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Abstract

The Adolescent Brain and Cognitive Development (ABCD) study aims to measure the trajectories of brain,
cognitive, and emotional development. Cognitive and behavioural development during late childhood and
adolescence have been associated with a myriad of microstructural and morphological alterations across the
brain, as measured by magnetic resonance imaging (MRI). These associations may be strongly localised or
spatially diffuse, therefore, it would be advantageous to analyse multimodal MRI data in concert, and across
the whole brain. The ABCD study presents the unique challenge of integrating multimodal data from tens of
thousands of scans at multiple timepoints, within a reasonable computation time. To address the need for a
multimodal registration and atlas for the ABCD dataset, we present the synthesis of an ABCD atlas using the
Multimodal Image Normalisation Tool (MINT). The MINT ABCD atlas was generated from baseline and two-
year follow up imaging data using an iterative approach to synthesise a cohort-specific atlas from linear and
nonlinear deformations of eleven channels of diffusion and structural MRI data. We evaluated the
performance of MINT against two widely used methods and show that MINT achieves comparable alignment
to current state-of-the-art multimodal registration, at a fraction of the computation time. To validate the use
of the ABCD MINT atlas in whole brain, voxelwise analysis, we replicate and expand on previously published
region-of-interest analysis between diffusion MRI-derived measures and body mass index (BMI). We also
report novel association between BMI and brain morphology derived from the registration deformations. We
present the ABCD MINT atlas as a publicly available resource to facilitate whole brain voxelwise analyses for
the ABCD study.
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Introduction

Late childhood and adolescence are periods of substantial cognitive and behavioural development and are
associated with the emergence of many psychiatric disorders. The Adolescent Brain and Cognitive
Development (ABCD) study aims to measure the trajectories of brain, cognitive, and emotional development,
among numerous other developmental outcomes, and to identify the genetic and environmental factors that
may influence them. It is the largest long-term study of brain development and child health in the United
States (Casey et al., 2018), and is epidemiologically-informed, including participants from demographically

diverse backgrounds (Dick et al., 2021; Garavan et al., 2018).

Developmental and behavioural changes, both in typical and atypical development, have been associated
with a myriad of microstructural and morphological alterations across the brain, as measured by magnetic
resonance imaging (MRI) (Ball et al., 2018; Bos et al., 2018; Casey et al., 2019; Casey et al., 2005; Genc et al,,
2017; Lenroot et al., 2007; Palmer et al., 2021). MRI modalities vary in their sensitivity to individual differences
in behavioural development and in the trajectories of their derived measures (Bethlehem et al., 2022; Brown
etal, 2012; Fjell et al., 2015; Lebel and Beaulieu, 2011; Lebel and Deoni, 2018). Furthermore, developmental
brain-behaviour associations may be strongly localised, driven by particular anatomical features, or diffuse
across the whole brain. It would therefore be advantageous for developmental studies to analyse multimodal

MRI data in concert, and across the whole brain.

The first step in multimodal, whole brain, voxelwise analyses is to establish anatomical correspondence
between participants, across all scans. This requires spatial normalisation of scans to a common space, such
asan atlas. It is necessary to use a template that is an adequate representative of the overall cohort
(Keihaninejad et al., 2012; Van Hecke et al., 2011; Yoon et al., 2009; Zhang and Arfanakis, 2013). Another
consideration is the choice of MRI modality used to align scans. Diffusion MRI (dMRI) data contain rich
orientational information which is best suited to aligning white matter and oriented structures. Structural MRI
(sMRI) data offer higher resolution and greater grey matter-white matter contrast and are best suited to
aligning cortical and subcortical structures. As different modalities can provide complementary information,
the ideal registration algorithm would be able to leverage multiple channels of information. Most recently
published paediatric atlases fall short of at least one of these stipulations and therefore are not ideal for the
ABCD study. They either include too few participants, do not include demographically diverse participants, or
were constructed using unimodal registration (Avants et al., 2015; Fonov et al., 2011; Molfese et al., 2021;
Morris et al., 2020; Sanchez et al., 2012; Wilke et al., 2008; Xie et al., 2015; Yoon et al., 2009; Zhao et al., 2019;

Zhu et al., 2021) (see Supplementary Table 1 for a summary).

