Table S2**) [31-34].

360 To summarize, we obtain the following key results by the above analysis: (1) The
361 genomic positions occupied by architectural proteins (CTCF and cohesin), highly
362 transcribed genes, and TrxG proteins preferentially form boundaries in the single cells
363 analysis. (2) The genomic positions taking SEs or enhancers associated with CoreRF
364 or marked by H3K4me1, heterochromatin factors, and repressing factors unfavorably
365 form boundaries in single cells with weakened insulation strengths.

366
367 **Retrotransposons are associated with these genomic position categories.** In a recent
368 paper, Shen and colleagues find that retrotransposons embedded in 3D genome
369 architecture, regulates the formation of euchromatin and heterochromatin respectively,
370 particularly the separation of compartments A/B [35, 36], which are consistent with our
371 observations. Notably, our study focuses on the effect of retrotransposons on the
372 preference of genomic position forming boundaries in single cells. In order to explain
373 the preference of genomic position categories forming boundaries in single cells with
374 more detail, we further analyze the influences of the largest six types of
375 retrotransposons on genomic architecture.

376 We observe that the division of genomic position categories is strongly associated
377 with the regulation of retrotransposons. The genomic positions are clearly divided into

378 five functional units based on categories of retrotransposons, including Highly-Alu/B2-
379 Positions, Other-Alu/B2/B4-Positions, MaLR-dominant-Positions, L1-Positions, and
380 ERVK/L1-Positions (**Fig. 4d** and **Fig. 5a**).

381 Firstly, all genomic regions (Hetero-Positions, DamID-Positions, AP2-Repressor-
382 Positions) with low accessibility and unfavorably forming boundaries are enriched by
383 L1 elements, which tend to occupy gene-poor, heterochromatic B compartments that
384 interact with lamina-associated domains in previous studies [35]. Among the defined
385 regions, we are surprised to find that Hetero-Positions are specially associated with
386 ERVK elements, which may indicate that ERVK acts as specific roles in regulating
387 embryonic development as reported in [37, 38]. The above observation also implies
388 that the previously unannotated 18th and 43th genomic positions may be related to
389 heterochromatin organization.

390 We also observe that genomic regions (HTG-Positions, SEs-Positions, TrxG-AP1-
391 Positions, TrxG-PRC-Positions, H3K4me1-Positions, the 9th class of CoreRF-Positions)
392 are enriched by Alu/B2/B4, which may be related to euchromatin organization [35].
393 HTG-Positions, SEs-Positions as well as TrxG-AP1-Positions with higher Alu/B2
394 enrichment than others suggest that the enrichment of Alu/B2 may indicate the
395 transcription level of genes, and promote the formation of hierarchical chromatin
396 structures by regulating gene transcription and SEs/Enhancer activation.

397 Besides the above genomic positions, what is interesting is that MaLR elements
398 are enriched in AP1-Positions, the 21th class of CoreRF-Positions, and other
399 unannotated regions (the 6th, 3th, 8th, and 22th classes). We first observe that the 21th
400 class occurs a stronger heterochromatin factors (the Hetero cluster) enrichment
401 compared to the 9th (CoreRF-Positions), which may result in uncertain chromatin states
402 in the 21th positions (**Fig. 4b and c**). In addition, previous studies have shown that
403 domain boundaries mediated by AP1 proteins (e.g., CTCF and cohesin) may block the
404 spread of chromatin states [4]. It may suggest that the regions dominantly enriched by
405 MaLR elements may often undergo switches between euchromatin and
406 heterochromatin.

407 In summary we find that: (1) L1-Positions with low accessibility and unfavorably
408 forming boundaries are associated with heterochromatin organization, and Alu/B2/B4-
409 Positions are associated with euchromatin chromatin, which are consistent with a recent
410 study [35], while MaLR-Positions may result in switches between euchromatin and
411 heterochromatin, which is yet to be proven. (2) ERVK elements acts as specific roles
412 heterochromatin formation, while Alu/B2 may promote highly transcription of genes
413 and highly activation of SEs/Enhancers. These retrotransposons contribute to the
414 maintaining of chromatin states, and interplay with other types of regulatory factors, to
415 navigate the preference of genomic positions forming boundaries and gene regulation
416 in single cells.

417
418 **Genomic landscape regulates cellular states.** To investigate the preference of
419 genomic positions in the above functional groups along the cell cycle process, we check

420 the dynamics of each functional group forming boundaries in single cells among four
421 different cycle phases, including G1, early-S (ES), mid-S (MS), and late-S/G2 (LS/G2).
422 We first reveal that genomic positions enriched by SEs show a significant preference
423 for forming boundaries in the G1 phase (**Fig. 5b**). The observation suggests that highly
424 activation of SEs in the phase may promote gene regulation and transcription for cell
425 growth in size, and ensure biomaterials for DNA synthesis. In addition, the functional
426 group (HTG-Positions) accompanied with highly transcribed genes exhibits a
427 significant loss of boundaries in the MS phase, which may be because the rates of
428 transcription and protein synthesis are low during DNA replication (**Fig. 5b**). We also
429 observe that functional groups occupied by both CTCF-cohesin and TrxG-PRC
430 complexes prefer to form boundaries in ES phases (**Fig. 5b**). The observation implicates
431 in the clearest segmentation of chromatin structures at the beginning of DNA
432 replication [39, 40]. Both complexes have been proven to modify local chromatin
433 structure and regulate higher-order chromatin organization [7, 41]. And functional
434 groups (Hetero-Positions and AP2-Repressor-Positions) associated with
435 heterochromatin organization prefers to form boundaries in both MS and LS/G2 phases
436 (**Fig. 5b**). Both phases may prepare for everything entering the mitosis phase with
437 condensing chromatin states.

438 In general, genomic positions (HTG-Positions, SEs-Positions, TrxG-AP1-
439 Positions, TrxG-PRC-Positions, H3K4me1-Positions, and the 9th class of CoreRF-
440 Positions) enriched by Alu/B2/B4 retrotransposons have higher preference scores for
441 forming boundaries of single cells in G1 and ES phases in comparison with MS and
442 LS/G2 phases, whereas genomic positions (Hetero-Positions, AP2-Repressor-Positions,
443 and DamID-Positions) enriched by L1/ERVK retrotransposons display opposite
444 tendency, following by high preference scores for forming boundaries in both MS and
445 LS/G2 phases (**Fig. 5b** and **Supplementary Fig. S11**). The above observations further
446 expound that the dynamic interplay among different types of regulatory factors,
447 retrotransposons, and chromatin structures could navigate gene regulation and cell
448 functions, even cell identity in single embryonic stem cells.

