

1 Brain-wide associations between white matter and age highlight the role of 2 fornix microstructure in brain ageing

3 4 Authors

5 Max Korbmacher^{1,2,3,+}, Ann Marie de Lange^{2,4,5}, Dennis van der Meer^{2,6}, Dani Beck^{2,7,8}, Eli
6 Eikefjord^{1,3}, Arvid Lundervold^{1,3,9,10}, Ole A. Andreassen^{2,11}, Lars T. Westlye^{2,8,11}, Ivan I. Maximov^{1,2,+}

7
8 ¹ Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen,
9 Norway

10 ² NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University
11 of Oslo and Oslo University Hospital, Oslo, Norway

12 ³ Mohn Medical Imaging and Visualisation Center (MMIV), Bergen, Norway

13 ⁴ Department of Psychiatry, University of Oxford, Oxford, UK

14 ⁵ LREN, Centre for Research in Neurosciences - Department of Clinical Neurosciences, CHUV and
15 University of Lausanne, Lausanne, Switzerland

16 ⁶ Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands

17 ⁷ Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway

18 ⁸ Department of Psychology, University of Oslo, Oslo, Norway

19 ⁹ Department of Radiology, Haukeland University Hospital, Bergen, Norway

20 ¹⁰ Department of Biomedicine, University of Bergen, Bergen, Norway

21 ¹¹ KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway

22 + corresponding author

23

24 Corresponding authors

25 Max Korbmacher, MSc & Ivan I. Maximov, PhD

26 Email: max.korbmacher@hvl.no, ivan.maximov@hvl.no

27 Postal address: Inndalsveien 28, 5063 Bergen, Norway

28

29

30 Abstract

31

32 Identifying white matter (WM) microstructure parameters that reflect the underlying biology of the
33 brain will advance our understanding of ageing and brain health. In this extensive comparison of
34 brain age predictions and age-associations of WM features from different diffusion approaches, we
35 analysed UK Biobank diffusion Magnetic Resonance Imaging (dMRI) data across midlife and older
36 age ($N = 35,749$, 44.6 to 82.8 years of age). Conventional and advanced dMRI approaches were
37 consistent in predicting brain age; with their WM-features similarly related to and predicted by age.
38 However, brain age was estimated best when combining approaches, showing different aspects of
39 WM to contribute to brain age. Fornix was found as the central region for brain age predictions
40 across diffusion approaches. We encourage the application of multiple dMRI approaches for
41 detailed insights into WM, and the further investigation of fornix as a potential biomarker of brain
42 age and ageing.

43 **Keywords:** ageing, brain age, diffusion, white matter, magnetic resonance imaging, fornix

44

45

46

47 Introduction

48

49 Neuroscientific research over the past decades has increased our understanding of the brain
50 mechanisms associated with tissue maturation and ageing effects¹. A particularly fruitful source of
51 data is magnetic resonance imaging (MRI), revealing information about structural and functional
52 brain architecture *in vivo*². For many MRI modalities, such as diffusion-weighted MRI (dMRI) or
53 T₁-weighted MRI, a variety of quantitative measures can be estimated, and linked to behaviour,
54 cognitive and health scores^{3,4}. However, selection and interpretation of such parameters are
55 difficult, largely due to intra-subject variability in ageing, for example influenced by covariates
56 from the genetic to environmental level⁴. Hence, the use of large-scale MRI databases, such as UK
57 Biobank (UKB)⁵ or the Human Connectome Project⁶, becomes inevitable, as it allows detecting and
58 localising important brain patterns and supporting their generalisability⁷. Simultaneously, large-
59 scale data provides sufficient power for the application of advanced multivariate statistical models,
60 and machine learning (ML) techniques.

61

62 Brain age prediction is an example of such a technique, helping translate large amounts of complex
63 multidimensional data into practically interpretable outputs. Brain age prediction involves training a
64 ML model to determine trajectories of brain ageing from a series of brain MRI features. Once the
65 model is trained, it can predict the age of brains not included in the training data. The disparity
66 between chronological age and predicted age, the so-called brain age gap (BAG), can be used as an
67 indicator for neurological, neuropsychiatric and neurodegenerative disorders^{10,11}. For example,
68 BAG has been associated with stroke history, diabetes, smoking, alcohol intake, several cognitive
69 measures^{12,13}, mortality risk, different brain and psychiatric disorders^{14,15}, cardiovascular risk
70 factors¹⁹, stroke risk¹⁶, and loneliness¹⁷. However, besides Alzheimer's disease or schizophrenia, the
71 evidence is mixed for the relationship of BAG and different health outcomes and a smaller BAG is
72 not necessarily indicative of good health⁴. Moreover, recent longitudinal evidence shows early-life
73 factors and genetics to have stronger effects on brain maturation than T₁-weighted grey matter
74 (GM) BAG¹⁸. However, BAG is a promising heritable indicator of general health status^{10,13,19,20}.

75

76 BAG and age trajectories offer paths towards a better understanding of the ageing brain. There are
77 various detectable age-related brain changes, such as GM and WM atrophy⁸, WM de-
78 differentiation⁹, and functional connectivity changes⁴ which have hence informed the choice of
79 brain-age modelling-parameters^{12,16,19,25,27-29,30}. In that context, many ML approaches have been
80 used to make robust and clinically relevant brain age predictions from different MRI modalities^{10,21-}
81 ²³; yet, particularly the eXtreme Gradient Boosting²⁴ regressor model, using a decision tree
82 approach, being increasingly used for brain age predictions from large-scale data due to its

83 precision and speed^{10,25,26}. Especially dMRI and structural MRI have been shown useful for brain
84 age predictions^{12,16,19,25,27-29,30}. However, further systematic, sufficiently powered assessments of
85 dMRI-derived brain age and how diffusion metrics map onto age are needed.

86

87 DMRI-derived measures consist of unique parameters allowing both to reveal WM changes at
88 micrometer scale and to provide the basis for a prediction of macroscopic outcomes, such as age.
89 Conventionally, WM brain architecture is described using diffusion tensor imaging (DTI)³¹.
90 However, recent advances offer more biophysically meaningful approaches³², and sensible
91 foundation for cross-validation and better comparability²⁵. DTI-derived measures, namely fractional
92 anisotropy (FA), and axial (AD), mean (MD), and radial (RD) diffusivity have all been shown to be
93 highly age sensitive^{9,25,33}. However, the DTI approach is limited by the Gaussian diffusion
94 assumption and is unable to take into account entangled WM microstructure features²⁵. In the
95 present work, we consider 1) the Bayesian rotationally invariant approach (BRIA)³⁴, 2) diffusion
96 kurtosis imaging (DKI)³⁵; 3) kurtosis derived supplement, known as white matter tract integrity
97 (WMTI)³⁶; 4) spherical mean technique (SMT)³⁷, and 5) multi-compartment spherical mean
98 technique (mcSMT)³⁸ in addition to DTI. Only a few studies have compared dMRI models directly
99 as original brain age predictors^{25,39,40}. Yet, brain age and age curve assessments of DTI, BRIA, DKI,
100 WMTI, SMT, mcSMT (**ST10**) in a representative sample still need establishing, as well as most
101 influential WM regions for brain ageing. Our assessments focus on the process of ageing (from
102 midlife to late adulthood), starting by associating BAG across diffusion approaches and compare
103 brain-age-chronological-age-correlations to assess prediction consistency. Fornix was identified as
104 most contributing feature in these predictions exploring feature-contributions, and was the strongest
105 correlate of age, with fornix features highly correlated across approaches. Finally, we created fornix
106 and whole-brain-age curves expecting curvilinear relationships reflecting brain-tissue-composition
107 at different ageing stages^{25,33,52}.

108

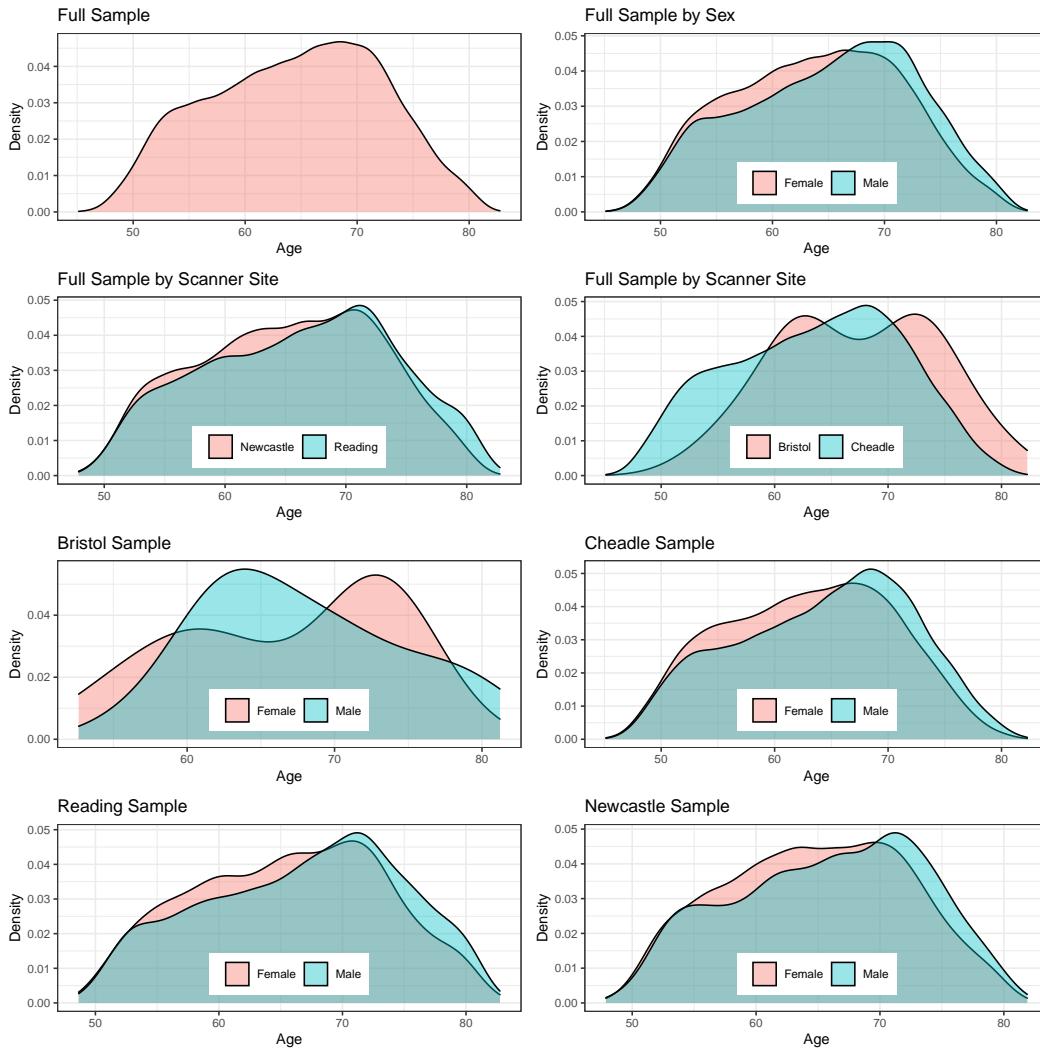
109 **Methods**

110

111 **Sample characteristics**

112 The original UKB⁵ diffusion MRI data consisted of $N = 42,208$ participants. After exclusions, based
113 on later withdrawn consent and an ICD-10 diagnosis from categories F, G, I, and stroke (excluded:
114 $N = 3,521$), and data sets not meeting quality control standards ($N = 2,938$) using the YTTRIUM
115 method³⁹, we obtained a final sample consisting of 35,749 healthy adults (age range 44.57 to 82.75,
116 $M_{age} = 64.46$, $SD_{age} = 7.62$, $Md_{age} = 64.97$; 52.96% females, 47.04% males). Participants were
117 recruited and scanned at four different sites: 57.62% in Cheadle, 26.30% in Newcastle, 15.96% in
118 Reading, and 0.12% in Bristol (**Fig.1**).

119 **Fig.1: Density plots for the sample's age by sex and scanner site**



121 ***MRI acquisition, diffusion pipeline and TBSS analysis***

122 UKB MRI data acquisition procedures are described elsewhere⁵.

123

124 Diffusion data preprocessing was conducted as described in Maximov et al.⁷¹, using an optimised
125 pipeline which includes corrections for noise⁷², Gibbs ringing⁷³, susceptibility-induced and motion
126 distortions, and eddy current artefacts⁷⁴. Isotropic Gaussian smoothing was carried out with the
127 FSL⁷⁵ function *fslmaths* with a Gaussian kernel of 1 mm³. After that DTI, DKI, and WMTI metrics
128 were estimated using Matlab 2017b⁷⁶. Employing the multi-shell data, DKI and WMTI metrics
129 were estimated using Matlab code (<https://github.com/NYU-DiffusionMRI/DESIGNER>)³⁶. SMT,
130 and mcSMT metrics were estimated using original code (<https://github.com/ekaden/smt>)³⁷, as well
131 as Bayesian estimates / BRIA were estimated by the original Matlab code
132 (<https://bitbucket.org/reisert/baydiff/src/master/>)³⁴.

133

134 In total, we obtained 28 metrics from six diffusion approaches (DTI, DKI, WMTI, SMT, mcSMT,
135 BRIA)^{25,38,71,77–79}. In order to normalise all metrics, we used tract-based spatial statistics (TBSS)⁸⁰,
136 as part of FSL⁸¹. In brief, initially all BET-extracted⁸² FA images were aligned to MNI space using
4

137 non-linear transformation (FNIRT)⁷⁵. Afterwards, the mean FA image and related mean FA skeleton
138 were derived. Each diffusion scalar map was projected onto the mean FA skeleton using the TBSS
139 procedure. In order to provide a quantitative description of diffusion metrics we evaluated averaged
140 values over the skeleton and two white matter atlases, namely the JHU atlas⁸³ and the JHU
141 tractographic atlas⁸⁴. Finally, we obtained 20 WM tracts and 48 regions of interest (ROIs) based on
142 a probabilistic white matter atlas (JHU) (Hua et al., 2008) for each of the 28 metrics, including the
143 mean skeleton values. Altogether, 1932 features per individual were derived (28 metrics * (48 ROIs
144 + 1 skeleton mean + 20 tracts); see number of dMRI features in **Table 1**).

145

146 **Statistical Analyses**

147 All statistical analyses were carried out using Python, version 3.7.1 and R, version 3.6.0 (www.r-project.org/). *p*-values were adjusted for multiple comparison using Holm correction⁴⁴.

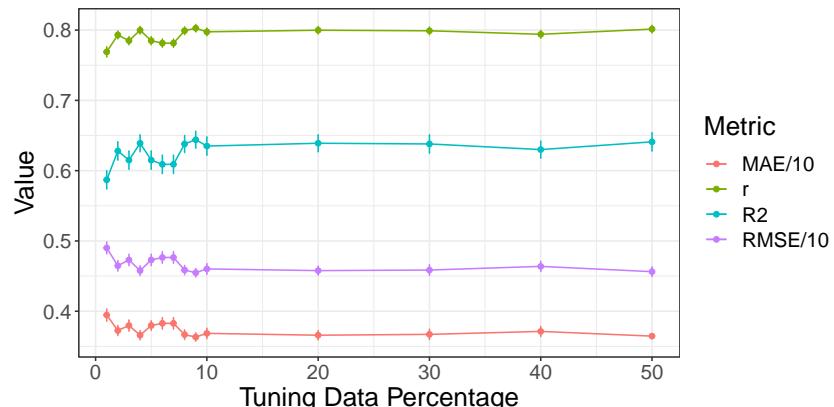
149

150 **Brain Age Predictions**

151 First, brain age predictions were performed using XGBoost²⁴ in Python. To evaluate how much data
152 was needed for hyper-parameter tuning while accurately predicting brain age from all 1940 brain
153 features, we divided the full dataset (N=35,749) into two equal parts: one validation set and one
154 hyper-parameter tuning set for independent parameter-tuning. From the hyper-parameter tuning set,
155 data was randomly sampled into sub-samples consisting of 358, 715, 1,073, 1,430, 1,788, 2,145,
156 2,503, 2,860, 3,218, 3,575, 7,150, 10,725, 14,300, or 17,875 participants, corresponding to 1%, 2%,
157 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 20%, 30%, 40% and 50% of the total subjects, respectively
158 (**Fig.2**). Hyper-parameter were tuned on these sub-samples and then tested on the remaining half,
159 i.e., the validation sample, using 10-fold cross validation showing model performance to not further
160 improve past the 10% (tuning) data mark, informing our tuning-validation-split (**Fig.2, ST1**).

161

162 **Fig.2: Model performance for different train-test splits**



163 Model metrics R², RMSE, MAE and their standard deviations, as well as the Pearson's correlations between predicted
164 and chronological age and its 95% confidence interval are displayed for different training data percentages of the total
165 data (x-axis). For visualisation purposes, RMSE and MAE were divided by 10. For exact values see Suppl. Table ST1.
5

166 *Second*, in order to compare the different diffusion approaches, based on the previous steps, the
167 training-test split was fixed at previously used 10% training data ($N = 3,575$) and 90% test data (N
168 = 32,174) which indicated a best fit at a learning rate = 0.05, max layers/depth = 3 and number of
169 trees = 750. These tuned parameters were used for 10-fold cross-validations brain age predictions
170 on the test data of all six individual models, one multimodal model combining all metrics from all
171 diffusion models, and one multimodal model using only mean values from all diffusion models
172 (**Table 1**).

173

174 *Third*, BAG was calculated as the difference between chronological age Ω and predicted age P :

175

176 $BAG_{uncorrected} = P - \Omega$ (3)

177

178 As a supplement, age-bias-corrected predicted age was calculated from the intercept and slope of
179 age predictions as previously described^{26,85}:

180

181 $P = \alpha \times \Omega + \beta$ (4)

182 $BAG_{corrected} = (P + [\Omega - (\alpha \times \Omega + \beta)]) - \Omega$ (5)

183

184 P represents predicted age modelled from chronological age Ω , with intercept β and slope α . This
185 age-bias correction allowed for a bias-corrected BAG estimate.

186

187

188 **Results**

189

190 **Brain age predictions**

191 **Table 1** presents a comparison between different diffusion approaches in predicting brain age for
192 each diffusion approach. The strongest correlation between chronological and predicted age was
193 found in the multimodal approach including dMRI data from all six diffusion approaches, Pearson's
194 $r=0.805$, 95% CI [0.800, 0.808], $p<.001$, and the smallest correlation in the multimodal approach
195 including only mean scores Pearson's $r = 0.627$, 95% CI [0.627, 0.639], $p<.001$, respectively
196 (corrected and non-corrected correlations are presented in **Table 1**). The strongest correlation
197 between uncorrected age predictions and chronological age was observed for WMTI Pearson's
198 $r=0.765$, 95% CI [0.761, 0.770], $p<.001$, and the smallest for mcSMT Pearson's $r=0.721$, 95% CI
199 [0.716, 0.726], $p<.001$.

200

201 Hotelling's⁴¹ *t*-tests were used to compare correlations between uncorrected predicted age and
202 chronological age across diffusion models and Zou's⁴² method to estimate the confidence intervals
203 around the correlation differences (**Fig.3** and **ST3**; **SF8** and **ST2** for corrected prediction correlation
204 comparisons). These differences were not significantly different from each other for model pairs
205 DKI and DTI ($p \approx 1$). All other correlations were different from each other, Pearson's $r_{\text{diff}} \leq 0.15$,
206 $p < .001$, with the biggest difference observed between mean and full multimodal scores' correlations
207 (ST2 for exact values).

208

209 **Table 1: Performance of Brain Age Prediction Models**

Approach [§]	Number of MRI features	R ² (SD)	RMSE (SD)	MAE (SD)	Prediction-Age Correlation* [95% CI]	Corrected Prediction-Age Correlation* [95% CI]
BRIA	690	0.550 (0.012)	5.007 (0.057)	4.002 (0.042)	0.742 [0.737, 0.747]	0.892 ⁺ [0.889, 0.894]
DKI	207	0.576 (0.015)	4.958 (0.077)	3.975 (0.068)	0.754 [0.755, 0.764]	0.903 [0.901, 0.905]
DTI	276	0.571 (0.014)	4.983 (0.072)	3.984 (0.062)	0.756 [0.751, 0.761]	0.900 [0.897, 0.902]
SMT	276	0.531 (0.010)	5.214 (0.053)	4.183 (0.036)	0.729 [0.724, 0.734]	0.899 [0.897, 0.901]
mcSMT	276	0.519 (0.011)	5.175 (0.045)	4.153 (0.036)	0.721 [0.716, 0.726]	0.892 ⁺ [0.889, 0.894]
WMTI	207	0.585 (0.012)	4.903 (0.065)	3.928 (0.050)	0.765 [0.761, 0.770]	0.902 [0.900, 0.904]
Mean multimodal	28	0.393 (0.012)	5.932 (0.051)	4.812 (0.046)	0.627 [0.621, 0.634]	0.905 [0.903, 0.907]
Full multimodal	1932	0.645 (0.011)	4.534 (0.041)	3.624 (0.037)	0.804 [0.800, 0.808]	0.907 [0.905, 0.909]

Table logic: R², RMSE, MAE are displayed in the format Mean (Standard Deviation), Pearson's correlations are displayed in the format Correlation Score 95% Confidence Interval [Lower Bound, Upper Bound].

Mean multimodal refers to diffusion metrics averaged over the skeleton for all six diffusion approaches. Full multimodal refers to all diffusion data from the six diffusion approaches, i.e. mean multimodal data in addition to metrics averaged over the JHU atlas regions. R² = variance explained, RMSE = root mean squared error, MAE = mean absolute error.

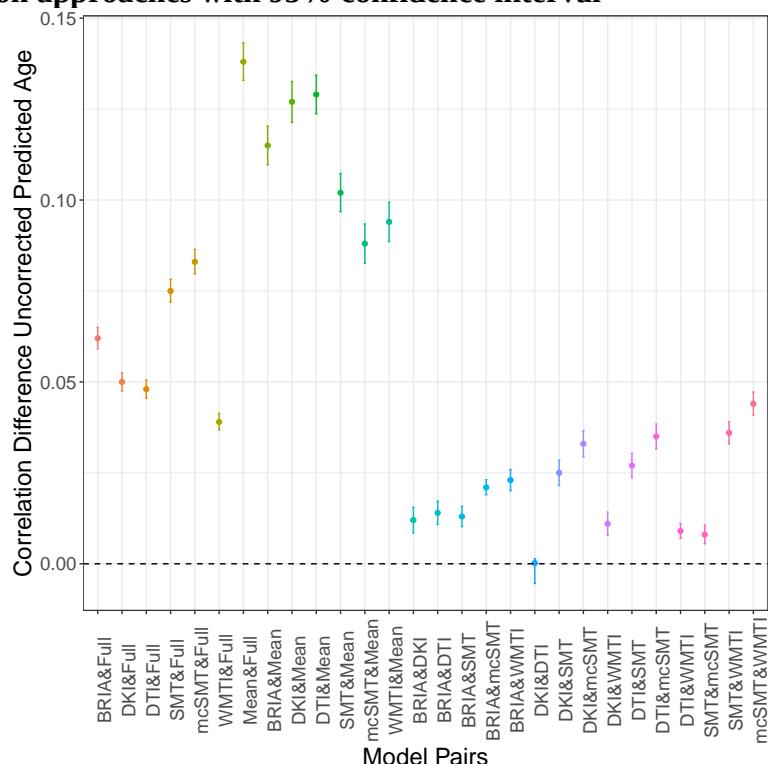
§ For an overview of the metrics contained in each of the diffusion approaches see **ST10**.

