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Abstract

Identifying white matter (WM) microstructure parameters that reflect the underlying biology of the
brain will advance our understanding of ageing and brain health. In this extensive comparison of
brain age predictions and age-associations of WM features from different diffusion approaches, we
analysed UK Biobank diffusion Magnetic Resonance Imaging (dMRI) data across midlife and older
age (N = 35,749, 44.6 to 82.8 years of age). Conventional and advanced dMRI approaches were
consistent in predicting brain age; with their WM-features similarly related to and predicted by age.
However, brain age was estimated best when combining approaches, showing different aspects of
WM to contribute to brain age. Fornix was found as the central region for brain age predictions
across diffusion approaches. We encourage the application of multiple dMRI approaches for
detailed insights into WM, and the further investigation of fornix as a potential biomarker of brain
age and ageing.

Keywords: ageing, brain age, diffusion, white matter, magnetic resonance imaging, fornix


https://doi.org/10.1101/2022.09.29.510029
http://creativecommons.org/licenses/by-nc-nd/4.0/

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.29.510029; this version posted December 19, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Introduction

Neuroscientific research over the past decades has increased our understanding of the brain
mechanisms associated with tissue maturation and ageing effects!®. A particularly fruitful source of
data is magnetic resonance imaging (MRI), revealing information about structural and functional
brain architecture in vivo?. For many MRI modalities, such as diffusion-weighted MRI (dMRI) or
Ti-weighted MRI, a variety of quantitative measures can be estimated, and linked to behaviour,
cognitive and health scores®4. However, selection and interpretation of such parameters are
difficult, largely due to intra-subject variability in ageing, for example influenced by covariates
from the genetic to environmental level*. Hence, the use of large-scale MRI databases, such as UK
Biobank (UKB)? or the Human Connectome Project®, becomes inevitable, as it allows detecting and
localising important brain patterns and supporting their generalisability’. Simultaneously, large-
scale data provides sufficient power for the application of advanced multivariate statistical models,

and machine learning (ML) techniques.

Brain age prediction is an example of such a technique, helping translate large amounts of complex
multidimensional data into practically interpretable outputs. Brain age prediction involves training a
ML model to determine trajectories of brain ageing from a series of brain MRI features. Once the
model is trained, it can predict the age of brains not included in the training data. The disparity
between chronological age and predicted age, the so-called brain age gap (BAG), can be used as an
indicator for neurological, neuropsychiatric and neurodegenerative disorders'®!'. For example,
BAG has been associated with stroke history, diabetes, smoking, alcohol intake, several cognitive
measures'?!3, mortality risk, different brain and psychiatric disorders!'4!®, cardiovascular risk
factors'?, stroke risk!6, and loneliness'’. However, besides Alzheimer’s disease or schizophrenia, the
evidence is mixed for the relationship of BAG and different health outcomes and a smaller BAG is
not necessarily indicative of good health*. Moreover, recent longitudinal evidence shows early-life
factors and genetics to have stronger effects on brain maturation than Ti-weighted grey matter

(GM) BAG!8. However, BAG is a promising heritable indicator of general health status!®!3:19.20,

BAG and age trajectories offer paths towards a better understanding of the ageing brain. There are
various detectable age-related brain changes, such as GM and WM atrophy®, WM de-
differentiation®, and functional connectivity changes* which have hence informed the choice of
brain-age modelling-parameters'16:19.2527-29.30 Tp that context, many ML approaches have been
used to make robust and clinically relevant brain age predictions from different MRI modalities'%2!-
23; yet, particularly the eXtreme Gradient Boosting?* regressor model, using a decision tree

approach, being increasingly used for brain age predictions from large-scale data due to its

2


https://doi.org/10.1101/2022.09.29.510029
http://creativecommons.org/licenses/by-nc-nd/4.0/

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.29.510029; this version posted December 19, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

precision and speed 1%-2>26, Especially dMRI and structural MRI have been shown useful for brain
age predictions!>16:192527-29.30 However, further systematic, sufficiently powered assessments of

dMRI-derived brain age and how diffusion metrics map onto age are needed.

DMRI-derived measures consist of unique parameters allowing both to reveal WM changes at
micrometer scale and to provide the basis for a prediction of macroscopic outcomes, such as age.
Conventionally, WM brain architecture is described using diffusion tensor imaging (DTT)3!.
However, recent advances offer more biophysically meaningful approaches®, and sensible
foundation for cross-validation and better comparability?°. DTI-derived measures, namely fractional
anisotropy (FA), and axial (AD), mean (MD), and radial (RD) diffusivity have all been shown to be
highly age sensitive®2>33, However, the DTI approach is limited by the Gaussian diffusion
assumption and is unable to take into account entangled WM microstructure features?°. In the
present work, we consider 1) the Bayesian rotationally invariant approach (BRIA)34, 2) diffusion
kurtosis imaging (DKI)?°; 3) kurtosis derived supplement, known as white matter tract integrity
(WMTTI)3; 4) spherical mean technique (SMT)?, and 5) multi-compartment spherical mean
technique (mcSMT)?® in addition to DTI. Only a few studies have compared dMRI models directly
as original brain age predictors?>3%40, Yet, brain age and age curve assessments of DTI, BRIA, DKI,
WMTI, SMT, mcSMT (ST10) in a representative sample still need establishing, as well as most
influential WM regions for brain ageing. Our assessments focus on the process of ageing (from
midlife to late adulthood), starting by associating BAG across diffusion approaches and compare
brain-age-chronological-age-correlations to assess prediction consistency. Fornix was identified as
most contributing feature in these predictions exploring feature-contributions, and was the strongest
correlate of age, with fornix features highly correlated across approaches. Finally, we created fornix
and whole-brain-age curves expecting curvilinear relationships reflecting brain-tissue-composition

at different ageing stages?>33>2,

Methods

Sample characteristics

The original UKB® diffusion MRI data consisted of N = 42,208 participants. After exclusions, based
on later withdrawn consent and an ICD-10 diagnosis from categories F, G, I, and stroke (excluded:
N = 3,521), and data sets not meeting quality control standards (N = 2,938) using the YTTRIUM
method?®, we obtained a final sample consisting of 35,749 healthy adults (age range 44.57 to 82.75,
Mage = 64.46, SDage = 7.62, Mdage = 64.97; 52.96% females, 47.04% males). Participants were
recruited and scanned at four different sites: 57.62% in Cheadle, 26.30% in Newcastle, 15.96% in
Reading, and 0.12% in Bristol (Fig.1).
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Fig.1: Density plots for the sample’s age by sex and scanner site
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MRI acquisition, diffusion pipeline and TBSS analysis

UKB MRI data acquisition procedures are described elsewhere>.

Diffusion data preprocessing was conducted as described in Maximov et al.”!, using an optimised
pipeline which includes corrections for noise’?, Gibbs ringing’3, susceptibility-induced and motion
distortions, and eddy current artefacts’. Isotropic Gaussian smoothing was carried out with the
FSL7> function fsImaths with a Gaussian kernel of 1 mm?3. After that DTI, DKI, and WMTI metrics
were estimated using Matlab 2017b’6. Employing the multi-shell data, DKI and WMTI metrics
were estimated using Matlab code (https:/github.com/NY U-DiffusionMRI/DESIGNER)3¢, SMT,

and mcSMT metrics were estimated using original code (https:/github.com/ekaden/smt)¥, as well

as Bayesian estimates / BRIA were estimated by the original Matlab code

(https://bitbucket.org/reisert/baydiff/src/master/).

In total, we obtained 28 metrics from six diffusion approaches (DTI, DKI, WMTI, SMT, mcSMT,
BRIA)?>387L77-79 In order to normalise all metrics, we used tract-based spatial statistics (TBSS)®°,

as part of FSL8L, In brief, initially all BET-extracted®? FA images were aligned to MNI space using
4
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non-linear transformation (FNIRT)”>. Afterwards, the mean FA image and related mean FA skeleton
were derived. Each diffusion scalar map was projected onto the mean FA skeleton using the TBSS
procedure. In order to provide a quantitative description of diffusion metrics we evaluated averaged
values over the skeleton and two white matter atlases, namely the JHU atlas®? and the JHU
tractographic atlas®*. Finally, we obtained 20 WM tracts and 48 regions of interest (ROIs) based on
a probabilistic white matter atlas (JHU) (Hua et al., 2008) for each of the 28 metrics, including the
mean skeleton values. Altogether, 1932 features per individual were derived (28 metrics * (48 ROIs

+ 1 skeleton mean + 20 tracts); see number of dMRI features in Table 1)).

Statistical Analyses
All statistical analyses were carried out using Python, version 3.7.1 and R, version 3.6.0 (www.r-

project.org/). p-values were adjusted for multiple comparison using Holm correction**.

Brain Age Predictions

First, brain age predictions were performed using XGBoost?* in Python. To evaluate how much data
was needed for hyper-parameter tuning while accurately predicting brain age from all 1940 brain
features, we divided the full dataset (N=35,749) into two equal parts: one validation set and one
hyper-parameter tuning set for independent parameter-tuning. From the hyper-parameter tuning set,
data was randomly sampled into sub-samples consisting of 358, 715, 1,073, 1,430, 1,788, 2,145,
2,503, 2,860, 3,218, 3,575, 7,150, 10,725, 14,300, or 17,875 participants, corresponding to 1%, 2%,
3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 20%, 30%, 40% and 50% of the total subjects, respectively
(Fig.2). Hyper-parameter were tuned on these sub-samples and then tested on the remaining half,
i.e., the validation sample, using 10-fold cross validation showing model performance to not further

improve past the 10% (tuning) data mark, informing our tuning-validation-split (Fig.2, ST1).

Fig.2: Model performance for different train-test splits
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Model metrics R%, RMSE, MAE and their standard deviations, as well as the Pearson’s correlations between predicted
and chronological age and its 95% confidence interval are displayed for different training data percentages of the total

data (x-axis). For visualisation purposes, RMSE and MAE were divided by 10. For exact values see Suppl. Table ST1.
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Second, in order to compare the different diffusion approaches, based on the previous steps, the
training-test split was fixed at previously used 10% training data (N = 3,575) and 90% test data (N
= 32,174) which indicated a best fit at a learning rate = 0.05, max layers/depth = 3 and number of
trees = 750. These tuned parameters were used for 10-fold cross-validations brain age predictions
on the test data of all six individual models, one multimodal model combining all metrics from all
diffusion models, and one multimodal model using only mean values from all diffusion models

(Table 1).

Third, BAG was calculated as the difference between chronological age Q and predicted age P:

BAGuncorrected = P - Q (3)

As a supplement, age-bias-corrected predicted age was calculated from the intercept and slope of

age predictions as previously described?%:8°:

P=axQ+ 4)
BAGcorrected = (P + [Q - (O( X Q)+ B)]) -Q (5)

P represents predicted age modelled from chronological age Q, with intercept § and slope a. This

age-bias correction allowed for a bias-corrected BAG estimate.