449

450 **Discussion**

451 Several decades of research have shown that eukaryotic chromatin adopts a complex
452 hierarchical architecture within the nucleus, which plays a key role in functional
453 implications for almost all nuclear processes. Thus, the spatially organized chromatin
454 architecture interplaying with multiple types of regulatory factors shape focal
455 chromatin landscapes and then exert gene regulatory functions. Single-cell 3D genome
456 analysis extends the limitation of bulk analysis to show substantial cell-to-cell variation
457 and promote our understanding of chromatin structures in the individual cell. Recent
458 discoveries on single-cell 3D genome have shed light on the relationship between
459 CTCF-cohesin complexes and domain formation, but the more molecular details
460 associated with regulatory factors remain to be investigated [13].

461 Here, we develop HiCS to detect hierarchical chromatin domains from single-cell
462 Hi-C maps, and observe hundreds of regulatory factors, including TFs, chromatin
463 regulators, and histone modifications, are significantly either enriched or absented in
464 domain boundaries of single cells, which presents several different enrichment patterns.
465 The results suggest their potential cooperative associations in shaping focal chromatin
466 interactions, thereby changing interaction density or insulation strength of these regions,
467 and drive different genomic position categories. We further group chromatin position
468 categories and different regulatory factor clusters, explaining the emergence and
469 functionality of different chromatin landscapes and providing a comprehensive view of
470 the genomic structure-function relationship. We also find that different
471 retrotransposons exactly match the above genomic position categories. The above
472 results indicate that these regulatory factors interplaying with each other exert gene
473 regulatory processes and control cell functions, even cell identity.

474 The chromatin structures within the nucleus operate in an obvious dynamic process
475 driven by both “loop extrusion” and attractive process induced by regulatory factors
476 (associated with compartmentalization). The process may condense or loose local
477 chromatin landscapes in an overlapping and concerted manner accompanied by
478 adjusting insulation strength of chromatin position and generating chromatin loops, and
479 then shape gene expression programs during cell-fate specification [39]. Further work
480 is needed to leverage more specific chromatin structures, particularly chromatin loops,
481 of single cells with more abundant regulatory factors (TFs, chromatin regulators,
482 histone modifications, retrotransposons, RNA, even structural variations) to understand
483 structure-function relationships in complex tissues or diseases, particularly cancers [42,
484 43]. It will promote our understanding of how multiple types of regulatory factors
485 interact with chromatin topological engines (such as loop extraction and
486 compartmentalization) to regulate the gene-repression program, determine cell
487 functions and identity, and further explain tissue complexity and disease development.
488

489 Materials and Methods

490 Single-cell Hi-C and other genomic data processing

491 **Single-cell Hi-C data generated from mESCs.** The single-cell Hi-C dataset used in this
492 study consists of 1992 diploid cells of mESCs grown in 2i media without feeder cells
493 with stringent quality control filter. This dataset involves a median number of 393506
494 restriction fragments, and 127233 distinct >1 kb contacting pairs on average per cell
495 [17]. The top 1315 cells with >250000 contacts per cell were selected for downstream
496 analysis. Among them, 317, 341, 303, and 354 cells belong to G1, early-S (ES), mid-S
497 (MS), and late-S/G2 (LS/G2) phases labeled by fluorescence-activated cell sorting
498 (FACS) sort criterion, respectively.

499

500 **An atlas of ChIP-seq for mESCs.** We organized an atlas of ChIP-seq for hundreds of
501 regulatory factors of mESCs (**Supplementary Table S1**), including CTCF, cohesin
502 (*Smc1*, *Smc3*, *Rad21*, *Sa1*, *Sa2*), mediators (*Med1*, *Med2*, *Med26*, *Cdk8*, *Cdk9*),

503 codensin (*Capd3*, *Nipbl*), PolII, TFIIB, polycomb repressive complex (*Aebp2*, *Rybp*,
504 *Ring1b*, *Rnf2*, *Suz12*, *Ezh2*, *Eed*, *Pcl2*), Trithorax protein family (*Set1a*, *Mll2*, *Mll3/4*,
505 *Brg1*), the core regulatory factors of mESC (*Oct4*, *Sox2*, *Nanog*), the regulatory factors
506 of ESC occupied on enhancers or SEs (*Esrrb*, *Nr5a2*, *Klf4*, *Stat3*, *Prdm14*, *Zfp281*, *Tcf3*,
507 *Tcfcp2l1*, *Smad2/3*), the regulatory factors of ESC occupied on promoter-proximal sites
508 or sites that border topological domains (*c-Myc*, *n-Myc*, *Zfx*, *Tbx3*, *Yy1*), and additional
509 45 TFs. We collected 14 histone modification factors, including H3K4me1, H3K4me2,
510 H3K4me3, H3K27me3, H3K36me3, H3K79me2, H3k9me3, H3K9ac, H3K122ac,
511 H3K64ac, H3K27ac, H2AZ, ZC3H11A, and H2AK119ub1. In addition, we also
512 collected two chromatin accessibility datasets (ATAC-seq and Dnase-seq) and the
513 DamID-seq dataset.

514 For the ChIP-seq of regulatory factors, peaks were called using MACS2 software
515 with q-value cut-off 1×10^{-5} [44]. The source information and supporting materials
516 of these factors were summarized in **Supplementary Table S1 and S2**.
517

518 **Regulatory elements and genes.** Enhancers/SEs and gene expression datasets of
519 mESCs were downloaded in GSE29278 [45]. Housekeeping genes were downloaded
520 in Housekeeping and Reference Transcript Atlas (HRT Atlas v1.0,
521 www.housekeeping.unicamp.br) [46]. PhastCons scores were downloaded from the
522 UCSC Genome Browser via
523 <ftp://hgdownload.cse.ucsc.edu/goldenPath/mm9/phastCons30way/vertebrate> [47].
524 Mouse cell-cycle annotated genes were obtained from the mouse genome informatics
525 (MGI) (<http://www.informatics.jax.org/>), containing 891 genes relating to cell cycle
526 process and regulation. We adopted Seurat to detect DEGs and the variable score of
527 genes using *FindAllMarkers* and *FindVariableFeatures* functions based on single-cell
528 RNA-seq data of ESCs, which consists of 182 cells labeled by FACS sort criterion,
529 including 59, 58, and 65 cells belonging to “G1” phase, “S” phase, and “G2M” phase,
530 respectively [48, 49].
531

532 **Retrotransposons.** Retrotransposons built from RepeatMasker annotations were
533 downloaded from the UCSC Table Browser (<http://genome.ucsc.edu/>). We kept the top
534 six categories of counts for the downstream analysis, including Alu, B2, B4, MaLR, L1,
535 and ERVK.
536

537 **HiCS**

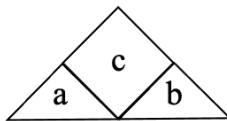
538 **Preprocess contact probability for each chromosome of the individual cell.** We first
539 divided each chromosome into bins of specific size (40kb in this study), and counted
540 the contact for each bin pair. Next, we modeled each chromosome as an unweighted
541 network (each bin is one node, and each bin pair with non-zero contacts is added as one
542 edge), and implemented a classic graph embedding method node2vec, which applies a
543 biased random walks procedure, to compute the contact probability of edges by
544 computing the cosine similarity of any two node embedding vectors, and obtained the

545 preprocessed matrix A (**Fig. 1a**) [50]. We only kept the top 5% pairs for downstream
546 analysis and the diagonal pairs were removed in our study.