+ Details on the smallest correlation: BRIA Corrected Prediction-Age Correlation $r = .89173$, mcSMT Corrected Prediction-Age Correlation $r = .89176$

* All correlation were significant at $p < .001$.

210
211

212 **Fig.3: Differences between Pearson's correlations of chronological and uncorrected predicted**
213 **ages across diffusion approaches with 95% confidence interval**



215 Differences between Pearson's correlation coefficients of chronological and uncorrected predicted age by diffusion
216 approach. See SF8 for correlational differences between approaches for corrected brain age predictions.

217
218 To identify the most influencing WM regions, we computed the permutation feature importance for
219 each model's features (models: **Table 1**), ranked by contribution to the variance explained (**Table**
220 **2**). For feature rankings by contribution to model prediction accuracy using gain scores⁴³ see **ST15**.
221 Across diffusion approaches, diffusion values estimated on the fornix had the most valuable
222 contribution to variance explained (**Table 2**) and prediction accuracy (**ST15**). Model which had
223 fornix features removed had lower model fit and brain-age-chronological-age correlations were
224 smaller than for models containing fornix ($rs < -0.003$, $ps < .001$; **ST16**).

225 **Table 2: Top five diffusion metrics ranked by their contribution to variance explained (R^2) in
226 age**

BRIA	DKI	DTI	SMT	mcSMT	WMTI	Multimodal
Micro FA fornix 0.1954±0.0027	AK right anterior limb of internal capsule 0.0984±0.0014	MD fornix 0.0712±0.0013	MD fornix 0.0795±0.0018	Extratrans fornix 0.0498±0.0013	AWF fornix 0.1699±0.0023	Micro FA fornix 0.0914±0.0011
Vextra forceps minor 0.0278±0.0007	RK fornix 0.0884±0.0016	FA forceps minor 0.0533±0.0011	FA right superior longitudinal fasciculus 0.0267±0.0007	Intra forceps minor 0.0444±0.0009	radEAD fornix to right striaterminalis 0.0283±0.0007	AK anterior limb of internal capsule 0.0055±0.0011
Vextra body of the corpus callosum 0.0261±0.0007	MK left external capsule 0.0259±0.0006	RD fornix to right Striaterminalis 0.0462±0.0009	Longitudinal fornix 0.0251±0.0006	Intra fornix 0.0289±0.0009	AWF Forceps minor 0.0194±0.0005	FA forceps minor 0.0219±0.0006
Micro FA fornix to right Striaterminalis 0.0203±0.0006	MK right superior longitudinal fasciculus 0.0214±0.0006	FA right superior cerebellar peduncle 0.0221±0.0006	Trans fornix to right Striaterminalis 0.0204±0.0006	Extratrans fornix to right Striaterminalis 0.0201±0.0006	axEAD forceps minor 0.0193±0.0007	RD right fornix stria terminalis 0.0214±0.0006
Vintra right superior cerebellar peduncle 0.0194±0.0006	RK forceps minor 0.0208±0.0005	FA body of the corpus callosum 0.0218±0.0006	FA fornix 0.0192±0.0006	Extratrans right external capsule 0.0163±0.0007	axEAD left posterior limb of internal capsule 0.0173±0.0006	AK Genu corpus callosum 0.0095±0.0003

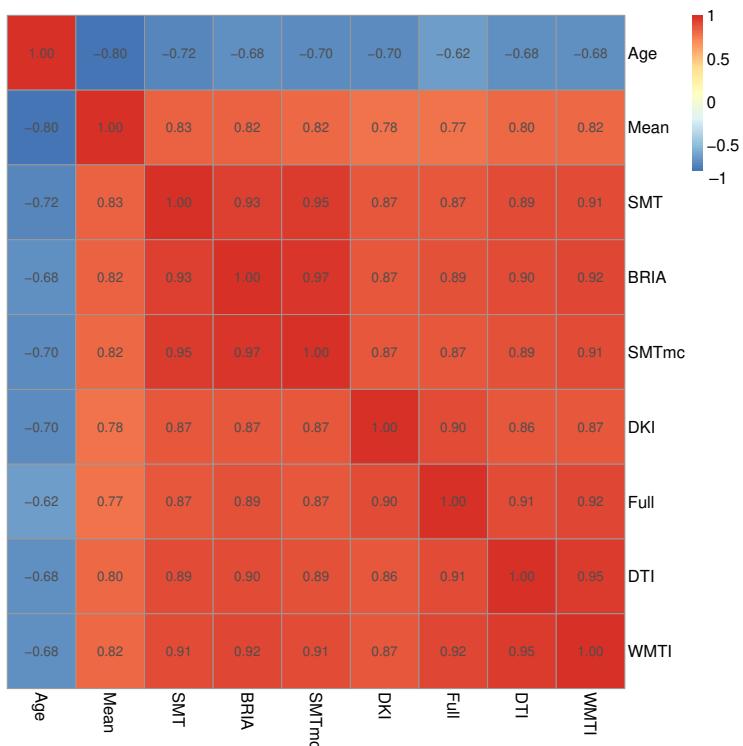
227 Note: Variance explained (R^2) by a single feature refers here to the part of the total variance explained by the respective
228 model presented in Table 1. Multimodal refers to an approach using the diffusion metrics from all diffusion approaches.
229 Cells containing Fornix are marked in green.

230

231 **Brain age gap across diffusion approaches and age**

232 In order to compare uncorrected BAG (BAG_u) calculations across the used diffusion approaches,
233 BAG_u was correlated from different diffusion approaches and with age. Correlations between the
234 six diffusion approaches ranged between $r=0.857$ and $r=0.966$ (Fig.8; SF1 for corrected BAG
235 correlations). Overall, BAG_u scores from the different approaches were strongest related to WMTI
236 BAG_c (range: $r = 0.873$ to 0.952), and weakest to mean multimodal BAG_u (range: $r=0.779$ to
237 $r=0.828$), and could be observed in one cluster containing DKI, DTI, WMTI and multimodal BAG_u
238 and a second cluster containing BRIA, SMT, and SMTmc. However, DKI, BAG_u was more strongly
239 correlated with full multimodal BAG_c than with other well-performing approaches DTI (Pearson's
240 $r_{diff}=0.03$, $p<.001$) and WMTI ($r_{diff}=0.03$, $p<.001$). Vice versa, DTI BAG_c correlated strongest with
241 WMTI BAG_c ($r=0.905$, $p<.001$).

242 **Fig.4: Correlations of uncorrected BAG and age across used diffusion approaches**



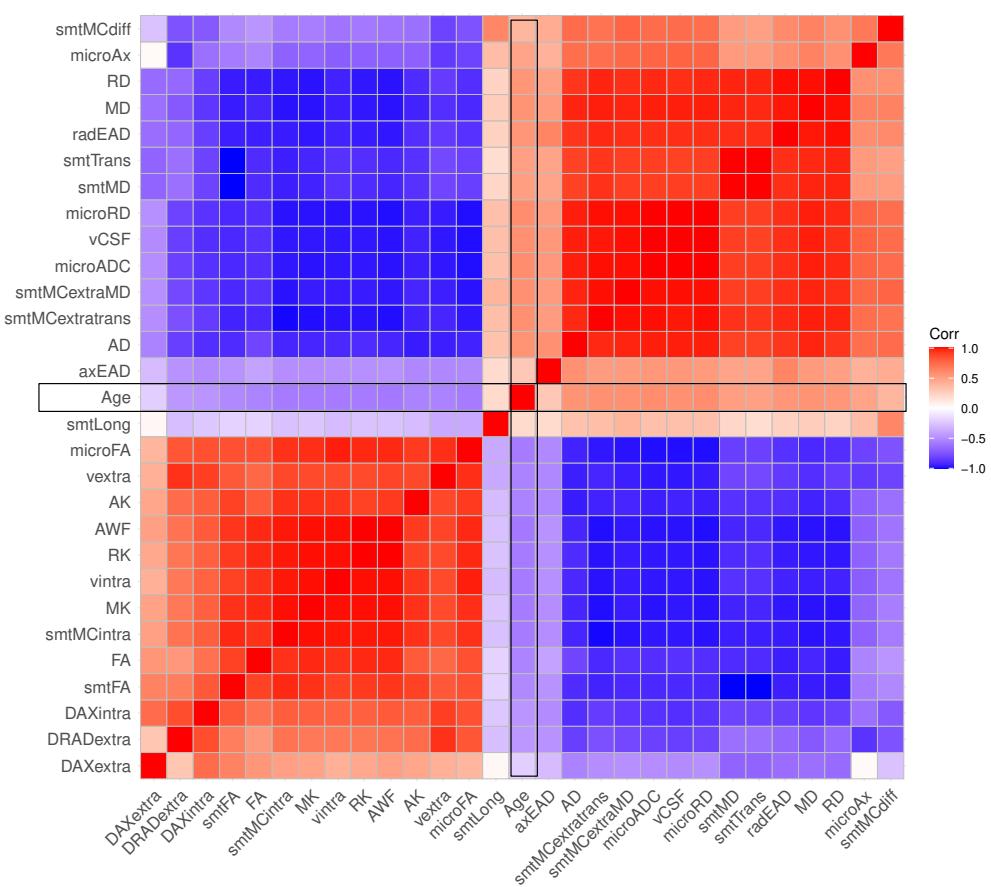
244 Age-BAG correlations, approximating 0, were not significant at $p_{Holm} \geq .05$. All other correlations were significant at
 245 $p_{Holm} < .001$. For the corrected BAG correlations across models see SF1.

246

247 **Associations between diffusion metrics and age**

248 A correlational analysis was used to demonstrate associations among Fornix diffusion metrics and
 249 age (Fig.5, including QC outliers: SF4). Association strengths ranged from to $r=-0.997$ (smtTrans
 250 and smtMCintra) to $r=0.999$ (smtTrans and smtMD). Correlations between fornix metrics and age
 251 ranged from $r=-0.558$ (smtMCintra) to $r=0.570$ (microRD).

252 **Fig.5: Correlation matrix for fornix diffusion metrics and chronological age**



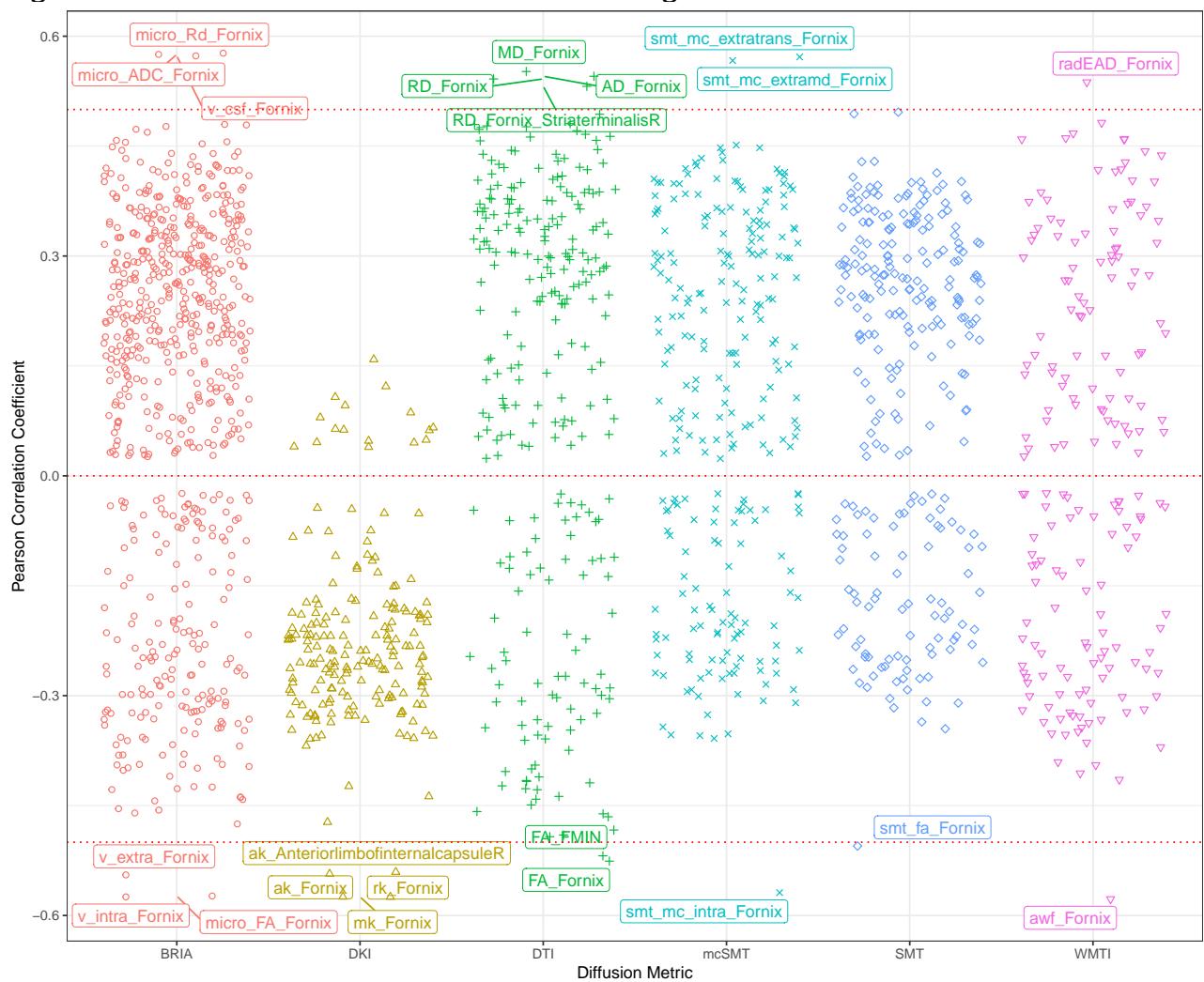
253 All correlations were significant at Holm-corrected $p_{Holm} < .05$.

254

255 For region-wide associations between age and diffusion metrics, all diffusion metrics were
256 correlated with age and displayed for $p_{Holm} < 0.001$ (Fig.6). Among these correlations, Pearson's r
257 values > 0.5 were name-labelled showing various correlations between diffusion metrics in the
258 fornix and age. However, when controlling for covariates, only relatively small proportions of the
259 variance in single local and global diffusion metrics could be predicted from the whole model with
260 small contributions of age to the models (SF11).

261

Fig.6: Correlations between diffusion metrics and age



262
263
264
265

Note: Each point indicates one correlation between a diffusion metric and chronological age. Names of diffusion metrics are displayed when correlations between the metric and age reached a Pearson correlation of $|r| > 0.5$. Holm correction⁴⁴ was used for FDR-correction, and all displayed values were significant at $p < .001$.

For the distribution of the correlations see **SF12**.

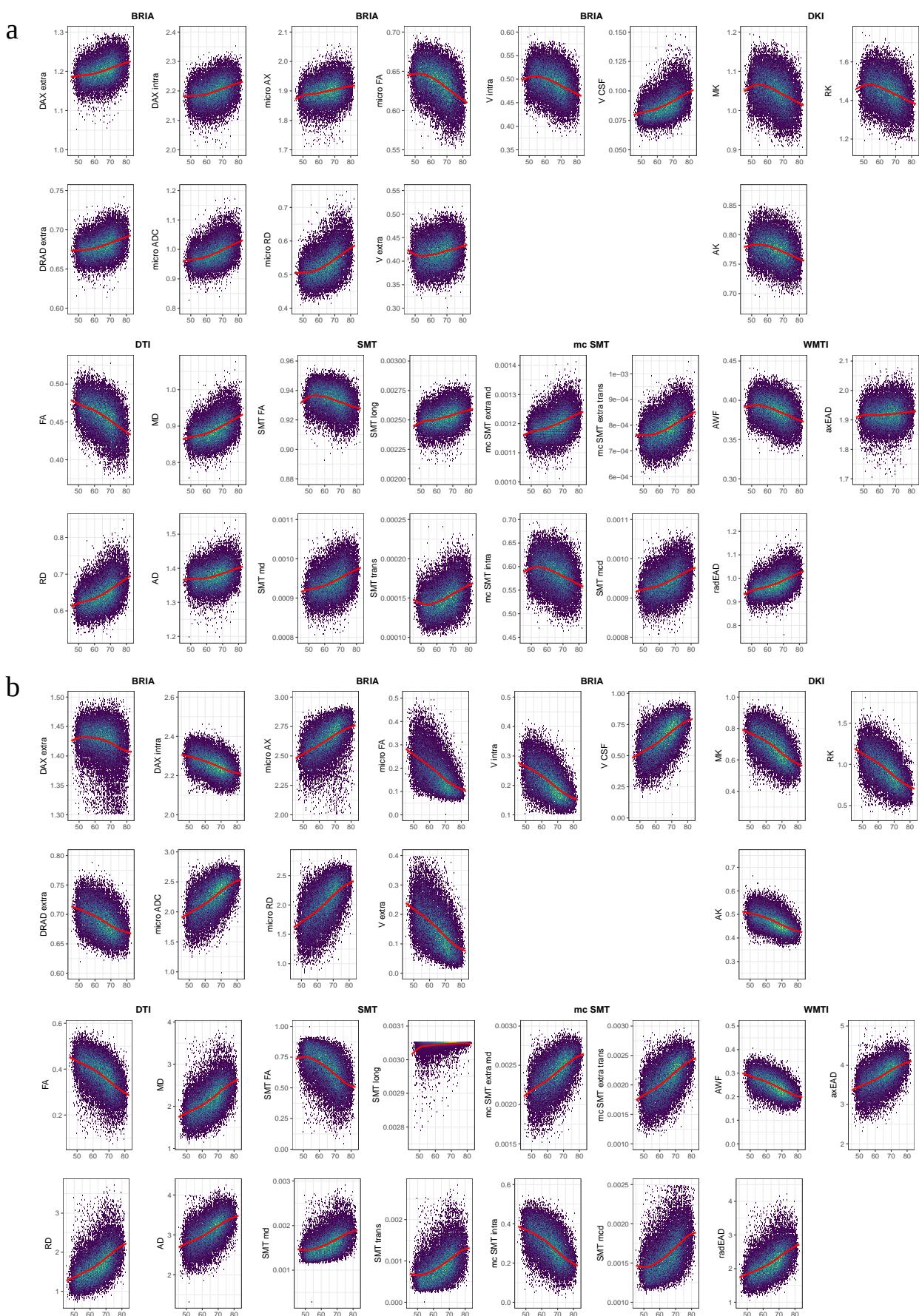
266

267 *Age Trajectories of Diffusion Features*

268 In **Fig.7** we present absolute diffusion metrics for the whole brain (**Fig.7a**) and fornix (**Fig.7b**)
269 across ages for the examined six diffusion approaches (overview of metrics: **ST10**). Age-metric
270 relationships for fornix were approximating linearity closer than more curvilinear global age-curves.
271 Several fornix-age relationships for BRIA extra-axonal and intra-axonal radial and axonal
272 diffusivity opposed whole-brain-age relationships.

273

Fig.7: Whole-brain and fornix diffusion metrics across age



275
276
277

Note: The presented plots represent diffusion metrics for each of the six diffusion models from the full sample $N = 35,749$ for a) whole-brain diffusion metrics, b) fornix diffusion metrics. Brighter colours indicate higher density and red lines are fitted lines to the relationship between age and diffusion metric.

278
279 Whole-brain (**Fig.8**) and fornix (**SF9**) diffusion metrics M were predicted from age, sex and scanner
280 site to create age curves (**Fig.8A-B**) which can be compared to raw Z-score-normalisation curves
281 (**Fig.8C-D**):

282

283
$$M = \beta_0 + \beta_1 \text{Age} + \beta_2 \text{Age}^2 + \beta_3 \times \text{Site} * \text{Sex} + \beta_4 \text{Sex} * \text{Age} + \beta_5 \text{Sex} + \beta_6 \text{Site}$$
 (1)

284

285 A general trend was observed of most features crossing the mean at the same age, around 65 (**Fig.8**,
286 **SF9**). Model fit metrics R^2_{adj} and Standard Error (SE) for the models accounting for age, sex and
287 scanner site (Equation 1) when predicting diffusion metrics were calculated (**Fig.7E**). Highest SE,
288 R^2_{adj} and variability across metrics was observed when predicting BRIA metrics ($R^2_{\text{adj}} = .21$), as
289 well as lowest $R^2_{\text{adj}} \approx 0$ in BRIA Vextra, respectively. While DTI metrics could also be predicted well
290 from the model, lowest variability in R^2_{adj} was found in WMTI and DKI. For fornix metrics, SE and
291 R^2_{adj} was generally higher across diffusion approaches (**SF9**).

292 To test age-sensitivity of the mean features, likelihood ratio tests were conducted comparing models
293 derived from Equation 1 against models derived from the same formula with age removed:
294 (Equation 2).

295

296
$$M = \beta_0 + \beta_1 \text{Site} * \text{Sex} + \beta_2 \text{Sex} + \beta_3 \text{Site}$$
 (2)

297

298 All models showed significant age dependence, with DTI RD ($\chi^2 = 9,640.26, p_{\text{Holm}} < .001$), BRIA
299 microRD ($\chi^2 = 9,496.19, p_{\text{Holm}} < .001$), and DTI FA ($\chi^2 = 8,803.13, p_{\text{Holm}} < .001$) being the most age-
300 sensitive metrics, and WMTI axEAD ($\chi^2 = 6.66, p_{\text{Holm}} = .084$), mcSMT diffusion coefficient
301 ($\chi^2 = 238.47, p_{\text{Holm}} < .001$), and WMTI radEAD ($\chi^2 = 418.26, p_{\text{Holm}} < .001$) the least age-sensitive metrics
302 (**ST11**).