Results

Brain age predictions

Table 1 presents a comparison between different diffusion approaches in predicting brain age for
each diffusion approach. The strongest correlation between chronological and predicted age was
found in the multimodal approach including dMRI data from all six diffusion approaches, Pearson’s
r=0.805, 95% CI [0.800, 0.808], p<.001, and the smallest correlation in the multimodal approach
including only mean scores Pearson’s r = 0.627, 95% CI [0.627, 0.639], p<.001, respectively
(corrected and non-corrected correlations are presented in Table 1). The strongest correlation
between uncorrected age predictions and chronological age was observed for WMTI Pearson’s
r=0.765, 95% CI [0.761, 0.770], p<.001, and the smallest for mcSMT Pearson’s r=0.721, 95% CI
[0.716, 0.726], p<.001.
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Hotelling’s*! t-tests were used to compare correlations between uncorrected predicted age and
chronological age across diffusion models and Zou’s*? method to estimate the confidence intervals
around the correlation differences (Fig.3 and ST3; SF8 and ST2 for corrected prediction correlation
comparisons). These differences were not significantly different from each other for model pairs
DKI and DTI (p~1). All other correlations were different from each other, Pearson’s rsis<0.15,
p<.001, with the biggest difference observed between mean and full multimodal scores’ correlations

(ST2 for exact values).

Table 1: Performance of Brain Age Prediction Models

Approach! Number R? RMSE MAE Prediction-Age Corrected Prediction-
of MRI (SD) (SD) (SD) Correlation* Age Correlation*
features [95% CI] [95% CI]

BRIA 690 0.550 5.007 4.002 0.742 0.892*

(0.012) (0.057) (0.042) [0.737, 0.747] [0.889, 0.894]

DKI 207 0.576 4.958 3.975 0.754 0.903

(0.015) (0.077) (0.068) [0.755, 0.764] [0.901, 0.905]
DTI 276 0.571 4.983 3.984 0.756 0.900
(0.014) (0.072) (0.062) [0.751, 0.761] [0.897, 0.902]
SMT 276 0.531 5.214 4.183 0.729 0.899
(0.010) (0.053) (0.036) [0.724, 0.734] [0.897, 0.901]
mcSMT 276 0.519 5.175 4.153 0.721 0.892*
(0.011) (0.045) (0.036) [0.716, 0.726] [0.889, 0.894]
WMTI 207 0.585 4.903 3.928 0.765 0.902
(0.012) (0.065) (0.050) [0.761, 0.770] [0.900, 0.904]

Mean 28 0.393 5.932 4.812 0.627 0.905

multimodal (0.012) (0.051) (0.046) [0.621, 0.634] [0.903, 0.907]

Full 1932 0.645 4.534 3.624 0.804 0.907

multimodal (0.011) (0.041) (0.037) [0.800, 0.808] [0.905, 0.909]

Table logic: R?, RMSE, MAE are displayed in the format Mean (Standard Deviation), Pearson’s correlations are

displayed in the format Correlation Score 95% Confidence Interval [Lower Bound, Upper Bound].

Mean multimodal refers to diffusion metrics averaged over the skeleton for all six diffusion approaches. Full
multimodal refers to all diffusion data from the six diffusion approaches, i.e. mean multimodal data in addition to

metrics averaged over the JHU atlas regions. R? = variance explained, RMSE = root mean squared error, MAE = mean

absolute error.

8§ For an overview of the metrics contained in each of the diffusion approaches see ST10.
+ Details on the smallest correlation: BRIA Corrected Prediction-Age Correlation r = .89173, mcSMT Corrected
Prediction-Age Correlation r = .89176

* All correlation were significant at p <.001.
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212 Fig.3: Differences between Pearson’s correlations of chronological and uncorrected predicted

213 ages across diffusion approaches with 95% confidence interval
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215  Differences between Pearson’s correlation coefficients of chronological and uncorrected predicted age by diffusion
216  approach. See SF8 for correlational differences between approaches for corrected brain age predictions.

217
218 To identify the most influencing WM regions, we computed the permutation feature importance for

219 each model’s features (models: Table 1), ranked by contribution to the variance explained (Table
220  2). For feature rankings by contribution to model prediction accuracy using gain scores** see ST15.
221  Across diffusion approaches, diffusion values estimated on the fornix had the most valuable

222 contribution to variance explained (Table 2) and prediction accuracy (ST15). Model which had
223  fornix features removed had lower model fit and brain-age-chronological-age correlations were

224 smaller than for models containing fornix (rs<-0.003, ps<.001; ST16).
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Table 2: Top five diffusion metrics ranked by their contribution to variance explained (R?) in

age
BRIA DKI DTI SMT mcSMT WMTI Multimodal
Micro FA fornix AK right MD fornix MD fornix Extratrans fornix AWF fornix Micro FA fornix

0.1954+0.0027 anterior limb of 0.0712+0.0013 0.0795+0.0018 0.0498+0.0013 0.1699+0.0023 0.0914+0.0011
internal capsule
0.0984+0.0014

Vextra forceps RK fornix FA forceps FA right superiorIntra forceps radEAD fornix AK anterior limb

minor 0.0884+0.0016 minor longitudinal minor to right of internal

0.0278+0.0007 0.0533+0.0011 fasciculus 0.0444+0.0009 striaterminalis capsule
0.0267+0.0007 0.0283+0.0007 0.0055+0.0011

Vextra body of MK left external RD fornix to ~ Longitudinal  Intra fornix AWF Forceps FA forceps minor

the corpus capsule right fornix 0.0289£0.0009 minor 0.0219+0.0006

callosum 0.0259+0.0006 Striaterminalis 0.0251+0.0006 0.0194+0.0005

0.0261+0.0007 0.0462+0.0009

Micro FA fornix MK right FA right superiorTrans fornix to Extratrans fornixaxEAD forceps RD right fornix

to right superior cerebellar right to right minor stria terminalis

Striaterminalis longitudinal peduncle striaterminalis ~ Striaterminalis 0.0193+£0.0007 0.0214+0.0006

0.0203+0.0006 fasciculus 0.0221+0.0006 0.0204+0.0006 0.0201+0.0006

0.0214+0.0006

Vintra right RK forceps FA body of the FA fornix Extratrans right axEAD left AK Genu corpus

superior minor corpus callosum 0.0192+0.0006 external capsule posterior limb callosum

cerebellar 0.0208+0.0005 0.0218+0.0006 0.0163+0.0007 of internal 0.0095+0.0003

peduncle capsule

0.0194+0.0006 0.0173+0.0006

Note: Variance explained (R?) by a single feature refers here to the part of the total variance explained by the respective
model presented in Table 1. Multimodal refers to an approach using the diffusion metrics from all diffusion approaches.
Cells containing Fornix are marked in green.

Brain age gap across diffusion approaches and age

In order to compare uncorrected BAG (BAG,) calculations across the used diffusion approaches,
BAG, was correlated from different diffusion approaches and with age. Correlations between the
six diffusion approaches ranged between r=0.857 and r=0.966 (Fig.8; SF1 for corrected BAG
correlations). Overall, BAG, scores from the different approaches were strongest related to WMTI
BAGec (range: r = 0.873 to 0.952), and weakest to mean multimodal BAG, (range: r=0.779 to
r=0.828), and could be observed in one cluster containing DKI, DTT, WMTI and multimodal BAG,
and a second cluster containign BRIA, SMT, and SMTmc. However, DKI, BAG, was more strongly
correlated with full multimodal BAG. than with other well-performing approaches DTT (Pearson’s
raifi=0.03, p<.001) and WMTT (rait=0.03, p<.001). Vice versa, DTI BAG¢. correlated strongest with
WMTI BAGc (r=0.905, p<.001).
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Fig.4: Correlations of uncorrected BAG and age across used diffusion approaches
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Age-BAG correlations, approximating 0, were not significant at proim > .05. All other correlations were significant at
PHoim < .001. For the corrected BAG correlations across models see SF1.

Associations between diffusion metrics and age

A correlational analysis was used to demonstrate associations among Fornix diffusion metrics and
age (Fig.5, including QC outliers: SF4). Association strengths ranged from to r=-0.997 (smtTrans
and smtMCintra) to r=0.999 (smtTrans and smtMD). Correlations between fornix metrics and age

ranged from r=-0.558 (smtMCintra) to r=0.570 (microRD).

10
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252  Fig.5: Correlation matrix for fornix diffusion metrics and chronological age
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253  All correlations were significant at Holm-corrected proim < .05.

254

255  For region-wide associations between age and diffusion metrics, all diffusion metrics were

256  correlated with age and displayed for proim<0.001 (Fig.6). Among these correlations, Pearson’s r
257  values > 0.5 were name-labelled showing various correlations between diffusion metrics in the
258 fornix and age. However, when controlling for covariates, only relatively small proportions of the
259 variance in single local and global diffusion metrics could be predicted from the whole model with

260 small contributions of age to the models (SF11).
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261 Fig.6: Correlations between diffusion metrics and age
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262  Note: Each point indicates one correlation between a diffusion metric and chronological age. Names of diffusion
263  metrics are displayed when correlations between the metric and age reached a Pearson correlation of |r|>0.5. Holm
264  correction* was used for FDR-correction, and all displayed values were significant at p < .001.

265  For the distribution of the correlations see SF12.

266
267  Age Trajectories of Diffusion Features

268 In Fig.7 we present absolute diffusion metrics for the whole brain (Fig.7a) and fornix (Fig.7b)

269 across ages for the examined six diffusion approaches (overview of metrics: ST10). Age-metric

270 relationships for fornix were approximating linearity closer than more curvilinear global age-curves.
271  Several fornix-age relationships for BRIA extra-axonal and intra-axonal radial and axonal

272  diffusivity opposed whole-brain-age relationships.
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273  Fig.7: Whole-brain and fornix diffusion metrics across age
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275  Note: The presented plots represent diffusion metrics for each of the six diffusion models from the full sample N =
276 35,749 for a) whole-brain diffusion metrics, b) fornix diffusion metrics. Brighter colours indicate higher density and red
277  lines are fitted lines to the relationship between age and diffusion metric.
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Whole-brain (Fig.8) and fornix (SF9) diffusion metrics M were predicted from age, sex and scanner
site to create age curves (Fig.8A-B) which can be compared to raw Z-score-normalisation curves

(Fig.8C-D):

M = o + B1Age + B2Age? + B3 x Site*Sex + BsSex*Age + BsSex + BeSite @)

A general trend was observed of most features crossing the mean at the same age, around 65 (Fig.8,
SF9). Model fit metrics R%qj and Standard Error (SE) for the models accounting for age, sex and
scanner site (Equation 1) when predicting diffusion metrics were calculated (Fig.7E). Highest SE,
R2.q4j and variability across metrics was observed when predicting BRIA metrics (R%qj = .21), as
well as lowest R?,¢j~0 in BRIA Vextra, respectively. While DTT metrics could also be predicted well
from the model, lowest variability in R2q; was found in WMTT and DKI. For fornix metrics, SE and
R2.q; was generally higher across diffusion approaches (SF9).

To test age-sensitivity of the mean features, likelihood ratio tests were conducted comparing models
derived from Equation 1 against models derived from the same formula with age removed:

(Equation 2).

M = B + 1Site*Sex + B2Sex + BsSite 2

All models showed significant age dependence, with DTT RD (x?= 9,640.26, proim<.001), BRIA
microRD (¥?=9,496.19, proim<.001), and DTI FA (x*>= 8,803.13, proim<.001) being the most age-
sensitive metrics, and WMTI axEAD (x?=6.66, proim=.084), mcSMT diffusion coefficient
(x*=238.47, proim<.001), and WMTI radEAD(x*=418.26, proim<.001) the least age-sensitive metrics
(ST11).

