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Applications of graph theory to the human brain network have led to the development of several mod-
els of how neural signaling unfolds atop its structure. Analytic measures derived from these commu-
nication models have mainly been used to extract global characteristics of brain networks, obscuring
potentially informative inter-regional relationships. Here we develop a simple standardization method
to investigate polysynaptic communication pathways between pairs of cortical regions. This procedure
allows us to determine which pairs of nodes are topologically closer and which are topologically further
than expected on the basis of their degree. We find that communication pathways delineate canonical
intrinsic functional systems. By relating nodal communication capacity to meta-analytic probabilistic
patterns of functional specialization, we also show that areas that are most closely integrated within
the network are associated with higher-order cognitive functions. We find that these regions’ proclivity
towards functional integration could naturally arise from the brain’s anatomical configuration through
evenly distributed connections among multiple specialized communities. Throughout, we consider
the effect of the network’s spatial embedding on inter-regional communication capacity. Altogether,
the present findings uncover a relationship between polysynaptic communication pathways and the
brain’s intrinsic functional organization and demonstrate that network integration facilitates cognitive
integration.

INTRODUCTION

The anatomical connectivity of neural circuits supports
signal propagation between neuronal populations [6].
Signals, in the form of electrical impulses, are re-
layed via axonal projections (monosynaptic communica-
tion). Wiring among multiple populations forms circuits
in which signals can also be relayed between popula-
tions that do not share a direct projection, but can be
reached via multiple synapses (polysynaptic communi-
cation) [63]. Thus, the architecture of the brain’s con-
nectome shapes communication patterns and integration
among specialized brain regions [5, 111].

The conventional approach to studying communica-
tion in brain networks is to model the global capacity
of the network. The most widely studied communi-
cation mechanism is the topological shortest path [5],
but numerous other models have been proposed, involv-
ing both routing protocols relaying signals through spe-
cific paths and diffusive processes in which neural sig-
nalling is driven by local network features [4, 23, 37, 71–
73, 91]. Broadly, this paradigm involves estimating com-
munication efficiency between all pairs of regional nodes
and then taking the average to summarize communica-
tion efficiency with a scalar value [1, 36, 52, 108]. For
instance, the oft-studied global efficiency statistic is de-
fined as the inverse of the mean shortest path length
among all pairs of nodes in a network [16, 59].

However, this broad, globally-focused approach ob-
scures potentially informative heterogeneity of commu-
nication between specific pairs of regions. Yet, there
is increasing appreciation for local heterogeneity in the
brain, including spatial patterning of micro-architecture
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[19, 35, 46, 51, 113], dynamics [93, 114] and func-
tional specialization [45, 119]. Importantly, numerous
studies have reported evidence of regional heterogeneity
in connection profiles or fingerprints of regions [65], as
well as patterns of structure-function coupling [10, 61,
84, 110, 122] and electromagnetic-haemodynamic cou-
pling [92]. How inter-regional and regional communi-
cation preferences are organized remains poorly under-
stood but methodologically accessible.

Here we develop a simple method to study the capac-
ity for pairs of brain regions (dyads) to communicate
with each other. We deconstruct the conventional global
approach and estimate communication capacity without
averaging over pairs of regions. In addition, we intro-
duce a procedure to standardize the communication ca-
pacity between pairs of regions by their communication
capacity in a population of rewired null networks, allow-
ing us to identify pairs of regions with greater or less
than expected communication capacity. We initially fo-
cus on the topological shortest path (hereafter referred
to as a “path”), because it is (a) a simple and funda-
mental method to infer communication, and (b) in many
classes of networks, including brain networks, alterna-
tive communication mechanisms nevertheless take ad-
vantage of shortest paths without any knowledge of the
global topology, including diffusion [36, 37, 71] and
navigation [88–91, 111]. We then investigate inter-
regional communication capacity, mapping it onto large-
scale cognitive systems and patterns of functional spe-
cialization. Finally, we also consider the relationship be-
tween spatial proximity/geometric embedding and com-
munication capacity, as well as alternative communica-
tion mechanisms.
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Figure 1. Standardization procedure | A population of null structural connectivity matrices that preserve the size, density, and
weighted degree sequence of the empirical group-consensus network was generated by randomly rewiring pairs of edges. Weighted
shortest path lengths were then computed between every pair of brain regions for the empirical structural brain network and each
rewired null. Finally, the path lengths of the empirical network were standardized element-wise against the null population of path
lengths from the rewired networks. Lower standardized shortest path length indicates greater communication capacity.

RESULTS

The results are organized as follows. First, we
develop a method to standardize communication ca-
pacity between pairs of brain regions. We then re-
late inter-regional communication to the brain’s spa-
tial embedding, canonical functional systems and pat-
terns of functional specialization. All analyses were
conducted in a sample of N = 69 healthy partic-
ipants (source: Lausanne University Hospital; DOI:
10.5281/zenodo.2872624 [41]; see Methods for detailed
procedures):

• Structural connectivity. Structural connectivity was
reconstructed from individual participants’ diffu-
sion spectrum imaging data using deterministic
streamline tractography. A distance-dependent
consensus-based thresholding procedure was then
used to assemble a group-representative weighted
structural connectivity matrix of streamline density
[15, 70, 71].

• Functional connectivity. Functional connectivity
was estimated from the same individuals’ resting-

state functional MRI (rs-fMRI) data using pairwise
Pearson correlations among regional time courses.
Fisher’s r-to-z transformation was applied to indi-
vidual functional connectivity matrices. A group-
average functional connectivity matrix was then
computed as the mean across individuals, which
was back-transformed to correlation values.

The sample was randomly divided into Discovery (n =
34) and Validation (n = 35) subsets. Analyses were
conducted in a high (1000 nodes) and low (219 nodes)
resolution parcellation using the Cammoun atlas [20], a
subdivision of the Desikan-Killiany anatomical atlas [27].
See Sensitivity analyses for details.

Benchmarking dyadic communication capacity

To quantify polysynaptic communication capacity be-
tween pairs of brain regions, we first compute the topo-
logical weighted shortest path lengths on the structural
connectome (Fig. 1) [28]. Shorter weighted path length
between a pair of regions indicates greater communica-
tion capacity [4, 5, 87]. We simultaneously construct a
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Figure 2. Benchmarking dyadic communication capacity | (a) Scatter plot between empirical (abcissa) and rewired (ordinate)
shortest path lengths, where each point represents a pair of brain regions. Marginal distribution histograms are shown on the top
and right axes. Points that appear below the identity line correspond to paths with a shorter length in the rewired networks than
in the empirical network, and vice versa for points above the identity line. (b) Distribution of standardized shortest path lengths
(z-scores) for all pairs of brain regions. Values less than 0 indicate greater-than-expected communication capacity, and values
greater than 0 indicate lower-than-expected communication capacity. (c) Using the empirical and the standardized path length
matrices, closeness centrality (inverse mean path length to the rest of the network) was computed and rank-transformed for every
brain region. The two resulting brain maps were then subtracted, resulting in a brain map of the region-wise differences between
closeness centrality ranks in the empirical and the standardized networks. Red regions are more integrated in the empirical
network, and blue regions are more integrated in the standardized network.

population of rewired networks that preserve the den-
sity and weighted degree sequence of the empirical net-
work [67, 109]. We then compute the path lengths for
each rewired network, indicating the communication ca-
pacity between pairs of brain regions under the null hy-
pothesis that inter-regional relationships depend only on
weighted degree and density (Fig. 1). Finally, we stan-
dardize element-wise the empirical path lengths against
the population of path lengths in the rewired null net-
works. The resulting standardized shortest path length

matrix quantifies in terms of z-scores how unexpectedly
short (< 0) or unexpectedly long (> 0) communication
pathways are between any given pair of brain regions.

Fig. 2a shows a scatter plot between empirical (ab-
cissa) and rewired (ordinate) path lengths, where each
point represents a pair of regions. As expected, the ma-
jority of points fall below the identity line (87.15%), sug-
gesting that most path lengths in rewired networks are
shorter than in the empirical structural brain network
[115]. This is in line with numerous global accounts of
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the shortest path length of random networks and their
comparison with characteristic path lengths of empirical
brain networks [2, 7, 48, 96, 115]. Interestingly, a num-
ber of points reside above identity (12.85%), suggesting
that these region pairs enjoy greater-than-expected ca-
pacity for communication. Fig. 2b further demonstrates
this result, showing the distribution of standardized path
lengths for all pairs of regions. Negative values indicate
dyads with greater-than-expected communication capac-
ity, and positive values indicate dyads with lower-than-
expected communication capacity.