The ABCD cohort includes 11,880 children being followed on a regular basis from age 9-10 years, for at least
10 years, with multimodal neuroimaging data collected every 2 years. This presents the unique challenge of
integrating multimodal data from tens of thousands of scans at multiple timepoints, with consistently good

alignment across participants, within a reasonable computation time. One widely used method that does
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employ a multimodal framework for registration and can be used to generate cohort-specific atlases is ANTs
(Avants et al., 2008; Avants et al., 2014). While generally accepted to produce state-of-the-art alignment
across participants and modalities (Klein et al., 2009), ANTSs is computationally intensive. Computation time

becomes prohibitively long when considering large datasets with tens of thousands of scans.

To address the need for a multimodal registration and atlas for the ABCD dataset, we present the synthesis of
an ABCD atlas using the Multimodal Image Normalisation Tool (MINT). The MINT ABCD atlas is generated
from baseline and two-year follow up imaging data. We compare the performance of MINT with that of two
widely used methods, ANTs and FSL’s FLIRT/FNIRT. To validate the use of the ABCD MINT atlasin a whole
brain, voxelwise analysis, we reproduced previously reported associations between dMRI-derived measures
and body mass index (BMI) in the ABCD dataset.

The ABCD MINT atlas will be publicly available shortly from our GitHub repository at

https://github.com/cmig-research-group/cmig_tools.

Methods

Sample
This paper uses baseline and two-year follow up (FU) data from the NIMH Data Archive ABCD Collection
Release 4.0 (DOI: 10.15154/1523041). The ABCD cohort is epidemiologically informed (Garavan et al., 2018); it
includes participants from demographically diverse backgrounds and has an embedded twin cohort and many
siblings. Exclusion criteria for participation in the ABCD Study were limited to: 1) lack of English proficiency in
the child; 2) the presence of severe sensory, neurological, medical or intellectual limitations that would inhibit
the child’s ability to comply with the protocol; 3) an inability to complete an MRI scan at baseline. The study
protocols are approved by the University of California, San Diego Institutional Review Board. Parent/caregiver
permission and child assent were obtained from each participant. In total, 18,718 scans were inputted to the

registration and atlas construction. The demographics of the sample are summarised in Table 1.

Data Acquisition
T1-weighted (Taw) and dMRI data were collected using Siemens Prisma and Prisma Fit, General Electric MR

Discovery 750, and Philips Achieva and Ingenia 3T scanners. Scanning protocols were harmonised across 21
sites. Full details of the image acquisition protocols used in the ABCD study have been described by Casey et
al (2018) and Hagler et al (2019), therefore only a short overview is given here. dMRI data were acquired in the
axial plane at 1.7 mm isotropic resolution with multiband acceleration factor 3 (except for the Ingenia, which
used acceleration factor 4). Diffusion-weighted images were collected with seven b=o s/mm? frames and 96
non-collinear gradient directions, with 6 directions at b=500 s/mm?, 15 directions at b=1000 s/mm?, 15

directions at b=2000 sfmm’, and 60 directions at b=3000 s/mm”. Taw images were acquired using a 3D
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magnetisation-prepared rapid acquisition gradient echo (MPRAGE) scan with amm isotropic resolution and

no multiband acceleration.

Image preprocessing

dMRI
Imaging data were preprocessed using the ABCD Study processing pipeline as described by Hagler et al
(2019). dMRI data were corrected for eddy current distortion using a diffusion gradient model-based approach
(Zhuang et al., 2006). Head motion was corrected by rigid body registration of each diffusion-weighted
volume to a corresponding volume synthesised from a robust tensor fit, accounting for image contrast
variation between frames. Dark slices caused by abrupt head motion were replaced with values synthesised
from the robust tensor fit, and the diffusion gradient matrix was adjusted for head rotation (Hagler et al.,
2019). Spatial and intensity distortions caused by Bo field inhomogeneity were corrected using FSL's topup
(Andersson et al., 2003), followed by gradient nonlinearity distortion correction (Jovicich et al., 2006). The
dMRI data were registered to Taw structuralimages using mutual information (Wells et al., 1996) after coarse
pre-alignment via within-modality registration to atlas brains. dMRI data were then resampled to 1.7 mm

isotropic resolution, equal to the dMRI acquisition resolution.

