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Abstract 28 

The exploration of single-cell 3D genome maps reveals that chromatin domains are 29 

indeed physical structures presenting in single cells and domain boundaries vary from 30 

cell to cell. However, exhaustive analysis of regulatory factor binding or elements for 31 

preference of the formation of chromatin domains in single cells has not yet emerged. 32 

To this end, we first develop a hierarchical chromatin domain structure identification 33 

algorithm (named as HiCS) from individual single-cell Hi-C maps, with superior 34 

performance in both accuracy and efficiency. The results suggest that in addition to the 35 

known CTCF-cohesin complex, Polycomb, TrxG, pluripotent protein families and 36 

other multiple factors also contribute to shaping chromatin domain boundaries in single 37 

embryonic stem cells. Different cooperation patterns of regulatory factors decipher the 38 

preference of genomic position categories forming boundaries. And the most extensive 39 

six types of retrotransposons differentially distributed in these genomic position 40 

categories with preferential localization.  41 

  42 
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Introduction 43 

Genome across a wide range of eukaryotic organisms is efficiently packaged and 44 

organized into hierarchical chromatin architecture via ubiquitous architectural features, 45 

which is critical to gene regulation and dynamical changes in development and disease 46 

[1-3]. These basic features consist of chromatin fibers, which fold into chromatin loops, 47 

such as enhancer-promoter interactions and architectural loops mediated by CCCTC-48 

binding factor (CTCF) [4]. These fibers further fold into chromatin domains, referred 49 

to as topologically associating domains (TADs) or sub-TADs, which are associated 50 

with each other to generate chromosomal compartments. Each chromosome occupies a 51 

distinct volume or chromosome territory within the nucleus [4-6]. Genome architecture 52 

is an integral part of the chromatin landscape that transcription factors (TFs) must 53 

navigate to exert their regulatory roles [7]. Although most loci and chromosomes are 54 

characterized by a high degree of order and non-randomness, the precise functional 55 

roles and formation mechanism of these features remains obscure [8]. 56 

Some TFs, cofactors, and histone modifications that correlate with the chromatin 57 

structures have been identified to study features of chromatin organization [9-11]. 58 

Particularly, TAD boundaries are enriched with multiple factors including CTCF, 59 

cohesin, H3K4me3, H3K36me3, transcription start sites, housekeeping genes, etc, 60 

suggesting that CTCF binding, high levels of transcription activity, multiple histone 61 

modifications, and other regulatory factors may contribute to the formation of 62 

chromatin domains in mammals [8]. Although TADs and their associated regulatory 63 

factors have been widely identified in multiple species and are highly conserved and 64 

stable across different cell types [6, 12], single-cell 3D genome analysis indicated that 65 

they display substantial cell-to-cell variation [13, 14]. Therefore, the bulk analysis only 66 

reflects properties of ensemble average structures from millions of cells, which may 67 

mask chromatin features appearing in a few cells or a single cell and limit our 68 

understanding of chromatin structures. 69 

 A recent study reveals that domain structures often adopt globular conformation 70 

with strongly physical segregation of neighboring domains, and domain boundaries are 71 

preferentially located at CTCF- and cohesin-binding sites with a super-resolution 72 

chromatin tracing method [13]. More surprisingly, single-cell domain structures persist 73 

even after cohesin degradation [13]. These results suggest other TFs or epigenetic 74 

factors may contribute to the formation of chromatin domains. Currently, mouse 75 

embryonic stem cells (mESCs) have been served as a specific model cell system to 76 

elucidate the mechanisms of 3D genome organization and explore the relationship 77 

between chromatin domains and gene regulation. Hundreds of TFs and epigenetic 78 

modification profiles have been identified in mESCs [9-11]. The above observations 79 

push us to investigate the formation of chromatin domains and their relationship with 80 

functional elements in single mESCs systematically. 81 

Here, we first develop a hierarchical chromatin domain structure identification 82 

algorithm (named as HiCS) from single-cell Hi-C maps, which shows superior 83 

performance in both accuracy and efficiency. We reorganize atlas of ChIP-seq for 84 
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mESCs, and reveal the patterns of hundreds of regulatory factors are significantly either 85 

enriched or absented in domain boundaries of single cells, suggesting that, in addition 86 

to known CTCF-cohesin complex, Polycomb, TrxG, pluripotent protein families, 87 

different types of histone modifications, and other multiple factors could promote the 88 

formation of chromatin domains in single mESCs. To further elaborate on cooperation 89 

patterns between different types of regulatory factors, and genomic position categories 90 

with differential preference forming boundaries drive by these cooperation patterns, we 91 

cluster 13 large genomic position categories (consisting of 29 sub-categories) annotated 92 

by 7 different regulatory factor clusters (consisting of 27 sub-clusters). The clear 93 

patterns provide a detailed view of the preference of these genomic position categories 94 

forming domain boundaries. Furthermore, we discover that these genomic position 95 

categories are enriched by different cooperation of retrotransposons with preferential 96 

localization. Last but not the least, we find that genomic positions enriched by 97 

Alu/B2/B4 retrotransposons have higher preference scores for forming boundaries in 98 

G1 and ES phases in comparison with MS and LS/G2 phases, whereas genomic 99 

positions enriched by L1/ERVK retrotransposons display opposite tendency. In 100 

summary, we reveal that multiple types of regulatory factors interplaying with each 101 

other in specific genomic positions could affect focal chromatin interactions, thereby 102 

changing interaction density or insulation strength of these regions. This further 103 

navigates the preference of genomic position forming boundaries, shape hierarchical 104 

chromatin domains, and thus regulate gene expression and cell functions, even cell 105 

identity in single embryonic stem cells. 106 

 107 

Results 108 

Overview of HiCS. The key design of HiCS is to convert the problem of the 109 

identification of hierarchical chromatin domains into finding peaks of insulation 110 

strength at different genome scales. The domain boundaries usually have higher 111 

insulation strength than their neighbors and a relatively large distance from any regions 112 

with higher strength (Fig. 1a). HiCS calculates two metrics for each bin including the 113 

insulation strength 𝜌 and the minimum distance between the bin and any other bin with 114 

higher strength 𝛿, and controls the number of peaks to obtain the hierarchical chromatin 115 

domains at different scales by 𝛼  (Fig. 1b and c). HiCS is super-fast to identify a 116 

chromatin hierarchy that the domain of a higher level embraces the multiple smaller 117 

ones of a lower level (Fig. 2b). Note that high-level boundaries with high 𝛿 in local 118 

regions may have lower insulation strength than low-level ones, and the boundaries in 119 

the same level may have different local insulation strengths, HiCS can automatically 120 

detect different level domain boundaries based on local background (Fig. 2b). 121 

