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Abstract:

Mitotic entry correlates with the condensation of the chromosomes, remodeling of histone
modifications, exclusion of transcription factors from DNA and the broad downregulation of
transcription. However, whether mitotic condensation influences transcription in the
subsequent interphase is unknown. Here, we show that preventing one chromosome to
condense during mitosis causes it to fail resetting transcription. Rather it diverted the
transcription machinery and underwent unscheduled initiation of gene expression. This
caused the activation of inducible transcriptional programs, such as the GAL genes, evenin
absence of the relevant stimuli. Strikingly, aberrant gene expression persisted into the next
interphase. Thus, our study identifies the maintenance of transcriptional homeostasis as an

unexpected and yet unexplored function of mitotic chromosome condensation.

One-Sentence Summary:
Mitotic chromatin condensation resets the transcriptome to protect cells from transcriptional

drifting after anaphase.
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Main Text:

During mitotic entry, eukaryotic chromosomes undergo a drastic compaction process,
called chromosome condensation, that makes them manageable units for the mitotic spindle
to segregate them between the two daughter cells (1). In addition, mitotic chromosome
compaction remodels the genome architecture of interphase, preventing the association of
most transcription- and chromatin regulators to cis regulatory elements (2, 3). This correlates
with a near-compl ete shutdown of the expression of interphase genes, except for certain
housekeeping genes, which remain weakly transcribed to maintain basic cellular functions (3,
4). At the end of mitosis, interphase gene expression programs are reestablished in a precise
and timely coordinated manner. In afirst wave, cells enhance primarily the expression of
housekeeping genes, whereas genes involved in the maintenance of cellular identity and
functions are reactivated in a second wave (4, 5). This correlates with the timely
reestablishment of interphase chromatin architecture and reloading of the transcription
machinery. Although mitotic promoter bookmarking and histone modifications participate,
the mechanisms enforcing controlled genome reactivation at mitotic exit remain unclear (5-
7). While the dramatic transcriptional silencing of mitotic chromosomes has been observed
and accepted along time ago, it is typically regarded as a passive consegquence of mitotic
chromatin condensation and it remains unclear whether it has any biological significance

beyond M phase.

We recently reported that the excision of a single yeast centromere, beyond
preventing kinetochore assembly, prevented the condensation of the entire chromosome (8,
9). This study established that at least in budding yeast condensation takes placein a
chromosome-autonomous manner, isinitiated at centromeres, and proceeds through the

sequential mobilization of the kinase Ipl1, the protein shugoshin (Sgol) and the sirtuin Hst2.
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In turn these proteins mediated histone deacetylation, chromatin compaction and condensin-
dependent contraction of the chromosome arms (8-10). Here, we used the same approach,
namely the controlled excision of the centromere of yeast chromosome IV (CEN4), to
investigate the consequence of preventing condensation of a single chromosome on
transcription in the subsequent cell cycle. The centromere of chromosome 1V flanked with
lox recombination sites (CEN4*; Fig. 1A) (9, 11), was excised on demand through activation
of achimeric Cre protein fused to an estradiol-binding domain (Cre-EBD). Concretely,
CEN4* was quickly and efficiently excised from the chromosome in a majority of the cells
30 minutes after estradiol treatment (12) (fig. S1A).

RNA-sequencing (RNAseq) at several time points after CEN4* excision (see fig. S1B
for PCA) enabled usto analyze the effect of CEN4* excision on gene expression on all yeast
chromosomes, using increasingly stringent P-adj cutoffs. Strikingly, in addition to triggering
global transcriptome deregulation, CEN4* excision was followed by a specific, significant
and progressive upregulation of transcription of genes located on chromosome V. The
amplitude (Log2 FC) of this raise and its significance were much more pronounced than at
any other chromosome (Fig. 1B, fig. S1, C to E, table $4 and table S5). The enrichment of
upregulated genes at chromosome IV was validated by unbiased hierarchical clustering.
These unbiassed analyses identified alarge cluster of upregulated genes that was significantly
enriched for genes located on chromosome IV (fig. S2, A to D). Other clusters contained
genes that were either upregulated, downregulated or unaffected upon CEN4* excision and
were not enriched for genes belonging to chromosome 1V (fig. S2, A to D). Consistent with
the notion that the localisation of these genes drove their upregulation, Gene Ontology (GO)
analysis of the genes deregulated upon CEN4* excision could not classify the deregulated
genes from chromosome 1V into any specific pathway (except a few genesinvolved in

“cellular response to DNA damage stimulus’, fig. S3, A and B).
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To study this effect in more detail we focused on GAL3, which is located on
chromosome 1V. Its product Gal3p is a galactose-inducible transcription activator that
promotes the expression of GAL1, GAL2, GAL7 and GAL10 (13) (fig. S4A). However, even
in absence of galactose GAL3 was strongly and increasingly activated over time upon CEN4*
excision (fig. S4A). Interestingly, its target genes, which are located on chromosome Il and
XI1, also became upregulated (fig. S4A), albeit less intensely and slower. A similar effect was
observed for example for the INO2 gene, which encodes an activator of phospholipid
synthesis genes (14) (fig. $4B). Thus, loss of CEN4* unleashes the expression of
chromosome IV genes, even in absence of cognate signals, occasionally resulting in the
increased expression of downstream genes located on other chromosomes (fig. $4D).