547

548 **Detect domain boundaries for each individual cell.** Inspired by a fast density-based
549 clustering method designed for grouping data points [51, 52], we take advantage of
550 finding the cluster centers to detect domain boundaries for each chromosome of
551 individual cells (**Fig. 1b and c**). Specifically, we define two indexes for each 40kb bin:
552 (1) insulation strength $\rho(i)$ of the i^{th} genomic position is defined as the ratio of
553 $(I_{i,\text{intra}} - I_{i,\text{inter}})$ and $(I_{i,\text{intra}} + I_{i,\text{inter}})$ [53] using a 800kb sliding window size:

$$I_{i,\text{intra}} = I_a + I_b,$$
$$I_{i,\text{inter}} = I_c,$$
$$\rho(i) = \frac{I_{i,\text{intra}} - I_{i,\text{inter}}}{I_{i,\text{intra}} + I_{i,\text{inter}}},$$



557

558 where I_a , I_b , and I_c respectively represent the summation of interaction frequencies for
559 region a , b , and c , and (2) minimum distance between the bin i and any other bin j with
560 higher insulation strength is defined as $\delta(i)$:

$$561 \quad \delta(i) = \min_{j: \rho(j) > \rho(i)} |i - j|, \quad (\delta_{\max} < MAX).$$

562 We search for higher insulation strength of bin i in the range of $MAX = 500$ (20M
563 genomic distance at 40kb resolution). Next, we define $\rho'(i) = \rho(i)/\rho_{\max}$ and

564 $\delta'(i) = \delta(i)/\delta_{\max}$ such that both $\rho'(i)$ and $\delta'(i)$ are within range [0,1]. Then, we

565 generate the rank γ of all bins for each chromosome by their $\eta(i) = \rho'(i) \times \delta'(i)$ in

566 the descending and normalized the rank of each bin by $\gamma'(i) = \gamma(i)/\gamma_{\max}$. We define

567 the optimal reflection point with $r = \operatorname{argmin}_{i=1:len} \eta(i)^2 + \gamma'(i)^2$, where len is defined as

568 the number of bins for a specific chromosome. The boundaries of the optimal structure
569 are assigned by bins with $\eta(i) > \alpha \times \eta(r)$, ($\alpha = 1$). The gap regions are defined by
570 $I_{i,\text{inter}} = 0$ or have no contact with any other bins.

571

572 **Determine the hierarchical chromatin domains.** We ran the above procedures of
573 detecting domain boundaries multiple times by define $\eta(i) > \alpha \times \eta(r)$ as a screening
574 selection for different genomic levels, where the range of α are set as (0.1, 10) (**Fig.**
575 **2a**). In our study, we selected multiple scaling parameters α as {0.2, 1, 4, 8} to
576 obtain the hierarchical domains of chromatin, according to the distribution of the

577 domain sizes and insulation strengths under different scaling parameters (**Fig. 2a and**
578 **b**).

579

580 ***Clustering and annotating genomic positions with different types of regulatory***
581 ***factors***. We applied the hierarchical clustering method to group regulatory factors and
582 chromatin positions, respectively (**Fig. 4a**). The classes of chromatin positions with the
583 ratio>1% of all chromatin positions were selected for downstream analysis, which led
584 to 29 classes of chromatin positions, along with 27 different transcriptional factor
585 classes.

586 We further applied the hierarchical clustering method to merge the 27 classes into
587 7 large clusters, based on the Pearson correlation of the normalization ratio of the mean
588 counts for peaks of regulatory factor classes (**Supplementary Fig. S9b**). These clusters
589 or sub-clusters were manually annotated based on the annotation information
590 (**Supplementary Table S2**). We then merged different chromatin position classes into
591 12 large categories based on hierarchical clustering of correlation of regulatory factor
592 classes, and manually annotated these categories based on the ratios of regulatory factor
593 classes. We obtained and annotated 12 large chromatin position categories (consisting
594 of 29 sub-categories), and 7 different regulatory factor clusters (consisting of 27 sub-
595 clusters).

596

597 **Data availability**

598 All datasets analyzed in this study were published previously. The corresponding
599 descriptions and preprocessing steps can be found in Supplementary Materials.

600

601 **Software availability**

602 The open-source HiCS python package and tutorial are available at GitHub
603 (<https://github.com/YusenYe/HiCS>).

604

605 **Acknowledgements**

606 This work was supported by the National Natural Science Foundation of China [No.
607 62002275 to Y.Y., Nos. 62132015 & 61873198 to L.G., and Nos.
608 12126605&61621003 to S.Z.], the National Key Research and Development Program
609 of China [No. 2019YFA0709501 to S.Z.], the Strategic Priority Research Program of
610 the Chinese Academy of Sciences (CAS) [Nos. XDA16021400, XDPB17 to S.Z.].

611

612 **Author Contributions**

613 Y.Y. conceived the idea, implemented the algorithm and performed the analyses. Y.Y.
614 interpreted the results. S.Z. and L.G. provided scientific insights on the applications.
615 Y.Y. wrote the manuscript with feedback from all other authors. All of the authors read
616 and approved the final manuscript.

