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 Abstract  

The Adolescent Brain and Cognitive Development (ABCD) study aims to measure the trajectories of brain, 

cognitive, and emotional development. Cognitive and behavioural development during late childhood and 

adolescence have been associated with a myriad of microstructural and morphological alterations across the 

brain, as measured by magnetic resonance imaging (MRI). These associations may be strongly localised or 

spatially diffuse, therefore, it would be advantageous to analyse multimodal MRI data in concert, and across 

the whole brain. The ABCD study presents the unique challenge of integrating multimodal data from tens of 

thousands of scans at multiple timepoints, within a reasonable computation time. To address the need for a 

multimodal registration and atlas for the ABCD dataset, we present the synthesis of an ABCD atlas using the 

Multimodal Image Normalisation Tool (MINT). The MINT ABCD atlas was generated from baseline and two-

year follow up imaging data using an iterative approach to synthesise a cohort-specific atlas from linear and 

nonlinear deformations of eleven channels of diffusion and structural MRI data. We evaluated the 

performance of MINT against two widely used methods and show that MINT achieves comparable alignment 

to current state-of-the-art multimodal registration, at a fraction of the computation time. To validate the use 

of the ABCD MINT atlas in whole brain, voxelwise analysis, we replicate and expand on previously published 

region-of-interest analysis between diffusion MRI-derived measures and body mass index (BMI). We also 

report novel association between BMI and brain morphology derived from the registration deformations. We 

present the ABCD MINT atlas as a publicly available resource to facilitate whole brain voxelwise analyses for 

the ABCD study. 

 

 Keywords  

Registration, atlas, pediatric imaging, ABCD study.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2022. ; https://doi.org/10.1101/2022.08.09.503395doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.09.503395
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Introduction  

Late childhood and adolescence are periods of substantial cognitive and behavioural development and are 

associated with the emergence of many psychiatric disorders. The Adolescent Brain and Cognitive 

Development (ABCD) study aims to measure the trajectories of brain, cognitive, and emotional development, 

among numerous other developmental outcomes, and to identify the genetic and environmental factors that 

may influence them. It is the largest long-term study of brain development and child health in the United 

States (Casey et al., 2018), and is epidemiologically-informed, including participants from demographically 

diverse backgrounds (Dick et al., 2021; Garavan et al., 2018). 

 

Developmental and behavioural changes, both in typical and atypical development, have been associated 

with a myriad of microstructural and morphological alterations across the brain, as measured by magnetic 

resonance imaging (MRI) (Ball et al., 2018; Bos et al., 2018; Casey et al., 2019; Casey et al., 2005; Genc et al., 

2017; Lenroot et al., 2007; Palmer et al., 2021). MRI modalities vary in their sensitivity to individual differences 

in behavioural development and in the trajectories of their derived measures (Bethlehem et al., 2022; Brown 

et al., 2012; Fjell et al., 2015; Lebel and Beaulieu, 2011; Lebel and Deoni, 2018). Furthermore, developmental 

brain-behaviour associations may be strongly localised, driven by particular anatomical features, or diffuse 

across the whole brain. It would therefore be advantageous for developmental studies to analyse multimodal 

MRI data in concert, and across the whole brain.  

 

The first step in multimodal, whole brain, voxelwise analyses is to establish anatomical correspondence 

between participants, across all scans. This requires spatial normalisation of scans to a common space, such 

as an atlas. It is necessary to use a template that is an adequate representative of the overall cohort 

(Keihaninejad et al., 2012; Van Hecke et al., 2011; Yoon et al., 2009; Zhang and Arfanakis, 2013). Another 

consideration is the choice of MRI modality used to align scans. Diffusion MRI (dMRI) data contain rich 

orientational information which is best suited to aligning white matter and oriented structures. Structural MRI 

(sMRI) data offer higher resolution and greater grey matter-white matter contrast and are best suited to 

aligning cortical and subcortical structures. As different modalities can provide complementary information, 

the ideal registration algorithm would be able to leverage multiple channels of information. Most recently 

published paediatric atlases fall short of at least one of these stipulations and therefore are not ideal for the 

ABCD study. They either include too few participants, do not include demographically diverse participants, or 

were constructed using unimodal registration (Avants et al., 2015; Fonov et al., 2011; Molfese et al., 2021; 

Morris et al., 2020; Sanchez et al., 2012; Wilke et al., 2008; Xie et al., 2015; Yoon et al., 2009; Zhao et al., 2019; 

Zhu et al., 2021) (see Supplementary Table 1 for a summary).  