To get a sense of how the centrality or “hub-ness” of
each brain region changes when path lengths are stan-
dardized, we compute the closeness centrality (inverse
mean path length to the rest of the network) of each
brain region using the empirical and the standardized
path length matrices. Fig. 2c shows the difference be-
tween rank-transformed closeness computed using em-
pirical and standardized path lengths. The figure sug-
gests that the inferred importance of a brain region
changes considerably when the procedure is applied.
Namely, red regions (e.g. cingulate cortex) are more cen-
tral in the empirical shortest path length network, and
blue regions (e.g. orbitofrontal cortex) are more central
in the standardized shortest path length network.

Communication pathways delineate functional systems

We next consider how communication paths can be
contextualized with respect to canonical features of
brain networks, including spatial embedding, structure-
function coupling and macroscale intrinsic network or-
ganization. Fig. 3a shows the relationship between stan-
dardized path length and pairwise inter-regional physi-
cal distance (left) and pairwise inter-regional functional
connectivity (right). There is a positive association be-
tween physical distance and standardized path length,
consistent with the notion that areas that are physi-
cally further apart have lower communication capacity
[85, 91, 98]. There is also a negative association be-
tween standardized path length and functional connec-
tivity, consistent with the notion that pairs of areas that
are topologically closer have more coherent time courses
[37, 49]. Collectively, these results show that standard-
ized path length recapitulates well-known and expected
relationships between the topology, geometry and func-
tional connectivity of the brain [99].

How are communication pathways organized among
the canonical macroscale intrinsic networks? Resting-
state functional connectivity networks are communities
of functionally related areas with coherent time-courses
that are thought to be putative building blocks of higher
cognition [11, 25, 82, 121], but how these networks
map onto the underlying communication pathways is not
completely understood [5, 99]. To address this ques-
tion, we first stratified brain regions according to their
membership in the intrinsic networks derived by Yeo,

Krienen and colleagues [121] (Fig. 3b). Fig. 3c (left)
shows the mean standardized path length within each
intrinsic network (diagonal) and between all pairs of in-
trinsic networks (off diagonal). We generally observe
shorter path lengths within networks compared to be-
tween networks; Fig. 3c (right) confirms this intuition,
showing that the mean within-network path length is sig-
nificantly shorter than the mean between-network path
length (pspin < .001).

Finally, we quantify and compare the internal commu-
nication capacities of pairs of intrinsic networks by com-
puting the difference between their respective within-
network mean standardized path length (Fig. 3c, mid-
dle). We find that the frontoparietal network has con-
sistently greater internal communication capacity com-
pared to other networks, while the somatomotor net-
work has consistently lower internal communication ca-
pacity compared to other networks. Interestingly, Fig. 3c
(left) also indicates that communication pathways inter-
nal to the frontoparietal network are the only ones to
exhibit a greater-than-expected communication capac-
ity, characterized by a negative mean standardized path
length.

Communication capacity and functional specialization

Given that communication capacity is regionally het-
erogeneous and maps onto intrinsic networks, we ask
whether regional communication capacity is related to
functional specialization. Fig. 4a shows the mean stan-
dardized path length from each region to the rest of the
network, with red indicating greater integration with the
network and yellow indicating lower integration.

We statistically compare this map with a library of
meta-analytic task-based fMRI activation maps from the
Neurosynth repository [45, 119]. Each of the Neu-
rosynth brain maps consists of region-wise measures of
the probability that a particular term is reported in a
study if an activation was observed in a given region.
In this analysis, we only considered the intersection of
terms from the Neurosynth database and the Cognitive
atlas [80], comprising a total of 123 cognitive and be-
havioral terms. Fig. 4b shows statistically significant
spatial correlations between the node-wise standardized
path length map and each of the Neurosynth term maps,
as assessed using spatial autocorrelation-preserving null
models [3, 64] (pspin < .05 in grey; Bonferroni cor-
rected, α = .05 in green). We find anticorrelations with
higher-order cognitive terms (e.g. “monitoring”, “strat-
egy”, etc.). This suggests that areas that communicate
closely with many other areas in the connectome are
associated with high-order cognitive function. In other
words, cognitive integration appears to be supported by
network integration.

To better understand why lower standardized path
length is associated with higher-order cognitive func-
tion, we compare the regional map of standardized path
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Figure 3. Communication pathways delineate functional systems | (a) Standardized shortest path length (y) between two
brain regions grows logarithmically as a function of the Euclidean distance (x) between them (left). The black line corresponds to
the fitted exponential y = −9.31e−0.03x + 4.33. Functional connectivity (y) between two brain regions decays exponentially as
a function of the standardized shortest path length (x) between them (right). The black line corresponds to the fitted exponential
y = 0.12e−0.18x. (b) Standardized shortest path length matrix with brain regions ordered based on their affiliations to the Yeo
intrinsic networks. (c) Left: Heatmap of the mean standardized path lengths across node pairs belonging to the same intrinsic
network (diagonal) and to different intrinsic networks (off-diagonal). A blue square identifies a negative mean standardized path
length, indicative of shorter-than-expected communication pathways with greater-than-expected communication capacity. Middle:
Heatmap of the pairwise differences of the means among Yeo intrinsic networks, calculated as the mean value of the network
on the x-axis minus the mean value of the network on the y-axis, with the mean value corresponding to the mean standardized
path length across node pairs belonging to the same network (diagonal elements of the left heatmap). A purple square indicates
significant difference of the means based on network label permutation using spatial autocorrelation-preserving null models (Bon-
ferroni corrected, α = .05), whereas “n.s.” denotes not significant differences. The frontoparietal network displays a consistently
shorter mean standardized path length (i.e., higher internal communication capacity) compared to other networks, whereas the
somatomotor network exhibits a consistently greater mean standardized path length (i.e., lower internal communication capacity)
in comparison to other networks. Right: The mean within-network standardized path length is significantly shorter than the mean
between-network standardized path length (pspin < .001). Intrinsic networks: vis = visual, sm = somatomotor, da = dorsal atten-
tion, va = ventral attention, lim = limbic, fp = frontoparietal, dm = default mode.

length with maps of weighted degree (sum of edge
weights incident on a node; strength), betweenness (pro-
portion of shortest paths that traverse a node) and par-
ticipation (distribution of node links among functional
network communities) (Fig. 4c). As expected due to the
standardization procedure, there is no significant corre-
lation with weighted degree (rs = −.19, pspin = .10).
However, standardized path length is significantly neg-
atively correlated with betweenness (rs = −.46, pspin <
.001) and participation (rs = −.37, pspin < .001), sug-
gesting that regions that are closely integrated into the

connectome can better sample information from multi-
ple specialized communities.

Extending to multiple communication models

So far, we have only considered path length as a
proxy for communication. However, there exist numer-
ous other models of communication in the connectome
[5]. Here we extend the framework developed in the pre-
vious sections to additional measures of communication
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Figure 4. Communication capacity and functional specialization | (a) Brain map of mean standardized path length from each
node to the rest of the network, with red denoting a greater integration of the node within the network and yellow denoting a
lower integration. (b) Statistically significant spatial correlations based on spatial autocorrelation-preserving nulls (pspin < .05 in
grey; Bonferroni corrected, α = .05 in green) between node-wise mean standardized path lengths and meta-analytic probabilistic
functional activation maps from the Neurosynth platform, associated with 123 terms overlapping the Neurosynth database and
the Cognitive atlas. An important set of anticorrelations suggests that highly integrated nodes are associated with higher-order
cognitive functions. (c) Relationships between node-wise mean standardized path length and topological features. As expected due
to the standardization procedure, node-wise mean standardized path length is not significantly correlated with weighted degree
(rs = −.19, pspin = .10; left), while it is significantly negatively correlated with betweenness (rs = −.46, pspin < .001; middle)
and participation (rs = −.37, pspin < .001; right), suggesting that regions that are more topologically integrated also have a more
diverse connection profile among functionally specialized intrinsic networks.

proximity that have been proposed for brain networks,
including search information [37, 86], path transitivity
[37], communicability [23, 31] and mean first-passage
time [36, 75]. As before, we first standardize each com-
munication matrix using a population of rewired net-
works (Fig. 5a). We then extract all dyadic (i, j) ele-
ments from each communication matrix and assemble
them into the columns of a dyads × communication mod-
els matrix.