617

618 **Completing interests**

619 The authors declare no competing interests.

620

621 **References**

- 622 1. Kempfer, R. and A. Pombo, *Methods for mapping 3D chromosome*
623 *architecture*. *Nature Reviews Genetics*, 2020. **21**(4): p. 207-226.
- 624 2. Misteli, T., *The Self-Organizing Genome: Principles of Genome*
625 *Architecture and Function*. *Cell*, 2020. **183**(1): p. 28-45.
- 626 3. Dixon, J.R., et al., *Integrative detection and analysis of structural variation*
627 *in cancer genomes*. *Nature Genetics*, 2018. **50**(10): p. 1388-1398.
- 628 4. Rao, Suhas S.P., et al., *A 3D Map of the Human Genome at Kilobase*
629 *Resolution Reveals Principles of Chromatin Looping*. *Cell*, 2014. **159**(7): p.
630 1665-1680.
- 631 5. Lieberman-Aiden, E., et al., *Comprehensive Mapping of Long-Range*
632 *Interactions Reveals Folding Principles of the Human Genome*. *Science*,
633 2009. **326**(5950): p. 289-293.
- 634 6. Dixon, J.R., et al., *Topological domains in mammalian genomes identified*
635 *by analysis of chromatin interactions*. *Nature*, 2012. **485**(7398): p. 376-380.
- 636 7. Stadhouders, R., G.J. Filion, and T. Graf, *Transcription factors and 3D*
637 *genome conformation in cell-fate decisions*. *Nature*, 2019. **569**(7756): p.
638 345-354.
- 639 8. Rowley, M.J. and V.G. Corces, *Organizational principles of 3D genome*
640 *architecture*. *Nature Reviews Genetics*, 2018. **19**(12): p. 789-800.
- 641 9. Hnisz, D., et al., *Super-Enhancers in the Control of Cell Identity and Disease*.
642 *Cell*, 2013. **155**(4): p. 934-947.
- 643 10. Young, Richard A., *Control of the Embryonic Stem Cell State*. *Cell*, 2011.
644 **144**(6): p. 940-954.
- 645 11. Zepeda-Martinez, J.A., et al., *Parallel PRC2/cPRC1 and vPRC1 pathways*
646 *silence lineage-specific genes and maintain self-renewal in mouse*
647 *embryonic stem cells*. *Science Advances*. **6**(14): p. eaax5692.
- 648 12. Zuin, J., et al., *Cohesin and CTCF differentially affect chromatin architecture*
649 *and gene expression in human cells*. *Proceedings of the National Academy*
650 *of Sciences*, 2014. **111**(3): p. 996.
- 651 13. Bintu, B., et al., *Super-resolution chromatin tracing reveals domains and*
652 *cooperative interactions in single cells*. *Science*, 2018. **362**(6413): p.
653 eaau1783.
- 654 14. Tan, L., et al., *Three-dimensional genome structures of single diploid*
655 *human cells*. *Science*, 2018. **361**(6405): p. 924.
- 656 15. Crane, E., et al., *Condensin-driven remodelling of X chromosome topology*
657 *during dosage compensation*. *Nature*, 2015. **523**(7559): p. 240-244.
- 658 16. Li, X., et al., *DeTOKI identifies and characterizes the dynamics of chromatin*
659 *TAD-like domains in a single cell*. *Genome Biology*, 2021. **22**(1): p. 217.
- 660 17. Nagano, T., et al., *Cell-cycle dynamics of chromosomal organization at*

661 18. single-cell resolution. *Nature*, 2017. **547**(7661): p. 61-67.

662 19. Schwarzer, W., et al., *Two independent modes of chromatin organization*
663 *revealed by cohesin removal*. *Nature*, 2017. **551**(7678): p. 51-56.

664 20. Yu, M. and B. Ren, *The Three-Dimensional Organization of Mammalian*
665 *Genomes*. *Annual Review of Cell and Developmental Biology*, 2017. **33**(1):
666 p. 265-289.

667 21. Nora, E.P., et al., *Targeted Degradation of CTCF Decouples Local Insulation*
668 *of Chromosome Domains from Genomic Compartmentalization*. *Cell*, 2017.
669 **169**(5): p. 930-944.e22.

670 22. Whyte, Warren A., et al., *Master Transcription Factors and Mediator*
671 *Establish Super-Enhancers at Key Cell Identity Genes*. *Cell*, 2013. **153**(2): p.
672 307-319.

673 23. Kagey, M.H., et al., *Mediator and cohesin connect gene expression and*
674 *chromatin architecture*. *Nature*, 2010. **467**(7314): p. 430-435.

675 24. Piunti, A. and A. Shilatifard, *The roles of Polycomb repressive complexes in*
676 *mammalian development and cancer*. *Nature Reviews Molecular Cell*
677 *Biology*, 2021. **22**(5): p. 326-345.

678 25. Douillet, D., et al., *Uncoupling histone H3K4 trimethylation from*
679 *developmental gene expression via an equilibrium of COMPASS,*
680 *Polycomb and DNA methylation*. *Nature Genetics*, 2020. **52**(6): p. 615-625.

681 26. Buecker, C., et al., *Reorganization of Enhancer Patterns in Transition from*
682 *Naive to Primed Pluripotency*. *Cell Stem Cell*, 2014. **14**(6): p. 838-853.

683 27. Cole, M.F., et al., *Tcf3 is an integral component of the core regulatory*
684 *circuity of embryonic stem cells*. *Genes & development*, 2008. **22**(6): p.
685 746-755.

686 28. Niwa, H., et al., *Self-renewal of pluripotent embryonic stem cells is*
687 *mediated via activation of STAT3*. *Genes & development*, 1998. **12**(13): p.
688 2048-2060.

689 29. Beattie, G.M., et al., *Activin A maintains pluripotency of human embryonic*
690 *stem cells in the absence of feeder layers*. *Stem cells*, 2005. **23**(4): p. 489-
691 495.

692 30. Yang, Bin X., et al., *Systematic Identification of Factors for Provirus*
693 *Silencing in Embryonic Stem Cells*. *Cell*, 2015. **163**(1): p. 230-245.

694 31. Furlong Eileen, E.M. and M. Levine, *Developmental enhancers and*
695 *chromosome topology*. *Science*, 2018. **361**(6409): p. 1341-1345.

696 32. Rege, M., et al., *Chromatin Dynamics and the RNA Exosome Function in*
697 *Concert to Regulate Transcriptional Homeostasis*. *Cell Reports*, 2015. **13**(8):
698 p. 1610-1622.

699 33. Surface, Lauren E., et al., *H2A.Z.1 Monoubiquitylation Antagonizes BRD2*
700 *to Maintain Poised Chromatin in ESCs*. *Cell Reports*, 2016. **14**(5): p. 1142-
701 1155.

702 34. Thomas, M.J. and E. Seto, *Unlocking the mechanisms of transcription factor*

703 704 YY1: are chromatin modifying enzymes the key? *Gene*, 1999. **236**(2): p. 197-208.

705 34. Weintraub, A.S., et al., *YY1 Is a Structural Regulator of Enhancer-Promoter*
706 *Loops*. *Cell*, 2017. **171**(7): p. 1573-1588.e28.

