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Abstract

Identifying white matter (WM) microstructure parameters that reflect the underlying biology of the 

brain will advance our understanding of ageing and brain health. In this extensive comparison of 

brain age predictions and age-associations of WM features from different diffusion approaches, we 

analysed UK Biobank diffusion Magnetic Resonance Imaging (dMRI) data across midlife and older

age  (N = 35,749, 44.6 to 82.8 years of age). Conventional and advanced dMRI approaches were 

consistent in predicting brain age; with their WM-features similarly related to and predicted by age. 

However, brain age was estimated best when combining approaches, showing different aspects of 

WM to contribute to brain age. Fornix was found as the central region for brain age predictions 

across diffusion approaches. We encourage the application of multiple dMRI approaches for 

detailed insights into WM, and the further investigation of fornix as a potential biomarker of brain 

age and ageing.

Keywords: ageing, brain age, diffusion, white matter, magnetic resonance imaging, fornix

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.09.29.510029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510029
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

Neuroscientific research over the past decades has increased our understanding of the brain 

mechanisms associated with tissue maturation and ageing effects1. A particularly fruitful source of 

data is magnetic resonance imaging (MRI), revealing information about structural and functional 

brain architecture in vivo2. For many MRI modalities, such as diffusion-weighted MRI (dMRI) or 

T1-weighted MRI, a variety of quantitative measures can be estimated, and linked to behaviour, 

cognitive and health scores3,4. However, selection and interpretation of such parameters are 

difficult, largely due to intra-subject variability in ageing, for example influenced by covariates 

from the genetic to environmental level4. Hence, the use of large-scale MRI databases, such as UK 

Biobank (UKB)5 or the Human Connectome Project6, becomes inevitable, as it allows detecting and

localising important brain patterns and supporting their generalisability7. Simultaneously, large-

scale data provides sufficient power for the application of advanced multivariate statistical models, 

and machine learning (ML) techniques.

Brain age prediction is an example of such a technique, helping translate large amounts of complex 

multidimensional data into practically interpretable outputs. Brain age prediction involves training a

ML model to determine trajectories of brain ageing from a series of brain MRI features. Once the 

model is trained, it can predict the age of brains not included in the training data. The disparity 

between chronological age and predicted age, the so-called brain age gap (BAG), can be used as an 

indicator for neurological, neuropsychiatric and neurodegenerative disorders10,11. For example, 

BAG has been associated with stroke history, diabetes, smoking, alcohol intake, several cognitive 

measures12,13, mortality risk, different brain and psychiatric disorders14,15, cardiovascular risk 

factors19, stroke risk16, and loneliness17. However, besides Alzheimer’s disease or schizophrenia, the

evidence is mixed for the relationship of BAG and different health outcomes and a smaller BAG is 

not necessarily indicative of good health4. Moreover, recent longitudinal evidence shows early-life 

factors and genetics to have stronger effects on brain maturation than T1-weighted grey matter 

(GM) BAG18. However, BAG is a promising heritable indicator of general health status10,13,19,20.

BAG and age trajectories offer paths towards a better understanding of the ageing brain. There are 

various detectable age-related brain changes, such as GM and WM atrophy8, WM de-

differentiation9, and functional connectivity changes4 which have hence informed the choice of 

brain-age modelling-parameters12,16,19,25,27-29,30. In that context, many ML approaches have been 

used to make robust and clinically relevant brain age predictions from different MRI modalities10,21–

23; yet, particularly the eXtreme Gradient Boosting24 regressor model, using a decision tree 

approach, being increasingly used for brain age predictions from large-scale data due to its 
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precision and speed 10,25,26. Especially dMRI and structural MRI have been shown useful for brain 

age predictions12,16,19,25,27-29,30. However, further systematic, sufficiently powered assessments of 

dMRI-derived brain age and how diffusion metrics map onto age are needed.

DMRI-derived measures consist of unique parameters allowing both to reveal WM changes at 

micrometer scale and to provide the basis for a prediction of macroscopic outcomes, such as age. 

Conventionally, WM brain architecture is described using diffusion tensor imaging (DTI)31. 

However, recent advances offer more biophysically meaningful approaches32, and sensible 

foundation for cross-validation and better comparability25. DTI-derived measures, namely fractional

anisotropy (FA), and axial (AD), mean (MD), and radial (RD) diffusivity have all been shown to be 

highly age sensitive9,25,33. However, the DTI approach is limited by the Gaussian diffusion 

assumption and is unable to take into account entangled WM microstructure features25. In the 

present work, we consider 1) the Bayesian rotationally invariant approach (BRIA)34, 2) diffusion 

kurtosis imaging (DKI)35; 3) kurtosis derived supplement, known as white matter tract integrity 

(WMTI)36; 4) spherical mean technique (SMT)37, and 5) multi-compartment spherical mean 

technique (mcSMT)38 in addition to DTI. Only a few studies have compared dMRI models directly 

as original brain age predictors25,39,40. Yet, brain age and age curve assessments of DTI, BRIA, DKI,

WMTI, SMT, mcSMT (ST10) in a representative sample still need establishing, as well as most 

influential WM regions for brain ageing. Our assessments focus on the process of ageing (from 

midlife to late adulthood), starting by associating BAG across diffusion approaches and compare 

brain-age-chronological-age-correlations to assess prediction consistency. Fornix was identified as 

most contributing feature in these predictions exploring feature-contributions, and was the strongest

correlate of age, with fornix features highly correlated across approaches. Finally, we created fornix

and whole-brain-age curves expecting curvilinear relationships reflecting brain-tissue-composition 

at different ageing stages25,33,52.

Methods

Sample characteristics

The original UKB5 diffusion MRI data consisted of N = 42,208 participants. After exclusions, based

on later withdrawn consent and an ICD-10 diagnosis from categories F, G, I, and stroke (excluded: 

N = 3,521), and data sets not meeting quality control standards (N = 2,938) using the YTTRIUM 

method39, we obtained a final sample consisting of 35,749 healthy adults (age range 44.57 to 82.75, 

Mage = 64.46, SDage = 7.62, Mdage = 64.97; 52.96% females, 47.04% males). Participants were 

recruited and scanned at four different sites: 57.62% in Cheadle, 26.30% in Newcastle, 15.96% in 

Reading, and 0.12% in Bristol (Fig.1).
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Fig.1: Density plots for the sample’s age by sex and scanner site

MRI acquisition, diffusion pipeline and TBSS analysis

UKB MRI data acquisition procedures are described elsewhere5.

Diffusion data preprocessing was conducted as described in Maximov et al.71, using an optimised 

pipeline which includes corrections for noise72, Gibbs ringing73, susceptibility-induced and motion 

distortions, and eddy current artefacts74. Isotropic Gaussian smoothing was carried out with the 

FSL75 function fslmaths with a Gaussian kernel of 1 mm3. After that DTI, DKI, and WMTI metrics 

were estimated using Matlab 2017b76. Employing the multi-shell data, DKI and WMTI metrics 

were estimated using Matlab code (https://github.com/NYU-DiffusionMRI/DESIGNER)36. SMT, 

and mcSMT metrics were estimated using original code (https://github.com/ekaden/smt)37, as well 

as Bayesian estimates / BRIA were estimated by the original Matlab code 

(https://bitbucket.org/reisert/baydiff/src/master/)34.

In total, we obtained 28 metrics from six diffusion approaches (DTI, DKI, WMTI, SMT, mcSMT, 

BRIA)25,38,71,77–79. In order to normalise all metrics, we used tract-based spatial statistics (TBSS)80, 

as part of FSL81. In brief, initially all BET-extracted82 FA images were aligned to MNI space using 
4
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non-linear transformation (FNIRT)75. Afterwards, the mean FA image and related mean FA skeleton 

were derived. Each diffusion scalar map was projected onto the mean FA skeleton using the TBSS 

procedure. In order to provide a quantitative description of diffusion metrics we evaluated averaged 

values over the skeleton and two white matter atlases, namely the JHU atlas83 and the JHU 

tractographic atlas84. Finally, we obtained 20 WM tracts and 48 regions of interest (ROIs) based on 

a probabilistic white matter atlas (JHU) (Hua et al., 2008) for each of the 28 metrics, including the 

mean skeleton values. Altogether, 1932 features per individual were derived (28 metrics * (48 ROIs 

+ 1 skeleton mean + 20 tracts); see number of dMRI features in Table 1)).

Statistical Analyses

All statistical analyses were carried out using Python, version 3.7.1 and R, version 3.6.0 (www.r-

project.org/). p-values were adjusted for multiple comparison using Holm correction44.

Brain Age Predictions

First, brain age predictions were performed using XGBoost24 in Python. To evaluate how much data

was needed for hyper-parameter tuning while accurately predicting brain age from all 1940 brain 

features, we divided the full dataset (N=35,749) into two equal parts: one validation set and one 

hyper-parameter tuning set for independent parameter-tuning. From the hyper-parameter tuning set, 

data was randomly sampled into sub-samples consisting of 358, 715, 1,073, 1,430, 1,788, 2,145, 

2,503, 2,860, 3,218, 3,575, 7,150, 10,725, 14,300, or 17,875 participants, corresponding to 1%, 2%,

3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 20%, 30%, 40% and 50% of the total subjects, respectively 

(Fig.2). Hyper-parameter were tuned on these sub-samples and then tested on the remaining half, 

i.e., the validation sample, using 10-fold cross validation showing model performance to not further 

improve past the 10% (tuning) data mark, informing our tuning-validation-split (Fig.2, ST1).

Fig.2: Model performance for different train-test splits

Model metrics R2, RMSE, MAE and their standard deviations, as well as the Pearson’s correlations between predicted 

and chronological age and its 95% confidence interval are displayed for different training data percentages of the total 

data (x-axis). For visualisation purposes, RMSE and MAE were divided by 10. For exact values see Suppl. Table ST1.
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Second, in order to compare the different diffusion approaches, based on the previous steps, the 

training-test split was fixed at previously used 10% training data (N = 3,575) and 90% test data (N 

= 32,174) which indicated a best fit at a learning rate = 0.05, max layers/depth = 3 and number of 

trees = 750. These tuned parameters were used for 10-fold cross-validations brain age predictions 

on the test data of all six individual models, one multimodal model combining all metrics from all 

diffusion models, and one multimodal model using only mean values from all diffusion models 

(Table 1).

Third, BAG was calculated as the difference between chronological age Ω and predicted age P:

BAGuncorrected = P - Ω (3)

As a supplement, age-bias-corrected predicted age was calculated from the intercept and slope of 

age predictions as previously described26,85:

P = α × Ω + β (4)

BAGcorrected = (P + [Ω  - (α × Ω + β)]) - Ω (5)

P represents predicted age modelled from chronological age Ω, with intercept β and slope α. This 

age-bias correction allowed for a bias-corrected BAG estimate.

Results

Brain age predictions

Table 1 presents a comparison between different diffusion approaches in predicting brain age for 

each diffusion approach. The strongest correlation between chronological and predicted age was 

found in the multimodal approach including dMRI data from all six diffusion approaches, Pearson’s

r=0.805, 95% CI [0.800, 0.808], p<.001, and the smallest correlation in the multimodal approach 

including only mean scores Pearson’s r = 0.627, 95% CI [0.627, 0.639], p<.001, respectively 

(corrected and non-corrected correlations are presented in Table 1). The strongest correlation 

between uncorrected age predictions and chronological age was observed for WMTI Pearson’s 

r=0.765, 95% CI [0.761, 0.770], p<.001, and the smallest for mcSMT Pearson’s r=0.721, 95% CI 

[0.716, 0.726], p<.001.
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Hotelling’s41 t-tests were used to compare correlations between uncorrected predicted age and 

chronological age across diffusion models and Zou’s42 method to estimate the confidence intervals 

around the correlation differences (Fig.3 and ST3; SF8 and ST2 for corrected prediction correlation

comparisons). These differences were not significantly different from each other for model pairs 

DKI and DTI (p≈1). All other correlations were different from each other, Pearson’s rsdiff≤0.15, 

p<.001, with the biggest difference observed between mean and full multimodal scores’ correlations

(ST2 for exact values).

Table 1: Performance of Brain Age Prediction Models

Approach§ Number 
of MRI 
features

R2

(SD)
RMSE
(SD)

MAE
(SD)

Prediction-Age 
Correlation*
[95% CI]

Corrected Prediction-
Age Correlation*
[95% CI]

BRIA 690 0.550
(0.012)

5.007
(0.057)

4.002
(0.042)

0.742
[0.737, 0.747]

0.892+

[0.889, 0.894]
DKI 207 0.576

(0.015)
4.958

(0.077)
3.975

(0.068)
0.754

[0.755, 0.764]
0.903

[0.901, 0.905]
DTI 276 0.571

(0.014)
4.983

(0.072)
3.984

(0.062)
0.756

[0.751, 0.761]
0.900

[0.897, 0.902]
SMT 276 0.531

(0.010)
5.214

(0.053)
4.183

(0.036)
0.729

[0.724, 0.734]
0.899

[0.897, 0.901]
mcSMT 276 0.519

(0.011)
5.175

(0.045)
4.153

(0.036)
0.721

[0.716, 0.726]
0.892+

[0.889, 0.894]
WMTI 207 0.585

(0.012)
4.903

(0.065)
3.928

(0.050)
0.765

[0.761, 0.770]
0.902

[0.900, 0.904]
Mean 
multimodal

28 0.393
(0.012)

5.932
(0.051)

4.812
(0.046)

0.627
[0.621, 0.634]

0.905
[0.903, 0.907]

Full 
multimodal

1932 0.645
(0.011)

4.534
(0.041)

3.624
(0.037)

0.804
[0.800, 0.808]

0.907
[0.905, 0.909]

Table logic: R2, RMSE, MAE are displayed in the format Mean (Standard Deviation), Pearson’s correlations are 
displayed in the format Correlation Score 95% Confidence Interval [Lower Bound, Upper Bound].