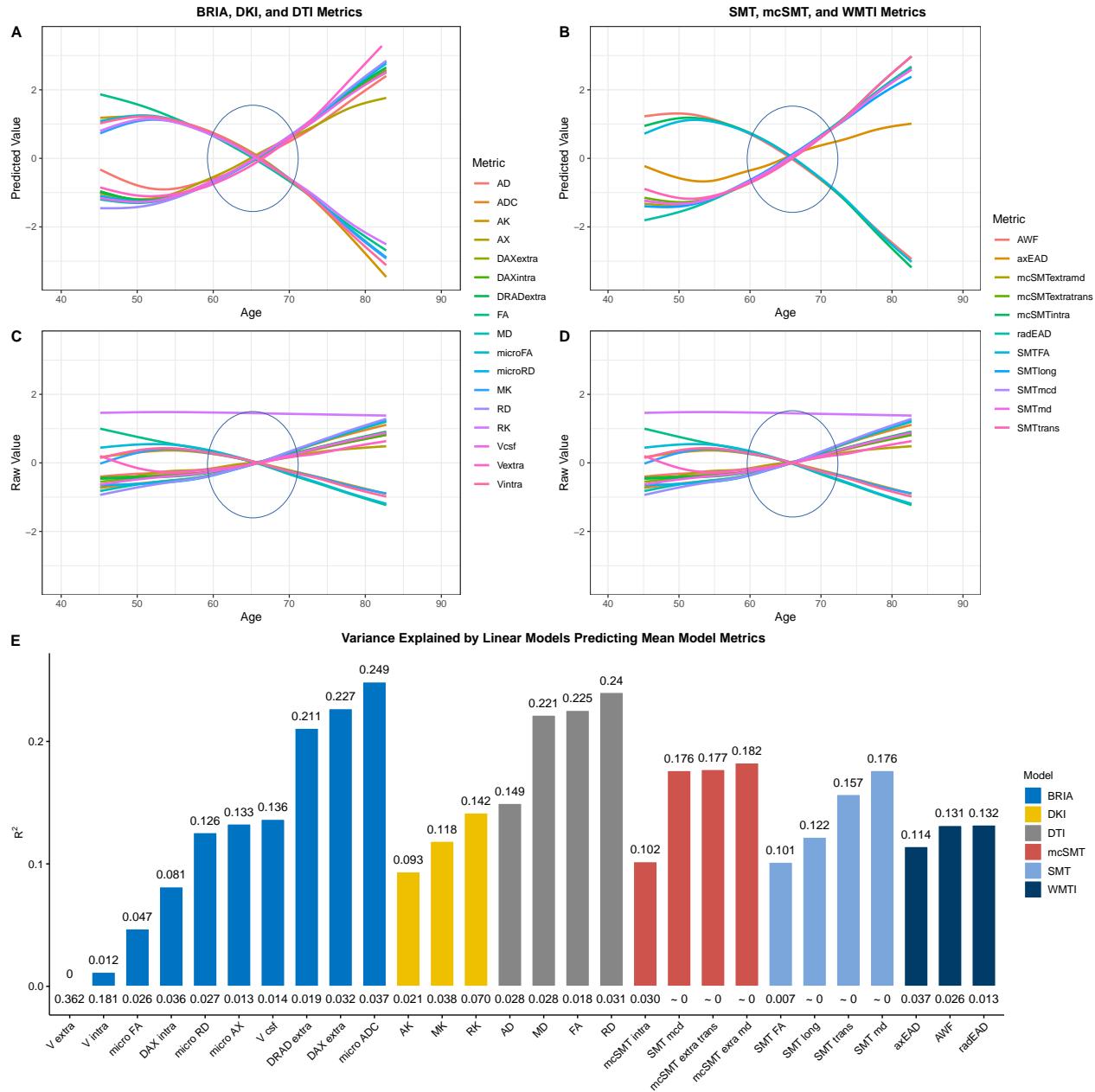
303 In a set of additional analyses, we examined age-sensitivity of fornix features and whether the
304 relationship between whole-brain as well as fornix diffusion metrics and age are better described as
305 linear or non-linear. Fornix diffusion metrics were age sensitive (**SF9**) but model fit did not differ
306 between linear and non-linear models for whole-brain (**ST12**) or fornix metrics (**ST9**).

307 Finally, to observe BAG-WM associations, principal components of regional and whole-brain WM
308 metrics for each of the eight models (**Table 1**) were only weakly correlated with uncorrected BAG_u,
309 and similarly related to corrected BAG_c, age_{chronological} and age_{predicted} (**SF10**). Furthermore, when
310 predicting the most important WM components (**SF10, ST14**) or single regional or whole-brain
311 metrics (**SF11**) from BAG_c and BAG_u and covariates, models predicted relatively small proportions
312 of variance, with small contributions of BAG to the model (**SF10-11**).

313

314

Fig.8: Raw and predicted whole-brain WM diffusion metrics by chronological age



315

Fig.8A-D shows age curves for each standardised (z-score) diffusion metric's mean skeleton value (y-axis) plotted as a function of age (x-axis). Shaded areas represent 95% CI. Curves fitted to raw values (Fig.8 C-D) serve as a comparison to the Im-derived predicted values from Equation 1 (Fig.8 A-B). Fig.8E indicates the model fit for the linear models from Fig.8A-B, showing R^2_{adj} values on top and Standard Error (SE) on the bottom of the bars which each represent a Fornix skeleton value for one of the seven models. Lines crossing at age 65 are marked with ovals. Model summaries of all 28 mean models can be found in ST5. The same visualisation of fornix diffusion values can be found in SF9.

321

322

323 Discussion

324

325 We revealed that both conventional DTI and advanced diffusion approaches (WMTI, DKI, BRIA, 326 SMT, mcSMT) perform consistently on brain age predictions, as indicated previously²⁵. As a novel 327 finding, our results show strong contributions of fornix microstructures explaining variance in age 328 and reducing error for dMRI/WM-based brain age predictions, and model fit for brain age 329 prediction models without fornix is reduced. Additionally, Mass-WM-age-correlations reveal

330 strongest correlations between fornix microstructure and age. This suggest that the fornix is a key
331 WM region of cross-sectional brain age, with fornix and whole-brain dMRI metrics' age trajectories
332 following similar patterns such as steepening slopes at later ages.

333

334 On the other hand, there are multiple challenges related to fornix as a driver of brain age estimates,
335 particularly multicollinearity, which might bias estimates of the importance of fornix (gain and
336 permutation feature importance) for brain age predictions, and second, data processing artefacts.
337

338 UKB offers diffusion data acquired with the most typical two-shell-diffusion protocol.
339 Nevertheless, the standard diffusion model⁶⁶ based on differentiation of intra- and extra-axonal
340 water pools could not be solved using this measurement strategy⁶⁶. As a result, the derived diffusion
341 metrics have both numerical uncertainties and the variability introduced from non-biological
342 parameters⁶⁶. Quantitative metrics derived from the different diffusion approaches allow to
343 investigate such non-biological variability and to grade the subject variability in terms of used
344 covariances. Yet, the aforementioned technical limitation might play a decisive role in a clinical
345 context^{50,66}.

346

347 Besides obstacles resulting from modelling assumptions, our sample is cross-sectional in design and
348 limited to adults older than forty, which, in turn, influences predictions and model evaluation
349 metrics. Metrics such as r and R^2 are expected to be lower than in samples with wider age-ranges⁴⁵.
350 Additionally, the UKB imaging sub-sample shows better health than the non-imaging UKB
351 subjects⁶⁷. Another open question is the exact interpretation of BAG and its relationship with WM
352 metrics, which was found to be small for principal WM components (**SF10**) and single diffusion
353 metrics (**SF11**). Although previous research shows no relationship between the rate of change in
354 longitudinal regional and global T₁-weighted-feature-retrieved BAG¹⁸, further investigation of
355 longitudinal as well as voxel-wise WM-derived BAG provide additional avenues to increase the
356 interpretability of BAG.

357

358 We found the different diffusion metrics to be highly correlated (fornix, **Fig.5**), and show similar
359 age trajectories (**SF9A-B**), which provokes the question of whether some of the metrics are
360 redundant. The identification of redundant metrics and the combination of metrics across diffusion
361 approaches is a matter of future research comparing diffusion approaches by probing them in
362 practical settings such as in clinical samples⁷⁰.

363

364 Only few studies^{56,57} address the fornix across ages. A possible reason is fornix' artefact-
365 susceptibility induced from its proximity to the cerebrospinal-fluid, while being a small tubular
366 region. Recent processing pipelines such as TBSS minimise such artefacts⁸⁰. Yet, the influence of

366 cerebrospinal-fluid artefacts in small tubular structures like the fornix remains unclear⁶⁸. Fornix is a
367 relatively small anatomical structure, and, for example, fornix BRIA cerebrospinal-fluid fraction is
368 higher (vCSF>0.5) than global measures (vCSF>0.075), suggesting a presence of strong partial
369 volume effect. In order to overcome such distorting effects, voxel-wise techniques are
370 recommended, demanding the development of novel approaches incorporating techniques such as
371 deep learning showing better performance than traditional ML, especially on large population
372 samples⁶⁹.

373

374 ***Consistency across diffusion approaches***

375 Overall, the results of brain age predictions are similar across diffusion approaches, with WMTI,
376 DTI and DKI predicting age better than SMT, mcSMT and BRIA considering model fit and
377 prediction-outcome correlations (**Table 1**). This finding could be explained in terms of diffusion
378 approaches; i.e., the attempt to introduce more biophysically accurate parameters into the model
379 might simultaneously reduce the general sensitivity of the used approaches to the tissue changes.
380 Integrative approaches such as DTI or DKI are able to localise brain changes, however, without
381 providing information about the underlying mechanisms. Our study support a previous study with a
382 smaller but more age-differentiated sample ($n=702$) of DTI and WMTI being superior to mcSMT at
383 brain age predictions in terms of model performance²⁵. When examining additional diffusion
384 models on a larger sample, we find DKI metrics to have higher predictive power than in Beck and
385 colleagues²⁵. Simultaneously, differences between diffusion approaches, and both variance
386 explained and prediction error (RMSE, MAE) were smaller in this study. These differences are
387 likely due to the narrower age range in our study⁴⁵, whereas our significantly larger sample
388 emphasises the reliability of our findings.

389

390 While brain age predictions from single diffusion approaches were grossly similar, predictions from
391 combined approaches were best (**Table 1**). Correlations between predicted and chronological age
392 were consistent across diffusion approaches, as differences between correlations were small (**Fig.3**,
393 **SF8**). This shows that addressing a wider range of WM characteristics improves predictive models
394 compared to models with single diffusion approach metrics (e.g., only DTI), which would be
395 intuitive when considering BAG as a general indicator of health^{10,13,19,20}. Vice versa, reducing spatial
396 specificity by averaging diffusion metrics across all WM reduced prediction accuracy.
397 Conventionally used DTI on its own is limited in its ability to present biophysically meaningful
398 measures of the underlying microstructure. As a result, the advanced modelling is recalled including
399 intra- and extra-axonal spaces and tissue peculiarities being influenced by individual differences in
400 myelin and fibre architecture (crossing/bending fibres, and axonal characteristics)²⁵. Hence, adding
401 additional information to DTI better allow to infer the underlying neurobiology of tissue, for

402 example, expressed in differential WM-age-dependences (**Fig.7-8**) or brain age predictions (**Table**
403 **1**)²⁵.

404

405 We observed that BAG exhibits strong correlations across all diffusion approaches (**Fig.4, SF1**).
406 Congruently with the correlational differences (**Fig.3, SF8**), BAG based on averaged skeleton
407 values was least correlated to all other diffusion approaches (**Fig.4**), indicating inferiority of global
408 compared to region-wide approaches. BAG obtained from WMTI, DTI and DKI were closest
409 related to BAG from the multimodal approach (which predicted age best), both for age-bias
410 corrected and uncorrected BAG (**Fig.4, SF1**). This is in agreement with the observed age-prediction
411 model performance (**Table 1**). BAG correlations were observed in three clusters: 1) WMTI and
412 DTI, 2) mcSMT, SMT, BRIA, and 3) DKI, indicative of similar measurements within these clusters
413 (**Fig.4, SF1**). To a certain extent, these clusters reflect similarities in the underlying mathematics of
414 the clustering diffusion approaches. For example, mcSMT and SMT are closely related models³⁷,
415 whereas DKI's non-Gaussianity might reveal another quality of age-sensitive WM microstructures
416 not captured by the other approaches⁴⁶. Additionally, the cluster differences indicate that the
417 observed diffusion approaches measure different age(ing)-sensitive characteristics, supporting the
418 argument for a combination of diffusion approaches when assessing the ageing brain.

419

420 ***Age trajectories and fornix as a brain age feature***

421 Based on the presented findings on fornix, we further investigate details of fornix, keeping
422 discussed limitations to the generalizability of the findings in mind. Diffusion metrics describing
423 fornix microstructure were consistently related to each other and age across all diffusion approaches
424 in two clusters. Values were positively correlated within each cluster and negatively between
425 clusters (see **Fig.5**). In the first cluster, different approaches' FA, kurtosis metrics (MK, RK, AK),
426 water fractions (vintra and vextra from BRIA and AWF from WMTI), and BRIA intra-axonal and
427 extra-axonal radial and axial diffusivity were positively correlated. The second cluster, which was
428 negatively related to the first cluster but positive to age, contained metrics of mean, axial and radial
429 diffusivity, and cerebrospinal-fluid fraction of the different diffusion approaches, which were
430 positively related to each other. Interestingly, both clusters consisted of unit-less values, for example
431 water fractions, and diffusivities, which might have the same meaning as extra-axonal axial
432 diffusivities from different diffusion approaches, for example BRIA vs SMTmc. Such consistencies
433 of similar metrics across diffusion approaches were more apparent for the fornix when QC-
434 identified outliers were removed (compare **Fig.5** and **SF4**), which supports the reliability of our
435 findings of fornix-age-dependencies. Furthermore, fornix metrics were most strongly related to age
436 across diffusion approaches (**Fig.6, SF11**), supporting the importance of fornix in reducing error of
437 brain age predictions (**Table 2**). Not surprisingly, all fornix features were age-sensitive (**ST4**), and

438 more age sensitive than whole-brain metrics (**ST11**). Whole-brain trajectories are in agreement with
439 previous results, showing age sensitivity of various mean diffusion metrics²⁵, and the same
440 directionality of age trajectories of metrics for DTI^{9,33}, mcSMT, DKI, WMTI²⁵.

441

442 We displayed that fornix microstructure measures have differential behaviours across diffusion
443 approaches (**Figs.7-8**). Focussing on absolute diffusion values (**Fig.7**), it can be observed that
444 diffusion measures which are correlated (**Figs.4-5**) exhibit similar age dependences. Additionally,
445 slopes of fornix compared to whole-brain diffusion metrics were generally steeper and closer
446 approximating linearity, indicating stronger changes, such as quicker WM degeneration in the
447 fornix compared to the whole-brain average (see **Fig.7**). Particularly BRIA metrics show visually
448 detectable differences between the fornix and the whole brain (**Fig.7**, DAXextra, DAXintra,
449 DRADEXtra, Vextra); as opposed to global developments, fornix intra and extra-axonal diffusion
450 decreased, indicating fornix shrinkage with increasing age. Periventricular shrinkage is linked to
451 enlarging ventricles⁴⁷, which has been related to ageing and neurodegenerative disorder
452 progression⁴⁸. This effect was observed by a positive relationship between age and cerebrospinal
453 fluid (CSF) fraction in BRIA. Another metric which revealed larger differences in the fornix than
454 for the whole-brain average was intra-axonal water fractions, which can be treated as a proxy for
455 the axonal density, decreased with increasing age (see **Fig.7**, BRIA:Vintra; SMTmc:intra;
456 WMTI:AWF) while the CSF fraction (BRIA) increases. Such WM microstructure changes are not
457 only directly linked to different neurobiological features but can be markers of clinical outcomes,
458 such as dementia^{49,50}.

459

460 A selection of metrics is comparable across diffusion approaches taking DTI as reference point,
461 showing similar age trajectories. DTI metrics AD, RD, and MD tend to increase over the lifespan
462 and FA tends to decrease across brain regions (**Fig.7-8**)^{25,33,51,52} as well as in fornix (**Fig.7b, SF9**),
463 implying processes such as de-myelination, changes in axonal and general WM integrity. Such DTI
464 age-dependences are reflected by according BRIA, SMT, and WMTI metrics, whereas DKI shows
465 opposite age-relationships, as presented previously²⁵. Deterioration effects, measured by the age-
466 dependency of axonal water fractions, were generally stronger in fornix compared to whole-brain
467 metrics (**Fig.7**). Interestingly, opposed to global metrics, radial diffusivity measures from DKI and
468 BRIA (DRADEXtra) decreased in fornix (**Fig.7**), suggesting higher fornix than global plasticity,
469 potentially being an antecedent of age-related hippocampal changes⁵⁵.

470

471 Additional, unique information about age dynamics was presented by standardised scores
472 accounting for age, sex and scanner site and standardised uncorrected scores across ages (**Fig.8**,
473 **SF9**). After standardisation and accounting for covariates, most fornix metrics follow a tightly

474 resembling near-linear trend either increasing or decreasing by age (**SF9A-B**), as opposed to whole-
475 brain metrics which follow a rather curvilinear line, as previously shown^{25,33,52}. Diffusion metrics’
476 variance explained across models indicates fornix metrics to be more sensitive to a combination of
477 covariates age, sex, and scanner site than whole-brain metrics (**Fig.8, SF9**). In the fornix, only
478 BRIA extra-axonal axial diffusivity (DAX extra) and the SMT longitudinal diffusion coefficient
479 (SMT long) showed non-linear trajectories, however, both measures are weakly correlated to other
480 diffusion parameters (**Fig.8**). Yet, when comparing model metrics such as variance explained of
481 linear and non-linear models predicting fornix and whole-brain diffusion metrics from age, sex and
482 scanner site and their interactions, there were no apparent differences between models (**ST9, ST12**).
483 This implies that contrary to previous research observing the entire lifespan presenting curvilinear
484 DTI age trajectories^{25,33}, or trends towards curvilinearity (with yet better linear fit for selected
485 regions)⁵², we found that fornix and whole-brain age trajectories from age 40 can be described as
486 linear when accounting for covariates sex, age, and scanner site. While the crossing of the x-axis at
487 age 65 (**Fig.8, SF9**) is a reflection of the sample’s age distribution (**Fig.1**), in addition to the shapes
488 of the different age-trajectories, it reveals that the different diffusion approaches are similarly age-
489 sensitive or measure similar underlying ageing-related changes. For whole-brain metrics, changes
490 become exacerbated from 65 onwards (**Fig.1**), with reasons potentially laying in an accelerated
491 neurodegeneration also reflected in the exponentially increasing risk to develop neurodegenerative
492 disorders from age 65 onwards⁵³. For example, in the USA, 3% of 65-74 year olds, 17% of the 75-
493 84 year olds, and 32% of those ag 85+ developed Alzheimer’s dementia⁵⁴. Subclinical or preclinical
494 states are, however, not captured by these approximations, and WM changes usually precede
495 clinical detections, making WM monitoring a promising tool for early detection.
496

497 Beyond WM, fornix changes seem to play an important role for GM changes, particularly in the
498 hippocampus: for example, fornix glia damages lead to hippocampal GM atrophy⁵⁵. This might be
499 reflected by dis-connectivity of fornix with other brain regions as described by decreasing extra
500 axonal space coefficients (**Fig.7b**), and following changes in fornix function. Potentially, the
501 consequences of age-related fornix changes thereby affect functionality of a selection of brain
502 regions, such as the hippocampus. While several studies have presented ageing-related fornix
503 microstructure changes in humans^{56,57} and monkeys⁵⁸ in small samples, only one large-scale study
504 revealed findings connected to the fornix, namely strongest default mode network GM volume
505 covariation with fornix WM microstructure⁵⁹. This suggests that fornix, a key connector of the
506 limbic system with the cortex, might also be critical for default mode network functioning.
507 Moreover, memory and episodic recall have been related to fornix⁶⁰. Hence, fornix changes might
508 play an important role in known ageing-dependent temporal lobe changes, and specifically
509 hippocampal changes for ageing-related pathological developments⁶¹⁻⁶⁴. Previous studies presented

510 age-related fornix DTI metric changes⁵⁵⁻⁵⁷ which potentially appear prior to hippocampal volume
511 changes^{55,56}, and are related to declining episodic memory performance⁵⁵. Hence, fornix changes
512 potentially serve to predict future pathological development, suggesting WM changes in the fornix
513 as a potential ageing biomarker and therapeutic target. This supports previous findings showing
514 network re-activations, metabolic and GM changes after fornix deep-brain-stimulation antagonising
515 the progression of neurodegenerative disorders⁶⁵.

516

517 The current study gives for the first time a detailed account on region-wise-to-global WM-age
518 relationships for multiple diffusion approaches in a representative sample, and highlights fornix as
519 an important structure for age predictions across diffusion approaches. Brain age was estimated best
520 when combining approaches, showing different aspects of WM to contribute to brain age with
521 fornix being the central region for these predictions.

522

523 **Data Availability**

524 All raw data are available from the UKB⁵ (www.ukbiobank.ac.uk). Synthetic datasets with the
525 synthpop⁸⁹ R package based on the original data for all six diffusion approaches (resulting in six
526 datasets) to run the code are openly available at the Open Science Framework:
527 (<https://osf.io/nv8ea/>). Synthetic datasets are simulated datasets closely mimicking the statistical
528 characteristics of the original data while protecting data privacy and anonymity.

529

530 **Code Availability**

531 Code needed to run brain age predictions in Python, and for all analyses and visualisations in R is
532 available at the Open Science Framework: (<https://osf.io/nv8ea/>).

533

534 **Acknowledgements**

535 This research was funded by the Research Council of Norway (#223273). This study has been
536 conducted using UKB data under Application 27412. UKB has received ethics approval from the
537 National Health Service National Research Ethics Service (ref 11/NW/0382). The work was
538 performed on the Service for Sensitive Data (TSD) platform, owned by the University of Oslo,
539 operated and developed by the TSD service group at the University of Oslo IT-Department (USIT).
540 Computations were performed using resources provided by UNINETT Sigma2 – the National
541 Infrastructure for High Performance Computing and Data Storage in Norway. Finally, we want to
542 thank all UKB participants and facilitators who made this research possible.

543

544

545

546 **Author contributions**

547 M.K.: Study design, Software, Formal analysis, Visualisations, Project administration, Writing –
548 original draft, Writing – review & editing
549 A.M.d.L.: Software, Writing – review & editing
550 D.v.d.M.: Software, Writing – review & editing
551 A.L.: Writing – review & editing, Funding acquisition
552 E.E.: Writing – review & editing
553 D.B.: Writing – review & editing
554 O.A.A.: Writing – review & editing, Funding acquisition
555 L.W.: Writing – review & editing, Funding acquisition
556 I.I.M. supervision, Study design, Data pre-processing and quality control, Writing – review &
557 editing, Funding acquisition
558

559 **Conflicts of Interesting**

560 The authors have no conflicts of interest to disclaim.

561

562 **References**

1. Grady, C. L. The cognitive neuroscience of ageing. *Nat. Rev. Neurosci.* **13**, 491–505 (2012).
2. Symms, M., Jäger, H. R., Schmierer, K. & Yousry, T. A. A review of structural magnetic resonance neuroimaging. *J. Neurol. Neurosurg. Psychiatry* **75**, 1235–1244 (2004).
3. Grady, C. The cognitive neuroscience of ageing. *Nat. Rev. Neurosci.* **2012** *13*, 491–505 (2012).
4. Wrigglesworth, J. *et al.* Factors associated with brain ageing - a systematic review. *BMC Neurol.* **2021** *21*, 1–23 (2021).
5. Sudlow, C. *et al.* UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. *PLOS Med.* **12**, e1001779 (2015).
6. Van Essen, D. C. *et al.* The Human Connectome Project: a data acquisition perspective. *NeuroImage* **62**, 2222–2231 (2012).
7. Marek, S. *et al.* Reproducible brain-wide association studies require thousands of individuals. *Nat. 2022* *603*, 654–660 (2022).
8. Lawrence, K. E. *et al.* Age and sex effects on advanced white matter microstructure measures in 15,628 older adults: A UK biobank study. *Brain Imaging Behav.* **15**, 2813–2823 (2021).