Specifically, HiCS consists of three steps (Methods): (1) Preprocesses single-cell 122 

Hi-C data and calculates the two metrics to find the peaks at a given scale 𝛼, and 123 

determines the domain boundaries for each chromosome of an individual cell (Fig. 1a-124 

c); (2) Determines the hierarchical domains of a chromatin by adjusting the optimal 125 

structural identification parameter (𝛼 = 1) (Fig. 1c, Fig. 2a, b, and Supplementary 126 
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Fig. S1a), Noting that the optimal parameter is automatically determined by the 127 

algorithm; (3) Applies a bi-clustering method to group chromatin positions and 128 

regulatory factors respectively and analyzes the genomic structure-function 129 

relationship by combining hundreds of TFs and epigenetic factors with chromatin 130 

domains (Fig. 4).  131 

 132 

HiCS shows superior performance. We benchmark the performance of HiCS for 133 

domain detection against two methods: one is the commonly used method for bulk data, 134 

insulation score (IS) [15], and another is a recent single-cell TAD detection method, 135 

deTOKI [16]. We apply these methods to the preprocessed single-cell Hi-C data 136 

generated from mESCs [17]. To compare the performance of them fairly, we adjust the 137 

scaling parameter of HiCS to obtain similar number and size of domains with IS and 138 

deTOKI, respectively (Fig. 1e). Actually, the insulation strengths of domains obtained 139 

from HiCS is significantly higher than those of IS and deTOKI respectively with similar 140 

number of domains, suggesting its superiority to competing methods (Fig. 1f). The 141 

running time of HiCS is significantly less than both algorithms under the same 142 

hardware condition (Fig. 1g). Moreover, the domain boundaries detected by HiCS are 143 

more significantly enriched in multiple common factors, including CTCF, H3K4me3, 144 

Housekeeping (HK) genes (Fig. 1h), as well as RNA polymerase II (PolII), promoters, 145 

highly expressed genes, and average phastcon score (Supplementary Fig. S1b). Also, 146 

the boundaries detected by HiCS are more pronounced disappearance of the enhancers 147 

or the super enhancers (SEs), which unfavorably form boundaries in single cells as 148 

reported on analysis of bulk-cells [9] (Supplementary Fig. S1b). With an example, we 149 

can see that HiCS can obtain more accurate chromatin domain boundaries at single-cell 150 

resolution (Fig. 1a and d). Taken together, HiCS shows superior performance in both 151 

accuracy and efficiency. 152 

 153 

The existence of hierarchical chromatin domains. We adjust the optimal structural 154 

identification parameter to generate multiple-scale chromatin domains at different 155 

genomic scales for 1315 single mESCs at 40kb resolution. We clearly observe four 156 

peaks of domain size and insulation strength distribution with different scaling 157 

parameters of 0.2, 1, 4, and 8, which we choose for the downstream analysis (Fig. 2a, 158 

b and Supplementary Fig. S1a). The domain scales of these four levels are 159 

approximately 200Kb~600Kb, 800Kb~1Mb, 2Mb~3Mb, and ~5Mb respectively. We 160 

show an example for hierarchical chromatin domains, which well match the local 161 

insulation strength of chromatin regions (Fig. 2b).  162 

The median size of chromatin domains increases and the median boundaries’ 163 

insulation strength enhances with the increase of genomic position level 164 

(Supplementary Fig. S2a-c). The boundaries show obvious cell-to-cell heterogeneity 165 

with a nonzero probability of being located at any genomic positions. 99.8% of genomic 166 

positions form boundaries in at least 1% of cells, while only 4.1% of genomic positions 167 

form boundaries in more than 14% of cells (Fig. 3a). We also observe that the 168 
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probability forming boundaries enhances with the levels of genomic position increasing 169 

(Supplementary Fig. S2d). The above observations suggest that domain boundaries 170 

vary from cell to cell with nonzero probability at all genomic positions as reported in 171 

[13], and the preference of genomic position forming boundaries may shape the 172 

formation of hierarchical chromatin domains in single cells.  173 

 174 

Regulatory factors navigate the preference of genomic position forming 175 

boundaries. Recent study has shown that domain boundaries are preferentially located 176 

at CTCF- and cohesin-binding sites with a super-resolution chromatin tracing method 177 

[13]. CTCF and cohesin have been proven to be key factors controlling the functional 178 

architecture of mammalian chromosomes forming TADs or sub-TADs by “loop 179 

extrusion” [18]. Indeed, we observe that both CTCF and cohesin show similar 180 

enrichment patterns in boundaries of single cells in different genomic levels, and as the 181 

level of boundaries increases, the degree of enrichment gradually increases (Fig. 3d 182 

and e). 183 

Previous study has illustrated that high levels of transcription activity may 184 

contribute to TAD formation in bulk analysis [19]. Here, we observe that the 185 

accessibility of genomic positions, the enrichment degree of HK genes and 186 

differentially expressed genes (DEGs), and the expression of genes gradually 187 

increases along with the increasing levels of genomic positions (Fig. 3b, c and 188 

Supplementary Fig. S2e). Conversely, enhancers and super enhancers (SEs) greatly 189 

become more absented with the increase of levels (Fig. 3b and c). It suggests that the 190 

emergence of highly transcriptional activity, especially DEGs, and the absence of 191 

enhancers, especially SEs, improve the probability of genomic positions forming 192 

boundaries of single cells (Fig. 3b and c). 193 

Although the CTCF-cohesin complex is critical for the formation of TADs in 194 

mammalian cells, a substantial number of boundaries remain unaffected after cohesin 195 

degradation in single cells, suggesting other modulators exist on domain boundaries [7, 196 