In a set of additional analyses, we examined age-sensitivity of fornix features and whether the
relationship between whole-brain as well as fornix diffusion metrics and age are better described as
linear or non-linear. Fornix diffusion metrics were age sensitive (SF9) but model fit did not differ
between linear and non-linear models for whole-brain (ST12) or fornix metrics (ST9).

Finally, to observe BAG-WM associations, principal components of regional and whole-brain WM
metrics for each of the eight models (Table 1) were only weakly correlated with uncorrected BAGy,,
and similarly related to corrected BAGc, agechronological and agepredicted (SF10). Furthermore, when
predicting the most important WM components (SF10, ST14) or single regional or whole-brain
metrics (SF11) from BAG. and BAG, and covariates, models predicted relatively small proportions

of variance, with small contributions of BAG to the model (SF10-11).
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314 Fig.8: Raw and predicted whole-brain WM diffusion metrics by chronological age
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Fig.8A-D shows age curves for each standardised (z-score) diffusion metric’s mean skeleton value (y-axis) plotted as a

function of age (x-axis). Shaded areas represent 95% CI. Curves fitted to raw values (Fig.8 C-D) serve as a comparison
to the Im-derived predicted values from Equation 1 (Fig.A-B). Fig.8E indicates the model fit for the linear models from
Fig.8A-B, showing R%; values on top and Standard Error (SE) on the bottom of the bars which each represent a Fornix
skeleton value for one of the seven models. Lines crossing at age 65 are marked with ovals. Model summaries of all 28

mean models can be found in ST5. The same visualisation of fornix diffusion values can be found in SF9.

Discussion

We revealed that both conventional DTI and advanced diffusion approaches (WMTI, DKI, BRIA,
SMT, mcSMT) perform consistently on brain age predictions, as indicated previously?>. As a novel
finding, our results show strong contributions of fornix microstructures explaining variance in age
and reducing error for AMRI/WM-based brain age predictions, and model fit for brain age

prediction models without fornix is reduced. Additionally, Mass-WM-age-correlations reveal
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strongest correlations between fornix microstructure and age. This suggest that the fornix is a key
WM region of cross-sectional brain age, with fornix and whole-brain dMRI metrics’ age trajectories

following similar patterns such as steepening slopes at later ages.

On the other hand, there are multiple challenges related to fornix as a driver of brain age estimates,
particularly multicollinearity, which might bias estimates of the importance of fornix (gain and
permutation feature importance) for brain age predictions, and second, data processing artefacts.
UKB offers diffusion data acquired with the most typical two-shell-diffusion protocol.
Nevertheless, the standard diffusion model®® based on differentiation of intra- and extra-axonal
water pools could not be solved using this measurement strategy®. As a result, the derived diffusion
metrics have both numerical uncertainties and the variability introduced from non-biological
parameters®®, Quantitative metrics derived from the different diffusion approaches allow to
investigate such non-biological variability and to grade the subject variability in terms of used
covariances. Yet, the aforementioned technical limitation might play a decisive role in a clinical

context>0-66,

Besides obstacles resulting from modelling assumptions, our sample is cross-sectional in design and
limited to adults older than forty, which, in turn, influences predictions and model evaluation
metrics. Metrics such as r and R? are expected to be lower than in samples with wider age-ranges*.
Additionally, the UKB imaging sub-sample shows better health than the non-imaging UKB
subjects®’. Another open question is the exact interpretation of BAG and its relationship with WM
metrics, which was found to be small for principal WM components (SF10) and single diffusion
metrics (SF11). Although previous research shows no relationship between the rate of change in
longitudinal regional and global T1-weighted-feature-retrieved BAG!8, further investigation of
longitudinal as well as voxel-wise WM-derived BAG provide additional avenues to increase the

interpretability of BAG.

We found the different diffusion metrics to be highly correlated (fornix, Fig.5), and show similar
age trajectories (SF9A-B), which provokes the question of whether some of the metrics are
redundant. The identification of redundant metrics and the combination of metrics across diffusion
approaches is a matter of future research comparing diffusion approaches by probing them in

practical settings such as in clinical samples”®.

Only few studies®®°” address the fornix across ages. A possible reason is fornix’ artefact-
susceptibility induced from its proximity to the cerebrospinal-fluid, while being a small tubular

region. Recent processing pipelines such as TBSS minimise such artefacts®. Yet, the influence of
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cerebrospinal-fluid artefacts in small tubular structures like the fornix remains unclear®®. Fornix is a
relatively small anatomical structure, and, for example, fornix BRIA cerebrospinal-fluid fraction is
higher (vCSF>0.5) than global measures (vVCSF>0.075), suggesting a presence of strong partial
volume effect. In order to overcome such distorting effects, voxel-wise techniques are
recommended, demanding the development of novel approaches incorporating techniques such as
deep learning showing better performance than traditional ML, especially on large population

samples®.

Consistency across diffusion approaches

Overall, the results of brain age predictions are similar across diffusion approaches, with WMT]I,
DTT and DKI predicting age better than SMT, mcSMT and BRIA considering model fit and
prediction-outcome correlations (Table 1). This finding could be explained in terms of diffusion
approaches; i.e., the attempt to introduce more biophysically accurate parameters into the model
might simultaneously reduce the general sensitivity of the used approaches to the tissue changes.
Integrative approaches such as DTI or DKI are able to localise brain changes, however, without
providing information about the underlying mechanisms. Our study support a previous study with a
smaller but more age-differentiated sample (n=702) of DTT and WMTI being superior to mcSMT at
brain age predictions in terms of model performance?®. When examining additional diffusion
models on a larger sample, we find DKI metrics to have higher predictive power than in Beck and
colleagues?. Simultaneously, differences between diffusion approaches, and both variance
explained and prediction error (RMSE, MAE) were smaller in this study. These differences are
likely due to the narrower age range in our study*°, whereas our significantly larger sample

emphasises the reliability of our findings.

While brain age predictions from single diffusion approaches were grossly similar, predictions from
combined approaches were best (Table 1). Correlations between predicted and chronological age
were consistent across diffusion approaches, as differences between correlations were small (Fig.3,
SF8). This shows that addressing a wider range of WM characteristics improves predictive models
compared to models with single diffusion approach metrics (e.g., only DTT), which would be
intuitive when considering BAG as a general indicator of health!%13.19.20 Vice versa, reducing spatial
specificity by averaging diffusion metrics across all WM reduced prediction accuracy.
Conventionally used DTTI on its own is limited in its ability to present biophysically meaningful
measures of the underlying microstructure. As a result, the advanced modelling is recalled including
intra- and extra-axonal spaces and tissue peculiarities being influenced by individual differences in
myelin and fibre architecture (crossing/bending fibres, and axonal characteristics)?>. Hence, adding

additional information to DTI better allow to infer the underlying neurobiology of tissue, for
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example, expressed in differential WM-age-dependences (Fig.7-8) or brain age predictions (Table

1)%.

We observed that BAG exhibits strong correlations across all diffusion approaches (Fig.4, SF1).
Congruently with the correlational differences (Fig.3, SF8), BAG based on averaged skeleton
values was least correlated to all other diffusion approaches (Fig.4), indicating inferiority of global
compared to region-wide approaches. BAG obtained from WMTI, DTI and DKI were closest
related to BAG from the multimodal approach (which predicted age best), both for age-bias
corrected and uncorrected BAG (Fig.4, SF1). This is in agreement with the observed age-prediction
model performance (Table 1). BAG correlations were observed in three clusters: 1) WMTI and
DTI, 2) mcSMT, SMT, BRIA, and 3) DKI, indicative of similar measurements within these clusters
(Fig.4, SF1). To a certain extent, these clusters reflect similarities in the underlying mathematics of
the clustering diffusion approaches. For example, mcSMT and SMT are closely related models?’,
whereas DKI’s non-Gaussianity might reveal another quality of age-sensitive WM microstructures
not captured by the other approaches*. Additionally, the cluster differences indicate that the
observed diffusion approaches measure different age(ing)-sensitive characteristics, supporting the

argument for a combination of diffusion approaches when assessing the ageing brain.

Age trajectories and fornix as a brain age feature

Based on the presented findings on fornix, we further investigate details of fornix, keeping
discussed limitations to the generalizability of the findings in mind. Diffusion metrics describing
fornix microstructure were consistently related to each other and age across all diffusion approaches
in two clusters. Values were positively correlated within each cluster and negatively between
clusters (see Fig.5). In the first cluster, different approaches’ FA, kurtosis metrics (MK, RK, AK),
water fractions (vintra and vextra from BRIA and AWF from WMTTI), and BRIA intra-axonal and
extra-axonal radial and axial diffusivity were positively correlated. The second cluster, which was
negatively related to the first cluster but positive to age, contained metrics of mean, axial and radial
diffusivity, and cerebrospinal-fluid fraction of the different diffusion approaches, which were
positively related to each other. Interestingly, both clusters consisted of unit-less values, for example
water fractions, and diffusivities, which might have the same meaning as extra-axonal axial
diffusivities from different diffusion approaches, for example BRIA vs SMTmc. Such consistencies
of similar metrics across diffusion approaches were more apparent for the fornix when QC-
identified outliers were removed (compare Fig.5 and SF4), which supports the reliability of our
findings of fornix-age-dependencies. Furthermore, fornix metrics were most strongly related to age
across diffusion approaches (Fig.6, SF11), supporting the importance of fornix in reducing error of

brain age predictions (Table 2). Not surprisingly, all fornix features were age-sensitive (ST4), and
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more age sensitive than whole-brain metrics (ST11). Whole-brain trajectories are in agreement with
previous results, showing-age sensitivity of various mean diffusion metrics?°, and the same

directionality of age trajectories of metrics for DTI%33, mcSMT, DKI, WMTI?.

We displayed that fornix microstructure measures have differential behaviours across diffusion
approaches (Figs.7-8). Focussing on absolute diffusion values (Fig.7), it can be observed that
diffusion measures which are correlated (Figs.4-5) exhibit similar age dependences. Additionally,
slopes of fornix compared to whole-brain diffusion metrics were generally steeper and closer
approximating linearity, indicating stronger changes, such as quicker WM degeneration in the
fornix compared to the whole-brain average (see Fig.7). Particularly BRIA metrics show visually
detectable differences between the fornix and the whole brain (Fig.7, DAXextra, DAXintra,
DRADextra, Vextra); as opposed to global developments, fornix intra and extra-axonal diffusion
decreased, indicating fornix shrinkage with increasing age. Periventricular shrinkage is linked to
enlarging ventricles*’, which has been related to ageing and neurodegenerative disorder
progression“®, This effect was observed by a positive relationship between age and cerebrospinal
fluid (CSF) fraction in BRIA. Another metric which revealed larger differences in the fornix than
for the whole-brain average was intra-axonal water fractions, which can be treated as a proxy for
the axonal density, decreased with increasing age (see Fig.7, BRIA:Vintra; SMTmc:intra;
WMTI:AWF) while the CSF fraction (BRIA) increases. Such WM microstructure changes are not
only directly linked to different neurobiological features but can be markers of clinical outcomes,

such as dementia®9->0,

A selection of metrics is comparable across diffusion approaches taking DTI as reference point,
showing similar age trajectories. DTI metrics AD, RD, and MD tend to increase over the lifespan
and FA tends to decrease across brain regions (Fig.7-8)%>3351:52 as well as in fornix (Fig.7b, SF9),
implying processes such as de-myelination, changes in axonal and general WM integrity. Such DTI
age-dependences are reflected by according BRIA, SMT, and WMTTI metrics, whereas DKI shows
opposite age-relationships, as presented previously?°. Deterioration effects, measured by the age-
dependency of axonal water fractions, were generally stronger in fornix compared to whole-brain
metrics (Fig.7). Interestingly, opposed to global metrics, radial diffusivity measures from DKI and
BRIA (DRADextra) decreased in fornix (Fig.7), suggesting higher fornix than global plasticity,

potentially being an antecedent of age-related hippocampal changes®>.

