bioRxiv preprint doi: https://doi.org/10.1101/2022.08.15.503962; this version posted October 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

ERStruct: A Python Package for Inferring the Number
of Top Principal Components from Whole Genome
Sequencing Data

Jinghan Yang® Yuyang Xu*
Department of Statistics and Actuarial Science

The University of Hong Kong
Hong Kong SAR, China

Zhonghua Liu'
z12509@cumc.columbia.edu
Department of Biostatistics

Columbia University
New York, NY, USA

October 11, 2022

Abstract

Modern sequencing technologies have generated more accessible and informa-
tive sequencing data. However, when applying PCA-based methods to sequencing
datasets, ultra-dimensionality and linkage disequilibrium make it challenging to infer
the top number of principal components (PCs) that can sufficiently explain the pop-
ulation structure. This paper introduces our ERStruct Python Package for whole
genome sequencing data analysis. By including parallelization computing and en-
abling utilization of GPU, the package accelerates simulations of GOE matrices and
significantly boosts the speed of large-scale data matrix operations. Finally, We
shown that ERStruct Python Package is an efficient and user-friendly tool for esti-
mating the number of top informative PCs from whole genome sequencing data while
addressing potential issues of large-scale datasets.

*The authors wish it to be known that, in their opinion, the first two authors should be regarded as
Joint Authors.
tTo whom correspondence should be addressed.

mailto:zl2509@cumc.columbia.edu
https://doi.org/10.1101/2022.08.15.503962
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.15.503962; this version posted October 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

1 Introduction

With the fast development and decreasing cost of next generation sequencing technol-
ogy, whole genome sequencing (WGS) data is increasingly available and holds the promise
of discovering the genetic architecture of human traits and diseases. One fundamental
question is to infer population structure in the WGS data, which is critically important in
population genetics and genetic association studies.

PCA-based methods are prevalent in capturing the population structure from array-
based genotype data (Menozzi et al., 1978; Patterson et al., 2006; Reich et al., 2008).
However, it has been a challenging task to determine the number of top PCs that can
sufficiently capture the population structure in practice. Patterson et al. (2006) proposed a
way to determine and select top PCs. But the method does not perform well on sequencing
data for two reasons: ultra-dimensionality and linkage disequilibrium (Xu et al., 2022).
To resolve those two practical issues on sequencing data, Xu et al. (2022) proposed an
algorithm called ERStruct and offered a basic toolbox implementation through MATLAB.
They showed a substantial improvement in accuracy and robustness when applying the
ERStruct toolbox on the 1000 Genomes Project sequencing data (The 1000 Genomes
Project Consortium, 2015). Despite the great potential, we found that two issues may
restrict the use of the ERStruct algorithm:

1. Although the ERStruct MATLAB toolbox provides a parallelization computing fea-
ture, its scalability is heavily restricted by the size of memory available in the working
environment, slowing down the speed of data analysis.

2. The MATLAB version of ERStruct is not free, while python is open-sourced and free
to use.

To make the ERStruct algorithm perform more efficiently and become more easily ac-
cessible, we develop the ERStruct Python package implementing the same algorithm. Our
ERStruct Python implementation uses parallelization computing to accelerate simulations
of GOE (Gaussian Orthogonal Ensemble matrix) matrices used in the ERStruct algorithm,
and at the same time provides optional GPU acceleration to boost the speed of large-scale
data matrix operations while maintaining a small memory usage. We applied the ERStruct
Python package to the 1000 Genomes Project data to demonstrate the computationally effi-
cient performance in Section 3. Compared with the original MATLAB version, we achieved
a similar time-spend using our Python implementation using only CPU acceleration and
significantly reduced time consumption and memory usage with GPU acceleration.