20]. We indeed observe that mediators (Med1, Med12, Med26, Cdk8, Cdk9), Nipbl, 197 

PolII, TFIIB are all enriched in the boundaries of single cells, and as the level of 198 

boundaries increases, the degree of enrichment gradually increases (Supplementary 199 

Fig. S2g-f). Mediators are essential coactivators that are recruited to the regulatory 200 

regions of active genes and facilitate the ability of enhancer-bound TFs to recruit PolII 201 

to the promoters of target genes, and Nipbl has been proven to bind mediator to load 202 

cohesin [9, 10, 21, 22]. The above results suggest that these factors may play important 203 

roles in shaping preference of genomic position forming boundaries of single cells. 204 

The master factors of Polycomb repressive complex 1 (PRC1) and PRC2 just 205 

exhibit two different enrichment patterns at the domain boundaries of single cells. One 206 

type (Aebp2, Rybp, Ring1b) forms obvious single peaks at the domain boundaries, and 207 

the degree of enrichment gradually increases with the boundary level increasing 208 

(Supplementary Fig. S3a). Another type (Ezh2, Pcl2, Suz12, Eed) shows double peaks 209 

around the domain boundaries (Supplementary Fig. S3b). These two types of 210 
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complexes have been proved to have distinct catalytic activities, but both are generally 211 

associated with transcriptional silencing [23]. We also observe that TrxG associated 212 

proteins (COMPASS: Set1a, Mll2, Mll3/4, and SWI/SNP: Brg1) are all enriched in 213 

domain boundaries, except for Mll3/4 (Supplementary Fig. S3c). In mammalian, 214 

Set1a reportedly contributes to most of the H3K4me3, and Mll2 mediates H3K4me2 215 

and H3K4me3 at developmental genes, while Mll3/4 implements monomethylation of 216 

H3K4 at enhancers [24]. Brg1 is an ATP-dependent chromatin remodeler, contributing 217 

to the maintenance of pluripotency and self-renewal in ESCs [9]. The above results 218 

suggest that the PRC and TrxG protein families could change focal chromatin 219 

interactions in different ways. 220 

We find that the core TFs (Oct4, Sox2, and Nanog) controlling the pluripotent state 221 

do not prefer to appear in domain boundaries, which may be related to chromatin hubs 222 

occupied by super-enhancers/enhancers (Supplementary Fig. S4a) as reported in [25]. 223 

In addition, we also collect 14 additional TFs that may contribute to the pluripotent 224 

state of mESCs and investigate whether they are enriched in domain boundaries of 225 

single cells [9] (Supplementary Fig. S4b and c). The results indicate that 9 additional 226 

TFs (Esrrb, Nr5a2, Klf4, Zfp281, Tcf3, Tcfcp2l1, Stat3, Prdm14, and Smad2/3) that 227 

were previously shown to occupy both typical enhancers and SEs do not prefer to 228 

appear in domain boundaries, while 5 factors (c-Myc, n-Myc, Zfx, Tbx3, and Yy1) that 229 

were previously shown to occupy promoter-proximal sites are enriched in domain 230 

boundaries [9]. Among them, it is particularly interesting that Smad2/3, Stat3, and Tcf3 231 

signaling pathways were considered as key modulators controlling mESCs pluripotent 232 

state transition by modifying chromatin states and shaping chromatin domains [26-28].  233 

In addition, we also observe additional 45 proteins are either enriched or absented 234 

in domain boundaries of single cells with different enrichment patterns 235 

(Supplementary Figs. S5-7), which suggests their potential in shaping chromatin 236 

domains. 237 

The above TFs and chromatin regulators have the most profound impact on cell 238 

states through collaborative control of chromatin states and spatial structures. 14 239 

different histone-modifying enzymes show a variety of enrichment patterns around 240 

domain boundaries of single cells (Supplementary Fig. S8). For example, ZC3H11A 241 

shares consistent enrichment patterns with CTCF-cohesin (Fig. 3e and 242 

Supplementary Fig. S8). H3K27me3 shares similar enrichment patterns with PRC2, 243 

while H2AK119ub1 shares similar enrichment patterns with PCR1 (Supplementary 244 

Figs. S3a and b), which are consistent with their function in participating chromatin 245 

modifications [23]. H3K4me1 marking of enhancers is not enriched in domain 246 

boundaries. And H3K4me2 shares similar enrichment patterns with H3K4me3 around 247 

domain boundaries, which all are associated with TrxG protein family [24] 248 

(Supplementary Fig. S3c). It suggests different histone modifications may cooperate 249 

with different TFs and chromatin regulators, to modify chromatin states, shape the local 250 

chromatin interaction status and organize chromatin domains of single cells. 251 
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 To sum up, we have observed hundreds of TFs, chromatin regulators, and histone 252 

modifications are significantly either enriched or absented in domain boundaries of 253 

single cells with differential enrichment patterns. The occupancy of these regulatory 254 

factors in specific genomic positions will affect focal chromatin interactions, thereby 255 

changing the interaction density or insulation strengths of these regions. These 256 

processes may navigate the preference of genomic position forming boundaries, and 257 

then shape hierarchical chromosome domains of single cells. 258 

 259 

Cooperation among regulatory factors differentiate genomic position categories. 260 

To further elaborate on cooperation patterns between different types of regulatory 261 

factors, and genomic position categories with differential preference forming 262 

boundaries drive by these cooperation patterns, we grouped 13 large spatially organized 263 

genomic position categories (consisting of 29 sub-categories), which were annotated 264 

by 7 different regulatory factor clusters (consisting of 27 sub-clusters). The result helps 265 

to explain the preference of genomic position forming boundaries in single cells, and 266 

providing an increasingly complex view of the genomic structure-function relationship 267 

(Fig. 4 and Supplementary Fig. S9). 268 

The categories of regulatory factors. The result of hierarchical clustering indicates 269 

that these categories mainly consist of the cluster of core regulatory factors of mESC 270 

(CoreRF, particularly Oct4, Sox2, and Nanog), the clusters associated with highly 271 

active activators for SEs and enhancers (HASE&E), the clusters of highly transcribed 272 

activators (HTA), the clusters of transcriptional repressor factors (TRF), the cluster 273 

associated with heterochromatin factors (Hetero), and the clusters of architectural 274 

proteins (AP). There are also a few single factors (Other) (Fig. 4a and Supplementary 275 