The restriction spectrum imaging (RSI) model (Brunsing et al., 2017; White et al., 20133; White et al., 2014;
White et al., 2013b) was fit to the diffusion-weighted images. In general, RSl is a flexible framework for
modelling contributions of separable pools of water within tissues to the measured diffusion signal. As
applied in ABCD, RSl is a three compartment model used to estimate the relative contribution of restricted,
hindered and free water environments within brain tissue. A more detailed explanation of RSl and its derived
measures as applied in ABCD is given by Palmer et al. (2021). Briefly, spherical deconvolution (SD) is used to
reconstruct a fiber orientation distribution (FOD) in each voxel for each compartment. The hindered and
restricted compartments are modelled as fourth order spherical harmonic coefficients (SH) functions, and the
free water compartment is modelled using zeroth order SH functions. The axial diffusivity (AD) is held
constant, with a value of 1x10* mm?/s for the restricted and hindered compartments. For the restricted
compartment, the radial diffusivity (RD) is fixed to o mm?®/s. For the hindered compartment, RD is fixed to

0.9x10° mm’/s. For the free water compartment the isotropic diffusivity is fixed to 3x10 mm?/s.

For each participant, major WM tracts were labelled using AtlasTrack, a probabilistic atlas-based method for

automated segmentation of WM fiber tracts (Hagler et al., 2009; Hagler et al., 2019), and binarised.

SMRI
T1w images were preprocessed according to the standard ABCD processing pipeline, outlined in detail in
Hagler et al (2019). Tiw images were corrected for gradient nonlinearity distortions using scanner-specific,
nonlinear transformations provided by MRI scanner manufacturers (Jovicich et al., 2006). Intensity

inhomogeneity correction was performed by applying a smoothly varying, estimated B1-bias field (Hagler et
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al., 2019). Images were rigidly registered and resampled into alignment with a pre-existing, in-house,

averaged, reference brain with 1.0 mm isotropic resolution (Hagler et al., 2019).

For each participant, cortical and subcortical grey matter structures were labelled using the Freesurfer 7.1.1

segmentation (Fischl et al., 2002).

MINT registration
Images were registered according to the numerical method outlined by Holland et al. (2011), extended to

include multimodal inputs. The registration algorithm consisted of rigid body, affine and nonlinear
transformations. Eleven multimodal channels were used to align scans and create the MINT ABCD atlas,
however the input channels varied according to the registration step. Three sMRI channels were included:
Tiw images, white matter segmentation, and grey matter segmentation. Eight dMRI channels were included:
the zeroth and second order SH coefficients of the restricted FOD and the zeroth order SH coefficients from
the hindered and free water FODs from the RSI model. Prior to the multimodal registration it is necessary to
align the different modalities within each participant. This was achieved using the rigid body registration
transforms from the ABCD processing pipeline (Hagler et al., 2019). A combined image of the white matter
and grey matter segmentations was used as a single input channel for the two linear registration steps. This
was done because rigid body and affine transformations and contain no local deformations, therefore only
information regarding the size, orientation and positioning of the brain volume is relevant at these stages.
Conversely, all eleven channels were input for the nonlinear registration step as this involves local

deformations for which local differences in intensity are necessary to align anatomical structures.

The atlas-building algorithm was implemented as proposed by Joshi et al (2004), such that the registration
target was the group mean image, constructed iteratively, and transformation fields were estimated for all

participants towards the provisional group mean.

Linear registration
After preprocessing, moving images are registered to a target image using rigid body and then affine
transformations. A moving image is rigid body transformed, via a transformation with 6 degrees of freedom
(rotation and translation parameters), to align with the target image. Images are registered by minimising a
cost function based on intensity differences between the moving and target images in voxels within a brain
mask. The mask is defined in atlas space from the group average b=o mm/s® image. Images are masked such
that the values of the mask are 1 inside the brain and fall off to o outside the brain along a spatially smooth
gradient of several voxels to avoid artificially introducing sharp boundaries in the images. Alignment should
be driven by brain structure and using this type of mask downweighs the effects of non-brain tissues such as
cerebral spinal fluid (CSF), the skull and fat tissue. Images are then affine registered using a 12-parameter
transformation, where the optimisation is extended to include translations, rotations, uniaxial strains, and