Applying principal component analysis (PCA) to this
matrix identifies a single dominant component that ac-
counts for 62.79% of the dyad-level variance in communi-
cation. The resulting PC1 scores are then used to consti-
tute an “aggregated” communication matrix that shows
the capacity for communication among all pairs of brain
areas across multiple communication models. The great-
est contribution to the aggregated communication mea-
sure is from search information, path length and mean
first-passage time, with modest contribution from com-

municability. Note that, unlike the original communica-
tion measures, this aggregated communication measure
is not necessarily transitive.

Overall, we observe similar results using the aggre-
gated, multi-communication measure (Fig. 5). Namely,
we find a positive relationship between standardized
communication distance and physical distance (rs = .53,
p ≈ 0; Fig. 5b), a negative relationship between stan-
dardized communication distance and functional con-
nectivity (rs = −.21, p ≈ 0; Fig. 5b), and signifi-
cantly shorter communication distance within canonical
intrinsic networks than between networks (pspin < .001;
Fig. 5b).

Fig. S1a shows the same procedure applied at the
node level. As before, we find consistent results, show-
ing that areas that are closer in communication distance
to other areas in the connectome tend to be associ-
ated with higher-order cognitive function (Fig. S1c) and
greater participation in network communities (rs = −.40,
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Figure 5. Extending to multiple communication models - dyad-level | (a) Standardized dyadic communication measures across
five communication models were assembled into the columns of a dyads × communication models matrix. Principal component
analysis, applied to this matrix, identified a single dominant component that accounts for 62.79% of the dyadic-level variance in
communication capacity. The radar chart represents the first component’s loadings (i.e., correlations with the five communica-
tion models under consideration), with the greatest contribution to the aggregated communication measure coming from search
information, path length, and mean first-passage time, with only a minor contribution from communicability. (b) The aggregate
communication measure yields similar results to the standardized shortest path length. From left to right: Positive Spearman corre-
lation between PC1 score and Euclidean distance (rs = .53, p ≈ 0), negative Spearman correlation between functional connectivity
and PC1 score (rs = −.21, p ≈ 0), and significantly lower within-network than between-network PC1 score (pspin < .001).

pspin < .001; Fig. S1d; right).

Disentangling the contributions of topology and geometry

Physical proximity is an important predictor of con-
nection probability and connection weight [14, 85], and
therefore by extension, communication capacity between
areas. We therefore sought to disentangle the con-
tribution of geometry from the contribution of topol-
ogy to the results reported so far. Up to this point,
we utilized the conventional Maslov-Sneppen degree-
preserving rewiring to construct populations of null net-
works and standardize path length [67]. To additionally

control for the role of geometry, we repeated the exper-
iments using a more conservative null model that ap-
proximately preserved the edge length distribution and
the edge length-to-weight ratio, in addition to degree se-
quence [14].

Fig. S2 shows the results when applying the geometry-
preserving null model. As for the degree-preserving null
model, Fig. S2a (left) shows that the majority of path
lengths are shorter in the rewired networks than in the
empirical network (86.04%). However, the majority of
points (region pairs) now lie closer to the identity line,
suggesting that the physical embedding of the structural
brain network contributes in pulling its regions apart
topologically. As expected, controlling for edge length
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considerably attenuates the relationship between stan-
dardized path length and Euclidean distance (Fig. S2b,
left). Importantly, most of the other results are largely
preserved, including shorter standardized path lengths
within compared to between networks (pspin < .001;
Fig. S2c, right) and a relationship between node-wise
communication and integrative function (Fig. S2d). Col-
lectively, this control experiment suggests that most of
the results reported previously – except the relationship
with Euclidean distance – are mainly driven by the topo-
logical organization of the connectome rather than spa-
tial embedding and geometric relationships. An impor-
tant exception is the higher-than-expected internal com-
munication capacity of the frontoparietal network, which
seems to have been partly driven by the brain’s geometry.

Sensitivity analyses

We tested the replicability of the findings in the Valida-
tion sample (Fig. S3) and sought to assess the sensitivity
of the results to a variety of processing choices. We re-
peated all analyses using a lower parcellation resolution
of 219 nodes (Fig. S4) and binary (non-weighted) struc-
tural networks (Fig. S5).

We find consistent results across all sensitivity anal-
yses. This includes significantly shorter communication
pathways between cortical regions belonging to the same
intrinsic functional network than between regions be-
longing to different intrinsic networks, as well as signifi-
cant relationships between a region’s topological integra-
tion and its association with higher order executive func-
tions (Fig. S3, S4, S5). The frontoparietal network was
consistently identified as exhibiting the highest internal
communication capacity. Communication pathways in-
ternal to the frontoparietal network also had a negative
mean standardized path length, indicative of a greater-
than-expected communication capacity (Fig. S3, S4, S5).

Finally, we sought to test the extent to which the re-
sults are influenced by the inclusion of direct monosy-
naptic pathways (i.e., paths between directly anatomi-
cally connected nodes). We therefore repeated the anal-
yses in strictly polysynaptic communication pathways
(i.e., paths between pairs of nodes that are separated
by two or more anatomical connections) (Fig. S6c,d).
Again, we find consistent results with the notable ex-
ception of the communication capacity of the fronto-
parietal network (original result in Fig. 3c). This indi-
cates that the greater-than-expected communication ca-
pacity of this network is partly driven by monosynaptic
connections.

DISCUSSION

In the present report, we introduce a simple method
to standardize communication path lengths in brain net-
works. These results showcase how dyadic relationships

can be resolved and studied while accounting for more
basic topological and geometric features of the network.
In contrast to classical approaches, considering commu-
nication capacity at a finer granularity allows us to re-
visit previous investigations of brain hubs, recapitulate
well-known geometric and functional attributes of inter-
regional communication, and uncover new relationships
between the human connectome’s topological and func-
tional architectures.

Classical studies focused on global path length or effi-
ciency of brain networks. These reports found evidence
of near-minimal path length characteristic of small-world
architecture across multiple species and reconstruction
methods [8, 48, 53, 96, 115]. In addition, empirical
studies found that low characteristic path length or high
global efficiency is associated with greater cognitive per-
formance [60, 108] and is concomitant with healthy neu-
rodevelopment [9, 32, 44, 54, 55]. Altogether, these
findings speak to the behavioral and biological relevance
of global accounts of communication capacity.

However, global communication measures such as
characteristic path length or global efficiency are effec-
tively summary statistics of a myriad of complex inter-
regional communication relationships. In the present
study, we focused specifically on dyadic communication
while statistically controlling for fundamental topologi-
cal and geometric features (i.e. degree and spatial po-
sition). We find that most communication pathways be-
tween brain regions are longer than expected on the ba-
sis of their degrees and/or spatial position. Despite the
standardization procedure, we still recapitulate funda-
mental features of inter-regional communication, such as
positive relationships with spatial proximity [85, 91, 98]
and negative relationships with resting-state functional
connectivity [37, 49, 90, 110, 122].

We note that the procedure used here is similar to what
is typically done when considering global communica-
tion statistics, such as characteristic path length. Namely,
characteristic path length is often normalized by the
mean characteristic path length across a population of
null networks, such as when estimating the small-world
coefficient [50, 115]. We build on this general approach
by finely resolving dyadic communication relationships.
In addition, by standardizing each dyadic path length as
opposed to normalizing by the mean, we implicitly take
into account variance across the null population.

