

ERStruct: A Python Package for Inferring the Number of Top Principal Components from Whole Genome Sequencing Data

Jinghan Yang* Yuyang Xu*

Department of Statistics and Actuarial Science
The University of Hong Kong
Hong Kong SAR, China

Zhonghua Liu[†]

zl2509@cumc.columbia.edu
Department of Biostatistics
Columbia University
New York, NY, USA

October 11, 2022

Abstract

Modern sequencing technologies have generated more accessible and informative sequencing data. However, when applying PCA-based methods to sequencing datasets, ultra-dimensionality and linkage disequilibrium make it challenging to infer the top number of principal components (PCs) that can sufficiently explain the population structure. This paper introduces our ERStruct Python Package for whole genome sequencing data analysis. By including parallelization computing and enabling utilization of GPU, the package accelerates simulations of GOE matrices and significantly boosts the speed of large-scale data matrix operations. Finally, We shown that ERStruct Python Package is an efficient and user-friendly tool for estimating the number of top informative PCs from whole genome sequencing data while addressing potential issues of large-scale datasets.

*The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint Authors.

[†]To whom correspondence should be addressed.

1 Introduction

With the fast development and decreasing cost of next generation sequencing technology, whole genome sequencing (WGS) data is increasingly available and holds the promise of discovering the genetic architecture of human traits and diseases. One fundamental question is to infer population structure in the WGS data, which is critically important in population genetics and genetic association studies.

PCA-based methods are prevalent in capturing the population structure from array-based genotype data (Menozzi *et al.*, 1978; Patterson *et al.*, 2006; Reich *et al.*, 2008). However, it has been a challenging task to determine the number of top PCs that can sufficiently capture the population structure in practice. Patterson *et al.* (2006) proposed a way to determine and select top PCs. But the method does not perform well on sequencing data for two reasons: ultra-dimensionality and linkage disequilibrium (Xu *et al.*, 2022). To resolve those two practical issues on sequencing data, Xu *et al.* (2022) proposed an algorithm called ERStruct and offered a basic toolbox implementation through MATLAB. They showed a substantial improvement in accuracy and robustness when applying the ERStruct toolbox on the 1000 Genomes Project sequencing data (The 1000 Genomes Project Consortium, 2015). Despite the great potential, we found that two issues may restrict the use of the ERStruct algorithm:

1. Although the ERStruct MATLAB toolbox provides a parallelization computing feature, its scalability is heavily restricted by the size of memory available in the working environment, slowing down the speed of data analysis.
2. The MATLAB version of ERStruct is not free, while python is open-sourced and free to use.

To make the ERStruct algorithm perform more efficiently and become more easily accessible, we develop the ERStruct Python package implementing the same algorithm. Our ERStruct Python implementation uses parallelization computing to accelerate simulations of GOE (Gaussian Orthogonal Ensemble matrix) matrices used in the ERStruct algorithm, and at the same time provides optional GPU acceleration to boost the speed of large-scale data matrix operations while maintaining a small memory usage. We applied the ERStruct Python package to the 1000 Genomes Project data to demonstrate the computationally efficient performance in Section 3. Compared with the original MATLAB version, we achieved a similar time-spend using our Python implementation using only CPU acceleration and significantly reduced time consumption and memory usage with GPU acceleration.

2 Implementation Details

For a given raw genotype data matrix as input, the ERStruct Python package estimates the number of top informative PCs that capture the latent population structure in three parts: GOE matrices simulation, calculating the eigenvalue ratios of the given

data matrix, and estimate the number of top PCs. These parts correspond to `GOE.py`, `Eigens.py` and `TopPCs.py` files shown in Fig 1, respectively. To boost the overall performance of the ERStruct algorithm, instead of the frequently used NumPy array processing framework, we choose to build up our ERStruct algorithm using PyTorch tensor and PyTorch functions. According to our experiments, PyTorch functions (e.g., `torch.nanmean`, `torch.nansum`, and `torch.linalg.eigvalsh`) are much faster than their NumPy equivalences (i.e., `numpy.nanmean`, `numpy.nansum`, and `numpy.linalg.eigvalsh`) for data processing in the ERStruct algorithm.