Fig. S9). For a specific example with less prior studies among these clusters, Sumo2 is 276 

required to play critical roles in the canonical Zfp809/Trim28/Eset complex via post-277 

translational sumoylation of Trim28, which enhances the recruitment of Trim28 to the 278 

proviral DNA, resulting in the modification of proviral chromatin with repressive 279 

histone H3K9me3 marks in turn [29]. These four factors were grouped with H3K9me3 280 

together in the analysis below, which may organize the formation of heterochromatin 281 

(Fig. 4a). The annotation information and supporting materials of these all categories 282 

were summarized in Supplementary Table S2. 283 

We also observe some interesting cooperative patterns among different clusters 284 

(Supplementary Fig. S9b). For example, the CoreRF cluster is strongly associated 285 

with the HASE&E cluster, but not the HTG cluster, while the HASE&E cluster is 286 

intimated to the HTG cluster. It suggests the HASE&E cluster may be a bridge between 287 

CoreRF and HTG clusters, which can be linked to various signaling pathways involved 288 

in the transcriptional network in mESCs. 289 

The division of genomic position categories. We further analyze the preference of 290 

genomic position categories with a ratio>1% (Supplementary Fig. S10a). These 291 

genomic position categories can be divided into three families, including the categories 292 

with high accessibility preferentially forming boundaries, the categories with high 293 
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accessibility unfavorably forming boundaries, and the categories with low accessibility 294 

unfavorably forming boundaries (Fig. 5a and Supplementary Fig. S10b).  295 

Of note, the largest type with weak open chromatin accessibility (13.7% of all 296 

positions, consisting of 12.6%, 1.1% from the 37th, 34th classes, respectively, defined 297 

as AP1-Positions) preferentially forming boundaries only are significantly occupied by 298 

AP1 factors (CTCF, cohesin, etc.) comparing with other types of factors (Fig. 4b, c and 299 

Fig. 5a). Previous studies have indicated that loop extrusion executed by CTCF and 300 

cohesin is a leading factor governing domain formation and facilitating chromatin 301 

folding. We find that the other subunits (Sa1 and Sa2) of cohesin which occupy the 302 

same genomic locus and present similar enrichment patterns at boundaries of single 303 

cells, suggesting that both Sa1 and Sa2 may also participate in the maintenance of 304 

domain boundaries (Fig. 3e). ZC3H11A, a zinc finger protein, shows a uniform pattern 305 

as Sa1 and Sa2, implying its novel role in shaping boundaries of chromatin domains 306 

(Supplementary Fig. S8). The chromatin positions that AP1 proteins occupy may be 307 

directly related to the macroscopic architecture of chromatin within the nucleus, and 308 

indirectly change the local chromatin context to exert regulatory functions. 309 

The second major category of open chromatin positions preferentially forming 310 

boundaries (7.5%, 2.7% from the 38th, 39th classes, defined as HTG-Positions) is 311 

associated with highly transcribed genes (Fig. 4b, c and Fig. 5a). These regions are 312 

mainly occupied by the HTA (particularly the TrxG class, playing important roles in 313 

orchestrating the stable activation of gene expression) and HASE&E clusters, but not 314 

the CoreRF cluster, which indicates that the CoreRF cluster hardly participates in the 315 

regulation of genes occupying in domain boundaries of single cells.  316 

The third major category of open chromatin positions preferentially forming 317 

boundaries (3.1%, 1.7% from the 41th, 33th classes, defined as TrxG-PRC-Positions, 318 

1.5% from the 35th class, defined as TrxG-AP1-Positions) is associated with PRC, TrxG, 319 

and AP1 proteins (Fig. 4b, c and Fig. 5a). The 33th class of genomic regions is also 320 

associated with AP1 proteins with a higher probability of forming domain boundaries 321 

of single cells compared with the 41th class, which suggests CTCF-cohesin complexes 322 

may help these regions form a more stable structure. In addition, the 35th class of 323 

genomic region with higher enrichment of TrxG proteins and lower enrichment of PRC 324 

proteins compared with the 33th class, which results in higher open chromatin 325 

accessibility, enhancers occupation, and probability forming domain boundaries in 326 

single cells. The above results indicate that chromatin modifiers (TrxG and PRC 327 

proteins) can provide an additional layer of regulation by changing chromatin structures, 328 

and balance the formation of domain boundaries by repressing and activating chromatin 329 

states, respectively.  330 

The major categories of the open chromatin positions unfavorably forming 331 

boundaries are associated with highly active SEs or enhancers, which mainly contain 332 

three categories (Fig. 4b, c and Fig. 5a). The first category (4.8% from the 0th class, 333 

defined as SEs-Positions) almost encompasses more than 75% of SEs, which are 334 

strongly related with the HASE&E, CoreRF, TrxG, and Med-PolII clusters. The second 335 
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category (5.5%, 1% from the 21th, 9th classes, defined as CoreRF-Positions) is mainly 336 

associated with enhancers occupied by CoreRF. The slight difference between the 21th 337 

and 9th classes is that the 9th one shows higher chromatin accessibility, while the 21th 338 

one shows a stronger DamID enrichment, which may be related to their locations in the 339 

nucleus. The third category (2.7%, 1.3% from the 7th, 5th classes, H3K4me1-Positions) 340 

are related to enhancers enriched by H3K4me1. These regions taking SEs or enhancers 341 

associated with CoreRF and H3K4me1 as focal regions generate dense chromatin 342 

structures mediated by different regulatory factors in an orientation-independent 343 

manner, and unfavorably form boundaries in single cells with weakened insulation 344 

strengths [30]. 345 

We also check the classes of genomic positions with low chromatin accessibility, 346 

all of which unfavorably form boundaries in single cells. These chromatin positions are 347 

mainly divided into the following categories (Fig. 4b, c and Fig. 5a). The first category 348 

(19% of all positions, consisting of 9.2%, 3.7%, 3.5%, 1.6%, and 1% from the 29th, 28th, 349 