707 35. Lu, J.Y., et al., *Homotypic clustering of L1 and B1/Alu repeats*
708 *compartmentalizes the 3D genome*. *Cell Research*, 2021. **31**(6): p. 613-630.

709 36. Liang, Z. and X.-D. Fu, *3D genome encoded by L1NE and S1NE repeats*. *Cell*
710 *Research*, 2021. **31**(6): p. 603-604.

711 37. Hanna, C.W., et al., *Endogenous retroviral insertions drive non-canonical*
712 *imprinting in extra-embryonic tissues*. *Genome Biology*, 2019. **20**(1): p. 225.

713 38. Guo, F., et al., *The Transcriptome and DNA Methylome Landscapes of*
714 *Human Primordial Germ Cells*. *Cell*, 2015. **161**(6): p. 1437-1452.

715 39. Nuebler, J., et al., *Chromatin organization by an interplay of loop extrusion*
716 *and compartmental segregation*. *Proceedings of the National Academy of*
717 *Sciences*, 2018. **115**(29): p. E6697-E6706.

718 40. Ye, Y., L. Gao, and S. Zhang, *Circular Trajectory Reconstruction Uncovers*
719 *Cell-Cycle Progression and Regulatory Dynamics from Single-Cell Hi-C*
720 *Maps*. *Advanced Science*, 2019. **6**(23): p. 1900986.

721 41. Schuettengruber, B., et al., *Genome Regulation by Polycomb and Trithorax:*
722 *70 Years and Counting*. *Cell*, 2017. **171**(1): p. 34-57.

723 42. Jerkovic, I. and G. Cavalli, *Understanding 3D genome organization by*
724 *multidisciplinary methods*. *Nature Reviews Molecular Cell Biology*, 2021.
725 **22**(8): p. 511-528.

726 43. Wang, X., Y. Luan, and F. Yue, *EagleC: A deep-learning framework for*
727 *detecting a full range of structural variations from bulk and single-cell*
728 *contact maps*. *Science Advances*. **8**(24): p. eabn9215.

729 44. Zhang, Y., et al., *Model-based Analysis of ChIP-Seq (MACS)*. *Genome*
730 *Biology*, 2008. **9**(9): p. R137.

731 45. Shen, Y., et al., *A map of the cis-regulatory sequences in the mouse*
732 *genome*. *Nature*, 2012. **488**(7409): p. 116-120.

733 46. Hounkpe, B.W., et al., *HRT Atlas v1.0 database: redefining human and*
734 *mouse housekeeping genes and candidate reference transcripts by mining*
735 *massive RNA-seq datasets*. *Nucleic Acids Research*, 2021. **49**(D1): p. D947-
736 D955.

737 47. Siepel, A., et al., *Evolutionarily conserved elements in vertebrate, insect,*
738 *worm, and yeast genomes*. *Genome research*, 2005. **15**(8): p. 1034-1050.

739 48. Buettner, F., et al., *Computational analysis of cell-to-cell heterogeneity in*
740 *single-cell RNA-sequencing data reveals hidden subpopulations of cells*.
741 *Nature Biotechnology*, 2015. **33**(2): p. 155-160.

742 49. Hao, Y., et al., *Integrated analysis of multimodal single-cell data*. *Cell*, 2021.
743 **184**(13): p. 3573-3587.e29.

744 50. Zhou, J., et al., *Robust single-cell Hi-C clustering by convolution- and*

745 *random-walk-based imputation*. Proceedings of the National Academy of
746 Sciences, 2019. **116**(28): p. 14011.

747 51. Rodriguez, A. and A. Laio, *Clustering by fast search and find of density*
748 *peaks*. Science, 2014. **344**(6191): p. 1492-1496.

749 52. Ye, Y., L. Gao, and S. Zhang, *MSTD: an efficient method for detecting multi-*
750 *scale topological domains from symmetric and asymmetric 3D genomic*
751 *maps*. Nucleic Acids Research, 2019. **47**(11): p. e65-e65.

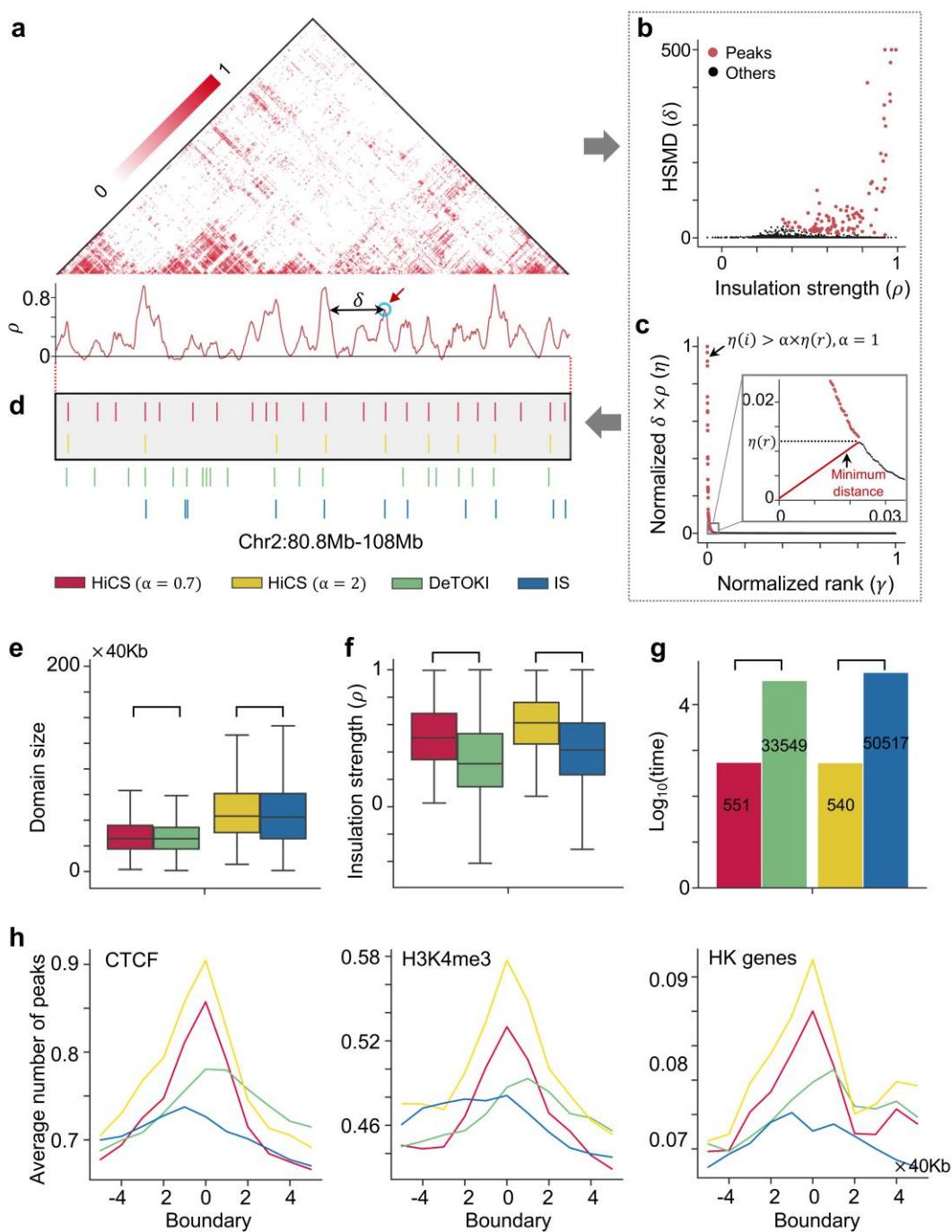
752 53. Luo, X., et al., *3D Genome of macaque fetal brain reveals evolutionary*
753 *innovations during primate corticogenesis*. Cell, 2021. **184**(3): p. 723-
754 740.e21.