Mean multimodal refers to diffusion metrics averaged over the skeleton for all six diffusion approaches. Full 
multimodal refers to all diffusion data from the six diffusion approaches, i.e. mean multimodal data in addition to 
metrics averaged over the JHU atlas regions. R2 = variance explained, RMSE = root mean squared error, MAE = mean 
absolute error.

§ For an overview of the metrics contained in each of the diffusion approaches see ST10.
+ Details on the smallest correlation: BRIA Corrected Prediction-Age Correlation r = .89173, mcSMT Corrected 
Prediction-Age Correlation r = .89176
* All correlation were significant at p < .001.
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Fig.3: Differences between Pearson’s correlations of chronological and uncorrected predicted 
ages across diffusion approaches with 95% confidence interval

Differences between Pearson’s correlation coefficients of chronological and uncorrected predicted age by diffusion 
approach. See SF8 for correlational differences between approaches for corrected brain age predictions.

To identify the most influencing WM regions, we computed the permutation feature importance for 

each model’s features (models: Table 1), ranked by contribution to the variance explained (Table 

2). For feature rankings by contribution to model prediction accuracy using gain scores43 see ST15. 

Across diffusion approaches, diffusion values estimated on the fornix had the most valuable 

contribution to variance explained (Table 2) and prediction accuracy (ST15). Model which had 

fornix features removed had lower model fit and brain-age-chronological-age correlations were 

smaller than for models containing fornix (rs<-0.003, ps<.001; ST16).
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Table 2: Top five diffusion metrics ranked by their contribution to variance explained (R2) in 

age

BRIA DKI DTI SMT mcSMT WMTI Multimodal
Micro FA fornix 
0.1954±0.0027

AK right 
anterior limb of 
internal capsule
0.0984±0.0014

MD fornix 
0.0712±0.0013

MD fornix
0.0795±0.0018

Extratrans fornix
0.0498±0.0013

AWF fornix
0.1699±0.0023

Micro FA fornix
0.0914±0.0011

Vextra forceps 
minor
0.0278±0.0007

RK fornix 
0.0884±0.0016

FA forceps 
minor
0.0533±0.0011

FA right superior
longitudinal 
fasciculus
0.0267±0.0007

Intra forceps 
minor
0.0444±0.0009

radEAD fornix 
to right 
striaterminalis
0.0283±0.0007

AK anterior limb 
of internal 
capsule
0.0055±0.0011

Vextra body of 
the corpus 
callosum
0.0261±0.0007

MK left external
capsule
0.0259±0.0006

RD fornix to 
right 
Striaterminalis
0.0462±0.0009

Longitudinal 
fornix
0.0251±0.0006

Intra fornix
0.0289±0.0009

AWF Forceps 
minor
0.0194±0.0005

FA forceps minor
0.0219±0.0006

Micro FA fornix 
to right 
Striaterminalis
0.0203±0.0006

MK right 
superior 
longitudinal 
fasciculus
0.0214±0.0006

FA right superior
cerebellar 
peduncle
0.0221±0.0006

Trans fornix to 
right 
striaterminalis
0.0204±0.0006

Extratrans fornix
to right 
Striaterminalis
0.0201±0.0006

axEAD forceps 
minor
0.0193±0.0007

RD right fornix 
stria terminalis
0.0214±0.0006

Vintra right 
superior 
cerebellar 
peduncle
0.0194±0.0006

RK forceps 
minor
0.0208±0.0005

FA body of the 
corpus callosum
0.0218±0.0006

FA fornix
0.0192±0.0006

Extratrans right 
external capsule
0.0163±0.0007

axEAD left 
posterior limb 
of internal 
capsule
0.0173±0.0006

AK Genu corpus
callosum
0.0095±0.0003

Note: Variance explained (R2) by a single feature refers here to the part of the total variance explained by the respective 
model presented in Table 1. Multimodal refers to an approach using the diffusion metrics from all diffusion approaches. 
Cells containing Fornix are marked in green.

Brain age gap across diffusion approaches and age

In order to compare uncorrected BAG (BAGu) calculations across the used diffusion approaches, 

BAGu was correlated from different diffusion approaches and with age. Correlations between the 

six diffusion approaches ranged between r=0.857 and r=0.966 (Fig.8; SF1 for corrected BAG 

correlations). Overall, BAGu scores from the different approaches were strongest related to WMTI 

BAGc (range: r = 0.873 to 0.952), and weakest to mean multimodal BAGu (range: r=0.779 to 

r=0.828), and could be observed in one cluster containing DKI, DTI, WMTI and multimodal BAGu 

and a second cluster containign BRIA, SMT, and SMTmc. However, DKI, BAGu was more strongly

correlated with full multimodal BAGc than with other well-performing approaches DTI (Pearson’s 

rdiff=0.03, p<.001) and WMTI (rdiff=0.03, p<.001). Vice versa, DTI BAGc correlated strongest with 

WMTI BAGc (r=0.905, p<.001).
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Fig.4: Correlations of uncorrected BAG and age across used diffusion approaches

Age-BAG correlations, approximating 0, were not significant at pHolm ≥ .05. All other correlations were significant at 
pHolm < .001. For the corrected BAG correlations across models see SF1.

Associations between diffusion metrics and age

A correlational analysis was used to demonstrate associations among Fornix diffusion metrics and 

age (Fig.5, including QC outliers: SF4). Association strengths ranged from to r=-0.997 (smtTrans 

and smtMCintra) to r=0.999 (smtTrans and smtMD). Correlations between fornix metrics and age 

ranged from r=-0.558 (smtMCintra) to r=0.570 (microRD).
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Fig.5: Correlation matrix for fornix diffusion metrics and chronological age

All correlations were significant at Holm-corrected pHolm < .05.

For region-wide associations between age and diffusion metrics, all diffusion metrics were 

correlated with age and displayed for pHolm<0.001 (Fig.6). Among these correlations, Pearson’s r 

values > 0.5 were name-labelled showing various correlations between diffusion metrics in the 

fornix and age. However, when controlling for covariates, only relatively small proportions of the 

variance in single local and global diffusion metrics could be predicted from the whole model with 

small contributions of age to the models (SF11).
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Fig.6: Correlations between diffusion metrics and age

Note: Each point indicates one correlation between a diffusion metric and chronological age. Names of diffusion 
metrics are displayed when correlations between the metric and age reached a Pearson correlation of |r|>0.5. Holm 
correction44 was used for FDR-correction, and all displayed values were significant at p < .001.
For the distribution of the correlations see SF12.

Age Trajectories of Diffusion Features

In Fig.7 we present absolute diffusion metrics for the whole brain (Fig.7a) and fornix (Fig.7b) 

across ages for the examined six diffusion approaches (overview of metrics: ST10). Age-metric 

relationships for fornix were approximating linearity closer than more curvilinear global age-curves.

Several fornix-age relationships for BRIA extra-axonal and intra-axonal radial and axonal 

diffusivity opposed whole-brain-age relationships.
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Fig.7: Whole-brain and fornix diffusion metrics across age

Note: The presented plots represent diffusion metrics for each of the six diffusion models from the full sample N = 
35,749 for a) whole-brain diffusion metrics, b) fornix diffusion metrics. Brighter colours indicate higher density and red
lines are fitted lines to the relationship between age and diffusion metric.
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Whole-brain (Fig.8) and fornix (SF9) diffusion metrics M were predicted from age, sex and scanner

site to create age curves (Fig.8A-B) which can be compared to raw Z-score-normalisation curves 

(Fig.8C-D):

M = β0 + β1Age + β2Age2 + β3 x Site*Sex + β4Sex*Age + β5Sex + β6Site (1)

A general trend was observed of most features crossing the mean at the same age, around 65 (Fig.8, 

SF9). Model fit metrics R2adj and Standard Error (SE) for the models accounting for age, sex and 

scanner site (Equation 1) when predicting diffusion metrics were calculated (Fig.7E). Highest SE, 

R2adj and variability across metrics was observed when predicting BRIA metrics (R2adj = .21), as 

well as lowest R2adj≈0 in BRIA Vextra, respectively. While DTI metrics could also be predicted well

from the model, lowest variability in R2adj was found in WMTI and DKI. For fornix metrics, SE and

R2adj was generally higher across diffusion approaches (SF9).

To test age-sensitivity of the mean features, likelihood ratio tests were conducted comparing models

derived from Equation 1 against models derived from the same formula with age removed: 

(Equation 2).

M = β0 + β1Site*Sex + β2Sex + β3Site (2)

All models showed significant age dependence, with DTI RD (χ2= 9,640.26, pHolm<.001), BRIA 

microRD (χ2=9,496.19, pHolm<.001), and DTI FA (χ2= 8,803.13, pHolm<.001) being the most age-

sensitive metrics, and WMTI axEAD (χ2=6.66, pHolm=.084), mcSMT diffusion coefficient 

(χ2=238.47, pHolm<.001), and WMTI radEAD(χ2=418.26, pHolm<.001) the least age-sensitive metrics

(ST11).

In a set of additional analyses, we examined age-sensitivity of fornix features and whether the 

relationship between whole-brain as well as fornix diffusion metrics and age are better described as 

linear or non-linear. Fornix diffusion metrics were age sensitive (SF9) but model fit did not differ 

between linear and non-linear models for whole-brain (ST12) or fornix metrics (ST9).

Finally, to observe BAG-WM associations, principal components of regional and whole-brain WM 

metrics for each of the eight models (Table 1) were only weakly correlated with uncorrected BAGu,

and similarly related to corrected BAGc, agechronological and agepredicted (SF10). Furthermore, when 

predicting the most important WM components (SF10, ST14) or single regional or whole-brain 

metrics (SF11) from BAGc and BAGu and covariates, models predicted relatively small proportions 

of variance, with small contributions of BAG to the model (SF10-11).
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Fig.8: Raw and predicted whole-brain WM diffusion metrics by chronological age

Fig.8A-D shows age curves for each standardised (z-score) di usion metric’s mean skeleton value (y-axis) plotted as a ff
function of age (x-axis). Shaded areas represent 95% CI. Curves fitted to raw values (Fig.8 C-D) serve as a comparison 
to the lm-derived predicted values from Equation 1 (Fig.A-B). Fig.8E indicates the model fit for the linear models from 
Fig.8A-B, showing R2adj values on top and Standard Error (SE) on the bottom of the bars which each represent a Fornix 
skeleton value for one of the seven models. Lines crossing at age 65 are marked with ovals. Model summaries of all 28 
mean models can be found in ST5. The same visualisation of fornix diffusion values can be found in SF9.

Discussion

We revealed that both conventional DTI and advanced diffusion approaches (WMTI, DKI, BRIA, 

SMT, mcSMT) perform consistently on brain age predictions, as indicated previously25. As a novel 

finding, our results show strong contributions of fornix microstructures explaining variance in age 

and reducing error for dMRI/WM-based brain age predictions, and model fit for brain age 

prediction models without fornix is reduced. Additionally, Mass-WM-age-correlations reveal 
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strongest correlations between fornix microstructure and age. This suggest that the fornix is a key 

WM region of cross-sectional brain age, with fornix and whole-brain dMRI metrics’ age trajectories

following similar patterns such as steepening slopes at later ages.

On the other hand, there are multiple challenges related to fornix as a driver of brain age estimates, 

particularly multicollinearity, which might bias estimates of the importance of fornix (gain and 

permutation feature importance) for brain age predictions, and second, data processing artefacts. 

UKB offers diffusion data acquired with the most typical two-shell-diffusion protocol. 

Nevertheless, the standard diffusion model66 based on differentiation of intra- and extra-axonal 

water pools could not be solved using this measurement strategy66. As a result, the derived diffusion

metrics have both numerical uncertainties and the variability introduced from non-biological 

parameters66. Quantitative metrics derived from the different diffusion approaches allow to 

investigate such non-biological variability and to grade the subject variability in terms of used 

covariances. Yet, the aforementioned technical limitation might play a decisive role in a clinical 

context50,66.

Besides obstacles resulting from modelling assumptions, our sample is cross-sectional in design and

limited to adults older than forty, which, in turn, influences predictions and model evaluation 

metrics. Metrics such as r and R2 are expected to be lower than in samples with wider age-ranges45. 

Additionally, the UKB imaging sub-sample shows better health than the non-imaging UKB 

subjects67. Another open question is the exact interpretation of BAG and its relationship with WM 

metrics, which was found to be small for principal WM components (SF10) and single diffusion 

metrics (SF11). Although previous research shows no relationship between the rate of change in 

longitudinal regional and global T1-weighted-feature-retrieved BAG18, further investigation of 

longitudinal as well as voxel-wise WM-derived BAG provide additional avenues to increase the 

interpretability of BAG.

We found the different diffusion metrics to be highly correlated (fornix, Fig.5), and show similar 

age trajectories (SF9A-B), which provokes the question of whether some of the metrics are 

redundant. The identification of redundant metrics and the combination of metrics across diffusion 

approaches is a matter of future research comparing diffusion approaches by probing them in 

practical settings such as in clinical samples70.