shears.
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Nonlinear registration
Nonlinear registration requires the calculation of a three-dimensional displacement field at each voxel that
maps the moving image to the target. The affine registered images are first smoothed by convolving with an
isotropic Gaussian kernel with standard deviation 6=32mm, corresponding to full width half maximum
(FWHM) of 75.354.2. The cost function to be minimised expresses the intensity difference between the moving
and target image and includes regularisation parameters which ensure a smooth displacement field and
penalise large deformations. By design, the minimum of the cost function is found when the displacement
field results in a good match between the moving and target images. Solving for the global minimum is made
efficient by using the biconjugate gradients stabilised method. The displacement field, initially set as zero, is
then updated. This is repeated three times, decreasing the smoothing of the images each time, G is reduced
to 16mm (FWHM=37.6771) then to 6mm (FWHM=14.1289), increasing the precision of the registration. The
last iteration outputs a net displacement field. Finally, the rigid body, affine and nonlinear transformations are

combined in a single transformation to be applied in a single interpolation step.

Registration target

An iterative procedure was used to generate an atlas target consistent with the registration
procedure. The initial registration target was chosen the Tiw atlasimage used by Hagler et al. (2009) for the
AtlasTrack method. Participants’ T1iw scans were registered to the Tiw atlas image and the warps were
applied to the eleven channels needed for the multimodal registration. A group average was computed for
each channelacross the 1000 scans with the best alignment with the registration target, based on the mean
Pearson correlation across all eleven input channels. The registration target was updated with the new
multimodal average and the procedure was repeated three times, producing an iteratively refined multimodal
atlas. The group average was restricted to the 1000 participants most correlated to the registration as it has
been shown that not all participants should be weighted equally (Wu et al., 2011) when constructing a group
average. Up-weighting participants close to the population mean, while down-weighting others, will produce

a sharper registration target and improve registration.

Reqistration evaluation

Comparison with other registration algorithms
Our registration method was evaluated against two widely used registration algorithms. FSL's FLIRT and
FNIRT (from herein referred to only as "FSL"”) and ANTSs were applied to a random subset of 200 participants.
The demographics of the evaluation subset are summarised in Table 2. A subset of only 200 was chosen
because of the long computation time needed for ANTs. As ANTSs is a multimodal registration algorithm and
it too requires modalities to be mutually aligned prior to multimodal registration, the exact same input
images and registration target used for MINT were used for ANTs. ANTs allows the inputs to each registration

step (rigid body, affine, nonlinear) to vary, therefore the inputs for each step were matched to those of MINT.
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The registration target for ANTs was set to be the same as the final registration target in MINT to remove
discrepancy in performance between the algorithms due to differences in registration targets. Given that FSL
is a unimodal registration algorithm, the input images were each participant’s Taw scans and the registration

target was the T1 channel from the final registration target in MINT.

Similarity measure

Numerous similarity measures have been employed in previous registration studies, primarily Dice or Jaccard
overlap measures or measures based on mutual information calculations (Bhatia et al., 2007). However, these
are pairwise assessments and do not describe the overall alignment across all participants. To determine the
overall agreement in anatomical structures across participants, we can calculate the probability that a voxel is
assigned to a given ROI. When there is good alignment between participants, voxel probabilities will be high
within the ROl and drop off sharply; poor alignment will result in a blurry ROl with a gradual decrease in voxel
probabilities. A blurrier ROI reflects greater uncertainty in the location of the structure’s boundary. Shannon
entropy is a natural measure of uncertainty (Namdari and Li, 2019), based on the probability of an event

occurring, and as such is our chosen similarity measure.

Following registration with each of the three algorithms tested, each participant’s subcortical grey matter
ROIs and white matter ROIs from the Freesurfer parcellation and AtlasTrack, respectively, were transformed
to the ABCD atlas space. ROIs were binarised and summed across participants and divided by the number of
participants to produce a probabilistic ROI for each structure, according to each registration algorithm. Each
voxel, i = 1, ...,n, then contains a probability that it belongs to a given anatomical structure. The Shannon

entropy for each ROl was calculated as

n
H(x) = —Zm log, p;
i=1

Computation time
Given the importance of reasonable computation time for the spatial normalisation, we report the average

time taken to register a single participant to the atlas.