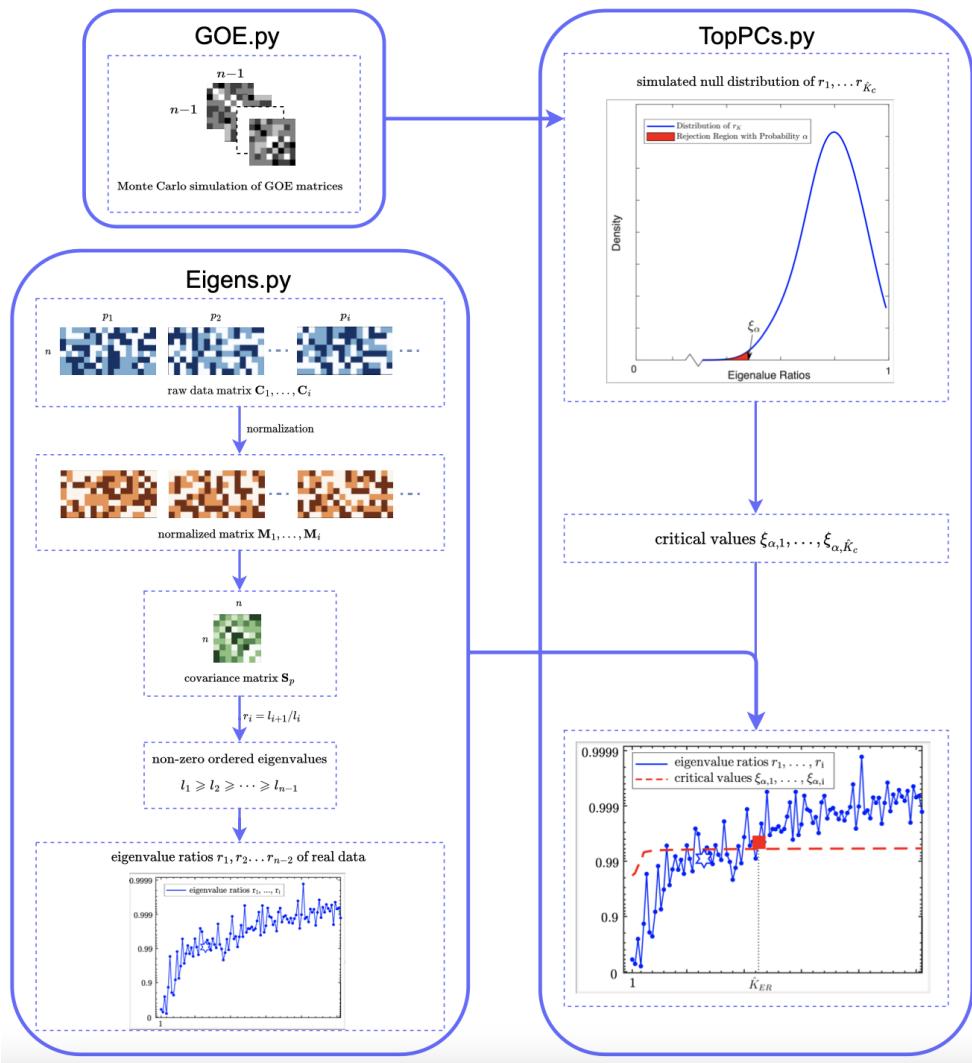


Figure 1: Flowchart that demonstrates the three parts of the ERStruct package proposed for the whole genome sequencing data analysis. With the output from GOE matrix simulation (`GOE.py`) and eigenvalue ratios of input data (`Eigens.py`), the algorithm infers the number of top principal components (`TopPCs.py`).

2.1 Scalable Simulation of GOE Matrices

First in `GOE.py`, to obtain the null distribution of our proposed ERStruct test statistic, Monte Carlo method is used in the ERStruct algorithm, which starts by generating multiple replications of high-dimensional GOE matrices. A significant amount of computing resources is needed in this step, especially when the sample size of the experiment data is large. To efficiently simulate the high-dimensional GOE matrices, we have compared different packages for parallelization computing on different scale GOE matrices, including Joblib, Multiprocessing, and Ray. Joblib is shown to have the most efficient and stable performance on our algorithm to apply parallelization computing for multicore. Without parallelization, the GOE matrix simulation takes 80.68 minutes on the function `GOE_L12_sim` with sample size $n = 2504$ and the number of replications $rep = 5000$, while using parallelization by Joblib on 15 cores CPUs, it takes only 6.46 minutes to finish the same job. Compared with the non-parallelization version, we successfully decrease the computing time by 12.5 times.

2.2 Calculate the eigenvalue ratios of given matrix

In `Eigens.py`, we first obtain raw genotype data matrices from NPY files. For every matrix, each row represents an individual and its genetic markers. We first normalize the raw count matrix such that each genetic marker has zero mean and unit variance. Then we summarize all sample covariance matrices of the normalized data and calculate its eigenvalue ratios. Those raw genotype data matrices are large-scale datasets occupying a space of hundreds of gigabytes on disk, which are prohibitively intensive to process and time-consuming to analyze. In our ERStruct Python implementation, users can accelerate data matrix operations by converting a CPU Tensor to a CUDA Tensor if GPU is available. The major problem here is the limited VRAM (Video Random Access Memory) of different GPUs, which are usually not possible to fit a large-scale data matrix. To resolve it, input data is split into multiple sub-arrays by the CPU before it is transmitted to GPU. The split data size depends on how large the VRAM is available in the working environment. This ensures that users can accelerate the computation on large-scale sequencing data even with a small VRAM GPU and simultaneously reduces total memory usage.