Only few studies56,57 address the fornix across ages. A possible reason is fornix’ artefact-

susceptibility induced from its proximity to the cerebrospinal-fluid, while being a small tubular 

region. Recent processing pipelines such as TBSS minimise such artefacts80. Yet, the influence of 
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cerebrospinal-fluid artefacts in small tubular structures like the fornix remains unclear68. Fornix is a 

relatively small anatomical structure, and, for example, fornix BRIA cerebrospinal-fluid fraction is 

higher (vCSF>0.5) than global measures (vCSF>0.075), suggesting a presence of strong partial 

volume effect. In order to overcome such distorting effects, voxel-wise techniques are 

recommended, demanding the development of novel approaches incorporating techniques such as 

deep learning showing better performance than traditional ML, especially on large population 

samples69.

Consistency across diffusion approaches

Overall, the results of brain age predictions are similar across diffusion approaches, with WMTI, 

DTI and DKI predicting age better than SMT, mcSMT and BRIA considering model fit and 

prediction-outcome correlations (Table 1). This finding could be explained in terms of diffusion 

approaches; i.e., the attempt to introduce more biophysically accurate parameters into the model 

might simultaneously reduce the general sensitivity of the used approaches to the tissue changes. 

Integrative approaches such as DTI or DKI are able to localise brain changes, however, without 

providing information about the underlying mechanisms. Our study support a previous study with a 

smaller but more age-differentiated sample (n=702) of DTI and WMTI being superior to mcSMT at

brain age predictions in terms of model performance25. When examining additional diffusion 

models on a larger sample, we find DKI metrics to have higher predictive power than in Beck and 

colleagues25. Simultaneously, differences between diffusion approaches, and both variance 

explained and prediction error (RMSE, MAE) were smaller in this study. These differences are 

likely due to the narrower age range in our study45, whereas our significantly larger sample 

emphasises the reliability of our findings.

While brain age predictions from single diffusion approaches were grossly similar, predictions from

combined approaches were best (Table 1). Correlations between predicted and chronological age 

were consistent across diffusion approaches, as differences between correlations were small (Fig.3, 

SF8). This shows that addressing a wider range of WM characteristics improves predictive models 

compared to models with single diffusion approach metrics (e.g., only DTI), which would be 

intuitive when considering BAG as a general indicator of health10,13,19,20.Vice versa, reducing spatial

specificity by averaging diffusion metrics across all WM reduced prediction accuracy. 

Conventionally used DTI on its own is limited in its ability to present biophysically meaningful 

measures of the underlying microstructure. As a result, the advanced modelling is recalled including

intra- and extra-axonal spaces and tissue peculiarities being influenced by individual differences in 

myelin and fibre architecture (crossing/bending fibres, and axonal characteristics)25. Hence, adding 

additional information to DTI better allow to infer the underlying neurobiology of tissue, for 
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example, expressed in differential WM-age-dependences (Fig.7-8) or brain age predictions (Table 

1)25.

We observed that BAG exhibits strong correlations across all diffusion approaches (Fig.4, SF1). 

Congruently with the correlational differences (Fig.3, SF8), BAG based on averaged skeleton 

values was least correlated to all other diffusion approaches (Fig.4), indicating inferiority of global 

compared to region-wide approaches. BAG obtained from WMTI, DTI and DKI were closest 

related to BAG from the multimodal approach (which predicted age best), both for age-bias 

corrected and uncorrected BAG (Fig.4, SF1). This is in agreement with the observed age-prediction

model performance (Table 1). BAG correlations were observed in three clusters: 1) WMTI and 

DTI, 2) mcSMT, SMT, BRIA, and 3) DKI, indicative of similar measurements within these clusters 

(Fig.4, SF1). To a certain extent, these clusters reflect similarities in the underlying mathematics of 

the clustering diffusion approaches. For example, mcSMT and SMT are closely related models37, 

whereas DKI’s non-Gaussianity might reveal another quality of age-sensitive WM microstructures 

not captured by the other approaches46. Additionally, the cluster differences indicate that the 

observed diffusion approaches measure different age(ing)-sensitive characteristics, supporting the 

argument for a combination of diffusion approaches when assessing the ageing brain.

Age trajectories and fornix as a brain age feature

Based on the presented findings on fornix, we further investigate details of fornix, keeping 

discussed limitations to the generalizability of the findings in mind. Diffusion metrics describing 

fornix microstructure were consistently related to each other and age across all diffusion approaches

in two clusters. Values were positively correlated within each cluster and negatively between 

clusters (see Fig.5). In the first cluster, different approaches’ FA, kurtosis metrics (MK, RK, AK), 

water fractions (vintra and vextra from BRIA and AWF from WMTI), and BRIA intra-axonal and 

extra-axonal radial and axial diffusivity were positively correlated. The second cluster, which was 

negatively related to the first cluster but positive to age, contained metrics of mean, axial and radial 

diffusivity, and cerebrospinal-fluid fraction of the different diffusion approaches, which were 

positively related to each other. Interestingly, both clusters consisted of unit-less values, for example

water fractions, and diffusivities, which might have the same meaning as extra-axonal axial 

diffusivities from different diffusion approaches, for example BRIA vs SMTmc. Such consistencies 

of similar metrics across diffusion approaches were more apparent for the fornix when QC-

identified outliers were removed (compare Fig.5 and SF4), which supports the reliability of our 

findings of fornix-age-dependencies. Furthermore, fornix metrics were most strongly related to age 

across diffusion approaches (Fig.6, SF11), supporting the importance of fornix in reducing error of 

brain age predictions (Table 2). Not surprisingly, all fornix features were age-sensitive (ST4), and 
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more age sensitive than whole-brain metrics (ST11). Whole-brain trajectories are in agreement with

previous results, showing-age sensitivity of various mean diffusion metrics25, and the same 

directionality of age trajectories of metrics for DTI9,33, mcSMT, DKI, WMTI25.

We displayed that fornix microstructure measures have differential behaviours across diffusion 

approaches (Figs.7-8). Focussing on absolute diffusion values (Fig.7), it can be observed that 

diffusion measures which are correlated (Figs.4-5) exhibit similar age dependences. Additionally, 

slopes of fornix compared to whole-brain diffusion metrics were generally steeper and closer 

approximating linearity, indicating stronger changes, such as quicker WM degeneration in the 

fornix compared to the whole-brain average (see Fig.7). Particularly BRIA metrics show visually 

detectable differences between the fornix and the whole brain (Fig.7, DAXextra, DAXintra, 

DRADextra, Vextra); as opposed to global developments, fornix intra and extra-axonal diffusion 

decreased, indicating fornix shrinkage with increasing age. Periventricular shrinkage is linked to 

enlarging ventricles47, which has been related to ageing and neurodegenerative disorder 

progression48. This effect was observed by a positive relationship between age and cerebrospinal 

fluid (CSF) fraction in BRIA. Another metric which revealed larger differences in the fornix than 

for the whole-brain average was intra-axonal water fractions, which can be treated as a proxy for 

the axonal density, decreased with increasing age (see Fig.7, BRIA:Vintra; SMTmc:intra; 

WMTI:AWF) while the CSF fraction (BRIA) increases. Such WM microstructure changes are not 

only directly linked to different neurobiological features but can be markers of clinical outcomes, 

such as dementia49,50.

A selection of metrics is comparable across diffusion approaches taking DTI as reference point, 

showing similar age trajectories. DTI metrics AD, RD, and MD tend to increase over the lifespan 

and FA tends to decrease across brain regions (Fig.7-8)25,33,51,52 as well as in fornix (Fig.7b, SF9), 

implying processes such as de-myelination, changes in axonal and general WM integrity. Such DTI 

age-dependences are reflected by according BRIA, SMT, and WMTI metrics, whereas DKI shows 

opposite age-relationships, as presented previously25. Deterioration effects, measured by the age-

dependency of axonal water fractions, were generally stronger in fornix compared to whole-brain 

metrics (Fig.7). Interestingly, opposed to global metrics, radial diffusivity measures from DKI and 

BRIA (DRADextra) decreased in fornix (Fig.7), suggesting higher fornix than global plasticity, 

potentially being an antecedent of age-related hippocampal changes55.

Additional, unique information about age dynamics was presented by standardised scores 

accounting for age, sex and scanner site and standardised uncorrected scores across ages (Fig.8, 

SF9). After standardisation and accounting for covariates, most fornix metrics follow a tightly 
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resembling near-linear trend either increasing or decreasing by age (SF9A-B), as opposed to whole-

brain metrics which follow a rather curvilinear line, as previously shown25,33,52. Diffusion metrics’ 

variance explained across models indicates fornix metrics to be more sensitive to a combination of 

covariates age, sex, and scanner site than whole-brain metrics (Fig.8, SF9). In the fornix, only 

BRIA extra-axonal axial diffusivity (DAX extra) and the SMT longitudinal diffusion coefficient 

(SMT long) showed non-linear trajectories, however, both measures are weakly correlated to other 

diffusion parameters (Fig.8). Yet, when comparing model metrics such as variance explained of 

linear and non-linear models predicting fornix and whole-brain diffusion metrics from age, sex and 

scanner site and their interactions, there were no apparent differences between models (ST9, ST12).

This implies that contrary to previous research observing the entire lifespan presenting curvilinear 

DTI age trajectories25,33, or trends towards curvilinearity (with yet better linear fit for selected 

regions)52, we found that fornix and whole-brain age trajectories from age 40 can be described as 

linear when accounting for covariates sex, age, and scanner site. While the crossing of the x-axis at 

age 65 (Fig.8, SF9) is a reflection of the sample’s age distribution (Fig.1), in addition to the shapes 

of the different age-trajectories, it reveals that the different diffusion approaches are similarly age-

sensitive or measure similar underlying ageing-related changes. For whole-brain metrics, changes 

become exacerbated from 65 onwards (Fig.1), with reasons potentially laying in an accelerated 

neurodegeneration also reflected in the exponentially increasing risk to develop neurodegenerative 

disorders from age 65 onwards53. For example, in the USA, 3% of 65-74 year olds, 17% of the 75-

84 year olds, and 32% of those ag 85+ developed Alzheimer’s dementia54. Subclinical or preclinical

states are, however, not captured by these approximations, and WM changes usually precede 

clinical detections, making WM monitoring a promising tool for early detection.

Beyond WM, fornix changes seem to play an important role for GM changes, particularly in the 

hippocampus: for example, fornix glia damages lead to hippocampal GM atrophy55. This might be 

reflected by dis-connectivity of fornix with other brain regions as described by decreasing extra 

axonal space coefficients (Fig.7b), and following changes in fornix function. Potentially, the 

consequences of age-related fornix changes thereby affect functionality of a selection of brain 

regions, such as the hippocampus. While several studies have presented ageing-related fornix 

microstructure changes in humans56,57 and monkeys58 in small samples, only one large-scale study 

revealed findings connected to the fornix, namely strongest default mode network GM volume 

covariation with fornix WM microstructure59. This suggests that fornix, a key connector of the 

limbic system with the cortex, might also be critical for default mode network functioning. 

Moreover, memory and episodic recall have been related to fornix60. Hence, fornix changes might 

play an important role in known ageing-dependent temporal lobe changes, and specifically 

hippocampal changes for ageing-related pathological developments61–64. Previous studies presented 
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age-related fornix DTI metric changes55–57 which potentially appear prior to hippocampal volume 

changes55,56, and are related to declining episodic memory performance55. Hence, fornix changes 

potentially serve to predict future pathological development, suggesting WM changes in the fornix 

as a potential ageing biomarker and therapeutic target. This supports previous findings showing 

network re-activations, metabolic and GM changes after fornix deep-brain-stimulation antagonising

the progression of neurodegenerative disorders65.

The current study gives for the first time a detailed account on region-wise-to-global WM-age 

relationships for multiple diffusion approaches in a representative sample, and highlights fornix as 

an important structure for age predictions across diffusion approaches. Brain age was estimated best

when combining approaches, showing different aspects of WM to contribute to brain age with 

fornix being the central region for these predictions.

Data Availability

All raw data are available from the UKB5 (www.ukbiobank.ac.uk). Synthetic datasets with the 

synthpop89 R package based on the original data for all six diffusion approaches (resulting in six 

datasets) to run the code are openly available at the Open Science Framework: 

(https://  osf.io/nv8ea  /  ). Synthetic datasets are simulated datasets closely mimicking the statistical 

characteristics of the original data while protecting data privacy and anonymity.

Code Availability

Code needed to run brain age predictions in Python, and for all analyses and visualisations in R is 

available at the Open Science Framework: (https://  osf.io/nv8ea  /  ).
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Supplement

Supplementary Figures

SF1: Correlations of corrected BAG and age across models

Mean = multimodal model including only mean metrics; Full = full multimodal model including all diffusion indices. 
All correlations were significant at pHolm < .001.
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SF2: Comparison of predicted and raw fornix Z-scored diffusion metrics’ density

Density plots for each Z-scored (standardised) raw and predicted values for each fornix metric from the six observed 
diffusion models. Predictions were made from the linear model described in Equation 1.
Find the same density plot for data including QC outliers in SF3.