Interestingly, in addition to causing aberrant expression of specific transcriptional
programs, such as the GAL or INO2 systems, excision of CEN4* affected several genes
located outside chromosome |V that are involved in regulation of translation, ribosome
biogenesis and metabolism. These pathways are often downregulated in response to stress,
and partially overlapped with the environmental stress response program (ESR) (15, 16) (fig.
S3, A and B and fig. SAC). We hypothesized that, similar to the GAL system, activation of the
ESR was due to increased expression of ESR regulators located on chromosome |V.
Although we cannot exclude this possibility, we note the main activators of ESR, MSN2 and
MSN4, are upregulated after CEN4* excision (Data S1), but are located outside chromosome
IV. This suggests that ESR may be induced in response to centromere excision. Importantly,
excision of asmall patch of control DNA from one of the arms of chromosome IV using the
same cre/lox system (fig. S5, A and B) had no effect on gene expression (fig. S5, C and D),
demonstrating that transcriptional deregulation is specific to the excision of CEN4*. Taken
together, these data show that centromeres suppress unscheduled activation of transcription in

cis, and that loss of a single centromere induces the ESR.
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Interestingly, gene deregulation at chromosome IV was partially dependent on the
distance of genes from CEN4*. We did not observe any enrichment for any chromosomal
region when we plotted all genesidentified by RNAseq according to their position on
chromosome 1V (fig. S6A). Likewise, plotting the log2 FC values of the differentially
expressed genes (P < 0.001) against their position relative to CEN4 reveaed that the
amplitude of gene expression changes (Log2 FC) is not linked to the location of genes on
chromosome 1V (see Pearson correlation scorein fig. S6B). However, plotting the density of
DEGs relative to the position of CEN4* over time revealed a time-dependent increasein the
density of upregulated genes that peaked between 60 min and 120 min after CEN4* excision,
and which appeared to propagate in wave-like patterns spreading from CEN4 to the telomeres
(Fig. 1C and 'DEGs Up' in fig. S6C). In contrast, the small group of downregulated genes at
chromosome IV did not display a comparable increase over time, neither in density nor
spreading (fig. S6C, 'DEGs Down’). Thus, transcriptional upregulation in response to CEN4*
excision appears to spread progressively from the centromeric region towards the end of the

chromosome arms of chromosome V.

To confirm that overexpression of genes on chromosome |V was the consegquence of
the mitotic condensation defect induced by CEN4* excision, we synchronized the cell cycle
prior to chromosome condensation using hydroxyurea (HU), which arrests yeast cellsin S
phase right before anaphase onset (S phase partially overlaps with early phases of mitosisin
budding yeast (17-19)). We then released the synchronized cellsin presence or absence of -
estradiol, and analyzed the timing of upregulation of a panel of strongly upregulated genes
(Fig. 1D). The expression of these genes was identical in asynchronous and in HU-arrested

CEN4 or CEN4* cells (Fig. 1E). Similar results were obtained with cells arrested in G1 using
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alpha-factor, or in prometaphase using nocodazole (fig. S7, A to D). In contrast,
transcriptional activation in response to CEN4* excision was strong in cells that had been
released from HU arrest for 90 min and 150 min and that had completed mitosis (Fig. 1E and
fig. S7, E and F). Thus, progression through mitosisis required for centromere excision to

cause aberrant gene upregulation.

We previously showed that the histone deacetylase Hst2 operates downstream of
centromeres in chromatin condensation during mitotic entry (8, 9). Consistent with this and
with overexpression of chromosome IV being due to a condensation defect, the occurrence of
H4K12ac and H4K 16ac substantially increased over time after CEN4* excision on
chromosome 1V, specifically, as determined by ChiP-sequencing (ChlPseq) (seefig. S8, A
and B for PCA). Importantly, the other chromosomes remained largely unaffected (Fig. 2, A
to D, fig. S9A and B and fig. S10, A and B). Histone acetylation started increasing near
CEN4* before spreading to each chromosome arm over time (fig. S12A), similar to the gene
expression patterns described above. Crucially, ATACseq experiments showed that increased
histone acetylation at chromosome IV correlated with a strong increase in chromatin
accessibility (Fig. 2E and fig. S10C). Thus, centromere inactivation causes aberrantly high
levels of histones acetylation and chromatin opening on the affected chromosome, increasing
the accessibility of DNA to the transcription machinery. Supporting this interpretation, the
occurrence of the active promoter mark H3K4me3 was significantly increased at promoters
on chromosome |V after B-estradiol treatment, specifically (Fig. 3, A and B, fig. $9, A and B,
fig. S11A and fig. S8C for PCA). This was associated with a clear increase in total RNA
polymerase Il (Pol I1) levels, as well as the transcriptionally active forms of Pol 11, CTD-S5p
and CTD-S2p (Fig. 3, Cto H, fig. S9, A and B, fig. S11, B to D and fig. S8, D to Ffor PCA).