The standardization procedure alters the centrality
rankings of brain regions, suggesting that taking de-
gree into account can lead to different inferences about
the functional importance of brain regions. For in-
stance, we find that parts of the orbitofrontal cortex
are more integrated in the standardized network than
the empirical network, and that parts of the cingulate
cortex are less integrated in the standardized network.
These results run counter to numerous classical inves-
tigations of brain hubs that did not explicitly control
for degree when estimating different centrality measures
based on path length, such as betweenness and closeness
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[43, 105, 107].
A large body of neuroimaging studies has highlighted

the existence of a number of macro-scale communi-
ties of functionally related brain regions with correlated
resting-state fMRI signals [25, 82, 101, 121]. Previous
efforts were made to relate these patterns of synchro-
nized spontaneous activity to the underlying anatomi-
cal scaffolding of the brain [104]. Specifically, some
studies have investigated the structural underpinnings
of the functional links within and between resting-state
networks by identifying specific white matter tracts that
could mediate these relationships [40, 103]. More re-
cently, a growing interest in the functional predictive util-
ity of communication measures based on structural con-
nectivity has led to investigations into the relationships
between functional brain networks and underlying pat-
terns of polysynaptic communication. It has been shown
that the intrinsic functional hierarchy of the brain guides
communication trajectories and allows for signal diversi-
fication [111]. Furthermore, it was found that the mod-
ular boundaries of resting-state functional connectivity
were approximated by modules of polysynaptic commu-
nication distance [89]. In line with these studies, we
map communication pathways among canonical intrin-
sic functional networks [121]. We find that standard-
ized path lengths are significantly within than between
intrinsic networks, suggesting that the topological orga-
nization of the human connectome contributes in giving
rise to macro-scale intrinsic patterns of functional inter-
actions.

Moreover, by organizing communication pathways
within individual intrinsic networks and between pairs
of networks, we identified the frontoparietal network
as exhibiting the highest internal communication capac-
ity. Previous findings had associated a greater structural
global efficiency of a frontoparietal network (mean close-
ness centrality across nodes of the network to all brain
regions) with a higher working memory capacity [79].
The present result suggests that, in addition to global in-
tegration of frontoparietal nodes, the higher-order exec-
utive control functions that have been widely attributed
to frontoparietal networks [29, 33, 58, 74, 83, 112, 120],
might also benefit from an unexpectedly high level of in-
ternal communication capacity.

What are the functional consequences of lower or
greater communication capacity? Comparison with
meta-analytic maps of functional specialization suggests
that regions that are topologically closer to others tend
to be associated with higher-order cognitive functions
such as monitoring and strategy. In other words, we
find that greater network integration is associated with
cognitive integration [22, 71, 95, 118]. This is consis-
tent with numerous theories which posit that patterns
of regional specialization arise from connectivity profiles
[18, 65, 66, 68, 76] and topological embedding of brain
regions [78, 94, 95, 117]. Moreover, we find that nodal
topological integration is positively associated with the
number of shortest paths traversing it and the diversity

of a region’s connections among intrinsic functional com-
munities. This is in line with previous accounts of hub
characteristics [43, 102, 105–107]. Here, we further
show these features to be related even when controlling
for the effects of degree and strength. Previous reports
have also shown positive associations between a node’s
involvement in complex tasks and the diversity and flex-
ibility of its functional links to the rest of the brain, espe-
cially in frontoparietal regions [12, 21, 82]. Altogether,
the present results complement these findings, suggest-
ing that brain regions that subserve higher-order cogni-
tion also benefit from a structural substrate for the diver-
sification and integration of information.

This work is part of a wider trend in the field to in-
fer and quantify the potential for communication among
brain regions based on their wiring patterns [5, 38, 39,
97, 124]. Although we mainly focus on shortest paths,
multiple alternative communication protocols have been
proposed [4, 13, 23, 37, 71, 73, 91, 124]. The present
standardization procedure can be readily applied to any
dyadic communication measure. Combining additional
measures of decentralized communication such as search
information and path transitivity, we find results con-
sistent with those derived using path length. As the
field moves towards more biologically realistic and val-
idated communication protocols, future studies could
adapt this standardization procedure to accommodate
emerging measures of communication capacity.

In addition, the present procedure standardizes com-
munication measures using two common types of
rewiring null models. Here we focused on disentan-
gling the contribution of the structural brain network’s
topology from the background effect of spatial embed-
ding. We therefore applied one null model that preserves
the (weighted) degree sequence and another that addi-
tionally preserves wiring length [14]. Interestingly, most
effects are preserved when applying the geometric null
model, suggesting that they are driven by topology rather
than spatial embedding. More generally, this highlights
the fact that any null model – embodying a specific null
hypothesis – could be used for the standardization pro-
cedure to selectively tease apart features that shape com-
munication in brain networks [109, 123].

The present findings should be viewed in light of mul-
tiple methodological limitations. First, all networks were
reconstructed using diffusion-weighted MRI, a method
known to be subject to false positives and false nega-
tives [26, 62, 100]. Although we attempted to mitigate
this limitation by splitting the sample and repeating all
analyses, future work is necessary to improve the qual-
ity of connectome reconstruction. Second, networks re-
constructed from diffusion-weighted MRI are undirected,
limiting the biological plausibility of these networks and
our capacity to fit communication models to them. Third,
we focused on several well-studied and mathematically
fundamental communication protocols, including cen-
tralized (shortest paths) and decentralized (search infor-
mation) measures, but this selection is non-exhaustive
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and alternative communication measures could be con-
sidered in future work.

In summary, we present a simple method to resolve
communication capacity in brain networks. The method
is based on conventional procedures already common-
place in connectomics, but allows researchers to focus
on dyadic communication. This procedure is inherently
flexible, being able to accommodate emerging communi-
cation measures and null models. As the field develops
increasingly sophisticated and biologically realistic gen-
erative models of inter-regional communication, this pro-
cedure will allow greater insight into features that shape
signaling patterns in brain networks.

METHODS

Code and data used to perform the analyses can be
found at https://github.com/fmilisav/milisav_dyadic_
communication.

Data Acquisition

A total of n = 69 healthy participants (25 females,
age 28.8 ± 8.9 years old) were scanned at the Lau-
sanne University Hospital in a 3-Tesla MRI Scanner (Trio,
Siemens Medical, Germany) using a 32-channel head-
coil [41]. The protocol included (1) a magnetization-
prepared rapid acquisition gradient echo (MPRAGE) se-
quence sensitive to white/gray matter contrast (1 mm
in-plane resolution, 1.2 mm slice thickness), (2) a dif-
fusion spectrum imaging (DSI) sequence (128 diffusion-
weighted volumes and a single b0 volume, maximum b-
value 8000 s/mm2, 2.2 × 2.2 × 3.0 mm voxel size), and
(3) a gradient echo-planar imaging (EPI) sequence sen-
sitive to blood-oxygen-level-dependent (BOLD) contrast
(3.3 mm in-plane resolution and slice thickness with a 0.3
mm gap, TR 1920 ms, resulting in 280 images per partic-
ipant). The last sequence was used as part of an eyes-
open resting-state fMRI (rs-fMRI) scan in which the par-
ticipants were not overtly engaged in a task. Informed
written consent was obtained for all participants in ac-
cordance with institutional guidelines and the protocol
was approved by the Ethics Committee of Clinical Re-
search of the Faculty of Biology and Medicine, University
of Lausanne, Switzerland.

Network reconstruction

Structural connectomes were reconstructed for indi-
vidual participants using deterministic streamline trac-
tography and divided according to a grey matter parcel-
lation of 1000 cortical nodes [20]. The analyses were
also repeated at a coarser 219 cortical regions resolu-
tion. White matter and grey matter were segmented
from the MPRAGE volumes using the FreeSurfer version

5.0.0 open-source package, whereas DSI data preprocess-
ing was implemented with tools from the Connectome
Mapper open-source software [24], initiating 32 stream-
line propagations per diffusion direction for each white
matter voxel [116]. Structural connectivity was defined
as streamline density between node pairs, i.e., the num-
ber of streamlines between two regions normalized by
the mean length of the streamlines and the mean surface
area of the regions [43]. fMRI data underwent regres-
sion of physiological variables, including white matter,
cerebrospinal fluid, and motion (estimated via rigid body
co-registration). BOLD time-series were subsequently
subjected to a lowpass temporal Gaussian filter with 1.92
s full width half maximum and motion “scrubbing” [81]
was performed after excluding the first four time points
for the time series to stabilize. Functional connectivity
was then computed as the Pearson correlation coefficient
between the fMRI BOLD time series of each node pair.