Supplementing the density plots, two one-sided tests for equivalence testing (TOST)87,88 were used 
to test whether mean differences between the model’s predictions (SF9A-B) and the raw scores 
(SF9C-D) are equal to zero with the assumptions that observed Z-score differences smaller |0.5| are 
equal to 0. Following this assumption, differences were equal to zero for all metrics, except the DKI
metric RK: Mdiff = 0.943, 95% CI [0.935, 0.951], p ≈ 1.

30

Data Prediction Raw

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2

FA

0.0

0.1

0.2

0.3

0.4

−2.5 0.0 2.5 5.0

MD

0.0

0.1

0.2

0.3

0.4

−2 0 2 4

RD

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2

AD

0.0

0.1

0.2

0.3

−2 0 2

MK

0.0

0.5

1.0

1.5

2.0

−2 −1 0 1 2

RK

0.0

0.1

0.2

0.3

0.4

−2 0 2 4

AK

0.0

0.2

0.4

0.6

−20 −15 −10 −5 0

DAXextra

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

DAXintra

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20

DRADextra

0.0

0.1

0.2

0.3

−5.0 −2.5 0.0 2.5

ADC

0.0

0.1

0.2

0.3

0.4

−15 −10 −5 0

AX

0.0

0.1

0.2

0.3

0.4

−2.5 0.0 2.5

microFA

0.0

0.1

0.2

0.3

−4 −2 0 2

microRD

0.0

0.1

0.2

0.3

−5.0 −2.5 0.0 2.5

Vcsf

0.0

0.1

0.2

0.3

0.4

0 5 10 15

 Vextra

0.0

0.1

0.2

0.3

0.4

−2.5 0.0 2.5

Vintra

0.0

0.1

0.2

0.3

−2 0 2 4

AWF

0.0

0.3

0.6

0.9

0 40 80 120

axEAD

0.0

0.1

0.2

0.3

0.4

0 5 10 15

radEAD

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5

SMTFA

0

2

4

6

8

−100 −50 0

SMTlong

0.0

0.1

0.2

0.3

0.4

−6 −3 0 3 6

SMTmd

0.0

0.1

0.2

0.3

0.4

−2 0 2 4

SMTtrans

0.0

0.1

0.2

0.3

0.4

−6 −3 0 3 6

SMTmcd

0.0

0.1

0.2

0.3

0.4

−8 −4 0

mcSMTextramd

0.0

0.1

0.2

0.3

−7.5 −5.0 −2.5 0.0 2.5

mcSMTextratrans

0.0

0.1

0.2

0.3

0 5

mcSMTintra

Z Value

D
en

si
ty

574

575
576
577

578
579
580
581
582
583

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.09.29.510029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510029
http://creativecommons.org/licenses/by-nc-nd/4.0/


SF3: Comparison of predicted and raw Fornix Z-scored diffusion metrics’ density including 
QC outliers

Density plots for each Z-scored (standardised) raw and predicted values for each fornix metric from the six observed 
diffusion models on data containing QC outliers. Predictions were made from the linear model described in Equation 1.

Outliers were defined by the YTTRIUM  method39 including outlier removal based on density-based spatial 
clusterisation (k-means)The total data used here was Nfull+outliers = 38,687, including the full data Nfull = 35,749 used for 
all analyses and Noutliers = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew 
their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.
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SF4: Correlations between Fornix diffusion metrics and chronological age for data including 
QC outliers

All correlations were significant at FWE-corrected pHolm < .05.

Outliers were defined by the YTTRIUM  method38 including outlier removal based on density-based spatial 
clusterisation (k-means). The total data used here was Nfull+outliers = 38,687, including the full data Nfull = 35,749 used for
all analyses and Noutliers = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew 
their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.
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SF5: Density plots for the sample’s age by sex and scanner site for data including QC outliers

Outliers were defined by the YTTRIUM  method38 including outlier removal based on density-based spatial 
clusterisation (k-means). The total data used here was Nfull+outliers = 38,687, including the full data Nfull = 35,749 used for
all analyses and Noutliers = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew 
their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.
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SF6: Model performance for different train-test splits for data including QC outliers

Model metrics R2, RMSE, MAE and their standard deviations, as well as the Pearson’s correlations between predicted 
and chronological age and its 95% confidence interval are displayed for different training data percentages of the total 
data (x-axis). For visualisation purposes, RMSE and MAE were divided by 10. For exact values see Suppl. Table ST8.

Outliers were defined by the YTTRIUM  method38 including outlier removal based on density-based spatial 
clusterisation (k-means). The total data used here was Nfull+outliers = 38,687, including the full data Nfull = 35,749 used for
all analyses and Noutliers = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew 
their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.
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SF7: Correlations between diffusion metrics and chronological age for data including QC 
outliers

Note: Each point indicates one correlation between a diffusion feature and chronological age. Names of diffusion 
features are displayed when correlations between the feature and age reached a Pearson correlation of |r|>0.5. Holm 
correction was used for FDR-correction, and all displayed values were significant at p < .001.
Results for the analysis run on data not including QC outliers (N = 35,749) can be found in Fig.8.

Outliers were defined by the YTTRIUM  method38 including outlier removal based on density-based spatial 
clusterisation (k-means). The total data used here was Nfull+outliers = 38,687, including the full data Nfull = 35,749 used for
all analyses and Noutliers = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew 
their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.
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SF8: Differences between correlations of chronological and corrected predicted age across 
diffusion approaches with 95% confidence interval

36

0.000

0.005

0.010

0.015

B
R

IA
&

F
ul

l
D

K
I&

F
ul

l
D

T
I&

F
ul

l
S

M
T

&
F

ul
l

m
cS

M
T

&
F

ul
l

W
M

T
I&

F
ul

l
M

ea
n&

F
ul

l
B

R
IA

&
M

ea
n

D
K

I&
M

ea
n

D
T

I&
M

ea
n

S
M

T
&

M
ea

n
m

cS
M

T
&

M
ea

n
W

M
T

I&
M

ea
n

B
R

IA
&

D
K

I
B

R
IA

&
D

T
I

B
R

IA
&

S
M

T
B

R
IA

&
m

cS
M

T
B

R
IA

&
W

M
T

I
D

K
I&

D
T

I
D

K
I&

S
M

T
D

K
I&

m
cS

M
T

D
K

I&
W

M
T

I
D

T
I&

S
M

T
D

T
I&

m
cS

M
T

D
T

I&
W

M
T

I
S

M
T

&
m

cS
M

T
S

M
T

&
W

M
T

I
m

cS
M

T
&

W
M

T
I

Model Pairs

C
or

re
la

tio
n 

D
iff

er
en

ce

635
636
637
638

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.09.29.510029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510029
http://creativecommons.org/licenses/by-nc-nd/4.0/


SF9: Raw and predicted fornix diffusion metrics by chronological age

SF9A-D shows age curves for each standardised (z-score) fornix di usion skeleton value (y-axis) plotted as a function ff
of age (x-axis). Shaded areas represent 95% CI. Curves fitted to raw values (SF9C-D) serve as a comparison to the lm-
derived predicted values from Equation 1 (Fig.A-B). SF9E indicates the model fit for the linear models from SF9A-B, 
showing R2adj values on top and Standard Error (SE) on the bottom of the bars which each represent a Fornix skeleton 
value for one of the seven models. Lines crossing at age 65 are marked with circles. Model summaries of all 28 Fornix 
models can be found in ST5. The same visualisation of diffusion values averaged across the brain can be found in Fig.8.

Model fit metrics R2adj and Standard Error (SE) for the models accounting for age, sex and scanner site (Equation 1) 
when predicting fornix metrics were calculated (SF9E; see Fig.8 for whole brain metrics). Highest R2adj and variability 
across metrics were observed when predicting BRIA fornix features, lowest R2adj when predicting SMT fornix metrics. 
DKI, DTI and mcSMT fornix diffusion metric predictions were most consistent, with BRIA, mcSMT and SMT having 
one outlier each, Vextra, SMTlong, and AWF, respectively, being less sensitive to age, sex and scanner site. Highest SE 
could be observed in the BRIA model and the lowest SE in SMT.

To test age-sensitivity of the fornix features, likelihood ratio tests were conduced comparing models derived from 
Equation 1 against models derived from the same formula with age removed (Equation 2). All models showed 
significant age dependence, with BRIA microRD (χ2= 14,480.54, pHolm < .001),  microADC (χ2= 14,384.87, pHolm 
< .001) and SMT vCSF (χ2= 14,311.47, pHolm < .001) being the most age-sensitive metrics, and mcSMT smtLong (χ2= 
1,554.49, pHolm < .001), BRIA DAXextra (χ2= 1,824.54, pHolm < .001) and axEAD (χ2= 3,024.74, pHolm < .001) the least 
age-sensitive metrics (ST4).
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SF10. Pearson’s r for age, brain age and WM principal components’ relationships

All correlations with Pearson’s r > .01 were significant at p < .001
Read row-wise from top-left to right with matrixes indicating a) full multimodal data, b) mean/whole brain average 
data, c) BRIA, d) DKI, e) DTI, f) SMT, g) SMT mc, h) WMTI

The first five principal components of the respective number of WM metrics for each of the eight principal components 
analyses were related to age, predicted (brain) age, corrected predicted age, uncorrected and corrected BAG (see ST13 
for overview of variance explained by principal components). Notably, BAG was not or only weakly related to WM 
components, and relationships of age, predicted age, corrected predicted age and corrected BAG with WM components 
followed the same pattern of direction and strength of associations, suggesting age-dependencies of these measures.
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When predicting the first 4 components retrieved from the respective models (as done for brain age predictions), using 
BAG, age, sex, site, as well as age-sex and sex-site interactions as predictors (as specified in Equation 1), different sized
proportions of the variance in the components could be explained with corrected and uncorrected BAG models not 
differing in variance predicted and beta values. Average data BAG models explained most variance in its first 
component R2  = .505, with bBAG = -0.673, followed by WMTI R2  = .372, with bBAG = -0.847, and the DTI BAG model 
R2  = .358, with bBAG = -1.082. The second component was best predicted by a DTI BAG model R2  = .152, with bBAG =
-0.059. The third component was best predicted by the DKI BAG model R2 = .256, bBAG = 0.170, followed by the DTI 
BAG model R2 = .250,  bBAG = -0.210; and the SMT BAG model R2 = .247, bBAG = 0.291. Finally, the last component 
was best predicted by the full BAG model,  R2  = .128, bBAG = 0.0002. For an overview of all BAG models’ 
performance see ST14. For a more nuanced follow-up analysis of global and regional individual diffusion metric 
predictions see SF11.
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SF11. Predictions of individual global and regional diffusion metrics

Panels indicate used models: a) full multimodal model including all approaches global and local fatures, b) mean  
multimodal modal, including only global metrics of all diffusion approaches, c) BRIA, d) DKI, e) DTI, f) SMT, g) 
mcSMT, h) WMTI.

We predicted the individual 1940 regional and global WM diffusion metrics from BAG, site, sex, age, as well as sex-
age and sex-site interaction terms. While there were no differences in explaining variance between corrected and 
uncorrected BAG, models coefficients differed (see SF11).

Variance explained across statistically significant models (at Bonferroni-corrected p < 0.05/1940) ranged from adjusted 
R2min = .001 to  R2max = .387 (R2mean = .108, SD = 0.062), and beta values for BAG ranged from bBAG > -0.001 to bBAG< 
0.001, with most variance explained in metrics Fornix v csf (Radj2 = .387, bBAG > -0.001, bage = 0.009),  Fornix micro 
RD (Radj2 = .386, bBAG > -0.001, bage = 0.009),  and Fornix micro ADC (Radj2 = .386, bBAG > -0.001, bage = 0.019).
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SF12. Density plots feature-age correlation across diffusion approaches with tail probabilities

This figure is a supplement to Figure 5, showing the distributions of the correlations between age and each models’ 
diffusion metrics.
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Supplementary Tables

ST1: Brain age predictions from different train-test splits
% of
Data

Best Fitting
Model

Train Results Test Results on 50% of Data

R2 RMSE MAE rage x pred R2 RMSE MAE rage x pred

1 E = 0.05
Dmax= 3
Tmax= 450

0.503 
(0.087)

5.300 
(0.599)

4.283 
(0.555)

0.719 
[0.665, 
0.766]

0.621 
(0.012)

4.693 
(0.071)

3.759 
(0.070)

0.788 
[0.783, 
0.794]

2 E = 0.05
Dmax= 3
Tmax= 350

0.551 
(0.081)

5.107 
(0.517)

4.172 
(0.474)

0.750 
[0.716, 
0.780]

0.613 
(0.011)

4.743 
(0.071)

3.803 
(0.073)

0.783 
[0.778, 
0.789]

3 E = 0.05
Dmax= 3
Tmax= 800

0.549 
(0.078)

5.129 
(0.401)

4.171 
(0.393)

0.751 
[0.724, 
0.776]

0.635 
(0.012)

4.605 
(0.067)

3.683 
(0.065)

0.797 
[0.792, 
0.802]

4 E = 0.05
Dmax= 4
Tmax= 200

0.561 
(0.062)

5.136 
(0.325)

4.090 
(0.257)

0.741 
[0.716, 
0.763]

0.606 
(0.011)

4.784 
(0.068)

3.840 
(0.071)

0.780 
[0.774, 
0.785]

5 E = 0.05
Dmax= 3
Tmax= 300

0.586 
(0.037)

4.994 
(0.217)

4.043 
(0.241)

0.764 
[0.744, 
0.783]

0.607 
(0.012)