20th, 31th, and 27th classes, respectively, defined as Hetero-Positions) are associated 350 

with the Hetero cluster. The second category (18% of all positions, consisting of 2.8%, 351 

2.3%, 1.9%, and 1.7% from the 16th, 15th, 12th, and 13th classes, respectively, defined 352 

as DamID-Positions) maintains high enrichment of the DamID signal. The above 353 

observations suggest that the presence of heterochromatin factors reduce the probability 354 

of single-cell domain boundaries formation. Finally, we observe an interesting and 355 

specific category (4.6%, 1.2% from the 45th, 44th classes, defined as AP2-Repressor-356 

Positions), which are associated with the AP2 (Yy1 and H2AZ) and H3K36me3 classes 357 

(Fig. 4a and Fig. 5a). Both Yy1 and H2AZ facilitate the organization of genome 358 

architecture (Supplementary Table S2) [31-34].  359 

 To summarize, we obtain the following key results by the above analysis: (1) The 360 

genomic positions occupied by architectural proteins (CTCF and cohesin), highly 361 

transcribed genes, and TrxG proteins preferentially form boundaries in the single cells 362 

analysis. (2) The genomic positions taking SEs or enhancers associated with CoreRF 363 

or marked by H3K4me1, heterochromatin factors, and repressing factors unfavorably 364 

form boundaries in single cells with weakened insulation strengths.  365 

 366 

Retrotransposons are associated with these genomic position categories. In a recent 367 

paper, Shen and colleagues find that retrotransposons embedded in 3D genome 368 

architecture, regulates the formation of euchromatin and heterochromatin respectively, 369 

particularly the separation of compartments A/B [35, 36], which are consistent with our 370 

observations. Notably, our study focuses on the effect of retrotransposons on the 371 

preference of genomic position forming boundaries in single cells. In order to explain 372 

the preference of genomic position categories forming boundaries in single cells with 373 

more detail, we further analyze the influences of the largest six types of 374 

retrotransposons on genomic architecture. 375 

We observe that the division of genomic position categories is strongly associated 376 

with the regulation of retrotransposons. The genomic positions are clearly divided into 377 
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five functional units based on categories of retrotransposons, including Highly-Alu/B2-378 

Positions, Other-Alu/B2/B4-Positions, MaLR-dominant-Positions, L1-Positions, and 379 

ERVK/L1-Positions (Fig. 4d and Fig. 5a).  380 

Firstly, all genomic regions (Hetero-Positions, DamID-Positions, AP2-Repressor-381 

Positions) with low accessibility and unfavorably forming boundaries are enriched by 382 

L1 elements, which tend to occupy gene-poor, heterochromatic B compartments that 383 

interact with lamina-associated domains in previous studies [35]. Among the defined 384 

regions, we are surprised to find that Hetero-Positions are specially associated with 385 

ERVK elements, which may indicate that ERVK acts as specific roles in regulating 386 

embryonic development as reported in [37, 38]. The above observation also implies 387 

that the previously unannotated 18th and 43th genomic positions may be related to 388 

heterochromatin organization. 389 

We also observe that genomic regions (HTG-Positions, SEs-Positions, TrxG-AP1-390 

Positions, TrxG-PRC-Positions, H3K4me1-Positions, the 9th class of CoreRF-Positions) 391 

are enriched by Alu/B2/B4, which may be related to euchromatin organization [35]. 392 

HTG-Positions, SEs-Positions as well as TrxG-AP1-Positions with higher Alu/B2 393 

enrichment than others suggest that the enrichment of Alu/B2 may indicate the 394 

transcription level of genes, and promote the formation of hierarchical chromatin 395 

structures by regulating gene transcription and SEs/Enhancer activation.  396 

Besides the above genomic positions, what is interesting is that MaLR elements 397 

are enriched in AP1-Positions, the 21th class of CoreRF-Positions, and other 398 

unannotated regions (the 6th, 3th, 8th, and 22th classes). We first observe that the 21th 399 

class occurs a stronger heterochromatin factors (the Hetero cluster) enrichment 400 

compared to the 9th (CoreRF-Positions), which may result in uncertain chromatin states 401 

in the 21th positions (Fig. 4b and c). In addition, previous studies have shown that 402 

domain boundaries mediated by AP1 proteins (e.g., CTCF and cohesin) may block the 403 

spread of chromatin states [4]. It may suggest that the regions dominantly enriched by 404 

MaLR elements may often undergo switches between euchromatin and 405 

heterochromatin. 406 

In summary we find that: (1) L1-Positions with low accessibility and unfavorably 407 

forming boundaries are associated with heterochromatin organization, and Alu/B2/B4-408 

Positions are associated with euchromatin chromatin, which are consistent with a recent 409 

study [35], while MaLR-Positions may result in switches between euchromatin and 410 

heterochromatin, which is yet to be proven. (2) ERVK elements acts as specific roles 411 

heterochromatin formation, while Alu/B2 may promote highly transcription of genes 412 

and highly activation of SEs/Enhancers. These retrotransposons contribute to the 413 

maintaining of chromatin states, and interplay with other types of regulatory factors, to 414 

navigate the preference of genomic positions forming boundaries and gene regulation 415 

in single cells. 416 

 417 

Genomic landscape regulates cellular states. To investigate the preference of 418 

genomic positions in the above functional groups along the cell cycle process, we check 419 
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the dynamics of each functional group forming boundaries in single cells among four 420 

different cycle phases, including G1, early-S (ES), mid-S (MS), and late-S/G2 (LS/G2). 421 

We first reveal that genomic positions enriched by SEs show a significant preference 422 

for forming boundaries in the G1 phase (Fig. 5b). The observation suggests that highly 423 

activation of SEs in the phase may promote gene regulation and transcription for cell 424 

growth in size, and ensure biomaterials for DNA synthesis. In addition, the functional 425 

group (HTG-Positions) accompanied with highly transcribed genes exhibits a 426 

significant loss of boundaries in the MS phase, which may be because the rates of 427 

transcription and protein synthesis are low during DNA replication (Fig. 5b). We also 428 

observe that functional groups occupied by both CTCF-cohesin and TrxG-PRC 429 

complexes prefer to form boundaries in ES phases (Fig. 5b). The observation implicates 430 

in the clearest segmentation of chromatin structures at the beginning of DNA 431 

replication [39, 40]. Both complexes have been proven to modify local chromatin 432 

structure and regulate higher-order chromatin organization [7, 41]. And functional 433 

groups (Hetero-Positions and AP2-Repressor-Positions) associated with 434 

heterochromatin organization prefers to form boundaries in both MS and LS/G2 phases 435 