9. Cox, S. R. *et al.* Ageing and brain white matter structure in 3,513 UK Biobank participants. *Nat. Commun.* **2016** *7*, 1–13 (2016).
10. Kaufmann, T. *et al.* Common brain disorders are associated with heritable patterns of apparent aging of the brain. *Nat. Neurosci.* **22**, 1617 (2019).
11. Franke, K. & Gaser, C. Ten years of brainage as a neuroimaging biomarker of brain aging: What insights have we gained? *Front. Neurol.* **10**, (2019).
12. Cole, J. H. Multimodality neuroimaging brain-age in UK biobank: relationship to biomedical, lifestyle, and cognitive factors. *Neurobiol. Aging* **92**, 34–42 (2020).
13. Leonardsen, E. H. *et al.* Deep neural networks learn general and clinically relevant representations of the ageing brain. *medRxiv* (2021) doi:10.1101/2021.10.29.21265645.
14. Cole, J. H. & Franke, K. Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers. *Trends in Neurosciences* vol. 40 681–690 Preprint at <https://doi.org/10.1016/j.tins.2017.10.001> (2017).
15. Rokicki, J. *et al.* Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders. *Hum. Brain Mapp.* **42**, 1714–1726 (2021).
16. de Lange, A. M. G. *et al.* Multimodal brain-age prediction and cardiovascular risk: The Whitehall II MRI sub-study. *NeuroImage* **222**, 117292 (2020).
17. de Lange, A. M. G. *et al.* Prominent health problems, socioeconomic deprivation, and higher brain age in lonely and isolated individuals: A population-based study. *Behav. Brain Res.* **414**, (2021).
18. Vidal-Pineiro, D. *et al.* Individual variations in 'brain age' relate to early-life factors more than to longitudinal brain change. *elifesciences.org* (2021) doi:10.7554/eLife.
19. Beck, D. *et al.* Cardiometabolic risk factors associated with brain age and accelerate brain ageing. *Hum. Brain Mapp.* **43**, 700–720 (2022).
20. Cole, J. H. *et al.* Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. *NeuroImage* **163**, 115–124 (2017).
21. Dosenbach, N. U. F. *et al.* Prediction of individual brain maturity using fMRI. *Science* **329**, 1358–1361 (2010).

22. Franke, K., Ziegler, G., Klöppel, S. & Gaser, C. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters. *NeuroImage* **50**, 883–892 (2010).
23. Baecker, L., Garcia-Dias, R., Vieira, S., Scarpazza, C. & Mechelli, A. Machine learning for brain age prediction: Introduction to methods and clinical applications. *eBioMedicine* **72**, 103600 (2021).
24. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. *Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.* **13-17-August-2016**, 785–794 (2016).
25. Beck, D. *et al.* White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction. *NeuroImage* **224**, 117441 (2021).
26. de Lange, A. M. G. *et al.* Population-based neuroimaging reveals traces of childbirth in the maternal brain. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 22341–22346 (2019).
27. Salih, A. *et al.* Brain age estimation at tract group level and its association with daily life measures, cardiac risk factors and genetic variants. *Sci. Rep.* **2021 111** **11**, 1–14 (2021).
28. de Lange, A. M. G. *et al.* Multimodal brain-age prediction and cardiovascular risk: The Whitehall II MRI sub-study. *NeuroImage* **222**, 117292 (2020).
29. Chen, C. Le *et al.* Generalization of diffusion magnetic resonance imaging–based brain age prediction model through transfer learning. *NeuroImage* **217**, 116831 (2020).
30. Richard, G. *et al.* Assessing distinct patterns of cognitive aging using tissue-specific brain age prediction based on diffusion tensor imaging and brain morphometry. *PeerJ* **2018**, (2018).
31. Basser, P. J., Mattiello, J. & LeBihan, D. MR diffusion tensor spectroscopy and imaging. *Biophys. J.* **66**, 259–267 (1994).
32. Novikov, D. S., Fieremans, E., Jespersen, S. N. & Kiselev, V. G. Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation. *NMR Biomed.* **32**, e3998 (2019).
33. Westlye, L. T. *et al.* Life-Span Changes of the Human Brain White Matter: Diffusion Tensor Imaging (DTI) and Volumetry. *Cereb. Cortex* **20**, 2055–2068 (2010).
34. Reisert, M., Kellner, E., Dhital, B., Hennig, J. & Kiselev, V. G. Disentangling micro from mesostructure by diffusion MRI: A Bayesian approach. *NeuroImage* **147**, 964–975 (2017).

35. Jensen, J. H., Helpern, J. A., Ramani, A., Lu, H. & Kaczynski, K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. *Magn. Reson. Med.* **53**, 1432–1440 (2005).
36. Fieremans, E., Jensen, J. H. & Helpern, J. A. White matter characterization with diffusional kurtosis imaging. *NeuroImage* **58**, 177–188 (2011).
37. Kaden, E., Kruggel, F. & Alexander, D. C. Quantitative mapping of the per-axon diffusion coefficients in brain white matter. *Magn. Reson. Med.* **75**, 1752–1763 (2016).
38. Kaden, E., Kelm, N. D., Carson, R. P., Does, M. D. & Alexander, D. C. Multi-compartment microscopic diffusion imaging. *NeuroImage* **139**, 346–359 (2016).
39. Maximov, I. I. *et al.* Fast qualitY conTrol meThod foR derIved diffUsion Metrics (YTTRIUM) in big data analysis: U.K. Biobank 18,608 example. *Hum. Brain Mapp.* **42**, 3141–3155 (2021).
40. Raghavan, S. *et al.* Diffusion models reveal white matter microstructural changes with ageing, pathology and cognition. *Brain Commun.* **3**, (2021).
41. Hotelling, H. Relations Between Two Sets Of Variates. *Biometrika* **28**, 321–377 (1936).
42. Zou, G. Y. Toward Using Confidence Intervals to Compare Correlations. *Psychol. Methods* **12**, 399–413 (2007).
43. XGBoost Developers. XGBoost Documentation - Introduction to Boosted Trees. <https://xgboost.readthedocs.io/en/latest/tutorials/model.html> (2021).
44. Sture Holm. A Simple Sequentially Rejective Multiple Test Procedure. *Scand. J. Stat.* **6**, 65–70 (1979).
45. de Lange, A. M. G. *et al.* Mind the gap: Performance metric evaluation in brain-age prediction. *Hum. Brain Mapp.* **43**, 3113–3129 (2022).
46. De Santis, S., Gabrielli, A., Palombo, M., Maraviglia, B. & Capuani, S. Non-Gaussian diffusion imaging: a brief practical review. *Magn. Reson. Imaging* **29**, 1410–1416 (2011).
47. Kwon, Y. H., Jang, S. H. & Yeo, S. S. Age-related changes of lateral ventricular width and periventricular white matter in the human brain: a diffusion tensor imaging study. *Neural Regen. Res.* **9**, 986 (2014).
48. Pinaya, W. H. L. *et al.* Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer's disease in a cross-sectional multi-cohort study. *Sci. Rep.* **11**, 15746 (2021).

49. Meeter, L. H., Kaat, L. D., Rohrer, J. D. & Van Swieten, J. C. Imaging and fluid biomarkers in frontotemporal dementia. *Nat. Rev. Neurol.* **13**, 406–419 (2017).
50. Thomas, A. G., Koumellis, P. & Dineen, R. A. The fornix in health and disease: An imaging review. *Radiographics* **31**, 1107–1121 (2011).
51. Cox, S. R. *et al.* Ageing and brain white matter structure in 3,513 UK Biobank participants. *Nat. Commun.* **7**, (2016).
52. Davis, S. W. *et al.* Assessing the effects of age on long white matter tracts using diffusion tensor tractography. *NeuroImage* **46**, 530 (2009).
53. Nichols, E. *et al.* Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. *Lancet Public Health* **7**, e105–e125 (2022).
54. 2020 Alzheimer's disease facts and figures. *Alzheimers Dement.* **16**, 391–460 (2020).
55. Metzler-Baddeley, C. *et al.* Fornix white matter glia damage causes hippocampal gray matter damage during age-dependent limbic decline. *Sci. Rep. 2019* **9**, 1–14 (2019).
56. Chen, D. Q., Strauss, I., Hayes, D. J., Davis, K. D. & Hodaie, M. Age-related changes in diffusion tensor imaging metrics of fornix subregions in healthy humans. *Stereotact. Funct. Neurosurg.* **93**, 151–159 (2015).
57. Christiansen, K. *et al.* The status of the precommissural and postcommissural fornix in normal ageing and mild cognitive impairment: An MRI tractography study. *NeuroImage* **130**, 35–47 (2016).
58. Peters, A., Sethares, C. & Moss, M. B. How the primate fornix is affected by age. *J. Comp. Neurol.* **518**, 3962–3980 (2010).
59. Kernbach, J. M. *et al.* Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. *Proc. Natl. Acad. Sci. U. S. A.* **115**, 12295–12300 (2018).
60. Senova, S., Fomenko, A., Gondard, E. & Lozano, A. M. Anatomy and function of the fornix in the context of its potential as a therapeutic target. *J. Neurol. Neurosurg. Psychiatry* **91**, 547–559 (2020).
61. Hedden, T. & Gabrieli, J. D. E. Insights into the ageing mind: a view from cognitive neuroscience. *Nat. Rev. Neurosci.* **2004** *52* 5, 87–96 (2004).
62. Burke, S. N. & Barnes, C. A. Neural plasticity in the ageing brain. *Nat. Rev. Neurosci.* **2006** *7* 7, 30–40 (2006).

63. Pluvinage, J. V. & Wyss-Coray, T. Systemic factors as mediators of brain homeostasis, ageing and neurodegeneration. *Nat. Rev. Neurosci.* **21**, 93–102 (2020).
64. Cabeza, R. *et al.* Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. *Nat. Rev. Neurosci.* doi:10.1038/s41583-018-0068-2.
65. Jakobs, M., Lee, D. J. & Lozano, A. M. Modifying the progression of Alzheimer's and Parkinson's disease with deep brain stimulation. *Neuropharmacology* **171**, 107860 (2020).
66. Novikov, D. S., Kiselev, V. G. & Jespersen, S. N. On modeling. *Magn. Reson. Med.* **79**, 3172–3193 (2018).
67. Lyall, D. M. *et al.* Quantifying bias in psychological and physical health in the UK Biobank imaging sub-sample. *Brain Commun.* **4**, (2022).
68. Bach, M. *et al.* Methodological considerations on tract-based spatial statistics (TBSS). *NeuroImage* **100**, 358–369 (2014).
69. Popescu, S. G., Glocker, B., Sharp, D. J. & Cole, J. H. Local Brain-Age: A U-Net Model. *Front. Aging Neurosci.* **13**, 838 (2021).
70. Kantarci, K. Fractional anisotropy of the fornix and hippocampal atrophy in Alzheimer's disease. *Front. Aging Neurosci.* **6**, 316 (2014).
71. Maximov, I. I., Alnæs, D. & Westlye, L. T. Towards an optimised processing pipeline for diffusion magnetic resonance imaging data: Effects of artefact corrections on diffusion metrics and their age associations in UK Biobank. *Hum. Brain Mapp.* **40**, 4146–4162 (2019).
72. Veraart, J., ... E. F.-M. resonance in & 2016, undefined. Diffusion MRI noise mapping using random matrix theory. *Wiley Online Libr.* **76**, 1582–1593 (2016).
73. Kellner, E., Dhital, B., ... V. K.-M. resonance in & 2016, undefined. Gibbs-ringing artifact removal based on local subvoxel-shifts. *Wiley Online Libr.* **76**, 1574–1581 (2016).
74. Andersson, J. L. R. & Sotiroopoulos, S. N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. *NeuroImage* **125**, 1063–1078 (2016).
75. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. *NeuroImage* **62**, 782–790 (2012).
76. Mathworks. Matlab version 9.3.0.713579 (R2017b). Preprint at (2017).
77. Benitez, A., Jensen, J. H., Falangola, M. F., Nietert, P. J. & Helpern, J. A. Modeling white matter tract integrity in aging with diffusional kurtosis imaging. *Neurobiol. Aging* **70**, 265–275

(2018).

78. Hope, T. R. *et al.* Diffusion tensor and restriction spectrum imaging reflect different aspects of neurodegeneration in Parkinson's disease. *PLOS ONE* **14**, e0217922 (2019).
79. Pines, A. R. *et al.* Leveraging multi-shell diffusion for studies of brain development in youth and young adulthood. *Dev. Cogn. Neurosci.* **43**, 100788 (2020).
80. Smith, S. M. *et al.* Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. *NeuroImage* **31**, 1487–1505 (2006).
81. Smith, S. M. *et al.* Advances in functional and structural MR image analysis and implementation as FSL. *NeuroImage* **23**, S208–S219 (2004).
82. Smith, S. M. Fast robust automated brain extraction. *Hum. Brain Mapp.* **17**, 143–155 (2002).
83. Mori, S., Wakana, S., Zijl, P. Van & Nagae-Poetscher, L. MRI atlas of human white matter. (2005).
84. Hua, K. *et al.* Tract probability maps in stereotaxic spaces: Analyses of white matter anatomy and tract-specific quantification. *NeuroImage* **39**, 336–347 (2008).
85. de Lange, A. M. G. & Cole, J. H. Commentary: Correction procedures in brain-age prediction. *NeuroImage Clin.* **26**, (2020).
86. Hotelling, H. The Selection of Variates for Use in Prediction with Some Comments on the General Problem of Nuisance Parameters. <https://doi.org/10.1214/aoms/1177731867> **11**, 271–283 (1940).
87. Schuirmann, D. L. On hypothesis-testing to determine if the mean of a normal-distribution is contained in a known interval. *Biometrics* **37**, 617 (1981).
88. Kirkwood, T. B. L. & Westlake, W. J. Bioequivalence Testing -- A Need to Rethink. *Biometrics* **37**, 589 (1981).
89. Nowok, B., Raab, G. M. & Dibben, C. synthpop: Bespoke Creation of Synthetic Data in R. *J. Stat. Softw.* **74**, 1–26 (2016).

563
564

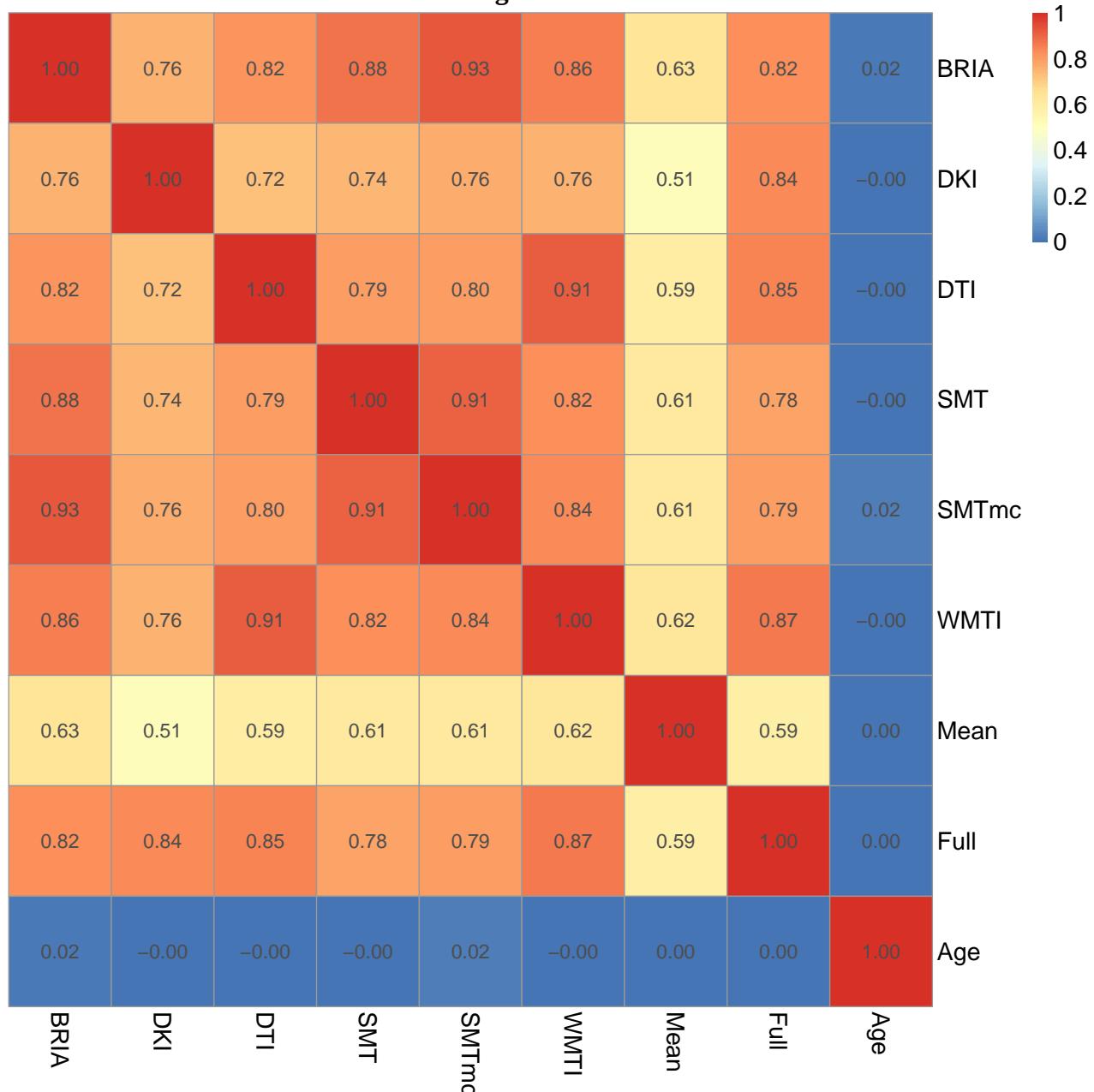
565 **Supplement**

566

567 **Supplementary Figures**

568

569 **SF1: Correlations of corrected BAG and age across models**

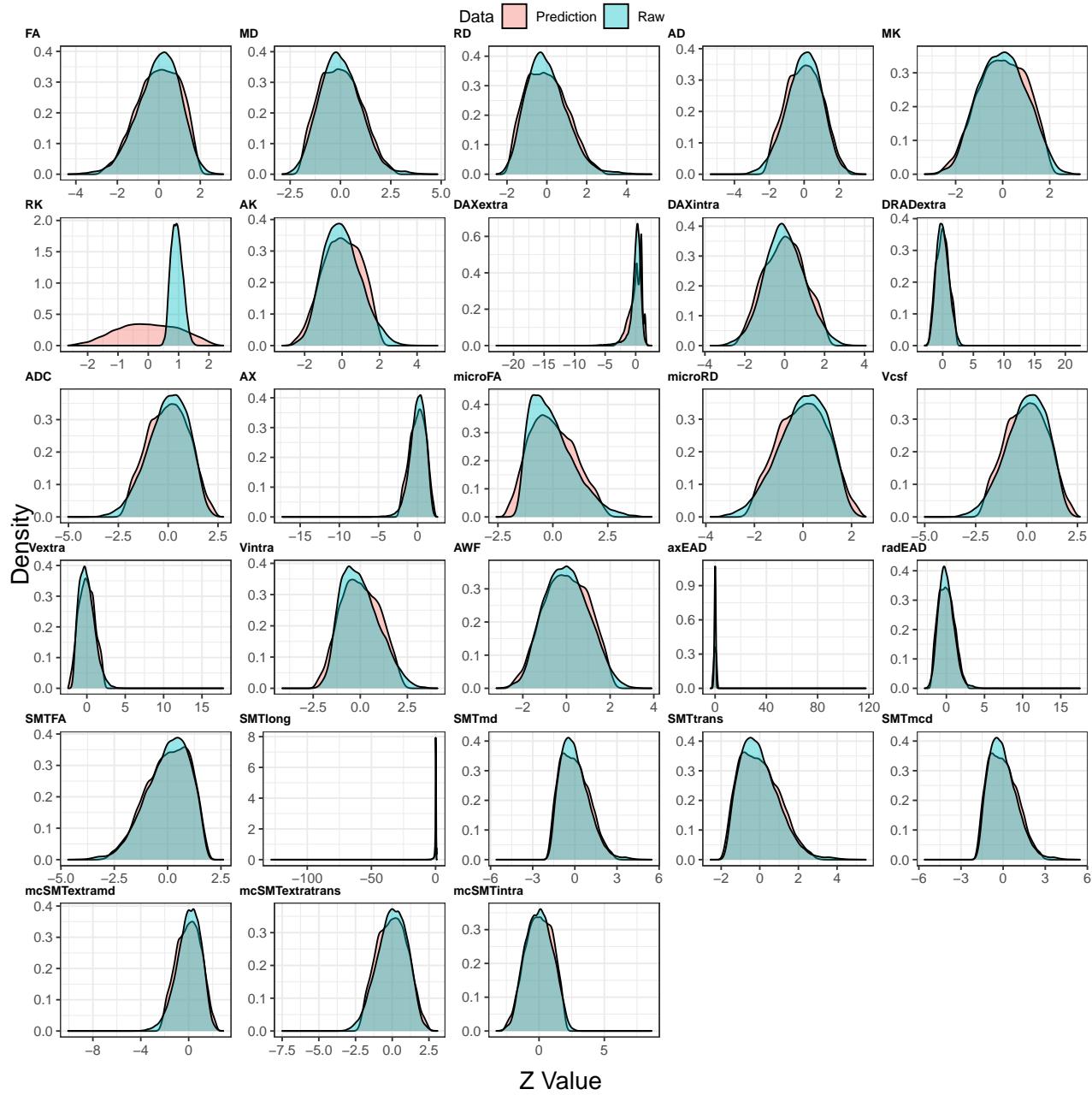


570 Mean = multimodal model including only mean metrics; Full = full multimodal model including all diffusion indices.
571 All correlations were significant at $p_{Holm} < .001$.