Remarkably, Pol 11 recruitment at other chromosomes started to decay upon CEN4* excision
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(Fig. 3, D, Fand H and fig. S11, B to D), suggesting that upregulation of gene expression at
chromosome 1V may titrate Pol 11, and that Pol 11 might be present in limiting amounts in the
cell. Finally, the characteristic wave-like spreading of unscheduled gene expression and
histone acetylation from CEN4* to the arms of chromosome IV correlated with the spreading
of H3K4me3, Pol 11, Pol Il CTD-S5p and CTD-S2p (fig. S12, B and C).

Supporting the idea that gene deregulation was a consequence of the condensation
defect, unbiased hierarchical clustering analysis on RNAseq and ChlPseq data identified a
cluster of genes at which an increase in positive histone marks and active Pol 1 clearly
correlated with increased gene expression. This cluster was strongly and highly significantly
enriched for chromosome IV genes (fig. S13A). Whereas some of the other clusters were
enriched for certain GO terms, this “chromosome IV” cluster was not enriched for any
particular pathway (fig. S13B). Furthermore, acetylation of histones on chromosome IV
peaked 120 min after CEN4* excision (Fig. 2, A and B) while the occurrence of H3K4mes3,
Pol I1, Pol 1l CTD-S5p and CTD-S2p was maximal at 180 min (Fig. 3, A, C, Eand G). Thus,
the failure to recruit Hst2 and condense the chromosome results first in increased histone
acetylation and chromatin opening, and only subsequently in increased H3K4 methylation at

promoters and transcription initiation, in the following interphase (fig. S13C).

Together, our data demonstrate that chromosome condensation has a key impact on
the proper regulation of gene expression in the following interphase. Failure of a mitotic
chromosome to condense in mitosis results in spontaneous recruitment of the transcription
machinery, triggering unscheduled post-anaphase transcription of the entire chromosome, and
unleashes genes from their control by upstream regulatory pathways (fig S14). Thereby,
mitotic condensation resets gene expression at mitotic entry to safeguard against unlicensed

transcription in the following interphase. It is interesting that asingle locus, the centromere,
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instructs whole-chromosome gene silencing in cis. Whether centromeres only contribute to
silencing via spreading of histone deacetylation or if they support other regulatory
mechanisms like histone methylation remains to be investigated (8, 9, 20-22).

The effect of chromosome condensation on epigenetic markers and on gene
expression in the ensuing interphase could be particularly relevant for asymmetrically
dividing cells, such as stem cells, in which gene expression programs need to be reset to
allow for maintenance of pluripotency, cellular identity and for determining cell fate (4, 7, 20,
23-25). Our study reveals an unexpected mechanism by which cells prevent post-mitotic
transcriptional drifting, providing new inroads for exploration of mechanisms that maintain
cellular homeostasis and control cell identity. Our results may also contribute to a better

understanding of the etiology of diseases involving malfunctioning centromeres (26, 27).
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Fig. 1. Failureto condense chromatin at mitotic entry resultsin general upregulation of
gene expression during interphase. (A) The centromere excision assay. (B) RNAseq
assessment of gene expression at each chromosome and at different time points after CEN4*
excision. (C) Frequency of DEGs (P-adj < 0.001) at chromosome IV over time after CEN4*
excision. (D) Layout of CEN4* excision in S-phase arrest and release experiments. (E) RT-
gPCR analysis of the expression of five selected genes from chromosome IV at different time
points before and after S-phase arrest and release (see D). *P values < 0.05; **P values <

0.01
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Fig. 2. Centromereloss triggers chromatin reaxation in cis. H4K12ac (A) and H4K 16ac

(C) occurrence a each chromosome and at different time points after CEN4* excision.

Metagene analysis of the top 20% ChlP signals showing increasing presence of H4K12ac (B)

and H4K 16ac (D) at chromosome 1V genes and decreasing presence at genes on other

chromosomes after centromere excision (see fig. S10 for metagnes of 100% of ChIP signals).

(E) ATACseq experiments showing chromatin accessibility at time points O min (upper

panel) and 180 min (lower panel) at each chromosome after CEN4* excision in CEN4* and
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CEN4 cells. Each chromosomeis represented using a dedicated color. y axis. chromosome

coordinates. Each dot corresponds to bin of 10 Kb of chromosomal DNA.
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Fig. 3. Lack of mitotic condensation triggers spontaneous transcriptional initiation.
Assessment of H3K4me3 (A) Pol 11 (C) Pol 11 CTD-S5p (E) and Pol II CTD-S2p (E)
occurrence using ChlPseq at each chromosome and at different time points after CEN4*

excision. Metagene analysis of the top 20% ChlP signals shows increasing presence of
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H3K4me3 (B) Pol 11 (D) Pol 11 CTD-S5p (F) and Pol Il CTD-S2p (H) at chromosome 1V

genes and a decrease at other chromosomes after centromere excision.
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