 

The ABCD cohort includes 11,880 children being followed on a regular basis from age 9-10 years, for at least 

10 years, with multimodal neuroimaging data collected every 2 years. This presents the unique challenge of 

integrating multimodal data from tens of thousands of scans at multiple timepoints, with consistently good 

alignment across participants, within a reasonable computation time. One widely used method that does 
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employ a multimodal framework for registration and can be used to generate cohort-specific atlases is ANTs 

(Avants et al., 2008; Avants et al., 2014). While generally accepted to produce state-of-the-art alignment 

across participants and modalities (Klein et al., 2009), ANTs is computationally intensive. Computation time 

becomes prohibitively long when considering large datasets with tens of thousands of scans. 

 

To address the need for a multimodal registration and atlas for the ABCD dataset, we present the synthesis of 

an ABCD atlas using the Multimodal Image Normalisation Tool (MINT). The MINT ABCD atlas is generated 

from baseline and two-year follow up imaging data. We compare the performance of MINT with that of two 

widely used methods, ANTs and FSL’s FLIRT/FNIRT. To validate the use of the ABCD MINT atlas in a whole 

brain, voxelwise analysis, we reproduced previously reported associations between dMRI-derived measures 

and body mass index (BMI) in the ABCD dataset.  

 

The ABCD MINT atlas will be publicly available shortly from our GitHub repository at 

https://github.com/cmig-research-group/cmig_tools.  

 

 Methods 

 Sample 

This paper uses baseline and two-year follow up (FU) data from the NIMH Data Archive ABCD Collection 

Release 4.0 (DOI: 10.15154/1523041). The ABCD cohort is epidemiologically informed (Garavan et al., 2018); it 

includes participants from demographically diverse backgrounds and has an embedded twin cohort and many 

siblings. Exclusion criteria for participation in the ABCD Study were limited to: 1) lack of English proficiency in 

the child; 2) the presence of severe sensory, neurological, medical or intellectual limitations that would inhibit 

the child’s ability to comply with the protocol; 3) an inability to complete an MRI scan at baseline. The study 

protocols are approved by the University of California, San Diego Institutional Review Board. Parent/caregiver 

permission and child assent were obtained from each participant. In total, 18,718 scans were inputted to the 

registration and atlas construction. The demographics of the sample are summarised in Table 1.  

 

 Data Acquisition 

T1-weighted (T1w) and dMRI data were collected using Siemens Prisma and Prisma Fit, General Electric MR 

Discovery 750, and Philips Achieva and Ingenia 3T scanners. Scanning protocols were harmonised across 21 

sites. Full details of the image acquisition protocols used in the ABCD study have been described by Casey et 

al (2018) and Hagler et al (2019), therefore only a short overview is given here. dMRI data were acquired in the 

axial plane at 1.7 mm isotropic resolution with multiband acceleration factor 3 (except for the Ingenia, which 

used acceleration factor 4). Diffusion-weighted images were collected with seven b=0 s/mm
2
 frames and 96 

non-collinear gradient directions, with 6 directions at b=500 s/mm
2
, 15 directions at b=1000 s/mm

2
, 15 

directions at b=2000 s/mm
2
, and 60 directions at b=3000 s/mm

2
. T1w images were acquired using a 3D 
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magnetisation-prepared rapid acquisition gradient echo (MPRAGE) scan with 1mm isotropic resolution and 

no multiband acceleration.  

 

 Image preprocessing  

 dMRI 

Imaging data were preprocessed using the ABCD Study processing pipeline as described by Hagler et al 

(2019). dMRI data were corrected for eddy current distortion using a diffusion gradient model-based approach 

(Zhuang et al., 2006). Head motion was corrected by rigid body registration of each diffusion-weighted 

volume to a corresponding volume synthesised from a robust tensor fit, accounting for image contrast 

variation between frames. Dark slices caused by abrupt head motion were replaced with values synthesised 

from the robust tensor fit, and the diffusion gradient matrix was adjusted for head rotation (Hagler et al., 

2019). Spatial and intensity distortions caused by B0 field inhomogeneity were corrected using FSL’s topup 

(Andersson et al., 2003), followed by gradient nonlinearity distortion correction (Jovicich et al., 2006). The 

dMRI data were registered to T1w structural images using mutual information (Wells et al., 1996) after coarse 

pre-alignment via within-modality registration to atlas brains. dMRI data were then resampled to 1.7 mm 

isotropic resolution, equal to the dMRI acquisition resolution. 