(Fig. 5b). Both phases may prepare for everything entering the mitosis phase with 436 

condensing chromatin states. 437 

In general, genomic positions (HTG-Positions, SEs-Positions, TrxG-AP1-438 

Positions, TrxG-PRC-Positions, H3K4me1-Positions, and the 9th class of CoreRF-439 

Positions) enriched by Alu/B2/B4 retrotransposons have higher preference scores for 440 

forming boundaries of single cells in G1 and ES phases in comparison with MS and 441 

LS/G2 phases, whereas genomic positions (Hetero-Positions, AP2-Repressor-Positions, 442 

and DamID-Positions) enriched by L1/ERVK retrotransposons display opposite 443 

tendency, following by high preference scores for forming boundaries in both MS and 444 

LS/G2 phases (Fig. 5b and Supplementary Fig. S11). The above observations further 445 

expound that the dynamic interplay among different types of regulatory factors, 446 

retrotransposons, and chromatin structures could navigate gene regulation and cell 447 

functions, even cell identity in single embryonic stem cells. 448 

 449 

Discussion 450 

Several decades of research have shown that eukaryotic chromatin adopts a complex 451 

hierarchical architecture within the nucleus, which plays a key role in functional 452 

implications for almost all nuclear processes. Thus, the spatially organized chromatin 453 

architecture interplaying with multiple types of regulatory factors shape focal 454 

chromatin landscapes and then exert gene regulatory functions. Single-cell 3D genome 455 

analysis extends the limitation of bulk analysis to show substantial cell-to-cell variation 456 

and promote our understanding of chromatin structures in the individual cell. Recent 457 

discoveries on single-cell 3D genome have shed light on the relationship between 458 

CTCF-cohesin complexes and domain formation, but the more molecular details 459 

associated with regulatory factors remain to be investigated [13]. 460 
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Here, we develop HiCS to detect hierarchical chromatin domains from single-cell 461 

Hi-C maps, and observe hundreds of regulatory factors, including TFs, chromatin 462 

regulators, and histone modifications, are significantly either enriched or absented in 463 

domain boundaries of single cells, which presents several different enrichment patterns. 464 

The results suggest their potential cooperative associations in shaping focal chromatin 465 

interactions, thereby changing interaction density or insulation strength of these regions, 466 

and drive different genomic position categories. We further group chromatin position 467 

categories and different regulatory factor clusters, explaining the emergence and 468 

functionality of different chromatin landscapes and providing a comprehensive view of 469 

the genomic structure-function relationship. We also find that different 470 

retrotransposons exactly match the above genomic position categories. The above 471 

results indicate that these regulatory factors interplaying with each other exert gene 472 

regulatory processes and control cell functions, even cell identity. 473 

The chromatin structures within the nucleus operate in an obvious dynamic process 474 

driven by both “loop extrusion” and attractive process induced by regulatory factors 475 

(associated with compartmentalization). The process may condense or loose local 476 

chromatin landscapes in an overlapping and concerted manner accompanied by 477 

adjusting insulation strength of chromatin position and generating chromatin loops, and 478 

then shape gene expression programs during cell-fate specification [39]. Further work 479 

is needed to leverage more specific chromatin structures, particularly chromatin loops, 480 

of single cells with more abundant regulatory factors (TFs, chromatin regulators, 481 

histone modifications, retrotransposons, RNA, even structural variations) to understand 482 

structure-function relationships in complex tissues or diseases, particularly cancers [42, 483 

43]. It will promote our understanding of how multiple types of regulatory factors 484 

interact with chromatin topological engines (such as loop extraction and 485 

compartmentalization) to regulate the gene-repression program, determine cell 486 

functions and identity, and further explain tissue complexity and disease development. 487 

 488 

Materials and Methods 489 

Single-cell Hi-C and other genomic data processing 490 

Single-cell Hi-C data generated from mESCs. The single-cell Hi-C dataset used in this 491 

study consists of 1992 diploid cells of mESCs grown in 2i media without feeder cells 492 

with stringent quality control filter. This dataset involves a median number of 393506 493 

restriction fragments, and 127233 distinct >1 kb contacting pairs on average per cell 494 

[17]. The top 1315 cells with >250000 contacts per cell were selected for downstream 495 

analysis. Among them, 317, 341, 303, and 354 cells belong to G1, early-S (ES), mid-S 496 

(MS), and late-S/G2 (LS/G2) phases labeled by fluorescence-activated cell sorting 497 

(FACS) sort criterion, respectively. 498 

 499 

An atlas of ChIP-seq for mESCs. We organized an atlas of ChIP-seq for hundreds of 500 

regulatory factors of mESCs (Supplementary Table S1), including CTCF, cohesin 501 

(Smc1, Smc3, Rad21, Sa1, Sa2), mediators (Med1, Med2, Med26, Cdk8, Cdk9), 502 
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codensin (Capd3, Nipbl), PolII, TFIIB, polycomb repressive complex (Aebp2, Rybp, 503 

Ring1b, Rnf2, Suz12, Ezh2, Eed, Pcl2), Trithorax protein family (Set1a, Mll2, Mll3/4, 504 

Brg1), the core regulatory factors of mESC (Oct4, Sox2, Nanog), the regulatory factors 505 

of ESC occupied on enhancers or SEs (Esrrb, Nr5a2, Klf4, Stat3, Prdm14, Zfp281, Tcf3, 506 

Tcfcp2l1, Smad2/3), the regulatory factors of ESC occupied on promoter-proximal sites 507 

or sites that border topological domains (c-Myc, n-Myc, Zfx, Tbx3, Yy1), and additional 508 