Additional, unique information about age dynamics was presented by standardised scores
accounting for age, sex and scanner site and standardised uncorrected scores across ages (Fig.8,

SF9). After standardisation and accounting for covariates, most fornix metrics follow a tightly
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resembling near-linear trend either increasing or decreasing by age (SF9A-B), as opposed to whole-
brain metrics which follow a rather curvilinear line, as previously shown?>3352, Diffusion metrics’
variance explained across models indicates fornix metrics to be more sensitive to a combination of
covariates age, sex, and scanner site than whole-brain metrics (Fig.8, SF9). In the fornix, only
BRIA extra-axonal axial diffusivity (DAX extra) and the SMT longitudinal diffusion coefficient
(SMT long) showed non-linear trajectories, however, both measures are weakly correlated to other
diffusion parameters (Fig.8). Yet, when comparing model metrics such as variance explained of
linear and non-linear models predicting fornix and whole-brain diffusion metrics from age, sex and
scanner site and their interactions, there were no apparent differences between models (ST9, ST12).
This implies that contrary to previous research observing the entire lifespan presenting curvilinear
DTI age trajectories?>33, or trends towards curvilinearity (with yet better linear fit for selected
regions)®?, we found that fornix and whole-brain age trajectories from age 40 can be described as
linear when accounting for covariates sex, age, and scanner site. While the crossing of the x-axis at
age 65 (Fig.8, SF9) is a reflection of the sample’s age distribution (Fig.1), in addition to the shapes
of the different age-trajectories, it reveals that the different diffusion approaches are similarly age-
sensitive or measure similar underlying ageing-related changes. For whole-brain metrics, changes
become exacerbated from 65 onwards (Fig.1), with reasons potentially laying in an accelerated
neurodegeneration also reflected in the exponentially increasing risk to develop neurodegenerative
disorders from age 65 onwards®>:. For example, in the USA, 3% of 65-74 year olds, 17% of the 75-
84 year olds, and 32% of those ag 85+ developed Alzheimer’s dementia®*. Subclinical or preclinical
states are, however, not captured by these approximations, and WM changes usually precede

clinical detections, making WM monitoring a promising tool for early detection.

Beyond WM, fornix changes seem to play an important role for GM changes, particularly in the
hippocampus: for example, fornix glia damages lead to hippocampal GM atrophy®°. This might be
reflected by dis-connectivity of fornix with other brain regions as described by decreasing extra
axonal space coefficients (Fig.7b), and following changes in fornix function. Potentially, the
consequences of age-related fornix changes thereby affect functionality of a selection of brain
regions, such as the hippocampus. While several studies have presented ageing-related fornix
microstructure changes in humans®®>” and monkeys®°® in small samples, only one large-scale study
revealed findings connected to the fornix, namely strongest default mode network GM volume
covariation with fornix WM microstructure>, This suggests that fornix, a key connector of the
limbic system with the cortex, might also be critical for default mode network functioning.
Moreover, memory and episodic recall have been related to fornix®°. Hence, fornix changes might
play an important role in known ageing-dependent temporal lobe changes, and specifically

hippocampal changes for ageing-related pathological developments®'-64. Previous studies presented
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510 age-related fornix DTI metric changes®>~>’ which potentially appear prior to hippocampal volume
511 changes®>°®, and are related to declining episodic memory performance®. Hence, fornix changes
512 potentially serve to predict future pathological development, suggesting WM changes in the fornix
513 as a potential ageing biomarker and therapeutic target. This supports previous findings showing
514 network re-activations, metabolic and GM changes after fornix deep-brain-stimulation antagonising
515 the progression of neurodegenerative disorders®.

516

517 The current study gives for the first time a detailed account on region-wise-to-global WM-age

518 relationships for multiple diffusion approaches in a representative sample, and highlights fornix as
519 an important structure for age predictions across diffusion approaches. Brain age was estimated best
520 when combining approaches, showing different aspects of WM to contribute to brain age with

521 fornix being the central region for these predictions.

522

523 Data Availability

524  All raw data are available from the UKB® (www.ukbiobank.ac.uk). Synthetic datasets with the

525 synthpop® R package based on the original data for all six diffusion approaches (resulting in six
526 datasets) to run the code are openly available at the Open Science Framework:

527  (https://osf.io/nv8ea/). Synthetic datasets are simulated datasets closely mimicking the statistical

528 characteristics of the original data while protecting data privacy and anonymity.

529

530 Code Availability

531 Code needed to run brain age predictions in Python, and for all analyses and visualisations in R is
532 available at the Open Science Framework: (https://osf.io/nv8ea/).
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565 Supplement

566
567  Supplementary Figures
568
569 SF1: Correlations of corrected BAG and age across models L
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570  Mean = multimodal model including only mean metrics; Full = full multimodal model including all diffusion indices.
571  All correlations were significant at proim < .001.
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574 SF2: Comparison of predicted and raw fornix Z-scored diffusion metrics’ density
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Density plots for each Z-scored (standardised) raw and predicted values for each fornix metric from the six observed
diffusion models. Predictions were made from the linear model described in Equation 1.
Find the same density plot for data including QC outliers in SF3.

Supplementing the density plots, two one-sided tests for equivalence testing (TOST)8”8 were used
to test whether mean differences between the model’s predictions (SF9A-B) and the raw scores
(SFIC-D) are equal to zero with the assumptions that observed Z-score differences smaller |0.5]| are
equal to 0. Following this assumption, differences were equal to zero for all metrics, except the DKI
metric RK: Maitt = 0.943, 95% CI [0.935, 0.951], p ~ 1.
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584 SF3: Comparison of predicted and raw Fornix Z-scored diffusion metrics’ density including

585 QC outliers
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587  Density plots for each Z-scored (standardised) raw and predicted values for each fornix metric from the six observed
588  diffusion models on data containing QC outliers. Predictions were made from the linear model described in Equation 1.
589

590  Outliers were defined by the YTTRIUM method® including outlier removal based on density-based spatial

591  clusterisation (k-means)The total data used here was Nii+outiers = 38,687, including the full data N = 35,749 used for
592  all analyses and Noutiers = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew
593  their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category 1.
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SF4: Correlations between Fornix diffusion metrics and chronological age for data including

QC outliers
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598  All correlations were significant at FWE-corrected proim < .05.

599

600  Outliers were defined by the YTTRIUM method?® including outlier removal based on density-based spatial

601  clusterisation (k-means). The total data used here was Ntui+outiers = 38,687, including the full data N = 35,749 used for
602  all analyses and Noutiers = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew
603  their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category 1.
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607 SF5: Density plots for the sample’s age by sex and scanner site for data including QC outliers
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608  Outliers were defined by the YTTRIUM method® including outlier removal based on density-based spatial

609 clusterisation (k-means). The total data used here was Nui+outiers = 38,687, including the full data Nt = 35,749 used for
610 all analyses and Noutiers = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew
611  their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category 1.

33


https://doi.org/10.1101/2022.09.29.510029
http://creativecommons.org/licenses/by-nc-nd/4.0/

612
613

614
615
616
617
618
619
620
621

622

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.29.510029; this version posted December 19, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

SF6: Model performance for different train-test splits for data including QC outliers

0.8' N“'\/‘/% —— 4+ —
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Metric
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0.4-
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Model metrics R?, RMSE, MAE and their standard deviations, as well as the Pearson’s correlations between predicted
and chronological age and its 95% confidence interval are displayed for different training data percentages of the total
data (x-axis). For visualisation purposes, RMSE and MAE were divided by 10. For exact values see Suppl. Table ST8.

Outliers were defined by the YTTRIUM method?® including outlier removal based on density-based spatial
clusterisation (k-means). The total data used here was Nfu+outiers = 38,687, including the full data N = 35,749 used for
all analyses and Noutiers = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew
their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.
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623 SF7: Correlations between diffusion metrics and chronological age for data including QC
624  outliers

625
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626  Note: Each point indicates one correlation between a diffusion feature and chronological age. Names of diffusion

627  features are displayed when correlations between the feature and age reached a Pearson correlation of |r|>0.5. Holm
628  correction was used for FDR-correction, and all displayed values were significant at p < .001.

629  Results for the analysis run on data not including QC outliers (N = 35,749) can be found in Fig.8.
630

631  Outliers were defined by the YTTRIUM method® including outlier removal based on density-based spatial

632  clusterisation (k-means). The total data used here was Ntui+outiers = 38,687, including the full data Nt = 35,749 used for
633  all analyses and Noutiers = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew
634  their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category 1.
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635 SF8: Differences between correlations of chronological and corrected predicted age across
636 diffusion approaches with 95% confidence interval
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SF9: Raw and predicted fornix diffusion metrics by chronological age
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SF9A-D shows age curves for each standardised (z-score) fornix diffusion skeleton value (y-axis) plotted as a function
of age (x-axis). Shaded areas represent 95% CI. Curves fitted to raw values (SF9C-D) serve as a comparison to the Im-
derived predicted values from Equation 1 (Fig.A-B). SFIE indicates the model fit for the linear models from SF9A-B,
showing RZ; values on top and Standard Error (SE) on the bottom of the bars which each represent a Fornix skeleton
value for one of the seven models. Lines crossing at age 65 are marked with circles. Model summaries of all 28 Fornix
models can be found in ST5. The same visualisation of diffusion values averaged across the brain can be found in Fig.8.

Model fit metrics R?%qj and Standard Error (SE) for the models accounting for age, sex and scanner site (Equation 1)
when predicting fornix metrics were calculated (SF9E; see Fig.8 for whole brain metrics). Highest R?q; and variability
across metrics were observed when predicting BRIA fornix features, lowest R%,q; when predicting SMT fornix metrics.
DKI, DTT and mcSMT fornix diffusion metric predictions were most consistent, with BRIA, mcSMT and SMT having
one outlier each, Vextra, SMTlong, and AWF, respectively, being less sensitive to age, sex and scanner site. Highest SE
could be observed in the BRIA model and the lowest SE in SMT.