572

573

574 **SF2: Comparison of predicted and raw fornix Z-scored diffusion metrics' density**

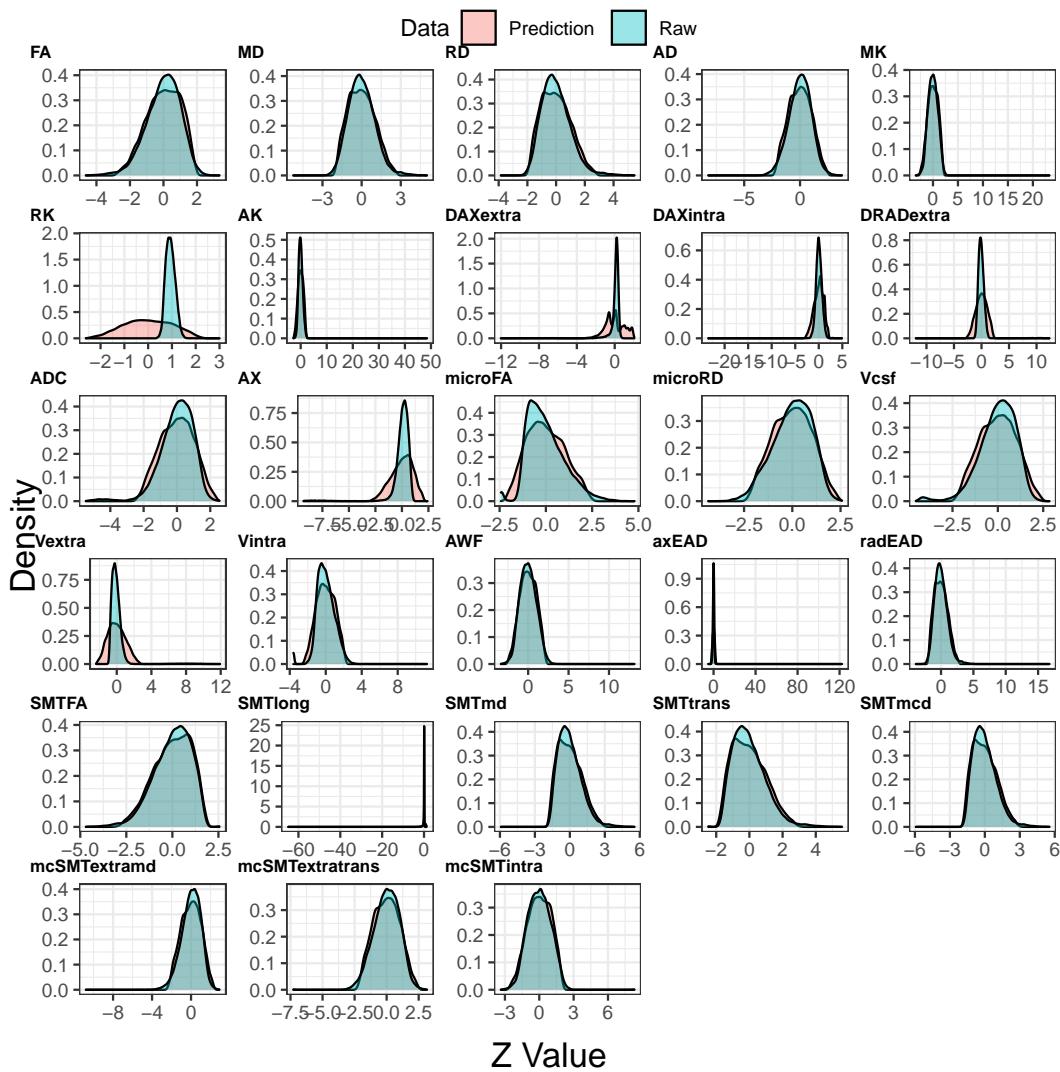


575 Density plots for each Z-scored (standardised) raw and predicted values for each fornix metric from the six observed
 576 diffusion models. Predictions were made from the linear model described in Equation 1.
 577 Find the same density plot for data including QC outliers in SF3.

578

579 Supplementing the density plots, two one-sided tests for equivalence testing (TOST)^{87,88} were used
 580 to test whether mean differences between the model's predictions (**SF9A-B**) and the raw scores
 581 (**SF9C-D**) are equal to zero with the assumptions that observed Z-score differences smaller $|0.5|$ are
 582 equal to 0. Following this assumption, differences were equal to zero for all metrics, except the DKI
 583 metric RK: $M_{\text{diff}} = 0.943$, 95% CI [0.935, 0.951], $p \approx 1$.

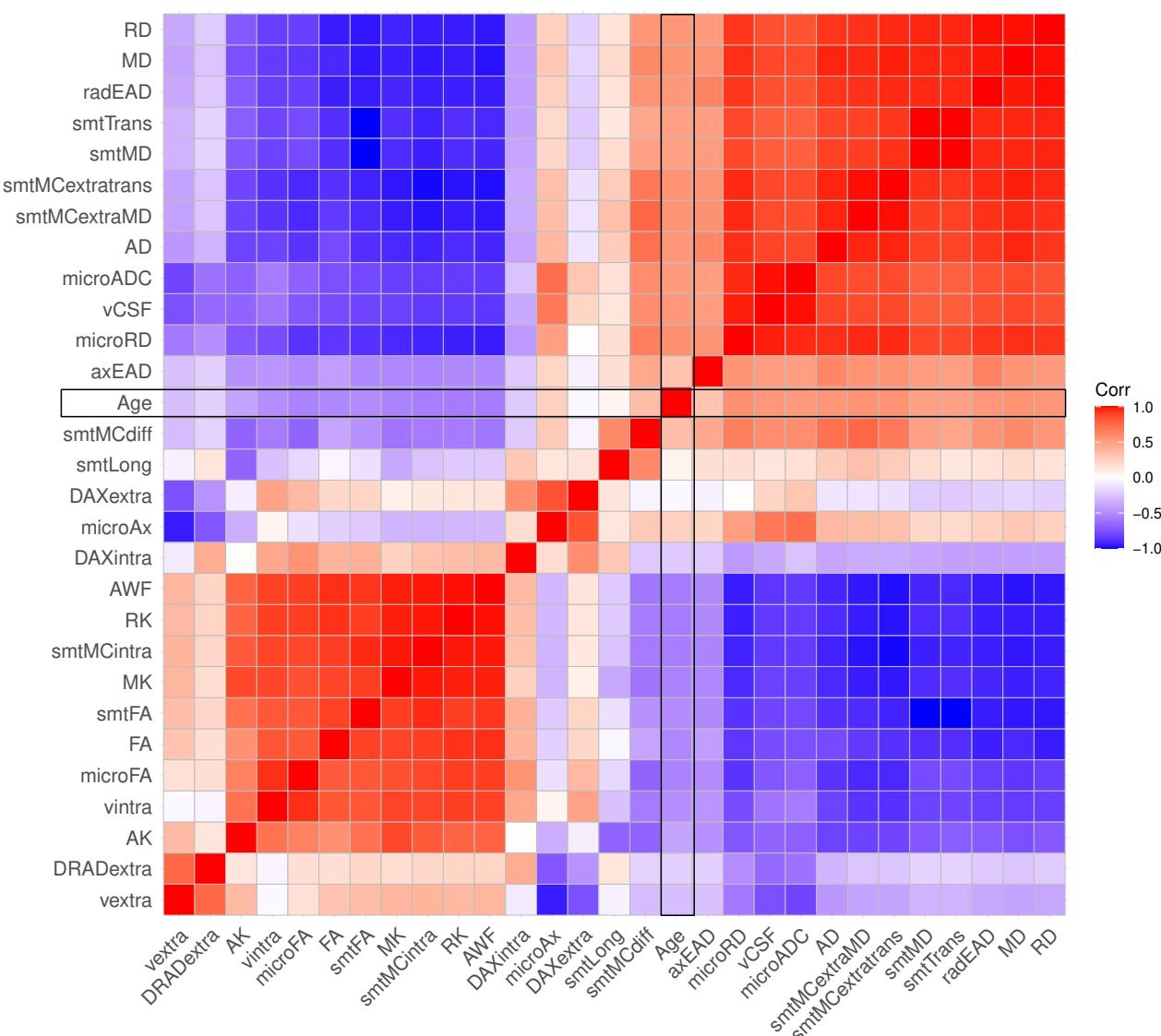
584 **SF3: Comparison of predicted and raw Fornix Z-scored diffusion metrics' density including**
 585 **QC outliers**



587 Density plots for each Z-scored (standardised) raw and predicted values for each fornix metric from the six observed
 588 diffusion models on data *containing QC outliers*. Predictions were made from the linear model described in Equation 1.
 589
 590 Outliers were defined by the YTTRIUM method³⁹ including outlier removal based on density-based spatial
 591 clusterisation (k-means). The total data used here was $N_{full+outliers} = 38,687$, including the full data $N_{full} = 35,749$ used for
 592 all analyses and $N_{outliers} = 2,938$ datasets defined as outliers. This dataset does not include participants who withdrew
 593 their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.

594
 595

596 **SF4: Correlations between Fornix diffusion metrics and chronological age for data including**
 597 **QC outliers**



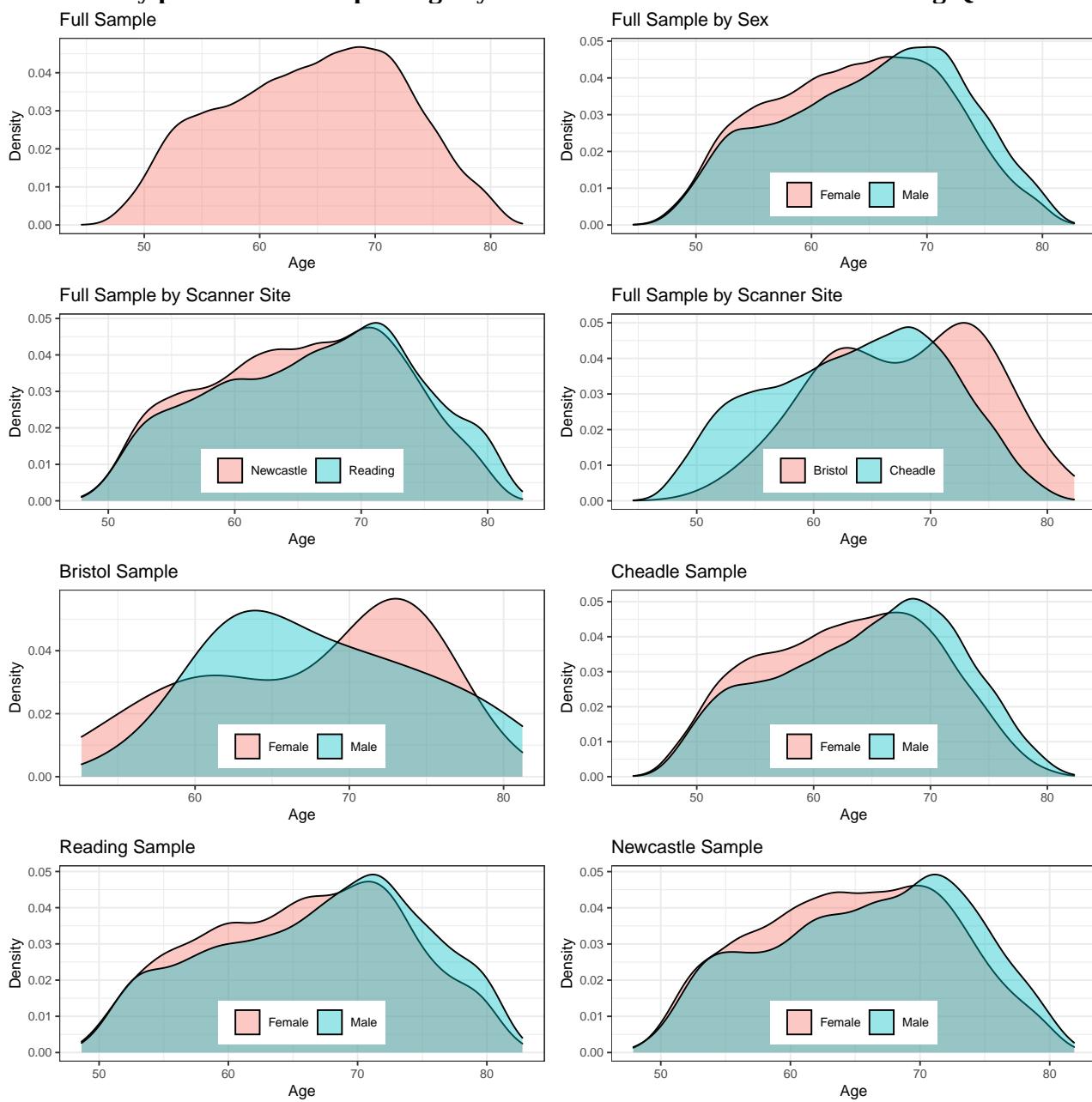
598 All correlations were significant at FWE-corrected $p_{Holm} < .05$.

599
 600 Outliers were defined by the YTTRIUM method³⁸ including outlier removal based on density-based spatial
 601 clusterisation (k-means). The total data used here was $N_{full+outliers} = 38,687$, including the full data $N_{full} = 35,749$ used for
 602 all analyses and $N_{outliers} = 2,938$ datasets defined as outliers. This dataset does not include participants who withdrew
 603 their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.

604
 605
 606

607

SF5: Density plots for the sample's age by sex and scanner site for data including QC outliers

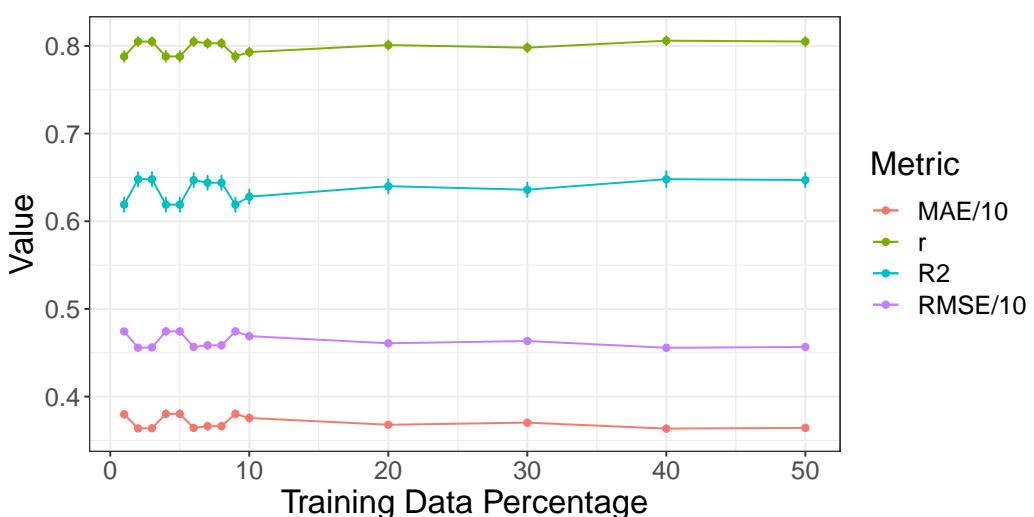


608

Outliers were defined by the YTTRIUM method³⁸ including outlier removal based on density-based spatial clusterisation (k-means). The total data used here was $N_{\text{full+outliers}} = 38,687$, including the full data $N_{\text{full}} = 35,749$ used for all analyses and $N_{\text{outliers}} = 2,938$ datasets defined as outliers. This dataset does not include participants who withdrew their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.

612 **SF6: Model performance for different train-test splits for data *including* QC outliers**

613



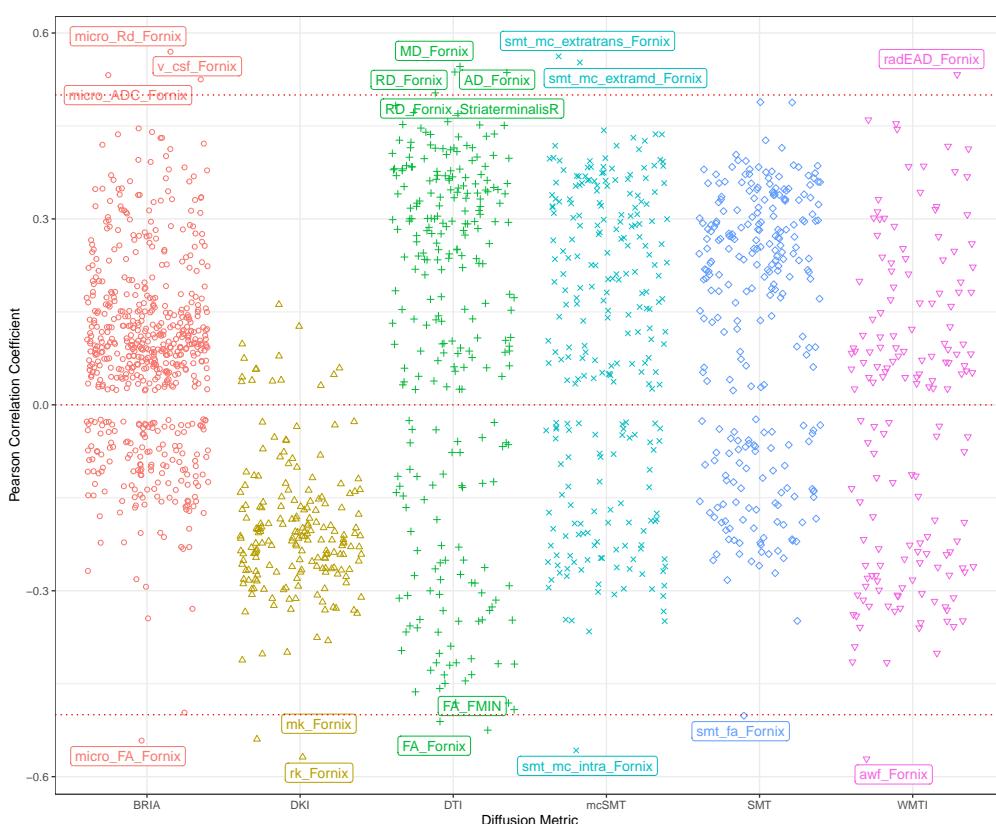
614 Model metrics R², RMSE, MAE and their standard deviations, as well as the Pearson's correlations between predicted
615 and chronological age and its 95% confidence interval are displayed for different training data percentages of the total
616 data (x-axis). For visualisation purposes, RMSE and MAE were divided by 10. For exact values see Suppl. Table ST8.

617

618 Outliers were defined by the YTTRIUM method³⁸ including outlier removal based on density-based spatial
619 clusterisation (k-means). The total data used here was N_{full+outliers} = 38,687, including the full data N_{full} = 35,749 used for
620 all analyses and N_{outliers} = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew
621 their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.

622

623 **SF7: Correlations between diffusion metrics and chronological age for data including QC**
624 **outliers**
625

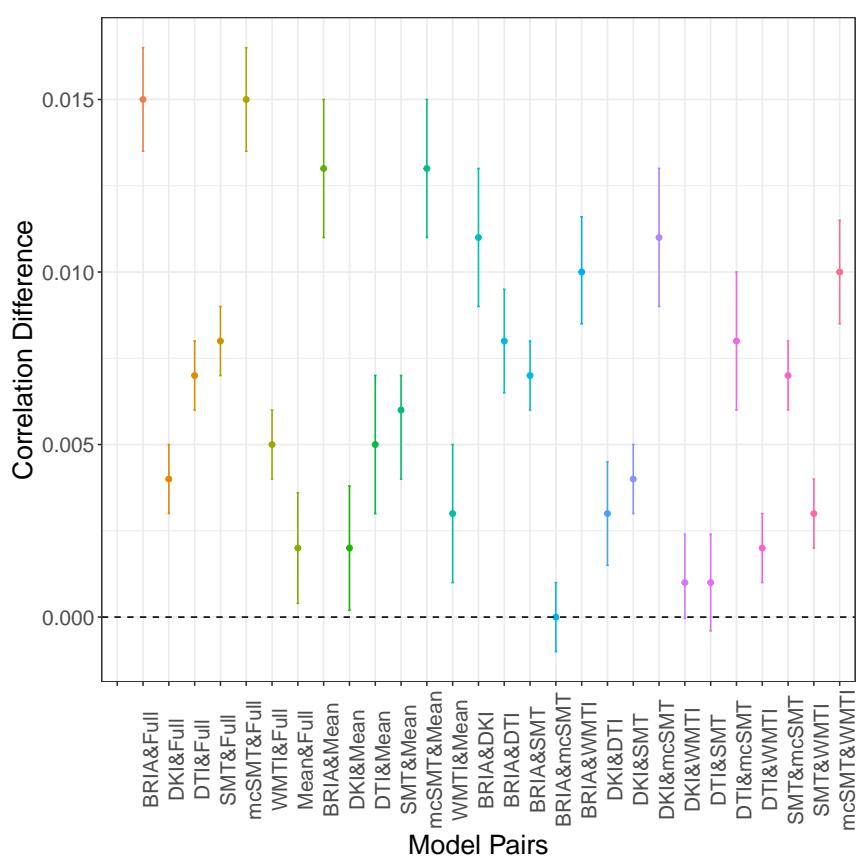


626 Note: Each point indicates one correlation between a diffusion feature and chronological age. Names of diffusion
627 features are displayed when correlations between the feature and age reached a Pearson correlation of $|r| > 0.5$. Holm
628 correction was used for FDR-correction, and all displayed values were significant at $p < .001$.
629 Results for the analysis run on data *not* including QC outliers ($N = 35,749$) can be found in Fig.8.

630
631 Outliers were defined by the YTTRIUM method³⁸ including outlier removal based on density-based spatial
632 clusterisation (k-means). The total data used here was $N_{\text{full+outliers}} = 38,687$, including the full data $N_{\text{full}} = 35,749$ used for
633 all analyses and $N_{\text{outliers}} = 2,938$ datasets defined as outliers. This dataset does not include participants who withdrew
634 their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.