 

The restriction spectrum imaging (RSI) model (Brunsing et al., 2017; White et al., 2013a; White et al., 2014; 

White et al., 2013b) was fit to the diffusion-weighted images. In general, RSI is a flexible framework for 

modelling contributions of separable pools of water within tissues to the measured diffusion signal. As 

applied in ABCD, RSI is a three compartment model used to estimate the relative contribution of restricted, 

hindered and free water environments within brain tissue. A more detailed explanation of RSI and its derived 

measures as applied in ABCD is given by Palmer et al. (2021). Briefly, spherical deconvolution (SD) is used to 

reconstruct a fiber orientation distribution (FOD) in each voxel for each compartment. The hindered and 

restricted compartments are modelled as fourth order spherical harmonic coefficients (SH) functions, and the 

free water compartment is modelled using zeroth order SH functions. The axial diffusivity (AD) is held 

constant, with a value of 1×10
-3

 mm
2
/s for the restricted and hindered compartments. For the restricted 

compartment, the radial diffusivity (RD) is fixed to 0 mm
2
/s. For the hindered compartment, RD is fixed to 

0.9×10
-3

 mm
2
/s. For the free water compartment the isotropic diffusivity is fixed to 3×10

-3
 mm

2
/s. 

 

For each participant, major WM tracts were labelled using AtlasTrack, a probabilistic atlas-based method for 

automated segmentation of WM fiber tracts (Hagler et al., 2009; Hagler et al., 2019), and binarised.  

 

 sMRI  

T1w images were preprocessed according to the standard ABCD processing pipeline, outlined in detail in 

Hagler et al (2019). T1w images were corrected for gradient nonlinearity distortions using scanner-specific, 

nonlinear transformations provided by MRI scanner manufacturers (Jovicich et al., 2006). Intensity 

inhomogeneity correction was performed by applying a smoothly varying, estimated B1-bias field (Hagler et 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2022. ; https://doi.org/10.1101/2022.08.09.503395doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.09.503395
http://creativecommons.org/licenses/by-nc-nd/4.0/


al., 2019). Images were rigidly registered and resampled into alignment with a pre-existing, in-house, 

averaged, reference brain with 1.0 mm isotropic resolution (Hagler et al., 2019). 

 

For each participant, cortical and subcortical grey matter structures were labelled using the Freesurfer 7.1.1 

segmentation (Fischl et al., 2002). 

 

 MINT registration  

Images were registered according to the numerical method outlined by Holland et al. (2011), extended to 

include multimodal inputs. The registration algorithm consisted of rigid body, affine and nonlinear 

transformations. Eleven multimodal channels were used to align scans and create the MINT ABCD atlas, 

however the input channels varied according to the registration step. Three sMRI channels were included: 

T1w images, white matter segmentation, and grey matter segmentation. Eight dMRI channels were included: 

the zeroth and second order SH coefficients of the restricted FOD and the zeroth order SH coefficients from 

the hindered and free water FODs from the RSI model. Prior to the multimodal registration it is necessary to 

align the different modalities within each participant. This was achieved using the rigid body registration 

transforms from the ABCD processing pipeline (Hagler et al., 2019). A combined image of the white matter 

and grey matter segmentations was used as a single input channel for the two linear registration steps. This 

was done because rigid body and affine transformations and contain no local deformations, therefore only 

information regarding the size, orientation and positioning of the brain volume is relevant at these stages. 

Conversely, all eleven channels were input for the nonlinear registration step as this involves local 

deformations for which local differences in intensity are necessary to align anatomical structures.  

 

The atlas-building algorithm was implemented as proposed by Joshi et al (2004), such that the registration 

target was the group mean image, constructed iteratively, and transformation fields were estimated for all 

participants towards the provisional group mean. 