755

756

757 **Figures and Tables**

758



759

760 **Figure 1. Illustration and efficiency of HiCS for determining the chromatin**
 761 **domains. a.** An illustrative example of the preprocessed single-cell Hi-C contact map

762 (top) and the insulation strength (ρ) of genomic positions (bottom). HSMD (δ)

763 represents the minimum distance between the bin and any other bins with higher

764 strengths. **b, c.** The decision graph (b) and the normalization value of $\eta = \rho \times \delta$ in a

765 decreasing order (c) for the domain boundaries (colored in red) in the optimal structural

766 identification parameter. The decision graph of optimal structural identification

767 parameter (zoom box in c). **d.** A local example of domain boundaries from map in a at

768 the region Chr2:80.8Mb-108Mb with different methods. **e, f.** Comparison of different
769 methods for domain sizes and insulation strengths. **g.** Runtime (seconds) of different
770 methods or parameters. **h.** The average number of CTCF peaks, H3K4me3 peaks, and
771 HK genes at domain boundaries of single cells. The above results (d-h) are implemented
772 by different methods across all single cells.

773

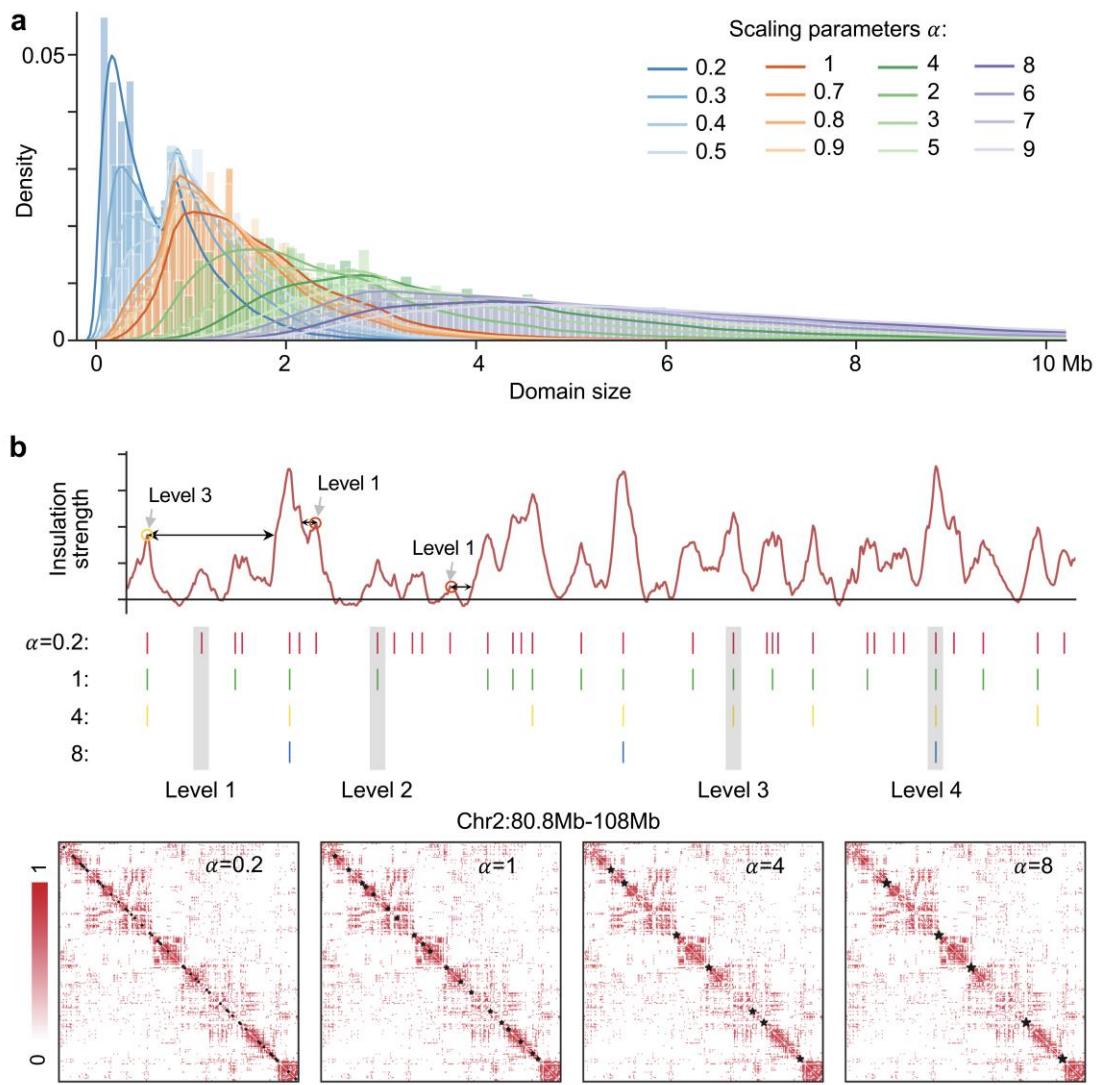
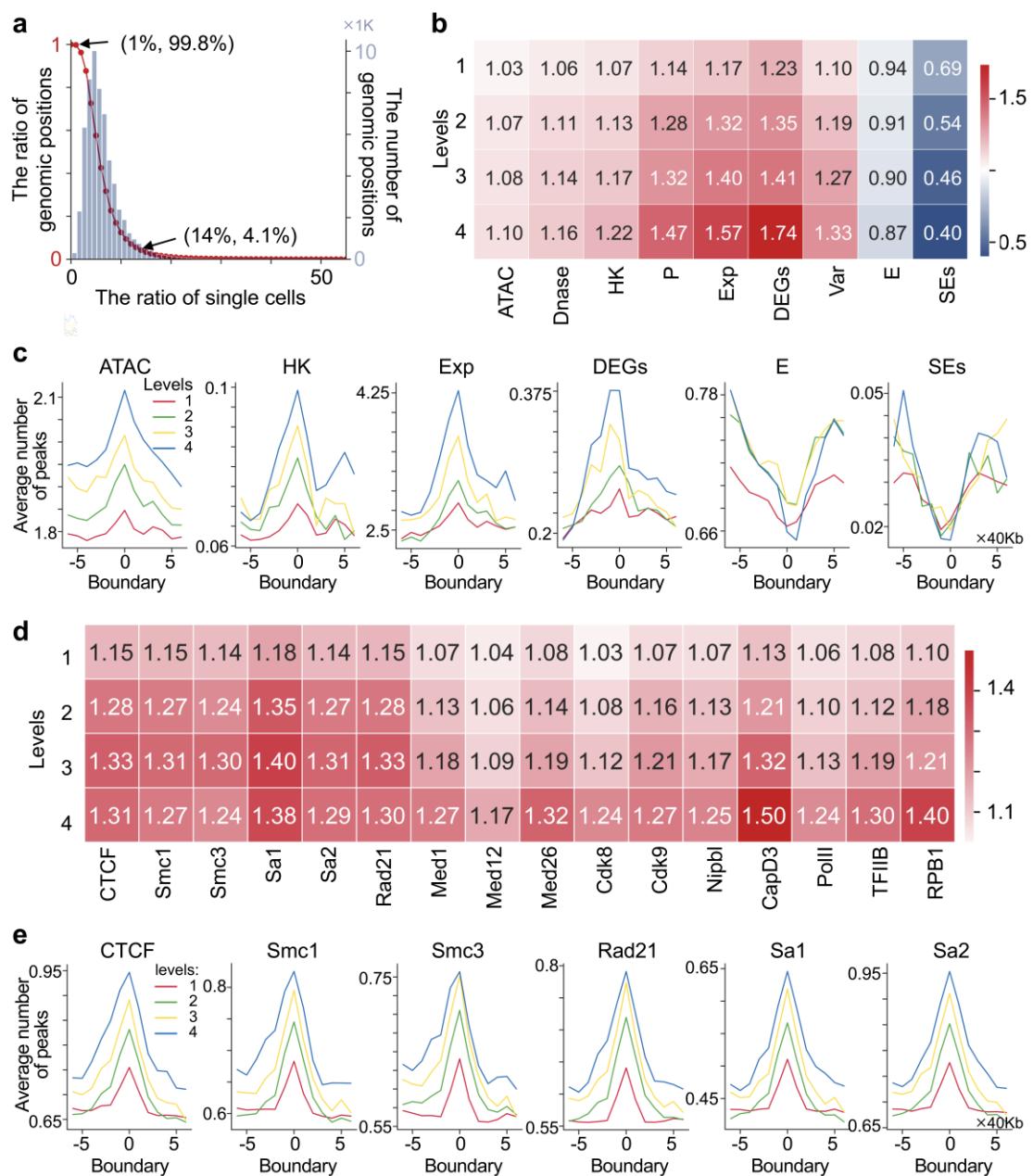