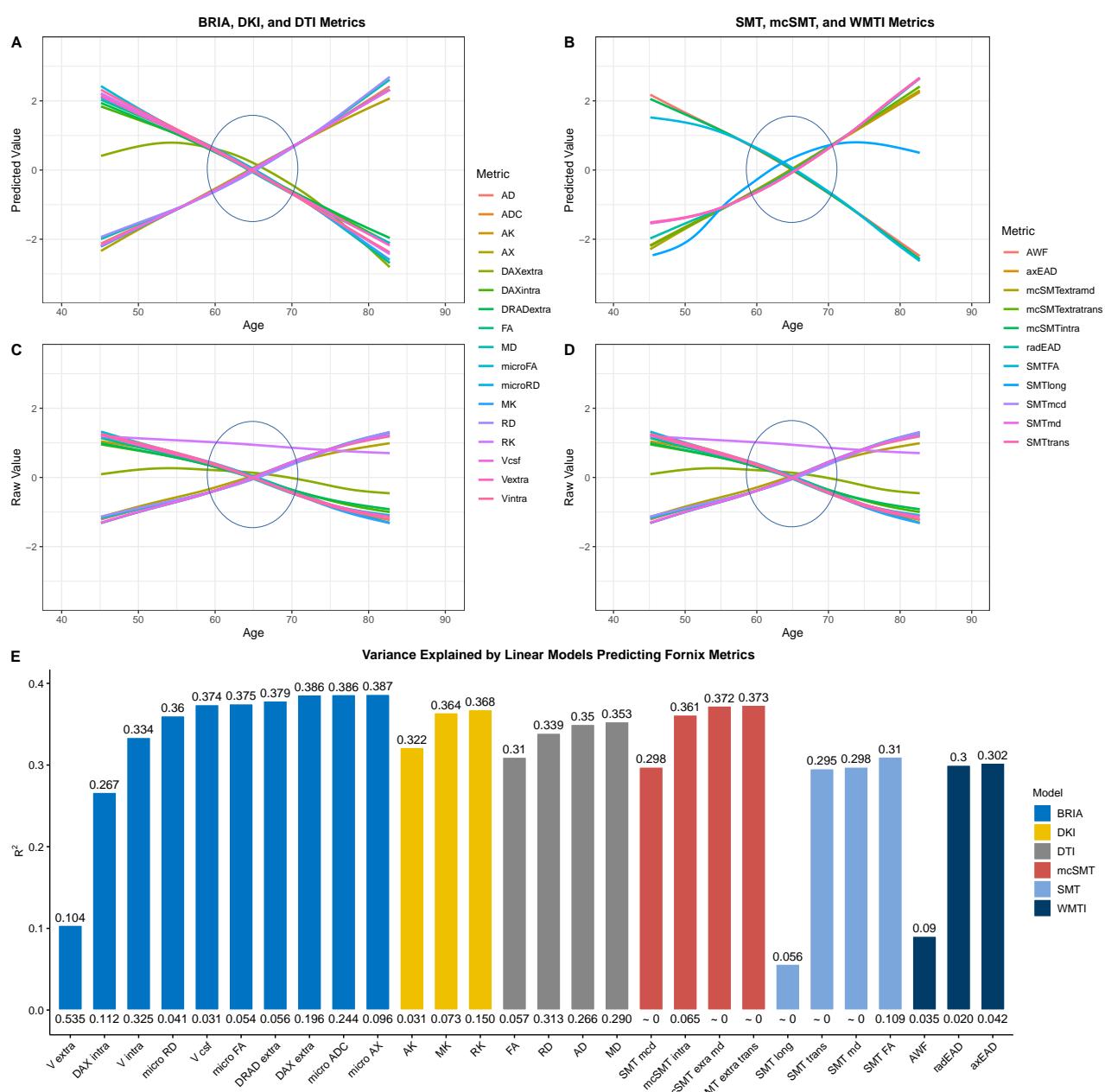
635
636
637
638

SF8: Differences between correlations of chronological and *corrected predicted age* across diffusion approaches with 95% confidence interval



639
640

SF9: Raw and predicted fornix diffusion metrics by chronological age

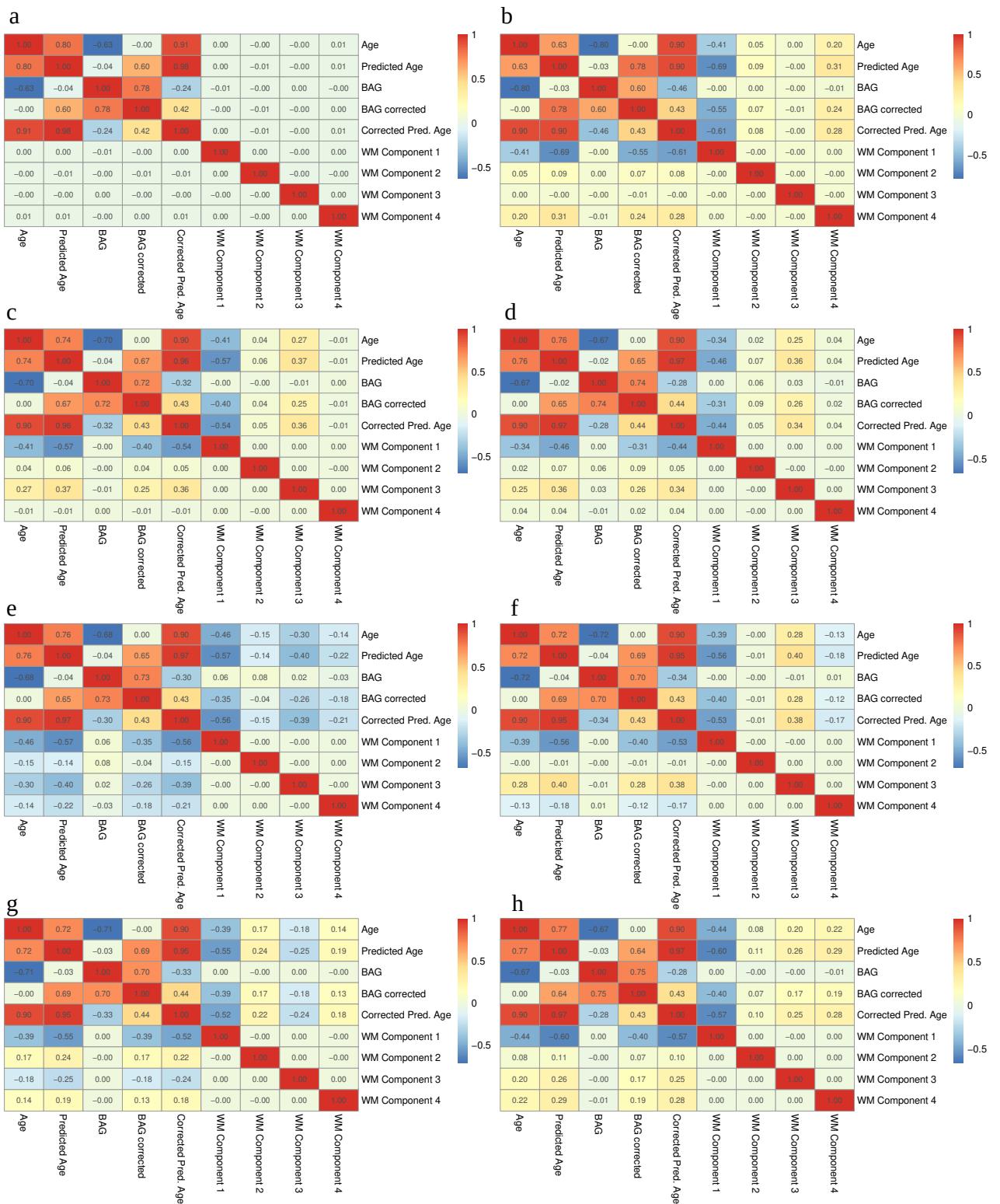


641 SF9A-D shows age curves for each standardised (z-score) fornix diffusion skeleton value (y-axis) plotted as a function
642 of age (x-axis). Shaded areas represent 95% CI. Curves fitted to raw values (SF9C-D) serve as a comparison to the
643 lm-derived predicted values from Equation 1 (Fig.A-B). SF9E indicates the model fit for the linear models from SF9A-B,
644 showing R^2_{adj} values on top and Standard Error (SE) on the bottom of the bars which each represent a Fornix skeleton
645 value for one of the seven models. Lines crossing at age 65 are marked with circles. Model summaries of all 28 Fornix
646 models can be found in ST5. The same visualisation of diffusion values averaged across the brain can be found in Fig.8.

647 Model fit metrics R^2_{adj} and Standard Error (SE) for the models accounting for age, sex and scanner site (Equation 1)
648 when predicting fornix metrics were calculated (SF9E; see Fig.8 for whole brain metrics). Highest R^2_{adj} and variability
649 across metrics were observed when predicting BRIA fornix features, lowest R^2_{adj} when predicting SMT fornix metrics.
650 DKI, DTI and mcSMT fornix diffusion metric predictions were most consistent, with BRIA, mcSMT and SMT having
651 one outlier each, Vextra, SMTlong, and AWF, respectively, being less sensitive to age, sex and scanner site. Highest SE
652 could be observed in the BRIA model and the lowest SE in SMT.

654 To test age-sensitivity of the fornix features, likelihood ratio tests were conducted comparing models derived from
655 Equation 1 against models derived from the same formula with age removed (Equation 2). All models showed
656 significant age dependence, with BRIA microRD ($\chi^2 = 14,480.54$, $p_{Holm} < .001$), microADC ($\chi^2 = 14,384.87$, p_{Holm}
657 < .001) and SMT vCSF ($\chi^2 = 14,311.47$, $p_{Holm} < .001$) being the most age-sensitive metrics, and mcSMT smtLong ($\chi^2 =$
658 1,554.49, $p_{Holm} < .001$), BRIA DAXextra ($\chi^2 = 1,824.54$, $p_{Holm} < .001$) and axEAD ($\chi^2 = 3,024.74$, $p_{Holm} < .001$) the least
659 age-sensitive metrics (ST4).

661 **SF10. Pearson's r for age, brain age and WM principal components' relationships**



666

667 The first five principal components of the respective number of WM metrics for each of the eight principal components analyses were related to age, predicted (brain) age, corrected predicted age, uncorrected and corrected BAG (see **ST13** for overview of variance explained by principal components). Notably, BAG was not or only weakly related to WM components, and relationships of age, predicted age, corrected predicted age and corrected BAG with WM components followed the same pattern of direction and strength of associations, suggesting age-dependencies of these measures.

672

673 When predicting the first 4 components retrieved from the respective models (as done for brain age predictions), using
674 BAG, age, sex, site, as well as age-sex and sex-site interactions as predictors (as specified in Equation 1), different sized
675 proportions of the variance in the components could be explained with corrected and uncorrected BAG models not
676 differing in variance predicted and beta values. Average data BAG models explained most variance in its first
677 component $R^2 = .505$, with $b_{BAG} = -0.673$, followed by WMTI $R^2 = .372$, with $b_{BAG} = -0.847$, and the DTI BAG model
678 $R^2 = .358$, with $b_{BAG} = -1.082$. The second component was best predicted by a DTI BAG model $R^2 = .152$, with $b_{BAG} =$
679 -0.059 . The third component was best predicted by the DKI BAG model $R^2 = .256$, $b_{BAG} = 0.170$, followed by the DTI
680 BAG model $R^2 = .250$, $b_{BAG} = -0.210$; and the SMT BAG model $R^2 = .247$, $b_{BAG} = 0.291$. Finally, the last component
681 was best predicted by the full BAG model, $R^2 = .128$, $b_{BAG} = 0.0002$. For an overview of all BAG models'
682 performance see **ST14**. For a more nuanced follow-up analysis of global and regional individual diffusion metric
683 predictions see **SF11**.

684
685

686

SF11. Predictions of individual global and regional diffusion metrics

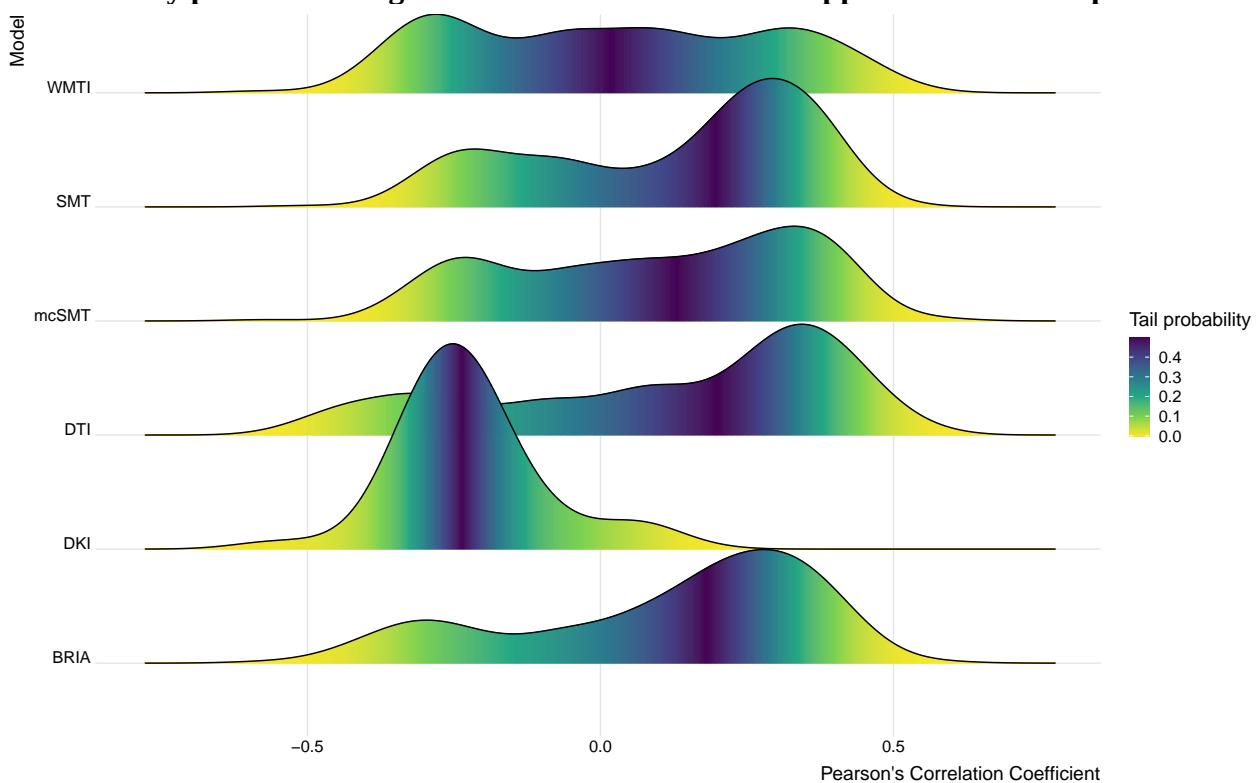
688 Panels indicate used models: a) full multimodal model including all approaches global and local features, b) mean
 689 multimodal model, including only global metrics of all diffusion approaches, c) BRIA, d) DKI, e) DTI, f) SMT, g)
 690 mcSMT, h) WMTI.

691
 692 We predicted the individual 1940 regional and global WM diffusion metrics from BAG, site, sex, age, as well as sex-
 693 age and sex-site interaction terms. While there were no differences in explaining variance between corrected and
 694 uncorrected BAG, models coefficients differed (see SF11).

695
 696 Variance explained across statistically significant models (at Bonferroni-corrected $p < 0.05/1940$) ranged from adjusted
 697 $R^2_{\min} = .001$ to $R^2_{\max} = .387$ ($R^2_{\text{mean}} = .108$, $SD = 0.062$), and beta values for BAG ranged from $b_{\text{BAG}} > -0.001$ to $b_{\text{BAG}} <$
 698 0.001 , with most variance explained in metrics Fornix v csf ($R_{\text{adj}}^2 = .387$, $b_{\text{BAG}} > -0.001$, $b_{\text{age}} = 0.009$), Fornix micro
 699 RD ($R_{\text{adj}}^2 = .386$, $b_{\text{BAG}} > -0.001$, $b_{\text{age}} = 0.009$), and Fornix micro ADC ($R_{\text{adj}}^2 = .386$, $b_{\text{BAG}} > -0.001$, $b_{\text{age}} = 0.019$).

700

SF12. Density plots feature-age correlation across diffusion approaches with tail probabilities



702 This figure is a supplement to Figure 5, showing the distributions of the correlations between age and each models'
703 diffusion metrics.

704

Supplementary Tables

705

706 ST1: Brain age predictions from different train-test splits

% of Data	Best Fitting Model	Train Results				Test Results on 50% of Data			
		R ²	RMSE	MAE	r _{age x pred}	R ²	RMSE	MAE	r _{age x pred}
1	E = 0.05 D _{max} = 3 T _{max} = 450	0.503 (0.087)	5.300 (0.599)	4.283 (0.555)	0.719 [0.665, 0.766]	0.621 (0.012)	4.693 (0.071)	3.759 (0.070)	0.788 [0.783, 0.794]
2	E = 0.05 D _{max} = 3 T _{max} = 350	0.551 (0.081)	5.107 (0.517)	4.172 (0.474)	0.750 [0.716, 0.780]	0.613 (0.011)	4.743 (0.071)	3.803 (0.073)	0.783 [0.778, 0.789]
3	E = 0.05 D _{max} = 3 T _{max} = 800	0.549 (0.078)	5.129 (0.401)	4.171 (0.393)	0.751 [0.724, 0.776]	0.635 (0.012)	4.605 (0.067)	3.683 (0.065)	0.797 [0.792, 0.802]
4	E = 0.05 D _{max} = 4 T _{max} = 200	0.561 (0.062)	5.136 (0.325)	4.090 (0.257)	0.741 [0.716, 0.763]	0.606 (0.011)	4.784 (0.068)	3.840 (0.071)	0.780 [0.774, 0.785]
5	E = 0.05 D _{max} = 3 T _{max} = 300	0.586 (0.037)	4.994 (0.217)	4.043 (0.241)	0.764 [0.744, 0.783]	0.607 (0.012)	4.779 (0.074)	3.834 (0.074)	0.780 [0.774, 0.785]
6	E = 0.05 D _{max} = 4 T _{max} = 800	0.576 (0.035)	4.962 (0.210)	3.953 (0.149)	0.763 [0.745, 0.780]	0.641 (0.012)	4.569 (0.058)	3.652 (0.057)	0.801 [0.795, 0.806]
7	E = 0.05 D _{max} = 3 T _{max} = 900	0.592 (0.042)	4.887 (0.204)	3.930 (0.150)	0.774 [0.757, 0.789]	0.637 (0.012)	4.591 (0.068)	3.669 (0.064)	0.799 [0.793, 0.804]
8	E = 0.01 D _{max} = 4 T _{max} = 950	0.598 (0.028)	4.881 (0.212)	3.920 (0.216)	0.764 [0.749, 0.779]	0.605 (0.011)	4.790 (0.072)	3.848 (0.072)	0.779 [0.773, 0.785]
9	E = 0.05 D _{max} = 4 T _{max} = 950	0.591 (0.036)	4.882 (0.279)	3.917 (0.175)	0.774 [0.760, 0.788]	0.643 (0.011)	4.554 (0.056)	3.638 (0.055)	0.802 [0.797, 0.807]
10	E = 0.05 D _{max} = 3 T _{max} = 750	0.598 (0.033)	4.886 (0.259)	3.899 (0.230)	0.777 [0.764, 0.790]	0.633 (0.012)	4.614 (0.067)	3.691 (0.064)	0.796 [0.791, 0.802]
20	E = 0.05 D _{max} = 5 T _{max} = 600	0.619 (0.025)	4.748 (0.080)	3.754 (0.124)	0.787 [0.778, 0.795]	0.638 (0.011)	4.587 (0.061)	3.665 (0.060)	0.799 [0.794, 0.804]
30	E = 0.05 D _{max} = 4 T _{max} = 800	0.633 (0.009)	4.623 (0.066)	3.693 (0.065)	0.798 [0.791, 0.804]	0.641 (0.012)	4.569 (0.058)	3.652 (0.057)	0.801 [0.795, 0.806]
40	E = 0.05 D _{max} = 5 T _{max} = 400	0.641 (0.014)	4.584 (0.088)	3.628 (0.050)	0.797 [0.791, 0.803]	0.631 (0.011)	4.628 (0.062)	3.701 (0.061)	0.795 [0.790, 0.800]
50	E = 0.05 D _{max} = 5 T _{max} = 850	0.637 (0.017)	4.576 (0.068)	3.630 (0.049)	0.805 [0.799, 0.810]	0.641 (0.012)	4.566 (0.059)	3.647 (0.059)	0.801 [0.796, 0.806]

707 R² = variance explained, RMSE = root mean square error, MAE = mean absolute error, r_{age x pred} = correlation of
708 chronological and predicted age. Numbers in round brackets indicate standard deviations. Numbers in square brackets
709 indicate confidence intervals. E = eta (learning rate), D_{max} = maximum depth, T_{max} = maximum number of trees. The
710 best fitting model was selected via grid search focussed on RMSE.

711

712 **ST2: Differences between correlations of chronological and *corrected predicted age* across**
 713 **models with 95% confidence interval**

	BRIA	DKI	DTI	SMT	mcSMT	WMTI	Mean
DKI	0.011 [0.009, 0.013]						
DTI	0.008 [0.007, 0.010]	0.003 [0.002, 0.005]					
SMT	0.007 [0.006, 0.008]	0.004 [0.003, 0.005]	0.001 [- 0.0004, 0.0004, 0.0005] ⁴				
mcSMT	≈0 [-0.001, 0.001] ¹	0.011 [0.009, 0.013]	0.008 [0.006, 0.010]	0.007 [0.006, 0.008]			
WMTI	0.010 [0.009, 0.012]	0.001 [-0.0004, 0.0024] ²	0.002 [0.001, 0.003]	0.003 [0.002, 0.004]	0.010 [0.009, 0.012]		
Mean	0.013 [0.011, 0.015]	0.002 [0.0002, 0.038] ³	0.005 [0.003, 0.007]	0.006 [0.004, 0.007]	0.013 [0.011, 0.015]	0.003 [0.001, 0.005]	
FULL	0.015 [0.014, 0.017]	0.004 [0.003, 0.005]	0.007 [0.006, 0.008]	0.008 [0.007, 0.009]	0.015 [0.014, 0.017]	0.005 [0.004, 0.006]	0.002 [0.0004, 0.0036]

714 Confidence Intervals are based on Zou ⁴². Unmarked differences were significant at $p < .001$.

715 1 Hotelling's ⁸⁶ $t(32171) \approx 0$, $p \approx 1$.

716 2 Hotelling's (1940) $t(32171) = 1.4232$, $p = .1547$.

717 3 Hotelling's (1940) $t(32171) = 2.2174$, $p = .0266$.

718 4 Hotelling's (1940) $t(32171) = 2.4176$, $p = .0156$.