The data were randomly split into Discovery (n =
34) and Validation (n = 35) subsets. We then gen-
erated group-representative brain networks for each
subset to amplify signal-to-noise ratio using functions
from the netneurotools open-source package (https://
netneurotools.readthedocs.io/en/latest/index.html). A
consensus approach that preserves (a) the mean den-
sity across participants and (b) the participant-level edge
length distribution was adopted for the structural con-
nectomes [15]. First, the cumulative edge length dis-
tribution across individual participants’ structural con-
nectivity matrices is divided into M bins, M correspond-
ing to the average number of edges across participants.
The edge occurring most frequently across participants is
then selected within each bin, breaking ties by selecting
the higher weighted edge on average. This procedure
was applied separately for intra and inter-hemispheric
edges to ensure that the latter are not under-represented.
The selected edges constitute the distance-dependent
group-consensus structural brain network. Finally, the
weight of each edge is computed as the mean across par-
ticipants. The group-representative functional connec-
tivity matrix was defined as the group average following
Fisher’s r-to-z transformation. The final group consensus
matrix was back-transformed to correlation values.

Communication models

In this section, we define the analytic communication
measures associated with the network communication
models considered in the present study and provide their
implementation details. All the communication mea-
sures, with the exception of path transitivity, were com-
puted using functions from the open-access Python ver-
sion of the Brain Connectivity Toolbox (https://github.
com/aestrivex/bctpy) [87]. Path transitivity was im-
plemented in Python based on a MATLAB script openly
available in the Brain Connectivity Toolbox.
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Shortest paths

Let A denote a weighted adjacency matrix. To iden-
tify the sequence of unique edges πu→v = {Aui, ..., Ajv}
spanning the minimum length between nodes u and v
(i.e., shortest path), we first defined a monotonic trans-
formation from edge weights, namely streamline den-
sity in the present case, to edge lengths L, which can
be more intuitively considered as the cost of travers-
ing this edge. We used the negative natural logarithm:
Lui = − log(Aui), mapping greater streamline density
to lower cost of signal propagation. Dijkstra’s algorithm
[28] was used to identify shortest paths and their length
was computed as the sum Luv = Lui + ... + Ljv of tra-
versed edges’ lengths.

Search information

Search information quantifies the amount of informa-
tion required by a naïve random walker to travel along
a specific path in a network [37, 86]. More specifically,
here we consider shortest paths πu→v, capturing the ac-
cessibility of these optimal routes in network topology.
This analytic measure is derived from the probability that
a random walker starting at u follows Ωu→v = {u, ..., v},
the sequence of nodes visited along πu→v to reach v. This
probability depends on the strength of the nodes com-
prised in Ωu→v and can be expressed as follows:

P (πu→v) = pui × ...× pjv,where pui =
Aui∑
i Aui

. (1)

Search information can then be defined as:

S(πu→v) = − log2(P (πu→v)). (2)

Note that this definition assumes that the random walker
has no memory of its previous step, which would reduce
the information needed to determine the next. Impor-
tantly, this measure is not symmetric. That is, S(πu→v) ̸=
S(πv→u). Search information is contingent on the assign-
ment of the path’s source and target nodes.

Path transitivity

Path transitivity is a measure of transitivity based on
the shortest path between a pair of nodes. It quanti-
fies the density of one-step detours (triangles) available
along the path [37]. Intuitively, it can be considered as
the accessibility of the shortest path or its robustness to a
deviation of the signal traversing it. Path transitivity can
be computed as the average pairwise matching index of
the nodes comprising the path.

The matching index between two nodes is a measure
of the similarity of their connectivity profiles, excluding

edges incident on both nodes [47]. The matching index
M between nodes s and t is defined as:

Mst =

∑
i ̸=s,t(Asi +Ati)Θ(Asi)Θ(Ati)∑

i ̸=t Asi +
∑

i ̸=s Ati
, (3)

where Θ is the Heaviside step function.
Building on this definition, the path transitivity P of

the shortest path πu→v can be defined as:

P (πu→v) =
2
∑

s∈Ωu→v

∑
t∈Ωu→v

Mst

|Ωu→v|(|Ωu→v| − 1)
. (4)

Communicability

Communicability between two nodes is defined as the
length-weighted sum of all walks between them, with
longer walks being more penalized [31]. The communi-
cability matrix C of pairwise communicability estimates
between all nodes in the network is calculated as the ma-
trix exponential of the adjacency matrix: C = eA. Fol-
lowing [23], in the case of a weighted structural connec-
tivity matrix, we first normalize the adjacency matrix as
D1/2AD1/2, where D is the diagonal weighted degree
matrix. The objective of this procedure is to reduce the
undue influence of nodes with large strength.

Mean first-passage time

The mean first-passage time from node u to node v is
the expected number of hops in a random walk evolved
by a random walker starting at node u before arriving
for the first time at node v [75]. Considering nodes
of an undirected connected network as the states of an
ergodic Markov chain allowed [36] to derive the mean
first-passage time T between nodes u and v as:

Tuv =
Zvv − Zuv

wv
, u ̸= v, (5)

where w is the steady state vector of the underlying
Markov process and Z is the fundamental matrix calcu-
lated as (I − P + W )−1. P is the transition probabil-
ity matrix computed as D−1A, where D is the diagonal
weighted degree matrix. W is a square matrix whose
columns correspond to w. In the present study, following
[122], we standardize as z-scores the columns of the ma-
trix of pairwise mean first-passage time among all nodes
in the network to remove nodal bias.

Null models

Standardization

Network features are interrelated, with many complex
network properties depending on basic features [109].
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To mitigate the effect of differences in simple features on
the topological relationships under study, we provide a
frame of reference to communication measures. First, we
built a population of 100 null structural connectivity ma-
trices by randomly rewiring pairs of edges of the empiri-
cal group-consensus networks, systematically disrupting
their topology while maintaining basic network features.
Next, communication measures were computed for ev-
ery node pair of the empirical structural brain networks
and all 100 surrogate graphs. Finally, the empirical com-
munication matrices were demeaned and standardized
to unit variance elementwise using the null population.
This procedure yielded, in units of standard deviation, an
approximate communication measure in relation to what
would be expected by chance in a similar network.

Two null models were considered as part of this proce-
dure, resulting in a hierarchy of preserved network fea-
tures. Both surrogate models guarantee the connected-
ness of the produced rewired network, that is, no node
is disconnected from the rest of the network.

The first method randomly swaps pairs of edges (ap-
proximately 10 swaps per edge) while maintaining net-
work size (i.e., number of nodes), density (i.e., pro-
portion of possible edges expressed), and degree se-
quence (i.e., number of edges incident to each node)
[67]. We applied an implementation of this technique
openly available in the Python version of the Brain Con-
nectivity Toolbox (https://github.com/aestrivex/bctpy)
[87]. To extend this procedure to weighted structural
connectivity matrices, we then used simulated anneal-
ing to further preserve the empirical network’s strength
sequence (sum of edge weights incident to each node)
[71]. Simulated annealing is a stochastic search method
used to approximate the global optimum of a given func-
tion [56]. This is achieved through the Metropolis pro-
cedure [69], controlled by the temperature parameter
T . The simulated annealing process is initiated at a high
temperature which allows the exploration of costly sys-
tem configurations, preventing the algorithm from get-
ting stuck in local minima. Throughout the process, the
system is slowly cooled down while descending along
the optimization landscape, with increasingly limited up-
hill rearrangements and smaller, fine-tuned changes in
the system cost. Here, we minimize the cost function E
defined as the Euclidean distance between the strength
sequence vectors of the empirical and the randomized
networks: E =

∑
i (si

′ − si)
2, where si and si

′
are the

strengths of node i in the empirical and the null net-
works, respectively. To optimize this function, weights
were randomly permuted among edges. Rearrangements
were only accepted if they lowered the cost of the system
or followed the probabilistic Metropolis acceptance crite-
rion: r < exp(−(E

′−E)/T ), where r ∼ U(0, 1). We used
an annealing schedule composed of 100 stages of 10000
permutations with an initial temperature of 1000, halved
after each stage.

A limitation of this rewiring procedure is that, on
average, randomly flipping pairs of edges will re-

sult in unrealistically large distances between nodes
[109]. To address this issue, we use a Python
implementation of an approach proposed in [14],
openly available as a function in the netneuro-
tools package (https://netneurotools.readthedocs.io/
en/latest/index.html). This method applies the same it-
erative rewiring procedure as the first, but with addi-
tional constraints. Edges are binned according to the
Euclidean distance between the centroids of their asso-
ciated parcel pair. The number of bins was determined
heuristically as the square root of the halved number of
edges in the empirical group-consensus network. Swap-
ping is then performed within each bin to approximately
preserve the edge length distribution, in addition to ex-
actly reproducing the network features maintained by
the first method. The maximum total number of edge
swaps to perform was set to the network size times 20.
In maintaining the geometry of the empirical network,
this rewiring model provides a more representative sur-
rogate, resulting in a more conservative null model.