 

 Linear registration  

After preprocessing, moving images are registered to a target image using rigid body and then affine 

transformations. A moving image is rigid body transformed, via a transformation with 6 degrees of freedom 

(rotation and translation parameters), to align with the target image. Images are registered by minimising a 

cost function based on intensity differences between the moving and target images in voxels within a brain 

mask. The mask is defined in atlas space from the group average b=0 mm/s
2
 image. Images are masked such 

that the values of the mask are 1 inside the brain and fall off to 0 outside the brain along a spatially smooth 

gradient of several voxels to avoid artificially introducing sharp boundaries in the images. Alignment should 

be driven by brain structure and using this type of mask downweighs the effects of non-brain tissues such as 

cerebral spinal fluid (CSF), the skull and fat tissue. Images are then affine registered using a 12-parameter 

transformation, where the optimisation is extended to include translations, rotations, uniaxial strains, and 

shears.  
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 Nonlinear registration  

Nonlinear registration requires the calculation of a three-dimensional displacement field at each voxel that 

maps the moving image to the target. The affine registered images are first smoothed by convolving with an 

isotropic Gaussian kernel with standard deviation σ=32mm, corresponding to full width half maximum 

(FWHM) of 75.3542. The cost function to be minimised expresses the intensity difference between the moving 

and target image and includes regularisation parameters which ensure a smooth displacement field and 

penalise large deformations. By design, the minimum of the cost function is found when the displacement 

field results in a good match between the moving and target images. Solving for the global minimum is made 

efficient by using the biconjugate gradients stabilised method. The displacement field, initially set as zero, is 

then updated. This is repeated three times, decreasing the smoothing of the images each time, σ is reduced 

to 16mm (FWHM=37.6771) then to 6mm (FWHM=14.1289), increasing the precision of the registration. The 

last iteration outputs a net displacement field. Finally, the rigid body, affine and nonlinear transformations are 

combined in a single transformation to be applied in a single interpolation step. 

 

 Registration target  

 An iterative procedure was used to generate an atlas target consistent with the registration 

procedure. The initial registration target was chosen the T1w atlas image used by Hagler et al. (2009) for the 

AtlasTrack method. Participants’ T1w scans were registered to the T1w atlas image and the warps were 

applied to the eleven channels needed for the multimodal registration. A group average was computed for 

each channel across the 1000 scans with the best alignment with the registration target, based on the mean 

Pearson correlation across all eleven input channels. The registration target was updated with the new 

multimodal average and the procedure was repeated three times, producing an iteratively refined multimodal 

atlas. The group average was restricted to the 1000 participants most correlated to the registration as it has 

been shown that not all participants should be weighted equally (Wu et al., 2011) when constructing a group 

average. Up-weighting participants close to the population mean, while down-weighting others, will produce 

a sharper registration target and improve registration.  

 

 Registration evaluation 

 Comparison with other registration algorithms 

Our registration method was evaluated against two widely used registration algorithms. FSL’s FLIRT and 

FNIRT (from herein referred to only as “FSL”) and ANTs were applied to a random subset of 200 participants. 

The demographics of the evaluation subset are summarised in Table 2. A subset of only 200 was chosen 

because of the long computation time needed for ANTs. As ANTs is a multimodal registration algorithm and 

it too requires modalities to be mutually aligned prior to multimodal registration, the exact same input 

images and registration target used for MINT were used for ANTs. ANTs allows the inputs to each registration 

step (rigid body, affine, nonlinear) to vary, therefore the inputs for each step were matched to those of MINT. 
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The registration target for ANTs was set to be the same as the final registration target in MINT to remove 

discrepancy in performance between the algorithms due to differences in registration targets. Given that FSL 

is a unimodal registration algorithm, the input images were each participant’s T1w scans and the registration 

target was the T1 channel from the final registration target in MINT.  

 

 Similarity measure  

Numerous similarity measures have been employed in previous registration studies, primarily Dice or Jaccard 

overlap measures or measures based on mutual information calculations (Bhatia et al., 2007). However, these 

are pairwise assessments and do not describe the overall alignment across all participants. To determine the 

overall agreement in anatomical structures across participants, we can calculate the probability that a voxel is 

assigned to a given ROI. When there is good alignment between participants, voxel probabilities will be high 

within the ROI and drop off sharply; poor alignment will result in a blurry ROI with a gradual decrease in voxel 

probabilities. A blurrier ROI reflects greater uncertainty in the location of the structure’s boundary. Shannon 

entropy is a natural measure of uncertainty (Namdari and Li, 2019), based on the probability of an event 

occurring, and as such is our chosen similarity measure.  

 

Following registration with each of the three algorithms tested, each participant’s subcortical grey matter 

ROIs and white matter ROIs from the Freesurfer parcellation and AtlasTrack, respectively, were transformed 

to the ABCD atlas space. ROIs were binarised and summed across participants and divided by the number of 

participants to produce a probabilistic ROI for each structure, according to each registration algorithm. Each 

voxel, � � 1,… , �, then contains a probability that it belongs to a given anatomical structure. The Shannon 

entropy for each ROI was calculated as  

��	
 � ��
� log� 
�
�

���

 

 

 Computation time  

Given the importance of reasonable computation time for the spatial normalisation, we report the average 

time taken to register a single participant to the atlas.  