4.779 
(0.074)

3.834 
(0.074)

0.780 
[0.774, 
0.785]

6 E = 0.05
Dmax= 4
Tmax= 800

0.576 
(0.035)

4.962 
(0.210)

3.953 
(0.149)

0.763 
[0.745, 
0.780]

0.641 
(0.012)

4.569 
(0.058)

3.652 
(0.057)

0.801 
[0.795, 
0.806]

7 E = 0.05
Dmax= 3
Tmax= 900

0.592 
(0.042)

4.887 
(0.204)

3.930 
(0.150)

0.774 
[0.757, 
0.789]

0.637 
(0.012)

4.591 
(0.068)

3.669 
(0.064)

0.799 
[0.793, 
0.804]

8 E = 0.01
Dmax= 4
Tmax= 950

0.598 
(0.028)

4.881 
(0.212)

3.920 
(0.216)

0.764 
[0.749, 
0.779]

0.605 
(0.011)

4.790 
(0.072)

3.848 
(0.072)

0.779 
[0.773, 
0.785]

9 E = 0.05
Dmax= 4
Tmax= 950

0.591 
(0.036)

4.882 
(0.279)

3.917 
(0.175)

0.774 
[0.760, 
0.788]

0.643 
(0.011)

4.554 
(0.056)

3.638 
(0.055)

0.802 
[0.797, 
0.807]

10 E = 0.05
Dmax= 3
Tmax= 750

0.598 
(0.033)

4.886 
(0.259)

3.899 
(0.230)

0.777 
[0.764, 
0.790]

0.633 
(0.012)

4.614 
(0.067)

3.691 
(0.064)

0.796 
[0.791, 
0.802]

20 E = 0.05
Dmax= 5
Tmax= 600

0.619 
(0.025)

4.748 
(0.080)

3.754 
(0.124)

0.787 
[0.778, 
0.795]

0.638 
(0.011)

4.587 
(0.061)

3.665 
(0.060)

0.799 
[0.794, 
0.804]

30 E = 0.05
Dmax= 4
Tmax= 800

0.633 
(0.009)

4.623 
(0.066)

3.693 
(0.065)

0.798 
[0.791, 
0.804]

0.641 
(0.012)

4.569 
(0.058)

3.652 
(0.057)

0.801 
[0.795, 
0.806]

40 E = 0.05
Dmax= 5
Tmax= 400

0.641 
(0.014)

4.584 
(0.088)

3.628
(0.050)

0.797 
[0.791, 
0.803]

0.631 
(0.011)

4.628 
(0.062)

3.701 
(0.061)

0.795 
[0.790, 
0.800]

50 E = 0.05
Dmax= 5
Tmax= 850

0.637 
(0.017)

4.576 
(0.068)

3.630 
(0.049)

0.805 
[0.799, 
0.810]

0.641 
(0.012)

4.566 
(0.059)

3.647 
(0.059)

0.801 
[0.796, 
0.806]

R2 = variance explained, RMSE = root mean square error, MAE = mean absolute error,rage x pred = correlation of 
chronological and predicted age. Numbers in round brackets indicate standard deviations. Numbers in square brackets 
indicate confidence intervals. E = eta (learning rate), Dmax = maximum depth, Tmax = maximum number of trees. The 
best fitting model was selected via grid search focussed on RMSE.
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ST2: Differences between correlations of chronological and corrected predicted age across 
models with 95% confidence interval

BRIA DKI DTI SMT mcSMT WMTI Mean
DKI 0.011

[0.009, 
0.013]

DTI 0.008
[0.007, 
0.010]

0.003
[0.002, 
0.005]

SMT 0.007
[0.006, 
0.008]

0.004
[0.003, 
0.005]

0.001 [-
0.0004, 
0.0024]4

mcSMT ≈0
[-0.001, 
0.001]1

0.011
[0.009, 
0.013]

0.008
[0.006, 
0.010]

0.007
[0.006, 
0.008]

WMTI 0.010
[0.009, 
0.012]

0.001
[-0.0004, 
0.0024]2

0.002
[0.001, 
0.003]

0.003
[0.002, 
0.004]

0.010
[0.009, 
0.012]

Mean 0.013
[0.011, 
0.015]

0.002
[0.0002, 
0.038]3

0.005
[0.003, 
0.007]

0.006
[0.004, 
0.007]

0.013
[0.011, 
0.015]

0.003
[0.001, 
0.005]

FULL 0.015
[0.014, 
0.017]

0.004
[0.003, 
0.005]

0.007
[0.006, 
0.008]

0.008
[0.007, 
0.009]

0.015
[0.014, 
0.017]

0.005
[0.004, 
0.006]

0.002
[0.0004, 
0.0036]

Confidence Intervals are based on Zou 42. Unmarked differences were significant at p < .001.
1 Hotelling’s 86 t(32171) ≈ 0, p ≈ 1.
2 Hotelling’s (1940) t(32171) = 1.4232,  p = .1547.
3 Hotelling’s (1940) t(32171) = 2.2174,  p = .0266.
4 Hotelling’s (1940) t(32171) = 2.4176,  p = .0156.
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ST3: Differences between correlations of uncorrected predicted and chronological age across 
diffusion approaches with 95% confidence interval

BRIA DKI DTI SMT mcSMT WMTI Mean
DKI 0.012

[0.009, 
0.015]

DTI 0.014
[0.011, 
0.017]

0.0002
[-0.005, 
0.001]

SMT 0.013
[0.010, 
0.016]

0.025
[0.022, 
0.029]

0.027
[0.024, 
0.030]

mcSMT 0.021
[0.019, 
0.023]

0.033
[0.029, 
0.037]

0.035
[0.032, 
0.038]

0.008
[0.006, 
0.011]

WMTI 0.023
[0.020, 
0.026]

0.011
[0.008, 
0.014]

0.009
[0.007, 
0.011]

0.036
[0.033, 
0.039]

0.044
[0.041, 
0.047]

Mean 0.115
[0.110, 
0.120]

0.127
[0.121, 
0.133]

0.129
[0.124, 
0.134]

0.102
[0.097, 
0.107]

0.088
[0.083, 
0.093]

0.0940
[0.089, 
0.099]

Full 0.062
[0.059, 
0.065]

0.050
[0.048, 
0.053]

0.048
[0.046, 
0.051]

0.075
[0.072, 
0.078]

0.083
[0.080, 
0.086]

0.039
[0.037, 
0.041]

0.138
[0.133, 
0.143]

Confidence Intervals are based on Zou (2007). Unmarked differences were significant at p < .001.
* Hotelling’s (1940) t(34801) = 0.9648, p = 0.3347
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ST4: Fornix metrics' age sensitivity: comparing diffusion metric prediction models with and 
without age
Model Metric Full1 Reduced2 χ2 p pHolm

BRIA vintra 63395.90 56372.64 14046.51 <.001 <.001
BRIA vextra 53488.40 47076.64 12823.52 <.001 <.001
BRIA vCSF 32902.83 25747.10 14311.47 <.001 <.001
BRIA microRD -304.68 -7544.95 14480.54 <.001 <.001
BRIA microFA 52365.03 45215.37 14299.32 <.001 <.001
BRIA microAx 27419.04 23070.45 8697.18 <.001 <.001
BRIA microADC 7489.46 297.02 14384.87 <.001 <.001
BRIA DRADextra 88839.19 84573.36 8531.64 <.001 <.001
BRIA DAXintra 62832.56 58452.18 8760.75 <.001 <.001
BRIA DAXextra 69448.84 68536.57 1824.54 <.001 <.001
DKI RK 17066.24 10008.43 14115.62 <.001 <.001
DKI AK 73031.59 67042.47 11978.25 <.001 <.001
DKI MK 42812.92 35761.79 14102.27 <.001 <.001
DTI FA 51988.61 46349.96 11277.31 <.001 <.001
DTI MD -6425.12 -12850.70 12851.17 <.001 <.001
DTI RD -9157.86 -15294.22 12272.70 <.001 <.001
DTI AD -3330.43 -9581.75 12502.64 <.001 <.001
SMT smtFA 28610.35 23053.56 11113.58 <.001 <.001
SMT smtLong 343020.49 342243.25 1554.49 <.001 <.001
SMT smtMD 253964.29 248676.32 10575.95 <.001 <.001
SMT smtTrans 239584.11 234337.78 10492.66 <.001 <.001
mcSMT smtMCintra 46725.61 39797.67 13855.88 <.001 <.001
mcSMT smtMCextraMD 260580.57 253725.97 13709.21 <.001 <.001
mcSMT smtMCextratrans 249976.89 242973.81 14006.16 <.001 <.001
mcSMT smtMCd 287624.52 284705.87 5837.30 <.001 <.001
WMTI AWF 73001.96 65850.35 14303.22 <.001 <.001
WMTI axEAD -28343.53 -29855.90 3024.74 <.001 <.001
WMTI radEAD -10582.93 -16576.91 11987.96 <.001 <.001
1 Full = full model log likelihood
2 Reduced = reduced model log likelihood
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ST5: Model summaries for all 28 Fornix models
Effect β Std. Error t-value p Metric β Std. Error t-value p Metric
age 0.002 0.001 3.521 0 vintra 0.002 0.001 3.521 0 vextra
age2 0 0 -10.532 0 vintra 0 0 -10.532 0 vextra
sex 0.009 0.018 0.481 0.63 vintra 0.009 0.018 0.481 0.63 vextra
siteCheadle 0.01 0.012 0.825 0.41 vintra 0.01 0.012 0.825 0.41 vextra
siteNewcastle 0.004 0.012 0.327 0.744 vintra 0.004 0.012 0.327 0.744 vextra
siteReading 0.009 0.012 0.748 0.454 vintra 0.009 0.012 0.748 0.454 vextra
age:sex 0 0 -5.532 0 vintra 0 0 -5.532 0 vextra
sex:siteCheadle -0.003 0.017 -0.183 0.854 vintra -0.003 0.017 -0.183 0.854 vextra
sex:siteNewcastle -0.003 0.017 -0.168 0.867 vintra -0.003 0.017 -0.168 0.867 vextra
sex:siteReading -0.005 0.017 -0.283 0.777 vintra -0.005 0.017 -0.283 0.777 vextra
age 0.002 0.001 3.521 0 vCSF 0.002 0.001 3.521 0 microRD
age2 0 0 -10.532 0 vCSF 0 0 -10.532 0 microRD
sex 0.009 0.018 0.481 0.63 vCSF 0.009 0.018 0.481 0.63 microRD
siteCheadle 0.01 0.012 0.825 0.41 vCSF 0.01 0.012 0.825 0.41 microRD
siteNewcastle 0.004 0.012 0.327 0.744 vCSF 0.004 0.012 0.327 0.744 microRD
siteReading 0.009 0.012 0.748 0.454 vCSF 0.009 0.012 0.748 0.454 microRD
age:sex 0 0 -5.532 0 vCSF 0 0 -5.532 0 microRD
sex:siteCheadle -0.003 0.017 -0.183 0.854 vCSF -0.003 0.017 -0.183 0.854 microRD
sex:siteNewcastle -0.003 0.017 -0.168 0.867 vCSF -0.003 0.017 -0.168 0.867 microRD
sex:siteReading -0.005 0.017 -0.283 0.777 vCSF -0.005 0.017 -0.283 0.777 microRD
age 0.002 0.001 3.521 0 microFA 0.002 0.001 3.521 0 microAx
age2 0 0 -10.532 0 microFA 0 0 -10.532 0 microAx
sex 0.009 0.018 0.481 0.63 microFA 0.009 0.018 0.481 0.63 microAx
siteCheadle 0.01 0.012 0.825 0.41 microFA 0.01 0.012 0.825 0.41 microAx
siteNewcastle 0.004 0.012 0.327 0.744 microFA 0.004 0.012 0.327 0.744 microAx
siteReading 0.009 0.012 0.748 0.454 microFA 0.009 0.012 0.748 0.454 microAx
age:sex 0 0 -5.532 0 microFA 0 0 -5.532 0 microAx
sex:siteCheadle -0.003 0.017 -0.183 0.854 microFA -0.003 0.017 -0.183 0.854 microAx
sex:siteNewcastle -0.003 0.017 -0.168 0.867 microFA -0.003 0.017 -0.168 0.867 microAx
sex:siteReading -0.005 0.017 -0.283 0.777 microFA -0.005 0.017 -0.283 0.777 microAx

age 0.002 0.001 3.521 0
microAD
C 0.002 0.001 3.521 0 DRADextra

age2 0 0 -10.532 0
microAD
C 0 0 -10.532 0 DRADextra

sex 0.009 0.018 0.481 0.63
microAD
C 0.009 0.018 0.481 0.63 DRADextra

siteCheadle 0.01 0.012 0.825 0.41
microAD
C 0.01 0.012 0.825 0.41 DRADextra

siteNewcastle 0.004 0.012 0.327 0.744
microAD
C 0.004 0.012 0.327 0.744 DRADextra

siteReading 0.009 0.012 0.748 0.454
microAD
C 0.009 0.012 0.748 0.454 DRADextra

age:sex 0 0 -5.532 0
microAD
C 0 0 -5.532 0 DRADextra

sex:siteCheadle -0.003 0.017 -0.183 0.854
microAD
C -0.003 0.017 -0.183 0.854 DRADextra

sex:siteNewcastle -0.003 0.017 -0.168 0.867
microAD
C -0.003 0.017 -0.168 0.867 DRADextra