To test age-sensitivity of the fornix features, likelihood ratio tests were conduced comparing models derived from
Equation 1 against models derived from the same formula with age removed (Equation 2). All models showed
significant age dependence, with BRIA microRD (x?>= 14,480.54, proim < .001), microADC (x*= 14,384.87, puoim
<.001) and SMT vCSF (x>= 14,311.47, proim < .001) being the most age-sensitive metrics, and mcSMT smtLong (x*>=
1,554.49, proim < .001), BRIA DA Xextra (x*= 1,824.54, proim < .001) and axEAD (x?= 3,024.74, proim < .001) the least
age-sensitive metrics (ST4).
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SF10. Pearson’s r for age, brain age and WM principal components’ relationships
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All correlations with Pearson’s r > .01 were significant at p <.001
Read row-wise from top-left to right with matrixes indicating a) full multimodal data, b) mean/whole brain average
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The first five principal components of the respective number of WM metrics for each of the eight principal components
analyses were related to age, predicted (brain) age, corrected predicted age, uncorrected and corrected BAG (see ST13

for overview of variance explained by principal components). Notably, BAG was not or only weakly related to WM
components, and relationships of age, predicted age, corrected predicted age and corrected BAG with WM components
followed the same pattern of direction and strength of associations, suggesting age-dependencies of these measures.
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When predicting the first 4 components retrieved from the respective models (as done for brain age predictions), using
BAG, age, sex, site, as well as age-sex and sex-site interactions as predictors (as specified in Equation 1), different sized
proportions of the variance in the components could be explained with corrected and uncorrected BAG models not
differing in variance predicted and beta values. Average data BAG models explained most variance in its first
component R?> = .505, with bgag = -0.673, followed by WMTI R? = .372, with bgac = -0.847, and the DTI BAG model
R? =358, with bgag = -1.082. The second component was best predicted by a DTI BAG model R?> =.152, with bgag =
-0.059. The third component was best predicted by the DKI BAG model R? = .256, bgac = 0.170, followed by the DTI
BAG model R? = .250, bgag = -0.210; and the SMT BAG model R? = .247, bgag = 0.291. Finally, the last component
was best predicted by the full BAG model, R?> =.128, bgac = 0.0002. For an overview of all BAG models’
performance see ST14. For a more nuanced follow-up analysis of global and regional individual diffusion metric
predictions see SF11.
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SF11. Predictions of individual global and regional diffusion metrics
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Panels indicate used models: a) full multimodal model including all approaches global and local fatures, b) mean
multimodal modal, including only global metrics of all diffusion approaches, ¢) BRIA, d) DKI, e) DTI, f) SMT, g)
mcSMT, h) WMTL

We predicted the individual 1940 regional and global WM diffusion metrics from BAG, site, sex, age, as well as sex-
age and sex-site interaction terms. While there were no differences in explaining variance between corrected and
uncorrected BAG, models coefficients differed (see SF11).

Variance explained across statistically significant models (at Bonferroni-corrected p < 0.05/1940) ranged from adjusted
R%min =.001 to R%pax = .387 (R%mean = .108, SD = 0.062), and beta values for BAG ranged from bgag > -0.001 to bgag<
0.001, with most variance explained in metrics Fornix v csf (Rag®> = .387, bgac > -0.001, bage = 0.009), Fornix micro
RD (Ragj®> = .386, bgag > -0.001, bage = 0.009), and Fornix micro ADC (Rag® = .386, bpag > -0.001, bage = 0.019).
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700 SF12. Density plots feature-age correlation across diffusion approaches with tail probabilities
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702  This figure is a supplement to Figure 5, showing the distributions of the correlations between age and each models’
703  diffusion metrics.
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704  Supplementary Tables

705
706 ST1: Brain age predictions from different train-test splits
% of  Best Fitting Train Results Test Results on 50% of Data
Data Model
R? RMSE MAE Fagexpred | R? RMSE MAE Yage x pred

1 E =0.05 0.503 5.300 4.283 0.719 0.621 4.693 3.759 0.788
Dinax= 3 (0.087) (0.599)  (0.555)  [0.665, [(0.012)  (0.071)  (0.070)  [0.783,

Tmax= 450 0.766] 0.794]

2 E =0.05 0.551 5.107 4.172 0.750 0.613 4.743 3.803 0.783
Dinax= 3 (0.081) (0.517)  (0.474)  [0.716, [(0.011)  (0.071)  (0.073)  [0.778,

max= 350 0.780] 0.789]

3 E=0.05 0.549 5.129 4.171 0.751 0.635 4.605 3.683 0.797
Dinax= 3 (0.078) (0.401)  (0.393)  [0.724, [(0.012)  (0.067)  (0.065)  [0.792,

Tmax= 800 0.776] 0.802]

4 E =0.05 0.561 5.136 4.090 0.741 0.606 4.784 3.840 0.780
Dimax= 4 (0.062) (0.325)  (0.257)  [0.716, [(0.011)  (0.068)  (0.071)  [0.774,

Tmax= 200 0.763] 0.785]

5 E =0.05 0.586 4.994 4.043 0.764 0.607 4.779 3.834 0.780
Dmax=3 (0.037) (0.217) (0.241) [0.744, (0.012) (0.074) (0.074) [0.774,

Tmax: 300 0783] 0785]

6 E =0.05 0.576 4.962 3.953 0.763 0.641 4.569 3.652 0.801
Dinax= 4 (0.035) (0.210)  (0.149)  [0.745, |(0.012)  (0.058)  (0.057)  [0.795,

Tmax= 800 0.780] 0.806]

7 E =0.05 0.592 4.887 3.930 0.774 0.637 4.591 3.669 0.799
Dinax= 3 (0.042) (0.204)  (0.150)  [0.757, |(0.012)  (0.068)  (0.064)  [0.793,

Tmax= 900 0.789] 0.804]

8 E=0.01 0.598 4.881 3.920 0.764 0.605 4.790 3.848 0.779
Dmax= 4 (0.028) (0.212) (0.216) [0.749, (0.011) (0.072) (0.072) [0.773,

Tmax= 950 0.779] 0.785]

9 E =0.05 0.591 4.882 3.917 0.774 0.643 4.554 3.638 0.802
Dimax= 4 (0.036) (0.279)  (0.175)  [0.760, [(0.011)  (0.056)  (0.055)  [0.797,

Tmax= 950 0.788] 0.807]

10 E =0.05 0.598 4.886 3.899 0.777 0.633 4.614 3.691 0.796
Dinax= 3 (0.033) (0.259)  (0.230)  [0.764, [(0.012)  (0.067)  (0.064)  [0.791,

max= 750 0.790] 0.802]

20 E =0.05 0.619 4.748 3.754 0.787 0.638 4.587 3.665 0.799
Dinax= 5 (0.025) (0.080)  (0.124)  [0.778, [(0.011)  (0.061)  (0.060)  [0.794,

max= 600 0.795] 0.804]

30 E =0.05 0.633 4.623 3.693 0.798 0.641 4.569 3.652 0.801
Dimax= 4 (0.009) (0.066)  (0.065)  [0.791, [(0.012)  (0.058)  (0.057)  [0.795,

Tmax= 800 0.804] 0.806]

40 E =0.05 0.641 4.584 3.628 0.797 0.631 4.628 3.701 0.795
Dinax=5 (0.014) (0.088)  (0.050)  [0.791, [(0.011)  (0.062)  (0.061)  [0.790,

Tmax= 400 0.803] 0.800]

50 E =0.05 0.637 4.576 3.630 0.805 0.641 4.566 3.647 0.801
Dinax= 5 (0.017) (0.068)  (0.049)  [0.799, [(0.012)  (0.059)  (0.059)  [0.796,

Tmax= 850 0.810] 0.806]

707  R? = variance explained, RMSE = root mean square error, MAE = mean absolute error,rage x pred = correlation of

708  chronological and predicted age. Numbers in round brackets indicate standard deviations. Numbers in square brackets
709  indicate confidence intervals. E = eta (learning rate), Dmax = maximum depth, Tmax = maximum number of trees. The
710  best fitting model was selected via grid search focussed on RMSE.

711
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712 ST2: Differences between correlations of chronological and corrected predicted age across

713 models with 95% confidence interval

BRIA DKI DTI SMT mcSMT WMTI Mean
DKI 0.011
[0.009,
0.013]
DTI 0.008 0.003
[0.007, [0.002,
0.010] 0.005]
SMT 0.007 0.004 0.001 [-
[0.006, [0.003, 0.0004,
0.008] 0.005] 0.0024]*
mcSMT ~0 0.011 0.008 0.007
[-0.001, [0.009, [0.006, [0.006,
0.001]* 0.013] 0.010] 0.008]
WMTI 0.010 0.001 0.002 0.003 0.010
[0.009, [-0.0004, [0.001, [0.002, [0.009,
0.012] 0.0024]? 0.003] 0.004] 0.012]
Mean 0.013 0.002 0.005 0.006 0.013 0.003
[0.011, [0.0002, [0.003, [0.004, [0.011, [0.001,
0.015] 0.038]° 0.007] 0.007] 0.015] 0.005]
FULL 0.015 0.004 0.007 0.008 0.015 0.005 0.002
[0.014, [0.003, [0.006, [0.007, [0.014, [0.004, [0.0004,
0.017] 0.005] 0.008] 0.009] 0.017] 0.006] 0.0036]

714  Confidence Intervals are based on Zou #>. Unmarked differences were significant at p < .001.
715 1 Hotelling’s % ¢(32171) ~ 0, p ~ 1.

716 2 Hotelling’s (1940) t(32171) = 1.4232, p =.1547.

717 3 Hotelling’s (1940) t(32171) = 2.2174, p = .0266.

718 4 Hotelling’s (1940) £(32171) = 2.4176, p = .0156.

719
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ST3: Differences between correlations of uncorrected predicted and chronological age across

diffusion approaches with 95% confidence interval

DKI

DTI

SMT

mcSMT

WMTI

Mean

Full

BRIA
0.012
[0.009,
0.015]
0.014
[0.011,
0.017]
0.013
[0.010,
0.016]
0.021
[0.019,
0.023]
0.023
[0.020,
0.026]
0.115
[0.110,
0.120]
0.062
[0.059,
0.065]

DKI

0.0002
[-0.005,
0.001]
0.025
[0.022,
0.029]
0.033
[0.029,
0.037]
0.011
[0.008,
0.014]
0.127
[0.121,
0.133]
0.050
[0.048,
0.053]

DTI

0.027
[0.024,
0.030]
0.035
[0.032,
0.038]
0.009
[0.007,
0.011]
0.129
[0.124,
0.134]
0.048
[0.046,
0.051]

SMT

0.008
[0.006,
0.011]
0.036
[0.033,
0.039]
0.102
[0.097,
0.107]
0.075
[0.072,
0.078]

mcSMT

0.044
[0.041,
0.047]
0.088
[0.083,
0.093]
0.083
[0.080,
0.086]

WMTI

0.0940
[0.089,
0.099]
0.039
[0.037,
0.041]

Mean

0.138
[0.133,
0.143]

Confidence Intervals are based on Zou (2007). Unmarked differences were significant at p <.001.