 

 Incorporating multiple brain parcellations into the MINT ABCD atlas space 

We incorporated two independent brain parcellations into the MINT ABCD space to provide parcellations of 

subcortical structures not available from Freesurfer or AtlasTrack. Different parcellation schemes offer 

varying degrees of detail with respect to different anatomical structures. This allows us to make inferences at 

different granularity levels and improve reproducibility across studies using different parcellation schemes. 

Therefore we included a subcortical atlas that was generated using T1 and T2 scans from 168 typical adults 

from the Human Connectome Project (HCP) (Pauli et al., 2018), and a thalamic nuclei atlas that was 

generated using a k-means algorithm taking as inputs the mean FOD SH coefficients from within a Freesurfer 

parcellation of the thalamus, using adult HCP data from 70 participants (Najdenovska et al., 2018). 
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 Application of the MINT ABCD atlas to statistical analyses  

Fan et al. (2022) recently published the fast and efficient mixed-effects algorithm (FEMA) which implements 

linear mixed effects models for use in large-scale neuroimaging data. FEMA can perform whole-brain, mass 

univariate analyses on complex large-scale imaging data in a computationally efficient manner. This requires 

voxelwise correspondence across participants prior to statistical analyses; therefore, we demonstrate the use 

of the MINT atlas in conjunction with FEMA.  

 

Associations between body mass index (BMI) and dMRI measures in adolescents from the ABCD study have 

previously been reported (Rapuano et al., 2020). Rapuano et al. demonstrated that greater BMI was 

associated with greater restricted normalised isotropic (RNI) diffusion in the intracellular tissue compartment, 

as measured by RSI within the nucleus accumbens, putamen, caudate, pallidum, ventral diencephalon, 

thalamus, amygdala and hippocampus. The study presented results from a region-of-interest (ROI) analysis, 

with a post hoc voxelwise analysis restricted only to voxels within the ROIs studied. Here we replicate and 

expand upon these results to demonstrate the validity of voxelwise analysis following registration using 

MINT.  

 

After spatial normalisation using MINT, we measured voxelwise associations between BMI and RNI across the 

whole brain. RNI is equivalent to the restricted isotropic component in the study by Rapuano et al (2020), also 

referred to as cellular density. Here we report our findings using the updated nomenclature from ABCD Study 

Data Release 4.0 (release notes with further details are available from https://nda.nih.gov/abcd). We used 

FEMA to estimate univariate general linear mixed effects models at each voxel to test the associations 

between BMI and RNI. In our model we included household income, parental education, Hispanic ethnicity, 

self-declared race, parental marital status, intracranial volume, scanner ID and MRI software version as fixed 

effects and participant ID and family relatedness as random effects. Covariates were chosen to match those 

included by Rapuano et al., (2020). The demographics of the sample used in this analysis are summarised in 

Table 3.  

 

In addition to studying scalar indices such as RNI, nonlinear registration allows us to examine voxelwise local 

tissue contraction or expansion relative to the atlas and its association with our variable of interest, which is 

not possible with ROI analyses. From the nonlinear spatial transformations that warp each participant’s affine 

registered images to the atlas, we calculated the determinant of the spatial derivative matrix, the Jacobian, 

which describes the local tissue expansion or contraction. We measured voxelwise associations between BMI 

and the Jacobian (JA), including the same covariates in the model as described above.  
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 Results 

 ABCD MINT atlas  

Figure 1 shows the eleven channels of the multimodal ABCD MINT atlas. The T1w, white and grey matter 

segmentation channels (Figure 1a, b and c, respectively) show the preservation of anatomical detail in the 

cortical and subcortical structures. The diffusion channels of the zeroth order coefficients for the restricted, 

hindered, and free water compartments (Figure 1d, j, k) show distinct tissue properties. The diffusion 

channels of the second order SH coefficients for the restricted FOD (Figure 1e-j) show the orientational 

information contained in dMRI data, particularly in the white matter, which help drive alignment across 

participants in oriented structures. Figure 2 shows the average Freesurfer parcellation, the color-coded FA 

map, and the restricted and hindered fourth order FODs from the ABCD atlas. Table 4 describes the 

demographics of the 1000 subjects used to create the final ABCD atlas.  