719

720 **ST3: Differences between correlations of *uncorrected* predicted and chronological age across**
721 **diffusion approaches with 95% confidence interval**

	BRIA	DKI	DTI	SMT	mcSMT	WMTI	Mean
DKI	0.012 [0.009, 0.015]						
DTI	0.014 [0.011, 0.017]	0.0002 [-0.005, 0.001]					
SMT	0.013 [0.010, 0.016]	0.025 [0.022, 0.029]	0.027 [0.024, 0.030]				
mcSMT	0.021 [0.019, 0.023]	0.033 [0.029, 0.037]	0.035 [0.032, 0.038]	0.008 [0.006, 0.011]			
WMTI	0.023 [0.020, 0.026]	0.011 [0.008, 0.014]	0.009 [0.007, 0.011]	0.036 [0.033, 0.039]	0.044 [0.041, 0.047]		
Mean	0.115 [0.110, 0.120]	0.127 [0.121, 0.133]	0.129 [0.124, 0.134]	0.102 [0.097, 0.107]	0.088 [0.083, 0.093]	0.0940 [0.089, 0.099]	
Full	0.062 [0.059, 0.065]	0.050 [0.048, 0.053]	0.048 [0.046, 0.051]	0.075 [0.072, 0.078]	0.083 [0.080, 0.086]	0.039 [0.037, 0.041]	0.138 [0.133, 0.143]

722 Confidence Intervals are based on Zou (2007). Unmarked differences were significant at $p < .001$.

723 * Hotelling's (1940) $t(34801) = 0.9648, p = 0.3347$

724

725 **ST4: Fornix metrics' age sensitivity: comparing diffusion metric prediction models with and**
 726 **without age**

Model	Metric	Full ¹	Reduced ²	χ^2	p	p _{Holm}
BRIA	vintra	63395.90	56372.64	14046.51	<.001	<.001
BRIA	vextra	53488.40	47076.64	12823.52	<.001	<.001
BRIA	vCSF	32902.83	25747.10	14311.47	<.001	<.001
BRIA	microRD	-304.68	-7544.95	14480.54	<.001	<.001
BRIA	microFA	52365.03	45215.37	14299.32	<.001	<.001
BRIA	microAx	27419.04	23070.45	8697.18	<.001	<.001
BRIA	microADC	7489.46	297.02	14384.87	<.001	<.001
BRIA	DRADextra	88839.19	84573.36	8531.64	<.001	<.001
BRIA	DAXintra	62832.56	58452.18	8760.75	<.001	<.001
BRIA	DAXextra	69448.84	68536.57	1824.54	<.001	<.001
DKI	RK	17066.24	10008.43	14115.62	<.001	<.001
DKI	AK	73031.59	67042.47	11978.25	<.001	<.001
DKI	MK	42812.92	35761.79	14102.27	<.001	<.001
DTI	FA	51988.61	46349.96	11277.31	<.001	<.001
DTI	MD	-6425.12	-12850.70	12851.17	<.001	<.001
DTI	RD	-9157.86	-15294.22	12272.70	<.001	<.001
DTI	AD	-3330.43	-9581.75	12502.64	<.001	<.001
SMT	smtFA	28610.35	23053.56	11113.58	<.001	<.001
SMT	smtLong	343020.49	342243.25	1554.49	<.001	<.001
SMT	smtMD	253964.29	248676.32	10575.95	<.001	<.001
SMT	smtTrans	239584.11	234337.78	10492.66	<.001	<.001
mcSMT	smtMCintra	46725.61	39797.67	13855.88	<.001	<.001
mcSMT	smtMCextraMD	260580.57	253725.97	13709.21	<.001	<.001
mcSMT	smtMCextratrans	249976.89	242973.81	14006.16	<.001	<.001
mcSMT	smtMCd	287624.52	284705.87	5837.30	<.001	<.001
WMTI	AWF	73001.96	65850.35	14303.22	<.001	<.001
WMTI	axEAD	-28343.53	-29855.90	3024.74	<.001	<.001
WMTI	radEAD	-10582.93	-16576.91	11987.96	<.001	<.001

727 1 Full = full model log likelihood

728 2 Reduced = reduced model log likelihood

729

730

731

ST5: Model summaries for all 28 Fornix models

Effect	β	Std. Error	t-value	p	Metric	β	Std. Error	t-value	p	Metric
age	0.002	0.001	3.521		0 vintra	0.002	0.001	3.521		0 vextra
age ²	0	0	-10.532		0 vintra	0	0	-10.532		0 vextra
sex	0.009	0.018	0.481		0.63 vintra	0.009	0.018	0.481		0.63 vextra
siteCheadle	0.01	0.012	0.825		0.41 vintra	0.01	0.012	0.825		0.41 vextra
siteNewcastle	0.004	0.012	0.327		0.744 vintra	0.004	0.012	0.327		0.744 vextra
siteReading	0.009	0.012	0.748		0.454 vintra	0.009	0.012	0.748		0.454 vextra
age:sex	0	0	-5.532		0 vintra	0	0	-5.532		0 vextra
sex:siteCheadle	-0.003	0.017	-0.183		0.854 vintra	-0.003	0.017	-0.183		0.854 vextra
sex:siteNewcastle	-0.003	0.017	-0.168		0.867 vintra	-0.003	0.017	-0.168		0.867 vextra
sex:siteReading	-0.005	0.017	-0.283		0.777 vintra	-0.005	0.017	-0.283		0.777 vextra
age	0.002	0.001	3.521		0 vCSF	0.002	0.001	3.521		0 microRD
age ²	0	0	-10.532		0 vCSF	0	0	-10.532		0 microRD
sex	0.009	0.018	0.481		0.63 vCSF	0.009	0.018	0.481		0.63 microRD
siteCheadle	0.01	0.012	0.825		0.41 vCSF	0.01	0.012	0.825		0.41 microRD
siteNewcastle	0.004	0.012	0.327		0.744 vCSF	0.004	0.012	0.327		0.744 microRD
siteReading	0.009	0.012	0.748		0.454 vCSF	0.009	0.012	0.748		0.454 microRD
age:sex	0	0	-5.532		0 vCSF	0	0	-5.532		0 microRD
sex:siteCheadle	-0.003	0.017	-0.183		0.854 vCSF	-0.003	0.017	-0.183		0.854 microRD
sex:siteNewcastle	-0.003	0.017	-0.168		0.867 vCSF	-0.003	0.017	-0.168		0.867 microRD
sex:siteReading	-0.005	0.017	-0.283		0.777 vCSF	-0.005	0.017	-0.283		0.777 microRD
age	0.002	0.001	3.521		0 microFA	0.002	0.001	3.521		0 microAx
age ²	0	0	-10.532		0 microFA	0	0	-10.532		0 microAx
sex	0.009	0.018	0.481		0.63 microFA	0.009	0.018	0.481		0.63 microAx
siteCheadle	0.01	0.012	0.825		0.41 microFA	0.01	0.012	0.825		0.41 microAx
siteNewcastle	0.004	0.012	0.327		0.744 microFA	0.004	0.012	0.327		0.744 microAx
siteReading	0.009	0.012	0.748		0.454 microFA	0.009	0.012	0.748		0.454 microAx
age:sex	0	0	-5.532		0 microFA	0	0	-5.532		0 microAx
sex:siteCheadle	-0.003	0.017	-0.183		0.854 microFA	-0.003	0.017	-0.183		0.854 microAx
sex:siteNewcastle	-0.003	0.017	-0.168		0.867 microFA	-0.003	0.017	-0.168		0.867 microAx
sex:siteReading	-0.005	0.017	-0.283		0.777 microFA	-0.005	0.017	-0.283		0.777 microAx
age	0.002	0.001	3.521		0 C microAD	0.002	0.001	3.521		0 DRADextra
age ²	0	0	-10.532		0 C microAD	0	0	-10.532		0 DRADextra
sex	0.009	0.018	0.481		0.63 C microAD	0.009	0.018	0.481		0.63 DRADextra
siteCheadle	0.01	0.012	0.825		0.41 C microAD	0.01	0.012	0.825		0.41 DRADextra
siteNewcastle	0.004	0.012	0.327		0.744 C microAD	0.004	0.012	0.327		0.744 DRADextra
siteReading	0.009	0.012	0.748		0.454 C microAD	0.009	0.012	0.748		0.454 DRADextra
age:sex	0	0	-5.532		0 C microAD	0	0	-5.532		0 DRADextra
sex:siteCheadle	-0.003	0.017	-0.183		0.854 C microAD	-0.003	0.017	-0.183		0.854 DRADextra
sex:siteNewcastle	-0.003	0.017	-0.168		0.867 C microAD	-0.003	0.017	-0.168		0.867 DRADextra
sex:siteReading	-0.005	0.017	-0.283		0.777 C	-0.005	0.017	-0.283		0.777 DRADextra
age	0.002	0.001	3.521		0 DAXintra	0.002	0.001	3.521		0 DAXextra
age ²	0	0	-10.532		0 DAXintra	0	0	-10.532		0 DAXextra
sex	0.009	0.018	0.481		0.63 DAXintra	0.009	0.018	0.481		0.63 DAXextra
siteCheadle	0.01	0.012	0.825		0.41 DAXintra	0.01	0.012	0.825		0.41 DAXextra
siteNewcastle	0.004	0.012	0.327		0.744 DAXintra	0.004	0.012	0.327		0.744 DAXextra
siteReading	0.009	0.012	0.748		0.454 DAXintra	0.009	0.012	0.748		0.454 DAXextra
age:sex	0	0	-5.532		0 DAXintra	0	0	-5.532		0 DAXextra
sex:siteCheadle	-0.003	0.017	-0.183		0.854 DAXintra	-0.003	0.017	-0.183		0.854 DAXextra

sex:siteNewcastle	-0.003	0.017	-0.168	0.867 DAXintra	-0.003	0.017	-0.168	0.867 DAXextra
sex:siteReading	-0.005	0.017	-0.283	0.777 DAXintra	-0.005	0.017	-0.283	0.777 DAXextra
age	0.002	0.001	3.521	0 RK	0.002	0.001	3.521	0 AK
age ²	0	0	-10.532	0 RK	0	0	-10.532	0 AK
sex	0.009	0.018	0.481	0.63 RK	0.009	0.018	0.481	0.63 AK
siteCheadle	0.01	0.012	0.825	0.41 RK	0.01	0.012	0.825	0.41 AK
siteNewcastle	0.004	0.012	0.327	0.744 RK	0.004	0.012	0.327	0.744 AK
siteReading	0.009	0.012	0.748	0.454 RK	0.009	0.012	0.748	0.454 AK
age:sex	0	0	-5.532	0 RK	0	0	-5.532	0 AK
sex:siteCheadle	-0.003	0.017	-0.183	0.854 RK	-0.003	0.017	-0.183	0.854 AK
sex:siteNewcastle	-0.003	0.017	-0.168	0.867 RK	-0.003	0.017	-0.168	0.867 AK
sex:siteReading	-0.005	0.017	-0.283	0.777 RK	-0.005	0.017	-0.283	0.777 AK
age	0.002	0.001	3.521	0 MK	0.002	0.001	3.521	0 FA
age ²	0	0	-10.532	0 MK	0	0	-10.532	0 FA
sex	0.009	0.018	0.481	0.63 MK	0.009	0.018	0.481	0.63 FA
siteCheadle	0.01	0.012	0.825	0.41 MK	0.01	0.012	0.825	0.41 FA
siteNewcastle	0.004	0.012	0.327	0.744 MK	0.004	0.012	0.327	0.744 FA
siteReading	0.009	0.012	0.748	0.454 MK	0.009	0.012	0.748	0.454 FA
age:sex	0	0	-5.532	0 MK	0	0	-5.532	0 FA
sex:siteCheadle	-0.003	0.017	-0.183	0.854 MK	-0.003	0.017	-0.183	0.854 FA
sex:siteNewcastle	-0.003	0.017	-0.168	0.867 MK	-0.003	0.017	-0.168	0.867 FA
sex:siteReading	-0.005	0.017	-0.283	0.777 MK	-0.005	0.017	-0.283	0.777 FA
age	0.002	0.001	3.521	0 MD	0.002	0.001	3.521	0 RD
age ²	0	0	-10.532	0 MD	0	0	-10.532	0 RD
sex	0.009	0.018	0.481	0.63 MD	0.009	0.018	0.481	0.63 RD
siteCheadle	0.01	0.012	0.825	0.41 MD	0.01	0.012	0.825	0.41 RD
siteNewcastle	0.004	0.012	0.327	0.744 MD	0.004	0.012	0.327	0.744 RD
siteReading	0.009	0.012	0.748	0.454 MD	0.009	0.012	0.748	0.454 RD
age:sex	0	0	-5.532	0 MD	0	0	-5.532	0 RD
sex:siteCheadle	-0.003	0.017	-0.183	0.854 MD	-0.003	0.017	-0.183	0.854 RD
sex:siteNewcastle	-0.003	0.017	-0.168	0.867 MD	-0.003	0.017	-0.168	0.867 RD
sex:siteReading	-0.005	0.017	-0.283	0.777 MD	-0.005	0.017	-0.283	0.777 RD
age	0.002	0.001	3.521	0 AD	0.002	0.001	3.521	0 smtFA
age ²	0	0	-10.532	0 AD	0	0	-10.532	0 smtFA
sex	0.009	0.018	0.481	0.63 AD	0.009	0.018	0.481	0.63 smtFA
siteCheadle	0.01	0.012	0.825	0.41 AD	0.01	0.012	0.825	0.41 smtFA
siteNewcastle	0.004	0.012	0.327	0.744 AD	0.004	0.012	0.327	0.744 smtFA
siteReading	0.009	0.012	0.748	0.454 AD	0.009	0.012	0.748	0.454 smtFA
age:sex	0	0	-5.532	0 AD	0	0	-5.532	0 smtFA
sex:siteCheadle	-0.003	0.017	-0.183	0.854 AD	-0.003	0.017	-0.183	0.854 smtFA
sex:siteNewcastle	-0.003	0.017	-0.168	0.867 AD	-0.003	0.017	-0.168	0.867 smtFA
sex:siteReading	-0.005	0.017	-0.283	0.777 AD	-0.005	0.017	-0.283	0.777 smtFA
age	0.002	0.001	3.521	0 smtLong	0.002	0.001	3.521	0 smtMD
age ²	0	0	-10.532	0 smtLong	0	0	-10.532	0 smtMD
sex	0.009	0.018	0.481	0.63 smtLong	0.009	0.018	0.481	0.63 smtMD
siteCheadle	0.01	0.012	0.825	0.41 smtLong	0.01	0.012	0.825	0.41 smtMD
siteNewcastle	0.004	0.012	0.327	0.744 smtLong	0.004	0.012	0.327	0.744 smtMD
siteReading	0.009	0.012	0.748	0.454 smtLong	0.009	0.012	0.748	0.454 smtMD
age:sex	0	0	-5.532	0 smtLong	0	0	-5.532	0 smtMD
sex:siteCheadle	-0.003	0.017	-0.183	0.854 smtLong	-0.003	0.017	-0.183	0.854 smtMD
sex:siteNewcastle	-0.003	0.017	-0.168	0.867 smtLong	-0.003	0.017	-0.168	0.867 smtMD
sex:siteReading	-0.005	0.017	-0.283	0.777 smtLong	-0.005	0.017	-0.283	0.777 smtMD
age	0.002	0.001	3.521	0 smtTrans	0.002	0.001	3.521	0 smtMCintra
age ²	0	0	-10.532	0 smtTrans	0	0	-10.532	0 smtMCintra
sex	0.009	0.018	0.481	0.63 smtTrans	0.009	0.018	0.481	0.63 smtMCintra
siteCheadle	0.01	0.012	0.825	0.41 smtTrans	0.01	0.012	0.825	0.41 smtMCintra
siteNewcastle	0.004	0.012	0.327	0.744 smtTrans	0.004	0.012	0.327	0.744 smtMCintra
siteReading	0.009	0.012	0.748	0.454 smtTrans	0.009	0.012	0.748	0.454 smtMCintra

age:sex	0	0	-5.532	0 smtTrans	0	0	-5.532	0 smtMCintra
sex:siteCheadle	-0.003	0.017	-0.183	0.854 smtTrans	-0.003	0.017	-0.183	0.854 smtMCintra
sex:siteNewcastle	-0.003	0.017	-0.168	0.867 smtTrans	-0.003	0.017	-0.168	0.867 smtMCintra
sex:siteReading	-0.005	0.017	-0.283	0.777 smtTrans smtMCext	-0.005	0.017	-0.283	0.777 smtMCintra smtMCextra
age	0.002	0.001	3.521	0 raMD smtMCext	0.002	0.001	3.521	0 trans smtMCextra
age ²	0	0	-10.532	0 raMD smtMCext	0	0	-10.532	0 trans smtMCextra
sex	0.009	0.018	0.481	0.63 raMD smtMCext	0.009	0.018	0.481	0.63 trans smtMCextra
siteCheadle	0.01	0.012	0.825	0.41 raMD smtMCext	0.01	0.012	0.825	0.41 trans smtMCextra
siteNewcastle	0.004	0.012	0.327	0.744 raMD smtMCext	0.004	0.012	0.327	0.744 trans smtMCextra
siteReading	0.009	0.012	0.748	0.454 raMD smtMCext	0.009	0.012	0.748	0.454 trans smtMCextra
age:sex	0	0	-5.532	0 raMD smtMCext	0	0	-5.532	0 trans smtMCextra
sex:siteCheadle	-0.003	0.017	-0.183	0.854 raMD smtMCext	-0.003	0.017	-0.183	0.854 trans smtMCextra
sex:siteNewcastle	-0.003	0.017	-0.168	0.867 raMD smtMCext	-0.003	0.017	-0.168	0.867 trans smtMCextra
sex:siteReading	-0.005	0.017	-0.283	0.777 raMD	-0.005	0.017	-0.283	0.777 trans
age	0.002	0.001	3.521	0 smtMCd	0.002	0.001	3.521	0 AWF
age ²	0	0	-10.532	0 smtMCd	0	0	-10.532	0 AWF
sex	0.009	0.018	0.481	0.63 smtMCd	0.009	0.018	0.481	0.63 AWF
siteCheadle	0.01	0.012	0.825	0.41 smtMCd	0.01	0.012	0.825	0.41 AWF
siteNewcastle	0.004	0.012	0.327	0.744 smtMCd	0.004	0.012	0.327	0.744 AWF
siteReading	0.009	0.012	0.748	0.454 smtMCd	0.009	0.012	0.748	0.454 AWF
age:sex	0	0	-5.532	0 smtMCd	0	0	-5.532	0 AWF
sex:siteCheadle	-0.003	0.017	-0.183	0.854 smtMCd	-0.003	0.017	-0.183	0.854 AWF
sex:siteNewcastle	-0.003	0.017	-0.168	0.867 smtMCd	-0.003	0.017	-0.168	0.867 AWF
sex:siteReading	-0.005	0.017	-0.283	0.777 smtMCd	-0.005	0.017	-0.283	0.777 AWF
age	0.002	0.001	3.521	0 axEAD	0.002	0.001	3.521	0 radEAD
age ²	0	0	-10.532	0 axEAD	0	0	-10.532	0 radEAD
sex	0.009	0.018	0.481	0.63 axEAD	0.009	0.018	0.481	0.63 radEAD
siteCheadle	0.01	0.012	0.825	0.41 axEAD	0.01	0.012	0.825	0.41 radEAD
siteNewcastle	0.004	0.012	0.327	0.744 axEAD	0.004	0.012	0.327	0.744 radEAD
siteReading	0.009	0.012	0.748	0.454 axEAD	0.009	0.012	0.748	0.454 radEAD
age:sex	0	0	-5.532	0 axEAD	0	0	-5.532	0 radEAD
sex:siteCheadle	-0.003	0.017	-0.183	0.854 axEAD	-0.003	0.017	-0.183	0.854 radEAD
sex:siteNewcastle	-0.003	0.017	-0.168	0.867 axEAD	-0.003	0.017	-0.168	0.867 radEAD
sex:siteReading	-0.005	0.017	-0.283	0.777 axEAD	-0.005	0.017	-0.283	0.777 radEAD

734 **ST6: Brain age prediction model performance for data including QC outliers**

Name	MRI features	R ²	RMSE	MAE	Prediction-Age Correlation*	Corrected Prediction-Age Correlation*
BRIA	700	0.538 (0.009)	5.103 (0.044)	4.096 (0.038)	0.734 [0.729, 0.739]	0.902 [0.900, 0.904]
DKI	210	0.561 (0.009)	5.078 (0.053)	4.073 (0.047)	0.750 [0.745, 0.754]	0.876 [0.874, 0.879]
DTI	280	0.565 (0.009)	5.052 (0.039)	4.041 (0.038)	0.752 [0.748, 0.757]	0.874 [0.872, 0.877]
SMT	280	0.522 (0.009)	5.297 (0.035)	4.254 (0.031)	0.723 [0.718, 0.728]	0.870 [0.868, 0.873]
mcSMT	280	0.508 (0.008)	5.263 (0.040)	4.227 (0.034)	0.714 [0.708, 0.719]	0.901 [0.899, 0.903]
WMTI	210	0.574 (0.009)	4.999 (0.036)	4.003 (0.034)	0.758 [0.754, 0.763]	0.875 [0.873, 0.877]
Mean scores	28	0.400 (0.068)	5.945 (0.082)	4.820 (0.068)	0.633 [0.627, 0.639]	0.875 [0.873, 0.878]
Full model	1932	0.648 (0.009)	4.557 (0.077)	3.637 (0.066)	0.805 [0.801, 0.808]	0.877 [0.875, 0.880]
multimodal						

Model selection was based on a grid search with stopping rule when model performance did not improve after 20 rounds. Model selection of all models was based on multimodal model training on 10% of the data, indicating best fit for learning rate = 0.05, maximum depth = 4, maximum number of trees = 750 as indicated in Fig.2 and ST1.

R²:variance explained, RMSE: root mean squared error, MAE: mean absolute error

735 Note: R², RMSE, MAE are displayed in the format Mean (Standard Deviation), Pearson's correlations are displayed in
736 the format Correlation Score 95% Confidence Interval [Lower Bound, Upper Bound].

737 *All correlation were significant at $p < .001$.

738
739 Outliers were defined by the YTTRIUM method³⁸ including outlier removal based on density-based spatial
740 clusterisation (k-means). The total data used here was $N_{full+outliers} = 38,687$, including the full data $N_{full} = 35,749$ used for
741 all analyses and $N_{outliers} = 2,938$ datasets defined as outliers. This dataset does not include participants who withdrew
742 their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.