Incorporating multiple brain parcellations into the MINT ABCD atlas space

We incorporated two independent brain parcellations into the MINT ABCD space to provide parcellations of
subcortical structures not available from Freesurfer or AtlasTrack. Different parcellation schemes offer
varying degrees of detail with respect to different anatomical structures. This allows us to make inferences at
different granularity levels and improve reproducibility across studies using different parcellation schemes.
Therefore we included a subcortical atlas that was generated using T2 and T2 scans from 168 typical adults
from the Human Connectome Project (HCP) (Pauli et al., 2018), and a thalamic nuclei atlas that was
generated using a k-means algorithm taking as inputs the mean FOD SH coefficients from within a Freesurfer

parcellation of the thalamus, using adult HCP data from 7o participants (Najdenovska et al., 2018).
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Application of the MINT ABCD atlas to statistical analyses

Fanetal. (2022) recently published the fast and efficient mixed-effects algorithm (FEMA) which implements
linear mixed effects models for use in large-scale neuroimaging data. FEMA can perform whole-brain, mass
univariate analyses on complex large-scale imaging data in a computationally efficient manner. This requires
voxelwise correspondence across participants prior to statistical analyses; therefore, we demonstrate the use

of the MINT atlas in conjunction with FEMA.

Associations between body mass index (BMI) and dMRI measures in adolescents from the ABCD study have
previously been reported (Rapuano et al., 2020). Rapuano et al. demonstrated that greater BMI was
associated with greater restricted normalised isotropic (RNI) diffusion in the intracellular tissue compartment,
as measured by RSI within the nucleus accumbens, putamen, caudate, pallidum, ventral diencephalon,
thalamus, amygdala and hippocampus. The study presented results from a region-of-interest (ROI) analysis,
with a post hoc voxelwise analysis restricted only to voxels within the ROIs studied. Here we replicate and
expand upon these results to demonstrate the validity of voxelwise analysis following registration using
MINT.

After spatial normalisation using MINT, we measured voxelwise associations between BMI and RNI across the
whole brain. RNI is equivalent to the restricted isotropic component in the study by Rapuano et al (2020), also
referred to as cellular density. Here we report our findings using the updated nomenclature from ABCD Study
Data Release 4.0 (release notes with further details are available from https://nda.nih.gov/abcd). We used
FEMA to estimate univariate general linear mixed effects models at each voxel to test the associations
between BMI and RNI. In our model we included household income, parental education, Hispanic ethnicity,
self-declared race, parental marital status, intracranial volume, scanner ID and MRI software version as fixed
effects and participant ID and family relatedness as random effects. Covariates were chosen to match those
included by Rapuano et al., (2020). The demographics of the sample used in this analysis are summarised in
Table 3.

In addition to studying scalar indices such as RNI, nonlinear registration allows us to examine voxelwise local
tissue contraction or expansion relative to the atlas and its association with our variable of interest, which is
not possible with ROl analyses. From the nonlinear spatial transformations that warp each participant’s affine
registered images to the atlas, we calculated the determinant of the spatial derivative matrix, the Jacobian,
which describes the local tissue expansion or contraction. We measured voxelwise associations between BMI

and the Jacobian (JA), including the same covariates in the model as described above.
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Results

ABCD MINT atlas
Figure 1 shows the eleven channels of the multimodal ABCD MINT atlas. The Taw, white and grey matter
segmentation channels (Figure 1a, b and ¢, respectively) show the preservation of anatomical detail in the
cortical and subcortical structures. The diffusion channels of the zeroth order coefficients for the restricted,
hindered, and free water compartments (Figure 1d, j, k) show distinct tissue properties. The diffusion
channels of the second order SH coefficients for the restricted FOD (Figure 1e-j) show the orientational
information contained in dMRI data, particularly in the white matter, which help drive alignment across
participants in oriented structures. Figure 2 shows the average Freesurfer parcellation, the color-coded FA
map, and the restricted and hindered fourth order FODs from the ABCD atlas. Table 4 describes the

demographics of the 1000 subjects used to create the final ABCD atlas.