sex:siteReading -0.005 0.017 -0.283 0.777
microAD
C -0.005 0.017 -0.283 0.777 DRADextra

age 0.002 0.001 3.521 0 DAXintra 0.002 0.001 3.521 0 DAXextra
age2 0 0 -10.532 0 DAXintra 0 0 -10.532 0 DAXextra
sex 0.009 0.018 0.481 0.63 DAXintra 0.009 0.018 0.481 0.63 DAXextra
siteCheadle 0.01 0.012 0.825 0.41 DAXintra 0.01 0.012 0.825 0.41 DAXextra
siteNewcastle 0.004 0.012 0.327 0.744 DAXintra 0.004 0.012 0.327 0.744 DAXextra
siteReading 0.009 0.012 0.748 0.454 DAXintra 0.009 0.012 0.748 0.454 DAXextra
age:sex 0 0 -5.532 0 DAXintra 0 0 -5.532 0 DAXextra
sex:siteCheadle -0.003 0.017 -0.183 0.854 DAXintra -0.003 0.017 -0.183 0.854 DAXextra
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sex:siteNewcastle -0.003 0.017 -0.168 0.867 DAXintra -0.003 0.017 -0.168 0.867 DAXextra
sex:siteReading -0.005 0.017 -0.283 0.777 DAXintra -0.005 0.017 -0.283 0.777 DAXextra
age 0.002 0.001 3.521 0 RK 0.002 0.001 3.521 0 AK
age2 0 0 -10.532 0 RK 0 0 -10.532 0 AK
sex 0.009 0.018 0.481 0.63 RK 0.009 0.018 0.481 0.63 AK
siteCheadle 0.01 0.012 0.825 0.41 RK 0.01 0.012 0.825 0.41 AK
siteNewcastle 0.004 0.012 0.327 0.744 RK 0.004 0.012 0.327 0.744 AK
siteReading 0.009 0.012 0.748 0.454 RK 0.009 0.012 0.748 0.454 AK
age:sex 0 0 -5.532 0 RK 0 0 -5.532 0 AK
sex:siteCheadle -0.003 0.017 -0.183 0.854 RK -0.003 0.017 -0.183 0.854 AK
sex:siteNewcastle -0.003 0.017 -0.168 0.867 RK -0.003 0.017 -0.168 0.867 AK
sex:siteReading -0.005 0.017 -0.283 0.777 RK -0.005 0.017 -0.283 0.777 AK
age 0.002 0.001 3.521 0 MK 0.002 0.001 3.521 0 FA
age2 0 0 -10.532 0 MK 0 0 -10.532 0 FA
sex 0.009 0.018 0.481 0.63 MK 0.009 0.018 0.481 0.63 FA
siteCheadle 0.01 0.012 0.825 0.41 MK 0.01 0.012 0.825 0.41 FA
siteNewcastle 0.004 0.012 0.327 0.744 MK 0.004 0.012 0.327 0.744 FA
siteReading 0.009 0.012 0.748 0.454 MK 0.009 0.012 0.748 0.454 FA
age:sex 0 0 -5.532 0 MK 0 0 -5.532 0 FA
sex:siteCheadle -0.003 0.017 -0.183 0.854 MK -0.003 0.017 -0.183 0.854 FA
sex:siteNewcastle -0.003 0.017 -0.168 0.867 MK -0.003 0.017 -0.168 0.867 FA
sex:siteReading -0.005 0.017 -0.283 0.777 MK -0.005 0.017 -0.283 0.777 FA
age 0.002 0.001 3.521 0 MD 0.002 0.001 3.521 0 RD
age2 0 0 -10.532 0 MD 0 0 -10.532 0 RD
sex 0.009 0.018 0.481 0.63 MD 0.009 0.018 0.481 0.63 RD
siteCheadle 0.01 0.012 0.825 0.41 MD 0.01 0.012 0.825 0.41 RD
siteNewcastle 0.004 0.012 0.327 0.744 MD 0.004 0.012 0.327 0.744 RD
siteReading 0.009 0.012 0.748 0.454 MD 0.009 0.012 0.748 0.454 RD
age:sex 0 0 -5.532 0 MD 0 0 -5.532 0 RD
sex:siteCheadle -0.003 0.017 -0.183 0.854 MD -0.003 0.017 -0.183 0.854 RD
sex:siteNewcastle -0.003 0.017 -0.168 0.867 MD -0.003 0.017 -0.168 0.867 RD
sex:siteReading -0.005 0.017 -0.283 0.777 MD -0.005 0.017 -0.283 0.777 RD
age 0.002 0.001 3.521 0 AD 0.002 0.001 3.521 0 smtFA
age2 0 0 -10.532 0 AD 0 0 -10.532 0 smtFA
sex 0.009 0.018 0.481 0.63 AD 0.009 0.018 0.481 0.63 smtFA
siteCheadle 0.01 0.012 0.825 0.41 AD 0.01 0.012 0.825 0.41 smtFA
siteNewcastle 0.004 0.012 0.327 0.744 AD 0.004 0.012 0.327 0.744 smtFA
siteReading 0.009 0.012 0.748 0.454 AD 0.009 0.012 0.748 0.454 smtFA
age:sex 0 0 -5.532 0 AD 0 0 -5.532 0 smtFA
sex:siteCheadle -0.003 0.017 -0.183 0.854 AD -0.003 0.017 -0.183 0.854 smtFA
sex:siteNewcastle -0.003 0.017 -0.168 0.867 AD -0.003 0.017 -0.168 0.867 smtFA
sex:siteReading -0.005 0.017 -0.283 0.777 AD -0.005 0.017 -0.283 0.777 smtFA
age 0.002 0.001 3.521 0 smtLong 0.002 0.001 3.521 0 smtMD
age2 0 0 -10.532 0 smtLong 0 0 -10.532 0 smtMD
sex 0.009 0.018 0.481 0.63 smtLong 0.009 0.018 0.481 0.63 smtMD
siteCheadle 0.01 0.012 0.825 0.41 smtLong 0.01 0.012 0.825 0.41 smtMD
siteNewcastle 0.004 0.012 0.327 0.744 smtLong 0.004 0.012 0.327 0.744 smtMD
siteReading 0.009 0.012 0.748 0.454 smtLong 0.009 0.012 0.748 0.454 smtMD
age:sex 0 0 -5.532 0 smtLong 0 0 -5.532 0 smtMD
sex:siteCheadle -0.003 0.017 -0.183 0.854 smtLong -0.003 0.017 -0.183 0.854 smtMD
sex:siteNewcastle -0.003 0.017 -0.168 0.867 smtLong -0.003 0.017 -0.168 0.867 smtMD
sex:siteReading -0.005 0.017 -0.283 0.777 smtLong -0.005 0.017 -0.283 0.777 smtMD
age 0.002 0.001 3.521 0 smtTrans 0.002 0.001 3.521 0 smtMCintra
age2 0 0 -10.532 0 smtTrans 0 0 -10.532 0 smtMCintra
sex 0.009 0.018 0.481 0.63 smtTrans 0.009 0.018 0.481 0.63 smtMCintra
siteCheadle 0.01 0.012 0.825 0.41 smtTrans 0.01 0.012 0.825 0.41 smtMCintra
siteNewcastle 0.004 0.012 0.327 0.744 smtTrans 0.004 0.012 0.327 0.744 smtMCintra
siteReading 0.009 0.012 0.748 0.454 smtTrans 0.009 0.012 0.748 0.454 smtMCintra
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age:sex 0 0 -5.532 0 smtTrans 0 0 -5.532 0 smtMCintra
sex:siteCheadle -0.003 0.017 -0.183 0.854 smtTrans -0.003 0.017 -0.183 0.854 smtMCintra
sex:siteNewcastle -0.003 0.017 -0.168 0.867 smtTrans -0.003 0.017 -0.168 0.867 smtMCintra
sex:siteReading -0.005 0.017 -0.283 0.777 smtTrans -0.005 0.017 -0.283 0.777 smtMCintra

age 0.002 0.001 3.521 0
smtMCext
raMD 0.002 0.001 3.521 0

smtMCextra
trans

age2 0 0 -10.532 0
smtMCext
raMD 0 0 -10.532 0

smtMCextra
trans

sex 0.009 0.018 0.481 0.63
smtMCext
raMD 0.009 0.018 0.481 0.63

smtMCextra
trans

siteCheadle 0.01 0.012 0.825 0.41
smtMCext
raMD 0.01 0.012 0.825 0.41

smtMCextra
trans

siteNewcastle 0.004 0.012 0.327 0.744
smtMCext
raMD 0.004 0.012 0.327 0.744

smtMCextra
trans

siteReading 0.009 0.012 0.748 0.454
smtMCext
raMD 0.009 0.012 0.748 0.454

smtMCextra
trans

age:sex 0 0 -5.532 0
smtMCext
raMD 0 0 -5.532 0

smtMCextra
trans

sex:siteCheadle -0.003 0.017 -0.183 0.854
smtMCext
raMD -0.003 0.017 -0.183 0.854

smtMCextra
trans

sex:siteNewcastle -0.003 0.017 -0.168 0.867
smtMCext
raMD -0.003 0.017 -0.168 0.867

smtMCextra
trans

sex:siteReading -0.005 0.017 -0.283 0.777
smtMCext
raMD -0.005 0.017 -0.283 0.777

smtMCextra
trans

age 0.002 0.001 3.521 0 smtMCd 0.002 0.001 3.521 0 AWF
age2 0 0 -10.532 0 smtMCd 0 0 -10.532 0 AWF
sex 0.009 0.018 0.481 0.63 smtMCd 0.009 0.018 0.481 0.63 AWF
siteCheadle 0.01 0.012 0.825 0.41 smtMCd 0.01 0.012 0.825 0.41 AWF
siteNewcastle 0.004 0.012 0.327 0.744 smtMCd 0.004 0.012 0.327 0.744 AWF
siteReading 0.009 0.012 0.748 0.454 smtMCd 0.009 0.012 0.748 0.454 AWF
age:sex 0 0 -5.532 0 smtMCd 0 0 -5.532 0 AWF
sex:siteCheadle -0.003 0.017 -0.183 0.854 smtMCd -0.003 0.017 -0.183 0.854 AWF
sex:siteNewcastle -0.003 0.017 -0.168 0.867 smtMCd -0.003 0.017 -0.168 0.867 AWF
sex:siteReading -0.005 0.017 -0.283 0.777 smtMCd -0.005 0.017 -0.283 0.777 AWF
age 0.002 0.001 3.521 0 axEAD 0.002 0.001 3.521 0 radEAD
age2 0 0 -10.532 0 axEAD 0 0 -10.532 0 radEAD
sex 0.009 0.018 0.481 0.63 axEAD 0.009 0.018 0.481 0.63 radEAD
siteCheadle 0.01 0.012 0.825 0.41 axEAD 0.01 0.012 0.825 0.41 radEAD
siteNewcastle 0.004 0.012 0.327 0.744 axEAD 0.004 0.012 0.327 0.744 radEAD
siteReading 0.009 0.012 0.748 0.454 axEAD 0.009 0.012 0.748 0.454 radEAD
age:sex 0 0 -5.532 0 axEAD 0 0 -5.532 0 radEAD
sex:siteCheadle -0.003 0.017 -0.183 0.854 axEAD -0.003 0.017 -0.183 0.854 radEAD
sex:siteNewcastle -0.003 0.017 -0.168 0.867 axEAD -0.003 0.017 -0.168 0.867 radEAD
sex:siteReading -0.005 0.017 -0.283 0.777 axEAD -0.005 0.017 -0.283 0.777 radEAD
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ST6: Brain age prediction model performance for data including QC outliers
Name MRI 

features
R2 RMSE MAE Prediction-Age 

Correlation*
Corrected Prediction-
Age Correlation*

BRIA 700 0.538
(0.009)

5.103
(0.044)

4.096
(0.038)

0.734
[0.729, 0.739]

0.902
[0.900, 0.904]

DKI 210 0.561
(0.009)

5.078
(0.053)

4.073
(0.047)

0.750
[0.745, 0.754]

0.876
[0.874, 0.879]

DTI 280 0.565
(0.009)

5.052
(0.039)

4.041
(0.038)

0.752
[0.748, 0.757]

0.874
[0.872, 0.877]

SMT 280 0.522
(0.009)

5.297
(0.035)

4.254
(0.031)

0.723
[0.718, 0.728]

0.870
[0.868, 0.873]

mcSMT 280 0.508
(0.008)

5.263
(0.040)

4.227
(0.034)

0.714
[0.708, 0.719]

0.901
[0.899, 0.903]

WMTI 210 0.574
(0.009)

4.999
(0.036)

4.003
(0.034)

0.758
[0.754, 0.763]

0.875
[0.873, 0.877]

Mean scores 
multimodal

28 0.400
(0.068)

5.945
(0.082)

4.820
(0.068)

0.633
[0.627, 0.639]

0.875
[0.873, 0.878]

Full model 
multimodal

1932 0.648
(0.009)

4.557
(0.077)

3.637
(0.066)

0.805
[0.801, 0.808]

0.877
[0.875, 0.880]

Model selection was based on a grid search with stopping rule when model performance did not not improve after 20 
rounds. Model selection of all models was based on multimodal model training on 10% of the data, indicating best fit 
for learning rate = 0.05, maximum depth = 4, maximum number of trees = 750 as indicated in Fig.2 and ST1.
R2:variance explained, RMSE: root mean squared error, MAE: mean absolute error
Note: R2, RMSE, MAE are displayed in the format Mean (Standard Deviation), Pearson’s correlations are displayed in 
the format Correlation Score 95% Confidence Interval [Lower Bound, Upper Bound].
*All correlation were significant at p < .001.