Figure 2. Identification of hierarchical chromatin domains. **a.** Density distribution of domain sizes at different multi-scale parameters. **b.** An example for hierarchical chromatin domains at the region Chr2:80.8Mb-108Mb. Circles mark three boundaries (two boundaries in level 1 have a magnitude difference in local insulation strength, and the boundary in level 3 has lower insulation strength than one of the boundaries in level 1).

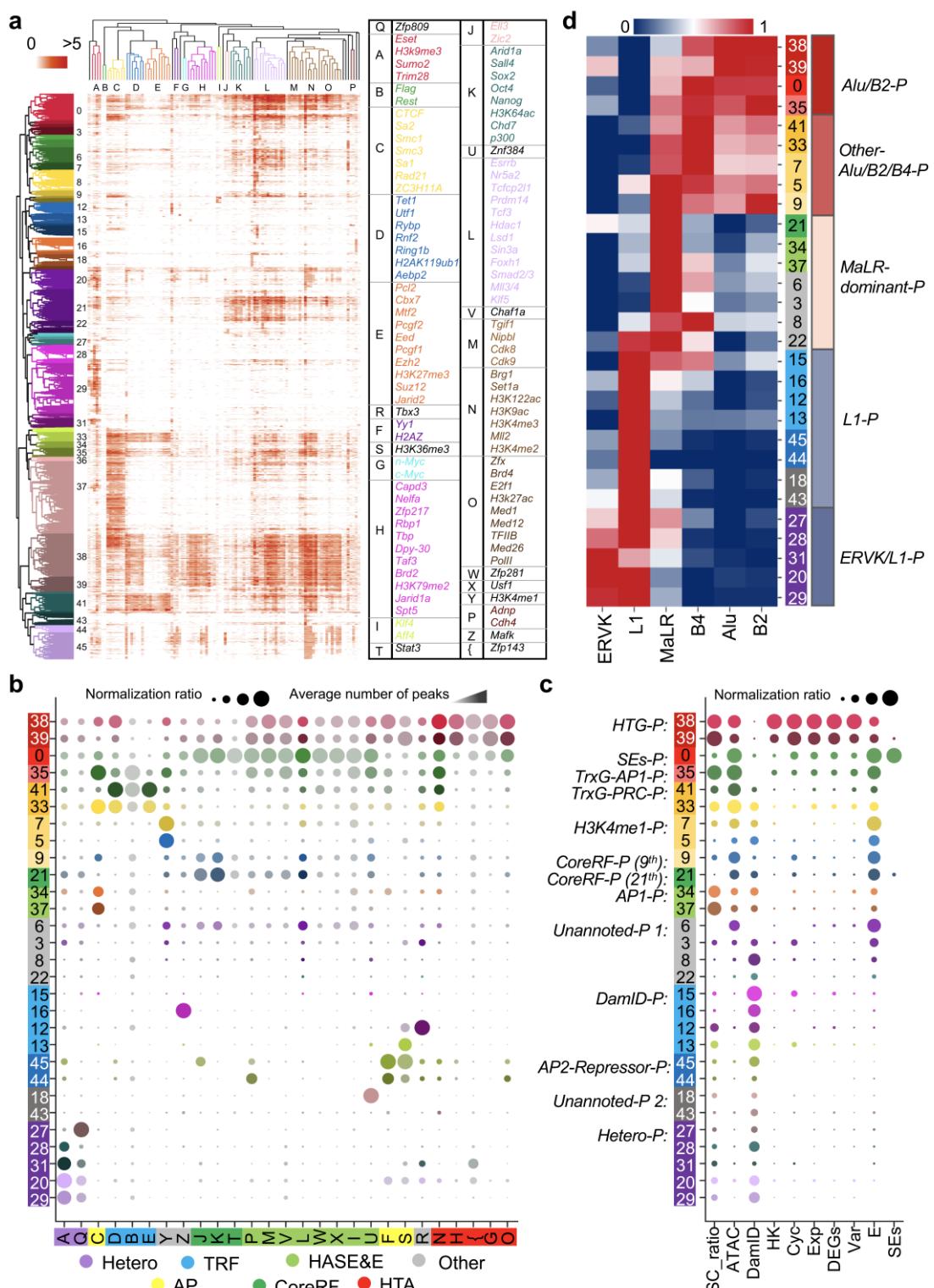
781



782

783 **Figure 3. Regulatory factors navigate the preference of genomic position forming**
 784 **boundaries. a.** The ratio distribution of genomic positions forming boundaries at less
 785 than a given ratio of single cells in the left y-axis (such as 99.8% of genomic positions
 786 form boundaries in at least 1% of cells, respectively), and the number distribution of
 787 genomic positions forming boundaries in the right y-axis as the ratio of single cells
 788 increases. **b-c.** The concentration scores (b) and the average number of ATAC-seq
 789 peaks and multiple regulatory elements (ATAC: ATAC-seq peaks, HK genes, Exp:
 790 gene expression value, DEGs: differentially expressed genes, E: enhancers, SEs) (c)
 791 around domain boundaries. **d.** The concentration scores for CTCF, cohesin, mediator-
 792 and Pol II-associated factors. **e.** The average number of peaks for CTCF and cohesin
 793 around domain boundaries. In b-e, the results were detected in the different genomic

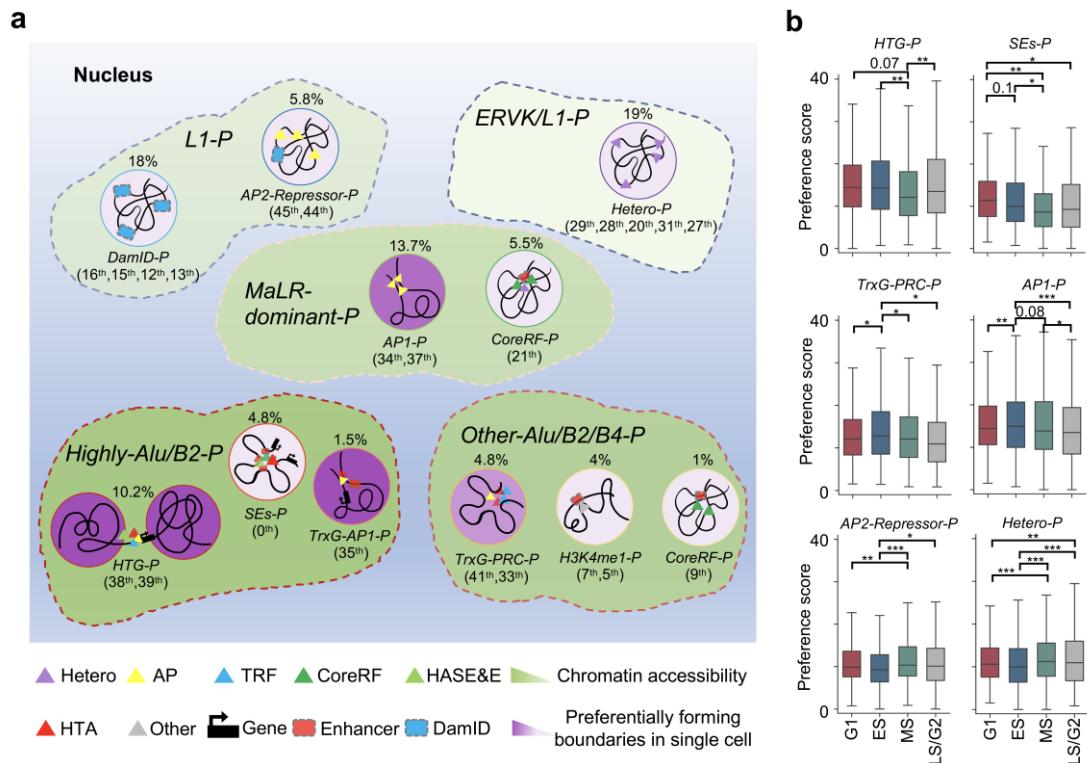
794 scales across all single cells. The concentration score is defined in **Supplementary**
 795 **Methods**.



796 **Figure 4. The systematic analysis on genomic position categories. a.** The bi-cluster
 797 of chromatin positions and regulatory factors. **b.** The column normalization ratio
 798 and the average number of peaks for regulatory factor-classes on genomic position