* Hotelling’s (1940) t(34801) = 0.9648, p = 0.3347
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725 ST4: Fornix metrics' age sensitivity: comparing diffusion metric prediction models with and
726  without age

Model Metric Full! Reduced? X2 p PHolm
BRIA vintra 63395.90 56372.64 14046.51 <.001 <.001
BRIA vextra 53488.40 47076.64 12823.52 <.001 <.001
BRIA vCSF 32902.83 25747.10 14311.47 <.001 <.001
BRIA microRD -304.68 -7544.95 14480.54 <.001 <.001
BRIA microFA 52365.03 45215.37 14299.32 <.001 <.001
BRIA microAx 27419.04 23070.45 8697.18 <.001 <.001
BRIA microADC 7489.46 297.02 14384.87 <.001 <.001
BRIA DRADextra 88839.19 84573.36 8531.64 <.001 <.001
BRIA DAXintra 62832.56 58452.18 8760.75 <.001 <.001
BRIA DAXextra 69448.84 68536.57 1824.54 <.001 <.001
DKI RK 17066.24 10008.43 14115.62 <.001 <.001
DKI AK 73031.59 67042.47 11978.25 <.001 <.001
DKI MK 42812.92 35761.79 14102.27 <.001 <.001
DTI FA 51988.61 46349.96 11277.31 <.001 <.001
DTI MD -6425.12 -12850.70 12851.17 <.001 <.001
DTI RD -9157.86 -15294.22 12272.70 <.001 <.001
DTI AD -3330.43 -9581.75 12502.64 <.001 <.001
SMT smtFA 28610.35 23053.56 11113.58 <.001 <.001
SMT smtLong 343020.49  342243.25 1554.49 <.001 <.001
SMT smtMD 253964.29  248676.32 10575.95 <.001 <.001
SMT smtTrans 239584.11  234337.78 10492.66 <.001 <.001
mcSMT  smtMCintra 46725.61 39797.67 13855.88 <.001 <.001
mcSMT  smtMCextraMD 260580.57  253725.97 13709.21 <.001 <.001
mcSMT  smtMCextratrans 249976.89  242973.81 14006.16 <.001 <.001
mcSMT  smtMCd 287624.52  284705.87 5837.30 <.001 <.001
WMTI  AWF 73001.96 65850.35 14303.22 <.001 <.001
WMTI axEAD -28343.53 -29855.90 3024.74 <.001 <.001
WMTI radEAD -10582.93 -16576.91 11987.96 <.001 <.001

727 1 Full = full model log likelihood
728 2 Reduced = reduced model log likelihood

729
730
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Effect Std. Error t-value p Metric Std. Error t-value p Metric
age 0.002 0.001  3.521 0 vintra 0.002 0.001  3.521 0 vextra
age? 0 0 -10.532 0 vintra 0 0 -10.532 0 vextra
sex 0.009 0.018  0.481 0.63 vintra 0.009 0.018 0.481 0.63 vextra
siteCheadle 0.01 0.012  0.825 0.41 vintra 0.01 0.012  0.825 0.41 vextra
siteNewcastle 0.004 0.012 0.327  0.744 vintra 0.004 0.012 0.327  0.744 vextra
siteReading 0.009 0.012 0.748  0.454 vintra 0.009 0.012 0.748 0.454 vextra
age:sex 0 0 -5.532 0 vintra 0 0 -5.532 0 vextra
sex:siteCheadle -0.003 0.017 -0.183  0.854 vintra -0.003 0.017 -0.183  0.854 vextra
sex:siteNewcastle -0.003 0.017 -0.168 0.867 vintra -0.003 0.017 -0.168 0.867 vextra
sex:siteReading -0.005 0.017 -0.283 0.777 vintra -0.005 0.017 -0.283  0.777 vextra
age 0.002 0.001 3.521 0 vCSF 0.002 0.001  3.521 0 microRD
age? 0 0 -10.532 0 vCSF 0 0 -10.532 0 microRD
sex 0.009 0.018  0.481 0.63 vCSF 0.009 0.018 0.481 0.63 microRD
siteCheadle 0.01 0.012 0.825 0.41 vCSF 0.01 0.012  0.825 0.41 microRD
siteNewcastle 0.004 0.012 0.327  0.744 vCSF 0.004 0.012  0.327  0.744 microRD
siteReading 0.009 0.012 0.748  0.454 vCSF 0.009 0.012  0.748  0.454 microRD
age:sex 0 0 -5.532 0 vCSF 0 0 -5.532 0 microRD
sex:siteCheadle -0.003 0.017 -0.183 0.854 vCSF -0.003 0.017 -0.183  0.854 microRD
sex:siteNewcastle -0.003 0.017 -0.168 0.867 vCSF -0.003 0.017 -0.168  0.867 microRD
sex:siteReading -0.005 0.017 -0.283 0.777 vCSF -0.005 0.017 -0.283  0.777 microRD
age 0.002 0.001 3.521 0 microFA 0.002 0.001  3.521 0 microAx
age? 0 0 -10.532 0 microFA 0 0 -10.532 0 microAx
sex 0.009 0.018  0.481 0.63 microFA 0.009 0.018 0.481 0.63 microAx
siteCheadle 0.01 0.012 0.825 0.41 microFA 0.01 0.012  0.825 0.41 microAx
siteNewcastle 0.004 0.012 0.327  0.744 microFA 0.004 0.012  0.327 0.744 microAx
siteReading 0.009 0.012 0.748  0.454 microFA 0.009 0.012  0.748  0.454 microAx
age:sex 0 0 -5.532 0 microFA 0 0 -5.532 0 microAx
sex:siteCheadle -0.003 0.017 -0.183  0.854 microFA -0.003 0.017 -0.183  0.854 microAx
sex:siteNewcastle -0.003 0.017 -0.168 0.867 microFA -0.003 0.017 -0.168 0.867 microAx
sex:siteReading -0.005 0.017 -0.283  0.777 microFA -0.005 0.017 -0.283  0.777 microAx
microAD
age 0.002 0.001 3.521 0C 0.002 0.001  3.521 0 DRADextra
microAD
age? 0 0 -10.532 0C 0 0 -10.532 0 DRADextra
microAD
sex 0.009 0.018  0.481 0.63 C 0.009 0.018 0.481 0.63 DRADextra
microAD
siteCheadle 0.01 0.012 0.825 0.41 C 0.01 0.012  0.825 0.41 DRADextra
microAD
siteNewcastle 0.004 0.012 0.327 0.744 C 0.004 0.012  0.327 0.744 DRADextra
microAD
siteReading 0.009 0.012 0.748 0.454 C 0.009 0.012 0.748 0.454 DRADextra
microAD
age:sex 0 0 -5.532 0C 0 0 -5.532 0 DRADextra
microAD
sex:siteCheadle -0.003 0.017 -0.183 0.854 C -0.003 0.017 -0.183 0.854 DRADextra
microAD
sex:siteNewcastle -0.003 0.017 -0.168 0.867 C -0.003 0.017 -0.168 0.867 DRADextra
microAD
sex:siteReading -0.005 0.017 -0.283 0.777 C -0.005 0.017 -0.283 0.777 DRADextra
age 0.002 0.001 3.521 0 DAXintra 0.002 0.001  3.521 0 DAXextra
age? 0 0 -10.532 0 DAXintra 0 0 -10.532 0 DAXextra
sex 0.009 0.018  0.481 0.63 DAXintra 0.009 0.018 0.481 0.63 DAXextra
siteCheadle 0.01 0.012 0.825 0.41 DAXintra 0.01 0.012  0.825 0.41 DAXextra
siteNewcastle 0.004 0.012 0.327 0.744 DAXintra 0.004 0.012 0.327  0.744 DAXextra
siteReading 0.009 0.012 0.748  0.454 DAXintra 0.009 0.012 0.748 0.454 DAXextra
age:sex 0 0 -5.532 0 DAXintra 0 0 -5.532 0 DAXextra
sex:siteCheadle -0.003 0.017 -0.183 0.854 DAXintra -0.003 0.017 -0.183 0.854 DAXextra
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ST6: Brain age prediction model performance for data including QC outliers

Name MRI RMSE MAE Prediction-Age Corrected Prediction-
features Correlation* Age Correlation*
BRIA 700 0.538 5.103 4.096 0.734 0.902
(0.009) (0.044) (0.038) [0.729, 0.739] [0.900, 0.904]
DKI 210 0.561 5.078 4.073 0.750 0.876
(0.009) (0.053) (0.047) [0.745, 0.754] [0.874, 0.879]
DTI 280 0.565 5.052 4.041 0.752 0.874
(0.009) (0.039) (0.038) [0.748, 0.757] [0.872,0.877]
SMT 280 0.522 5.297 4.254 0.723 0.870
(0.009) (0.035) (0.031) [0.718, 0.728] [0.868, 0.873]
mcSMT 280 0.508 5.263 4.227 0.714 0.901
(0.008) (0.040) (0.034) [0.708, 0.719] [0.899, 0.903]
WMTI 210 0.574 4.999 4.003 0.758 0.875
(0.009) (0.036) (0.034) [0.754, 0.763] [0.873, 0.877]
Mean scores 28 0.400 5.945 4.820 0.633 0.875
multimodal (0.068) (0.082) (0.068) [0.627, 0.639] [0.873, 0.878]
Full model 1932 0.648 4.557 3.637 0.805 0.877
multimodal (0.009) (0.077) (0.066) [0.801, 0.808] [0.875, 0.880]

Model selection was based on a grid search with stopping rule when model performance did not not improve after 20
rounds. Model selection of all models was based on multimodal model training on 10% of the data, indicating best fit
for learning rate = 0.05, maximum depth = 4, maximum number of trees = 750 as indicated in Fig.2 and ST1.
RZ:variance explained, RMSE: root mean squared error, MAE: mean absolute error

Note: R?, RMSE, MAE are displayed in the format Mean (Standard Deviation), Pearson’s correlations are displayed in

the format Correlation Score 95% Confidence Interval [Lower Bound, Upper Bound].

*All correlation were significant at p <.001.

Outliers were defined by the YTTRIUM method® including outlier removal based on density-based spatial

clusterisation (k-means). The total data used here was Nii+outiiers = 38,687, including the full data N = 35,749 used for
all analyses and Nougiers = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew
their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category 1.
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ST7: Top five diffusion metrics ranked by gain in age prediction accuracy for data including

QC outliers
BRIA DKI DTI SMT mcSMT WMTI Full
Micro RD MK Fornix MD Fornix MD Fornix Extratrans AWF Fornix AWF fornix
ATRR (67436) (99885) (79767) (72129) Fornix (69033) (278977)
(55429)
Micro FA Fornix RK Fornix RD left anterior MD FMIN Intra Fornix RadEAD Micro RD fornix
(63804) (28196) corona radiata  (48161) (46212) anterior right  (71175)
(51592) corona radiata
(34381)
Micro RD right AK anterior RD FMIN MD right Extratrans right RadEAD IFOFR Micro FA
external capsule right limb of (25201) anterior corona external capsule (22512) fornix(35049)
(27069) internal capsule radiata (16611)
(22725) (44331)
Micro RD AK Fornix RD Fornix right FA Fornix ExtraMD Fornix RadEAD FMIN MD right
Fornix right (14401) stria terminalis (19697) (10267) (20286) tapetum
striaterminalis (22951) (34008)
(17090)
Micro FA FMIN AK superior MD anterior Long left ExtraMD RadEAD ATRL RadEAD
(14335) frontooccipital limb of internal tapetum anterior left limb (16666) anterior right
left fasciculus  left capsule (14596) of internal corona radiata
(7978) (15589) capsule (27907)
(7830)

Table values can be read as feature name (gain). Mean refers to the multimodal model containing only mean scores and
full to the full model containing all features. Cells including Fornix are marked in green.

laL.C = left anterior limb of internal capsule; ral.C = right anterior limb of internal capsule; 1ST = ISTria terminalis; rST
= rSTria terminalis; IsfoF = left superior frontal occipital fasciculus; laCR = left anterior corona radiata; raCR = right
anterior corona radiata; rEC = right external capsule