Collectively, the two null models used for the standard-
ization of the structural connectivity matrices express a
hierarchy of constraints. When considered in parallel,
they allow us to distinguish the contribution of the struc-
tural brain network’s topology from effects passively en-
dowed by its spatial embedding when studying the con-
nectome’s architecture [85].

Significance testing

To assess the significance of statistics based on node-
level communication measures, we relied on spatial per-
mutation null models [64]. We generated null distribu-
tions of statistical estimates derived from permuted brain
maps, while preserving the spatial autocorrelation of the
original data to respect the assumption of exchangeabil-
ity.

First, we parcellated the FreeSurfer fsaverage surface
according to the Cammoun atlas [20] using tools from
the Connectome Mapper [24]. A spherical projection
of the fsaverage surface was then used to assign spher-
ical coordinates to each parcel; centroids were defined
as the vertices closest (in terms of Euclidean distance)
to the center-of-mass (i.e., arithmetic mean across all
the vertices’ coordinates) of each parcel. Random rota-
tions were then applied to one hemisphere of this spher-
ical representation of the atlas to disrupt its topogra-
phy. Rotations were then mirrored to the other hemi-
sphere. Finally, each parcel in the original brain map
was reassigned a rotated parcel using the Hungarian al-
gorithm [57]. In contrast to other reassignment heuris-
tics, this method attempts to reassign each rotated par-
cel to a unique original parcel, i.e., to retain the exact
original data distribution. This is particularly important
when testing network-based statistics as in the present
study [64]. Overall, this procedure was repeated 1000
times using an openly accessible function from the net-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.28.509962doi: bioRxiv preprint 

https://github.com/aestrivex/bctpy
https://netneurotools.readthedocs.io/en/latest/index.html
https://netneurotools.readthedocs.io/en/latest/index.html
https://doi.org/10.1101/2022.09.28.509962
http://creativecommons.org/licenses/by/4.0/


13

neurotools package (https://netneurotools.readthedocs.
io/en/latest/index.html) to generate null statistical dis-
tributions.

For the correlational analyses, brain maps of com-
munication measures were subjected to this spatial
autocorrelation-preserving permutation procedure. For
each 1000 rotated nulls, a correlation coefficient was
computed between the surrogate brain map and the sta-
tistical map under study (i.e., maps of topological fea-
tures or Neurosynth functional activation maps), yield-
ing a null distribution of 1000 coefficients. The orig-
inal rho was then compared against this null distribu-
tion to assess its significance by computing a two-sided
p-value (pspin) as the proportion of more extreme null
coefficients.

For the partition of the communication measures
within and between Yeo intrinsic networks [121], net-
work labels were first permuted according to the
spatially-constrained Hungarian method [64]. Dyadic
communication measures associated with a node pair be-
longing to the same intrinsic network, as identified by
the permuted labels, were considered within-network,
whereas measures associated with a node pair belonging
to different intrinsic networks were considered between-
networks. The difference between the mean values of the
distributions associated with these two categories were
then computed for each 1000 permutations, once again
generating a null distribution of this statistical estimate
against which the empirical difference was compared to
produce a two-sided p-value.

A similar method was employed to assess the signifi-
cance of the differences between mean internal standard-
ized path lengths for pairs of Yeo intrinsic networks.

Yeo intrinsic networks

When stratifying brain regions according to their mem-
bership in canonical macroscale functional systems, we
used the seven intrinsic networks derived by Yeo, Krienen
and colleagues [121] via clustering of resting-state fMRI
data from 1000 subjects. A parcellation of the seven
resting-state networks in the FreeSurfer fsaverage5 sur-
face space was downloaded from https://github.com/
ThomasYeoLab/CBIG/. Nodes of the Cammoun parcella-
tions were then labeled using a winner-take-all approach
in which each parcel was attributed the most common
intrinsic network assignment across its vertices.

Neurosynth

Functional activation maps synthesizing more than
15000 published fMRI studies into probabilistic mea-
sures of the association between individual voxels and
cognitive terms of interest were obtained from the
Neurosynth platform (https://github.com/neurosynth/
neurosynth [119]). This association measure quantifies

the probability that a particular term is reported in a
study if an activation was observed in a given region. The
probabilistic maps were extracted from Neurosynth using
123 cognitive terms overlapping the set of keywords from
the Neurosynth database and the Cognitive atlas [80], a
public knowledge base of cognitive science. The list of
cognitive and behavioral terms ranges from generic con-
cepts (e.g., “attention”, “emotion”) to specific cognitive
processes (“visual attention”, “episodic memory”), be-
haviours (“eating”, “sleep”), and emotions (“fear”, “anx-
iety”).

For each of the 123 terms, volumetric reverse inference
maps were generated from Neurosynth and projected to
the FreeSurfer fsaverage5 mid-grey surface with nearest
neighbor interpolation using Freesurfer’s mri_vol2surf
function (v6.0.0; http://surfer.nmr.mgh.harvard.edu/).
The resulting surface maps were then parcellated accord-
ing the both the 219 and 1000 cortical nodes resolutions
of the Cammoun atlas [20] to obtain node-wise mean
probabilistic measures.

Topological features

In this section, we define the topological features ex-
amined in this study and provide their implementation
details. All the graph measures, with the exception of
closeness centrality, were computed using functions from
the open-access Python version of the Brain Connectivity
Toolbox (https://github.com/aestrivex/bctpy) [87].

• Degree. Binary degree corresponds to the num-
ber of edges incident on a node, whereas weighted
degree (strength) corresponds to the sum of edge
weights incident on a node.

• Closeness centrality. The closeness centrality of a
node is the inverse of the mean shortest path length
between this node and all the other nodes in the
network [87]. The closeness centrality C of a node
u is defined as:

Cu =
n− 1∑
v Luv

, (6)

where n is the number of nodes in the network
and Luv corresponds to the shortest path length be-
tween nodes u and v.

• Betweenness centrality. The betweenness centrality
of a node is the fraction of shortest paths between
all pairs of nodes in the network that contain this
node [34]. The betweenness centrality B of a node
i is defined as:

Bi =
∑

uv:u̸=i ̸=v

λuv(i)

λuv
, (7)

where λuv is the total number of shortest paths
from node u to node v and λuv(i) is the number
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of these paths that include node i. Brandes’ algo-
rithm [17] was used to compute the betweenness
centrality of each individual node of the structural
connectivity matrices under study.

• Participation coefficient. The participation coeffi-
cient is a measure of the diversity of a node’s con-
nection profile among the communities of the net-
work [42]. The participation coefficient P of a
node i is defined as:

Pi = 1−
C∑

c=1

(
si,c
si

)2

, (8)

where si,c corresponds to the sum of the weights
of all edges incident on node i and nodes in com-
munity c, si is the strength of node i, and C rep-
resents the number of communities. A participa-
tion coefficient of 0 indicates that the totality of a
node’s edges are connected to other nodes within
its community. The closer the participation coef-
ficient is to 1, the more evenly distributed are its
edges among the communities. Note that this mea-
sure presumes an established community structure.
Here, we used the functional networks derived by
Yeo, Krienen and colleagues [121] as communities
to compute participation coefficients for each indi-
vidual node of the structural connectomes under
study.

Principal component analysis

To take into account a range of models of commu-
nication in the brain in addition to shortest path rout-
ing, we generated an aggregate measure of the capacity
for communication using principal component analysis.
First, the standardized communication matrices derived
following the procedures detailed above were z-scored
across all elements. For each communication matrix, we
then extracted all pairwise measures of communication
distance, with the exception of undefined diagonal en-
tries, and assembled them into the columns of a matrix
X of size d × c, where d is the number of dyads and c
is the number of communication models. PCA was then
applied to this matrix using the PCA function from the
scikit-learn package for machine learning in Python [77].
First, X was mean centered, i.e., demeaned column-wise
to obtain Xc. Then, a full singular value decomposition
(SVD) was applied to Xc such that:

Xc = USV
′
, (9)

where U and V are orthonormal matrices of sizes c × d
and d×d, consisting of the left and right singular vectors,
respectively, and S is a diagonal matrix of singular values
of size d× d [30].