Outliers were defined by the YTTRIUM  method38 including outlier removal based on density-based spatial 
clusterisation (k-means). The total data used here was Nfull+outliers = 38,687, including the full data Nfull = 35,749 used for
all analyses and Noutliers = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew 
their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.
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ST7: Top five diffusion metrics ranked by gain in age prediction accuracy for data including 
QC outliers
BRIA DKI DTI SMT mcSMT WMTI Full
Micro RD 
ATRR (67436)

MK Fornix 
(99885)

MD Fornix 
(79767)

MD Fornix 
(72129)

Extratrans 
Fornix
(55429)

AWF Fornix
(69033)

AWF fornix
(278977)

Micro FA Fornix
(63804)

RK Fornix 
(28196)

RD left anterior 
corona radiata 
(51592)

MD FMIN 
(48161)

Intra Fornix 
(46212)

RadEAD 
anterior right 
corona radiata 
(34381)

Micro RD fornix
(71175)

Micro RD right 
external capsule 
(27069)

AK anterior 
right limb of 
internal capsule
(22725)

RD FMIN 
(25201)

MD right 
anterior corona 
radiata
(44331)

Extratrans right 
external capsule 
(16611)

RadEAD IFOFR
(22512)

Micro FA 
fornix(35049)

Micro RD 
Fornix right 
striaterminalis 
(17090)

AK Fornix 
(14401)

RD Fornix right 
stria terminalis 
(22951)

FA Fornix 
(19697)

ExtraMD Fornix
(10267)

RadEAD FMIN 
(20286)

MD right 
tapetum
(34008)

Micro FA FMIN
(14335)

AK superior 
frontooccipital 
left fasciculus 
(7978)

MD anterior 
limb of internal 
left capsule 
(15589)

Long left 
tapetum
(14596)

ExtraMD 
anterior left limb
of internal 
capsule
(7830)

RadEAD ATRL 
(16666)

RadEAD 
anterior right 
corona radiata 
(27907)

Table values can be read as feature name (gain). Mean refers to the multimodal model containing only mean scores and 
full to the full model containing all features. Cells including Fornix are marked in green.
laLC =  left anterior limb of internal capsule; raLC = right anterior limb of internal capsule; lST = lSTria terminalis; rST
= rSTria terminalis; lsfoF = left superior frontal occipital fasciculus; laCR = left anterior corona radiata; raCR = right 
anterior corona radiata; rEC = right external capsule

Outliers were defined by the YTTRIUM  method38 including outlier removal based on density-based spatial 
clusterisation (k-means). The total data used here was Nfull+outliers = 38,687, including the full data Nfull = 35,749 used for
all analyses and Noutliers = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew 
their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.
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ST8: Brain age predictions from different train-test splits for data including QC outliers
% of
Data

Best Fitting
Model

Train Results Test Results on 50% of Data

R2 RMSE MAE rage x pred R2 RMSE MAE rage x pred

1 E = 0.05
Dmax= 4
Tmax= 250

0.503 
(0.113)

5.313 
(0.448)

4.287 
(0.233)

0.716 
[0.664, 
0.761]

0.619 
(0.008)

4.743 
(0.029)

3.799 
(0.036)

0.788 
[0.782, 
0.793]

2 E = 0.05
Dmax= 4
Tmax= 950

0.543 
(0.094)

5.162 
(0.365)

4.101 
(0.250)

0.744 
[0.711, 
0.774]

0.648 
(0.008)

4.558 
(0.025)

3.637 
(0.025)

0.805 
[0.800, 
0.810]

3 E = 0.05
Dmax= 4
Tmax= 900

0.543 
(0.052)

5.226 
(0.334)

4.149 
(0.297)

0.741 
[0.714, 
0.766]

0.648 
(0.008)

4.561 
(0.024)

3.639 
(0.026)

0.805 
[0.800, 
0.810]

4 E = 0.05
Dmax= 3
Tmax= 550

0.572 
(0.033)

5.110 
(0.266)

4.043 
(0.184)

0.758 
[0.736, 
0.779]

0.619 
(0.008)

4.744 
(0.036)

3.803 
(0.041)

0.788 
[0.782, 
0.793]

5 E = 0.05
Dmax= 3
Tmax= 350

0.575 
(0.051)

5.038 
(0.312)

4.015 
(0.233)

0.760 
[0.740, 
0.778]

0.619 
(0.008)

4.744 
(0.036)

3.803 
(0.041)

0.788 
[0.782, 
0.793]

6 E = 0.05
Dmax= 4
Tmax= 850

0.574 
(0.047)

5.144 
(0.239)

4.048 
(0.195)

0.758 
[0.740, 
0.774]

0.647 
(0.008)

4.566 
(0.024)

3.643 
(0.026)

0.805 
[0.800, 
0.810]

7 E = 0.05
Dmax= 3
Tmax= 900

0.589 
(0.032)

4.998 
(0.147)

4.004 
(0.186)

0.770 
[0.754, 
0.785]

0.644 
(0.008)

4.585 
(0.039)

3.663 
(0.040)

0.803 
[0.798, 
0.808]

8 E = 0.05
Dmax= 3
Tmax= 550

0.595 
(0.017)

4.944 
(0.174)

3.953 
(0.138)

0.775 
[0.761, 
0.789]

0.644 
(0.008)

4.585 
(0.039)

3.663 
(0.040)

0.803 
[0.798, 
0.808]

9 E = 0.05
Dmax= 3
Tmax= 350

0.602 
(0.025)

4.915 
(0.195)

3.921 
(0.169)

0.773 
[0.759, 
0.786]

0.619 
(0.008)

4.744 
(0.036)

3.803 
(0.041)

0.788 
[0.782, 
0.793]

10 E = 0.05
Dmax= 3
Tmax= 550

0.608 
(0.033)

4.869 
(0.188)

3.882 
(0.114)

0.780 
[0.768, 
0.792]

0.628 
(0.008)

4.690 
(0.037)

3.756 
(0.041)

0.793 
[0.788, 
0.798]

20 E = 0.05
Dmax= 4
Tmax= 450

0.624 
(0.013)

4.706 
(0.097)

3.779 
(0.092)

0.791 
[0.782, 
0.799]

0.640 
(0.008)

4.608 
(0.024)

3.679 
(0.028)

0.801 
[0.796, 
0.806]

30 E = 0.05
Dmax= 4
Tmax= 900

0.641 
(0.017)

4.611 
(0.066)

3.683 
(0.064)

0.641 
[0.798, 
0.811]

0.636 
(0.008)

4.634 
(0.023)

3.703 
(0.029)

0.798 
[0.793, 
0.803]

40 E = 0.05
Dmax= 5
Tmax= 950

0.643 
(0.019)

4.596 
(0.063)

3.668 
(0.053)

0.803 
[0.797, 
0.808]

0.648 
(0.009)

4.557 
(0.033)

3.635 
(0.037)

0.806 
[0.801, 
0.810]

50 E = 0.05
Dmax= 4
Tmax= 850

0.643 
(0.020)

4.584 
(0.122)

3.637 
(0.088)

0.806 
[0.801, 
0.811]

0.647 
(0.008)

4.566 
(0.024)

3.643 
(0.026)

0.805 
[0.800, 
0.810]

Note: Numbers in round brackets indicate standard deviations. Numbers in square brackets indicate confidence 
intervals. E = eta, Dmax = maximum depth, Tmax = maximum number of trees. The best fitting model was determined by 
grid search.

Outliers were defined by the YTTRIUM  method38 including outlier removal based on density-based spatial 
clusterisation (k-means). The total data used here was Nfull+outliers = 38,687, including the full data Nfull = 35,749 used for
all analyses and Noutliers = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew 
their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.
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ST9: Comparisons of linear and generalized additive models predicting fornix diffusion 
metrics
Metric LM AIC GAM AIC LM BIC GAM BIC LM R2adj GAM R2adj

vintra -126767.79 -126755.60 -126665.98 -126662.27 0.36 0.36
vextra -106952.81 -106929.99 -106851.00 -106836.66 0.38 0.37
vCSF -65781.67 -65773.53 -65679.86 -65680.20 0.39 0.39
microRD 633.36 643.11 735.18 736.43 0.39 0.39
microFA -104706.06 -104634.30 -104604.25 -104540.97 0.38 0.38
microAx -54814.08 -54790.59 -54712.27 -54697.26 0.27 0.27
microADC -14954.91 -14946.59 -14853.10 -14853.26 0.39 0.39
DRADextra -177654.37 -177648.58 -177552.56 -177555.25 0.30 0.30
DAXintra -125641.12 -125639.53 -125539.31 -125546.20 0.30 0.30
DAXextra -138873.67 -138808.20 -138771.86 -138714.87 0.09 0.09
RK -34108.48 -34109.41 -34006.67 -34016.08 0.37 0.37
AK -146039.18 -146041.08 -145937.37 -145947.75 0.32 0.32
MK -85601.85 -85603.57 -85500.04 -85510.24 0.36 0.36
FA -103953.22 -103924.62 -103851.41 -103831.30 0.31 0.31
MD 12874.23 12878.93 12976.04 12972.25 0.35 0.35
RD 18339.73 18359.69 18441.54 18453.02 0.34 0.34
AD 6684.86 6689.75 6786.67 6783.08 0.35 0.35
smtFA -57196.69 -57161.31 -57094.88 -57067.98 0.31 0.31
smtLong -686016.98 -685869.48 -685915.17 -685776.15 0.06 0.05
smtMD -507904.58 -507869.45 -507802.77 -507776.13 0.30 0.30
smtTrans -479144.23 -479104.60 -479042.42 -479011.28 0.30 0.29
smtMCintra -93427.21 -93427.11 -93325.40 -93333.78 0.36 0.36
smtMCextraMD -521137.14 -521125.59 -521035.33 -521032.26 0.37 0.37
smtMCextratrans -499929.78 -499929.66 -499827.97 -499836.34 0.37 0.37
smtMCd -575225.03 -574996.85 -575123.22 -574903.53 0.22 0.21
AWF -145979.93 -145981.86 -145878.11 -145888.53 0.37 0.37
axEAD 56711.05 56715.91 56812.86 56809.24 0.10 0.10
radEAD 21189.85 21203.80 21291.67 21297.12 0.33 0.33
LM = linear model, GAM = generalized additive model, AIC = Akaike information criterion, BIC = Bayesian 
information criterion. The numbers are derived from the six diffusion approaches’ 28 metrics following Equation 1 for 
linear models and all variables of the equation allowing splines for non-linear models.
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ST10: Overview of diffusion metrics by diffusion approach

Diffusion Approach Metrics
Bayesian Rotationally Invariant 
Approach (BRIA) intra-axonal axial diffusivity (DAX intra)

extra-axonal radial diffusivity (DRAD extra)
microscopic fractional anisotropy (micro FA)
extra-axonal axial diffusivity (DAX extra)
intra-axonal water fraction (V intra)
extra-axonal water fraction (V extra)
cerebrospinal fluid fraction (vCSF)
microscopical axial diffusivity (micro AX)
microscopic radial diffusivity (micro RD)
microscopical apparent diffusion coefficient (micro ADC)

Diffusion Kurtosis Imaging (DKI) mean kurtosis (MK)
radial kurtosis (RK)
axial kurtosis (AK)

Diffusion Tensor Imaging (DTI) fractional anisotropy (FA)
axial diffusivity (AD)
mean diffusivity (MD)
radial diffusivity (RD)

Spherical Mean Technique (SMT) fractional anisotropy (SMT FA)
mean diffusivity (SMT md)
transverse diffusion coefficient (SMT trans)
longitudinal diffusion coefficient (SMT long)

Multi-compartment Spherical Mean 
Technique (mcSMT) extra-neurite microscopic mean diffusivity (mcSMT extra md)

extra-neurite transverse microscopic diffusivity (mcSMT extra 
trans)
mc SMTdiffusion coefficient (SMT mcd)
intra-neurite volume fraction (mcSMT intra)

White Matter Tract Integrity (WMTI) axonal water fraction (AWF)
radial extra-axonal diffusivity (radEAD)
axial extra-axonal diffusivity (axEAD)
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ST11. Whole-brain metrics' age sensitivity: comparing diffusion metric prediction models 
with and without age