743 **ST7: Top five diffusion metrics ranked by gain in age prediction accuracy for data including**
 744 **QC outliers**

BRIA	DKI	DTI	SMT	mcSMT	WMTI	Full
Micro RD ATRR (67436)	MK Fornix (99885)	MD Fornix (79767)	MD Fornix (72129)	Extratrans Fornix (55429)	AWF Fornix (69033)	AWF fornix (278977)
Micro FA Fornix (63804)	RK Fornix (28196)	RD left anterior corona radiata (51592)	MD FMIN (48161)	Intra Fornix (46212)	RadEAD anterior right corona radiata (34381)	Micro RD fornix (71175)
Micro RD right external capsule (27069)	AK anterior right limb of internal capsule (22725)	RD FMIN (25201)	MD right anterior corona radiata (44331)	Extratrans right external capsule (22512)	RadEAD IFOFR (16611)	Micro FA fornix(35049)
Micro RD Fornix right striaterminalis (17090)	AK Fornix (14401)	RD Fornix right stria terminalis (22951)	FA Fornix (19697)	ExtraMD Fornix (10267)	RadEAD FMIN (20286)	MD right tapetum (34008)
Micro FA FMIN (14335)	AK superior frontooccipital left fasciculus (7978)	MD anterior limb of internal left capsule (15589)	Long left tapetum (14596)	ExtraMD anterior left limb (16666)	RadEAD ATRL of internal capsule (7830)	RadEAD anterior right corona radiata (27907)

745 Table values can be read as feature name (gain). Mean refers to the multimodal model containing only mean scores and
 746 full to the full model containing all features. Cells including Fornix are marked in green.
 747 laLC = left anterior limb of internal capsule; raLC = right anterior limb of internal capsule; IST = ISTria terminalis; rST
 748 = rSTria terminalis; lsfoF = left superior frontal occipital fasciculus; laCR = left anterior corona radiata; raCR = right
 749 anterior corona radiata; rEC = right external capsule

750
 751 Outliers were defined by the YTTRIUM method³⁸ including outlier removal based on density-based spatial
 752 clusterisation (k-means). The total data used here was $N_{full+outliers} = 38,687$, including the full data $N_{full} = 35,749$ used for
 753 all analyses and $N_{outliers} = 2,938$ datasets defined as outliers. This dataset does not include participants who withdrew
 754 their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.
 755

756

ST8: Brain age predictions from different train-test splits for data including QC outliers

% of Data	Best Fitting Model	Train Results				Test Results on 50% of Data			
		R ²	RMSE	MAE	r _{age x pred}	R ²	RMSE	MAE	r _{age x pred}
1	E = 0.05 D _{max} = 4 T _{max} = 250	0.503 (0.113)	5.313 (0.448)	4.287 (0.233)	0.716 [0.664, 0.761]	0.619 (0.008)	4.743 (0.029)	3.799 (0.036)	0.788 [0.782, 0.793]
2	E = 0.05 D _{max} = 4 T _{max} = 950	0.543 (0.094)	5.162 (0.365)	4.101 (0.250)	0.744 [0.711, 0.774]	0.648 (0.008)	4.558 (0.025)	3.637 (0.025)	0.805 [0.800, 0.810]
3	E = 0.05 D _{max} = 4 T _{max} = 900	0.543 (0.052)	5.226 (0.334)	4.149 (0.297)	0.741 [0.714, 0.766]	0.648 (0.008)	4.561 (0.024)	3.639 (0.026)	0.805 [0.800, 0.810]
4	E = 0.05 D _{max} = 3 T _{max} = 550	0.572 (0.033)	5.110 (0.266)	4.043 (0.184)	0.758 [0.736, 0.779]	0.619 (0.008)	4.744 (0.036)	3.803 (0.041)	0.788 [0.782, 0.793]
5	E = 0.05 D _{max} = 3 T _{max} = 350	0.575 (0.051)	5.038 (0.312)	4.015 (0.233)	0.760 [0.740, 0.778]	0.619 (0.008)	4.744 (0.036)	3.803 (0.041)	0.788 [0.782, 0.793]
6	E = 0.05 D _{max} = 4 T _{max} = 850	0.574 (0.047)	5.144 (0.239)	4.048 (0.195)	0.758 [0.740, 0.774]	0.647 (0.008)	4.566 (0.024)	3.643 (0.026)	0.805 [0.800, 0.810]
7	E = 0.05 D _{max} = 3 T _{max} = 900	0.589 (0.032)	4.998 (0.147)	4.004 (0.186)	0.770 [0.754, 0.785]	0.644 (0.008)	4.585 (0.039)	3.663 (0.040)	0.803 [0.798, 0.808]
8	E = 0.05 D _{max} = 3 T _{max} = 550	0.595 (0.017)	4.944 (0.174)	3.953 (0.138)	0.775 [0.761, 0.789]	0.644 (0.008)	4.585 (0.039)	3.663 (0.040)	0.803 [0.798, 0.808]
9	E = 0.05 D _{max} = 3 T _{max} = 350	0.602 (0.025)	4.915 (0.195)	3.921 (0.169)	0.773 [0.759, 0.786]	0.619 (0.008)	4.744 (0.036)	3.803 (0.041)	0.788 [0.782, 0.793]
10	E = 0.05 D _{max} = 3 T _{max} = 550	0.608 (0.033)	4.869 (0.188)	3.882 (0.114)	0.780 [0.768, 0.792]	0.628 (0.008)	4.690 (0.037)	3.756 (0.041)	0.793 [0.788, 0.798]
20	E = 0.05 D _{max} = 4 T _{max} = 450	0.624 (0.013)	4.706 (0.097)	3.779 (0.092)	0.791 [0.782, 0.799]	0.640 (0.008)	4.608 (0.024)	3.679 (0.028)	0.801 [0.796, 0.806]
30	E = 0.05 D _{max} = 4 T _{max} = 900	0.641 (0.017)	4.611 (0.066)	3.683 (0.064)	0.641 [0.798, 0.811]	0.636 (0.008)	4.634 (0.023)	3.703 (0.029)	0.798 [0.793, 0.803]
40	E = 0.05 D _{max} = 5 T _{max} = 950	0.643 (0.019)	4.596 (0.063)	3.668 (0.053)	0.803 [0.797, 0.808]	0.648 (0.009)	4.557 (0.033)	3.635 (0.037)	0.806 [0.801, 0.810]
50	E = 0.05 D _{max} = 4 T _{max} = 850	0.643 (0.020)	4.584 (0.122)	3.637 (0.088)	0.806 [0.801, 0.811]	0.647 (0.008)	4.566 (0.024)	3.643 (0.026)	0.805 [0.800, 0.810]

757 Note: Numbers in round brackets indicate standard deviations. Numbers in square brackets indicate confidence
758 intervals. E = eta, D_{max} = maximum depth, T_{max} = maximum number of trees. The best fitting model was determined by
759 grid search.

760
761 Outliers were defined by the YTTRIUM method³⁸ including outlier removal based on density-based spatial
762 clusterisation (k-means). The total data used here was N_{full+outliers} = 38,687, including the full data N_{full} = 35,749 used for
763 all analyses and N_{outliers} = 2,938 datasets defined as outliers. This dataset does not include participants who withdrew
764 their consent or participants with an ICD-10 diagnosis categories G or F or stroke, category I.

765

766 **ST9: Comparisons of linear and generalized additive models predicting fornix diffusion**
 767 **metrics**

Metric	LM AIC	GAM AIC	LM BIC	GAM BIC	LM R^2_{adj}	GAM R^2_{adj}
vintra	-126767.79	-126755.60	-126665.98	-126662.27	0.36	0.36
vextra	-106952.81	-106929.99	-106851.00	-106836.66	0.38	0.37
vCSF	-65781.67	-65773.53	-65679.86	-65680.20	0.39	0.39
microRD	633.36	643.11	735.18	736.43	0.39	0.39
microFA	-104706.06	-104634.30	-104604.25	-104540.97	0.38	0.38
microAx	-54814.08	-54790.59	-54712.27	-54697.26	0.27	0.27
microADC	-14954.91	-14946.59	-14853.10	-14853.26	0.39	0.39
DRADEXTRA	-177654.37	-177648.58	-177552.56	-177555.25	0.30	0.30
DAXintra	-125641.12	-125639.53	-125539.31	-125546.20	0.30	0.30
DAXextra	-138873.67	-138808.20	-138771.86	-138714.87	0.09	0.09
RK	-34108.48	-34109.41	-34006.67	-34016.08	0.37	0.37
AK	-146039.18	-146041.08	-145937.37	-145947.75	0.32	0.32
MK	-85601.85	-85603.57	-85500.04	-85510.24	0.36	0.36
FA	-103953.22	-103924.62	-103851.41	-103831.30	0.31	0.31
MD	12874.23	12878.93	12976.04	12972.25	0.35	0.35
RD	18339.73	18359.69	18441.54	18453.02	0.34	0.34
AD	6684.86	6689.75	6786.67	6783.08	0.35	0.35
smtFA	-57196.69	-57161.31	-57094.88	-57067.98	0.31	0.31
smtLong	-686016.98	-685869.48	-685915.17	-685776.15	0.06	0.05
smtMD	-507904.58	-507869.45	-507802.77	-507776.13	0.30	0.30
smtTrans	-479144.23	-479104.60	-479042.42	-479011.28	0.30	0.29
smtMCintra	-93427.21	-93427.11	-93325.40	-93333.78	0.36	0.36
smtMCextraMD	-521137.14	-521125.59	-521035.33	-521032.26	0.37	0.37
smtMCextratrans	-499929.78	-499929.66	-499827.97	-499836.34	0.37	0.37
smtMCd	-575225.03	-574996.85	-575123.22	-574903.53	0.22	0.21
AWF	-145979.93	-145981.86	-145878.11	-145888.53	0.37	0.37
axEAD	56711.05	56715.91	56812.86	56809.24	0.10	0.10
radEAD	21189.85	21203.80	21291.67	21297.12	0.33	0.33

768 LM = linear model, GAM = generalized additive model, AIC = Akaike information criterion, BIC = Bayesian
 769 information criterion. The numbers are derived from the six diffusion approaches' 28 metrics following Equation 1 for
 770 linear models and all variables of the equation allowing splines for non-linear models.

771

772 **ST10: Overview of diffusion metrics by diffusion approach**

773

Diffusion Approach	Metrics
Bayesian Rotationally Invariant Approach (BRIA)	intra-axonal axial diffusivity (DAX intra) extra-axonal radial diffusivity (DRAD extra) microscopic fractional anisotropy (micro FA) extra-axonal axial diffusivity (DAX extra) intra-axonal water fraction (V intra) extra-axonal water fraction (V extra) cerebrospinal fluid fraction (vCSF) microscopical axial diffusivity (micro AX) microscopic radial diffusivity (micro RD) microscopical apparent diffusion coefficient (micro ADC)
Diffusion Kurtosis Imaging (DKI)	mean kurtosis (MK) radial kurtosis (RK) axial kurtosis (AK)
Diffusion Tensor Imaging (DTI)	fractional anisotropy (FA) axial diffusivity (AD) mean diffusivity (MD) radial diffusivity (RD)
Spherical Mean Technique (SMT)	fractional anisotropy (SMT FA) mean diffusivity (SMT md) transverse diffusion coefficient (SMT trans) longitudinal diffusion coefficient (SMT long)
Multi-compartment Spherical Mean Technique (mcSMT)	extra-neurite microscopic mean diffusivity (mcSMT extra md) extra-neurite transverse microscopic diffusivity (mcSMT extra trans) mc SMT diffusion coefficient (SMT mcd) intra-neurite volume fraction (mcSMT intra) axonal water fraction (AWF) radial extra-axonal diffusivity (radEAD) axial extra-axonal diffusivity (axEAD)
White Matter Tract Integrity (WMTI)	

774

775 **ST11. Whole-brain metrics' age sensitivity: comparing diffusion metric prediction models**
776 **with and without age**
777

Metric	Full ¹	Reduced ²	χ^2	p	p _{Holm}
vintra	77831.60	75474.15	4714.90	<.001	<.001
vextra	80010.15	79172.34	1675.61	<.001	<.001
vCSF	104258.51	102045.76	4425.50	<.001	<.001
microRD	67462.88	62714.78	9496.19	<.001	<.001
microFA	91462.73	87450.56	8024.34	<.001	<.001
microAx	68450.93	67363.35	2175.17	<.001	<.001
microADC	72076.62	67934.52	8284.22	<.001	<.001
DRADEXTRA	105039.68	102688.39	4702.58	<.001	<.001
DAXintra	66812.02	64826.61	3970.82	<.001	<.001
DAXextra	80174.07	77914.51	4519.12	<.001	<.001
RK	44127.87	41757.04	4741.66	<.001	<.001
AK	87172.98	85483.34	3379.29	<.001	<.001
MK	66245.64	64166.15	4158.99	<.001	<.001
FA	93186.73	88785.16	8803.13	<.001	<.001
MD	76490.81	72273.83	8433.95	<.001	<.001
RD	73140.15	68320.02	9640.26	<.001	<.001
AD	76516.84	74699.38	3634.93	<.001	<.001
smtFA	125878.97	124092.64	3572.65	<.001	<.001
smtLong	287398.36	285277.70	4241.31	<.001	<.001
smtMD	320273.27	317056.32	6433.91	<.001	<.001
smtTrans	342834.04	339946.36	5775.35	<.001	<.001
smtMCintra	74365.62	72478.15	3774.94	<.001	<.001
smtMCextraMD	314618.75	311214.26	6809.00	<.001	<.001
smtMCextraTrans	303909.44	300508.10	6802.69	<.001	<.001
smtMCd	290508.70	290389.47	238.47	<.001	<.001
AWF	102689.44	100136.63	5105.61	<.001	<.001
axEAD	-14423.53	-14426.86	6.66	0.08	0.08
radEAD	10331.86	10122.73	418.26	<.001	<.001

778
779 1 Full = full model log likelihood
780 2 Reduced = reduced model log likelihood

781 **ST12. Comparisons of linear and generalized additive models predicting whole-brain**
782 **diffusion metrics**
783

Metric	LM AIC	GAM AIC	LM BIC	GAM BIC	LM R^2_{adj}	GAM R^2_{adj}
vintra	-155639.20	-155638.58	-155537.39	-155545.25	0.13	0.13
vextra	-159996.29	-159998.05	-159894.48	-159904.72	0.05	0.05
vCSF	-208493.03	-208487.27	-208391.21	-208393.94	0.13	0.13
microRD	-134901.75	-134894.29	-134799.94	-134800.96	0.25	0.25
microFA	-182901.46	-182896.42	-182799.64	-182803.09	0.21	0.21
microAx	-136877.86	-136869.60	-136776.05	-136776.28	0.08	0.08
microADC	-144129.25	-144118.74	-144027.44	-144025.42	0.23	0.23
DRADEXTRA	-210055.37	-210046.77	-209953.56	-209953.44	0.13	0.13
DAXintra	-133600.03	-133591.04	-133498.22	-133497.71	0.11	0.11
DAXextra	-160324.15	-160312.75	-160222.34	-160219.42	0.13	0.13
RK	-88231.74	-88223.96	-88129.93	-88130.63	0.14	0.14
AK	-174321.97	-174323.26	-174220.16	-174229.93	0.09	0.09
MK	-132467.28	-132465.03	-132365.47	-132371.70	0.12	0.12
FA	-186349.46	-186338.20	-186247.65	-186244.88	0.23	0.23
MD	-152957.62	-152950.05	-152855.81	-152856.72	0.22	0.22
RD	-146256.29	-146248.25	-146154.48	-146154.92	0.24	0.24
AD	-153009.69	-153006.22	-152907.88	-152912.90	0.15	0.15
smtFA	-251733.94	-251735.36	-251632.13	-251642.03	0.10	0.10
smtLong	-574772.72	-574753.50	-574670.90	-574660.18	0.12	0.12
smtMD	-640522.55	-640508.56	-640420.74	-640415.23	0.18	0.18
smtTrans	-685644.08	-685645.94	-685542.27	-685552.61	0.16	0.16
smtMCintra	-148707.24	-148707.45	-148605.43	-148614.13	0.10	0.10
smtMCextraMD	-629213.51	-629198.88	-629111.69	-629105.56	0.18	0.18
smtMCextraTrans	-607794.88	-607787.65	-607693.07	-607694.32	0.18	0.18
smtMCd	-580993.40	-580991.12	-580891.59	-580897.79	0.01	0.01
AWF	-205354.88	-205349.62	-205253.07	-205256.29	0.14	0.14
axEAD	28871.07	28869.86	28972.88	28963.19	0.00	0.00
radEAD	-20639.72	-20639.85	-20537.91	-20546.52	0.01	0.01

784
785 LM = linear model, GAM = generalized additive model, AIC = Akaike information criterion, BIC = Bayesian
786 information criterion. The numbers are derived from the six diffusion approaches' 28 metrics following Equation 1 for
787 linear models and all variables of the equation allowing splines for non-linear models.

788

789 **ST13. Variance explained by principal components of white matter metrics**

790

	Compone nt 1	Compone nt 2	Compon ent 3	Compone nt 4	Compone nt 5	Compone nt 6	Compone nt 7	Compone nt 8	Compone nt 9	Compone nt 10
Full Multimodal Mean	0.3500	0.1065	0.0583	0.0393	0.0328	0.0208	0.0193	0.0172	0.0144	0.0133
Multimodal	0.6474	0.2085	0.0690	0.0354	0.0199	0.0069	0.0046	0.0029	0.0020	0.0010
BRIA	0.3759	0.0963	0.0706	0.0533	0.0377	0.0291	0.0238	0.0177	0.0140	0.0128
DKI	0.4358	0.0909	0.0479	0.0309	0.0294	0.0228	0.0174	0.0153	0.0137	0.0123
DTI	0.4072	0.0816	0.0532	0.0434	0.0353	0.0249	0.0206	0.0165	0.0145	0.0138
SMT	0.3393	0.1942	0.0603	0.0336	0.0255	0.0215	0.0207	0.0173	0.0166	0.0130
SMT mc	0.3404	0.1648	0.0585	0.0450	0.0329	0.0224	0.0203	0.0165	0.0155	0.0127
WMTI	0.2711	0.1277	0.0421	0.0379	0.0284	0.0279	0.0217	0.0195	0.0178	0.0168

791

792 Eight principal component analyses (PCA) were run: six PCA addressing the different diffusion approaches, one
793 addressing the multimodal average scores (mean multimodal) and one the multimodal model, containing all data (full
794 multimodal). The first four components from all PCA were deemed meaningful based on the proportion of variance
795 explained in the WM data.

796

797 **ST14. Model performance and BAG beta values for multimodal and diffusion-approach**
798 **specific principal component predictions from multimodal and diffusion approach-specific**
799 **BAG and covariates**

800

Predicted Component	Approach	R ²	R _{adj} ²	T	p	b _{BAG}
1	Full Multimodal	0.0141	0.0138	46.0160	<0.0001	-0.0151
1	Mean Multimodal	0.5054	0.5052	3651.2999	<0.0001	-0.6726
1	BRIA	0.3439	0.3437	1685.8645	<0.0001	-1.8093
1	DKI	0.2263	0.2261	940.7306	<0.0001	-0.8142
1	DTI	0.3575	0.3573	1789.7236	<0.0001	-1.0817
1	SMT	0.3462	0.3460	1841.6494	<0.0001	-1.0953
1	SMT mc	0.3152	0.3150	1480.6879	<0.0001	-1.0782
1	WMTI	0.3720	0.3718	1905.4699	<0.0001	-0.8474
2	Full Multimodal	0.0247	0.0244	81.5815	<0.0001	-0.0332
2	Mean Multimodal	0.0179	0.0177	65.2632	<0.0001	0.0522
2	BRIA	0.0400	0.0397	134.1182	<0.0001	0.1030
2	DKI	0.0191	0.0188	62.7254	<0.0001	0.1090
2	DTI	0.1517	0.1514	575.2169	<0.0001	-0.0587
2	SMT	0.0022	0.0019	7.6338	<0.0001	-0.0159
2	SMT mc	0.0784	0.0781	273.5101	<0.0001	0.2988
2	WMTI	0.0563	0.0560	191.8700	<0.0001	0.0876
3	Full Multimodal	0.1148	0.1145	417.0057	<0.0001	-0.0086
3	Mean Multimodal	0.0003	0.0001	1.1795	0.2991	-0.0023
3	BRIA	0.1842	0.1839	726.2248	<0.0001	0.4627
3	DKI	0.2564	0.2562	1109.0911	<0.0001	0.1705
3	DTI	0.2500	0.2498	1072.1366	<0.0001	-0.2096
3	SMT	0.2465	0.2463	1137.8183	<0.0001	0.2908
3	SMT mc	0.1844	0.1841	726.9496	<0.0001	-0.1839
3	WMTI	0.1751	0.1749	682.7749	<0.0001	0.1266
4	Full Multimodal	0.1279	0.1276	471.5012	<0.0001	0.0002
4	Mean Multimodal	0.0999	0.0997	396.8655	<0.0001	0.0672
4	BRIA	0.0880	0.0877	310.4268	<0.0001	-0.0049
4	DKI	0.0688	0.0685	237.5608	<0.0001	0.0302
4	DTI	0.0696	0.0693	240.5501	<0.0001	-0.1682
4	SMT	0.1040	0.1038	403.8253	<0.0001	-0.0603
4	SMT mc	0.1639	0.1637	630.6907	<0.0001	0.0803
4	WMTI	0.2239	0.2236	927.6834	<0.0001	0.1036

801

802

803

804

805

806

The table shows predictions of the first four components retrieved from the respective models (as done for brain age predictions, see **Table 1**), using BAG, age, sex, site, as well as age-sex and sex-site interactions as predictors (Equation 1). Both these four components as well as multimodal and approach-specific BAGs are based on data limited to the particular uni- or multi-modal approach and vary therefore in their number of metrics (**Table 1**).

807 **ST15. Top five diffusion metrics ranked by gain in age prediction accuracy**

808

BRIA	DKI	DTI	SMT	mcSMT	WMTI	Multimodal
Micro FA fornix (54957)	MK fornix (39662)	MD fornix (50535)	MD fornix (43563)	Intra fornix (38043)	AWF fornix (52531)	Micro FA Fornix (67749)
Micro RD right external capsule (26954) (22860)	RK fornix	RD FMIN (18386)	MD right anterior corona radiata (24675)	Extra trans Fornix (35799)	RadEAD ATRL (12328)	RD Fornix right Stria terminalis (17664)
Micro FA FMIN (10081)	AK right anterior limb of internal capsule (16340)	RD fornix right stria terminalis (15431)	MD SLFR (19451)	Extratrans right external capsule (15369)	RadEAD right anterior corona radiata	AK anterior right limb of internal capsule (17664)
Micro FA fornix right stria terminilis (9853)	AK fornix (10516)	AD fornix (9637)	MD FMIN (13527)	Extra MD anterior left limb of internal capsule (6254)	RadEAD IFOFR anterior corona radiata (17375)	RadEAD right
Micro RD Fornix right stria terminalis (9812)	AK left superior fronto occipital fasciculus (6850)	FA fornix left stria terminalis (9283)	FA fornix (12011)	Extra trans anterior right limb of internal capsule (6126)	RadEAD right external capsule (15840)	RadEAD SLFR

809 Table values can be read as feature name (gain value). Gain refers to the improvement in accuracy brought by a feature
810 to the branches it is on⁴³. Multimodal refers to an approach using the diffusion metrics from all diffusion approaches.

811 Cells containing Fornix are marked in green.

812 Tracts are abbreviated as follows: ATRL = anterior thalamic radiation left, FMIN = Forceps minor, IFOFR = inferior
813 fronto-occipital fasciculus right, SLFR = superior longitudinal fasciculus right

814 **ST16. Brain age prediction model performance excluding fornix features and uncorrected**
 815 **brain age – chronological age correlations comparison**
 816

Name	MRI features	R ²	RMSE	MAE	Prediction-Age Correlation	Uncorrected Brain Age Correlation Difference to All Data
BRIA	700	0.527 (0.010)	5.131 (0.042)	4.129 (0.033)	0.727 [0.722, 0.732]	-0.007* [-0.009, -0.004]
DKI	182	0.550 (0.015)	5.108 (0.070)	4.105 (0.065)	0.742 [0.737, 0.747]	-0.006* [-0.008, -0.003]
DTI	252	0.555 (0.013)	5.078 (0.066)	4.079 (0.061)	0.745 [0.745, 0.750]	-0.005* [-0.007, -0.003]
SMT	252	0.507 (0.008)	5.347 (0.042)	4.309 (0.028)	0.713 [0.707, 0.718]	-0.009* [-0.011, -0.006]
mcSMT	252	0.488 (0.011)	5.342 (0.045)	4.303 (0.036)	0.699 [0.693, 0.705]	-0.015* [-0.018, -0.012]
WMTI	182	0.566 (0.012)	5.018 (0.062)	4.031 (0.052)	0.753 [0.748, 0.757]	-0.003* [-0.006, -0.001]
Mean scores	28	0.393 (0.012)	5.932 (0.051)	4.812 (0.046)	0.627 [0.621, 0.634]	0 [-0.0001, 0.0001]
multimodal						
Full model	1904	0.636 (0.012)	4.591 (0.077)	3.677 (0.039)	0.798 [0.794, 0.802]	-0.006* [-0.007, -0.004]
multimodal						

817
 818 In the above only fornix features are excluded, while QC and all other steps are kept as described in the Methods
 819 section. *Importantly*, radiations from the fornix to other tracts such as fornix to stria terminalis radiations were not
 820 excluded. Compare results from the full model in Table 1 for uncorrected prediction-age correlations which were the
 821 basis for the final column.

822 * p<.001

823
 824 Brain age predictions from models containing fornix metrics are consistently stronger correlated with age than
 825 predictions from models not containing fornix ($rs < -0.003, ps < .001$).