 

 Registration evaluation  

We evaluated the performance of MINT against FSL and ANTs. Figure 3 shows the entropy calculations for 

white matter and subcortical grey matter ROIs for MINT, ANTs and FSL. Since entropy is a measure of 

uncertainty, lower entropy values represent greater certainty, therefore a sharper ROI owing to better 

alignment across participants.  

 

MINT and ANTs show comparable performances in alignment of white matter tracts, whereas FSL-aligned 

tracts have markedly higher entropy values. Figure 4 shows the voxelwise entropy measure for the corpus 

callosum produced by each registration algorithm. In the alignment of subcortical grey matter, overall FSL 

performs better than both ANTs and MINT (Figure 3), as illustrated by slightly sharper voxelwise entropy 

maps of the putamen (Figure 4).  

 

 Computation time 

The average computation time for registering a single participant to the atlas was 29 hrs 1 min 41sec for 

ANTs, 30 min 24 sec for FSL and 24 min 35 sec for MINT.  

 

 Application of the MINT ABCD atlas to statistical analyses  

Using the MINT ABCD atlas we analysed whole brain, voxelwise associations between BMI and RNI and JA. 

Figure 5 shows greater BMI was associated with greater RNI across the brain, most notably in the subcortical 

grey matter, including the nucleus accumbens, caudate, globus pallidus, putamen and thalamus, in 

agreement with the findings of Rapuano et al. (Rapuano et al., 2020). Form our voxelwise analysis we see that 

effects are distributed nonuniformly across and within ROIs, highlighting the advantages of voxelwise 

analyses over ROI-based approaches. Furthermore, using a whole-brain approach instead of ROI-based, we 

can see that significant associations are not limited to these subcortical structures. There are significant, 
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positive associations between BMI and RNI in white matter surrounding the subcortical grey matter, the 

forceps minor, frontal white matter, and the cerebellum.  

 

Using the JA output by MINT, we investigated the associations between BMI and localised brain tissue volume 

differences. Figure 6 shows that greater BMI is associated with larger volume in the pallidum, centrum 

semiovale, periventricular white matter, the white matter surrounding the thalamus and putamen, and 

cerebellar white matter. Greater BMI was associated with smaller volume in the head of the caudate, the 

putamen, nucleus accumbens, and cerebellar cortex. Associations within the thalamus varied, with negative 

associations in the anterior dorsal nuclei and positive associations in the posterior ventral nuclei. Similarly, 

associations with the corpus callosum were spatially variable. The splenium of the corpus callosum showed 

positive associations between BMI and JA, while the rest of the corpus callosum showed negative 

associations.  

 

 Discussion 

We have presented a publicly available multimodal atlas constructed from ABCD data. Using the multimodal 

registration algorithm from MINT we can align scans from thousands of participants in eleven modalities 

simultaneously, achieving comparable performance to current state-of-the-art multimodal registration, at a 

fraction of the computation time.  

 

There were some differences in performance for the three registration algorithms across the different tissue 

types. Overall, the registration accuracy of MINT was comparable to that of ANTs in white and subcortical 

grey matter. Both ANTs and MINT were outperformed by FSL in the alignment of certain subcortical ROIs. 

Both ANTs and MINT require within-participant alignment of scans across modalities prior to alignment of 

scans across participants. It may be that this extra step introduces small misalignments which could be 

propagated to the between-participant registration step. Furthermore, the boundaries of subcortical 

structures are best observed on T1w scans, and it is possible that this is sufficient for good alignment of these 

structures. Conversely, the two multimodal produced substantially better alignment across white matter 

tracts than FSL. The orientational information in white matter is captured by the eight dMRI channels 

improving alignment in these structures, while the T1w channel is not sensitive to this information, and 

therefore performs worse.  

 

Using the ABCD MINT atlas and FEMA we have demonstrated that greater BMI was associated with greater 

RNI across the brain, reproducing the findings from Rapuano et al. (2020). The agreement between our 

results and those previously published validates the use of MINT-registered data for whole-brain voxelwise 

analysis. We also presented findings of associations between BMI and JA that would not have been possible 

to uncover using a ROI approach. We demonstrated spatially varying associations between BMI and both RNI 
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and JA. An in-depth study of these results is beyond the scope of this paper; however, they demonstrate the 

utility of MINT and FEMA.  