45 TFs. We collected 14 histone modification factors, including H3K4me1, H3K4me2, 509 

H3K4me3, H3K27me3, H3K36me3, H3K79me2, H3k9me3, H3K9ac, H3K122ac, 510 

H3K64ac, H3K27ac, H2AZ, ZC3H11A, and H2AK119ub1. In addition, we also 511 

collected two chromatin accessibility datasets (ATAC-seq and Dnase-seq) and the 512 

DamID-seq dataset.  513 

For the ChIP-seq of regulatory factors, peaks were called using MACS2 software 514 

with q-value cut-off 1 × 10−5 [44]. The source information and supporting materials 515 

of these factors were summarized in Supplementary Table S1 and S2. 516 

 517 

Regulatory elements and genes. Enhancers/SEs and gene expression datasets of 518 

mESCs were downloaded in GSE29278 [45]. Housekeeping genes were downloaded 519 

in Housekeeping and Reference Transcript Atlas (HRT Atlas v1.0, 520 

www.housekeeping.unicamp.br) [46]. PhastCons scores were downloaded from the 521 

UCSC Genome Browser via 522 

ftp://hgdownload.cse.ucsc.edu/goldenPath/mm9/phastCons30way/vertebrate [47]. 523 

Mouse cell-cycle annotated genes were obtained from the mouse genome informatics 524 

(MGI) (http://www.informatics.jax.org/), containing 891 genes relating to cell cycle 525 

process and regulation. We adopted Seurat to detect DEGs and the variable score of 526 

genes using FindAllMarkers and FindVariableFeatures functions based on single-cell 527 

RNA-seq data of ESCs, which consists of 182 cells labeled by FACS sort criterion, 528 

including 59, 58, and 65 cells belonging to “G1” phase, “S” phase, and “G2M” phase, 529 

respectively [48, 49].  530 

 531 

Retrotransposons. Retrotransposons built from RepeatMasker annotations were 532 

downloaded from the UCSC Table Browser (http://genome.ucsc.edu/). We kept the top 533 

six categories of counts for the downstream analysis, including Alu, B2, B4, MaLR, L1, 534 

and ERVK. 535 

 536 

HiCS 537 

Preprocess contact probability for each chromosome of the individual cell. We first 538 

divided each chromosome into bins of specific size (40kb in this study), and counted 539 

the contact for each bin pair. Next, we modeled each chromosome as an unweighted 540 

network (each bin is one node, and each bin pair with non-zero contacts is added as one 541 

edge), and implemented a classic graph embedding method node2vec, which applies a 542 

biased random walks procedure, to compute the contact probability of edges by 543 

computing the cosine similarity of any two node embedding vectors, and obtained the 544 
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preprocessed matrix 𝐴 (Fig. 1a) [50]. We only kept the top 5% pairs for downstream 545 

analysis and the diagonal pairs were removed in our study.  546 

 547 

Detect domain boundaries for each individual cell. Inspired by a fast density-based 548 

clustering method designed for grouping data points [51, 52], we take advantage of 549 

finding the cluster centers to detect domain boundaries for each chromosome of 550 

individual cells (Fig. 1b and c). Specifically, we define two indexes for each 40kb bin: 551 

(1) insulation strength 𝜌(𝑖)  of the ith genomic position is defined as the ratio of 552 

(𝐼𝑖,𝑖𝑛𝑡𝑟𝑎 − 𝐼𝑖,𝑖𝑛𝑡𝑒𝑟) and (𝐼𝑖,𝑖𝑛𝑡𝑟𝑎 + 𝐼𝑖,𝑖𝑛𝑡𝑒𝑟) [53] using a 800kb sliding window size:  553 

𝐼𝑖,𝑖𝑛𝑡𝑟𝑎 = 𝐼𝑎+𝐼𝑏 , 554 

𝐼𝑖,𝑖𝑛𝑡𝑒𝑟 = 𝐼𝑐, 555 

𝜌(𝑖) =
𝐼𝑖,𝑖𝑛𝑡𝑟𝑎 − 𝐼𝑖,𝑖𝑛𝑡𝑒𝑟

𝐼𝑖,𝑖𝑛𝑡𝑟𝑎 + 𝐼𝑖,𝑖𝑛𝑡𝑒𝑟
, 556 

 557 
where 𝐼𝑎, 𝐼𝑏, and 𝐼𝑐  respectively represent the summation of interaction frequencies for 558 

region 𝑎, 𝑏, and c, and (2) minimum distance between the bin 𝑖 and any other bin 𝑗 with 559 

higher insulation strength is defined as 𝛿(𝑖): 560 

𝛿(𝑖) =  𝑚𝑖𝑛
𝑗:𝜌(𝑗)>𝜌(𝑖)

|𝑖 − 𝑗|,     (𝛿𝑚𝑎𝑥 < 𝑀𝐴𝑋). 561 

We search for higher insulation strength of bin 𝑖 in the range of 𝑀𝐴𝑋 = 500 (20M 562 

genomic distance at 40kb resolution). Next, we define 𝜌′(𝑖) = 𝜌′(𝑖) 𝜌𝑚𝑎𝑥⁄  and 563 

𝛿′(𝑖) = 𝛿(𝑖) 𝛿𝑚𝑎𝑥⁄  such that both 𝜌′(𝑖) and 𝛿′(𝑖) are within range [0,1]. Then, we 564 

generate the rank 𝛾 of all bins for each chromosome by their 𝜂(𝑖) = 𝜌′(𝑖) × 𝛿′(𝑖) in 565 

the descending and normalized the rank of each bin by 𝛾′(𝑖) = 𝛾(𝑖) 𝛾𝑚𝑎𝑥⁄ . We define 566 

the optimal reflection point with 𝑟 = argmin
𝑖=1:𝑙𝑒𝑛

𝜂(𝑖)2 + 𝛾′(𝑖)2, where 𝑙𝑒𝑛 is defined as 567 

the number of bins for a specific chromosome. The boundaries of the optimal structure 568 

are assigned by bins with 𝜂(𝑖) > α × 𝜂(𝑟), (𝛼 = 1). The gap regions are defined by 569 