Registration evaluation

We evaluated the performance of MINT against FSL and ANTSs. Figure 3 shows the entropy calculations for
white matter and subcortical grey matter ROIs for MINT, ANTs and FSL. Since entropy is a measure of
uncertainty, lower entropy values represent greater certainty, therefore a sharper ROl owing to better

alignment across participants.

MINT and ANTs show comparable performances in alignment of white matter tracts, whereas FSL-aligned
tracts have markedly higher entropy values. Figure 4 shows the voxelwise entropy measure for the corpus

callosum produced by each registration algorithm. In the alignment of subcortical grey matter, overall FSL
performs better than both ANTs and MINT (Figure 3), as illustrated by slightly sharper voxelwise entropy

maps of the putamen (Figure 4).

Computation time
The average computation time for registering a single participant to the atlas was 29 hrs 1 min g1sec for

ANTSs, 30 min 24 sec for FSL and 24 min 35 sec for MINT.

Application of the MINT ABCD atlas to statistical analyses

Using the MINT ABCD atlas we analysed whole brain, voxelwise associations between BMI and RNI and JA.
Figure 5 shows greater BMI was associated with greater RNI across the brain, most notably in the subcortical
grey matter, including the nucleus accumbens, caudate, globus pallidus, putamen and thalamus, in
agreement with the findings of Rapuano et al. (Rapuano et al., 2020). Form our voxelwise analysis we see that
effects are distributed nonuniformly across and within ROIs, highlighting the advantages of voxelwise
analyses over ROI-based approaches. Furthermore, using a whole-brain approach instead of ROI-based, we

can see that significant associations are not limited to these subcortical structures. There are significant,


https://doi.org/10.1101/2022.08.09.503395
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.09.503395; this version posted August 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

positive associations between BMI and RNI in white matter surrounding the subcortical grey matter, the

forceps minor, frontal white matter, and the cerebellum.

Using the JA output by MINT, we investigated the associations between BMI and localised brain tissue volume
differences. Figure 6 shows that greater BMI is associated with larger volume in the pallidum, centrum
semiovale, periventricular white matter, the white matter surrounding the thalamus and putamen, and
cerebellar white matter. Greater BMI was associated with smaller volume in the head of the caudate, the
putamen, nucleus accumbens, and cerebellar cortex. Associations within the thalamus varied, with negative
associations in the anterior dorsal nuclei and positive associations in the posterior ventral nuclei. Similarly,
associations with the corpus callosum were spatially variable. The splenium of the corpus callosum showed
positive associations between BMIand JA, while the rest of the corpus callosum showed negative

associations.

Discussion

We have presented a publicly available multimodal atlas constructed from ABCD data. Using the multimodal
registration algorithm from MINT we can align scans from thousands of participants in eleven modalities
simultaneously, achieving comparable performance to current state-of-the-art multimodal registration, at a

fraction of the computation time.

There were some differences in performance for the three registration algorithms across the different tissue
types. Overall, the registration accuracy of MINT was comparable to that of ANTs in white and subcortical
grey matter. Both ANTs and MINT were outperformed by FSL in the alignment of certain subcortical ROIs.
Both ANTs and MINT require within-participant alignment of scans across modalities prior to alignment of
scans across participants. It may be that this extra step introduces small misalignments which could be
propagated to the between-participant registration step. Furthermore, the boundaries of subcortical
structures are best observed on Taw scans, and it is possible that this is sufficient for good alignment of these
structures. Conversely, the two multimodal produced substantially better alignment across white matter
tracts than FSL. The orientational information in white matter is captured by the eight dMRI channels
improving alignment in these structures, while the Taw channel is not sensitive to this information, and

therefore performs worse.

Using the ABCD MINT atlas and FEMA we have demonstrated that greater BMI was associated with greater
RNI across the brain, reproducing the findings from Rapuano et al. (2020). The agreement between our
results and those previously published validates the use of MINT-registered data for whole-brain voxelwise
analysis. We also presented findings of associations between BMI and JA that would not have been possible

to uncover using a ROl approach. We demonstrated spatially varying associations between BMI and both RNI
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and JA. An in-depth study of these results is beyond the scope of this paper; however, they demonstrate the

utility of MINT and FEMA.