 799 categories. **c.** The column normalization ratio and the average number of peaks for regulatory factor-classes on genomic position categories. **d.** The concentration score for various genomic categories across genomic positions.

800 categories (different dot color represents different categories in Fig. 4a). **c.** The column
801 normalization ratio of different elements or factors, including SC_ratio (the ratio of
802 single cells forming boundaries), ATAC, DamID (DamID-seq), HK genes, Cyc (mark
803 genes for cell cycle), Exp (gene expression value), DEGs, Variable (variable scores for
804 genes), E (Enhancers), and SEs, on genomic position categories. **d.** The heatmap shows
805 the column normalization ratio of different retrotransposons based on genomic position
806 categories.

807



808

809 **Figure 5. A schematic showing different genomic position categories. a.** The graph
 810 presents the different clusters based on retrotransposons in the area marked by different
 811 colors of dotted line containing multiple functional groups associated with different
 812 regulatory factor-classes (the sub-categories serial number in above and the ratio
 813 occupying from all positions are marked for each functional group). The shades of
 814 purple on the background of circles indicate the preference of genomic positions
 815 forming boundaries in single cells for each functional group, and the shades of green
 816 on the background of these areas marked by dotted line indicate the degree of chromatin
 817 accessibility of genomic positions for each cluster based on retrotransposons. **b.**
 818 Preference scores of different chromatin landscapes categories across different cell
 819 states. Statistical significance is calculated by Welch's t-test (*P < 0.05, **P < 0.01,
 820 and ***P < 0.001). The preference score is defined in **Supplementary Methods**.