2 Implementation Details

For a given raw genotype data matrix as input, the ERStruct Python package esti-
mates the number of top informative PCs that capture the latent population structure
in three parts: GOE matrices simulation, calculating the eigenvalue ratios of the given

https://doi.org/10.1101/2022.08.15.503962
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.15.503962; this version posted October 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

data matrix, and estimate the number of top PCs. These parts correspond to GOE.py,
Eigens.py and TopPCs.py files shown in Fig 1, respectively. To boost the overall perfor-
mance of the ERStruct algorithm, instead of the frequently used NumPy array processing
framework, we choose to build up our ERStruct algorithm using PyTorch tensor and Py-
Torch functions. According to our experiments, PyTorch functions (e.g., torch.nanmean,
torch.nansum, and torch.linalg.eigvalsh) are much faster than their NumPy equiva-
lences (i.e., numpy .nanmean, numpy.nansum, and numpy.linalg.eigvalsh) for data pro-
cessing in the ERStruct algorithm.

raw data matrix Cy,..., C;

SRS LEE B | |

normalized matrix My, ..., M;

covariance matrix Sy,

ir, el v

eigenvalue ratios 7y, .. . , i
— -~ critical values £, , - . -, [

| non-zero ordered eigenvalues |

Wbz 2l

0.999

0.99

0.9

Figure 1: Flowchart that demonstrates the three parts of the ERStruct package proposed
for the whole genome sequencing data analysis. With the output from GOE matrix simu-
lation (GOE.py) and eigenvalue ratios of input data (Eigens.py), the algorithm infers the
number of top principal components (TopPCs.py).

https://doi.org/10.1101/2022.08.15.503962
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.15.503962; this version posted October 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

2.1 Scalable Simulation of GOE Matrices

First in GOE.py, to obtain the null distribution of our proposed ERStruct test statis-
tic, Monte Carlo method is used in the ERStruct algorithm, which starts by generating
multiple replications of high-dimensional GOE matrices. A significant amount of comput-
ing resources is needed in this step, especially when the sample size of the experiment
data is large. To efficiently simulate the high-dimensional GOE matrices, we have com-
pared different packages for parallelization computing on different scale GOE matrices,
including Joblib, Multiprocessing, and Ray. Joblib is shown to have the most efficient
and stable performance on our algorithm to apply parallelization computing for multicore.
Without parallelization, the GOE matrix simulation takes 80.68 minutes on the function
GOE_L12 sim with sample size n = 2504 and the number of replications rep = 5000, while
using parallelization by Joblib on 15 cores CPUs, it takes only 6.46 minutes to finish the
same job. Compared with the non-parallelization version, we successfully decrease the
computing time by 12.5 times.

2.2 Calculate the eigenvalue ratios of given matrix

In Eigens.py, we first obtain raw genotype data matrices from NPY files. For every
matrix, each row represents an individual and its genetic markers. We first normalize
the raw count matrix such that each genetic marker has zero mean and unit variance.
Then we summarize all sample covariance matrices of the normalized data and calculate
its eigenvalue ratios. Those raw genotype data matrices are large-scale datasets occupying
a space of hundreds of gigabytes on disk, which are prohibitively intensive to process and
time-consuming to analyze. In our ERStruct Python implementation, users can accelerate
data matrix operations by converting a CPU Tensor to a CUDA Tensor if GPU is available.
The major problem here is the limited VRAM (Video Random Access Memory) of different
GPUs, which are usually not possible to fit a large-scale data matrix. To resolve it, input
data is split into multiple sub-arrays by the CPU before it is transmitted to GPU. The
split data size depends on how large the VRAM is available in the working environment.
This ensures that users can accelerate the computation on large-scale sequencing data even
with a small VRAM GPU and simultaneously reduces total memory usage.

Estimation number of top PCs

Finally, in TopPCs.py, we apply the ERStruct algorithm Xu et al. (2022) and obtain
the simulated approximation of null distribution for the target eigenvalue ratios. Given
a significance level o and a coarse estimate K., critical values o155 €0k, can be found
from the null distribution. We then iterate through the real eigenvalue ratios r1,, 74 from
Eigens.py and infer the number of top PCs that capture the population structure using
the eigenvalue ratios estimator following the ERStruct algorithm,

Kgr min{lzf(c suchthat rio, ;i o i}

https://doi.org/10.1101/2022.08.15.503962
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.15.503962; this version posted October 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Table 1: Running time (in minutes) and maximum memory usage (in GB) comparisons of
the ERStruct algorithm, using MATLAB, Python CPU and Python GPU implementations
on the 1000 Genomes Project data with different MAF filtering thresholds.