𝐼𝑖,𝑖𝑛𝑡𝑒𝑟 = 0 or have no contact with any other bins. 570 

 571 

Determine the hierarchical chromatin domains. We ran the above procedures of 572 

detecting domain boundaries multiple times by define 𝜂(𝑖) > α × 𝜂(𝑟) as a screening 573 

selection for different genomic levels, where the range of  α are set as (0.1, 10) (Fig. 574 

2a). In our study, we selected multiple scaling parameters α  as {0.2,   1,   4, 8}  to 575 

obtain the hierarchical domains of chromatin, according to the distribution of the 576 
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domain sizes and insulation strengths under different scaling parameters (Fig. 2a and 577 

b).  578 

 579 

Clustering and annotating genomic positions with different types of regulatory 580 

factors. We applied the hierarchical clustering method to group regulatory factors and 581 

chromatin positions, respectively (Fig. 4a). The classes of chromatin positions with the 582 

ratio>1% of all chromatin positions were selected for downstream analysis, which led 583 

to 29 classes of chromatin positions, along with 27 different transcriptional factor 584 

classes. 585 

We further applied the hierarchical clustering method to merge the 27 classes into 586 

7 large clusters, based on the Pearson correlation of the normalization ratio of the mean 587 

counts for peaks of regulatory factor classes (Supplementary Fig. S9b). These clusters 588 

or sub-clusters were manually annotated based on the annotation information 589 

(Supplementary Table S2). We then merged different chromatin position classes into 590 

12 large categories based on hierarchical clustering of correlation of regulatory factor 591 

classes, and manually annotated these categories based on the ratios of regulatory factor 592 

classes. We obtained and annotated 12 large chromatin position categories (consisting 593 

of 29 sub-categories), and 7 different regulatory factor clusters (consisting of 27 sub-594 

clusters). 595 

 596 

Data availability  597 

All datasets analyzed in this study were published previously. The corresponding 598 

descriptions and preprocessing steps can be found in Supplementary Materials. 599 

 600 

Software availability  601 

The open-source HiCS python package and tutorial are available at GitHub 602 

(https://github.com/YusenYe/HiCS). 603 
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Figures and Tables 757 

 758 

  759 
Figure 1. Illustration and efficiency of HiCS for determining the chromatin 760 

domains. a. An illustrative example of the preprocessed single-cell Hi-C contact map 761 

(top) and the insulation strength ( 𝜌 ) of genomic positions (bottom). HSMD ( 𝛿 ) 762 

represents the minimum distance between the bin and any other bins with higher 763 

strengths. b, c. The decision graph (b) and the normalization value of 𝜂 = 𝜌 × 𝛿 in a 764 

decreasing order (c) for the domain boundaries (colored in red) in the optimal structural 765 

identification parameter. The decision graph of optimal structural identification 766 

parameter (zoom box in c). d. A local example of domain boundaries from map in a at 767 
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the region Chr2:80.8Mb-108Mb with different methods. e, f. Comparison of different 768 

methods for domain sizes and insulation strengths. g. Runtime (seconds) of different 769 

methods or parameters. h. The average number of CTCF peaks, H3K4me3 peaks, and 770 

HK genes at domain boundaries of single cells. The above results (d-h) are implemented 771 

by different methods across all single cells. 772 
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 774 
Figure 2. Identification of hierarchical chromatin domains. a. Density distribution 775 

of domain sizes at different multi-scale parameters. b. An example for hierarchical 776 

chromatin domains at the region Chr2:80.8Mb-108Mb. Circles mark three boundaries 777 

(two boundaries in level 1 have a magnitude difference in local insulation strength, and 778 

the boundary in level 3 has lower insulation strength than one of the boundaries in level 779 

1). 780 
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 782 

Figure 3. Regulatory factors navigate the preference of genomic position forming 783 

boundaries. a. The ratio distribution of genomic positions forming boundaries at less 784 

than a given ratio of single cells in the left y-axis (such as 99.8% of genomic positions 785 

form boundaries in at least 1% of cells, respectively), and the number distribution of 786 

genomic positions forming boundaries in the right y-axis as the ratio of single cells 787 

increases. b-c. The concentration scores (b) and the average number of ATAC-seq 788 

peaks and multiple regulatory elements (ATAC: ATAC-seq peaks, HK genes, Exp: 789 

gene expression value, DEGs: differentially expressed genes, E: enhancers, SEs) (c) 790 

around domain boundaries. d. The concentration scores for CTCF, cohesin, mediator- 791 

and Pol II-associated factors. e. The average number of peaks for CTCF and cohesin 792 

around domain boundaries. In b-e, the results were detected in the different genomic 793 
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scales across all single cells. The concentration score is defined in Supplementary 794 

Methods. 795 

 796 

Figure 4. The systematic analysis on genomic position categories. a. The bi-cluster 797 

of chromatin positions and regulatory factors. b. The column normalization ratio and 798 

the average number of peaks for regulatory factor-classes on genomic position 799 
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categories (different dot color represents different categories in Fig. 4a). c. The column 800 

normalization ratio of different elements or factors, including SC_ratio (the ratio of 801 

single cells forming boundaries), ATAC, DamID (DamID-seq), HK genes, Cyc (mark 802 

genes for cell cycle), Exp (gene expression value), DEGs, Variable (variable scores for 803 

genes), E (Enhancers), and SEs, on genomic position categories. d. The heatmap shows 804 

the column normalization ratio of different retrotransposons based on genomic position 805 

categories. 806 
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 808 

Figure 5. A schematic showing different genomic position categories. a. The graph 809 

presents the different clusters based on retrotransposons in the area marked by different 810 

colors of dotted line containing multiple functional groups associated with different 811 

regulatory factor-classes (the sub-categories serial number in above and the ratio 812 

occupying from all positions are marked for each functional group). The shades of 813 

purple on the background of circles indicate the preference of genomic positions 814 

forming boundaries in single cells for each functional group, and the shades of green 815 

on the background of these areas marked by dotted line indicate the degree of chromatin 816 

accessibility of genomic positions for each cluster based on retrotransposons. b. 817 

Preference scores of different chromatin landscapes categories across different cell 818 

states. Statistical significance is calculated by Welch’s t-test (*P < 0.05, **P < 0.01, 819 

and ***P < 0.001). The preference score is defined in Supplementary Methods. 820 
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