Ratio of variance explained by the ith principal compo-
nent was measured as:

R2
i =

si
2∑d

j=1 sj
2
, (10)

where si corresponds to the ith singular value and j cor-
responds to a dyad. In this analysis, we only kept the
first component, corresponding to U1, the first column of
U , which accounted for 62.79% of the total variance in
dyadic communication capacity across models. The ma-
trix multiplication U1S yielded the principal component
scores used in this study.

The first principal component’s loadings were com-
puted as the weights of U1 scaled by the squareroot of the
first singular value. This effectively corresponds to the
Pearson correlation coefficient between the first principal
component’s scores and the pairwise measures of com-
munication distance from each communication model
used in the analysis.

The same analysis was then reproduced at the node
level with standardized node-wise mean vectors of com-
munication distance directly constituting the columns of
X. Note that before computing the row averages of the
communication matrices, we enforced symmetry of the
search information and mean first-passage time matrices
by replacing them with (C+CT )/2, where C is the com-
munication matrix and CT is its transpose. In doing so,
we consider both the incoming and outgoing nodal com-
munication capacity.
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(2020). Network communication in the brain. Net Neu-
rosci, 4(4):976–979.

[39] Graham, D. and Rockmore, D. (2011). The packet
switching brain. J Cogn Neurosci, 23(2):267–276.

[40] Greicius, M. D., Supekar, K., Menon, V., and Dougherty,
R. F. (2009). Resting-state functional connectivity re-
flects structural connectivity in the default mode net-
work. Cerebral cortex, 19(1):72–78.

[41] Griffa, A., Alemán-Gómez, Y., and Hagmann, P. (2019).
Structural and functional connectome from 70 young
healthy adults [data set]. Zenodo.

[42] Guimera, R. and Nunes Amaral, L. A. (2005). Func-
tional cartography of complex metabolic networks. na-
ture, 433(7028):895–900.

[43] Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R.,
Honey, C. J., Wedeen, V. J., and Sporns, O. (2008). Map-
ping the structural core of human cerebral cortex. PLoS
biology, 6(7):e159.

[44] Hagmann, P., Sporns, O., Madan, N., Cammoun, L.,
Pienaar, R., Wedeen, V. J., Meuli, R., Thiran, J.-P., and
Grant, P. (2010). White matter maturation reshapes
structural connectivity in the late developing human
brain. Proceedings of the National Academy of Sciences,
107(44):19067–19072.

[45] Hansen, J. Y., Markello, R. D., Vogel, J. W., Seidlitz, J.,
Bzdok, D., and Misic, B. (2021a). Mapping gene tran-
scription and neurocognition across human neocortex.
Nature Human Behaviour, 5(9):1240–1250.

[46] Hansen, J. Y., Shafiei, G., Markello, R. D., Smart, K., Cox,
S. M., Wu, Y., Gallezot, J.-D., Aumont, É., Servaes, S.,
Scala, S. G., et al. (2021b). Mapping neurotransmitter
systems to the structural and functional organization of
the human neocortex. Biorxiv.

[47] Hilgetag, C.-C., Burns, G. A., O’Neill, M. A., Scannell,
J. W., and Young, M. P. (2000). Anatomical connectivity
defines the organization of clusters of cortical areas in
the macaque and the cat. Philosophical Transactions of
the Royal Society of London. Series B: Biological Sciences,
355(1393):91–110.

[48] Hilgetag, C. C. and Kaiser, M. (2004). Clustered or-

ganization of cortical connectivity. Neuroinformatics,
2(3):353–360.

[49] Honey, C. J., Sporns, O., Cammoun, L., Gigandet,
X., Thiran, J.-P., Meuli, R., and Hagmann, P. (2009).
Predicting human resting-state functional connectivity
from structural connectivity. Proceedings of the National
Academy of Sciences, 106(6):2035–2040.

[50] Humphries, M. D., Gurney, K., and Prescott, T. J. (2006).
The brainstem reticular formation is a small-world, not
scale-free, network. Proceedings of the Royal Society B:
Biological Sciences, 273(1585):503–511.

[51] Huntenburg, J. M., Bazin, P.-L., and Margulies, D. S.
(2018). Large-scale gradients in human cortical orga-
nization. Trends Cogn Sci, 22(1):21–31.

[52] Iturria-Medina, Y., Sotero, R. C., Canales-Rodríguez,
E. J., Alemán-Gómez, Y., and Melie-García, L. (2008).
Studying the human brain anatomical network via
diffusion-weighted mri and graph theory. Neuroimage,
40(3):1064–1076.

[53] Kaiser, M. and Hilgetag, C. C. (2006). Nonoptimal com-
ponent placement, but short processing paths, due to
long-distance projections in neural systems. PLoS com-
putational biology, 2(7):e95.

[54] Khundrakpam, B. S., Lewis, J. D., Zhao, L., Chouinard-
Decorte, F., and Evans, A. C. (2016). Brain connectivity
in normally developing children and adolescents. Neu-
roimage, 134:192–203.

[55] Khundrakpam, B. S., Reid, A., Brauer, J., Carbonell,
F., Lewis, J., Ameis, S., Karama, S., Lee, J., Chen, Z.,
Das, S., et al. (2013). Developmental changes in orga-
nization of structural brain networks. Cerebral Cortex,
23(9):2072–2085.

[56] Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P.
(1983). Optimization by simulated annealing. science,
220(4598):671–680.

[57] Kuhn, H. W. (1955). The hungarian method for the
assignment problem. Naval research logistics quarterly,
2(1-2):83–97.

[58] Laird, A. R., Fox, P. M., Eickhoff, S. B., Turner, J. A., Ray,
K. L., McKay, D. R., Glahn, D. C., Beckmann, C. F., Smith,
S. M., and Fox, P. T. (2011). Behavioral interpretations
of intrinsic connectivity networks. Journal of cognitive
neuroscience, 23(12):4022–4037.

[59] Latora, V. and Marchiori, M. (2001). Efficient behavior
of small-world networks. Phys Rev Lett, 87(19):198701.

[60] Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., and Jiang,
T. (2009). Brain anatomical network and intelligence.
PLoS computational biology, 5(5):e1000395.

[61] Liu, Z.-Q., Vazquez-Rodriguez, B., Spreng, R. N., Bern-
hardt, B. C., Betzel, R. F., and Misic, B. (2022). Time-
resolved structure-function coupling in brain networks.
Commun Biol, 5(1):1–10.

[62] Maier-Hein, K. H., Neher, P. F., Houde, J.-C., Côté, M.-A.,
Garyfallidis, E., Zhong, J., Chamberland, M., Yeh, F.-C.,
Lin, Y.-C., Ji, Q., et al. (2017). The challenge of mapping
the human connectome based on diffusion tractography.
Nature communications, 8(1):1–13.

[63] Marder, E., Gutierrez, G. J., and Nusbaum, M. P. (2017).
Complicating connectomes: electrical coupling creates
parallel pathways and degenerate circuit mechanisms.
Dev Neurobiol, 77(5):597–609.

[64] Markello, R. D. and Misic, B. (2021). Comparing spatial
null models for brain maps. NeuroImage, 236:118052.

[65] Mars, R. B., Passingham, R. E., and Jbabdi, S. (2018).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.28.509962doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.28.509962
http://creativecommons.org/licenses/by/4.0/


17

Connectivity fingerprints: from areal descriptions to ab-
stract spaces. Trends in cognitive sciences, 22(11):1026–
1037.

[66] Mars, R. B., Verhagen, L., Gladwin, T. E., Neubert, F.-
X., Sallet, J., and Rushworth, M. F. (2016). Comparing
brains by matching connectivity profiles. Neuroscience &
Biobehavioral Reviews, 60:90–97.

[67] Maslov, S. and Sneppen, K. (2002). Specificity and
stability in topology of protein networks. Science,
296(5569):910–913.

[68] McIntosh, A. R. (2000). Towards a network theory of
cognition. Neural Networks, 13(8-9):861–870.