The inclusion of the atlas of thalamic nuclei (Najdenovska et al., 2018) allowed us to identify the distinct
thalamic nuclei in the varying associations between JA and BMI. Incorporating external, publicly available
parcellations into the MINT ABCD space provided greater detail to our analysis than was possible using solely
the Freesurfer segmentation. Multiple segmentation schemes within the same space should lead to improved
reproducibility across studies by reducing the sources of method variation between studies. This is
particularly important in large, densely phenotyped studies such as ABCD where many investigators will want

to query the same data but using different approaches.

Moreover, brain morphology has been shown to exhibit variation across ancestral groups (Bakken et al., 2011;
Fan et al., 2015) and registration accuracy is approved when the atlas is representative of the study cohort
(Xie et al., 2015; Zhao et al., 2019). The size and demographic diversity of the ABCD sample used to generate

the atlas make it applicable to other paediatric studies, enabling more reliable comparisons across studies.

In conclusion, we have presented the ABCD MINT atlas as a publicly available resource to facilitate whole
brain voxelwise analyses for the ABCD study. Our multimodal registration algorithm allows us to incorporate
multiple imaging modalities, with good spatial alignment across participants, while keeping computation
time at a minimum, ensuring that this approach is scalable to include the future timepoints from this

longitudinal study.
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Figure 1. Eleven channels of the MINT ABCDatlas: (a) T1iw; (b) white matter segmentation; (c) grey matter segmentation;
(d) zeroth order spherical harmonics coefficient of the restricted FOD; (e-i) second order, -2 to 2 degree spherical
harmonics coefficients of the restricted FOD; (j) zeroth order spherical harmonics coefficient of the hindered FOD; (k)
zeroth order spherical harmonics coefficient of the free water FOD.
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Figure 2. The MINT ABCDatlas maps for the Freesurfer tissue segmentation, color-coded FA, restricted and hindered
FODs.
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Freesurfer ROIs

Figure 3. ROl entropy measures for each registration algorithm for white matter ROIs from AtlasTrack and tissue
segmentation ROIs from Freesurfer.
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Figure 4. Voxelwise entropy measure for each registration algorithm for the putamen and corpus callosum ROls.
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Figure 5. Voxelwise associations between RNI and BMI. ROl outlines are shown for the putamen, caudate, nucleus
accumbens, pallidum and the thalamus.
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Figure 6. Voxelwise associations between the Jacobians (JA) from the MINT registration and BMI. ROl outlines are shown
for the corpus callosum, putamen, caudate, nucleus accumbens, pallidum and the thalamic nuclei. The thalamic nuclei
are: VA=ventral anterior, A=anterior, VA=ventral, MD=mediodorsal, VLV=ventral-latero-ventral, VLD=ventral-latero-
dorsal, clpmP=central-latero-lateral posterior-medial-pulvinar, PUL=pulvinar.
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Table 1. Summary demographics of the sample of observations used in the atlas construction.

Baseline Two-year FU
n 11140 7578
Age, median years (range) 9.9 (8.9-11) 11.9 (10.6-13.8)
Male sex, n (%) 5787 (51.9%) 4075 (54.8)
Parental education n (%) n (%)
< HS diploma, 538 (4.8) 316 (4.2)
HS diploma/GED 1028(9.2) 664 (8.8)
Some college 2870 (25.8) 1881 *24.80
Bachelor degree 2847 (25.6) 1988 (26.2)
Postgraduate degree 3844 (34.5) 2708 (35.7)
NA 13 (0.1) 86 (1.1)
Race (race.6level) n (%) n (%)
AIAN/NHPI 75(0.7) 56 (0.7)
Asian 253 (2.3) 152 (2)
Black 1698 (15.2) 1039 (13.7)
Mixed 1332(12.0) 914 (12.1)
Other 485 (4.4) 310 (4.1)
White 7138 (64.1) 5017 *66.2)
NA 159 (1.4) 90 (1.2)
Hispanic ethnicity n (%) n (%)
Yes 2261 (20.3%) 1460 (19.3)
No 8733 (78.4) 6032 (79.6)
NA 146 (1.3) 86 (1.1)
Household income n (%) n (%)
<gok 2957 (26.5) 1680 (22.2)
50-100k 2882 (25.9) 1963 (25.9)
>100k 4358 (39.1) 3339 (44.1)
NA 943 (8.5) 596 (7.9)
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Table 2. Summary demographics of the sample of 200 random observations used in registration evaluation