 

The inclusion of the atlas of thalamic nuclei (Najdenovska et al., 2018) allowed us to identify the distinct 

thalamic nuclei in the varying associations between JA and BMI. Incorporating external, publicly available 

parcellations into the MINT ABCD space provided greater detail to our analysis than was possible using solely 

the Freesurfer segmentation. Multiple segmentation schemes within the same space should lead to improved 

reproducibility across studies by reducing the sources of method variation between studies. This is 

particularly important in large, densely phenotyped studies such as ABCD where many investigators will want 

to query the same data but using different approaches.  

 

Moreover, brain morphology has been shown to exhibit variation across ancestral groups (Bakken et al., 2011; 

Fan et al., 2015) and registration accuracy is approved when the atlas is representative of the study cohort 

(Xie et al., 2015; Zhao et al., 2019). The size and demographic diversity of the ABCD sample used to generate 

the atlas make it applicable to other paediatric studies, enabling more reliable comparisons across studies.  

 

In conclusion, we have presented the ABCD MINT atlas as a publicly available resource to facilitate whole 

brain voxelwise analyses for the ABCD study. Our multimodal registration algorithm allows us to incorporate 

multiple imaging modalities, with good spatial alignment across participants, while keeping computation 

time at a minimum, ensuring that this approach is scalable to include the future timepoints from this 

longitudinal study.  
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Figure 1. Eleven channels of the MINT ABCDatlas: (a) T1w; (b) white matter segmentation; (c) grey matter segmentation; 

(d) zeroth order spherical harmonics coefficient of the restricted FOD; (e-i) second order, -2 to 2 degree spherical 

harmonics coefficients of the restricted FOD; (j) zeroth order spherical harmonics coefficient of the hindered FOD; (k) 

zeroth order spherical harmonics coefficient of the free water FOD.  
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Figure 2. The MINT ABCDatlas maps for the Freesurfer tissue segmentation, color-coded FA, restricted and hindered 

FODs. 
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Figure 3. ROI entropy measures for each registration algorithm for white matter ROIs from AtlasTrack and tissue 

segmentation ROIs from Freesurfer. 

 

 

Figure 4. Voxelwise entropy measure for each registration algorithm for the putamen and corpus callosum ROIs. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2022. ; https://doi.org/10.1101/2022.08.09.503395doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.09.503395
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 5. Voxelwise associations between RNI and BMI. ROI outlines are shown for the putamen, caudate, nucleus 

accumbens, pallidum and the thalamus. 

 

 

 

Figure 6. Voxelwise associations between the Jacobians (JA) from the MINT registration and BMI. ROI outlines are shown 

for the corpus callosum, putamen, caudate, nucleus accumbens, pallidum and the thalamic nuclei. The thalamic nuclei 

are: VA=ventral anterior, A=anterior, VA=ventral, MD=mediodorsal, VLV=ventral-latero-ventral, VLD=ventral-latero-

dorsal, clpmP=central-latero-lateral posterior-medial-pulvinar, PUL=pulvinar.  
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Table 1. Summary demographics of the sample of observations used in the atlas construction. 

 Baseline Two-year FU 

n 11140 7578 

Age, median years (range) 9.9 (8.9-11) 11.9 (10.6-13.8) 

Male sex, n (%) 5787 (51.9%) 4075 (54.8) 

Parental education n (%) n (%) 

< HS diploma,  538 (4.8) 316 (4.2) 

HS diploma/GED 1028 (9.2) 664 (8.8) 

Some college 2870 (25.8) 1881 *24.80 

Bachelor degree 2847 (25.6) 1988 (26.2) 

Postgraduate degree 3844 (34.5) 2708 (35.7) 

NA 13 (0.1) 86 (1.1) 

Race (race.6level) n (%) n (%) 

AIAN/NHPI 75 (0.7) 56 (0.7) 

Asian 253 (2.3) 152 (2) 

Black 1698 (15.2) 1039 (13.7) 

Mixed 1332 (12.0) 914 (12.1) 

Other 485 (4.4) 310 (4.1) 

White 7138 (64.1) 5017 *66.2) 

NA 159 (1.4) 90 (1.2) 

Hispanic ethnicity n (%) n (%) 

Yes 2261 (20.3%) 1460 (19.3) 

No 8733 (78.4) 6032 (79.6) 

NA 146 (1.3) 86 (1.1) 

Household income n (%) n (%) 

<50k  2957 (26.5) 1680 (22.2) 