MAF 0.05 0.01 0.005 0.001
MATLAB 30.08 42.30 50.05 73.41
Time Python CPU 34.89 66.54 84.97 137.54
Python GPU 17.60 21.91 28.96 36.42
MATLAB 51.55 62.22 69.54 92.50
Memory Python CPU 28.00 48.80 62.10 104.71
Python GPU 10.08 15.07 18.33 28.67
3 Results

In this section, we compare the speed and the maximum memory usage of MATLAB
and Python implementations of the ERStruct algorithm. We use the function tic in
MATLAB and time.time in Python to record running time. To record memory usage,
we use the Linux shell command /proc/<pid>/status | grep VmSize to check memory
usage in MATLAB and use the Python module memory-profiler for checking in Python.
Python (version 3.8.8) is used with NumPy (version 1.20.1), PyTorch (version 1.11.0) and
Joblib (version 1.0.1). All results are obtained from a server running x86-64 Linux with 15
Intel(R) Xeon(R) E7-8891 v4 CPU cores and 12 GB Tesla K80 GPU.

We apply our ERStruct Python implementation to the publicly available 1000 Genomes
Project (The 1000 Genomes Project Consortium, 2015) data to estimate the number of
top informative PCs. The 1000 Genomes Project is a whole genome sequencing dataset
with 2504 individuals from 26 subpopulations. Following the same procedure in Xu et al.
(2022), the raw sequencing data file is first filtered out markers with MAF (Minor Allele
Frequency) less than 0.05, 0.01, 0.005, and 0.001 using the PLINK software. The remaining
number of markers are pgos = 7,921,8816, poor = 13,650,478, po.oos = 17,307,567 and
Po.oo1 = 28,793,505, respectively. Each pre-processed data is stored as NPY files and tested
using our ERStruct Python package and the original MATLAB toolbox by Xu et al. (2022).
The testing parameters are fixed as: number of replications rep = 5000, significance level
a=10"%

The results are shown in Table 1. The GPU-based Python implementation runs much
faster than the CPU-based Python (2.02 times faster when MAF greater than 0.001) and
MATLAB (3.78 times faster when MAF greater than 0.001) implementations. In terms of
the maximum memory usage, the GPU-based Python implementation used only 0.27 of
the CPU-based Python implementation and 0.31 of the MATLAB implementation (when
MAF greater than 0.001) due to the data splitting procedure. Noting that our function
Eigens automatically splits large-scale data sets so that our algorithm can be run on a
GPU with limited VRAM, so using GPU acceleration can be slower than using CPU only

https://doi.org/10.1101/2022.08.15.503962
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.15.503962; this version posted October 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

when the current available VRAM is too small. In our testing environment, this only
happens when the available VRAM is less than 0.17 GB. It is only possible when another
process in the working environment has taken up a large part of the available VRAM. In
this case, we suggest freeing the VRAM first.

4 Conclusion

We developed the Python package based on the ERStruct algorithm to determine the
number of PCs in WGS data. With parallel computing and GPU acceleration, our package
performs excellently on matrix operations for large-scale datasets. To expand the usage of
our Python package in different environments, the package adaptively splits large datasets
for computation on GPUs with limited VRAM. Finally, we showed that the ERStruct
Python package has an essential improvement in computation speed compared with the
ERStruct MATLAB toolbox in Xu et al. (2022).

Availability

The datasets were derived from sources in the public domain:
https://www.internationalgenome.org/data.

Our Python implementation of the ERStruct Algorithm is freely available at
https://github.com/ecielyang/ERStruct.

References

Menozzi, P. et al. (1978) Synthetic maps of human gene frequencies in Europeans. Science,
201, 786-792.

Patterson, N. et al. (2006) Population structure and eigenanalysis. PLoS Genetics, 2, €190.

Reich, D. et al. (2008) Principal component analysis of genetic data. PLoS Genetics, 2,
491-492.

The 1000 Genomes Project Consortium (2015) A global reference for human genetic vari-
ation. Nature, 526, 68-74.

Xu, Y. et al. (2022) An eigenvalue ratio approach to inferring population structure from
whole genome sequencing data. Biometrics, 64, 1-23.

https://www.internationalgenome.org/data
https://github.com/ecielyang/ERStruct
https://doi.org/10.1101/2022.08.15.503962
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Implementation Details
	Scalable Simulation of GOE Matrices
	Calculate the eigenvalue ratios of given matrix

	Results
	Conclusion