Outliers were defined by the YTTRIUM method?® including outlier removal based on density-based spatial
clusterisation (k-means). The total data used here was Nfu+outiers = 38,687, including the full data N = 35,749 used for
all analyses and Nougiers = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew
their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.
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756 ST8: Brain age predictions from different train-test splits for data including QC outliers

% of  Best Fitting Train Results Test Results on 50% of Data
Data Model
R? RMSE MAE Fagexpred | R? RMSE MAE Yage x pred

1 E =0.05 0.503 5.313 4.287 0.716 0.619 4.743 3.799 0.788
Dimax= 4 (0.113) (0.448) (0.233) [0.664, (0.008) (0.029) (0.036) [0.782,

max= 250 0.761] 0.793]

2 E =0.05 0.543 5.162 4.101 0.744 0.648 4.558 3.637 0.805
Dimax= 4 (0.094) (0.365) (0.250) [0.711, (0.008) (0.025) (0.025) [0.800,

Tmax= 950 0.774] 0.810]

3 E =0.05 0.543 5.226 4.149 0.741 0.648 4.561 3.639 0.805
Dmax= 4 (0.052) (0.334) (0.297) [0.714, (0.008) (0.024) (0.026) [0.800,

Tmax= 900 0.766] 0.810]

4 E=0.05 0.572 5.110 4.043 0.758 0.619 4.744 3.803 0.788
Dmax= 3 (0.033) (0.266) (0.184) [0.736, (0.008) (0.036) (0.041) [0.782,

max= 550 0.779] 0.793]

5 E =0.05 0.575 5.038 4.015 0.760 0.619 4.744 3.803 0.788
Dmax= 3 (0.051) (0.312) (0.233) [0.740, (0.008) (0.036) (0.041) [0.782,

Tmax= 350 0.778] 0.793]

6 E =0.05 0.574 5.144 4.048 0.758 0.647 4.566 3.643 0.805
Dmax= 4 (0.047)  (0.239) (0.195) [0.740, (0.008) (0.024) (0.026) [0.800,

Tmax= 850 0.774] 0.810]

7 E =0.05 0.589 4.998 4.004 0.770 0.644 4.585 3.663 0.803
Dmax= 3 (0.032) (0.147) (0.186) [0.754, (0.008) (0.039) (0.040) [0.798,

Tmax= 900 0.785] 0.808]

8 E =0.05 0.595 4.944 3.953 0.775 0.644 4.585 3.663 0.803
Dmax= 3 (0.017) (0.174) (0.138) [0.761, (0.008) (0.039) (0.040) [0.798,

Tmax= 550 0.789] 0.808]

9 E =0.05 0.602 4.915 3.921 0.773 0.619 4.744 3.803 0.788
Dmax= 3 (0.025) (0.195) (0.169) [0.759, (0.008) (0.036) (0.041) [0.782,

Tmax= 350 0.786] 0.793]

10 E=0.05 0.608 4.869 3.882 0.780 0.628 4.690 3.756 0.793
Dmax= 3 (0.033) (0.188) (0.114) [0.768, (0.008) (0.037) (0.041) [0.788,

Tmax= 550 0.792] 0.798]

20 E =0.05 0.624 4.706 3.779 0.791 0.640 4.608 3.679 0.801
Dimax= 4 (0.013) (0.097) (0.092) [0.782, (0.008) (0.024) (0.028) [0.796,

Tmax= 450 0.799] 0.806]

30 E =0.05 0.641 4.611 3.683 0.641 0.636 4.634 3.703 0.798
Drmax= 4 (0.017) (0.066) (0.064) [0.798, (0.008) (0.023) (0.029) [0.793,

Tmax= 900 0.811] 0.803]

40 E=0.05 0.643 4.596 3.668 0.803 0.648 4.557 3.635 0.806
Dmax= 5 (0.019) (0.063) (0.053) [0.797, (0.009) (0.033) (0.037) [0.801,

Tmax= 950 0.808] 0.810]

50 E =0.05 0.643 4.584 3.637 0.806 0.647 4.566 3.643 0.805
Dmax= 4 (0.020) (0.122) (0.088) [0.801, (0.008) (0.024) (0.026) [0.800,

Tmax= 850 0.811] 0.810]

757  Note: Numbers in round brackets indicate standard deviations. Numbers in square brackets indicate confidence

758 intervals. E = eta, Dmax = maximum depth, Tmax = maximum number of trees. The best fitting model was determined by
759  grid search.

760

761  Outliers were defined by the YTTRIUM method® including outlier removal based on density-based spatial

762  clusterisation (k-means). The total data used here was Niuli+outiers = 38,687, including the full data N = 35,749 used for
763  all analyses and Noudiers = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew
764  their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category 1.
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metrics

Metric LM AIC GAMAIC LM BIC GAM BIC LM RZ%4j GAM RZ,4;
vintra -126767.79  -126755.60 -126665.98  -126662.27 0.36 0.36
vextra -106952.81  -106929.99 -106851.00  -106836.66 0.38 0.37
vCSF -65781.67  -65773.53 -65679.86 -65680.20 0.39 0.39
microRD 633.36 643.11 735.18 736.43 0.39 0.39
microFA -104706.06  -104634.30 -104604.25  -104540.97 0.38 0.38
microAx -54814.08  -54790.59 -54712.27 -54697.26 0.27 0.27
microADC -14954.91 -14946.59 -14853.10 -14853.26 0.39 0.39
DRADextra -177654.37  -177648.58 -177552.56  -177555.25 0.30 0.30
DAXintra -125641.12  -125639.53 -125539.31  -125546.20 0.30 0.30
DAXextra -138873.67  -138808.20 -138771.86  -138714.87 0.09 0.09
RK -34108.48  -34109.41 -34006.67 -34016.08 0.37 0.37
AK -146039.18  -146041.08 -145937.37  -145947.75 0.32 0.32
MK -85601.85  -85603.57 -85500.04 -85510.24 0.36 0.36
FA -103953.22  -103924.62 -103851.41  -103831.30 0.31 0.31
MD 12874.23 12878.93 12976.04 12972.25 0.35 0.35
RD 18339.73 18359.69 18441.54 18453.02 0.34 0.34
AD 6684.86 6689.75 6786.67 6783.08 0.35 0.35
smtFA -57196.69  -57161.31 -57094.88 -57067.98 0.31 0.31
smtLong -686016.98  -685869.48 -685915.17  -685776.15 0.06 0.05
smtMD -507904.58  -507869.45 -507802.77  -507776.13 0.30 0.30
smtTrans -479144.23  -479104.60 -479042.42  -479011.28 0.30 0.29
smtMCintra -93427.21 -93427.11 -93325.40 -93333.78 0.36 0.36
smtMCextraMD -521137.14  -521125.59 -521035.33  -521032.26 0.37 0.37
smtMCextratrans -499929.78  -499929.66 -499827.97  -499836.34 0.37 0.37
smtMCd -575225.03  -574996.85 -575123.22  -574903.53 0.22 0.21
AWF -145979.93  -145981.86 -145878.11  -145888.53 0.37 0.37
axEAD 56711.05 56715.91 56812.86 56809.24 0.10 0.10
radEAD 21189.85 21203.80 21291.67 21297.12 0.33 0.33

LM = linear model, GAM = generalized additive model, AIC = Akaike information criterion, BIC = Bayesian

information criterion. The numbers are derived from the six diffusion approaches’ 28 metrics following Equation 1 for

linear models and all variables of the equation allowing splines for non-linear models.
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ST10: Overview of diffusion metrics by diffusion approach

Diffusion Approach Metrics

Bayesian Rotationally Invariant
Approach (BRIA) intra-axonal axial diffusivity (DAX intra)
extra-axonal radial diffusivity (DRAD extra)
microscopic fractional anisotropy (micro FA)
extra-axonal axial diffusivity (DAX extra)
intra-axonal water fraction (V intra)
extra-axonal water fraction (V extra)
cerebrospinal fluid fraction (vCSF)
microscopical axial diffusivity (micro AX)
microscopic radial diffusivity (micro RD)
microscopical apparent diffusion coefficient (micro ADC)
Diffusion Kurtosis Imaging (DKI) mean kurtosis (MK)
radial kurtosis (RK)
axial kurtosis (AK)
Diffusion Tensor Imaging (DTT) fractional anisotropy (FA)
axial diffusivity (AD)
mean diffusivity (MD)
radial diffusivity (RD)
Spherical Mean Technique (SMT) fractional anisotropy (SMT FA)
mean diffusivity (SMT md)
transverse diffusion coefficient (SMT trans)
longitudinal diffusion coefficient (SMT long)
Multi-compartment Spherical Mean
Technique (mcSMT) extra-neurite microscopic mean diffusivity (mcSMT extra md)
extra-neurite transverse microscopic diffusivity (mcSMT extra
trans)

mc SMTdiffusion coefficient (SMT mcd)

intra-neurite volume fraction (mcSMT intra)
White Matter Tract Integrity (WMTI)  axonal water fraction (AWF)

radial extra-axonal diffusivity (radEAD)

axial extra-axonal diffusivity (axEAD)
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775 ST11. Whole-brain metrics' age sensitivity: comparing diffusion metric prediction models
776  with and without age

777
Metric Full! Reduced? ¥ p PHolm
vintra 77831.60 75474.15 4714.90 <.001 <.001
vextra 80010.15 79172.34 1675.61 <.001 <.001
vCSF 104258.51 102045.76 4425.50 <.001 <.001
microRD 67462.88 62714.78 9496.19 <.001 <.001
microFA 91462.73 87450.56 8024.34 <.001 <.001
microAx 68450.93 67363.35 2175.17 <.001 <.001
microADC 72076.62 67934.52 8284.22 <.001 <.001
DRADextra 105039.68 102688.39 4702.58 <.001 <.001
DAXintra 66812.02 64826.61 3970.82 <.001 <.001
DAXextra 80174.07 77914.51 4519.12 <.001 <.001
RK 44127.87 41757.04 4741.66 <.001 <.001
AK 87172.98 85483.34 3379.29 <.001 <.001
MK 66245.64 64166.15 4158.99 <.001 <.001
FA 93186.73 88785.16 8803.13 <.001 <.001
MD 76490.81 72273.83 8433.95 <.001 <.001
RD 73140.15 68320.02 9640.26 <.001 <.001
AD 76516.84 74699.38 3634.93 <.001 <.001
smtFA 125878.97 124092.64 3572.65 <.001 <.001
smtLong 287398.36 285277.70 4241.31 <.001 <.001
smtMD 320273.27 317056.32 6433.91 <.001 <.001
smtTrans 342834.04 339946.36 5775.35 <.001 <.001
smtMCintra 74365.62 72478.15 3774.94 <.001 <.001
smtMCextraMD 314618.75 311214.26 6809.00 <.001 <.001
smtMCextratrans 303909.44 300508.10 6802.69 <.001 <.001
smtMCd 290508.70 290389.47 238.47 <.001 <.001
AWF 102689.44 100136.63 5105.61 <.001 <.001
axEAD -14423.53 -14426.86 6.66 0.08 0.08
radEAD 10331.86 10122.73 418.26 <.001 <.001

778

779 1 Full = full model log likelihood

780 2 Reduced = reduced model log likelihood
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ST12. Comparisons of linear and generalized additive models predicting whole-brain
diffusion metrics