50-100k 2882 (25.9) 1963 (25.9) 

>100k 4358 (39.1) 3339 (44.1) 

NA 943 (8.5) 596 (7.9) 
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Table 2. Summary demographics of the sample of 200 random observations used in registration evaluation 

 Baseline Two-year FU 

n 134 66 

Age, median years (range) 9.9 (8.9-10.9) 12 (10.9-13) 

Male sex, n (%) 72 (53.7) 36 (54.5) 

Parental education n (%) n (%) 

< HS diploma 6 (4.5) 2 (3.0) 

HS diploma/GED 6 (4.5) 3 (4.5) 

Some college 17 (12.7) 3 (4.5) 

Bachelor degree 33 (24.6) 15 (22.7) 

Postgraduate degree 72 (53.7) 43 (65.2) 

NA  0 (0) 0 (0) 

Race (race.6level) n (%) n (%) 

AIAN/NHPI 1 (0.75) 1 (1.5) 

Asian 29 (21.6) 17 (25.6) 

Black 2 (1.5) 1 (1.5) 

Mixed 25 (18.6) 11 (16.7) 

Other 12 (9.0) 3 (4.5) 

White 59 (44.0) 33 (50.0) 

NA 6 (4.5) 0 (0) 

Hispanic ethnicity  n (%) n (%) 

Yes  32 (23.9) 11 (16.7) 

No 100 (74.6) 54 (81.8) 

NA 2 (1.5) 1 (1.5) 

Household income n (%) n (%) 

<50k  23 (17.2) 3 (4.6) 

50-100k 12 (9.0) 10 (15.2) 

>100k 86 (64.2) 48 (72.7) 

NA 13 (9.7) 5 (7.6) 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2022. ; https://doi.org/10.1101/2022.08.09.503395doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.09.503395
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3. Summary demographics of participants analysed in the statistical analysis application of the MINT atlas. 

 Baseline 

n 8247 

Age, median years (range) 9.9 (8.9-11) 

Male sex, n (%) 4224 (51.2) 

BMI, median kg/m
2

 (range) 17.5 (11.1-35.7) 

Parental education n (%) 

< HS diploma 262 (3.2) 

HS diploma/GED 606 (7.3) 

Some college 2066 (25.1) 

Bachelor degree 2267 (27.5) 

Postgraduate degree 3046 (36.9) 

NA  0 (0) 

Race (race.6level) n (%) 

AIAN/NHPI 49 (0.6) 

Asian 170 (2.1) 

Black 1034 (12.5) 

Mixed 1016 (12.3) 

Other 328 (4.0) 

White 5650 (68.5) 

NA  0 (0) 

Hispanic ethnicity, n (%) 1593 (19.3) 

Household income n (%) 

<50k  2195 (26.6) 

50-100k 2365 (28.7) 

>100k 3687 (44.7) 

NA  0 (0) 
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Table 4. Summary demographics of the 1000 participants included in the final MINT atlas.  

 Baseline Two-year FU 

n 608 391 

Age, median years (range) 9.9 (8.9-11) 11.8 (10.8-13.5) 

Male sex, n (%) 306 (50.3) 200 (51.2) 

Parental education n (%) n (%) 

< HS diploma 64 (10.5) 40 (10.2) 

HS diploma/GED 57 (9.4) 38 (9.7) 

Some college 133 (21.9) 88 (22.5) 

Bachelor degree 138 (22.7) 83 (21.2) 

Postgraduate degree 215 (35.4) 142 (36.3) 

NA 1 (0.2) 0 (0) 

Race (race.6level) n (%) n (%) 

AIAN/NHPI 7 (1.2) 6 (1.5) 

Asian 72 (11.8) 41 (10.5) 

Black 19 (3.1) 11 (2.8) 

Mixed 100 16.4) 52 (13.3) 

Other 87 (14.3) 57 (14.6) 

White 287 (47.2) 207 (52.9) 

NA 36 (5.9) 17 (4.3) 

Hispanic ethnicity  n (%) n (%) 

Yes  265 (43.6) 175 (44.8) 

No 329 (54.1) 211 (54.0) 

NA 14 (2.3) 5 (1.2) 

Household income n (%) n (%) 

<50k  176 (28.9) 105 (26.9) 

50-100k 103 (16.9) 81 (20.7) 

>100k 259 (42.6) 171 (43.7) 

NA 70 (11.5) 34 (8.7) 
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