Metric Full1 Reduced2 χ2 p pHolm

vintra 77831.60 75474.15 4714.90 <.001 <.001
vextra 80010.15 79172.34 1675.61 <.001 <.001
vCSF 104258.51 102045.76 4425.50 <.001 <.001
microRD 67462.88 62714.78 9496.19 <.001 <.001
microFA 91462.73 87450.56 8024.34 <.001 <.001
microAx 68450.93 67363.35 2175.17 <.001 <.001
microADC 72076.62 67934.52 8284.22 <.001 <.001
DRADextra 105039.68 102688.39 4702.58 <.001 <.001
DAXintra 66812.02 64826.61 3970.82 <.001 <.001
DAXextra 80174.07 77914.51 4519.12 <.001 <.001
RK 44127.87 41757.04 4741.66 <.001 <.001
AK 87172.98 85483.34 3379.29 <.001 <.001
MK 66245.64 64166.15 4158.99 <.001 <.001
FA 93186.73 88785.16 8803.13 <.001 <.001
MD 76490.81 72273.83 8433.95 <.001 <.001
RD 73140.15 68320.02 9640.26 <.001 <.001
AD 76516.84 74699.38 3634.93 <.001 <.001
smtFA 125878.97 124092.64 3572.65 <.001 <.001
smtLong 287398.36 285277.70 4241.31 <.001 <.001
smtMD 320273.27 317056.32 6433.91 <.001 <.001
smtTrans 342834.04 339946.36 5775.35 <.001 <.001
smtMCintra 74365.62 72478.15 3774.94 <.001 <.001
smtMCextraMD 314618.75 311214.26 6809.00 <.001 <.001
smtMCextratrans 303909.44 300508.10 6802.69 <.001 <.001
smtMCd 290508.70 290389.47 238.47 <.001 <.001
AWF 102689.44 100136.63 5105.61 <.001 <.001
axEAD -14423.53 -14426.86 6.66 0.08 0.08
radEAD 10331.86 10122.73 418.26 <.001 <.001

1 Full = full model log likelihood
2 Reduced = reduced model log likelihood
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ST12. Comparisons of linear and generalized additive models predicting whole-brain 
diffusion metrics

Metric LM AIC GAM AIC LM BIC GAM BIC LM R2adj GAM R2adj

vintra -155639.20 -155638.58 -155537.39 -155545.25 0.13 0.13
vextra -159996.29 -159998.05 -159894.48 -159904.72 0.05 0.05
vCSF -208493.03 -208487.27 -208391.21 -208393.94 0.13 0.13
microRD -134901.75 -134894.29 -134799.94 -134800.96 0.25 0.25
microFA -182901.46 -182896.42 -182799.64 -182803.09 0.21 0.21
microAx -136877.86 -136869.60 -136776.05 -136776.28 0.08 0.08
microADC -144129.25 -144118.74 -144027.44 -144025.42 0.23 0.23
DRADextra -210055.37 -210046.77 -209953.56 -209953.44 0.13 0.13
DAXintra -133600.03 -133591.04 -133498.22 -133497.71 0.11 0.11
DAXextra -160324.15 -160312.75 -160222.34 -160219.42 0.13 0.13
RK -88231.74 -88223.96 -88129.93 -88130.63 0.14 0.14
AK -174321.97 -174323.26 -174220.16 -174229.93 0.09 0.09
MK -132467.28 -132465.03 -132365.47 -132371.70 0.12 0.12
FA -186349.46 -186338.20 -186247.65 -186244.88 0.23 0.23
MD -152957.62 -152950.05 -152855.81 -152856.72 0.22 0.22
RD -146256.29 -146248.25 -146154.48 -146154.92 0.24 0.24
AD -153009.69 -153006.22 -152907.88 -152912.90 0.15 0.15
smtFA -251733.94 -251735.36 -251632.13 -251642.03 0.10 0.10
smtLong -574772.72 -574753.50 -574670.90 -574660.18 0.12 0.12
smtMD -640522.55 -640508.56 -640420.74 -640415.23 0.18 0.18
smtTrans -685644.08 -685645.94 -685542.27 -685552.61 0.16 0.16
smtMCintra -148707.24 -148707.45 -148605.43 -148614.13 0.10 0.10
smtMCextraMD -629213.51 -629198.88 -629111.69 -629105.56 0.18 0.18
smtMCextratrans -607794.88 -607787.65 -607693.07 -607694.32 0.18 0.18
smtMCd -580993.40 -580991.12 -580891.59 -580897.79 0.01 0.01
AWF -205354.88 -205349.62 -205253.07 -205256.29 0.14 0.14
axEAD 28871.07 28869.86 28972.88 28963.19 0.00 0.00
radEAD -20639.72 -20639.85 -20537.91 -20546.52 0.01 0.01

LM = linear model, GAM = generalized additive model, AIC = Akaike information criterion, BIC = Bayesian 
information criterion. The numbers are derived from the six diffusion approaches’ 28 metrics following Equation 1 for 
linear models and all variables of the equation allowing splines for non-linear models.

55

781
782
783

784
785
786
787

788

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.09.29.510029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.29.510029
http://creativecommons.org/licenses/by-nc-nd/4.0/


ST13. Variance explained by principal components of white matter metrics

Compone
nt 1

Compone
nt 2

Compon
ent 3

Compone
nt 4

Compone
nt 5

Compone
nt 6

Compone
nt 7

Compone
nt 8

Compone
nt 9

Compone
nt 10

Full Multimodal 0.3500 0.1065 0.0583 0.0393 0.0328 0.0208 0.0193 0.0172 0.0144 0.0133
Mean 
Multimodal 0.6474 0.2085 0.0690 0.0354 0.0199 0.0069 0.0046 0.0029 0.0020 0.0010
BRIA 0.3759 0.0963 0.0706 0.0533 0.0377 0.0291 0.0238 0.0177 0.0140 0.0128
DKI 0.4358 0.0909 0.0479 0.0309 0.0294 0.0228 0.0174 0.0153 0.0137 0.0123
DTI 0.4072 0.0816 0.0532 0.0434 0.0353 0.0249 0.0206 0.0165 0.0145 0.0138
SMT 0.3393 0.1942 0.0603 0.0336 0.0255 0.0215 0.0207 0.0173 0.0166 0.0130
SMT mc 0.3404 0.1648 0.0585 0.0450 0.0329 0.0224 0.0203 0.0165 0.0155 0.0127
WMTI 0.2711 0.1277 0.0421 0.0379 0.0284 0.0279 0.0217 0.0195 0.0178 0.0168

Eight principal component analyses (PCA) were run: six PCA addressing the different diffusion approaches, one 
addressing the multimodal average scores (mean multimodal) and one the multimodal model, containing all data (full 
multimodal). The first four components from all PCA were deemed meaningful based on the proportion of variance 
explained in the WM data.
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ST14. Model performance and BAG beta values for multimodal and diffusion-approach 
specific principal component predictions from multimodal and diffusion approach-specific 
BAG and covariates

Predicted 
Component Approach R2 Radj2 T p bBAG

1 Full Multimodal 0.0141 0.0138 46.0160 <0.0001 -0.0151
1 Mean Multimodal 0.5054 0.5052 3651.2999 <0.0001 -0.6726
1 BRIA 0.3439 0.3437 1685.8645 <0.0001 -1.8093
1 DKI 0.2263 0.2261 940.7306 <0.0001 -0.8142
1 DTI 0.3575 0.3573 1789.7236 <0.0001 -1.0817
1 SMT 0.3462 0.3460 1841.6494 <0.0001 -1.0953
1 SMT mc 0.3152 0.3150 1480.6879 <0.0001 -1.0782
1 WMTI 0.3720 0.3718 1905.4699 <0.0001 -0.8474
2 Full Multimodal 0.0247 0.0244 81.5815 <0.0001 -0.0332
2 Mean Multimodal 0.0179 0.0177 65.2632 <0.0001 0.0522
2 BRIA 0.0400 0.0397 134.1182 <0.0001 0.1030
2 DKI 0.0191 0.0188 62.7254 <0.0001 0.1090
2 DTI 0.1517 0.1514 575.2169 <0.0001 -0.0587
2 SMT 0.0022 0.0019 7.6338 <0.0001 -0.0159
2 SMT mc 0.0784 0.0781 273.5101 <0.0001 0.2988
2 WMTI 0.0563 0.0560 191.8700 <0.0001 0.0876
3 Full Multimodal 0.1148 0.1145 417.0057 <0.0001 -0.0086
3 Mean Multimodal 0.0003 0.0001 1.1795 0.2991 -0.0023
3 BRIA 0.1842 0.1839 726.2248 <0.0001 0.4627
3 DKI 0.2564 0.2562 1109.0911 <0.0001 0.1705
3 DTI 0.2500 0.2498 1072.1366 <0.0001 -0.2096
3 SMT 0.2465 0.2463 1137.8183 <0.0001 0.2908
3 SMT mc 0.1844 0.1841 726.9496 <0.0001 -0.1839
3 WMTI 0.1751 0.1749 682.7749 <0.0001 0.1266
4 Full Multimodal 0.1279 0.1276 471.5012 <0.0001 0.0002
4 Mean Multimodal 0.0999 0.0997 396.8655 <0.0001 0.0672
4 BRIA 0.0880 0.0877 310.4268 <0.0001 -0.0049
4 DKI 0.0688 0.0685 237.5608 <0.0001 0.0302
4 DTI 0.0696 0.0693 240.5501 <0.0001 -0.1682
4 SMT 0.1040 0.1038 403.8253 <0.0001 -0.0603
4 SMT mc 0.1639 0.1637 630.6907 <0.0001 0.0803
4 WMTI 0.2239 0.2236 927.6834 <0.0001 0.1036

The table shows predictions of the first four components retrieved from the respective models (as done for brain age 
predictions, see Table 1), using BAG, age, sex, site, as well as age-sex and sex-site interactions as predictors (Equation 
1). Both these four components as well as multimodal and approach-specific BAGs are based on data limited to the 
particular uni- or multi-modal approach and vary therefore in their number of metrics (Table 1).
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ST15. Top five diffusion metrics ranked by gain in age prediction accuracy

BRIA DKI DTI SMT mcSMT WMTI Multimodal
Micro FA fornix
(54957)

MK fornix 
(39662)

MD fornix
(50535)

MD fornix
(43563)

Intra fornix 
(38043)

AWF fornix 
(52531)

Micro FA Fornix
(67749)

Micro RD right 
external capsule 
(22860)

RK fornix 
(26954)

RD FMIN 
(18386)

MD right 
anterior corona 
radiata (24675)

Extra trans 
Fornix (35799)

RadEAD ATRL 
(12328)

RD Fornix right 
Stria terminalis 
(17664)

Micro FA FMIN
(10081)

AK right 
anterior limb of 
internal capsule 
(16340)

RD fornix right 
stria terminalis 
(15431)

MD SLFR 
(19451)

Extratrans right 
external capsule 
(15369)

RadEAD right 
anterior corona 
radiata

AK anterior 
right limb of 
internalcapsule 
(17664)

Micro FA fornix
right stria 
terminlis
(9853)

AK fornix 
(10516)

AD fornix 
(9637)

MD FMIN 
(13527)

Extra MD 
anterior left limb
of internal 
capsule (6254)

RadEAD IFOFR
(9828)

RadEAD right 
anterior corona 
radiata (17375)

Micro RD 
Fornix right stria
terminalis 
(9812)

AK left superior
fronto occipital 
fasciculus 
(6850)

FA fornix left 
stria terminalis 
(9283)

FA fornix 
(12011)

Extra trans 
anterior right 
limb of internal 
capsule (6126)

RadEAD right 
external capsule 
(9793)

RadEAD SLFR 
(15840)

Table values can be read as feature name (gain value). Gain refers to the improvement in accuracy brought by a feature 
to the branches it is on43. Multimodal refers to an approach using the diffusion metrics from all diffusion approaches. 
Cells containing Fornix are marked in green.
Tracts are abbreviated as follows: ATRL = anterior thalamic radiation left, FMIN = Forceps minor, IFOFR = inferior 
fronto-occipital fasciculus right, SLFR = superior longitudinal fasciculus right
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ST16. Brain age prediction model performance excluding fornix features and uncorrected 
brain age – chronological age correlations comparison

Name MRI 
features

R2 RMSE MAE Prediction-Age 
Correlation

Uncorrected Brain 
Age Correlation 
Difference to All Data

BRIA 700 0.527
(0.010)

5.131
(0.042)

4.129
(0.033)

0.727
[0.722, 0.732]

-0.007*
[-0.009, -0.004]

DKI 182 0.550
(0.015)

5.108
(0.070)

4.105
(0.065)

0.742
[0.737, 0.747]

-0.006*
[-0.008, -0.003]

DTI 252 0.555
(0.013)

5.078
(0.066)

4.079
(0.061)

0.745
[0.745, 0.750]

-0.005*
[-0.007, -0.003]

SMT 252 0.507
(0.008)

5.347
(0.042)

4.309
(0.028)

0.713
[0.707, 0.718]

-0.009*
[-0.011, -0.006]

mcSMT 252 0.488
(0.011)

5.342
(0.045)

4.303
(0.036)

0.699
[0.693, 0.705]

-0.015*
[-0.018, -0.012]

WMTI 182 0.566
(0.012)

5.018
(0.062)

4.031
(0.052)

0.753
[0.748, 0.757]

-0.003*
[-0.006, -0.001]

Mean scores 
multimodal

28 0.393
(0.012)

5.932
(0.051)

4.812
(0.046)

0.627
[0.621, 0.634]

0
[-0.0001, 0.0001]

Full model 
multimodal

1904 0.636
(0.012)

4.591
(0.077)

3.677
(0.039)

0.798
[0.794, 0.802]

-0.006*
[-0.007, -0.004]

In the above only fornix features are excluded, while QC and all other steps are kept as described in the Methods 
section. Importantly, radiations from the fornix to other tracts such as fornix to stria terminalis radiations were not 
excluded. Compare results from the full model in Table 1 for uncorrected prediction-age correlations which were the 
basis for the final column.
* p<.001

Brain age predictions from models containing fornix metrics are consistently stronger correlated with age than 
predictions from models not containing fornix (rs<-0.003,ps<.001).
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