Metric LM AIC GAM AIC LM BIC GAM BIC LM RZ.q GAM RZ%;

vintra -155639.20 -155638.58 -155537.39 -155545.25 0.13 0.13
vextra -159996.29 -159998.05 -159894.48 -159904.72 0.05 0.05
vCSF -208493.03 -208487.27 -208391.21 -208393.94 0.13 0.13
microRD -134901.75 -134894.29 -134799.94 -134800.96 0.25 0.25
microFA -182901.46 -182896.42 -182799.64 -182803.09 0.21 0.21
microAx -136877.86 -136869.60 -136776.05 -136776.28 0.08 0.08
microADC -144129.25 -144118.74 -144027.44 -144025.42 0.23 0.23
DRADextra -210055.37 -210046.77 -209953.56 -209953.44 0.13 0.13
DAXintra -133600.03 -133591.04 -133498.22 -133497.71 0.11 0.11
DAXextra -160324.15 -160312.75 -160222.34 -160219.42 0.13 0.13
RK -88231.74 -88223.96 -88129.93 -88130.63 0.14 0.14
AK -174321.97 -174323.26 -174220.16 -174229.93 0.09 0.09
MK -132467.28 -132465.03 -132365.47 -132371.70 0.12 0.12
FA -186349.46 -186338.20 -186247.65 -186244.88 0.23 0.23
MD -152957.62 -152950.05 -152855.81 -152856.72 0.22 0.22
RD -146256.29 -146248.25 -146154.48 -146154.92 0.24 0.24
AD -153009.69 -153006.22 -152907.88 -152912.90 0.15 0.15
smtFA -251733.94 -251735.36 -251632.13 -251642.03 0.10 0.10
smtLong -574772.72 -574753.50 -574670.90 -574660.18 0.12 0.12
smtMD -640522.55 -640508.56 -640420.74 -640415.23 0.18 0.18
smtTrans -685644.08 -685645.94 -685542.27 -685552.61 0.16 0.16
smtMCintra -148707.24 -148707.45 -148605.43 -148614.13 0.10 0.10
smtMCextraMD -629213.51 -629198.88 -629111.69 -629105.56 0.18 0.18
smtMCextratrans -607794.88 -607787.65 -607693.07 -607694.32 0.18 0.18
smtMCd -580993.40 -580991.12 -580891.59 -580897.79 0.01 0.01
AWF -205354.88 -205349.62 -205253.07 -205256.29 0.14 0.14
axEAD 28871.07 28869.86 28972.88 28963.19 0.00 0.00
radEAD -20639.72 -20639.85 -20537.91 -20546.52 0.01 0.01

LM = linear model, GAM = generalized additive model, AIC = Akaike information criterion, BIC = Bayesian
information criterion. The numbers are derived from the six diffusion approaches’ 28 metrics following Equation 1 for

linear models and all variables of the equation allowing splines for non-linear models.
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789 ST13. Variance explained by principal components of white matter metrics

790
Compone Compone Compon Compone Compone Compone Compone Compone Compone Compone

nt1l nt 2 ent 3 nt 4 nt5 nt 6 nt 7 nt 8 nt9 nt 10

Full Multimoedal 0.3500 0.1065 0.0583 0.0393 0.0328 0.0208 0.0193 0.0172 0.0144 0.0133
Mean

Multimodal 0.6474 0.2085 0.0690 0.0354 0.0199 0.0069 0.0046 0.0029 0.0020 0.0010
BRIA 0.3759 0.0963 0.0706 0.0533 0.0377 0.0291 0.0238 0.0177 0.0140 0.0128
DKI 0.4358 0.0909 0.0479 0.0309 0.0294 0.0228 0.0174 0.0153 0.0137 0.0123
DTI 0.4072 0.0816 0.0532 0.0434 0.0353 0.0249 0.0206 0.0165 0.0145 0.0138
SMT 0.3393 0.1942 0.0603 0.0336 0.0255 0.0215 0.0207 0.0173 0.0166 0.0130
SMT mc 0.3404 0.1648 0.0585 0.0450 0.0329 0.0224 0.0203 0.0165 0.0155 0.0127
WMTI 0.2711 0.1277 0.0421 0.0379 0.0284 0.0279 0.0217 0.0195 0.0178 0.0168

791

792  Eight principal component analyses (PCA) were run: six PCA addressing the different diffusion approaches, one

793  addressing the multimodal average scores (mean multimodal) and one the multimodal model, containing all data (full
794  multimodal). The first four components from all PCA were deemed meaningful based on the proportion of variance
795  explained in the WM data.

796
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797 ST14. Model performance and BAG beta values for multimodal and diffusion-approach
798  specific principal component predictions from multimodal and diffusion approach-specific
799 BAG and covariates

800

Predicted

Component  Approach R? Radj® T p beac

1 Full Multimodal 0.0141 0.0138 46.0160 <0.0001 -0.0151
1 Mean Multimodal 0.5054 0.5052 3651.2999 <0.0001 -0.6726
1 BRIA 0.3439 0.3437 1685.8645 <0.0001 -1.8093
1 DKI 0.2263 0.2261 940.7306 <0.0001 -0.8142
1 DTI 0.3575 0.3573 1789.7236 <0.0001 -1.0817
1 SMT 0.3462 0.3460 1841.6494 <0.0001 -1.0953
1 SMT mc 0.3152 0.3150 1480.6879 <0.0001 -1.0782
1 WMTI 0.3720 0.3718 1905.4699 <0.0001 -0.8474
2 Full Multimodal 0.0247 0.0244 81.5815 <0.0001 -0.0332
2 Mean Multimodal 0.0179 0.0177 65.2632 <0.0001 0.0522
2 BRIA 0.0400 0.0397 134.1182 <0.0001 0.1030
2 DKI 0.0191 0.0188 62.7254 <0.0001 0.1090
2 DTI 0.1517 0.1514 575.2169 <0.0001 -0.0587
2 SMT 0.0022 0.0019 7.6338 <0.0001 -0.0159
2 SMT mc 0.0784 0.0781 273.5101 <0.0001 0.2988
2 WMTI 0.0563 0.0560 191.8700 <0.0001 0.0876
3 Full Multimodal 0.1148 0.1145 417.0057 <0.0001 -0.0086
3 Mean Multimodal 0.0003 0.0001 1.1795 0.2991 -0.0023
3 BRIA 0.1842 0.1839 726.2248 <0.0001 0.4627
3 DKI 0.2564 0.2562 1109.0911 <0.0001 0.1705
3 DTI 0.2500 0.2498 1072.1366 <0.0001 -0.2096
3 SMT 0.2465 0.2463 1137.8183 <0.0001 0.2908
3 SMT mc 0.1844 0.1841 726.9496 <0.0001 -0.1839
3 WMTI 0.1751 0.1749 682.7749 <0.0001 0.1266
4 Full Multimodal 0.1279 0.1276 471.5012 <0.0001 0.0002
4 Mean Multimodal 0.0999 0.0997 396.8655 <0.0001 0.0672
4 BRIA 0.0880 0.0877 310.4268 <0.0001 -0.0049
4 DKI 0.0688 0.0685 237.5608 <0.0001 0.0302
4 DTI 0.0696 0.0693 240.5501 <0.0001 -0.1682
4 SMT 0.1040 0.1038 403.8253 <0.0001 -0.0603
4 SMT mc 0.1639 0.1637 630.6907 <0.0001 0.0803
4 WMTI 0.2239 0.2236 927.6834 <0.0001 0.1036

801

802  The table shows predictions of the first four components retrieved from the respective models (as done for brain age
803 predictions, see Table 1), using BAG, age, sex, site, as well as age-sex and sex-site interactions as predictors (Equation
804  1). Both these four components as well as multimodal and approach-specific BAGs are based on data limited to the
805  particular uni- or multi-modal approach and vary therefore in their number of metrics (Table 1).

806
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ST15. Top five diffusion metrics ranked by gain in age prediction accuracy

BRIA DKI DTI mcSMT WMTI Multimodal

Micro FA fornix MK fornix MD fornix Intra fornix AWF fornix Micro FA Fornix

(54957) (39662) (50535) (38043) (52531) (67749)

Micro RD right RK fornix RD FMIN Extra trans RadEAD ATRL RD Fornix right

external capsule (26954) (18386) anterior corona Fornix (35799) (12328) Stria terminalis

(22860) radiata (24675) (17664)

Micro FA FMIN AK right RD fornix right Extratrans right RadEAD right AK anterior

(10081) anterior limb of stria terminalis external capsule anterior corona right limb of
internal capsule (15431) (15369) radiata internalcapsule
(16340) (17664)

Micro FA fornix AK fornix AD fornix Extra MD RadEAD IFOFR RadEAD right

right stria (10516) (9637) anterior left limb (9828) anterior corona

terminlis of internal radiata (17375)

(9853) capsule (6254)

Micro RD AK left superior FA fornix left Extra trans RadEADright RadEAD SLFR

Fornix right stria fronto occipital stria terminalis anterior right  external capsule (15840)

terminalis fasciculus (9283) limb of internal (9793)

(9812) (6850) capsule (6126)

Table values can be read as feature name (gain value). Gain refers to the improvement in accuracy brought by a feature

to the branches it is on*3. Multimodal refers to an approach using the diffusion metrics from all diffusion approaches.

Cells containing Fornix are marked in green.

Tracts are abbreviated as follows: ATRL = anterior thalamic radiation left, FMIN = Forceps minor, IFOFR = inferior
fronto-occipital fasciculus right, SLFR = superior longitudinal fasciculus right
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ST16. Brain age prediction model performance excluding fornix features and uncorrected

brain age — chronological age correlations comparison

Name MRI RMSE MAE Prediction-Age Uncorrected Brain
features Correlation Age Correlation
Difference to All Data
BRIA 700 0.527 5.131 4.129 0.727 -0.007*
(0.010) (0.042) (0.033) [0.722, 0.732] [-0.009, -0.004]
DKI 182 0.550 5.108 4.105 0.742 -0.006*
(0.015) (0.070) (0.065) [0.737, 0.747] [-0.008, -0.003]
DTI 252 0.555 5.078 4.079 0.745 -0.005*
(0.013) (0.066) (0.061) [0.745, 0.750] [-0.007, -0.003]
SMT 252 0.507 5.347 4.309 0.713 -0.009*
(0.008) (0.042) (0.028) [0.707, 0.718] [-0.011, -0.006]
mcSMT 252 0.488 5.342 4.303 0.699 -0.015*
(0.011) (0.045) (0.036) [0.693, 0.705] [-0.018, -0.012]
WMTI 182 0.566 5.018 4.031 0.753 -0.003*
(0.012) (0.062) (0.052) [0.748, 0.757] [-0.006, -0.001]
Mean scores 28 0.393 5.932 4.812 0.627 0
multimodal (0.012) (0.051) (0.046) [0.621, 0.634] [-0.0001, 0.0001]
Full model 1904 0.636 4.591 3.677 0.798 -0.006*
multimodal (0.012) (0.077) (0.039) [0.794, 0.802] [-0.007, -0.004]

In the above only fornix features are excluded, while QC and all other steps are kept as described in the Methods
section. Importantly, radiations from the fornix to other tracts such as fornix to stria terminalis radiations were not
excluded. Compare results from the full model in Table 1 for uncorrected prediction-age correlations which were the

basis for the final column.

* p<.001

Brain age predictions from models containing fornix metrics are consistently stronger correlated with age than
predictions from models not containing fornix (rs<-0.003,ps<.001).
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