Estimation number of top PCs

Finally, in `TopPCs.py`, we apply the ERStruct algorithm [Xu *et al.* \(2022\)](#) and obtain the simulated approximation of null distribution for the target eigenvalue ratios. Given a significance level α and a coarse estimate \hat{K}_c , critical values $\xi_{\alpha,1}, \dots, \xi_{\alpha,\hat{K}_c}$ can be found from the null distribution. We then iterate through the real eigenvalue ratios $r_1, \dots, r_{\hat{K}_c}$ from `Eigens.py` and infer the number of top PCs that capture the population structure using the eigenvalue ratios estimator following the ERStruct algorithm,

$$\hat{K}_{ER} \min\{1, \hat{K}_c \text{ such that } r_i \xi_{\alpha,i}, \dots, r_{\hat{K}_c} \xi_{\alpha,\hat{K}_c}\}.$$

Table 1: Running time (in minutes) and maximum memory usage (in GB) comparisons of the ERStruct algorithm, using MATLAB, Python CPU and Python GPU implementations on the 1000 Genomes Project data with different MAF filtering thresholds.

MAF	0.05	0.01	0.005	0.001
Time	MATLAB	30.08	42.30	50.05
	Python CPU	34.89	66.54	84.97
	Python GPU	17.60	21.91	28.96
Memory	MATLAB	51.55	62.22	69.54
	Python CPU	28.00	48.80	62.10
	Python GPU	10.08	15.07	18.33

3 Results

In this section, we compare the speed and the maximum memory usage of MATLAB and Python implementations of the ERStruct algorithm. We use the function `tic` in MATLAB and `time.time` in Python to record running time. To record memory usage, we use the Linux shell command `/proc/<pid>/status | grep VmSize` to check memory usage in MATLAB and use the Python module `memory-profiler` for checking in Python. Python (version 3.8.8) is used with NumPy (version 1.20.1), PyTorch (version 1.11.0) and Joblib (version 1.0.1). All results are obtained from a server running x86-64 Linux with 15 Intel(R) Xeon(R) E7-8891 v4 CPU cores and 12 GB Tesla K80 GPU.

We apply our ERStruct Python implementation to the publicly available 1000 Genomes Project ([The 1000 Genomes Project Consortium, 2015](#)) data to estimate the number of top informative PCs. The 1000 Genomes Project is a whole genome sequencing dataset with 2504 individuals from 26 subpopulations. Following the same procedure in [Xu et al. \(2022\)](#), the raw sequencing data file is first filtered out markers with MAF (Minor Allele Frequency) less than 0.05, 0.01, 0.005, and 0.001 using the PLINK software. The remaining number of markers are $p_{0.05} = 7,921,8816$, $p_{0.01} = 13,650,478$, $p_{0.005} = 17,307,567$ and $p_{0.001} = 28,793,505$, respectively. Each pre-processed data is stored as NPY files and tested using our ERStruct Python package and the original MATLAB toolbox by [Xu et al. \(2022\)](#). The testing parameters are fixed as: number of replications `rep` = 5000, significance level $\alpha = 10^{-4}$.

The results are shown in Table 1. The GPU-based Python implementation runs much faster than the CPU-based Python (2.02 times faster when MAF greater than 0.001) and MATLAB (3.78 times faster when MAF greater than 0.001) implementations. In terms of the maximum memory usage, the GPU-based Python implementation used only 0.27 of the CPU-based Python implementation and 0.31 of the MATLAB implementation (when MAF greater than 0.001) due to the data splitting procedure. Noting that our function `Eigens` automatically splits large-scale data sets so that our algorithm can be run on a GPU with limited VRAM, so using GPU acceleration can be slower than using CPU only

when the current available VRAM is too small. In our testing environment, this only happens when the available VRAM is less than 0.17 GB. It is only possible when another process in the working environment has taken up a large part of the available VRAM. In this case, we suggest freeing the VRAM first.

4 Conclusion

We developed the Python package based on the ERStruct algorithm to determine the number of PCs in WGS data. With parallel computing and GPU acceleration, our package performs excellently on matrix operations for large-scale datasets. To expand the usage of our Python package in different environments, the package adaptively splits large datasets for computation on GPUs with limited VRAM. Finally, we showed that the ERStruct Python package has an essential improvement in computation speed compared with the ERStruct MATLAB toolbox in [Xu *et al.* \(2022\)](#).

Availability

The datasets were derived from sources in the public domain:
<https://www.internationalgenome.org/data>.

Our Python implementation of the ERStruct Algorithm is freely available at
<https://github.com/ecielyang/ERStruct>.

References

Menozzi, P. *et al.* (1978) Synthetic maps of human gene frequencies in Europeans. *Science*, **201**, 786–792.

Patterson, N. *et al.* (2006) Population structure and eigenanalysis. *PLoS Genetics*, **2**, e190.

Reich, D. *et al.* (2008) Principal component analysis of genetic data. *PLoS Genetics*, **2**, 491–492.

The 1000 Genomes Project Consortium (2015) A global reference for human genetic variation. *Nature*, **526**, 68–74.

Xu, Y. *et al.* (2022) An eigenvalue ratio approach to inferring population structure from whole genome sequencing data. *Biometrics*, **64**, 1–23.