Baseline Two-year FU
n 134 66
Age, median years (range) 9.9 (8.9-10.9) 12 (10.9-13)
Male sex, n (%) 72 (53.7) 36 (54.5)
Parental education n (%) n (%)
< HS diploma 6 (4.5) 2 (3.0)
HS diploma/GED 6 (4.5) 3(4.5)
Some college 17 (12.7) 3 (4.5)
Bachelor degree 33 (24.6) 15(22.7)
Postgraduate degree 72 (53.7) 43 (65.2)
NA 0(0) 0(0)
Race (race.6level) n (%) n (%)
AIAN/NHPI 1(0.75) 1(1.5)
Asian 29 (21.6) 17(25.6)
Black 2(1.5) 1(1.5)
Mixed 25(18.6) 11(16.7)
Other 12(9.0) 3(4.5)
White 59 (44.0) 33 (50.0)
NA 6 (4.5) 0(o0)
Hispanic ethnicity n (%) n (%)
Yes 32(23.9) 11 (26.7)
No 100 (74.6) 54 (81.8)
NA 2(15) 1(1.5)
Household income n (%) n (%)
<50k 23(17.2) 3(4.6)
50-100k 12 (9.0) 10 (15.2)
>100k 86 (64.2) 48(72.7)
NA 13(9.7) 5(7.6)
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Table 3. Summary demographics of participants analysed in the statistical analysis application of the MINT atlas.

Baseline
n 8247
Age, median years (range) 9.9(8.9-11)
Male sex, n (%) 4224 (51.2)
BMI, median kg/m”* (range) 17.5(11.1-35.7)
Parental education n (%)
< HS diploma 262 (3.2)
HS diploma/GED 606 (7.3)
Some college 2066 (25.1)
Bachelor degree 2267(27.5)
Postgraduate degree 3046 (36.9)
NA 0(0)
Race (race.6level) n (%6)
AIAN/NHPI 49 (0.6)
Asian 170 (2.1)
Black 1034 (12.5)
Mixed 1016 (12.3)
Other 328 (4.0)
White 5650 (68.5)
NA 0(0)
Hispanic ethnicity, n (%) 1593 (19.3)
Household income n (%)
<5ok 2195 (26.6)
50-100k 2365 (28.7)
>100k 3687 (44.7)

NA 0 (0)
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Table 4. Summary demographics of the 1000 participants included in the final MINT atlas.

Baseline Two-year FU
n 608 391
Age, median years (range) 9.9 (8.9-11) 11.8 (10.8-13.5)
Male sex, n (%) 306 (50.3) 200 (51.2)
Parental education n (%) n (%)
< HS diploma 64 (10.5) 40 (10.2)
HS diploma/GED 57 (9.4) 38(9.7)
Some college 133 (21.9) 88 (22.5)
Bachelor degree 138 (22.7) 83 (21.2)
Postgraduate degree 215 (35.4) 142 (36.3)
NA 1(0.2) 0(0)
Race (race.6level) n (%) n (%)
AIAN/NHPI 7 (1.2) 6 (1.5)
Asian 72 (11.8) 41 (10.5)
Black 19 (3.1) 11 (2.8)
Mixed 10016.4) 52(13.3)
Other 87 (14.3) 57 (14.6)
White 287 (47.2) 207(52.9)
NA 36 (5.9) 17 (4.3)
Hispanic ethnicity n (%) n (%)
Yes 265 (43.6) 175 (44.-8)
No 329 (54.1) 211 (54.0)
NA 14 (2.3) 5(1.2)
Household income n (%) n (%)
<5ok 176 (28.9) 105 (26.9)
50-100k 103 (16.9) 81(20.7)
>100k 259 (42.6) 171(43.7)
NA 70 (11.5) 34 (8.7)
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