[69] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. H., and Teller, E. (1953). Equation of state
calculations by fast computing machines. The journal of
chemical physics, 21(6):1087–1092.
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Figure S1. Extending to multiple communication models - node-level | (a) Standardized node-wise communication mea-
sures across five communication models were assembled into the columns of a nodes × communication models matrix. Principal
component analysis, applied to this matrix, identified a single dominant component that accounts for 43.65% of the node-level
variance in communication capacity. The radar chart represents the first component’s loadings (i.e., correlations with the five
communication models under consideration), with the greatest contribution to the aggregated communication measure coming
from search information and path length, with only a minor contribution from path transitivity. (b) Brain map of PC1 scores (c)
Significant anticorrelations (pspin < .05 in grey; Bonferroni corrected, α = .05 in green) between node-wise mean standardized
path lengths and Neurosynth functional activation maps associated to higher-order cognitive functions were replicated using PC1
scores. (d) Relationships between PC1 scores and topological features recapitulate results obtained using node-wise standardized
path lengths. No significant relationship was found with weighted degree (rs = −.19, pspin = .12; left), while a significant neg-
ative Spearman correlation was found between PC1 score and betweenness (rs = −.43, pspin < .001; middle) and participation
(rs = −.40, pspin < .001; right).
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Figure S2. Disentangling the contributions of topology and geometry | (a) Left: Scatter plot between empirical (abcissa) and
rewired (ordinate) shortest path lengths obtained using a geometry-preserving null model, where each point represents a pair
of brain regions. Marginal distribution histograms are shown on the top and right axes. Points that appear below the identity
line correspond to paths with a shorter length in the rewired networks than in the empirical network, and vice versa for points
above the identity line. Right: Brain map of the region-wise differences between rank-transformed closeness centrality (inverse
mean path length to the rest of the network) computed using empirical and standardized shortest path lengths. Red regions are
more integrated in the empirical network, and blue regions are more integrated in the standardized network. (b) Relationships
between standardized shortest path length and Euclidean distance (left) and functional connectivity (right). As expected due to
the edge length-preserving surrogate model, the relationship between standardized shortest path length and Euclidean distance is
considerably attenuated compared to the result obtained using strictly topology-preserving nulls. The relationship between stan-
dardized shortest path length and functional connectivity is maintained (rs = −.1, p ≈ 0), but is not exponential anymore. (c) Left:
Heatmap of the mean standardized path lengths across node pairs belonging to the same intrinsic network (diagonal) and to dif-
ferent intrinsic networks (off-diagonal). Compared to the result produced using the original standardization procedure, the mean
standardized path length of communication pathways internal to the frontoparietal network is no longer negative, indicating that
the network’s greater-than-expected internal communication capacity is partly due to the human connectome’s spatial embedding.
Right: The mean within-network standardized path length is significantly shorter than the mean between-network standardized
path length even when considering only the network’s topology (pspin < .001). (d) Significant anticorrelations (pspin < .05 in grey;
Bonferroni corrected, α = .05 in green) between node-wise mean standardized path lengths and Neurosynth functional activation
maps associated to higher-order cognitive functions are maintained when using geometry-preserving rewired nulls.
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Figure S3. Sensitivity analysis - Validation dataset | (a) Scatter plot between empirical (abcissa) and rewired (ordinate) shortest
path lengths obtained in the Validation sample, where each point represents a pair of brain regions. (b) Left: Heatmap of the mean
standardized path lengths across node pairs belonging to the same intrinsic network (diagonal) and to different intrinsic networks
(off-diagonal). The frontoparietal network’s greater-than-expected internal communication capacity is replicated in the Validation
dataset. Right: The mean within-network standardized path length is also significantly shorter than the mean between-network
standardized path length in the Validation dataset (pspin < .001). (c) Brain map of mean standardized path length from each node
to the rest of the network from the Validation set, with red denoting a greater integration of the node within the network and
yellow denoting a lower integration. (d) Significant anticorrelations (pspin < .05 in grey; Bonferroni corrected, α = .05 in green)
between node-wise mean standardized path length and Neurosynth functional activation maps associated to higher-order cognitive
functions were replicated in the Validation dataset.
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Figure S4. Sensitivity analysis - 219 nodes resolution | (a) Scatter plot between empirical (abcissa) and rewired (ordinate)
shortest path lengths obtained using the lower resolution Cammoun parcellation, where each point represents a pair of brain
regions. (b) Left: Heatmap of the mean standardized path lengths across node pairs belonging to the same intrinsic network
(diagonal) and to different intrinsic networks (off-diagonal). In addition to replicating the frontoparietal network’s greater-than-
expected internal communication capacity, this partition also identifies the communication pathways internal to the visual and the
dorsal attention networks as displaying greater-than-expected efficiencies. Right: The mean within-network standardized path
length is also significantly shorter than the mean between-network standardized path length when using the 219 nodes resolution
of the Cammoun atlas (pspin < .001). (c) Lower resolution brain map of mean standardized path length from each node to the rest
of the network, with red denoting a greater integration of the node within the network and yellow denoting a lower integration. (d)
Significant anticorrelations (pspin < .05 in grey; Bonferroni corrected, α = .05 in green) between node-wise mean standardized
path length and Neurosynth functional activation maps associated to higher-order cognitive functions were replicated at a lower
resolution.
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Figure S5. Sensitivity analysis - binary structural networks | (a) Distribution of standardized binary shortest path lengths
(z-scores) computed from a binary group-consensus structural network for all pairs of brain regions. (b) Left: Heatmap of the
mean standardized path lengths across node pairs belonging to the same intrinsic network (diagonal) and to different intrinsic
networks (off-diagonal). In addition to replicating the frontoparietal network’s greater-than-expected internal communication
capacity, binary path lengths also identify greater-than-expected communication capacity in the dorsal attention network. Right:
The mean within-network standardized path length is also significantly shorter than the mean between-network standardized path
length when using binary structural networks (pspin < .001). (c) Brain map of mean standardized binary path length from each
node to the rest of the network, with red denoting a greater integration of the node within the network and yellow denoting a
lower integration. (d) Significant anticorrelations (pspin < .05) between node-wise mean standardized path length and Neurosynth
functional activation maps associated to higher-order cognitive functions were replicated using binary structural networks.
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Figure S6. Sensitivity analysis - Polysynaptic communication pathways | (a) Scatter plot between empirical (abcissa) and
rewired (ordinate) shortest path lengths (left). Each point represents a pair of brain regions. Distribution of standardized short-
est path lengths (z-scores) for all pairs of brain regions (right). As expected, a large proportion of negative standardized path
lengths are attributed to monosynaptic pathways. Monosynaptic communication pathways appear in yellow, whereas polysynaptic
shortest paths are coloured in blue. (b) Relationships between standardized shortest path length and Euclidean distance (left)
and functional connectivity (right), with monosynaptic connections identified in yellow and polysynaptic paths in blue. (c) Left:
Heatmap of the mean standardized path lengths across node pairs belonging to the same intrinsic network (diagonal) and to dif-
ferent intrinsic networks (off-diagonal). In comparison to the previous results considering all communication pathways, including
monosynaptic connections, the frontoparietal network’s mean standardized path length is no longer negative, suggesting that its
greater-than expected internal communication capacity is partly due to highly efficient direct anatomical connections. Middle:
Heatmap of the pairwise differences of the means among Yeo intrinsic networks, calculated as the mean value of the network
on the x-axis minus the mean value of the network on the y-axis, with the mean value corresponding to the mean standardized
path length across node pairs belonging to the same network (diagonal elements of the left heatmap). A purple square indicates
significant difference of the means based on network label permutation using spatial autocorrelation-preserving null models (Bon-
ferroni corrected, α = .05), whereas “n.s.” denotes not significant differences. This plot recapitulates the results obtained when
taking all communication pathways into account, with the frontoparietal network displaying the highest internal communication
capacity and the somatomotor network exhibiting the lowest internal communication capacity. Right: The mean within-network
standardized path length is also significantly shorter than the mean between-network standardized path length when considering
only polysynaptic communication pathways (pspin < .001). (d) The PC1 aggregate communication score recapitulates the results
obtained using standardized shortest path length even if we circumscribe the analyses to PC1 scores of node pairs separated by
more than one synapse. From left to right: Exponential growth of the PC1 score as a function of Euclidean distance. The black line
corresponds to the fitted exponential y = −7.49e−0.03x + 1.12. Negative Spearman correlation between functional connectivity
and PC1 score (rs = −.19, p ≈ 0), and significantly lower within-network than between-network PC1 score (pspin < .001).
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